Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/arm-optimized-routines/math/aarch64/sve/pow.c
48375 views
1
/*
2
* Double-precision SVE pow(x, y) function.
3
*
4
* Copyright (c) 2022-2025, Arm Limited.
5
* SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6
*/
7
8
#include "sv_math.h"
9
#include "test_sig.h"
10
#include "test_defs.h"
11
12
/* This version share a similar algorithm as AOR scalar pow.
13
14
The core computation consists in computing pow(x, y) as
15
16
exp (y * log (x)).
17
18
The algorithms for exp and log are very similar to scalar exp and log.
19
The log relies on table lookup for 3 variables and an order 8 polynomial.
20
It returns a high and a low contribution that are then passed to the exp,
21
to minimise the loss of accuracy in both routines.
22
The exp is based on 8-bit table lookup for scale and order-4 polynomial.
23
The SVE algorithm drops the tail in the exp computation at the price of
24
a lower accuracy, slightly above 1ULP.
25
The SVE algorithm also drops the special treatement of small (< 2^-65) and
26
large (> 2^63) finite values of |y|, as they only affect non-round to
27
nearest modes.
28
29
Maximum measured error is 1.04 ULPs:
30
SV_NAME_D2 (pow) (0x1.3d2d45bc848acp+63, -0x1.a48a38b40cd43p-12)
31
got 0x1.f7116284221fcp-1
32
want 0x1.f7116284221fdp-1. */
33
34
/* Data is defined in v_pow_log_data.c. */
35
#define N_LOG (1 << V_POW_LOG_TABLE_BITS)
36
#define Off 0x3fe6955500000000
37
38
/* Data is defined in v_pow_exp_data.c. */
39
#define N_EXP (1 << V_POW_EXP_TABLE_BITS)
40
#define SignBias (0x800 << V_POW_EXP_TABLE_BITS)
41
#define SmallExp 0x3c9 /* top12(0x1p-54). */
42
#define BigExp 0x408 /* top12(512.). */
43
#define ThresExp 0x03f /* BigExp - SmallExp. */
44
#define HugeExp 0x409 /* top12(1024.). */
45
46
/* Constants associated with pow. */
47
#define SmallBoundX 0x1p-126
48
#define SmallPowX 0x001 /* top12(0x1p-126). */
49
#define BigPowX 0x7ff /* top12(INFINITY). */
50
#define ThresPowX 0x7fe /* BigPowX - SmallPowX. */
51
#define SmallPowY 0x3be /* top12(0x1.e7b6p-65). */
52
#define BigPowY 0x43e /* top12(0x1.749p62). */
53
#define ThresPowY 0x080 /* BigPowY - SmallPowY. */
54
55
static const struct data
56
{
57
double log_c0, log_c2, log_c4, log_c6, ln2_hi, ln2_lo;
58
double log_c1, log_c3, log_c5, off;
59
double n_over_ln2, exp_c2, ln2_over_n_hi, ln2_over_n_lo;
60
double exp_c0, exp_c1;
61
} data = {
62
.log_c0 = -0x1p-1,
63
.log_c1 = -0x1.555555555556p-1,
64
.log_c2 = 0x1.0000000000006p-1,
65
.log_c3 = 0x1.999999959554ep-1,
66
.log_c4 = -0x1.555555529a47ap-1,
67
.log_c5 = -0x1.2495b9b4845e9p0,
68
.log_c6 = 0x1.0002b8b263fc3p0,
69
.off = Off,
70
.exp_c0 = 0x1.fffffffffffd4p-2,
71
.exp_c1 = 0x1.5555571d6ef9p-3,
72
.exp_c2 = 0x1.5555576a5adcep-5,
73
.ln2_hi = 0x1.62e42fefa3800p-1,
74
.ln2_lo = 0x1.ef35793c76730p-45,
75
.n_over_ln2 = 0x1.71547652b82fep0 * N_EXP,
76
.ln2_over_n_hi = 0x1.62e42fefc0000p-9,
77
.ln2_over_n_lo = -0x1.c610ca86c3899p-45,
78
};
79
80
/* Check if x is an integer. */
81
static inline svbool_t
82
sv_isint (svbool_t pg, svfloat64_t x)
83
{
84
return svcmpeq (pg, svrintz_z (pg, x), x);
85
}
86
87
/* Check if x is real not integer valued. */
88
static inline svbool_t
89
sv_isnotint (svbool_t pg, svfloat64_t x)
90
{
91
return svcmpne (pg, svrintz_z (pg, x), x);
92
}
93
94
/* Check if x is an odd integer. */
95
static inline svbool_t
96
sv_isodd (svbool_t pg, svfloat64_t x)
97
{
98
svfloat64_t y = svmul_x (svptrue_b64 (), x, 0.5);
99
return sv_isnotint (pg, y);
100
}
101
102
/* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is
103
the bit representation of a non-zero finite floating-point value. */
104
static inline int
105
checkint (uint64_t iy)
106
{
107
int e = iy >> 52 & 0x7ff;
108
if (e < 0x3ff)
109
return 0;
110
if (e > 0x3ff + 52)
111
return 2;
112
if (iy & ((1ULL << (0x3ff + 52 - e)) - 1))
113
return 0;
114
if (iy & (1ULL << (0x3ff + 52 - e)))
115
return 1;
116
return 2;
117
}
118
119
/* Top 12 bits (sign and exponent of each double float lane). */
120
static inline svuint64_t
121
sv_top12 (svfloat64_t x)
122
{
123
return svlsr_x (svptrue_b64 (), svreinterpret_u64 (x), 52);
124
}
125
126
/* Returns 1 if input is the bit representation of 0, infinity or nan. */
127
static inline int
128
zeroinfnan (uint64_t i)
129
{
130
return 2 * i - 1 >= 2 * asuint64 (INFINITY) - 1;
131
}
132
133
/* Returns 1 if input is the bit representation of 0, infinity or nan. */
134
static inline svbool_t
135
sv_zeroinfnan (svbool_t pg, svuint64_t i)
136
{
137
return svcmpge (pg, svsub_x (pg, svadd_x (pg, i, i), 1),
138
2 * asuint64 (INFINITY) - 1);
139
}
140
141
/* Handle cases that may overflow or underflow when computing the result that
142
is scale*(1+TMP) without intermediate rounding. The bit representation of
143
scale is in SBITS, however it has a computed exponent that may have
144
overflown into the sign bit so that needs to be adjusted before using it as
145
a double. (int32_t)KI is the k used in the argument reduction and exponent
146
adjustment of scale, positive k here means the result may overflow and
147
negative k means the result may underflow. */
148
static inline double
149
specialcase (double tmp, uint64_t sbits, uint64_t ki)
150
{
151
double scale;
152
if ((ki & 0x80000000) == 0)
153
{
154
/* k > 0, the exponent of scale might have overflowed by <= 460. */
155
sbits -= 1009ull << 52;
156
scale = asdouble (sbits);
157
return 0x1p1009 * (scale + scale * tmp);
158
}
159
/* k < 0, need special care in the subnormal range. */
160
sbits += 1022ull << 52;
161
/* Note: sbits is signed scale. */
162
scale = asdouble (sbits);
163
double y = scale + scale * tmp;
164
return 0x1p-1022 * y;
165
}
166
167
/* Scalar fallback for special cases of SVE pow's exp. */
168
static inline svfloat64_t
169
sv_call_specialcase (svfloat64_t x1, svuint64_t u1, svuint64_t u2,
170
svfloat64_t y, svbool_t cmp)
171
{
172
svbool_t p = svpfirst (cmp, svpfalse ());
173
while (svptest_any (cmp, p))
174
{
175
double sx1 = svclastb (p, 0, x1);
176
uint64_t su1 = svclastb (p, 0, u1);
177
uint64_t su2 = svclastb (p, 0, u2);
178
double elem = specialcase (sx1, su1, su2);
179
svfloat64_t y2 = sv_f64 (elem);
180
y = svsel (p, y2, y);
181
p = svpnext_b64 (cmp, p);
182
}
183
return y;
184
}
185
186
/* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about
187
additional 15 bits precision. IX is the bit representation of x, but
188
normalized in the subnormal range using the sign bit for the exponent. */
189
static inline svfloat64_t
190
sv_log_inline (svbool_t pg, svuint64_t ix, svfloat64_t *tail,
191
const struct data *d)
192
{
193
/* x = 2^k z; where z is in range [Off,2*Off) and exact.
194
The range is split into N subintervals.
195
The ith subinterval contains z and c is near its center. */
196
svuint64_t tmp = svsub_x (pg, ix, d->off);
197
svuint64_t i = svand_x (pg, svlsr_x (pg, tmp, 52 - V_POW_LOG_TABLE_BITS),
198
sv_u64 (N_LOG - 1));
199
svint64_t k = svasr_x (pg, svreinterpret_s64 (tmp), 52);
200
svuint64_t iz = svsub_x (pg, ix, svlsl_x (pg, svreinterpret_u64 (k), 52));
201
svfloat64_t z = svreinterpret_f64 (iz);
202
svfloat64_t kd = svcvt_f64_x (pg, k);
203
204
/* log(x) = k*Ln2 + log(c) + log1p(z/c-1). */
205
/* SVE lookup requires 3 separate lookup tables, as opposed to scalar version
206
that uses array of structures. We also do the lookup earlier in the code
207
to make sure it finishes as early as possible. */
208
svfloat64_t invc = svld1_gather_index (pg, __v_pow_log_data.invc, i);
209
svfloat64_t logc = svld1_gather_index (pg, __v_pow_log_data.logc, i);
210
svfloat64_t logctail = svld1_gather_index (pg, __v_pow_log_data.logctail, i);
211
212
/* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and
213
|z/c - 1| < 1/N, so r = z/c - 1 is exactly representible. */
214
svfloat64_t r = svmad_x (pg, z, invc, -1.0);
215
/* k*Ln2 + log(c) + r. */
216
217
svfloat64_t ln2_hilo = svld1rq_f64 (svptrue_b64 (), &d->ln2_hi);
218
svfloat64_t t1 = svmla_lane_f64 (logc, kd, ln2_hilo, 0);
219
svfloat64_t t2 = svadd_x (pg, t1, r);
220
svfloat64_t lo1 = svmla_lane_f64 (logctail, kd, ln2_hilo, 1);
221
svfloat64_t lo2 = svadd_x (pg, svsub_x (pg, t1, t2), r);
222
223
/* Evaluation is optimized assuming superscalar pipelined execution. */
224
225
svfloat64_t log_c02 = svld1rq_f64 (svptrue_b64 (), &d->log_c0);
226
svfloat64_t ar = svmul_lane_f64 (r, log_c02, 0);
227
svfloat64_t ar2 = svmul_x (svptrue_b64 (), r, ar);
228
svfloat64_t ar3 = svmul_x (svptrue_b64 (), r, ar2);
229
/* k*Ln2 + log(c) + r + A[0]*r*r. */
230
svfloat64_t hi = svadd_x (pg, t2, ar2);
231
svfloat64_t lo3 = svmls_x (pg, ar2, ar, r);
232
svfloat64_t lo4 = svadd_x (pg, svsub_x (pg, t2, hi), ar2);
233
/* p = log1p(r) - r - A[0]*r*r. */
234
/* p = (ar3 * (A[1] + r * A[2] + ar2 * (A[3] + r * A[4] + ar2 * (A[5] + r *
235
A[6])))). */
236
237
svfloat64_t log_c46 = svld1rq_f64 (svptrue_b64 (), &d->log_c4);
238
svfloat64_t a56 = svmla_lane_f64 (sv_f64 (d->log_c5), r, log_c46, 1);
239
svfloat64_t a34 = svmla_lane_f64 (sv_f64 (d->log_c3), r, log_c46, 0);
240
svfloat64_t a12 = svmla_lane_f64 (sv_f64 (d->log_c1), r, log_c02, 1);
241
svfloat64_t p = svmla_x (pg, a34, ar2, a56);
242
p = svmla_x (pg, a12, ar2, p);
243
p = svmul_x (svptrue_b64 (), ar3, p);
244
svfloat64_t lo = svadd_x (
245
pg, svadd_x (pg, svsub_x (pg, svadd_x (pg, lo1, lo2), lo3), lo4), p);
246
svfloat64_t y = svadd_x (pg, hi, lo);
247
*tail = svadd_x (pg, svsub_x (pg, hi, y), lo);
248
return y;
249
}
250
251
static inline svfloat64_t
252
sv_exp_core (svbool_t pg, svfloat64_t x, svfloat64_t xtail,
253
svuint64_t sign_bias, svfloat64_t *tmp, svuint64_t *sbits,
254
svuint64_t *ki, const struct data *d)
255
{
256
/* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */
257
/* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */
258
svfloat64_t n_over_ln2_and_c2 = svld1rq_f64 (svptrue_b64 (), &d->n_over_ln2);
259
svfloat64_t z = svmul_lane_f64 (x, n_over_ln2_and_c2, 0);
260
/* z - kd is in [-1, 1] in non-nearest rounding modes. */
261
svfloat64_t kd = svrinta_x (pg, z);
262
*ki = svreinterpret_u64 (svcvt_s64_x (pg, kd));
263
264
svfloat64_t ln2_over_n_hilo
265
= svld1rq_f64 (svptrue_b64 (), &d->ln2_over_n_hi);
266
svfloat64_t r = x;
267
r = svmls_lane_f64 (r, kd, ln2_over_n_hilo, 0);
268
r = svmls_lane_f64 (r, kd, ln2_over_n_hilo, 1);
269
/* The code assumes 2^-200 < |xtail| < 2^-8/N. */
270
r = svadd_x (pg, r, xtail);
271
/* 2^(k/N) ~= scale. */
272
svuint64_t idx = svand_x (pg, *ki, N_EXP - 1);
273
svuint64_t top
274
= svlsl_x (pg, svadd_x (pg, *ki, sign_bias), 52 - V_POW_EXP_TABLE_BITS);
275
/* This is only a valid scale when -1023*N < k < 1024*N. */
276
*sbits = svld1_gather_index (pg, __v_pow_exp_data.sbits, idx);
277
*sbits = svadd_x (pg, *sbits, top);
278
/* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (exp(r) - 1). */
279
svfloat64_t r2 = svmul_x (svptrue_b64 (), r, r);
280
*tmp = svmla_lane_f64 (sv_f64 (d->exp_c1), r, n_over_ln2_and_c2, 1);
281
*tmp = svmla_x (pg, sv_f64 (d->exp_c0), r, *tmp);
282
*tmp = svmla_x (pg, r, r2, *tmp);
283
svfloat64_t scale = svreinterpret_f64 (*sbits);
284
/* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
285
is no spurious underflow here even without fma. */
286
z = svmla_x (pg, scale, scale, *tmp);
287
return z;
288
}
289
290
/* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.
291
The sign_bias argument is SignBias or 0 and sets the sign to -1 or 1. */
292
static inline svfloat64_t
293
sv_exp_inline (svbool_t pg, svfloat64_t x, svfloat64_t xtail,
294
svuint64_t sign_bias, const struct data *d)
295
{
296
/* 3 types of special cases: tiny (uflow and spurious uflow), huge (oflow)
297
and other cases of large values of x (scale * (1 + TMP) oflow). */
298
svuint64_t abstop = svand_x (pg, sv_top12 (x), 0x7ff);
299
/* |x| is large (|x| >= 512) or tiny (|x| <= 0x1p-54). */
300
svbool_t uoflow = svcmpge (pg, svsub_x (pg, abstop, SmallExp), ThresExp);
301
302
svfloat64_t tmp;
303
svuint64_t sbits, ki;
304
if (unlikely (svptest_any (pg, uoflow)))
305
{
306
svfloat64_t z
307
= sv_exp_core (pg, x, xtail, sign_bias, &tmp, &sbits, &ki, d);
308
309
/* |x| is tiny (|x| <= 0x1p-54). */
310
svbool_t uflow
311
= svcmpge (pg, svsub_x (pg, abstop, SmallExp), 0x80000000);
312
uflow = svand_z (pg, uoflow, uflow);
313
/* |x| is huge (|x| >= 1024). */
314
svbool_t oflow = svcmpge (pg, abstop, HugeExp);
315
oflow = svand_z (pg, uoflow, svbic_z (pg, oflow, uflow));
316
317
/* For large |x| values (512 < |x| < 1024) scale * (1 + TMP) can overflow
318
or underflow. */
319
svbool_t special = svbic_z (pg, uoflow, svorr_z (pg, uflow, oflow));
320
321
/* Update result with special and large cases. */
322
z = sv_call_specialcase (tmp, sbits, ki, z, special);
323
324
/* Handle underflow and overflow. */
325
svbool_t x_is_neg = svcmplt (pg, x, 0);
326
svuint64_t sign_mask
327
= svlsl_x (pg, sign_bias, 52 - V_POW_EXP_TABLE_BITS);
328
svfloat64_t res_uoflow
329
= svsel (x_is_neg, sv_f64 (0.0), sv_f64 (INFINITY));
330
res_uoflow = svreinterpret_f64 (
331
svorr_x (pg, svreinterpret_u64 (res_uoflow), sign_mask));
332
/* Avoid spurious underflow for tiny x. */
333
svfloat64_t res_spurious_uflow
334
= svreinterpret_f64 (svorr_x (pg, sign_mask, 0x3ff0000000000000));
335
336
z = svsel (oflow, res_uoflow, z);
337
z = svsel (uflow, res_spurious_uflow, z);
338
return z;
339
}
340
341
return sv_exp_core (pg, x, xtail, sign_bias, &tmp, &sbits, &ki, d);
342
}
343
344
static inline double
345
pow_sc (double x, double y)
346
{
347
uint64_t ix = asuint64 (x);
348
uint64_t iy = asuint64 (y);
349
/* Special cases: |x| or |y| is 0, inf or nan. */
350
if (unlikely (zeroinfnan (iy)))
351
{
352
if (2 * iy == 0)
353
return issignaling_inline (x) ? x + y : 1.0;
354
if (ix == asuint64 (1.0))
355
return issignaling_inline (y) ? x + y : 1.0;
356
if (2 * ix > 2 * asuint64 (INFINITY) || 2 * iy > 2 * asuint64 (INFINITY))
357
return x + y;
358
if (2 * ix == 2 * asuint64 (1.0))
359
return 1.0;
360
if ((2 * ix < 2 * asuint64 (1.0)) == !(iy >> 63))
361
return 0.0; /* |x|<1 && y==inf or |x|>1 && y==-inf. */
362
return y * y;
363
}
364
if (unlikely (zeroinfnan (ix)))
365
{
366
double_t x2 = x * x;
367
if (ix >> 63 && checkint (iy) == 1)
368
x2 = -x2;
369
return (iy >> 63) ? 1 / x2 : x2;
370
}
371
return x;
372
}
373
374
svfloat64_t SV_NAME_D2 (pow) (svfloat64_t x, svfloat64_t y, const svbool_t pg)
375
{
376
const struct data *d = ptr_barrier (&data);
377
378
/* This preamble handles special case conditions used in the final scalar
379
fallbacks. It also updates ix and sign_bias, that are used in the core
380
computation too, i.e., exp( y * log (x) ). */
381
svuint64_t vix0 = svreinterpret_u64 (x);
382
svuint64_t viy0 = svreinterpret_u64 (y);
383
384
/* Negative x cases. */
385
svbool_t xisneg = svcmplt (pg, x, 0);
386
387
/* Set sign_bias and ix depending on sign of x and nature of y. */
388
svbool_t yint_or_xpos = pg;
389
svuint64_t sign_bias = sv_u64 (0);
390
svuint64_t vix = vix0;
391
if (unlikely (svptest_any (pg, xisneg)))
392
{
393
/* Determine nature of y. */
394
yint_or_xpos = sv_isint (xisneg, y);
395
svbool_t yisodd_xisneg = sv_isodd (xisneg, y);
396
/* ix set to abs(ix) if y is integer. */
397
vix = svand_m (yint_or_xpos, vix0, 0x7fffffffffffffff);
398
/* Set to SignBias if x is negative and y is odd. */
399
sign_bias = svsel (yisodd_xisneg, sv_u64 (SignBias), sv_u64 (0));
400
}
401
402
/* Small cases of x: |x| < 0x1p-126. */
403
svbool_t xsmall = svaclt (yint_or_xpos, x, SmallBoundX);
404
if (unlikely (svptest_any (yint_or_xpos, xsmall)))
405
{
406
/* Normalize subnormal x so exponent becomes negative. */
407
svuint64_t vtopx = svlsr_x (svptrue_b64 (), vix, 52);
408
svbool_t topx_is_null = svcmpeq (xsmall, vtopx, 0);
409
410
svuint64_t vix_norm = svreinterpret_u64 (svmul_m (xsmall, x, 0x1p52));
411
vix_norm = svand_m (xsmall, vix_norm, 0x7fffffffffffffff);
412
vix_norm = svsub_m (xsmall, vix_norm, 52ULL << 52);
413
vix = svsel (topx_is_null, vix_norm, vix);
414
}
415
416
/* y_hi = log(ix, &y_lo). */
417
svfloat64_t vlo;
418
svfloat64_t vhi = sv_log_inline (yint_or_xpos, vix, &vlo, d);
419
420
/* z = exp(y_hi, y_lo, sign_bias). */
421
svfloat64_t vehi = svmul_x (svptrue_b64 (), y, vhi);
422
svfloat64_t vemi = svmls_x (yint_or_xpos, vehi, y, vhi);
423
svfloat64_t velo = svnmls_x (yint_or_xpos, vemi, y, vlo);
424
svfloat64_t vz = sv_exp_inline (yint_or_xpos, vehi, velo, sign_bias, d);
425
426
/* Cases of finite y and finite negative x. */
427
vz = svsel (yint_or_xpos, vz, sv_f64 (__builtin_nan ("")));
428
429
/* Special cases of x or y: zero, inf and nan. */
430
svbool_t xspecial = sv_zeroinfnan (svptrue_b64 (), vix0);
431
svbool_t yspecial = sv_zeroinfnan (svptrue_b64 (), viy0);
432
svbool_t special = svorr_z (svptrue_b64 (), xspecial, yspecial);
433
434
/* Cases of zero/inf/nan x or y. */
435
if (unlikely (svptest_any (svptrue_b64 (), special)))
436
vz = sv_call2_f64 (pow_sc, x, y, vz, special);
437
438
return vz;
439
}
440
441
TEST_SIG (SV, D, 2, pow)
442
TEST_ULP (SV_NAME_D2 (pow), 0.55)
443
TEST_DISABLE_FENV (SV_NAME_D2 (pow))
444
/* Wide intervals spanning the whole domain but shared between x and y. */
445
#define SV_POW_INTERVAL2(xlo, xhi, ylo, yhi, n) \
446
TEST_INTERVAL2 (SV_NAME_D2 (pow), xlo, xhi, ylo, yhi, n) \
447
TEST_INTERVAL2 (SV_NAME_D2 (pow), xlo, xhi, -ylo, -yhi, n) \
448
TEST_INTERVAL2 (SV_NAME_D2 (pow), -xlo, -xhi, ylo, yhi, n) \
449
TEST_INTERVAL2 (SV_NAME_D2 (pow), -xlo, -xhi, -ylo, -yhi, n)
450
#define EXPAND(str) str##000000000
451
#define SHL52(str) EXPAND (str)
452
SV_POW_INTERVAL2 (0, SHL52 (SmallPowX), 0, inf, 40000)
453
SV_POW_INTERVAL2 (SHL52 (SmallPowX), SHL52 (BigPowX), 0, inf, 40000)
454
SV_POW_INTERVAL2 (SHL52 (BigPowX), inf, 0, inf, 40000)
455
SV_POW_INTERVAL2 (0, inf, 0, SHL52 (SmallPowY), 40000)
456
SV_POW_INTERVAL2 (0, inf, SHL52 (SmallPowY), SHL52 (BigPowY), 40000)
457
SV_POW_INTERVAL2 (0, inf, SHL52 (BigPowY), inf, 40000)
458
SV_POW_INTERVAL2 (0, inf, 0, inf, 1000)
459
/* x~1 or y~1. */
460
SV_POW_INTERVAL2 (0x1p-1, 0x1p1, 0x1p-10, 0x1p10, 10000)
461
SV_POW_INTERVAL2 (0x1.ep-1, 0x1.1p0, 0x1p8, 0x1p16, 10000)
462
SV_POW_INTERVAL2 (0x1p-500, 0x1p500, 0x1p-1, 0x1p1, 10000)
463
/* around estimated argmaxs of ULP error. */
464
SV_POW_INTERVAL2 (0x1p-300, 0x1p-200, 0x1p-20, 0x1p-10, 10000)
465
SV_POW_INTERVAL2 (0x1p50, 0x1p100, 0x1p-20, 0x1p-10, 10000)
466
/* x is negative, y is odd or even integer, or y is real not integer. */
467
TEST_INTERVAL2 (SV_NAME_D2 (pow), -0.0, -10.0, 3.0, 3.0, 10000)
468
TEST_INTERVAL2 (SV_NAME_D2 (pow), -0.0, -10.0, 4.0, 4.0, 10000)
469
TEST_INTERVAL2 (SV_NAME_D2 (pow), -0.0, -10.0, 0.0, 10.0, 10000)
470
TEST_INTERVAL2 (SV_NAME_D2 (pow), 0.0, 10.0, -0.0, -10.0, 10000)
471
/* |x| is inf, y is odd or even integer, or y is real not integer. */
472
SV_POW_INTERVAL2 (inf, inf, 0.5, 0.5, 1)
473
SV_POW_INTERVAL2 (inf, inf, 1.0, 1.0, 1)
474
SV_POW_INTERVAL2 (inf, inf, 2.0, 2.0, 1)
475
SV_POW_INTERVAL2 (inf, inf, 3.0, 3.0, 1)
476
/* 0.0^y. */
477
SV_POW_INTERVAL2 (0.0, 0.0, 0.0, 0x1p120, 1000)
478
/* 1.0^y. */
479
TEST_INTERVAL2 (SV_NAME_D2 (pow), 1.0, 1.0, 0.0, 0x1p-50, 1000)
480
TEST_INTERVAL2 (SV_NAME_D2 (pow), 1.0, 1.0, 0x1p-50, 1.0, 1000)
481
TEST_INTERVAL2 (SV_NAME_D2 (pow), 1.0, 1.0, 1.0, 0x1p100, 1000)
482
TEST_INTERVAL2 (SV_NAME_D2 (pow), 1.0, 1.0, -1.0, -0x1p120, 1000)
483
CLOSE_SVE_ATTR
484
485