Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/arm-optimized-routines/math/test/rtest/dotest.c
48375 views
1
/*
2
* dotest.c - actually generate mathlib test cases
3
*
4
* Copyright (c) 1999-2024, Arm Limited.
5
* SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6
*/
7
8
#include <stdio.h>
9
#include <string.h>
10
#include <stdlib.h>
11
#include <stdint.h>
12
#include <assert.h>
13
#include <limits.h>
14
15
#include "semi.h"
16
#include "intern.h"
17
#include "random.h"
18
19
#define MPFR_PREC 96 /* good enough for float or double + a few extra bits */
20
21
#if MPFR_VERSION < MPFR_VERSION_NUM(4, 2, 0)
22
int
23
mpfr_tanpi (mpfr_t ret, const mpfr_t arg, mpfr_rnd_t rnd)
24
{
25
MPFR_DECL_INIT (frd, MPFR_PREC);
26
mpfr_const_pi (frd, GMP_RNDN);
27
mpfr_mul (frd, frd, arg, GMP_RNDN);
28
return mpfr_tan (ret, frd, GMP_RNDN);
29
}
30
31
int
32
mpfr_sinpi (mpfr_t ret, const mpfr_t arg, mpfr_rnd_t rnd)
33
{
34
MPFR_DECL_INIT (frd, MPFR_PREC);
35
mpfr_const_pi (frd, GMP_RNDN);
36
mpfr_mul (frd, frd, arg, GMP_RNDN);
37
return mpfr_sin (ret, frd, GMP_RNDN);
38
}
39
40
int
41
mpfr_cospi (mpfr_t ret, const mpfr_t arg, mpfr_rnd_t rnd)
42
{
43
MPFR_DECL_INIT (frd, MPFR_PREC);
44
mpfr_const_pi (frd, GMP_RNDN);
45
mpfr_mul (frd, frd, arg, GMP_RNDN);
46
return mpfr_cos (ret, frd, GMP_RNDN);
47
}
48
#endif
49
50
extern int lib_fo, lib_no_arith, ntests;
51
52
/*
53
* Prototypes.
54
*/
55
static void cases_biased(uint32 *, uint32, uint32);
56
static void cases_biased_positive(uint32 *, uint32, uint32);
57
static void cases_biased_float(uint32 *, uint32, uint32);
58
static void cases_uniform(uint32 *, uint32, uint32);
59
static void cases_uniform_positive(uint32 *, uint32, uint32);
60
static void cases_uniform_float(uint32 *, uint32, uint32);
61
static void cases_uniform_float_positive(uint32 *, uint32, uint32);
62
static void log_cases(uint32 *, uint32, uint32);
63
static void log_cases_float(uint32 *, uint32, uint32);
64
static void log1p_cases(uint32 *, uint32, uint32);
65
static void log1p_cases_float(uint32 *, uint32, uint32);
66
static void minmax_cases(uint32 *, uint32, uint32);
67
static void minmax_cases_float(uint32 *, uint32, uint32);
68
static void atan2_cases(uint32 *, uint32, uint32);
69
static void atan2_cases_float(uint32 *, uint32, uint32);
70
static void pow_cases(uint32 *, uint32, uint32);
71
static void pow_cases_float(uint32 *, uint32, uint32);
72
static void rred_cases(uint32 *, uint32, uint32);
73
static void rred_cases_float(uint32 *, uint32, uint32);
74
static void cases_semi1(uint32 *, uint32, uint32);
75
static void cases_semi1_float(uint32 *, uint32, uint32);
76
static void cases_semi2(uint32 *, uint32, uint32);
77
static void cases_semi2_float(uint32 *, uint32, uint32);
78
static void cases_ldexp(uint32 *, uint32, uint32);
79
static void cases_ldexp_float(uint32 *, uint32, uint32);
80
81
static void complex_cases_uniform(uint32 *, uint32, uint32);
82
static void complex_cases_uniform_float(uint32 *, uint32, uint32);
83
static void complex_cases_biased(uint32 *, uint32, uint32);
84
static void complex_cases_biased_float(uint32 *, uint32, uint32);
85
static void complex_log_cases(uint32 *, uint32, uint32);
86
static void complex_log_cases_float(uint32 *, uint32, uint32);
87
static void complex_pow_cases(uint32 *, uint32, uint32);
88
static void complex_pow_cases_float(uint32 *, uint32, uint32);
89
static void complex_arithmetic_cases(uint32 *, uint32, uint32);
90
static void complex_arithmetic_cases_float(uint32 *, uint32, uint32);
91
92
static uint32 doubletop(int x, int scale);
93
static uint32 floatval(int x, int scale);
94
95
/*
96
* Convert back and forth between IEEE bit patterns and the
97
* mpfr_t/mpc_t types.
98
*/
99
static void set_mpfr_d(mpfr_t x, uint32 h, uint32 l)
100
{
101
uint64_t hl = ((uint64_t)h << 32) | l;
102
uint32 exp = (hl >> 52) & 0x7ff;
103
int64_t mantissa = hl & (((uint64_t)1 << 52) - 1);
104
int sign = (hl >> 63) ? -1 : +1;
105
if (exp == 0x7ff) {
106
if (mantissa == 0)
107
mpfr_set_inf(x, sign);
108
else
109
mpfr_set_nan(x);
110
} else if (exp == 0 && mantissa == 0) {
111
mpfr_set_ui(x, 0, GMP_RNDN);
112
mpfr_setsign(x, x, sign < 0, GMP_RNDN);
113
} else {
114
if (exp != 0)
115
mantissa |= ((uint64_t)1 << 52);
116
else
117
exp++;
118
mpfr_set_sj_2exp(x, mantissa * sign, (int)exp - 0x3ff - 52, GMP_RNDN);
119
}
120
}
121
static void set_mpfr_f(mpfr_t x, uint32 f)
122
{
123
uint32 exp = (f >> 23) & 0xff;
124
int32 mantissa = f & ((1 << 23) - 1);
125
int sign = (f >> 31) ? -1 : +1;
126
if (exp == 0xff) {
127
if (mantissa == 0)
128
mpfr_set_inf(x, sign);
129
else
130
mpfr_set_nan(x);
131
} else if (exp == 0 && mantissa == 0) {
132
mpfr_set_ui(x, 0, GMP_RNDN);
133
mpfr_setsign(x, x, sign < 0, GMP_RNDN);
134
} else {
135
if (exp != 0)
136
mantissa |= (1 << 23);
137
else
138
exp++;
139
mpfr_set_sj_2exp(x, mantissa * sign, (int)exp - 0x7f - 23, GMP_RNDN);
140
}
141
}
142
static void set_mpc_d(mpc_t z, uint32 rh, uint32 rl, uint32 ih, uint32 il)
143
{
144
mpfr_t x, y;
145
mpfr_init2(x, MPFR_PREC);
146
mpfr_init2(y, MPFR_PREC);
147
set_mpfr_d(x, rh, rl);
148
set_mpfr_d(y, ih, il);
149
mpc_set_fr_fr(z, x, y, MPC_RNDNN);
150
mpfr_clear(x);
151
mpfr_clear(y);
152
}
153
static void set_mpc_f(mpc_t z, uint32 r, uint32 i)
154
{
155
mpfr_t x, y;
156
mpfr_init2(x, MPFR_PREC);
157
mpfr_init2(y, MPFR_PREC);
158
set_mpfr_f(x, r);
159
set_mpfr_f(y, i);
160
mpc_set_fr_fr(z, x, y, MPC_RNDNN);
161
mpfr_clear(x);
162
mpfr_clear(y);
163
}
164
static void get_mpfr_d(const mpfr_t x, uint32 *h, uint32 *l, uint32 *extra)
165
{
166
uint32_t sign, expfield, mantfield;
167
mpfr_t significand;
168
int exp;
169
170
if (mpfr_nan_p(x)) {
171
*h = 0x7ff80000;
172
*l = 0;
173
*extra = 0;
174
return;
175
}
176
177
sign = mpfr_signbit(x) ? 0x80000000U : 0;
178
179
if (mpfr_inf_p(x)) {
180
*h = 0x7ff00000 | sign;
181
*l = 0;
182
*extra = 0;
183
return;
184
}
185
186
if (mpfr_zero_p(x)) {
187
*h = 0x00000000 | sign;
188
*l = 0;
189
*extra = 0;
190
return;
191
}
192
193
mpfr_init2(significand, MPFR_PREC);
194
mpfr_set(significand, x, GMP_RNDN);
195
exp = mpfr_get_exp(significand);
196
mpfr_set_exp(significand, 0);
197
198
/* Now significand is in [1/2,1), and significand * 2^exp == x.
199
* So the IEEE exponent corresponding to exp==0 is 0x3fe. */
200
if (exp > 0x400) {
201
/* overflow to infinity anyway */
202
*h = 0x7ff00000 | sign;
203
*l = 0;
204
*extra = 0;
205
mpfr_clear(significand);
206
return;
207
}
208
209
if (exp <= -0x3fe || mpfr_zero_p(x))
210
exp = -0x3fd; /* denormalise */
211
expfield = exp + 0x3fd; /* offset to cancel leading mantissa bit */
212
213
mpfr_div_2si(significand, x, exp - 21, GMP_RNDN);
214
mpfr_abs(significand, significand, GMP_RNDN);
215
mantfield = mpfr_get_ui(significand, GMP_RNDZ);
216
*h = sign + ((uint64_t)expfield << 20) + mantfield;
217
mpfr_sub_ui(significand, significand, mantfield, GMP_RNDN);
218
mpfr_mul_2ui(significand, significand, 32, GMP_RNDN);
219
mantfield = mpfr_get_ui(significand, GMP_RNDZ);
220
*l = mantfield;
221
mpfr_sub_ui(significand, significand, mantfield, GMP_RNDN);
222
mpfr_mul_2ui(significand, significand, 32, GMP_RNDN);
223
mantfield = mpfr_get_ui(significand, GMP_RNDZ);
224
*extra = mantfield;
225
226
mpfr_clear(significand);
227
}
228
static void get_mpfr_f(const mpfr_t x, uint32 *f, uint32 *extra)
229
{
230
uint32_t sign, expfield, mantfield;
231
mpfr_t significand;
232
int exp;
233
234
if (mpfr_nan_p(x)) {
235
*f = 0x7fc00000;
236
*extra = 0;
237
return;
238
}
239
240
sign = mpfr_signbit(x) ? 0x80000000U : 0;
241
242
if (mpfr_inf_p(x)) {
243
*f = 0x7f800000 | sign;
244
*extra = 0;
245
return;
246
}
247
248
if (mpfr_zero_p(x)) {
249
*f = 0x00000000 | sign;
250
*extra = 0;
251
return;
252
}
253
254
mpfr_init2(significand, MPFR_PREC);
255
mpfr_set(significand, x, GMP_RNDN);
256
exp = mpfr_get_exp(significand);
257
mpfr_set_exp(significand, 0);
258
259
/* Now significand is in [1/2,1), and significand * 2^exp == x.
260
* So the IEEE exponent corresponding to exp==0 is 0x7e. */
261
if (exp > 0x80) {
262
/* overflow to infinity anyway */
263
*f = 0x7f800000 | sign;
264
*extra = 0;
265
mpfr_clear(significand);
266
return;
267
}
268
269
if (exp <= -0x7e || mpfr_zero_p(x))
270
exp = -0x7d; /* denormalise */
271
expfield = exp + 0x7d; /* offset to cancel leading mantissa bit */
272
273
mpfr_div_2si(significand, x, exp - 24, GMP_RNDN);
274
mpfr_abs(significand, significand, GMP_RNDN);
275
mantfield = mpfr_get_ui(significand, GMP_RNDZ);
276
*f = sign + ((uint64_t)expfield << 23) + mantfield;
277
mpfr_sub_ui(significand, significand, mantfield, GMP_RNDN);
278
mpfr_mul_2ui(significand, significand, 32, GMP_RNDN);
279
mantfield = mpfr_get_ui(significand, GMP_RNDZ);
280
*extra = mantfield;
281
282
mpfr_clear(significand);
283
}
284
static void get_mpc_d(const mpc_t z,
285
uint32 *rh, uint32 *rl, uint32 *rextra,
286
uint32 *ih, uint32 *il, uint32 *iextra)
287
{
288
mpfr_t x, y;
289
mpfr_init2(x, MPFR_PREC);
290
mpfr_init2(y, MPFR_PREC);
291
mpc_real(x, z, GMP_RNDN);
292
mpc_imag(y, z, GMP_RNDN);
293
get_mpfr_d(x, rh, rl, rextra);
294
get_mpfr_d(y, ih, il, iextra);
295
mpfr_clear(x);
296
mpfr_clear(y);
297
}
298
static void get_mpc_f(const mpc_t z,
299
uint32 *r, uint32 *rextra,
300
uint32 *i, uint32 *iextra)
301
{
302
mpfr_t x, y;
303
mpfr_init2(x, MPFR_PREC);
304
mpfr_init2(y, MPFR_PREC);
305
mpc_real(x, z, GMP_RNDN);
306
mpc_imag(y, z, GMP_RNDN);
307
get_mpfr_f(x, r, rextra);
308
get_mpfr_f(y, i, iextra);
309
mpfr_clear(x);
310
mpfr_clear(y);
311
}
312
313
/*
314
* Implementation of mathlib functions that aren't trivially
315
* implementable using an existing mpfr or mpc function.
316
*/
317
int test_rred(mpfr_t ret, const mpfr_t x, int *quadrant)
318
{
319
mpfr_t halfpi;
320
long quo;
321
int status;
322
323
/*
324
* In the worst case of range reduction, we get an input of size
325
* around 2^1024, and must find its remainder mod pi, which means
326
* we need 1024 bits of pi at least. Plus, the remainder might
327
* happen to come out very very small if we're unlucky. How
328
* unlucky can we be? Well, conveniently, I once went through and
329
* actually worked that out using Paxson's modular minimisation
330
* algorithm, and it turns out that the smallest exponent you can
331
* get out of a nontrivial[1] double precision range reduction is
332
* 0x3c2, i.e. of the order of 2^-61. So we need 1024 bits of pi
333
* to get us down to the units digit, another 61 or so bits (say
334
* 64) to get down to the highest set bit of the output, and then
335
* some bits to make the actual mantissa big enough.
336
*
337
* [1] of course the output of range reduction can have an
338
* arbitrarily small exponent in the trivial case, where the
339
* input is so small that it's the identity function. That
340
* doesn't count.
341
*/
342
mpfr_init2(halfpi, MPFR_PREC + 1024 + 64);
343
mpfr_const_pi(halfpi, GMP_RNDN);
344
mpfr_div_ui(halfpi, halfpi, 2, GMP_RNDN);
345
346
status = mpfr_remquo(ret, &quo, x, halfpi, GMP_RNDN);
347
*quadrant = quo & 3;
348
349
mpfr_clear(halfpi);
350
351
return status;
352
}
353
int test_lgamma(mpfr_t ret, const mpfr_t x, mpfr_rnd_t rnd)
354
{
355
/*
356
* mpfr_lgamma takes an extra int * parameter to hold the output
357
* sign. We don't bother testing that, so this wrapper throws away
358
* the sign and hence fits into the same function prototype as all
359
* the other real->real mpfr functions.
360
*
361
* There is also mpfr_lngamma which has no sign output and hence
362
* has the right prototype already, but unfortunately it returns
363
* NaN in cases where gamma(x) < 0, so it's no use to us.
364
*/
365
int sign;
366
return mpfr_lgamma(ret, &sign, x, rnd);
367
}
368
int test_cpow(mpc_t ret, const mpc_t x, const mpc_t y, mpc_rnd_t rnd)
369
{
370
/*
371
* For complex pow, we must bump up the precision by a huge amount
372
* if we want it to get the really difficult cases right. (Not
373
* that we expect the library under test to be getting those cases
374
* right itself, but we'd at least like the test suite to report
375
* them as wrong for the _right reason_.)
376
*
377
* This works around a bug in mpc_pow(), fixed by r1455 in the MPC
378
* svn repository (2014-10-14) and expected to be in any MPC
379
* release after 1.0.2 (which was the latest release already made
380
* at the time of the fix). So as and when we update to an MPC
381
* with the fix in it, we could remove this workaround.
382
*
383
* For the reasons for choosing this amount of extra precision,
384
* see analysis in complex/cpownotes.txt for the rationale for the
385
* amount.
386
*/
387
mpc_t xbig, ybig, retbig;
388
int status;
389
390
mpc_init2(xbig, 1034 + 53 + 60 + MPFR_PREC);
391
mpc_init2(ybig, 1034 + 53 + 60 + MPFR_PREC);
392
mpc_init2(retbig, 1034 + 53 + 60 + MPFR_PREC);
393
394
mpc_set(xbig, x, MPC_RNDNN);
395
mpc_set(ybig, y, MPC_RNDNN);
396
status = mpc_pow(retbig, xbig, ybig, rnd);
397
mpc_set(ret, retbig, rnd);
398
399
mpc_clear(xbig);
400
mpc_clear(ybig);
401
mpc_clear(retbig);
402
403
return status;
404
}
405
406
/*
407
* Identify 'hard' values (NaN, Inf, nonzero denormal) for deciding
408
* whether microlib will decline to run a test.
409
*/
410
#define is_shard(in) ( \
411
(((in)[0] & 0x7F800000) == 0x7F800000 || \
412
(((in)[0] & 0x7F800000) == 0 && ((in)[0]&0x7FFFFFFF) != 0)))
413
414
#define is_dhard(in) ( \
415
(((in)[0] & 0x7FF00000) == 0x7FF00000 || \
416
(((in)[0] & 0x7FF00000) == 0 && (((in)[0] & 0xFFFFF) | (in)[1]) != 0)))
417
418
/*
419
* Identify integers.
420
*/
421
int is_dinteger(uint32 *in)
422
{
423
uint32 out[3];
424
if ((0x7FF00000 & ~in[0]) == 0)
425
return 0; /* not finite, hence not integer */
426
test_ceil(in, out);
427
return in[0] == out[0] && in[1] == out[1];
428
}
429
int is_sinteger(uint32 *in)
430
{
431
uint32 out[3];
432
if ((0x7F800000 & ~in[0]) == 0)
433
return 0; /* not finite, hence not integer */
434
test_ceilf(in, out);
435
return in[0] == out[0];
436
}
437
438
/*
439
* Identify signalling NaNs.
440
*/
441
int is_dsnan(const uint32 *in)
442
{
443
if ((in[0] & 0x7FF00000) != 0x7FF00000)
444
return 0; /* not the inf/nan exponent */
445
if ((in[0] << 12) == 0 && in[1] == 0)
446
return 0; /* inf */
447
if (in[0] & 0x00080000)
448
return 0; /* qnan */
449
return 1;
450
}
451
int is_ssnan(const uint32 *in)
452
{
453
if ((in[0] & 0x7F800000) != 0x7F800000)
454
return 0; /* not the inf/nan exponent */
455
if ((in[0] << 9) == 0)
456
return 0; /* inf */
457
if (in[0] & 0x00400000)
458
return 0; /* qnan */
459
return 1;
460
}
461
int is_snan(const uint32 *in, int size)
462
{
463
return size == 2 ? is_dsnan(in) : is_ssnan(in);
464
}
465
466
/*
467
* Wrapper functions called to fix up unusual results after the main
468
* test function has run.
469
*/
470
void universal_wrapper(wrapperctx *ctx)
471
{
472
/*
473
* Any SNaN input gives rise to a QNaN output.
474
*/
475
int op;
476
for (op = 0; op < wrapper_get_nops(ctx); op++) {
477
int size = wrapper_get_size(ctx, op);
478
479
if (!wrapper_is_complex(ctx, op) &&
480
is_snan(wrapper_get_ieee(ctx, op), size)) {
481
wrapper_set_nan(ctx);
482
}
483
}
484
}
485
486
/* clang-format off */
487
Testable functions[] = {
488
/*
489
* Trig functions: sin, cos, tan. We test the core function
490
* between -16 and +16: we assume that range reduction exists
491
* and will be used for larger arguments, and we'll test that
492
* separately. Also we only go down to 2^-27 in magnitude,
493
* because below that sin(x)=tan(x)=x and cos(x)=1 as far as
494
* double precision can tell, which is boring.
495
*/
496
{"sin", (funcptr)mpfr_sin, args1, {NULL},
497
cases_uniform, 0x3e400000, 0x40300000},
498
{"sinf", (funcptr)mpfr_sin, args1f, {NULL},
499
cases_uniform_float, 0x39800000, 0x41800000},
500
{"cos", (funcptr)mpfr_cos, args1, {NULL},
501
cases_uniform, 0x3e400000, 0x40300000},
502
{"cosf", (funcptr)mpfr_cos, args1f, {NULL},
503
cases_uniform_float, 0x39800000, 0x41800000},
504
{"tan", (funcptr)mpfr_tan, args1, {NULL},
505
cases_uniform, 0x3e400000, 0x40300000},
506
{"tanf", (funcptr)mpfr_tan, args1f, {NULL},
507
cases_uniform_float, 0x39800000, 0x41800000},
508
{"sincosf_sinf", (funcptr)mpfr_sin, args1f, {NULL},
509
cases_uniform_float, 0x39800000, 0x41800000},
510
{"sincosf_cosf", (funcptr)mpfr_cos, args1f, {NULL},
511
cases_uniform_float, 0x39800000, 0x41800000},
512
{"sinpi", (funcptr)mpfr_sinpi, args1, {NULL},
513
cases_uniform, 0x3e400000, 0x40300000},
514
{"sinpif", (funcptr)mpfr_sinpi, args1f, {NULL},
515
cases_uniform_float, 0x39800000, 0x41800000},
516
{"cospi", (funcptr)mpfr_cospi, args1, {NULL},
517
cases_uniform, 0x3e400000, 0x40300000},
518
{"cospif", (funcptr)mpfr_cospi, args1f, {NULL},
519
cases_uniform_float, 0x39800000, 0x41800000},
520
{"tanpi", (funcptr)mpfr_tanpi, args1, {NULL},
521
cases_uniform, 0x3e400000, 0x40300000},
522
{"tanpif", (funcptr)mpfr_tanpi, args1f, {NULL},
523
cases_uniform_float, 0x39800000, 0x41800000},
524
/*
525
* Inverse trig: asin, acos. Between 1 and -1, of course. acos
526
* goes down to 2^-54, asin to 2^-27.
527
*/
528
{"asin", (funcptr)mpfr_asin, args1, {NULL},
529
cases_uniform, 0x3e400000, 0x3fefffff},
530
{"asinf", (funcptr)mpfr_asin, args1f, {NULL},
531
cases_uniform_float, 0x39800000, 0x3f7fffff},
532
{"acos", (funcptr)mpfr_acos, args1, {NULL},
533
cases_uniform, 0x3c900000, 0x3fefffff},
534
{"acosf", (funcptr)mpfr_acos, args1f, {NULL},
535
cases_uniform_float, 0x33800000, 0x3f7fffff},
536
/*
537
* Inverse trig: atan. atan is stable (in double prec) with
538
* argument magnitude past 2^53, so we'll test up to there.
539
* atan(x) is boringly just x below 2^-27.
540
*/
541
{"atan", (funcptr)mpfr_atan, args1, {NULL},
542
cases_uniform, 0x3e400000, 0x43400000},
543
{"atanf", (funcptr)mpfr_atan, args1f, {NULL},
544
cases_uniform_float, 0x39800000, 0x4b800000},
545
/*
546
* atan2. Interesting cases arise when the exponents of the
547
* arguments differ by at most about 50.
548
*/
549
{"atan2", (funcptr)mpfr_atan2, args2, {NULL},
550
atan2_cases, 0},
551
{"atan2f", (funcptr)mpfr_atan2, args2f, {NULL},
552
atan2_cases_float, 0},
553
/*
554
* The exponentials: exp, sinh, cosh. They overflow at around
555
* 710. exp and sinh are boring below 2^-54, cosh below 2^-27.
556
*/
557
{"exp", (funcptr)mpfr_exp, args1, {NULL},
558
cases_uniform, 0x3c900000, 0x40878000},
559
{"expf", (funcptr)mpfr_exp, args1f, {NULL},
560
cases_uniform_float, 0x33800000, 0x42dc0000},
561
{"sinh", (funcptr)mpfr_sinh, args1, {NULL},
562
cases_uniform, 0x3c900000, 0x40878000},
563
{"sinhf", (funcptr)mpfr_sinh, args1f, {NULL},
564
cases_uniform_float, 0x33800000, 0x42dc0000},
565
{"cosh", (funcptr)mpfr_cosh, args1, {NULL},
566
cases_uniform, 0x3e400000, 0x40878000},
567
{"coshf", (funcptr)mpfr_cosh, args1f, {NULL},
568
cases_uniform_float, 0x39800000, 0x42dc0000},
569
/*
570
* tanh is stable past around 20. It's boring below 2^-27.
571
*/
572
{"tanh", (funcptr)mpfr_tanh, args1, {NULL},
573
cases_uniform, 0x3e400000, 0x40340000},
574
{"tanhf", (funcptr)mpfr_tanh, args1f, {NULL},
575
cases_uniform, 0x39800000, 0x41100000},
576
/*
577
* log must be tested only on positive numbers, but can cover
578
* the whole range of positive nonzero finite numbers. It never
579
* gets boring.
580
*/
581
{"log", (funcptr)mpfr_log, args1, {NULL}, log_cases, 0},
582
{"logf", (funcptr)mpfr_log, args1f, {NULL}, log_cases_float, 0},
583
{"log10", (funcptr)mpfr_log10, args1, {NULL}, log_cases, 0},
584
{"log10f", (funcptr)mpfr_log10, args1f, {NULL}, log_cases_float, 0},
585
/*
586
* pow.
587
*/
588
{"pow", (funcptr)mpfr_pow, args2, {NULL}, pow_cases, 0},
589
{"powf", (funcptr)mpfr_pow, args2f, {NULL}, pow_cases_float, 0},
590
/*
591
* Trig range reduction. We are able to test this for all
592
* finite values, but will only bother for things between 2^-3
593
* and 2^+52.
594
*/
595
{"rred", (funcptr)test_rred, rred, {NULL}, rred_cases, 0},
596
{"rredf", (funcptr)test_rred, rredf, {NULL}, rred_cases_float, 0},
597
/*
598
* Square and cube root.
599
*/
600
{"sqrt", (funcptr)mpfr_sqrt, args1, {NULL}, log_cases, 0},
601
{"sqrtf", (funcptr)mpfr_sqrt, args1f, {NULL}, log_cases_float, 0},
602
{"cbrt", (funcptr)mpfr_cbrt, args1, {NULL}, log_cases, 0},
603
{"cbrtf", (funcptr)mpfr_cbrt, args1f, {NULL}, log_cases_float, 0},
604
{"hypot", (funcptr)mpfr_hypot, args2, {NULL}, atan2_cases, 0},
605
{"hypotf", (funcptr)mpfr_hypot, args2f, {NULL}, atan2_cases_float, 0},
606
/*
607
* Seminumerical functions.
608
*/
609
{"ceil", (funcptr)test_ceil, semi1, {NULL}, cases_semi1},
610
{"ceilf", (funcptr)test_ceilf, semi1f, {NULL}, cases_semi1_float},
611
{"floor", (funcptr)test_floor, semi1, {NULL}, cases_semi1},
612
{"floorf", (funcptr)test_floorf, semi1f, {NULL}, cases_semi1_float},
613
{"fmod", (funcptr)test_fmod, semi2, {NULL}, cases_semi2},
614
{"fmodf", (funcptr)test_fmodf, semi2f, {NULL}, cases_semi2_float},
615
{"ldexp", (funcptr)test_ldexp, t_ldexp, {NULL}, cases_ldexp},
616
{"ldexpf", (funcptr)test_ldexpf, t_ldexpf, {NULL}, cases_ldexp_float},
617
{"frexp", (funcptr)test_frexp, t_frexp, {NULL}, cases_semi1},
618
{"frexpf", (funcptr)test_frexpf, t_frexpf, {NULL}, cases_semi1_float},
619
{"modf", (funcptr)test_modf, t_modf, {NULL}, cases_semi1},
620
{"modff", (funcptr)test_modff, t_modff, {NULL}, cases_semi1_float},
621
622
/*
623
* Classification and more semi-numericals
624
*/
625
{"copysign", (funcptr)test_copysign, semi2, {NULL}, cases_semi2},
626
{"copysignf", (funcptr)test_copysignf, semi2f, {NULL}, cases_semi2_float},
627
{"isfinite", (funcptr)test_isfinite, classify, {NULL}, cases_uniform, 0, 0x7fffffff},
628
{"isfinitef", (funcptr)test_isfinitef, classifyf, {NULL}, cases_uniform_float, 0, 0x7fffffff},
629
{"isinf", (funcptr)test_isinf, classify, {NULL}, cases_uniform, 0, 0x7fffffff},
630
{"isinff", (funcptr)test_isinff, classifyf, {NULL}, cases_uniform_float, 0, 0x7fffffff},
631
{"isnan", (funcptr)test_isnan, classify, {NULL}, cases_uniform, 0, 0x7fffffff},
632
{"isnanf", (funcptr)test_isnanf, classifyf, {NULL}, cases_uniform_float, 0, 0x7fffffff},
633
{"isnormal", (funcptr)test_isnormal, classify, {NULL}, cases_uniform, 0, 0x7fffffff},
634
{"isnormalf", (funcptr)test_isnormalf, classifyf, {NULL}, cases_uniform_float, 0, 0x7fffffff},
635
{"signbit", (funcptr)test_signbit, classify, {NULL}, cases_uniform, 0, 0x7fffffff},
636
{"signbitf", (funcptr)test_signbitf, classifyf, {NULL}, cases_uniform_float, 0, 0x7fffffff},
637
{"fpclassify", (funcptr)test_fpclassify, classify, {NULL}, cases_uniform, 0, 0x7fffffff},
638
{"fpclassifyf", (funcptr)test_fpclassifyf, classifyf, {NULL}, cases_uniform_float, 0, 0x7fffffff},
639
/*
640
* Comparisons
641
*/
642
{"isgreater", (funcptr)test_isgreater, compare, {NULL}, cases_uniform, 0, 0x7fffffff},
643
{"isgreaterequal", (funcptr)test_isgreaterequal, compare, {NULL}, cases_uniform, 0, 0x7fffffff},
644
{"isless", (funcptr)test_isless, compare, {NULL}, cases_uniform, 0, 0x7fffffff},
645
{"islessequal", (funcptr)test_islessequal, compare, {NULL}, cases_uniform, 0, 0x7fffffff},
646
{"islessgreater", (funcptr)test_islessgreater, compare, {NULL}, cases_uniform, 0, 0x7fffffff},
647
{"isunordered", (funcptr)test_isunordered, compare, {NULL}, cases_uniform, 0, 0x7fffffff},
648
649
{"isgreaterf", (funcptr)test_isgreaterf, comparef, {NULL}, cases_uniform_float, 0, 0x7fffffff},
650
{"isgreaterequalf", (funcptr)test_isgreaterequalf, comparef, {NULL}, cases_uniform_float, 0, 0x7fffffff},
651
{"islessf", (funcptr)test_islessf, comparef, {NULL}, cases_uniform_float, 0, 0x7fffffff},
652
{"islessequalf", (funcptr)test_islessequalf, comparef, {NULL}, cases_uniform_float, 0, 0x7fffffff},
653
{"islessgreaterf", (funcptr)test_islessgreaterf, comparef, {NULL}, cases_uniform_float, 0, 0x7fffffff},
654
{"isunorderedf", (funcptr)test_isunorderedf, comparef, {NULL}, cases_uniform_float, 0, 0x7fffffff},
655
656
/*
657
* Inverse Hyperbolic functions
658
*/
659
{"atanh", (funcptr)mpfr_atanh, args1, {NULL}, cases_uniform, 0x3e400000, 0x3fefffff},
660
{"asinh", (funcptr)mpfr_asinh, args1, {NULL}, cases_uniform, 0x3e400000, 0x3fefffff},
661
{"acosh", (funcptr)mpfr_acosh, args1, {NULL}, cases_uniform_positive, 0x3ff00000, 0x7fefffff},
662
663
{"atanhf", (funcptr)mpfr_atanh, args1f, {NULL}, cases_uniform_float, 0x32000000, 0x3f7fffff},
664
{"asinhf", (funcptr)mpfr_asinh, args1f, {NULL}, cases_uniform_float, 0x32000000, 0x3f7fffff},
665
{"acoshf", (funcptr)mpfr_acosh, args1f, {NULL}, cases_uniform_float_positive, 0x3f800000, 0x7f800000},
666
667
/*
668
* Everything else (sitting in a section down here at the bottom
669
* because historically they were not tested because we didn't
670
* have reference implementations for them)
671
*/
672
{"csin", (funcptr)mpc_sin, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
673
{"csinf", (funcptr)mpc_sin, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
674
{"ccos", (funcptr)mpc_cos, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
675
{"ccosf", (funcptr)mpc_cos, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
676
{"ctan", (funcptr)mpc_tan, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
677
{"ctanf", (funcptr)mpc_tan, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
678
679
{"casin", (funcptr)mpc_asin, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
680
{"casinf", (funcptr)mpc_asin, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
681
{"cacos", (funcptr)mpc_acos, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
682
{"cacosf", (funcptr)mpc_acos, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
683
{"catan", (funcptr)mpc_atan, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
684
{"catanf", (funcptr)mpc_atan, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
685
686
{"csinh", (funcptr)mpc_sinh, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
687
{"csinhf", (funcptr)mpc_sinh, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
688
{"ccosh", (funcptr)mpc_cosh, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
689
{"ccoshf", (funcptr)mpc_cosh, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
690
{"ctanh", (funcptr)mpc_tanh, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
691
{"ctanhf", (funcptr)mpc_tanh, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
692
693
{"casinh", (funcptr)mpc_asinh, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
694
{"casinhf", (funcptr)mpc_asinh, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
695
{"cacosh", (funcptr)mpc_acosh, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
696
{"cacoshf", (funcptr)mpc_acosh, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
697
{"catanh", (funcptr)mpc_atanh, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
698
{"catanhf", (funcptr)mpc_atanh, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
699
700
{"cexp", (funcptr)mpc_exp, args1c, {NULL}, complex_cases_uniform, 0x3c900000, 0x40862000},
701
{"cpow", (funcptr)test_cpow, args2c, {NULL}, complex_pow_cases, 0x3fc00000, 0x40000000},
702
{"clog", (funcptr)mpc_log, args1c, {NULL}, complex_log_cases, 0, 0},
703
{"csqrt", (funcptr)mpc_sqrt, args1c, {NULL}, complex_log_cases, 0, 0},
704
705
{"cexpf", (funcptr)mpc_exp, args1fc, {NULL}, complex_cases_uniform_float, 0x24800000, 0x42b00000},
706
{"cpowf", (funcptr)test_cpow, args2fc, {NULL}, complex_pow_cases_float, 0x3e000000, 0x41000000},
707
{"clogf", (funcptr)mpc_log, args1fc, {NULL}, complex_log_cases_float, 0, 0},
708
{"csqrtf", (funcptr)mpc_sqrt, args1fc, {NULL}, complex_log_cases_float, 0, 0},
709
710
{"cdiv", (funcptr)mpc_div, args2c, {NULL}, complex_arithmetic_cases, 0, 0},
711
{"cmul", (funcptr)mpc_mul, args2c, {NULL}, complex_arithmetic_cases, 0, 0},
712
{"cadd", (funcptr)mpc_add, args2c, {NULL}, complex_arithmetic_cases, 0, 0},
713
{"csub", (funcptr)mpc_sub, args2c, {NULL}, complex_arithmetic_cases, 0, 0},
714
715
{"cdivf", (funcptr)mpc_div, args2fc, {NULL}, complex_arithmetic_cases_float, 0, 0},
716
{"cmulf", (funcptr)mpc_mul, args2fc, {NULL}, complex_arithmetic_cases_float, 0, 0},
717
{"caddf", (funcptr)mpc_add, args2fc, {NULL}, complex_arithmetic_cases_float, 0, 0},
718
{"csubf", (funcptr)mpc_sub, args2fc, {NULL}, complex_arithmetic_cases_float, 0, 0},
719
720
{"cabsf", (funcptr)mpc_abs, args1fcr, {NULL}, complex_arithmetic_cases_float, 0, 0},
721
{"cabs", (funcptr)mpc_abs, args1cr, {NULL}, complex_arithmetic_cases, 0, 0},
722
{"cargf", (funcptr)mpc_arg, args1fcr, {NULL}, complex_arithmetic_cases_float, 0, 0},
723
{"carg", (funcptr)mpc_arg, args1cr, {NULL}, complex_arithmetic_cases, 0, 0},
724
{"cimagf", (funcptr)mpc_imag, args1fcr, {NULL}, complex_arithmetic_cases_float, 0, 0},
725
{"cimag", (funcptr)mpc_imag, args1cr, {NULL}, complex_arithmetic_cases, 0, 0},
726
{"conjf", (funcptr)mpc_conj, args1fc, {NULL}, complex_arithmetic_cases_float, 0, 0},
727
{"conj", (funcptr)mpc_conj, args1c, {NULL}, complex_arithmetic_cases, 0, 0},
728
{"cprojf", (funcptr)mpc_proj, args1fc, {NULL}, complex_arithmetic_cases_float, 0, 0},
729
{"cproj", (funcptr)mpc_proj, args1c, {NULL}, complex_arithmetic_cases, 0, 0},
730
{"crealf", (funcptr)mpc_real, args1fcr, {NULL}, complex_arithmetic_cases_float, 0, 0},
731
{"creal", (funcptr)mpc_real, args1cr, {NULL}, complex_arithmetic_cases, 0, 0},
732
{"erfcf", (funcptr)mpfr_erfc, args1f, {NULL}, cases_biased_float, 0x1e800000, 0x41000000},
733
{"erfc", (funcptr)mpfr_erfc, args1, {NULL}, cases_biased, 0x3bd00000, 0x403c0000},
734
{"erff", (funcptr)mpfr_erf, args1f, {NULL}, cases_biased_float, 0x03800000, 0x40700000},
735
{"erf", (funcptr)mpfr_erf, args1, {NULL}, cases_biased, 0x00800000, 0x40200000},
736
{"exp2f", (funcptr)mpfr_exp2, args1f, {NULL}, cases_uniform_float, 0x33800000, 0x43c00000},
737
{"exp2", (funcptr)mpfr_exp2, args1, {NULL}, cases_uniform, 0x3ca00000, 0x40a00000},
738
{"expm1f", (funcptr)mpfr_expm1, args1f, {NULL}, cases_uniform_float, 0x33000000, 0x43800000},
739
{"expm1", (funcptr)mpfr_expm1, args1, {NULL}, cases_uniform, 0x3c900000, 0x409c0000},
740
{"fmaxf", (funcptr)mpfr_max, args2f, {NULL}, minmax_cases_float, 0, 0x7f7fffff},
741
{"fmax", (funcptr)mpfr_max, args2, {NULL}, minmax_cases, 0, 0x7fefffff},
742
{"fminf", (funcptr)mpfr_min, args2f, {NULL}, minmax_cases_float, 0, 0x7f7fffff},
743
{"fmin", (funcptr)mpfr_min, args2, {NULL}, minmax_cases, 0, 0x7fefffff},
744
{"lgammaf", (funcptr)test_lgamma, args1f, {NULL}, cases_uniform_float, 0x01800000, 0x7f800000},
745
{"lgamma", (funcptr)test_lgamma, args1, {NULL}, cases_uniform, 0x00100000, 0x7ff00000},
746
{"log1pf", (funcptr)mpfr_log1p, args1f, {NULL}, log1p_cases_float, 0, 0},
747
{"log1p", (funcptr)mpfr_log1p, args1, {NULL}, log1p_cases, 0, 0},
748
{"log2f", (funcptr)mpfr_log2, args1f, {NULL}, log_cases_float, 0, 0},
749
{"log2", (funcptr)mpfr_log2, args1, {NULL}, log_cases, 0, 0},
750
{"tgammaf", (funcptr)mpfr_gamma, args1f, {NULL}, cases_uniform_float, 0x2f800000, 0x43000000},
751
{"tgamma", (funcptr)mpfr_gamma, args1, {NULL}, cases_uniform, 0x3c000000, 0x40800000},
752
};
753
/* clang-format on */
754
755
const int nfunctions = ( sizeof(functions)/sizeof(*functions) );
756
757
#define random_sign ( random_upto(1) ? 0x80000000 : 0 )
758
759
static int iszero(uint32 *x) {
760
return !((x[0] & 0x7FFFFFFF) || x[1]);
761
}
762
763
764
static void complex_log_cases(uint32 *out, uint32 param1,
765
uint32 param2) {
766
cases_uniform(out,0x00100000,0x7fefffff);
767
cases_uniform(out+2,0x00100000,0x7fefffff);
768
}
769
770
771
static void complex_log_cases_float(uint32 *out, uint32 param1,
772
uint32 param2) {
773
cases_uniform_float(out,0x00800000,0x7f7fffff);
774
cases_uniform_float(out+2,0x00800000,0x7f7fffff);
775
}
776
777
static void complex_cases_biased(uint32 *out, uint32 lowbound,
778
uint32 highbound) {
779
cases_biased(out,lowbound,highbound);
780
cases_biased(out+2,lowbound,highbound);
781
}
782
783
static void complex_cases_biased_float(uint32 *out, uint32 lowbound,
784
uint32 highbound) {
785
cases_biased_float(out,lowbound,highbound);
786
cases_biased_float(out+2,lowbound,highbound);
787
}
788
789
static void complex_cases_uniform(uint32 *out, uint32 lowbound,
790
uint32 highbound) {
791
cases_uniform(out,lowbound,highbound);
792
cases_uniform(out+2,lowbound,highbound);
793
}
794
795
static void complex_cases_uniform_float(uint32 *out, uint32 lowbound,
796
uint32 highbound) {
797
cases_uniform_float(out,lowbound,highbound);
798
cases_uniform(out+2,lowbound,highbound);
799
}
800
801
static void complex_pow_cases(uint32 *out, uint32 lowbound,
802
uint32 highbound) {
803
/*
804
* Generating non-overflowing cases for complex pow:
805
*
806
* Our base has both parts within the range [1/2,2], and hence
807
* its magnitude is within [1/2,2*sqrt(2)]. The magnitude of its
808
* logarithm in base 2 is therefore at most the magnitude of
809
* (log2(2*sqrt(2)) + i*pi/log(2)), or in other words
810
* hypot(3/2,pi/log(2)) = 4.77. So the magnitude of the exponent
811
* input must be at most our output magnitude limit (as a power
812
* of two) divided by that.
813
*
814
* I also set the output magnitude limit a bit low, because we
815
* don't guarantee (and neither does glibc) to prevent internal
816
* overflow in cases where the output _magnitude_ overflows but
817
* scaling it back down by cos and sin of the argument brings it
818
* back in range.
819
*/
820
cases_uniform(out,0x3fe00000, 0x40000000);
821
cases_uniform(out+2,0x3fe00000, 0x40000000);
822
cases_uniform(out+4,0x3f800000, 0x40600000);
823
cases_uniform(out+6,0x3f800000, 0x40600000);
824
}
825
826
static void complex_pow_cases_float(uint32 *out, uint32 lowbound,
827
uint32 highbound) {
828
/*
829
* Reasoning as above, though of course the detailed numbers are
830
* all different.
831
*/
832
cases_uniform_float(out,0x3f000000, 0x40000000);
833
cases_uniform_float(out+2,0x3f000000, 0x40000000);
834
cases_uniform_float(out+4,0x3d600000, 0x41900000);
835
cases_uniform_float(out+6,0x3d600000, 0x41900000);
836
}
837
838
static void complex_arithmetic_cases(uint32 *out, uint32 lowbound,
839
uint32 highbound) {
840
cases_uniform(out,0,0x7fefffff);
841
cases_uniform(out+2,0,0x7fefffff);
842
cases_uniform(out+4,0,0x7fefffff);
843
cases_uniform(out+6,0,0x7fefffff);
844
}
845
846
static void complex_arithmetic_cases_float(uint32 *out, uint32 lowbound,
847
uint32 highbound) {
848
cases_uniform_float(out,0,0x7f7fffff);
849
cases_uniform_float(out+2,0,0x7f7fffff);
850
cases_uniform_float(out+4,0,0x7f7fffff);
851
cases_uniform_float(out+6,0,0x7f7fffff);
852
}
853
854
/*
855
* Included from fplib test suite, in a compact self-contained
856
* form.
857
*/
858
859
void float32_case(uint32 *ret) {
860
int n, bits;
861
uint32 f;
862
static int premax, preptr;
863
static uint32 *specifics = NULL;
864
865
if (!ret) {
866
if (specifics)
867
free(specifics);
868
specifics = NULL;
869
premax = preptr = 0;
870
return;
871
}
872
873
if (!specifics) {
874
int exps[] = {
875
-127, -126, -125, -24, -4, -3, -2, -1, 0, 1, 2, 3, 4,
876
24, 29, 30, 31, 32, 61, 62, 63, 64, 126, 127, 128
877
};
878
int sign, eptr;
879
uint32 se, j;
880
/*
881
* We want a cross product of:
882
* - each of two sign bits (2)
883
* - each of the above (unbiased) exponents (25)
884
* - the following list of fraction parts:
885
* * zero (1)
886
* * all bits (1)
887
* * one-bit-set (23)
888
* * one-bit-clear (23)
889
* * one-bit-and-above (20: 3 are duplicates)
890
* * one-bit-and-below (20: 3 are duplicates)
891
* (total 88)
892
* (total 4400)
893
*/
894
specifics = malloc(4400 * sizeof(*specifics));
895
preptr = 0;
896
for (sign = 0; sign <= 1; sign++) {
897
for (eptr = 0; eptr < sizeof(exps)/sizeof(*exps); eptr++) {
898
se = (sign ? 0x80000000 : 0) | ((exps[eptr]+127) << 23);
899
/*
900
* Zero.
901
*/
902
specifics[preptr++] = se | 0;
903
/*
904
* All bits.
905
*/
906
specifics[preptr++] = se | 0x7FFFFF;
907
/*
908
* One-bit-set.
909
*/
910
for (j = 1; j && j <= 0x400000; j <<= 1)
911
specifics[preptr++] = se | j;
912
/*
913
* One-bit-clear.
914
*/
915
for (j = 1; j && j <= 0x400000; j <<= 1)
916
specifics[preptr++] = se | (0x7FFFFF ^ j);
917
/*
918
* One-bit-and-everything-below.
919
*/
920
for (j = 2; j && j <= 0x100000; j <<= 1)
921
specifics[preptr++] = se | (2*j-1);
922
/*
923
* One-bit-and-everything-above.
924
*/
925
for (j = 4; j && j <= 0x200000; j <<= 1)
926
specifics[preptr++] = se | (0x7FFFFF ^ (j-1));
927
/*
928
* Done.
929
*/
930
}
931
}
932
assert(preptr == 4400);
933
premax = preptr;
934
}
935
936
/*
937
* Decide whether to return a pre or a random case.
938
*/
939
n = random32() % (premax+1);
940
if (n < preptr) {
941
/*
942
* Return pre[n].
943
*/
944
uint32 t;
945
t = specifics[n];
946
specifics[n] = specifics[preptr-1];
947
specifics[preptr-1] = t; /* (not really needed) */
948
preptr--;
949
*ret = t;
950
} else {
951
/*
952
* Random case.
953
* Sign and exponent:
954
* - FIXME
955
* Significand:
956
* - with prob 1/5, a totally random bit pattern
957
* - with prob 1/5, all 1s down to some point and then random
958
* - with prob 1/5, all 1s up to some point and then random
959
* - with prob 1/5, all 0s down to some point and then random
960
* - with prob 1/5, all 0s up to some point and then random
961
*/
962
n = random32() % 5;
963
f = random32(); /* some random bits */
964
bits = random32() % 22 + 1; /* 1-22 */
965
switch (n) {
966
case 0:
967
break; /* leave f alone */
968
case 1:
969
f |= (1<<bits)-1;
970
break;
971
case 2:
972
f &= ~((1<<bits)-1);
973
break;
974
case 3:
975
f |= ~((1<<bits)-1);
976
break;
977
case 4:
978
f &= (1<<bits)-1;
979
break;
980
}
981
f &= 0x7FFFFF;
982
f |= (random32() & 0xFF800000);/* FIXME - do better */
983
*ret = f;
984
}
985
}
986
static void float64_case(uint32 *ret) {
987
int n, bits;
988
uint32 f, g;
989
static int premax, preptr;
990
static uint32 (*specifics)[2] = NULL;
991
992
if (!ret) {
993
if (specifics)
994
free(specifics);
995
specifics = NULL;
996
premax = preptr = 0;
997
return;
998
}
999
1000
if (!specifics) {
1001
int exps[] = {
1002
-1023, -1022, -1021, -129, -128, -127, -126, -53, -4, -3, -2,
1003
-1, 0, 1, 2, 3, 4, 29, 30, 31, 32, 53, 61, 62, 63, 64, 127,
1004
128, 129, 1022, 1023, 1024
1005
};
1006
int sign, eptr;
1007
uint32 se, j;
1008
/*
1009
* We want a cross product of:
1010
* - each of two sign bits (2)
1011
* - each of the above (unbiased) exponents (32)
1012
* - the following list of fraction parts:
1013
* * zero (1)
1014
* * all bits (1)
1015
* * one-bit-set (52)
1016
* * one-bit-clear (52)
1017
* * one-bit-and-above (49: 3 are duplicates)
1018
* * one-bit-and-below (49: 3 are duplicates)
1019
* (total 204)
1020
* (total 13056)
1021
*/
1022
specifics = malloc(13056 * sizeof(*specifics));
1023
preptr = 0;
1024
for (sign = 0; sign <= 1; sign++) {
1025
for (eptr = 0; eptr < sizeof(exps)/sizeof(*exps); eptr++) {
1026
se = (sign ? 0x80000000 : 0) | ((exps[eptr]+1023) << 20);
1027
/*
1028
* Zero.
1029
*/
1030
specifics[preptr][0] = 0;
1031
specifics[preptr][1] = 0;
1032
specifics[preptr++][0] |= se;
1033
/*
1034
* All bits.
1035
*/
1036
specifics[preptr][0] = 0xFFFFF;
1037
specifics[preptr][1] = ~0;
1038
specifics[preptr++][0] |= se;
1039
/*
1040
* One-bit-set.
1041
*/
1042
for (j = 1; j && j <= 0x80000000; j <<= 1) {
1043
specifics[preptr][0] = 0;
1044
specifics[preptr][1] = j;
1045
specifics[preptr++][0] |= se;
1046
if (j & 0xFFFFF) {
1047
specifics[preptr][0] = j;
1048
specifics[preptr][1] = 0;
1049
specifics[preptr++][0] |= se;
1050
}
1051
}
1052
/*
1053
* One-bit-clear.
1054
*/
1055
for (j = 1; j && j <= 0x80000000; j <<= 1) {
1056
specifics[preptr][0] = 0xFFFFF;
1057
specifics[preptr][1] = ~j;
1058
specifics[preptr++][0] |= se;
1059
if (j & 0xFFFFF) {
1060
specifics[preptr][0] = 0xFFFFF ^ j;
1061
specifics[preptr][1] = ~0;
1062
specifics[preptr++][0] |= se;
1063
}
1064
}
1065
/*
1066
* One-bit-and-everything-below.
1067
*/
1068
for (j = 2; j && j <= 0x80000000; j <<= 1) {
1069
specifics[preptr][0] = 0;
1070
specifics[preptr][1] = 2*j-1;
1071
specifics[preptr++][0] |= se;
1072
}
1073
for (j = 1; j && j <= 0x20000; j <<= 1) {
1074
specifics[preptr][0] = 2*j-1;
1075
specifics[preptr][1] = ~0;
1076
specifics[preptr++][0] |= se;
1077
}
1078
/*
1079
* One-bit-and-everything-above.
1080
*/
1081
for (j = 4; j && j <= 0x80000000; j <<= 1) {
1082
specifics[preptr][0] = 0xFFFFF;
1083
specifics[preptr][1] = ~(j-1);
1084
specifics[preptr++][0] |= se;
1085
}
1086
for (j = 1; j && j <= 0x40000; j <<= 1) {
1087
specifics[preptr][0] = 0xFFFFF ^ (j-1);
1088
specifics[preptr][1] = 0;
1089
specifics[preptr++][0] |= se;
1090
}
1091
/*
1092
* Done.
1093
*/
1094
}
1095
}
1096
assert(preptr == 13056);
1097
premax = preptr;
1098
}
1099
1100
/*
1101
* Decide whether to return a pre or a random case.
1102
*/
1103
n = (uint32) random32() % (uint32) (premax+1);
1104
if (n < preptr) {
1105
/*
1106
* Return pre[n].
1107
*/
1108
uint32 t;
1109
t = specifics[n][0];
1110
specifics[n][0] = specifics[preptr-1][0];
1111
specifics[preptr-1][0] = t; /* (not really needed) */
1112
ret[0] = t;
1113
t = specifics[n][1];
1114
specifics[n][1] = specifics[preptr-1][1];
1115
specifics[preptr-1][1] = t; /* (not really needed) */
1116
ret[1] = t;
1117
preptr--;
1118
} else {
1119
/*
1120
* Random case.
1121
* Sign and exponent:
1122
* - FIXME
1123
* Significand:
1124
* - with prob 1/5, a totally random bit pattern
1125
* - with prob 1/5, all 1s down to some point and then random
1126
* - with prob 1/5, all 1s up to some point and then random
1127
* - with prob 1/5, all 0s down to some point and then random
1128
* - with prob 1/5, all 0s up to some point and then random
1129
*/
1130
n = random32() % 5;
1131
f = random32(); /* some random bits */
1132
g = random32(); /* some random bits */
1133
bits = random32() % 51 + 1; /* 1-51 */
1134
switch (n) {
1135
case 0:
1136
break; /* leave f alone */
1137
case 1:
1138
if (bits <= 32)
1139
f |= (1<<bits)-1;
1140
else {
1141
bits -= 32;
1142
g |= (1<<bits)-1;
1143
f = ~0;
1144
}
1145
break;
1146
case 2:
1147
if (bits <= 32)
1148
f &= ~((1<<bits)-1);
1149
else {
1150
bits -= 32;
1151
g &= ~((1<<bits)-1);
1152
f = 0;
1153
}
1154
break;
1155
case 3:
1156
if (bits <= 32)
1157
g &= (1<<bits)-1;
1158
else {
1159
bits -= 32;
1160
f &= (1<<bits)-1;
1161
g = 0;
1162
}
1163
break;
1164
case 4:
1165
if (bits <= 32)
1166
g |= ~((1<<bits)-1);
1167
else {
1168
bits -= 32;
1169
f |= ~((1<<bits)-1);
1170
g = ~0;
1171
}
1172
break;
1173
}
1174
g &= 0xFFFFF;
1175
g |= (random32() & 0xFFF00000);/* FIXME - do better */
1176
ret[0] = g;
1177
ret[1] = f;
1178
}
1179
}
1180
1181
static void cases_biased(uint32 *out, uint32 lowbound,
1182
uint32 highbound) {
1183
do {
1184
out[0] = highbound - random_upto_biased(highbound-lowbound, 8);
1185
out[1] = random_upto(0xFFFFFFFF);
1186
out[0] |= random_sign;
1187
} while (iszero(out)); /* rule out zero */
1188
}
1189
1190
static void cases_biased_positive(uint32 *out, uint32 lowbound,
1191
uint32 highbound) {
1192
do {
1193
out[0] = highbound - random_upto_biased(highbound-lowbound, 8);
1194
out[1] = random_upto(0xFFFFFFFF);
1195
} while (iszero(out)); /* rule out zero */
1196
}
1197
1198
static void cases_biased_float(uint32 *out, uint32 lowbound,
1199
uint32 highbound) {
1200
do {
1201
out[0] = highbound - random_upto_biased(highbound-lowbound, 8);
1202
out[1] = 0;
1203
out[0] |= random_sign;
1204
} while (iszero(out)); /* rule out zero */
1205
}
1206
1207
static void cases_semi1(uint32 *out, uint32 param1,
1208
uint32 param2) {
1209
float64_case(out);
1210
}
1211
1212
static void cases_semi1_float(uint32 *out, uint32 param1,
1213
uint32 param2) {
1214
float32_case(out);
1215
}
1216
1217
static void cases_semi2(uint32 *out, uint32 param1,
1218
uint32 param2) {
1219
float64_case(out);
1220
float64_case(out+2);
1221
}
1222
1223
static void cases_semi2_float(uint32 *out, uint32 param1,
1224
uint32 param2) {
1225
float32_case(out);
1226
float32_case(out+2);
1227
}
1228
1229
static void cases_ldexp(uint32 *out, uint32 param1,
1230
uint32 param2) {
1231
float64_case(out);
1232
out[2] = random_upto(2048)-1024;
1233
}
1234
1235
static void cases_ldexp_float(uint32 *out, uint32 param1,
1236
uint32 param2) {
1237
float32_case(out);
1238
out[2] = random_upto(256)-128;
1239
}
1240
1241
static void cases_uniform(uint32 *out, uint32 lowbound,
1242
uint32 highbound) {
1243
do {
1244
out[0] = highbound - random_upto(highbound-lowbound);
1245
out[1] = random_upto(0xFFFFFFFF);
1246
out[0] |= random_sign;
1247
} while (iszero(out)); /* rule out zero */
1248
}
1249
static void cases_uniform_float(uint32 *out, uint32 lowbound,
1250
uint32 highbound) {
1251
do {
1252
out[0] = highbound - random_upto(highbound-lowbound);
1253
out[1] = 0;
1254
out[0] |= random_sign;
1255
} while (iszero(out)); /* rule out zero */
1256
}
1257
1258
static void cases_uniform_positive(uint32 *out, uint32 lowbound,
1259
uint32 highbound) {
1260
do {
1261
out[0] = highbound - random_upto(highbound-lowbound);
1262
out[1] = random_upto(0xFFFFFFFF);
1263
} while (iszero(out)); /* rule out zero */
1264
}
1265
static void cases_uniform_float_positive(uint32 *out, uint32 lowbound,
1266
uint32 highbound) {
1267
do {
1268
out[0] = highbound - random_upto(highbound-lowbound);
1269
out[1] = 0;
1270
} while (iszero(out)); /* rule out zero */
1271
}
1272
1273
1274
static void log_cases(uint32 *out, uint32 param1,
1275
uint32 param2) {
1276
do {
1277
out[0] = random_upto(0x7FEFFFFF);
1278
out[1] = random_upto(0xFFFFFFFF);
1279
} while (iszero(out)); /* rule out zero */
1280
}
1281
1282
static void log_cases_float(uint32 *out, uint32 param1,
1283
uint32 param2) {
1284
do {
1285
out[0] = random_upto(0x7F7FFFFF);
1286
out[1] = 0;
1287
} while (iszero(out)); /* rule out zero */
1288
}
1289
1290
static void log1p_cases(uint32 *out, uint32 param1, uint32 param2)
1291
{
1292
uint32 sign = random_sign;
1293
if (sign == 0) {
1294
cases_uniform_positive(out, 0x3c700000, 0x43400000);
1295
} else {
1296
cases_uniform_positive(out, 0x3c000000, 0x3ff00000);
1297
}
1298
out[0] |= sign;
1299
}
1300
1301
static void log1p_cases_float(uint32 *out, uint32 param1, uint32 param2)
1302
{
1303
uint32 sign = random_sign;
1304
if (sign == 0) {
1305
cases_uniform_float_positive(out, 0x32000000, 0x4c000000);
1306
} else {
1307
cases_uniform_float_positive(out, 0x30000000, 0x3f800000);
1308
}
1309
out[0] |= sign;
1310
}
1311
1312
static void minmax_cases(uint32 *out, uint32 param1, uint32 param2)
1313
{
1314
do {
1315
out[0] = random_upto(0x7FEFFFFF);
1316
out[1] = random_upto(0xFFFFFFFF);
1317
out[0] |= random_sign;
1318
out[2] = random_upto(0x7FEFFFFF);
1319
out[3] = random_upto(0xFFFFFFFF);
1320
out[2] |= random_sign;
1321
} while (iszero(out)); /* rule out zero */
1322
}
1323
1324
static void minmax_cases_float(uint32 *out, uint32 param1, uint32 param2)
1325
{
1326
do {
1327
out[0] = random_upto(0x7F7FFFFF);
1328
out[1] = 0;
1329
out[0] |= random_sign;
1330
out[2] = random_upto(0x7F7FFFFF);
1331
out[3] = 0;
1332
out[2] |= random_sign;
1333
} while (iszero(out)); /* rule out zero */
1334
}
1335
1336
static void rred_cases(uint32 *out, uint32 param1,
1337
uint32 param2) {
1338
do {
1339
out[0] = ((0x3fc00000 + random_upto(0x036fffff)) |
1340
(random_upto(1) << 31));
1341
out[1] = random_upto(0xFFFFFFFF);
1342
} while (iszero(out)); /* rule out zero */
1343
}
1344
1345
static void rred_cases_float(uint32 *out, uint32 param1,
1346
uint32 param2) {
1347
do {
1348
out[0] = ((0x3e000000 + random_upto(0x0cffffff)) |
1349
(random_upto(1) << 31));
1350
out[1] = 0; /* for iszero */
1351
} while (iszero(out)); /* rule out zero */
1352
}
1353
1354
static void atan2_cases(uint32 *out, uint32 param1,
1355
uint32 param2) {
1356
do {
1357
int expdiff = random_upto(101)-51;
1358
int swap;
1359
if (expdiff < 0) {
1360
expdiff = -expdiff;
1361
swap = 2;
1362
} else
1363
swap = 0;
1364
out[swap ^ 0] = random_upto(0x7FEFFFFF-((expdiff+1)<<20));
1365
out[swap ^ 2] = random_upto(((expdiff+1)<<20)-1) + out[swap ^ 0];
1366
out[1] = random_upto(0xFFFFFFFF);
1367
out[3] = random_upto(0xFFFFFFFF);
1368
out[0] |= random_sign;
1369
out[2] |= random_sign;
1370
} while (iszero(out) || iszero(out+2));/* rule out zero */
1371
}
1372
1373
static void atan2_cases_float(uint32 *out, uint32 param1,
1374
uint32 param2) {
1375
do {
1376
int expdiff = random_upto(44)-22;
1377
int swap;
1378
if (expdiff < 0) {
1379
expdiff = -expdiff;
1380
swap = 2;
1381
} else
1382
swap = 0;
1383
out[swap ^ 0] = random_upto(0x7F7FFFFF-((expdiff+1)<<23));
1384
out[swap ^ 2] = random_upto(((expdiff+1)<<23)-1) + out[swap ^ 0];
1385
out[0] |= random_sign;
1386
out[2] |= random_sign;
1387
out[1] = out[3] = 0; /* for iszero */
1388
} while (iszero(out) || iszero(out+2));/* rule out zero */
1389
}
1390
1391
static void pow_cases(uint32 *out, uint32 param1,
1392
uint32 param2) {
1393
/*
1394
* Pick an exponent e (-0x33 to +0x7FE) for x, and here's the
1395
* range of numbers we can use as y:
1396
*
1397
* For e < 0x3FE, the range is [-0x400/(0x3FE-e),+0x432/(0x3FE-e)]
1398
* For e > 0x3FF, the range is [-0x432/(e-0x3FF),+0x400/(e-0x3FF)]
1399
*
1400
* For e == 0x3FE or e == 0x3FF, the range gets infinite at one
1401
* end or the other, so we have to be cleverer: pick a number n
1402
* of useful bits in the mantissa (1 thru 52, so 1 must imply
1403
* 0x3ff00000.00000001 whereas 52 is anything at least as big
1404
* as 0x3ff80000.00000000; for e == 0x3fe, 1 necessarily means
1405
* 0x3fefffff.ffffffff and 52 is anything at most as big as
1406
* 0x3fe80000.00000000). Then, as it happens, a sensible
1407
* maximum power is 2^(63-n) for e == 0x3fe, and 2^(62-n) for
1408
* e == 0x3ff.
1409
*
1410
* We inevitably get some overflows in approximating the log
1411
* curves by these nasty step functions, but that's all right -
1412
* we do want _some_ overflows to be tested.
1413
*
1414
* Having got that, then, it's just a matter of inventing a
1415
* probability distribution for all of this.
1416
*/
1417
int e, n;
1418
uint32 dmin, dmax;
1419
const uint32 pmin = 0x3e100000;
1420
1421
/*
1422
* Generate exponents in a slightly biased fashion.
1423
*/
1424
e = (random_upto(1) ? /* is exponent small or big? */
1425
0x3FE - random_upto_biased(0x431,2) : /* small */
1426
0x3FF + random_upto_biased(0x3FF,2)); /* big */
1427
1428
/*
1429
* Now split into cases.
1430
*/
1431
if (e < 0x3FE || e > 0x3FF) {
1432
uint32 imin, imax;
1433
if (e < 0x3FE)
1434
imin = 0x40000 / (0x3FE - e), imax = 0x43200 / (0x3FE - e);
1435
else
1436
imin = 0x43200 / (e - 0x3FF), imax = 0x40000 / (e - 0x3FF);
1437
/* Power range runs from -imin to imax. Now convert to doubles */
1438
dmin = doubletop(imin, -8);
1439
dmax = doubletop(imax, -8);
1440
/* Compute the number of mantissa bits. */
1441
n = (e > 0 ? 53 : 52+e);
1442
} else {
1443
/* Critical exponents. Generate a top bit index. */
1444
n = 52 - random_upto_biased(51, 4);
1445
if (e == 0x3FE)
1446
dmax = 63 - n;
1447
else
1448
dmax = 62 - n;
1449
dmax = (dmax << 20) + 0x3FF00000;
1450
dmin = dmax;
1451
}
1452
/* Generate a mantissa. */
1453
if (n <= 32) {
1454
out[0] = 0;
1455
out[1] = random_upto((1 << (n-1)) - 1) + (1 << (n-1));
1456
} else if (n == 33) {
1457
out[0] = 1;
1458
out[1] = random_upto(0xFFFFFFFF);
1459
} else if (n > 33) {
1460
out[0] = random_upto((1 << (n-33)) - 1) + (1 << (n-33));
1461
out[1] = random_upto(0xFFFFFFFF);
1462
}
1463
/* Negate the mantissa if e == 0x3FE. */
1464
if (e == 0x3FE) {
1465
out[1] = -out[1];
1466
out[0] = -out[0];
1467
if (out[1]) out[0]--;
1468
}
1469
/* Put the exponent on. */
1470
out[0] &= 0xFFFFF;
1471
out[0] |= ((e > 0 ? e : 0) << 20);
1472
/* Generate a power. Powers don't go below 2^-30. */
1473
if (random_upto(1)) {
1474
/* Positive power */
1475
out[2] = dmax - random_upto_biased(dmax-pmin, 10);
1476
} else {
1477
/* Negative power */
1478
out[2] = (dmin - random_upto_biased(dmin-pmin, 10)) | 0x80000000;
1479
}
1480
out[3] = random_upto(0xFFFFFFFF);
1481
}
1482
static void pow_cases_float(uint32 *out, uint32 param1,
1483
uint32 param2) {
1484
/*
1485
* Pick an exponent e (-0x16 to +0xFE) for x, and here's the
1486
* range of numbers we can use as y:
1487
*
1488
* For e < 0x7E, the range is [-0x80/(0x7E-e),+0x95/(0x7E-e)]
1489
* For e > 0x7F, the range is [-0x95/(e-0x7F),+0x80/(e-0x7F)]
1490
*
1491
* For e == 0x7E or e == 0x7F, the range gets infinite at one
1492
* end or the other, so we have to be cleverer: pick a number n
1493
* of useful bits in the mantissa (1 thru 23, so 1 must imply
1494
* 0x3f800001 whereas 23 is anything at least as big as
1495
* 0x3fc00000; for e == 0x7e, 1 necessarily means 0x3f7fffff
1496
* and 23 is anything at most as big as 0x3f400000). Then, as
1497
* it happens, a sensible maximum power is 2^(31-n) for e ==
1498
* 0x7e, and 2^(30-n) for e == 0x7f.
1499
*
1500
* We inevitably get some overflows in approximating the log
1501
* curves by these nasty step functions, but that's all right -
1502
* we do want _some_ overflows to be tested.
1503
*
1504
* Having got that, then, it's just a matter of inventing a
1505
* probability distribution for all of this.
1506
*/
1507
int e, n;
1508
uint32 dmin, dmax;
1509
const uint32 pmin = 0x38000000;
1510
1511
/*
1512
* Generate exponents in a slightly biased fashion.
1513
*/
1514
e = (random_upto(1) ? /* is exponent small or big? */
1515
0x7E - random_upto_biased(0x94,2) : /* small */
1516
0x7F + random_upto_biased(0x7f,2)); /* big */
1517
1518
/*
1519
* Now split into cases.
1520
*/
1521
if (e < 0x7E || e > 0x7F) {
1522
uint32 imin, imax;
1523
if (e < 0x7E)
1524
imin = 0x8000 / (0x7e - e), imax = 0x9500 / (0x7e - e);
1525
else
1526
imin = 0x9500 / (e - 0x7f), imax = 0x8000 / (e - 0x7f);
1527
/* Power range runs from -imin to imax. Now convert to doubles */
1528
dmin = floatval(imin, -8);
1529
dmax = floatval(imax, -8);
1530
/* Compute the number of mantissa bits. */
1531
n = (e > 0 ? 24 : 23+e);
1532
} else {
1533
/* Critical exponents. Generate a top bit index. */
1534
n = 23 - random_upto_biased(22, 4);
1535
if (e == 0x7E)
1536
dmax = 31 - n;
1537
else
1538
dmax = 30 - n;
1539
dmax = (dmax << 23) + 0x3F800000;
1540
dmin = dmax;
1541
}
1542
/* Generate a mantissa. */
1543
out[0] = random_upto((1 << (n-1)) - 1) + (1 << (n-1));
1544
out[1] = 0;
1545
/* Negate the mantissa if e == 0x7E. */
1546
if (e == 0x7E) {
1547
out[0] = -out[0];
1548
}
1549
/* Put the exponent on. */
1550
out[0] &= 0x7FFFFF;
1551
out[0] |= ((e > 0 ? e : 0) << 23);
1552
/* Generate a power. Powers don't go below 2^-15. */
1553
if (random_upto(1)) {
1554
/* Positive power */
1555
out[2] = dmax - random_upto_biased(dmax-pmin, 10);
1556
} else {
1557
/* Negative power */
1558
out[2] = (dmin - random_upto_biased(dmin-pmin, 10)) | 0x80000000;
1559
}
1560
out[3] = 0;
1561
}
1562
1563
void vet_for_decline(Testable *fn, uint32 *args, uint32 *result, int got_errno_in) {
1564
int declined = 0;
1565
1566
switch (fn->type) {
1567
case args1:
1568
case rred:
1569
case semi1:
1570
case t_frexp:
1571
case t_modf:
1572
case classify:
1573
case t_ldexp:
1574
declined |= lib_fo && is_dhard(args+0);
1575
break;
1576
case args1f:
1577
case rredf:
1578
case semi1f:
1579
case t_frexpf:
1580
case t_modff:
1581
case classifyf:
1582
declined |= lib_fo && is_shard(args+0);
1583
break;
1584
case args2:
1585
case semi2:
1586
case args1c:
1587
case args1cr:
1588
case compare:
1589
declined |= lib_fo && is_dhard(args+0);
1590
declined |= lib_fo && is_dhard(args+2);
1591
break;
1592
case args2f:
1593
case semi2f:
1594
case t_ldexpf:
1595
case comparef:
1596
case args1fc:
1597
case args1fcr:
1598
declined |= lib_fo && is_shard(args+0);
1599
declined |= lib_fo && is_shard(args+2);
1600
break;
1601
case args2c:
1602
declined |= lib_fo && is_dhard(args+0);
1603
declined |= lib_fo && is_dhard(args+2);
1604
declined |= lib_fo && is_dhard(args+4);
1605
declined |= lib_fo && is_dhard(args+6);
1606
break;
1607
case args2fc:
1608
declined |= lib_fo && is_shard(args+0);
1609
declined |= lib_fo && is_shard(args+2);
1610
declined |= lib_fo && is_shard(args+4);
1611
declined |= lib_fo && is_shard(args+6);
1612
break;
1613
}
1614
1615
switch (fn->type) {
1616
case args1: /* return an extra-precise result */
1617
case args2:
1618
case rred:
1619
case semi1: /* return a double result */
1620
case semi2:
1621
case t_ldexp:
1622
case t_frexp: /* return double * int */
1623
case args1cr:
1624
declined |= lib_fo && is_dhard(result);
1625
break;
1626
case args1f:
1627
case args2f:
1628
case rredf:
1629
case semi1f:
1630
case semi2f:
1631
case t_ldexpf:
1632
case args1fcr:
1633
declined |= lib_fo && is_shard(result);
1634
break;
1635
case t_modf: /* return double * double */
1636
declined |= lib_fo && is_dhard(result+0);
1637
declined |= lib_fo && is_dhard(result+2);
1638
break;
1639
case t_modff: /* return float * float */
1640
declined |= lib_fo && is_shard(result+2);
1641
/* fall through */
1642
case t_frexpf: /* return float * int */
1643
declined |= lib_fo && is_shard(result+0);
1644
break;
1645
case args1c:
1646
case args2c:
1647
declined |= lib_fo && is_dhard(result+0);
1648
declined |= lib_fo && is_dhard(result+4);
1649
break;
1650
case args1fc:
1651
case args2fc:
1652
declined |= lib_fo && is_shard(result+0);
1653
declined |= lib_fo && is_shard(result+4);
1654
break;
1655
}
1656
1657
/* Expect basic arithmetic tests to be declined if the command
1658
* line said that would happen */
1659
declined |= (lib_no_arith && (fn->func == (funcptr)mpc_add ||
1660
fn->func == (funcptr)mpc_sub ||
1661
fn->func == (funcptr)mpc_mul ||
1662
fn->func == (funcptr)mpc_div));
1663
1664
if (!declined) {
1665
if (got_errno_in)
1666
ntests++;
1667
else
1668
ntests += 3;
1669
}
1670
}
1671
1672
void docase(Testable *fn, uint32 *args) {
1673
uint32 result[8]; /* real part in first 4, imaginary part in last 4 */
1674
char *errstr = NULL;
1675
mpfr_t a, b, r;
1676
mpc_t ac, bc, rc;
1677
int rejected, printextra;
1678
wrapperctx ctx;
1679
1680
mpfr_init2(a, MPFR_PREC);
1681
mpfr_init2(b, MPFR_PREC);
1682
mpfr_init2(r, MPFR_PREC);
1683
mpc_init2(ac, MPFR_PREC);
1684
mpc_init2(bc, MPFR_PREC);
1685
mpc_init2(rc, MPFR_PREC);
1686
1687
printf("func=%s", fn->name);
1688
1689
rejected = 0; /* FIXME */
1690
1691
switch (fn->type) {
1692
case args1:
1693
case rred:
1694
case semi1:
1695
case t_frexp:
1696
case t_modf:
1697
case classify:
1698
printf(" op1=%08x.%08x", args[0], args[1]);
1699
break;
1700
case args1f:
1701
case rredf:
1702
case semi1f:
1703
case t_frexpf:
1704
case t_modff:
1705
case classifyf:
1706
printf(" op1=%08x", args[0]);
1707
break;
1708
case args2:
1709
case semi2:
1710
case compare:
1711
printf(" op1=%08x.%08x", args[0], args[1]);
1712
printf(" op2=%08x.%08x", args[2], args[3]);
1713
break;
1714
case args2f:
1715
case semi2f:
1716
case t_ldexpf:
1717
case comparef:
1718
printf(" op1=%08x", args[0]);
1719
printf(" op2=%08x", args[2]);
1720
break;
1721
case t_ldexp:
1722
printf(" op1=%08x.%08x", args[0], args[1]);
1723
printf(" op2=%08x", args[2]);
1724
break;
1725
case args1c:
1726
case args1cr:
1727
printf(" op1r=%08x.%08x", args[0], args[1]);
1728
printf(" op1i=%08x.%08x", args[2], args[3]);
1729
break;
1730
case args2c:
1731
printf(" op1r=%08x.%08x", args[0], args[1]);
1732
printf(" op1i=%08x.%08x", args[2], args[3]);
1733
printf(" op2r=%08x.%08x", args[4], args[5]);
1734
printf(" op2i=%08x.%08x", args[6], args[7]);
1735
break;
1736
case args1fc:
1737
case args1fcr:
1738
printf(" op1r=%08x", args[0]);
1739
printf(" op1i=%08x", args[2]);
1740
break;
1741
case args2fc:
1742
printf(" op1r=%08x", args[0]);
1743
printf(" op1i=%08x", args[2]);
1744
printf(" op2r=%08x", args[4]);
1745
printf(" op2i=%08x", args[6]);
1746
break;
1747
default:
1748
fprintf(stderr, "internal inconsistency?!\n");
1749
abort();
1750
}
1751
1752
if (rejected == 2) {
1753
printf(" - test case rejected\n");
1754
goto cleanup;
1755
}
1756
1757
wrapper_init(&ctx);
1758
1759
if (rejected == 0) {
1760
switch (fn->type) {
1761
case args1:
1762
set_mpfr_d(a, args[0], args[1]);
1763
wrapper_op_real(&ctx, a, 2, args);
1764
((testfunc1)(fn->func))(r, a, GMP_RNDN);
1765
get_mpfr_d(r, &result[0], &result[1], &result[2]);
1766
wrapper_result_real(&ctx, r, 2, result);
1767
if (wrapper_run(&ctx, fn->wrappers))
1768
get_mpfr_d(r, &result[0], &result[1], &result[2]);
1769
break;
1770
case args1cr:
1771
set_mpc_d(ac, args[0], args[1], args[2], args[3]);
1772
wrapper_op_complex(&ctx, ac, 2, args);
1773
((testfunc1cr)(fn->func))(r, ac, GMP_RNDN);
1774
get_mpfr_d(r, &result[0], &result[1], &result[2]);
1775
wrapper_result_real(&ctx, r, 2, result);
1776
if (wrapper_run(&ctx, fn->wrappers))
1777
get_mpfr_d(r, &result[0], &result[1], &result[2]);
1778
break;
1779
case args1f:
1780
set_mpfr_f(a, args[0]);
1781
wrapper_op_real(&ctx, a, 1, args);
1782
((testfunc1)(fn->func))(r, a, GMP_RNDN);
1783
get_mpfr_f(r, &result[0], &result[1]);
1784
wrapper_result_real(&ctx, r, 1, result);
1785
if (wrapper_run(&ctx, fn->wrappers))
1786
get_mpfr_f(r, &result[0], &result[1]);
1787
break;
1788
case args1fcr:
1789
set_mpc_f(ac, args[0], args[2]);
1790
wrapper_op_complex(&ctx, ac, 1, args);
1791
((testfunc1cr)(fn->func))(r, ac, GMP_RNDN);
1792
get_mpfr_f(r, &result[0], &result[1]);
1793
wrapper_result_real(&ctx, r, 1, result);
1794
if (wrapper_run(&ctx, fn->wrappers))
1795
get_mpfr_f(r, &result[0], &result[1]);
1796
break;
1797
case args2:
1798
set_mpfr_d(a, args[0], args[1]);
1799
wrapper_op_real(&ctx, a, 2, args);
1800
set_mpfr_d(b, args[2], args[3]);
1801
wrapper_op_real(&ctx, b, 2, args+2);
1802
((testfunc2)(fn->func))(r, a, b, GMP_RNDN);
1803
get_mpfr_d(r, &result[0], &result[1], &result[2]);
1804
wrapper_result_real(&ctx, r, 2, result);
1805
if (wrapper_run(&ctx, fn->wrappers))
1806
get_mpfr_d(r, &result[0], &result[1], &result[2]);
1807
break;
1808
case args2f:
1809
set_mpfr_f(a, args[0]);
1810
wrapper_op_real(&ctx, a, 1, args);
1811
set_mpfr_f(b, args[2]);
1812
wrapper_op_real(&ctx, b, 1, args+2);
1813
((testfunc2)(fn->func))(r, a, b, GMP_RNDN);
1814
get_mpfr_f(r, &result[0], &result[1]);
1815
wrapper_result_real(&ctx, r, 1, result);
1816
if (wrapper_run(&ctx, fn->wrappers))
1817
get_mpfr_f(r, &result[0], &result[1]);
1818
break;
1819
case rred:
1820
set_mpfr_d(a, args[0], args[1]);
1821
wrapper_op_real(&ctx, a, 2, args);
1822
((testrred)(fn->func))(r, a, (int *)&result[3]);
1823
get_mpfr_d(r, &result[0], &result[1], &result[2]);
1824
wrapper_result_real(&ctx, r, 2, result);
1825
/* We never need to mess about with the integer auxiliary
1826
* output. */
1827
if (wrapper_run(&ctx, fn->wrappers))
1828
get_mpfr_d(r, &result[0], &result[1], &result[2]);
1829
break;
1830
case rredf:
1831
set_mpfr_f(a, args[0]);
1832
wrapper_op_real(&ctx, a, 1, args);
1833
((testrred)(fn->func))(r, a, (int *)&result[3]);
1834
get_mpfr_f(r, &result[0], &result[1]);
1835
wrapper_result_real(&ctx, r, 1, result);
1836
/* We never need to mess about with the integer auxiliary
1837
* output. */
1838
if (wrapper_run(&ctx, fn->wrappers))
1839
get_mpfr_f(r, &result[0], &result[1]);
1840
break;
1841
case semi1:
1842
case semi1f:
1843
errstr = ((testsemi1)(fn->func))(args, result);
1844
break;
1845
case semi2:
1846
case compare:
1847
errstr = ((testsemi2)(fn->func))(args, args+2, result);
1848
break;
1849
case semi2f:
1850
case comparef:
1851
case t_ldexpf:
1852
errstr = ((testsemi2f)(fn->func))(args, args+2, result);
1853
break;
1854
case t_ldexp:
1855
errstr = ((testldexp)(fn->func))(args, args+2, result);
1856
break;
1857
case t_frexp:
1858
errstr = ((testfrexp)(fn->func))(args, result, result+2);
1859
break;
1860
case t_frexpf:
1861
errstr = ((testfrexp)(fn->func))(args, result, result+2);
1862
break;
1863
case t_modf:
1864
errstr = ((testmodf)(fn->func))(args, result, result+2);
1865
break;
1866
case t_modff:
1867
errstr = ((testmodf)(fn->func))(args, result, result+2);
1868
break;
1869
case classify:
1870
errstr = ((testclassify)(fn->func))(args, &result[0]);
1871
break;
1872
case classifyf:
1873
errstr = ((testclassifyf)(fn->func))(args, &result[0]);
1874
break;
1875
case args1c:
1876
set_mpc_d(ac, args[0], args[1], args[2], args[3]);
1877
wrapper_op_complex(&ctx, ac, 2, args);
1878
((testfunc1c)(fn->func))(rc, ac, MPC_RNDNN);
1879
get_mpc_d(rc, &result[0], &result[1], &result[2], &result[4], &result[5], &result[6]);
1880
wrapper_result_complex(&ctx, rc, 2, result);
1881
if (wrapper_run(&ctx, fn->wrappers))
1882
get_mpc_d(rc, &result[0], &result[1], &result[2], &result[4], &result[5], &result[6]);
1883
break;
1884
case args2c:
1885
set_mpc_d(ac, args[0], args[1], args[2], args[3]);
1886
wrapper_op_complex(&ctx, ac, 2, args);
1887
set_mpc_d(bc, args[4], args[5], args[6], args[7]);
1888
wrapper_op_complex(&ctx, bc, 2, args+4);
1889
((testfunc2c)(fn->func))(rc, ac, bc, MPC_RNDNN);
1890
get_mpc_d(rc, &result[0], &result[1], &result[2], &result[4], &result[5], &result[6]);
1891
wrapper_result_complex(&ctx, rc, 2, result);
1892
if (wrapper_run(&ctx, fn->wrappers))
1893
get_mpc_d(rc, &result[0], &result[1], &result[2], &result[4], &result[5], &result[6]);
1894
break;
1895
case args1fc:
1896
set_mpc_f(ac, args[0], args[2]);
1897
wrapper_op_complex(&ctx, ac, 1, args);
1898
((testfunc1c)(fn->func))(rc, ac, MPC_RNDNN);
1899
get_mpc_f(rc, &result[0], &result[1], &result[4], &result[5]);
1900
wrapper_result_complex(&ctx, rc, 1, result);
1901
if (wrapper_run(&ctx, fn->wrappers))
1902
get_mpc_f(rc, &result[0], &result[1], &result[4], &result[5]);
1903
break;
1904
case args2fc:
1905
set_mpc_f(ac, args[0], args[2]);
1906
wrapper_op_complex(&ctx, ac, 1, args);
1907
set_mpc_f(bc, args[4], args[6]);
1908
wrapper_op_complex(&ctx, bc, 1, args+4);
1909
((testfunc2c)(fn->func))(rc, ac, bc, MPC_RNDNN);
1910
get_mpc_f(rc, &result[0], &result[1], &result[4], &result[5]);
1911
wrapper_result_complex(&ctx, rc, 1, result);
1912
if (wrapper_run(&ctx, fn->wrappers))
1913
get_mpc_f(rc, &result[0], &result[1], &result[4], &result[5]);
1914
break;
1915
default:
1916
fprintf(stderr, "internal inconsistency?!\n");
1917
abort();
1918
}
1919
}
1920
1921
switch (fn->type) {
1922
case args1: /* return an extra-precise result */
1923
case args2:
1924
case args1cr:
1925
case rred:
1926
printextra = 1;
1927
if (rejected == 0) {
1928
errstr = NULL;
1929
if (!mpfr_zero_p(a)) {
1930
if ((result[0] & 0x7FFFFFFF) == 0 && result[1] == 0) {
1931
/*
1932
* If the output is +0 or -0 apart from the extra
1933
* precision in result[2], then there's a tricky
1934
* judgment call about what we require in the
1935
* output. If we output the extra bits and set
1936
* errstr="?underflow" then mathtest will tolerate
1937
* the function under test rounding down to zero
1938
* _or_ up to the minimum denormal; whereas if we
1939
* suppress the extra bits and set
1940
* errstr="underflow", then mathtest will enforce
1941
* that the function really does underflow to zero.
1942
*
1943
* But where to draw the line? It seems clear to
1944
* me that numbers along the lines of
1945
* 00000000.00000000.7ff should be treated
1946
* similarly to 00000000.00000000.801, but on the
1947
* other hand, we must surely be prepared to
1948
* enforce a genuine underflow-to-zero in _some_
1949
* case where the true mathematical output is
1950
* nonzero but absurdly tiny.
1951
*
1952
* I think a reasonable place to draw the
1953
* distinction is at 00000000.00000000.400, i.e.
1954
* one quarter of the minimum positive denormal.
1955
* If a value less than that rounds up to the
1956
* minimum denormal, that must mean the function
1957
* under test has managed to make an error of an
1958
* entire factor of two, and that's something we
1959
* should fix. Above that, you can misround within
1960
* the limits of your accuracy bound if you have
1961
* to.
1962
*/
1963
if (result[2] < 0x40000000) {
1964
/* Total underflow (ERANGE + UFL) is required,
1965
* and we suppress the extra bits to make
1966
* mathtest enforce that the output is really
1967
* zero. */
1968
errstr = "underflow";
1969
printextra = 0;
1970
} else {
1971
/* Total underflow is not required, but if the
1972
* function rounds down to zero anyway, then
1973
* we should be prepared to tolerate it. */
1974
errstr = "?underflow";
1975
}
1976
} else if (!(result[0] & 0x7ff00000)) {
1977
/*
1978
* If the output is denormal, we usually expect a
1979
* UFL exception, warning the user of partial
1980
* underflow. The exception is if the denormal
1981
* being returned is just one of the input values,
1982
* unchanged even in principle. I bodgily handle
1983
* this by just special-casing the functions in
1984
* question below.
1985
*/
1986
if (!strcmp(fn->name, "fmax") ||
1987
!strcmp(fn->name, "fmin") ||
1988
!strcmp(fn->name, "creal") ||
1989
!strcmp(fn->name, "cimag")) {
1990
/* no error expected */
1991
} else {
1992
errstr = "u";
1993
}
1994
} else if ((result[0] & 0x7FFFFFFF) > 0x7FEFFFFF) {
1995
/*
1996
* Infinite results are usually due to overflow,
1997
* but one exception is lgamma of a negative
1998
* integer.
1999
*/
2000
if (!strcmp(fn->name, "lgamma") &&
2001
(args[0] & 0x80000000) != 0 && /* negative */
2002
is_dinteger(args)) {
2003
errstr = "ERANGE status=z";
2004
} else {
2005
errstr = "overflow";
2006
}
2007
printextra = 0;
2008
}
2009
} else {
2010
/* lgamma(0) is also a pole. */
2011
if (!strcmp(fn->name, "lgamma")) {
2012
errstr = "ERANGE status=z";
2013
printextra = 0;
2014
}
2015
}
2016
}
2017
2018
if (!printextra || (rejected && !(rejected==1 && result[2]!=0))) {
2019
printf(" result=%08x.%08x",
2020
result[0], result[1]);
2021
} else {
2022
printf(" result=%08x.%08x.%03x",
2023
result[0], result[1], (result[2] >> 20) & 0xFFF);
2024
}
2025
if (fn->type == rred) {
2026
printf(" res2=%08x", result[3]);
2027
}
2028
break;
2029
case args1f:
2030
case args2f:
2031
case args1fcr:
2032
case rredf:
2033
printextra = 1;
2034
if (rejected == 0) {
2035
errstr = NULL;
2036
if (!mpfr_zero_p(a)) {
2037
if ((result[0] & 0x7FFFFFFF) == 0) {
2038
/*
2039
* Decide whether to print the extra bits based on
2040
* just how close to zero the number is. See the
2041
* big comment in the double-precision case for
2042
* discussion.
2043
*/
2044
if (result[1] < 0x40000000) {
2045
errstr = "underflow";
2046
printextra = 0;
2047
} else {
2048
errstr = "?underflow";
2049
}
2050
} else if (!(result[0] & 0x7f800000)) {
2051
/*
2052
* Functions which do not report partial overflow
2053
* are listed here as special cases. (See the
2054
* corresponding double case above for a fuller
2055
* comment.)
2056
*/
2057
if (!strcmp(fn->name, "fmaxf") ||
2058
!strcmp(fn->name, "fminf") ||
2059
!strcmp(fn->name, "crealf") ||
2060
!strcmp(fn->name, "cimagf")) {
2061
/* no error expected */
2062
} else {
2063
errstr = "u";
2064
}
2065
} else if ((result[0] & 0x7FFFFFFF) > 0x7F7FFFFF) {
2066
/*
2067
* Infinite results are usually due to overflow,
2068
* but one exception is lgamma of a negative
2069
* integer.
2070
*/
2071
if (!strcmp(fn->name, "lgammaf") &&
2072
(args[0] & 0x80000000) != 0 && /* negative */
2073
is_sinteger(args)) {
2074
errstr = "ERANGE status=z";
2075
} else {
2076
errstr = "overflow";
2077
}
2078
printextra = 0;
2079
}
2080
} else {
2081
/* lgamma(0) is also a pole. */
2082
if (!strcmp(fn->name, "lgammaf")) {
2083
errstr = "ERANGE status=z";
2084
printextra = 0;
2085
}
2086
}
2087
}
2088
2089
if (!printextra || (rejected && !(rejected==1 && result[1]!=0))) {
2090
printf(" result=%08x",
2091
result[0]);
2092
} else {
2093
printf(" result=%08x.%03x",
2094
result[0], (result[1] >> 20) & 0xFFF);
2095
}
2096
if (fn->type == rredf) {
2097
printf(" res2=%08x", result[3]);
2098
}
2099
break;
2100
case semi1: /* return a double result */
2101
case semi2:
2102
case t_ldexp:
2103
printf(" result=%08x.%08x", result[0], result[1]);
2104
break;
2105
case semi1f:
2106
case semi2f:
2107
case t_ldexpf:
2108
printf(" result=%08x", result[0]);
2109
break;
2110
case t_frexp: /* return double * int */
2111
printf(" result=%08x.%08x res2=%08x", result[0], result[1],
2112
result[2]);
2113
break;
2114
case t_modf: /* return double * double */
2115
printf(" result=%08x.%08x res2=%08x.%08x",
2116
result[0], result[1], result[2], result[3]);
2117
break;
2118
case t_modff: /* return float * float */
2119
/* fall through */
2120
case t_frexpf: /* return float * int */
2121
printf(" result=%08x res2=%08x", result[0], result[2]);
2122
break;
2123
case classify:
2124
case classifyf:
2125
case compare:
2126
case comparef:
2127
printf(" result=%x", result[0]);
2128
break;
2129
case args1c:
2130
case args2c:
2131
if (0/* errstr */) {
2132
printf(" resultr=%08x.%08x", result[0], result[1]);
2133
printf(" resulti=%08x.%08x", result[4], result[5]);
2134
} else {
2135
printf(" resultr=%08x.%08x.%03x",
2136
result[0], result[1], (result[2] >> 20) & 0xFFF);
2137
printf(" resulti=%08x.%08x.%03x",
2138
result[4], result[5], (result[6] >> 20) & 0xFFF);
2139
}
2140
/* Underflow behaviour doesn't seem to be specified for complex arithmetic */
2141
errstr = "?underflow";
2142
break;
2143
case args1fc:
2144
case args2fc:
2145
if (0/* errstr */) {
2146
printf(" resultr=%08x", result[0]);
2147
printf(" resulti=%08x", result[4]);
2148
} else {
2149
printf(" resultr=%08x.%03x",
2150
result[0], (result[1] >> 20) & 0xFFF);
2151
printf(" resulti=%08x.%03x",
2152
result[4], (result[5] >> 20) & 0xFFF);
2153
}
2154
/* Underflow behaviour doesn't seem to be specified for complex arithmetic */
2155
errstr = "?underflow";
2156
break;
2157
}
2158
2159
if (errstr && *(errstr+1) == '\0') {
2160
printf(" errno=0 status=%c",*errstr);
2161
} else if (errstr && *errstr == '?') {
2162
printf(" maybeerror=%s", errstr+1);
2163
} else if (errstr && errstr[0] == 'E') {
2164
printf(" errno=%s", errstr);
2165
} else {
2166
printf(" error=%s", errstr && *errstr ? errstr : "0");
2167
}
2168
2169
printf("\n");
2170
2171
vet_for_decline(fn, args, result, 0);
2172
2173
cleanup:
2174
mpfr_clear(a);
2175
mpfr_clear(b);
2176
mpfr_clear(r);
2177
mpc_clear(ac);
2178
mpc_clear(bc);
2179
mpc_clear(rc);
2180
}
2181
2182
void gencases(Testable *fn, int number) {
2183
int i;
2184
uint32 args[8];
2185
2186
float32_case(NULL);
2187
float64_case(NULL);
2188
2189
printf("random=on\n"); /* signal to runtests.pl that the following tests are randomly generated */
2190
for (i = 0; i < number; i++) {
2191
/* generate test point */
2192
fn->cases(args, fn->caseparam1, fn->caseparam2);
2193
docase(fn, args);
2194
}
2195
printf("random=off\n");
2196
}
2197
2198
static uint32 doubletop(int x, int scale) {
2199
int e = 0x412 + scale;
2200
while (!(x & 0x100000))
2201
x <<= 1, e--;
2202
return (e << 20) + x;
2203
}
2204
2205
static uint32 floatval(int x, int scale) {
2206
int e = 0x95 + scale;
2207
while (!(x & 0x800000))
2208
x <<= 1, e--;
2209
return (e << 23) + x;
2210
}
2211
2212