Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/bearssl/inc/bearssl_hash.h
39586 views
1
/*
2
* Copyright (c) 2016 Thomas Pornin <[email protected]>
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining
5
* a copy of this software and associated documentation files (the
6
* "Software"), to deal in the Software without restriction, including
7
* without limitation the rights to use, copy, modify, merge, publish,
8
* distribute, sublicense, and/or sell copies of the Software, and to
9
* permit persons to whom the Software is furnished to do so, subject to
10
* the following conditions:
11
*
12
* The above copyright notice and this permission notice shall be
13
* included in all copies or substantial portions of the Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
* SOFTWARE.
23
*/
24
25
#ifndef BR_BEARSSL_HASH_H__
26
#define BR_BEARSSL_HASH_H__
27
28
#include <stddef.h>
29
#include <stdint.h>
30
#include <string.h>
31
32
#ifdef __cplusplus
33
extern "C" {
34
#endif
35
36
/** \file bearssl_hash.h
37
*
38
* # Hash Functions
39
*
40
* This file documents the API for hash functions.
41
*
42
*
43
* ## Procedural API
44
*
45
* For each implemented hash function, of name "`xxx`", the following
46
* elements are defined:
47
*
48
* - `br_xxx_vtable`
49
*
50
* An externally defined instance of `br_hash_class`.
51
*
52
* - `br_xxx_SIZE`
53
*
54
* A macro that evaluates to the output size (in bytes) of the
55
* hash function.
56
*
57
* - `br_xxx_ID`
58
*
59
* A macro that evaluates to a symbolic identifier for the hash
60
* function. Such identifiers are used with HMAC and signature
61
* algorithm implementations.
62
*
63
* NOTE: for the "standard" hash functions defined in [the TLS
64
* standard](https://tools.ietf.org/html/rfc5246#section-7.4.1.4.1),
65
* the symbolic identifiers match the constants used in TLS, i.e.
66
* 1 to 6 for MD5, SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512,
67
* respectively.
68
*
69
* - `br_xxx_context`
70
*
71
* Context for an ongoing computation. It is allocated by the
72
* caller, and a pointer to it is passed to all functions. A
73
* context contains no interior pointer, so it can be moved around
74
* and cloned (with a simple `memcpy()` or equivalent) in order to
75
* capture the function state at some point. Computations that use
76
* distinct context structures are independent of each other. The
77
* first field of `br_xxx_context` is always a pointer to the
78
* `br_xxx_vtable` structure; `br_xxx_init()` sets that pointer.
79
*
80
* - `br_xxx_init(br_xxx_context *ctx)`
81
*
82
* Initialise the provided context. Previous contents of the structure
83
* are ignored. This calls resets the context to the start of a new
84
* hash computation; it also sets the first field of the context
85
* structure (called `vtable`) to a pointer to the statically
86
* allocated constant `br_xxx_vtable` structure.
87
*
88
* - `br_xxx_update(br_xxx_context *ctx, const void *data, size_t len)`
89
*
90
* Add some more bytes to the hash computation represented by the
91
* provided context.
92
*
93
* - `br_xxx_out(const br_xxx_context *ctx, void *out)`
94
*
95
* Complete the hash computation and write the result in the provided
96
* buffer. The output buffer MUST be large enough to accommodate the
97
* result. The context is NOT modified by this operation, so this
98
* function can be used to get a "partial hash" while still keeping
99
* the possibility of adding more bytes to the input.
100
*
101
* - `br_xxx_state(const br_xxx_context *ctx, void *out)`
102
*
103
* Get a copy of the "current state" for the computation so far. For
104
* MD functions (MD5, SHA-1, SHA-2 family), this is the running state
105
* resulting from the processing of the last complete input block.
106
* Returned value is the current input length (in bytes).
107
*
108
* - `br_xxx_set_state(br_xxx_context *ctx, const void *stb, uint64_t count)`
109
*
110
* Set the internal state to the provided values. The 'stb' and
111
* 'count' values shall match that which was obtained from
112
* `br_xxx_state()`. This restores the hash state only if the state
113
* values were at an appropriate block boundary. This does NOT set
114
* the `vtable` pointer in the context.
115
*
116
* Context structures can be discarded without any explicit deallocation.
117
* Hash function implementations are purely software and don't reserve
118
* any resources outside of the context structure itself.
119
*
120
*
121
* ## Object-Oriented API
122
*
123
* For each hash function that follows the procedural API described
124
* above, an object-oriented API is also provided. In that API, function
125
* pointers from the vtable (`br_xxx_vtable`) are used. The vtable
126
* incarnates object-oriented programming. An introduction on the OOP
127
* concept used here can be read on the BearSSL Web site:<br />
128
* &nbsp;&nbsp;&nbsp;[https://www.bearssl.org/oop.html](https://www.bearssl.org/oop.html)
129
*
130
* The vtable offers functions called `init()`, `update()`, `out()`,
131
* `set()` and `set_state()`, which are in fact the functions from
132
* the procedural API. That vtable also contains two informative fields:
133
*
134
* - `context_size`
135
*
136
* The size of the context structure (`br_xxx_context`), in bytes.
137
* This can be used by generic implementations to perform dynamic
138
* context allocation.
139
*
140
* - `desc`
141
*
142
* A "descriptor" field that encodes some information on the hash
143
* function: symbolic identifier, output size, state size,
144
* internal block size, details on the padding.
145
*
146
* Users of this object-oriented API (in particular generic HMAC
147
* implementations) may make the following assumptions:
148
*
149
* - Hash output size is no more than 64 bytes.
150
* - Hash internal state size is no more than 64 bytes.
151
* - Internal block size is a power of two, no less than 16 and no more
152
* than 256.
153
*
154
*
155
* ## Implemented Hash Functions
156
*
157
* Implemented hash functions are:
158
*
159
* | Function | Name | Output length | State length |
160
* | :-------- | :------ | :-----------: | :----------: |
161
* | MD5 | md5 | 16 | 16 |
162
* | SHA-1 | sha1 | 20 | 20 |
163
* | SHA-224 | sha224 | 28 | 32 |
164
* | SHA-256 | sha256 | 32 | 32 |
165
* | SHA-384 | sha384 | 48 | 64 |
166
* | SHA-512 | sha512 | 64 | 64 |
167
* | MD5+SHA-1 | md5sha1 | 36 | 36 |
168
*
169
* (MD5+SHA-1 is the concatenation of MD5 and SHA-1 computed over the
170
* same input; in the implementation, the internal data buffer is
171
* shared, thus making it more memory-efficient than separate MD5 and
172
* SHA-1. It can be useful in implementing SSL 3.0, TLS 1.0 and TLS
173
* 1.1.)
174
*
175
*
176
* ## Multi-Hasher
177
*
178
* An aggregate hasher is provided, that can compute several standard
179
* hash functions in parallel. It uses `br_multihash_context` and a
180
* procedural API. It is configured with the implementations (the vtables)
181
* that it should use; it will then compute all these hash functions in
182
* parallel, on the same input. It is meant to be used in cases when the
183
* hash of an object will be used, but the exact hash function is not
184
* known yet (typically, streamed processing on X.509 certificates).
185
*
186
* Only the standard hash functions (MD5, SHA-1, SHA-224, SHA-256, SHA-384
187
* and SHA-512) are supported by the multi-hasher.
188
*
189
*
190
* ## GHASH
191
*
192
* GHASH is not a generic hash function; it is a _universal_ hash function,
193
* which, as the name does not say, means that it CANNOT be used in most
194
* places where a hash function is needed. GHASH is used within the GCM
195
* encryption mode, to provide the checked integrity functionality.
196
*
197
* A GHASH implementation is basically a function that uses the type defined
198
* in this file under the name `br_ghash`:
199
*
200
* typedef void (*br_ghash)(void *y, const void *h, const void *data, size_t len);
201
*
202
* The `y` pointer refers to a 16-byte value which is used as input, and
203
* receives the output of the GHASH invocation. `h` is a 16-byte secret
204
* value (that serves as key). `data` and `len` define the input data.
205
*
206
* Three GHASH implementations are provided, all constant-time, based on
207
* the use of integer multiplications with appropriate masking to cancel
208
* carry propagation.
209
*/
210
211
/**
212
* \brief Class type for hash function implementations.
213
*
214
* A `br_hash_class` instance references the methods implementing a hash
215
* function. Constant instances of this structure are defined for each
216
* implemented hash function. Such instances are also called "vtables".
217
*
218
* Vtables are used to support object-oriented programming, as
219
* described on [the BearSSL Web site](https://www.bearssl.org/oop.html).
220
*/
221
typedef struct br_hash_class_ br_hash_class;
222
struct br_hash_class_ {
223
/**
224
* \brief Size (in bytes) of the context structure appropriate for
225
* computing this hash function.
226
*/
227
size_t context_size;
228
229
/**
230
* \brief Descriptor word that contains information about the hash
231
* function.
232
*
233
* For each word `xxx` described below, use `BR_HASHDESC_xxx_OFF`
234
* and `BR_HASHDESC_xxx_MASK` to access the specific value, as
235
* follows:
236
*
237
* (hf->desc >> BR_HASHDESC_xxx_OFF) & BR_HASHDESC_xxx_MASK
238
*
239
* The defined elements are:
240
*
241
* - `ID`: the symbolic identifier for the function, as defined
242
* in [TLS](https://tools.ietf.org/html/rfc5246#section-7.4.1.4.1)
243
* (MD5 = 1, SHA-1 = 2,...).
244
*
245
* - `OUT`: hash output size, in bytes.
246
*
247
* - `STATE`: internal running state size, in bytes.
248
*
249
* - `LBLEN`: base-2 logarithm for the internal block size, as
250
* defined for HMAC processing (this is 6 for MD5, SHA-1, SHA-224
251
* and SHA-256, since these functions use 64-byte blocks; for
252
* SHA-384 and SHA-512, this is 7, corresponding to their
253
* 128-byte blocks).
254
*
255
* The descriptor may contain a few other flags.
256
*/
257
uint32_t desc;
258
259
/**
260
* \brief Initialisation method.
261
*
262
* This method takes as parameter a pointer to a context area,
263
* that it initialises. The first field of the context is set
264
* to this vtable; other elements are initialised for a new hash
265
* computation.
266
*
267
* \param ctx pointer to (the first field of) the context.
268
*/
269
void (*init)(const br_hash_class **ctx);
270
271
/**
272
* \brief Data injection method.
273
*
274
* The `len` bytes starting at address `data` are injected into
275
* the running hash computation incarnated by the specified
276
* context. The context is updated accordingly. It is allowed
277
* to have `len == 0`, in which case `data` is ignored (and could
278
* be `NULL`), and nothing happens.
279
* on the input data.
280
*
281
* \param ctx pointer to (the first field of) the context.
282
* \param data pointer to the first data byte to inject.
283
* \param len number of bytes to inject.
284
*/
285
void (*update)(const br_hash_class **ctx, const void *data, size_t len);
286
287
/**
288
* \brief Produce hash output.
289
*
290
* The hash output corresponding to all data bytes injected in the
291
* context since the last `init()` call is computed, and written
292
* in the buffer pointed to by `dst`. The hash output size depends
293
* on the implemented hash function (e.g. 16 bytes for MD5).
294
* The context is _not_ modified by this call, so further bytes
295
* may be afterwards injected to continue the current computation.
296
*
297
* \param ctx pointer to (the first field of) the context.
298
* \param dst destination buffer for the hash output.
299
*/
300
void (*out)(const br_hash_class *const *ctx, void *dst);
301
302
/**
303
* \brief Get running state.
304
*
305
* This method saves the current running state into the `dst`
306
* buffer. What constitutes the "running state" depends on the
307
* hash function; for Merkle-Damgård hash functions (like
308
* MD5 or SHA-1), this is the output obtained after processing
309
* each block. The number of bytes injected so far is returned.
310
* The context is not modified by this call.
311
*
312
* \param ctx pointer to (the first field of) the context.
313
* \param dst destination buffer for the state.
314
* \return the injected total byte length.
315
*/
316
uint64_t (*state)(const br_hash_class *const *ctx, void *dst);
317
318
/**
319
* \brief Set running state.
320
*
321
* This methods replaces the running state for the function.
322
*
323
* \param ctx pointer to (the first field of) the context.
324
* \param stb source buffer for the state.
325
* \param count injected total byte length.
326
*/
327
void (*set_state)(const br_hash_class **ctx,
328
const void *stb, uint64_t count);
329
};
330
331
#ifndef BR_DOXYGEN_IGNORE
332
#define BR_HASHDESC_ID(id) ((uint32_t)(id) << BR_HASHDESC_ID_OFF)
333
#define BR_HASHDESC_ID_OFF 0
334
#define BR_HASHDESC_ID_MASK 0xFF
335
336
#define BR_HASHDESC_OUT(size) ((uint32_t)(size) << BR_HASHDESC_OUT_OFF)
337
#define BR_HASHDESC_OUT_OFF 8
338
#define BR_HASHDESC_OUT_MASK 0x7F
339
340
#define BR_HASHDESC_STATE(size) ((uint32_t)(size) << BR_HASHDESC_STATE_OFF)
341
#define BR_HASHDESC_STATE_OFF 15
342
#define BR_HASHDESC_STATE_MASK 0xFF
343
344
#define BR_HASHDESC_LBLEN(ls) ((uint32_t)(ls) << BR_HASHDESC_LBLEN_OFF)
345
#define BR_HASHDESC_LBLEN_OFF 23
346
#define BR_HASHDESC_LBLEN_MASK 0x0F
347
348
#define BR_HASHDESC_MD_PADDING ((uint32_t)1 << 28)
349
#define BR_HASHDESC_MD_PADDING_128 ((uint32_t)1 << 29)
350
#define BR_HASHDESC_MD_PADDING_BE ((uint32_t)1 << 30)
351
#endif
352
353
/*
354
* Specific hash functions.
355
*
356
* Rules for contexts:
357
* -- No interior pointer.
358
* -- No pointer to external dynamically allocated resources.
359
* -- First field is called 'vtable' and is a pointer to a
360
* const-qualified br_hash_class instance (pointer is set by init()).
361
* -- SHA-224 and SHA-256 contexts are identical.
362
* -- SHA-384 and SHA-512 contexts are identical.
363
*
364
* Thus, contexts can be moved and cloned to capture the hash function
365
* current state; and there is no need for any explicit "release" function.
366
*/
367
368
/**
369
* \brief Symbolic identifier for MD5.
370
*/
371
#define br_md5_ID 1
372
373
/**
374
* \brief MD5 output size (in bytes).
375
*/
376
#define br_md5_SIZE 16
377
378
/**
379
* \brief Constant vtable for MD5.
380
*/
381
extern const br_hash_class br_md5_vtable;
382
383
/**
384
* \brief MD5 context.
385
*
386
* First field is a pointer to the vtable; it is set by the initialisation
387
* function. Other fields are not supposed to be accessed by user code.
388
*/
389
typedef struct {
390
/**
391
* \brief Pointer to vtable for this context.
392
*/
393
const br_hash_class *vtable;
394
#ifndef BR_DOXYGEN_IGNORE
395
unsigned char buf[64];
396
uint64_t count;
397
uint32_t val[4];
398
#endif
399
} br_md5_context;
400
401
/**
402
* \brief MD5 context initialisation.
403
*
404
* This function initialises or resets a context for a new MD5
405
* computation. It also sets the vtable pointer.
406
*
407
* \param ctx pointer to the context structure.
408
*/
409
void br_md5_init(br_md5_context *ctx);
410
411
/**
412
* \brief Inject some data bytes in a running MD5 computation.
413
*
414
* The provided context is updated with some data bytes. If the number
415
* of bytes (`len`) is zero, then the data pointer (`data`) is ignored
416
* and may be `NULL`, and this function does nothing.
417
*
418
* \param ctx pointer to the context structure.
419
* \param data pointer to the injected data.
420
* \param len injected data length (in bytes).
421
*/
422
void br_md5_update(br_md5_context *ctx, const void *data, size_t len);
423
424
/**
425
* \brief Compute MD5 output.
426
*
427
* The MD5 output for the concatenation of all bytes injected in the
428
* provided context since the last initialisation or reset call, is
429
* computed and written in the buffer pointed to by `out`. The context
430
* itself is not modified, so extra bytes may be injected afterwards
431
* to continue that computation.
432
*
433
* \param ctx pointer to the context structure.
434
* \param out destination buffer for the hash output.
435
*/
436
void br_md5_out(const br_md5_context *ctx, void *out);
437
438
/**
439
* \brief Save MD5 running state.
440
*
441
* The running state for MD5 (output of the last internal block
442
* processing) is written in the buffer pointed to by `out`. The
443
* number of bytes injected since the last initialisation or reset
444
* call is returned. The context is not modified.
445
*
446
* \param ctx pointer to the context structure.
447
* \param out destination buffer for the running state.
448
* \return the injected total byte length.
449
*/
450
uint64_t br_md5_state(const br_md5_context *ctx, void *out);
451
452
/**
453
* \brief Restore MD5 running state.
454
*
455
* The running state for MD5 is set to the provided values.
456
*
457
* \param ctx pointer to the context structure.
458
* \param stb source buffer for the running state.
459
* \param count the injected total byte length.
460
*/
461
void br_md5_set_state(br_md5_context *ctx, const void *stb, uint64_t count);
462
463
/**
464
* \brief Symbolic identifier for SHA-1.
465
*/
466
#define br_sha1_ID 2
467
468
/**
469
* \brief SHA-1 output size (in bytes).
470
*/
471
#define br_sha1_SIZE 20
472
473
/**
474
* \brief Constant vtable for SHA-1.
475
*/
476
extern const br_hash_class br_sha1_vtable;
477
478
/**
479
* \brief SHA-1 context.
480
*
481
* First field is a pointer to the vtable; it is set by the initialisation
482
* function. Other fields are not supposed to be accessed by user code.
483
*/
484
typedef struct {
485
/**
486
* \brief Pointer to vtable for this context.
487
*/
488
const br_hash_class *vtable;
489
#ifndef BR_DOXYGEN_IGNORE
490
unsigned char buf[64];
491
uint64_t count;
492
uint32_t val[5];
493
#endif
494
} br_sha1_context;
495
496
/**
497
* \brief SHA-1 context initialisation.
498
*
499
* This function initialises or resets a context for a new SHA-1
500
* computation. It also sets the vtable pointer.
501
*
502
* \param ctx pointer to the context structure.
503
*/
504
void br_sha1_init(br_sha1_context *ctx);
505
506
/**
507
* \brief Inject some data bytes in a running SHA-1 computation.
508
*
509
* The provided context is updated with some data bytes. If the number
510
* of bytes (`len`) is zero, then the data pointer (`data`) is ignored
511
* and may be `NULL`, and this function does nothing.
512
*
513
* \param ctx pointer to the context structure.
514
* \param data pointer to the injected data.
515
* \param len injected data length (in bytes).
516
*/
517
void br_sha1_update(br_sha1_context *ctx, const void *data, size_t len);
518
519
/**
520
* \brief Compute SHA-1 output.
521
*
522
* The SHA-1 output for the concatenation of all bytes injected in the
523
* provided context since the last initialisation or reset call, is
524
* computed and written in the buffer pointed to by `out`. The context
525
* itself is not modified, so extra bytes may be injected afterwards
526
* to continue that computation.
527
*
528
* \param ctx pointer to the context structure.
529
* \param out destination buffer for the hash output.
530
*/
531
void br_sha1_out(const br_sha1_context *ctx, void *out);
532
533
/**
534
* \brief Save SHA-1 running state.
535
*
536
* The running state for SHA-1 (output of the last internal block
537
* processing) is written in the buffer pointed to by `out`. The
538
* number of bytes injected since the last initialisation or reset
539
* call is returned. The context is not modified.
540
*
541
* \param ctx pointer to the context structure.
542
* \param out destination buffer for the running state.
543
* \return the injected total byte length.
544
*/
545
uint64_t br_sha1_state(const br_sha1_context *ctx, void *out);
546
547
/**
548
* \brief Restore SHA-1 running state.
549
*
550
* The running state for SHA-1 is set to the provided values.
551
*
552
* \param ctx pointer to the context structure.
553
* \param stb source buffer for the running state.
554
* \param count the injected total byte length.
555
*/
556
void br_sha1_set_state(br_sha1_context *ctx, const void *stb, uint64_t count);
557
558
/**
559
* \brief Symbolic identifier for SHA-224.
560
*/
561
#define br_sha224_ID 3
562
563
/**
564
* \brief SHA-224 output size (in bytes).
565
*/
566
#define br_sha224_SIZE 28
567
568
/**
569
* \brief Constant vtable for SHA-224.
570
*/
571
extern const br_hash_class br_sha224_vtable;
572
573
/**
574
* \brief SHA-224 context.
575
*
576
* First field is a pointer to the vtable; it is set by the initialisation
577
* function. Other fields are not supposed to be accessed by user code.
578
*/
579
typedef struct {
580
/**
581
* \brief Pointer to vtable for this context.
582
*/
583
const br_hash_class *vtable;
584
#ifndef BR_DOXYGEN_IGNORE
585
unsigned char buf[64];
586
uint64_t count;
587
uint32_t val[8];
588
#endif
589
} br_sha224_context;
590
591
/**
592
* \brief SHA-224 context initialisation.
593
*
594
* This function initialises or resets a context for a new SHA-224
595
* computation. It also sets the vtable pointer.
596
*
597
* \param ctx pointer to the context structure.
598
*/
599
void br_sha224_init(br_sha224_context *ctx);
600
601
/**
602
* \brief Inject some data bytes in a running SHA-224 computation.
603
*
604
* The provided context is updated with some data bytes. If the number
605
* of bytes (`len`) is zero, then the data pointer (`data`) is ignored
606
* and may be `NULL`, and this function does nothing.
607
*
608
* \param ctx pointer to the context structure.
609
* \param data pointer to the injected data.
610
* \param len injected data length (in bytes).
611
*/
612
void br_sha224_update(br_sha224_context *ctx, const void *data, size_t len);
613
614
/**
615
* \brief Compute SHA-224 output.
616
*
617
* The SHA-224 output for the concatenation of all bytes injected in the
618
* provided context since the last initialisation or reset call, is
619
* computed and written in the buffer pointed to by `out`. The context
620
* itself is not modified, so extra bytes may be injected afterwards
621
* to continue that computation.
622
*
623
* \param ctx pointer to the context structure.
624
* \param out destination buffer for the hash output.
625
*/
626
void br_sha224_out(const br_sha224_context *ctx, void *out);
627
628
/**
629
* \brief Save SHA-224 running state.
630
*
631
* The running state for SHA-224 (output of the last internal block
632
* processing) is written in the buffer pointed to by `out`. The
633
* number of bytes injected since the last initialisation or reset
634
* call is returned. The context is not modified.
635
*
636
* \param ctx pointer to the context structure.
637
* \param out destination buffer for the running state.
638
* \return the injected total byte length.
639
*/
640
uint64_t br_sha224_state(const br_sha224_context *ctx, void *out);
641
642
/**
643
* \brief Restore SHA-224 running state.
644
*
645
* The running state for SHA-224 is set to the provided values.
646
*
647
* \param ctx pointer to the context structure.
648
* \param stb source buffer for the running state.
649
* \param count the injected total byte length.
650
*/
651
void br_sha224_set_state(br_sha224_context *ctx,
652
const void *stb, uint64_t count);
653
654
/**
655
* \brief Symbolic identifier for SHA-256.
656
*/
657
#define br_sha256_ID 4
658
659
/**
660
* \brief SHA-256 output size (in bytes).
661
*/
662
#define br_sha256_SIZE 32
663
664
/**
665
* \brief Constant vtable for SHA-256.
666
*/
667
extern const br_hash_class br_sha256_vtable;
668
669
#ifdef BR_DOXYGEN_IGNORE
670
/**
671
* \brief SHA-256 context.
672
*
673
* First field is a pointer to the vtable; it is set by the initialisation
674
* function. Other fields are not supposed to be accessed by user code.
675
*/
676
typedef struct {
677
/**
678
* \brief Pointer to vtable for this context.
679
*/
680
const br_hash_class *vtable;
681
} br_sha256_context;
682
#else
683
typedef br_sha224_context br_sha256_context;
684
#endif
685
686
/**
687
* \brief SHA-256 context initialisation.
688
*
689
* This function initialises or resets a context for a new SHA-256
690
* computation. It also sets the vtable pointer.
691
*
692
* \param ctx pointer to the context structure.
693
*/
694
void br_sha256_init(br_sha256_context *ctx);
695
696
#ifdef BR_DOXYGEN_IGNORE
697
/**
698
* \brief Inject some data bytes in a running SHA-256 computation.
699
*
700
* The provided context is updated with some data bytes. If the number
701
* of bytes (`len`) is zero, then the data pointer (`data`) is ignored
702
* and may be `NULL`, and this function does nothing.
703
*
704
* \param ctx pointer to the context structure.
705
* \param data pointer to the injected data.
706
* \param len injected data length (in bytes).
707
*/
708
void br_sha256_update(br_sha256_context *ctx, const void *data, size_t len);
709
#else
710
#define br_sha256_update br_sha224_update
711
#endif
712
713
/**
714
* \brief Compute SHA-256 output.
715
*
716
* The SHA-256 output for the concatenation of all bytes injected in the
717
* provided context since the last initialisation or reset call, is
718
* computed and written in the buffer pointed to by `out`. The context
719
* itself is not modified, so extra bytes may be injected afterwards
720
* to continue that computation.
721
*
722
* \param ctx pointer to the context structure.
723
* \param out destination buffer for the hash output.
724
*/
725
void br_sha256_out(const br_sha256_context *ctx, void *out);
726
727
#ifdef BR_DOXYGEN_IGNORE
728
/**
729
* \brief Save SHA-256 running state.
730
*
731
* The running state for SHA-256 (output of the last internal block
732
* processing) is written in the buffer pointed to by `out`. The
733
* number of bytes injected since the last initialisation or reset
734
* call is returned. The context is not modified.
735
*
736
* \param ctx pointer to the context structure.
737
* \param out destination buffer for the running state.
738
* \return the injected total byte length.
739
*/
740
uint64_t br_sha256_state(const br_sha256_context *ctx, void *out);
741
#else
742
#define br_sha256_state br_sha224_state
743
#endif
744
745
#ifdef BR_DOXYGEN_IGNORE
746
/**
747
* \brief Restore SHA-256 running state.
748
*
749
* The running state for SHA-256 is set to the provided values.
750
*
751
* \param ctx pointer to the context structure.
752
* \param stb source buffer for the running state.
753
* \param count the injected total byte length.
754
*/
755
void br_sha256_set_state(br_sha256_context *ctx,
756
const void *stb, uint64_t count);
757
#else
758
#define br_sha256_set_state br_sha224_set_state
759
#endif
760
761
/**
762
* \brief Symbolic identifier for SHA-384.
763
*/
764
#define br_sha384_ID 5
765
766
/**
767
* \brief SHA-384 output size (in bytes).
768
*/
769
#define br_sha384_SIZE 48
770
771
/**
772
* \brief Constant vtable for SHA-384.
773
*/
774
extern const br_hash_class br_sha384_vtable;
775
776
/**
777
* \brief SHA-384 context.
778
*
779
* First field is a pointer to the vtable; it is set by the initialisation
780
* function. Other fields are not supposed to be accessed by user code.
781
*/
782
typedef struct {
783
/**
784
* \brief Pointer to vtable for this context.
785
*/
786
const br_hash_class *vtable;
787
#ifndef BR_DOXYGEN_IGNORE
788
unsigned char buf[128];
789
uint64_t count;
790
uint64_t val[8];
791
#endif
792
} br_sha384_context;
793
794
/**
795
* \brief SHA-384 context initialisation.
796
*
797
* This function initialises or resets a context for a new SHA-384
798
* computation. It also sets the vtable pointer.
799
*
800
* \param ctx pointer to the context structure.
801
*/
802
void br_sha384_init(br_sha384_context *ctx);
803
804
/**
805
* \brief Inject some data bytes in a running SHA-384 computation.
806
*
807
* The provided context is updated with some data bytes. If the number
808
* of bytes (`len`) is zero, then the data pointer (`data`) is ignored
809
* and may be `NULL`, and this function does nothing.
810
*
811
* \param ctx pointer to the context structure.
812
* \param data pointer to the injected data.
813
* \param len injected data length (in bytes).
814
*/
815
void br_sha384_update(br_sha384_context *ctx, const void *data, size_t len);
816
817
/**
818
* \brief Compute SHA-384 output.
819
*
820
* The SHA-384 output for the concatenation of all bytes injected in the
821
* provided context since the last initialisation or reset call, is
822
* computed and written in the buffer pointed to by `out`. The context
823
* itself is not modified, so extra bytes may be injected afterwards
824
* to continue that computation.
825
*
826
* \param ctx pointer to the context structure.
827
* \param out destination buffer for the hash output.
828
*/
829
void br_sha384_out(const br_sha384_context *ctx, void *out);
830
831
/**
832
* \brief Save SHA-384 running state.
833
*
834
* The running state for SHA-384 (output of the last internal block
835
* processing) is written in the buffer pointed to by `out`. The
836
* number of bytes injected since the last initialisation or reset
837
* call is returned. The context is not modified.
838
*
839
* \param ctx pointer to the context structure.
840
* \param out destination buffer for the running state.
841
* \return the injected total byte length.
842
*/
843
uint64_t br_sha384_state(const br_sha384_context *ctx, void *out);
844
845
/**
846
* \brief Restore SHA-384 running state.
847
*
848
* The running state for SHA-384 is set to the provided values.
849
*
850
* \param ctx pointer to the context structure.
851
* \param stb source buffer for the running state.
852
* \param count the injected total byte length.
853
*/
854
void br_sha384_set_state(br_sha384_context *ctx,
855
const void *stb, uint64_t count);
856
857
/**
858
* \brief Symbolic identifier for SHA-512.
859
*/
860
#define br_sha512_ID 6
861
862
/**
863
* \brief SHA-512 output size (in bytes).
864
*/
865
#define br_sha512_SIZE 64
866
867
/**
868
* \brief Constant vtable for SHA-512.
869
*/
870
extern const br_hash_class br_sha512_vtable;
871
872
#ifdef BR_DOXYGEN_IGNORE
873
/**
874
* \brief SHA-512 context.
875
*
876
* First field is a pointer to the vtable; it is set by the initialisation
877
* function. Other fields are not supposed to be accessed by user code.
878
*/
879
typedef struct {
880
/**
881
* \brief Pointer to vtable for this context.
882
*/
883
const br_hash_class *vtable;
884
} br_sha512_context;
885
#else
886
typedef br_sha384_context br_sha512_context;
887
#endif
888
889
/**
890
* \brief SHA-512 context initialisation.
891
*
892
* This function initialises or resets a context for a new SHA-512
893
* computation. It also sets the vtable pointer.
894
*
895
* \param ctx pointer to the context structure.
896
*/
897
void br_sha512_init(br_sha512_context *ctx);
898
899
#ifdef BR_DOXYGEN_IGNORE
900
/**
901
* \brief Inject some data bytes in a running SHA-512 computation.
902
*
903
* The provided context is updated with some data bytes. If the number
904
* of bytes (`len`) is zero, then the data pointer (`data`) is ignored
905
* and may be `NULL`, and this function does nothing.
906
*
907
* \param ctx pointer to the context structure.
908
* \param data pointer to the injected data.
909
* \param len injected data length (in bytes).
910
*/
911
void br_sha512_update(br_sha512_context *ctx, const void *data, size_t len);
912
#else
913
#define br_sha512_update br_sha384_update
914
#endif
915
916
/**
917
* \brief Compute SHA-512 output.
918
*
919
* The SHA-512 output for the concatenation of all bytes injected in the
920
* provided context since the last initialisation or reset call, is
921
* computed and written in the buffer pointed to by `out`. The context
922
* itself is not modified, so extra bytes may be injected afterwards
923
* to continue that computation.
924
*
925
* \param ctx pointer to the context structure.
926
* \param out destination buffer for the hash output.
927
*/
928
void br_sha512_out(const br_sha512_context *ctx, void *out);
929
930
#ifdef BR_DOXYGEN_IGNORE
931
/**
932
* \brief Save SHA-512 running state.
933
*
934
* The running state for SHA-512 (output of the last internal block
935
* processing) is written in the buffer pointed to by `out`. The
936
* number of bytes injected since the last initialisation or reset
937
* call is returned. The context is not modified.
938
*
939
* \param ctx pointer to the context structure.
940
* \param out destination buffer for the running state.
941
* \return the injected total byte length.
942
*/
943
uint64_t br_sha512_state(const br_sha512_context *ctx, void *out);
944
#else
945
#define br_sha512_state br_sha384_state
946
#endif
947
948
#ifdef BR_DOXYGEN_IGNORE
949
/**
950
* \brief Restore SHA-512 running state.
951
*
952
* The running state for SHA-512 is set to the provided values.
953
*
954
* \param ctx pointer to the context structure.
955
* \param stb source buffer for the running state.
956
* \param count the injected total byte length.
957
*/
958
void br_sha512_set_state(br_sha512_context *ctx,
959
const void *stb, uint64_t count);
960
#else
961
#define br_sha512_set_state br_sha384_set_state
962
#endif
963
964
/*
965
* "md5sha1" is a special hash function that computes both MD5 and SHA-1
966
* on the same input, and produces a 36-byte output (MD5 and SHA-1
967
* concatenation, in that order). State size is also 36 bytes.
968
*/
969
970
/**
971
* \brief Symbolic identifier for MD5+SHA-1.
972
*
973
* MD5+SHA-1 is the concatenation of MD5 and SHA-1, computed over the
974
* same input. It is not one of the functions identified in TLS, so
975
* we give it a symbolic identifier of value 0.
976
*/
977
#define br_md5sha1_ID 0
978
979
/**
980
* \brief MD5+SHA-1 output size (in bytes).
981
*/
982
#define br_md5sha1_SIZE 36
983
984
/**
985
* \brief Constant vtable for MD5+SHA-1.
986
*/
987
extern const br_hash_class br_md5sha1_vtable;
988
989
/**
990
* \brief MD5+SHA-1 context.
991
*
992
* First field is a pointer to the vtable; it is set by the initialisation
993
* function. Other fields are not supposed to be accessed by user code.
994
*/
995
typedef struct {
996
/**
997
* \brief Pointer to vtable for this context.
998
*/
999
const br_hash_class *vtable;
1000
#ifndef BR_DOXYGEN_IGNORE
1001
unsigned char buf[64];
1002
uint64_t count;
1003
uint32_t val_md5[4];
1004
uint32_t val_sha1[5];
1005
#endif
1006
} br_md5sha1_context;
1007
1008
/**
1009
* \brief MD5+SHA-1 context initialisation.
1010
*
1011
* This function initialises or resets a context for a new SHA-512
1012
* computation. It also sets the vtable pointer.
1013
*
1014
* \param ctx pointer to the context structure.
1015
*/
1016
void br_md5sha1_init(br_md5sha1_context *ctx);
1017
1018
/**
1019
* \brief Inject some data bytes in a running MD5+SHA-1 computation.
1020
*
1021
* The provided context is updated with some data bytes. If the number
1022
* of bytes (`len`) is zero, then the data pointer (`data`) is ignored
1023
* and may be `NULL`, and this function does nothing.
1024
*
1025
* \param ctx pointer to the context structure.
1026
* \param data pointer to the injected data.
1027
* \param len injected data length (in bytes).
1028
*/
1029
void br_md5sha1_update(br_md5sha1_context *ctx, const void *data, size_t len);
1030
1031
/**
1032
* \brief Compute MD5+SHA-1 output.
1033
*
1034
* The MD5+SHA-1 output for the concatenation of all bytes injected in the
1035
* provided context since the last initialisation or reset call, is
1036
* computed and written in the buffer pointed to by `out`. The context
1037
* itself is not modified, so extra bytes may be injected afterwards
1038
* to continue that computation.
1039
*
1040
* \param ctx pointer to the context structure.
1041
* \param out destination buffer for the hash output.
1042
*/
1043
void br_md5sha1_out(const br_md5sha1_context *ctx, void *out);
1044
1045
/**
1046
* \brief Save MD5+SHA-1 running state.
1047
*
1048
* The running state for MD5+SHA-1 (output of the last internal block
1049
* processing) is written in the buffer pointed to by `out`. The
1050
* number of bytes injected since the last initialisation or reset
1051
* call is returned. The context is not modified.
1052
*
1053
* \param ctx pointer to the context structure.
1054
* \param out destination buffer for the running state.
1055
* \return the injected total byte length.
1056
*/
1057
uint64_t br_md5sha1_state(const br_md5sha1_context *ctx, void *out);
1058
1059
/**
1060
* \brief Restore MD5+SHA-1 running state.
1061
*
1062
* The running state for MD5+SHA-1 is set to the provided values.
1063
*
1064
* \param ctx pointer to the context structure.
1065
* \param stb source buffer for the running state.
1066
* \param count the injected total byte length.
1067
*/
1068
void br_md5sha1_set_state(br_md5sha1_context *ctx,
1069
const void *stb, uint64_t count);
1070
1071
/**
1072
* \brief Aggregate context for configurable hash function support.
1073
*
1074
* The `br_hash_compat_context` type is a type which is large enough to
1075
* serve as context for all standard hash functions defined above.
1076
*/
1077
typedef union {
1078
const br_hash_class *vtable;
1079
br_md5_context md5;
1080
br_sha1_context sha1;
1081
br_sha224_context sha224;
1082
br_sha256_context sha256;
1083
br_sha384_context sha384;
1084
br_sha512_context sha512;
1085
br_md5sha1_context md5sha1;
1086
} br_hash_compat_context;
1087
1088
/*
1089
* The multi-hasher is a construct that handles hashing of the same input
1090
* data with several hash functions, with a single shared input buffer.
1091
* It can handle MD5, SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512
1092
* simultaneously, though which functions are activated depends on
1093
* the set implementation pointers.
1094
*/
1095
1096
/**
1097
* \brief Multi-hasher context structure.
1098
*
1099
* The multi-hasher runs up to six hash functions in the standard TLS list
1100
* (MD5, SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512) in parallel, over
1101
* the same input.
1102
*
1103
* The multi-hasher does _not_ follow the OOP structure with a vtable.
1104
* Instead, it is configured with the vtables of the hash functions it
1105
* should run. Structure fields are not supposed to be accessed directly.
1106
*/
1107
typedef struct {
1108
#ifndef BR_DOXYGEN_IGNORE
1109
unsigned char buf[128];
1110
uint64_t count;
1111
uint32_t val_32[25];
1112
uint64_t val_64[16];
1113
const br_hash_class *impl[6];
1114
#endif
1115
} br_multihash_context;
1116
1117
/**
1118
* \brief Clear a multi-hasher context.
1119
*
1120
* This should always be called once on a given context, _before_ setting
1121
* the implementation pointers.
1122
*
1123
* \param ctx the multi-hasher context.
1124
*/
1125
void br_multihash_zero(br_multihash_context *ctx);
1126
1127
/**
1128
* \brief Set a hash function implementation.
1129
*
1130
* Implementations shall be set _after_ clearing the context (with
1131
* `br_multihash_zero()`) but _before_ initialising the computation
1132
* (with `br_multihash_init()`). The hash function implementation
1133
* MUST be one of the standard hash functions (MD5, SHA-1, SHA-224,
1134
* SHA-256, SHA-384 or SHA-512); it may also be `NULL` to remove
1135
* an implementation from the multi-hasher.
1136
*
1137
* \param ctx the multi-hasher context.
1138
* \param id the hash function symbolic identifier.
1139
* \param impl the hash function vtable, or `NULL`.
1140
*/
1141
static inline void
1142
br_multihash_setimpl(br_multihash_context *ctx,
1143
int id, const br_hash_class *impl)
1144
{
1145
/*
1146
* This code relies on hash functions ID being values 1 to 6,
1147
* in the MD5 to SHA-512 order.
1148
*/
1149
ctx->impl[id - 1] = impl;
1150
}
1151
1152
/**
1153
* \brief Get a hash function implementation.
1154
*
1155
* This function returns the currently configured vtable for a given
1156
* hash function (by symbolic ID). If no such function was configured in
1157
* the provided multi-hasher context, then this function returns `NULL`.
1158
*
1159
* \param ctx the multi-hasher context.
1160
* \param id the hash function symbolic identifier.
1161
* \return the hash function vtable, or `NULL`.
1162
*/
1163
static inline const br_hash_class *
1164
br_multihash_getimpl(const br_multihash_context *ctx, int id)
1165
{
1166
return ctx->impl[id - 1];
1167
}
1168
1169
/**
1170
* \brief Reset a multi-hasher context.
1171
*
1172
* This function prepares the context for a new hashing computation,
1173
* for all implementations configured at that point.
1174
*
1175
* \param ctx the multi-hasher context.
1176
*/
1177
void br_multihash_init(br_multihash_context *ctx);
1178
1179
/**
1180
* \brief Inject some data bytes in a running multi-hashing computation.
1181
*
1182
* The provided context is updated with some data bytes. If the number
1183
* of bytes (`len`) is zero, then the data pointer (`data`) is ignored
1184
* and may be `NULL`, and this function does nothing.
1185
*
1186
* \param ctx pointer to the context structure.
1187
* \param data pointer to the injected data.
1188
* \param len injected data length (in bytes).
1189
*/
1190
void br_multihash_update(br_multihash_context *ctx,
1191
const void *data, size_t len);
1192
1193
/**
1194
* \brief Compute a hash output from a multi-hasher.
1195
*
1196
* The hash output for the concatenation of all bytes injected in the
1197
* provided context since the last initialisation or reset call, is
1198
* computed and written in the buffer pointed to by `dst`. The hash
1199
* function to use is identified by `id` and must be one of the standard
1200
* hash functions. If that hash function was indeed configured in the
1201
* multi-hasher context, the corresponding hash value is written in
1202
* `dst` and its length (in bytes) is returned. If the hash function
1203
* was _not_ configured, then nothing is written in `dst` and 0 is
1204
* returned.
1205
*
1206
* The context itself is not modified, so extra bytes may be injected
1207
* afterwards to continue the hash computations.
1208
*
1209
* \param ctx pointer to the context structure.
1210
* \param id the hash function symbolic identifier.
1211
* \param dst destination buffer for the hash output.
1212
* \return the hash output length (in bytes), or 0.
1213
*/
1214
size_t br_multihash_out(const br_multihash_context *ctx, int id, void *dst);
1215
1216
/**
1217
* \brief Type for a GHASH implementation.
1218
*
1219
* GHASH is a sort of keyed hash meant to be used to implement GCM in
1220
* combination with a block cipher (with 16-byte blocks).
1221
*
1222
* The `y` array has length 16 bytes and is used for input and output; in
1223
* a complete GHASH run, it starts with an all-zero value. `h` is a 16-byte
1224
* value that serves as key (it is derived from the encryption key in GCM,
1225
* using the block cipher). The data length (`len`) is expressed in bytes.
1226
* The `y` array is updated.
1227
*
1228
* If the data length is not a multiple of 16, then the data is implicitly
1229
* padded with zeros up to the next multiple of 16. Thus, when using GHASH
1230
* in GCM, this method may be called twice, for the associated data and
1231
* for the ciphertext, respectively; the zero-padding implements exactly
1232
* the GCM rules.
1233
*
1234
* \param y the array to update.
1235
* \param h the GHASH key.
1236
* \param data the input data (may be `NULL` if `len` is zero).
1237
* \param len the input data length (in bytes).
1238
*/
1239
typedef void (*br_ghash)(void *y, const void *h, const void *data, size_t len);
1240
1241
/**
1242
* \brief GHASH implementation using multiplications (mixed 32-bit).
1243
*
1244
* This implementation uses multiplications of 32-bit values, with a
1245
* 64-bit result. It is constant-time (if multiplications are
1246
* constant-time).
1247
*
1248
* \param y the array to update.
1249
* \param h the GHASH key.
1250
* \param data the input data (may be `NULL` if `len` is zero).
1251
* \param len the input data length (in bytes).
1252
*/
1253
void br_ghash_ctmul(void *y, const void *h, const void *data, size_t len);
1254
1255
/**
1256
* \brief GHASH implementation using multiplications (strict 32-bit).
1257
*
1258
* This implementation uses multiplications of 32-bit values, with a
1259
* 32-bit result. It is usually somewhat slower than `br_ghash_ctmul()`,
1260
* but it is expected to be faster on architectures for which the
1261
* 32-bit multiplication opcode does not yield the upper 32 bits of the
1262
* product. It is constant-time (if multiplications are constant-time).
1263
*
1264
* \param y the array to update.
1265
* \param h the GHASH key.
1266
* \param data the input data (may be `NULL` if `len` is zero).
1267
* \param len the input data length (in bytes).
1268
*/
1269
void br_ghash_ctmul32(void *y, const void *h, const void *data, size_t len);
1270
1271
/**
1272
* \brief GHASH implementation using multiplications (64-bit).
1273
*
1274
* This implementation uses multiplications of 64-bit values, with a
1275
* 64-bit result. It is constant-time (if multiplications are
1276
* constant-time). It is substantially faster than `br_ghash_ctmul()`
1277
* and `br_ghash_ctmul32()` on most 64-bit architectures.
1278
*
1279
* \param y the array to update.
1280
* \param h the GHASH key.
1281
* \param data the input data (may be `NULL` if `len` is zero).
1282
* \param len the input data length (in bytes).
1283
*/
1284
void br_ghash_ctmul64(void *y, const void *h, const void *data, size_t len);
1285
1286
/**
1287
* \brief GHASH implementation using the `pclmulqdq` opcode (part of the
1288
* AES-NI instructions).
1289
*
1290
* This implementation is available only on x86 platforms where the
1291
* compiler supports the relevant intrinsic functions. Even if the
1292
* compiler supports these functions, the local CPU might not support
1293
* the `pclmulqdq` opcode, meaning that a call will fail with an
1294
* illegal instruction exception. To safely obtain a pointer to this
1295
* function when supported (or 0 otherwise), use `br_ghash_pclmul_get()`.
1296
*
1297
* \param y the array to update.
1298
* \param h the GHASH key.
1299
* \param data the input data (may be `NULL` if `len` is zero).
1300
* \param len the input data length (in bytes).
1301
*/
1302
void br_ghash_pclmul(void *y, const void *h, const void *data, size_t len);
1303
1304
/**
1305
* \brief Obtain the `pclmul` GHASH implementation, if available.
1306
*
1307
* If the `pclmul` implementation was compiled in the library (depending
1308
* on the compiler abilities) _and_ the local CPU appears to support the
1309
* opcode, then this function will return a pointer to the
1310
* `br_ghash_pclmul()` function. Otherwise, it will return `0`.
1311
*
1312
* \return the `pclmul` GHASH implementation, or `0`.
1313
*/
1314
br_ghash br_ghash_pclmul_get(void);
1315
1316
/**
1317
* \brief GHASH implementation using the POWER8 opcodes.
1318
*
1319
* This implementation is available only on POWER8 platforms (and later).
1320
* To safely obtain a pointer to this function when supported (or 0
1321
* otherwise), use `br_ghash_pwr8_get()`.
1322
*
1323
* \param y the array to update.
1324
* \param h the GHASH key.
1325
* \param data the input data (may be `NULL` if `len` is zero).
1326
* \param len the input data length (in bytes).
1327
*/
1328
void br_ghash_pwr8(void *y, const void *h, const void *data, size_t len);
1329
1330
/**
1331
* \brief Obtain the `pwr8` GHASH implementation, if available.
1332
*
1333
* If the `pwr8` implementation was compiled in the library (depending
1334
* on the compiler abilities) _and_ the local CPU appears to support the
1335
* opcode, then this function will return a pointer to the
1336
* `br_ghash_pwr8()` function. Otherwise, it will return `0`.
1337
*
1338
* \return the `pwr8` GHASH implementation, or `0`.
1339
*/
1340
br_ghash br_ghash_pwr8_get(void);
1341
1342
#ifdef __cplusplus
1343
}
1344
#endif
1345
1346
#endif
1347
1348