Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/bearssl/inc/bearssl_x509.h
39586 views
1
/*
2
* Copyright (c) 2016 Thomas Pornin <[email protected]>
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining
5
* a copy of this software and associated documentation files (the
6
* "Software"), to deal in the Software without restriction, including
7
* without limitation the rights to use, copy, modify, merge, publish,
8
* distribute, sublicense, and/or sell copies of the Software, and to
9
* permit persons to whom the Software is furnished to do so, subject to
10
* the following conditions:
11
*
12
* The above copyright notice and this permission notice shall be
13
* included in all copies or substantial portions of the Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
* SOFTWARE.
23
*/
24
25
#ifndef BR_BEARSSL_X509_H__
26
#define BR_BEARSSL_X509_H__
27
28
#include <stddef.h>
29
#include <stdint.h>
30
31
#include "bearssl_ec.h"
32
#include "bearssl_hash.h"
33
#include "bearssl_rsa.h"
34
35
#ifdef __cplusplus
36
extern "C" {
37
#endif
38
39
/** \file bearssl_x509.h
40
*
41
* # X.509 Certificate Chain Processing
42
*
43
* An X.509 processing engine receives an X.509 chain, chunk by chunk,
44
* as received from a SSL/TLS client or server (the client receives the
45
* server's certificate chain, and the server receives the client's
46
* certificate chain if it requested a client certificate). The chain
47
* is thus injected in the engine in SSL order (end-entity first).
48
*
49
* The engine's job is to return the public key to use for SSL/TLS.
50
* How exactly that key is obtained and verified is entirely up to the
51
* engine.
52
*
53
* **The "known key" engine** returns a public key which is already known
54
* from out-of-band information (e.g. the client _remembers_ the key from
55
* a previous connection, as in the usual SSH model). This is the simplest
56
* engine since it simply ignores the chain, thereby avoiding the need
57
* for any decoding logic.
58
*
59
* **The "minimal" engine** implements minimal X.509 decoding and chain
60
* validation:
61
*
62
* - The provided chain should validate "as is". There is no attempt
63
* at reordering, skipping or downloading extra certificates.
64
*
65
* - X.509 v1, v2 and v3 certificates are supported.
66
*
67
* - Trust anchors are a DN and a public key. Each anchor is either a
68
* "CA" anchor, or a non-CA.
69
*
70
* - If the end-entity certificate matches a non-CA anchor (subject DN
71
* is equal to the non-CA name, and public key is also identical to
72
* the anchor key), then this is a _direct trust_ case and the
73
* remaining certificates are ignored.
74
*
75
* - Unless direct trust is applied, the chain must be verifiable up to
76
* a certificate whose issuer DN matches the DN from a "CA" trust anchor,
77
* and whose signature is verifiable against that anchor's public key.
78
* Subsequent certificates in the chain are ignored.
79
*
80
* - The engine verifies subject/issuer DN matching, and enforces
81
* processing of Basic Constraints and Key Usage extensions. The
82
* Authority Key Identifier, Subject Key Identifier, Issuer Alt Name,
83
* Subject Directory Attribute, CRL Distribution Points, Freshest CRL,
84
* Authority Info Access and Subject Info Access extensions are
85
* ignored. The Subject Alt Name is decoded for the end-entity
86
* certificate under some conditions (see below). Other extensions
87
* are ignored if non-critical, or imply chain rejection if critical.
88
*
89
* - The Subject Alt Name extension is parsed for names of type `dNSName`
90
* when decoding the end-entity certificate, and only if there is a
91
* server name to match. If there is no SAN extension, then the
92
* Common Name from the subjectDN is used. That name matching is
93
* case-insensitive and honours a single starting wildcard (i.e. if
94
* the name in the certificate starts with "`*.`" then this matches
95
* any word as first element). Note: this name matching is performed
96
* also in the "direct trust" model.
97
*
98
* - DN matching is byte-to-byte equality (a future version might
99
* include some limited processing for case-insensitive matching and
100
* whitespace normalisation).
101
*
102
* - Successful validation produces a public key type but also a set
103
* of allowed usages (`BR_KEYTYPE_KEYX` and/or `BR_KEYTYPE_SIGN`).
104
* The caller is responsible for checking that the key type and
105
* usages are compatible with the expected values (e.g. with the
106
* selected cipher suite, when the client validates the server's
107
* certificate).
108
*
109
* **Important caveats:**
110
*
111
* - The "minimal" engine does not check revocation status. The relevant
112
* extensions are ignored, and CRL or OCSP responses are not gathered
113
* or checked.
114
*
115
* - The "minimal" engine does not currently support Name Constraints
116
* (some basic functionality to handle sub-domains may be added in a
117
* later version).
118
*
119
* - The decoder is not "validating" in the sense that it won't reject
120
* some certificates with invalid field values when these fields are
121
* not actually processed.
122
*/
123
124
/*
125
* X.509 error codes are in the 32..63 range.
126
*/
127
128
/** \brief X.509 status: validation was successful; this is not actually
129
an error. */
130
#define BR_ERR_X509_OK 32
131
132
/** \brief X.509 status: invalid value in an ASN.1 structure. */
133
#define BR_ERR_X509_INVALID_VALUE 33
134
135
/** \brief X.509 status: truncated certificate. */
136
#define BR_ERR_X509_TRUNCATED 34
137
138
/** \brief X.509 status: empty certificate chain (no certificate at all). */
139
#define BR_ERR_X509_EMPTY_CHAIN 35
140
141
/** \brief X.509 status: decoding error: inner element extends beyond
142
outer element size. */
143
#define BR_ERR_X509_INNER_TRUNC 36
144
145
/** \brief X.509 status: decoding error: unsupported tag class (application
146
or private). */
147
#define BR_ERR_X509_BAD_TAG_CLASS 37
148
149
/** \brief X.509 status: decoding error: unsupported tag value. */
150
#define BR_ERR_X509_BAD_TAG_VALUE 38
151
152
/** \brief X.509 status: decoding error: indefinite length. */
153
#define BR_ERR_X509_INDEFINITE_LENGTH 39
154
155
/** \brief X.509 status: decoding error: extraneous element. */
156
#define BR_ERR_X509_EXTRA_ELEMENT 40
157
158
/** \brief X.509 status: decoding error: unexpected element. */
159
#define BR_ERR_X509_UNEXPECTED 41
160
161
/** \brief X.509 status: decoding error: expected constructed element, but
162
is primitive. */
163
#define BR_ERR_X509_NOT_CONSTRUCTED 42
164
165
/** \brief X.509 status: decoding error: expected primitive element, but
166
is constructed. */
167
#define BR_ERR_X509_NOT_PRIMITIVE 43
168
169
/** \brief X.509 status: decoding error: BIT STRING length is not multiple
170
of 8. */
171
#define BR_ERR_X509_PARTIAL_BYTE 44
172
173
/** \brief X.509 status: decoding error: BOOLEAN value has invalid length. */
174
#define BR_ERR_X509_BAD_BOOLEAN 45
175
176
/** \brief X.509 status: decoding error: value is off-limits. */
177
#define BR_ERR_X509_OVERFLOW 46
178
179
/** \brief X.509 status: invalid distinguished name. */
180
#define BR_ERR_X509_BAD_DN 47
181
182
/** \brief X.509 status: invalid date/time representation. */
183
#define BR_ERR_X509_BAD_TIME 48
184
185
/** \brief X.509 status: certificate contains unsupported features that
186
cannot be ignored. */
187
#define BR_ERR_X509_UNSUPPORTED 49
188
189
/** \brief X.509 status: key or signature size exceeds internal limits. */
190
#define BR_ERR_X509_LIMIT_EXCEEDED 50
191
192
/** \brief X.509 status: key type does not match that which was expected. */
193
#define BR_ERR_X509_WRONG_KEY_TYPE 51
194
195
/** \brief X.509 status: signature is invalid. */
196
#define BR_ERR_X509_BAD_SIGNATURE 52
197
198
/** \brief X.509 status: validation time is unknown. */
199
#define BR_ERR_X509_TIME_UNKNOWN 53
200
201
/** \brief X.509 status: certificate is expired or not yet valid. */
202
#define BR_ERR_X509_EXPIRED 54
203
204
/** \brief X.509 status: issuer/subject DN mismatch in the chain. */
205
#define BR_ERR_X509_DN_MISMATCH 55
206
207
/** \brief X.509 status: expected server name was not found in the chain. */
208
#define BR_ERR_X509_BAD_SERVER_NAME 56
209
210
/** \brief X.509 status: unknown critical extension in certificate. */
211
#define BR_ERR_X509_CRITICAL_EXTENSION 57
212
213
/** \brief X.509 status: not a CA, or path length constraint violation */
214
#define BR_ERR_X509_NOT_CA 58
215
216
/** \brief X.509 status: Key Usage extension prohibits intended usage. */
217
#define BR_ERR_X509_FORBIDDEN_KEY_USAGE 59
218
219
/** \brief X.509 status: public key found in certificate is too small. */
220
#define BR_ERR_X509_WEAK_PUBLIC_KEY 60
221
222
/** \brief X.509 status: chain could not be linked to a trust anchor. */
223
#define BR_ERR_X509_NOT_TRUSTED 62
224
225
/**
226
* \brief Aggregate structure for public keys.
227
*/
228
typedef struct {
229
/** \brief Key type: `BR_KEYTYPE_RSA` or `BR_KEYTYPE_EC` */
230
unsigned char key_type;
231
/** \brief Actual public key. */
232
union {
233
/** \brief RSA public key. */
234
br_rsa_public_key rsa;
235
/** \brief EC public key. */
236
br_ec_public_key ec;
237
} key;
238
} br_x509_pkey;
239
240
/**
241
* \brief Distinguished Name (X.500) structure.
242
*
243
* The DN is DER-encoded.
244
*/
245
typedef struct {
246
/** \brief Encoded DN data. */
247
unsigned char *data;
248
/** \brief Encoded DN length (in bytes). */
249
size_t len;
250
} br_x500_name;
251
252
/**
253
* \brief Trust anchor structure.
254
*/
255
typedef struct {
256
/** \brief Encoded DN (X.500 name). */
257
br_x500_name dn;
258
/** \brief Anchor flags (e.g. `BR_X509_TA_CA`). */
259
unsigned flags;
260
/** \brief Anchor public key. */
261
br_x509_pkey pkey;
262
} br_x509_trust_anchor;
263
264
/**
265
* \brief Trust anchor flag: CA.
266
*
267
* A "CA" anchor is deemed fit to verify signatures on certificates.
268
* A "non-CA" anchor is accepted only for direct trust (server's
269
* certificate name and key match the anchor).
270
*/
271
#define BR_X509_TA_CA 0x0001
272
273
/*
274
* Key type: combination of a basic key type (low 4 bits) and some
275
* optional flags.
276
*
277
* For a public key, the basic key type only is set.
278
*
279
* For an expected key type, the flags indicate the intended purpose(s)
280
* for the key; the basic key type may be set to 0 to indicate that any
281
* key type compatible with the indicated purpose is acceptable.
282
*/
283
/** \brief Key type: algorithm is RSA. */
284
#define BR_KEYTYPE_RSA 1
285
/** \brief Key type: algorithm is EC. */
286
#define BR_KEYTYPE_EC 2
287
288
/**
289
* \brief Key type: usage is "key exchange".
290
*
291
* This value is combined (with bitwise OR) with the algorithm
292
* (`BR_KEYTYPE_RSA` or `BR_KEYTYPE_EC`) when informing the X.509
293
* validation engine that it should find a public key of that type,
294
* fit for key exchanges (e.g. `TLS_RSA_*` and `TLS_ECDH_*` cipher
295
* suites).
296
*/
297
#define BR_KEYTYPE_KEYX 0x10
298
299
/**
300
* \brief Key type: usage is "signature".
301
*
302
* This value is combined (with bitwise OR) with the algorithm
303
* (`BR_KEYTYPE_RSA` or `BR_KEYTYPE_EC`) when informing the X.509
304
* validation engine that it should find a public key of that type,
305
* fit for signatures (e.g. `TLS_ECDHE_*` cipher suites).
306
*/
307
#define BR_KEYTYPE_SIGN 0x20
308
309
/*
310
* start_chain Called when a new chain is started. If 'server_name'
311
* is not NULL and non-empty, then it is a name that
312
* should be looked for in the EE certificate (in the
313
* SAN extension as dNSName, or in the subjectDN's CN
314
* if there is no SAN extension).
315
* The caller ensures that the provided 'server_name'
316
* pointer remains valid throughout validation.
317
*
318
* start_cert Begins a new certificate in the chain. The provided
319
* length is in bytes; this is the total certificate length.
320
*
321
* append Get some additional bytes for the current certificate.
322
*
323
* end_cert Ends the current certificate.
324
*
325
* end_chain Called at the end of the chain. Returned value is
326
* 0 on success, or a non-zero error code.
327
*
328
* get_pkey Returns the EE certificate public key.
329
*
330
* For a complete chain, start_chain() and end_chain() are always
331
* called. For each certificate, start_cert(), some append() calls, then
332
* end_cert() are called, in that order. There may be no append() call
333
* at all if the certificate is empty (which is not valid but may happen
334
* if the peer sends exactly that).
335
*
336
* get_pkey() shall return a pointer to a structure that is valid as
337
* long as a new chain is not started. This may be a sub-structure
338
* within the context for the engine. This function MAY return a valid
339
* pointer to a public key even in some cases of validation failure,
340
* depending on the validation engine.
341
*/
342
343
/**
344
* \brief Class type for an X.509 engine.
345
*
346
* A certificate chain validation uses a caller-allocated context, which
347
* contains the running state for that validation. Methods are called
348
* in due order:
349
*
350
* - `start_chain()` is called at the start of the validation.
351
* - Certificates are processed one by one, in SSL order (end-entity
352
* comes first). For each certificate, the following methods are
353
* called:
354
*
355
* - `start_cert()` at the beginning of the certificate.
356
* - `append()` is called zero, one or more times, to provide
357
* the certificate (possibly in chunks).
358
* - `end_cert()` at the end of the certificate.
359
*
360
* - `end_chain()` is called when the last certificate in the chain
361
* was processed.
362
* - `get_pkey()` is called after chain processing, if the chain
363
* validation was successful.
364
*
365
* A context structure may be reused; the `start_chain()` method shall
366
* ensure (re)initialisation.
367
*/
368
typedef struct br_x509_class_ br_x509_class;
369
struct br_x509_class_ {
370
/**
371
* \brief X.509 context size, in bytes.
372
*/
373
size_t context_size;
374
375
/**
376
* \brief Start a new chain.
377
*
378
* This method shall set the vtable (first field) of the context
379
* structure.
380
*
381
* The `server_name`, if not `NULL`, will be considered as a
382
* fully qualified domain name, to be matched against the `dNSName`
383
* elements of the end-entity certificate's SAN extension (if there
384
* is no SAN, then the Common Name from the subjectDN will be used).
385
* If `server_name` is `NULL` then no such matching is performed.
386
*
387
* \param ctx validation context.
388
* \param server_name server name to match (or `NULL`).
389
*/
390
void (*start_chain)(const br_x509_class **ctx,
391
const char *server_name);
392
393
/**
394
* \brief Start a new certificate.
395
*
396
* \param ctx validation context.
397
* \param length new certificate length (in bytes).
398
*/
399
void (*start_cert)(const br_x509_class **ctx, uint32_t length);
400
401
/**
402
* \brief Receive some bytes for the current certificate.
403
*
404
* This function may be called several times in succession for
405
* a given certificate. The caller guarantees that for each
406
* call, `len` is not zero, and the sum of all chunk lengths
407
* for a certificate matches the total certificate length which
408
* was provided in the previous `start_cert()` call.
409
*
410
* If the new certificate is empty (no byte at all) then this
411
* function won't be called at all.
412
*
413
* \param ctx validation context.
414
* \param buf certificate data chunk.
415
* \param len certificate data chunk length (in bytes).
416
*/
417
void (*append)(const br_x509_class **ctx,
418
const unsigned char *buf, size_t len);
419
420
/**
421
* \brief Finish the current certificate.
422
*
423
* This function is called when the end of the current certificate
424
* is reached.
425
*
426
* \param ctx validation context.
427
*/
428
void (*end_cert)(const br_x509_class **ctx);
429
430
/**
431
* \brief Finish the chain.
432
*
433
* This function is called at the end of the chain. It shall
434
* return either 0 if the validation was successful, or a
435
* non-zero error code. The `BR_ERR_X509_*` constants are
436
* error codes, though other values may be possible.
437
*
438
* \param ctx validation context.
439
* \return 0 on success, or a non-zero error code.
440
*/
441
unsigned (*end_chain)(const br_x509_class **ctx);
442
443
/**
444
* \brief Get the resulting end-entity public key.
445
*
446
* The decoded public key is returned. The returned pointer
447
* may be valid only as long as the context structure is
448
* unmodified, i.e. it may cease to be valid if the context
449
* is released or reused.
450
*
451
* This function _may_ return `NULL` if the validation failed.
452
* However, returning a public key does not mean that the
453
* validation was wholly successful; some engines may return
454
* a decoded public key even if the chain did not end on a
455
* trusted anchor.
456
*
457
* If validation succeeded and `usage` is not `NULL`, then
458
* `*usage` is filled with a combination of `BR_KEYTYPE_SIGN`
459
* and/or `BR_KEYTYPE_KEYX` that specifies the validated key
460
* usage types. It is the caller's responsibility to check
461
* that value against the intended use of the public key.
462
*
463
* \param ctx validation context.
464
* \return the end-entity public key, or `NULL`.
465
*/
466
const br_x509_pkey *(*get_pkey)(
467
const br_x509_class *const *ctx, unsigned *usages);
468
};
469
470
/**
471
* \brief The "known key" X.509 engine structure.
472
*
473
* The structure contents are opaque (they shall not be accessed directly),
474
* except for the first field (the vtable).
475
*
476
* The "known key" engine returns an externally configured public key,
477
* and totally ignores the certificate contents.
478
*/
479
typedef struct {
480
/** \brief Reference to the context vtable. */
481
const br_x509_class *vtable;
482
#ifndef BR_DOXYGEN_IGNORE
483
br_x509_pkey pkey;
484
unsigned usages;
485
#endif
486
} br_x509_knownkey_context;
487
488
/**
489
* \brief Class instance for the "known key" X.509 engine.
490
*/
491
extern const br_x509_class br_x509_knownkey_vtable;
492
493
/**
494
* \brief Initialize a "known key" X.509 engine with a known RSA public key.
495
*
496
* The `usages` parameter indicates the allowed key usages for that key
497
* (`BR_KEYTYPE_KEYX` and/or `BR_KEYTYPE_SIGN`).
498
*
499
* The provided pointers are linked in, not copied, so they must remain
500
* valid while the public key may be in usage.
501
*
502
* \param ctx context to initialise.
503
* \param pk known public key.
504
* \param usages allowed key usages.
505
*/
506
void br_x509_knownkey_init_rsa(br_x509_knownkey_context *ctx,
507
const br_rsa_public_key *pk, unsigned usages);
508
509
/**
510
* \brief Initialize a "known key" X.509 engine with a known EC public key.
511
*
512
* The `usages` parameter indicates the allowed key usages for that key
513
* (`BR_KEYTYPE_KEYX` and/or `BR_KEYTYPE_SIGN`).
514
*
515
* The provided pointers are linked in, not copied, so they must remain
516
* valid while the public key may be in usage.
517
*
518
* \param ctx context to initialise.
519
* \param pk known public key.
520
* \param usages allowed key usages.
521
*/
522
void br_x509_knownkey_init_ec(br_x509_knownkey_context *ctx,
523
const br_ec_public_key *pk, unsigned usages);
524
525
#ifndef BR_DOXYGEN_IGNORE
526
/*
527
* The minimal X.509 engine has some state buffers which must be large
528
* enough to simultaneously accommodate:
529
* -- the public key extracted from the current certificate;
530
* -- the signature on the current certificate or on the previous
531
* certificate;
532
* -- the public key extracted from the EE certificate.
533
*
534
* We store public key elements in their raw unsigned big-endian
535
* encoding. We want to support up to RSA-4096 with a short (up to 64
536
* bits) public exponent, thus a buffer for a public key must have
537
* length at least 520 bytes. Similarly, a RSA-4096 signature has length
538
* 512 bytes.
539
*
540
* Though RSA public exponents can formally be as large as the modulus
541
* (mathematically, even larger exponents would work, but PKCS#1 forbids
542
* them), exponents that do not fit on 32 bits are extremely rare,
543
* notably because some widespread implementations (e.g. Microsoft's
544
* CryptoAPI) don't support them. Moreover, large public exponent do not
545
* seem to imply any tangible security benefit, and they increase the
546
* cost of public key operations. The X.509 "minimal" engine will tolerate
547
* public exponents of arbitrary size as long as the modulus and the
548
* exponent can fit together in the dedicated buffer.
549
*
550
* EC public keys are shorter than RSA public keys; even with curve
551
* NIST P-521 (the largest curve we care to support), a public key is
552
* encoded over 133 bytes only.
553
*/
554
#define BR_X509_BUFSIZE_KEY 520
555
#define BR_X509_BUFSIZE_SIG 512
556
#endif
557
558
/**
559
* \brief Type for receiving a name element.
560
*
561
* An array of such structures can be provided to the X.509 decoding
562
* engines. If the specified elements are found in the certificate
563
* subject DN or the SAN extension, then the name contents are copied
564
* as zero-terminated strings into the buffer.
565
*
566
* The decoder converts TeletexString and BMPString to UTF8String, and
567
* ensures that the resulting string is zero-terminated. If the string
568
* does not fit in the provided buffer, then the copy is aborted and an
569
* error is reported.
570
*/
571
typedef struct {
572
/**
573
* \brief Element OID.
574
*
575
* For X.500 name elements (to be extracted from the subject DN),
576
* this is the encoded OID for the requested name element; the
577
* first byte shall contain the length of the DER-encoded OID
578
* value, followed by the OID value (for instance, OID 2.5.4.3,
579
* for id-at-commonName, will be `03 55 04 03`). This is
580
* equivalent to full DER encoding with the length but without
581
* the tag.
582
*
583
* For SAN name elements, the first byte (`oid[0]`) has value 0,
584
* followed by another byte that matches the expected GeneralName
585
* tag. Allowed second byte values are then:
586
*
587
* - 1: `rfc822Name`
588
*
589
* - 2: `dNSName`
590
*
591
* - 6: `uniformResourceIdentifier`
592
*
593
* - 0: `otherName`
594
*
595
* If first and second byte are 0, then this is a SAN element of
596
* type `otherName`; the `oid[]` array should then contain, right
597
* after the two bytes of value 0, an encoded OID (with the same
598
* conventions as for X.500 name elements). If a match is found
599
* for that OID, then the corresponding name element will be
600
* extracted, as long as it is a supported string type.
601
*/
602
const unsigned char *oid;
603
604
/**
605
* \brief Destination buffer.
606
*/
607
char *buf;
608
609
/**
610
* \brief Length (in bytes) of the destination buffer.
611
*
612
* The buffer MUST NOT be smaller than 1 byte.
613
*/
614
size_t len;
615
616
/**
617
* \brief Decoding status.
618
*
619
* Status is 0 if the name element was not found, 1 if it was
620
* found and decoded, or -1 on error. Error conditions include
621
* an unrecognised encoding, an invalid encoding, or a string
622
* too large for the destination buffer.
623
*/
624
int status;
625
626
} br_name_element;
627
628
/**
629
* \brief Callback for validity date checks.
630
*
631
* The function receives as parameter an arbitrary user-provided context,
632
* and the notBefore and notAfter dates specified in an X.509 certificate,
633
* both expressed as a number of days and a number of seconds:
634
*
635
* - Days are counted in a proleptic Gregorian calendar since
636
* January 1st, 0 AD. Year "0 AD" is the one that preceded "1 AD";
637
* it is also traditionally known as "1 BC".
638
*
639
* - Seconds are counted since midnight, from 0 to 86400 (a count of
640
* 86400 is possible only if a leap second happened).
641
*
642
* Each date and time is understood in the UTC time zone. The "Unix
643
* Epoch" (January 1st, 1970, 00:00 UTC) corresponds to days=719528 and
644
* seconds=0; the "Windows Epoch" (January 1st, 1601, 00:00 UTC) is
645
* days=584754, seconds=0.
646
*
647
* This function must return -1 if the current date is strictly before
648
* the "notBefore" time, or +1 if the current date is strictly after the
649
* "notAfter" time. If neither condition holds, then the function returns
650
* 0, which means that the current date falls within the validity range of
651
* the certificate. If the function returns a value distinct from -1, 0
652
* and +1, then this is interpreted as an unavailability of the current
653
* time, which normally ends the validation process with a
654
* `BR_ERR_X509_TIME_UNKNOWN` error.
655
*
656
* During path validation, this callback will be invoked for each
657
* considered X.509 certificate. Validation fails if any of the calls
658
* returns a non-zero value.
659
*
660
* The context value is an abritrary pointer set by the caller when
661
* configuring this callback.
662
*
663
* \param tctx context pointer.
664
* \param not_before_days notBefore date (days since Jan 1st, 0 AD).
665
* \param not_before_seconds notBefore time (seconds, at most 86400).
666
* \param not_after_days notAfter date (days since Jan 1st, 0 AD).
667
* \param not_after_seconds notAfter time (seconds, at most 86400).
668
* \return -1, 0 or +1.
669
*/
670
typedef int (*br_x509_time_check)(void *tctx,
671
uint32_t not_before_days, uint32_t not_before_seconds,
672
uint32_t not_after_days, uint32_t not_after_seconds);
673
674
/**
675
* \brief The "minimal" X.509 engine structure.
676
*
677
* The structure contents are opaque (they shall not be accessed directly),
678
* except for the first field (the vtable).
679
*
680
* The "minimal" engine performs a rudimentary but serviceable X.509 path
681
* validation.
682
*/
683
typedef struct {
684
const br_x509_class *vtable;
685
686
#ifndef BR_DOXYGEN_IGNORE
687
/* Structure for returning the EE public key. */
688
br_x509_pkey pkey;
689
690
/* CPU for the T0 virtual machine. */
691
struct {
692
uint32_t *dp;
693
uint32_t *rp;
694
const unsigned char *ip;
695
} cpu;
696
uint32_t dp_stack[31];
697
uint32_t rp_stack[31];
698
int err;
699
700
/* Server name to match with the SAN / CN of the EE certificate. */
701
const char *server_name;
702
703
/* Validated key usages. */
704
unsigned char key_usages;
705
706
/* Explicitly set date and time. */
707
uint32_t days, seconds;
708
709
/* Current certificate length (in bytes). Set to 0 when the
710
certificate has been fully processed. */
711
uint32_t cert_length;
712
713
/* Number of certificates processed so far in the current chain.
714
It is incremented at the end of the processing of a certificate,
715
so it is 0 for the EE. */
716
uint32_t num_certs;
717
718
/* Certificate data chunk. */
719
const unsigned char *hbuf;
720
size_t hlen;
721
722
/* The pad serves as destination for various operations. */
723
unsigned char pad[256];
724
725
/* Buffer for EE public key data. */
726
unsigned char ee_pkey_data[BR_X509_BUFSIZE_KEY];
727
728
/* Buffer for currently decoded public key. */
729
unsigned char pkey_data[BR_X509_BUFSIZE_KEY];
730
731
/* Signature type: signer key type, offset to the hash
732
function OID (in the T0 data block) and hash function
733
output length (TBS hash length). */
734
unsigned char cert_signer_key_type;
735
uint16_t cert_sig_hash_oid;
736
unsigned char cert_sig_hash_len;
737
738
/* Current/last certificate signature. */
739
unsigned char cert_sig[BR_X509_BUFSIZE_SIG];
740
uint16_t cert_sig_len;
741
742
/* Minimum RSA key length (difference in bytes from 128). */
743
int16_t min_rsa_size;
744
745
/* Configured trust anchors. */
746
const br_x509_trust_anchor *trust_anchors;
747
size_t trust_anchors_num;
748
749
/*
750
* Multi-hasher for the TBS.
751
*/
752
unsigned char do_mhash;
753
br_multihash_context mhash;
754
unsigned char tbs_hash[64];
755
756
/*
757
* Simple hasher for the subject/issuer DN.
758
*/
759
unsigned char do_dn_hash;
760
const br_hash_class *dn_hash_impl;
761
br_hash_compat_context dn_hash;
762
unsigned char current_dn_hash[64];
763
unsigned char next_dn_hash[64];
764
unsigned char saved_dn_hash[64];
765
766
/*
767
* Name elements to gather.
768
*/
769
br_name_element *name_elts;
770
size_t num_name_elts;
771
772
/*
773
* Callback function (and context) to get the current date.
774
*/
775
void *itime_ctx;
776
br_x509_time_check itime;
777
778
/*
779
* Public key cryptography implementations (signature verification).
780
*/
781
br_rsa_pkcs1_vrfy irsa;
782
br_ecdsa_vrfy iecdsa;
783
const br_ec_impl *iec;
784
#endif
785
786
} br_x509_minimal_context;
787
788
/**
789
* \brief Class instance for the "minimal" X.509 engine.
790
*/
791
extern const br_x509_class br_x509_minimal_vtable;
792
793
/**
794
* \brief Initialise a "minimal" X.509 engine.
795
*
796
* The `dn_hash_impl` parameter shall be a hash function internally used
797
* to match X.500 names (subject/issuer DN, and anchor names). Any standard
798
* hash function may be used, but a collision-resistant hash function is
799
* advised.
800
*
801
* After initialization, some implementations for signature verification
802
* (hash functions and signature algorithms) MUST be added.
803
*
804
* \param ctx context to initialise.
805
* \param dn_hash_impl hash function for DN comparisons.
806
* \param trust_anchors trust anchors.
807
* \param trust_anchors_num number of trust anchors.
808
*/
809
void br_x509_minimal_init(br_x509_minimal_context *ctx,
810
const br_hash_class *dn_hash_impl,
811
const br_x509_trust_anchor *trust_anchors, size_t trust_anchors_num);
812
813
/**
814
* \brief Set a supported hash function in an X.509 "minimal" engine.
815
*
816
* Hash functions are used with signature verification algorithms.
817
* Once initialised (with `br_x509_minimal_init()`), the context must
818
* be configured with the hash functions it shall support for that
819
* purpose. The hash function identifier MUST be one of the standard
820
* hash function identifiers (1 to 6, for MD5, SHA-1, SHA-224, SHA-256,
821
* SHA-384 and SHA-512).
822
*
823
* If `impl` is `NULL`, this _removes_ support for the designated
824
* hash function.
825
*
826
* \param ctx validation context.
827
* \param id hash function identifier (from 1 to 6).
828
* \param impl hash function implementation (or `NULL`).
829
*/
830
static inline void
831
br_x509_minimal_set_hash(br_x509_minimal_context *ctx,
832
int id, const br_hash_class *impl)
833
{
834
br_multihash_setimpl(&ctx->mhash, id, impl);
835
}
836
837
/**
838
* \brief Set a RSA signature verification implementation in the X.509
839
* "minimal" engine.
840
*
841
* Once initialised (with `br_x509_minimal_init()`), the context must
842
* be configured with the signature verification implementations that
843
* it is supposed to support. If `irsa` is `0`, then the RSA support
844
* is disabled.
845
*
846
* \param ctx validation context.
847
* \param irsa RSA signature verification implementation (or `0`).
848
*/
849
static inline void
850
br_x509_minimal_set_rsa(br_x509_minimal_context *ctx,
851
br_rsa_pkcs1_vrfy irsa)
852
{
853
ctx->irsa = irsa;
854
}
855
856
/**
857
* \brief Set a ECDSA signature verification implementation in the X.509
858
* "minimal" engine.
859
*
860
* Once initialised (with `br_x509_minimal_init()`), the context must
861
* be configured with the signature verification implementations that
862
* it is supposed to support.
863
*
864
* If `iecdsa` is `0`, then this call disables ECDSA support; in that
865
* case, `iec` may be `NULL`. Otherwise, `iecdsa` MUST point to a function
866
* that verifies ECDSA signatures with format "asn1", and it will use
867
* `iec` as underlying elliptic curve support.
868
*
869
* \param ctx validation context.
870
* \param iec elliptic curve implementation (or `NULL`).
871
* \param iecdsa ECDSA implementation (or `0`).
872
*/
873
static inline void
874
br_x509_minimal_set_ecdsa(br_x509_minimal_context *ctx,
875
const br_ec_impl *iec, br_ecdsa_vrfy iecdsa)
876
{
877
ctx->iecdsa = iecdsa;
878
ctx->iec = iec;
879
}
880
881
/**
882
* \brief Initialise a "minimal" X.509 engine with default algorithms.
883
*
884
* This function performs the same job as `br_x509_minimal_init()`, but
885
* also sets implementations for RSA, ECDSA, and the standard hash
886
* functions.
887
*
888
* \param ctx context to initialise.
889
* \param trust_anchors trust anchors.
890
* \param trust_anchors_num number of trust anchors.
891
*/
892
void br_x509_minimal_init_full(br_x509_minimal_context *ctx,
893
const br_x509_trust_anchor *trust_anchors, size_t trust_anchors_num);
894
895
/**
896
* \brief Set the validation time for the X.509 "minimal" engine.
897
*
898
* The validation time is set as two 32-bit integers, for days and
899
* seconds since a fixed epoch:
900
*
901
* - Days are counted in a proleptic Gregorian calendar since
902
* January 1st, 0 AD. Year "0 AD" is the one that preceded "1 AD";
903
* it is also traditionally known as "1 BC".
904
*
905
* - Seconds are counted since midnight, from 0 to 86400 (a count of
906
* 86400 is possible only if a leap second happened).
907
*
908
* The validation date and time is understood in the UTC time zone. The
909
* "Unix Epoch" (January 1st, 1970, 00:00 UTC) corresponds to days=719528
910
* and seconds=0; the "Windows Epoch" (January 1st, 1601, 00:00 UTC) is
911
* days=584754, seconds=0.
912
*
913
* If the validation date and time are not explicitly set, but BearSSL
914
* was compiled with support for the system clock on the underlying
915
* platform, then the current time will automatically be used. Otherwise,
916
* not setting the validation date and time implies a validation
917
* failure (except in case of direct trust of the EE key).
918
*
919
* \param ctx validation context.
920
* \param days days since January 1st, 0 AD (Gregorian calendar).
921
* \param seconds seconds since midnight (0 to 86400).
922
*/
923
static inline void
924
br_x509_minimal_set_time(br_x509_minimal_context *ctx,
925
uint32_t days, uint32_t seconds)
926
{
927
ctx->days = days;
928
ctx->seconds = seconds;
929
ctx->itime = 0;
930
}
931
932
/**
933
* \brief Set the validity range callback function for the X.509
934
* "minimal" engine.
935
*
936
* The provided function will be invoked to check whether the validation
937
* date is within the validity range for a given X.509 certificate; a
938
* call will be issued for each considered certificate. The provided
939
* context pointer (itime_ctx) will be passed as first parameter to the
940
* callback.
941
*
942
* \param tctx context for callback invocation.
943
* \param cb callback function.
944
*/
945
static inline void
946
br_x509_minimal_set_time_callback(br_x509_minimal_context *ctx,
947
void *itime_ctx, br_x509_time_check itime)
948
{
949
ctx->itime_ctx = itime_ctx;
950
ctx->itime = itime;
951
}
952
953
/**
954
* \brief Set the minimal acceptable length for RSA keys (X.509 "minimal"
955
* engine).
956
*
957
* The RSA key length is expressed in bytes. The default minimum key
958
* length is 128 bytes, corresponding to 1017 bits. RSA keys shorter
959
* than the configured length will be rejected, implying validation
960
* failure. This setting applies to keys extracted from certificates
961
* (both end-entity, and intermediate CA) but not to "CA" trust anchors.
962
*
963
* \param ctx validation context.
964
* \param byte_length minimum RSA key length, **in bytes** (not bits).
965
*/
966
static inline void
967
br_x509_minimal_set_minrsa(br_x509_minimal_context *ctx, int byte_length)
968
{
969
ctx->min_rsa_size = (int16_t)(byte_length - 128);
970
}
971
972
/**
973
* \brief Set the name elements to gather.
974
*
975
* The provided array is linked in the context. The elements are
976
* gathered from the EE certificate. If the same element type is
977
* requested several times, then the relevant structures will be filled
978
* in the order the matching values are encountered in the certificate.
979
*
980
* \param ctx validation context.
981
* \param elts array of name element structures to fill.
982
* \param num_elts number of name element structures to fill.
983
*/
984
static inline void
985
br_x509_minimal_set_name_elements(br_x509_minimal_context *ctx,
986
br_name_element *elts, size_t num_elts)
987
{
988
ctx->name_elts = elts;
989
ctx->num_name_elts = num_elts;
990
}
991
992
/**
993
* \brief X.509 decoder context.
994
*
995
* This structure is _not_ for X.509 validation, but for extracting
996
* names and public keys from encoded certificates. Intended usage is
997
* to use (self-signed) certificates as trust anchors.
998
*
999
* Contents are opaque and shall not be accessed directly.
1000
*/
1001
typedef struct {
1002
1003
#ifndef BR_DOXYGEN_IGNORE
1004
/* Structure for returning the public key. */
1005
br_x509_pkey pkey;
1006
1007
/* CPU for the T0 virtual machine. */
1008
struct {
1009
uint32_t *dp;
1010
uint32_t *rp;
1011
const unsigned char *ip;
1012
} cpu;
1013
uint32_t dp_stack[32];
1014
uint32_t rp_stack[32];
1015
int err;
1016
1017
/* The pad serves as destination for various operations. */
1018
unsigned char pad[256];
1019
1020
/* Flag set when decoding succeeds. */
1021
unsigned char decoded;
1022
1023
/* Validity dates. */
1024
uint32_t notbefore_days, notbefore_seconds;
1025
uint32_t notafter_days, notafter_seconds;
1026
1027
/* The "CA" flag. This is set to true if the certificate contains
1028
a Basic Constraints extension that asserts CA status. */
1029
unsigned char isCA;
1030
1031
/* DN processing: the subject DN is extracted and pushed to the
1032
provided callback. */
1033
unsigned char copy_dn;
1034
void *append_dn_ctx;
1035
void (*append_dn)(void *ctx, const void *buf, size_t len);
1036
1037
/* Certificate data chunk. */
1038
const unsigned char *hbuf;
1039
size_t hlen;
1040
1041
/* Buffer for decoded public key. */
1042
unsigned char pkey_data[BR_X509_BUFSIZE_KEY];
1043
1044
/* Type of key and hash function used in the certificate signature. */
1045
unsigned char signer_key_type;
1046
unsigned char signer_hash_id;
1047
#endif
1048
1049
} br_x509_decoder_context;
1050
1051
/**
1052
* \brief Initialise an X.509 decoder context for processing a new
1053
* certificate.
1054
*
1055
* The `append_dn()` callback (with opaque context `append_dn_ctx`)
1056
* will be invoked to receive, chunk by chunk, the certificate's
1057
* subject DN. If `append_dn` is `0` then the subject DN will be
1058
* ignored.
1059
*
1060
* \param ctx X.509 decoder context to initialise.
1061
* \param append_dn DN receiver callback (or `0`).
1062
* \param append_dn_ctx context for the DN receiver callback.
1063
*/
1064
void br_x509_decoder_init(br_x509_decoder_context *ctx,
1065
void (*append_dn)(void *ctx, const void *buf, size_t len),
1066
void *append_dn_ctx);
1067
1068
/**
1069
* \brief Push some certificate bytes into a decoder context.
1070
*
1071
* If `len` is non-zero, then that many bytes are pushed, from address
1072
* `data`, into the provided decoder context.
1073
*
1074
* \param ctx X.509 decoder context.
1075
* \param data certificate data chunk.
1076
* \param len certificate data chunk length (in bytes).
1077
*/
1078
void br_x509_decoder_push(br_x509_decoder_context *ctx,
1079
const void *data, size_t len);
1080
1081
/**
1082
* \brief Obtain the decoded public key.
1083
*
1084
* Returned value is a pointer to a structure internal to the decoder
1085
* context; releasing or reusing the decoder context invalidates that
1086
* structure.
1087
*
1088
* If decoding was not finished, or failed, then `NULL` is returned.
1089
*
1090
* \param ctx X.509 decoder context.
1091
* \return the public key, or `NULL` on unfinished/error.
1092
*/
1093
static inline br_x509_pkey *
1094
br_x509_decoder_get_pkey(br_x509_decoder_context *ctx)
1095
{
1096
if (ctx->decoded && ctx->err == 0) {
1097
return &ctx->pkey;
1098
} else {
1099
return NULL;
1100
}
1101
}
1102
1103
/**
1104
* \brief Get decoder error status.
1105
*
1106
* If no error was reported yet but the certificate decoding is not
1107
* finished, then the error code is `BR_ERR_X509_TRUNCATED`. If decoding
1108
* was successful, then 0 is returned.
1109
*
1110
* \param ctx X.509 decoder context.
1111
* \return 0 on successful decoding, or a non-zero error code.
1112
*/
1113
static inline int
1114
br_x509_decoder_last_error(br_x509_decoder_context *ctx)
1115
{
1116
if (ctx->err != 0) {
1117
return ctx->err;
1118
}
1119
if (!ctx->decoded) {
1120
return BR_ERR_X509_TRUNCATED;
1121
}
1122
return 0;
1123
}
1124
1125
/**
1126
* \brief Get the "isCA" flag from an X.509 decoder context.
1127
*
1128
* This flag is set if the decoded certificate claims to be a CA through
1129
* a Basic Constraints extension. This flag should not be read before
1130
* decoding completed successfully.
1131
*
1132
* \param ctx X.509 decoder context.
1133
* \return the "isCA" flag.
1134
*/
1135
static inline int
1136
br_x509_decoder_isCA(br_x509_decoder_context *ctx)
1137
{
1138
return ctx->isCA;
1139
}
1140
1141
/**
1142
* \brief Get the issuing CA key type (type of algorithm used to sign the
1143
* decoded certificate).
1144
*
1145
* This is `BR_KEYTYPE_RSA` or `BR_KEYTYPE_EC`. The value 0 is returned
1146
* if the signature type was not recognised.
1147
*
1148
* \param ctx X.509 decoder context.
1149
* \return the issuing CA key type.
1150
*/
1151
static inline int
1152
br_x509_decoder_get_signer_key_type(br_x509_decoder_context *ctx)
1153
{
1154
return ctx->signer_key_type;
1155
}
1156
1157
/**
1158
* \brief Get the identifier for the hash function used to sign the decoded
1159
* certificate.
1160
*
1161
* This is 0 if the hash function was not recognised.
1162
*
1163
* \param ctx X.509 decoder context.
1164
* \return the signature hash function identifier.
1165
*/
1166
static inline int
1167
br_x509_decoder_get_signer_hash_id(br_x509_decoder_context *ctx)
1168
{
1169
return ctx->signer_hash_id;
1170
}
1171
1172
/**
1173
* \brief Type for an X.509 certificate (DER-encoded).
1174
*/
1175
typedef struct {
1176
/** \brief The DER-encoded certificate data. */
1177
unsigned char *data;
1178
/** \brief The DER-encoded certificate length (in bytes). */
1179
size_t data_len;
1180
} br_x509_certificate;
1181
1182
/**
1183
* \brief Private key decoder context.
1184
*
1185
* The private key decoder recognises RSA and EC private keys, either in
1186
* their raw, DER-encoded format, or wrapped in an unencrypted PKCS#8
1187
* archive (again DER-encoded).
1188
*
1189
* Structure contents are opaque and shall not be accessed directly.
1190
*/
1191
typedef struct {
1192
#ifndef BR_DOXYGEN_IGNORE
1193
/* Structure for returning the private key. */
1194
union {
1195
br_rsa_private_key rsa;
1196
br_ec_private_key ec;
1197
} key;
1198
1199
/* CPU for the T0 virtual machine. */
1200
struct {
1201
uint32_t *dp;
1202
uint32_t *rp;
1203
const unsigned char *ip;
1204
} cpu;
1205
uint32_t dp_stack[32];
1206
uint32_t rp_stack[32];
1207
int err;
1208
1209
/* Private key data chunk. */
1210
const unsigned char *hbuf;
1211
size_t hlen;
1212
1213
/* The pad serves as destination for various operations. */
1214
unsigned char pad[256];
1215
1216
/* Decoded key type; 0 until decoding is complete. */
1217
unsigned char key_type;
1218
1219
/* Buffer for the private key elements. It shall be large enough
1220
to accommodate all elements for a RSA-4096 private key (roughly
1221
five 2048-bit integers, possibly a bit more). */
1222
unsigned char key_data[3 * BR_X509_BUFSIZE_SIG];
1223
#endif
1224
} br_skey_decoder_context;
1225
1226
/**
1227
* \brief Initialise a private key decoder context.
1228
*
1229
* \param ctx key decoder context to initialise.
1230
*/
1231
void br_skey_decoder_init(br_skey_decoder_context *ctx);
1232
1233
/**
1234
* \brief Push some data bytes into a private key decoder context.
1235
*
1236
* If `len` is non-zero, then that many data bytes, starting at address
1237
* `data`, are pushed into the decoder.
1238
*
1239
* \param ctx key decoder context.
1240
* \param data private key data chunk.
1241
* \param len private key data chunk length (in bytes).
1242
*/
1243
void br_skey_decoder_push(br_skey_decoder_context *ctx,
1244
const void *data, size_t len);
1245
1246
/**
1247
* \brief Get the decoding status for a private key.
1248
*
1249
* Decoding status is 0 on success, or a non-zero error code. If the
1250
* decoding is unfinished when this function is called, then the
1251
* status code `BR_ERR_X509_TRUNCATED` is returned.
1252
*
1253
* \param ctx key decoder context.
1254
* \return 0 on successful decoding, or a non-zero error code.
1255
*/
1256
static inline int
1257
br_skey_decoder_last_error(const br_skey_decoder_context *ctx)
1258
{
1259
if (ctx->err != 0) {
1260
return ctx->err;
1261
}
1262
if (ctx->key_type == 0) {
1263
return BR_ERR_X509_TRUNCATED;
1264
}
1265
return 0;
1266
}
1267
1268
/**
1269
* \brief Get the decoded private key type.
1270
*
1271
* Private key type is `BR_KEYTYPE_RSA` or `BR_KEYTYPE_EC`. If decoding is
1272
* not finished or failed, then 0 is returned.
1273
*
1274
* \param ctx key decoder context.
1275
* \return decoded private key type, or 0.
1276
*/
1277
static inline int
1278
br_skey_decoder_key_type(const br_skey_decoder_context *ctx)
1279
{
1280
if (ctx->err == 0) {
1281
return ctx->key_type;
1282
} else {
1283
return 0;
1284
}
1285
}
1286
1287
/**
1288
* \brief Get the decoded RSA private key.
1289
*
1290
* This function returns `NULL` if the decoding failed, or is not
1291
* finished, or the key is not RSA. The returned pointer references
1292
* structures within the context that can become invalid if the context
1293
* is reused or released.
1294
*
1295
* \param ctx key decoder context.
1296
* \return decoded RSA private key, or `NULL`.
1297
*/
1298
static inline const br_rsa_private_key *
1299
br_skey_decoder_get_rsa(const br_skey_decoder_context *ctx)
1300
{
1301
if (ctx->err == 0 && ctx->key_type == BR_KEYTYPE_RSA) {
1302
return &ctx->key.rsa;
1303
} else {
1304
return NULL;
1305
}
1306
}
1307
1308
/**
1309
* \brief Get the decoded EC private key.
1310
*
1311
* This function returns `NULL` if the decoding failed, or is not
1312
* finished, or the key is not EC. The returned pointer references
1313
* structures within the context that can become invalid if the context
1314
* is reused or released.
1315
*
1316
* \param ctx key decoder context.
1317
* \return decoded EC private key, or `NULL`.
1318
*/
1319
static inline const br_ec_private_key *
1320
br_skey_decoder_get_ec(const br_skey_decoder_context *ctx)
1321
{
1322
if (ctx->err == 0 && ctx->key_type == BR_KEYTYPE_EC) {
1323
return &ctx->key.ec;
1324
} else {
1325
return NULL;
1326
}
1327
}
1328
1329
/**
1330
* \brief Encode an RSA private key (raw DER format).
1331
*
1332
* This function encodes the provided key into the "raw" format specified
1333
* in PKCS#1 (RFC 8017, Appendix C, type `RSAPrivateKey`), with DER
1334
* encoding rules.
1335
*
1336
* The key elements are:
1337
*
1338
* - `sk`: the private key (`p`, `q`, `dp`, `dq` and `iq`)
1339
*
1340
* - `pk`: the public key (`n` and `e`)
1341
*
1342
* - `d` (size: `dlen` bytes): the private exponent
1343
*
1344
* The public key elements, and the private exponent `d`, can be
1345
* recomputed from the private key (see `br_rsa_compute_modulus()`,
1346
* `br_rsa_compute_pubexp()` and `br_rsa_compute_privexp()`).
1347
*
1348
* If `dest` is not `NULL`, then the encoded key is written at that
1349
* address, and the encoded length (in bytes) is returned. If `dest` is
1350
* `NULL`, then nothing is written, but the encoded length is still
1351
* computed and returned.
1352
*
1353
* \param dest the destination buffer (or `NULL`).
1354
* \param sk the RSA private key.
1355
* \param pk the RSA public key.
1356
* \param d the RSA private exponent.
1357
* \param dlen the RSA private exponent length (in bytes).
1358
* \return the encoded key length (in bytes).
1359
*/
1360
size_t br_encode_rsa_raw_der(void *dest, const br_rsa_private_key *sk,
1361
const br_rsa_public_key *pk, const void *d, size_t dlen);
1362
1363
/**
1364
* \brief Encode an RSA private key (PKCS#8 DER format).
1365
*
1366
* This function encodes the provided key into the PKCS#8 format
1367
* (RFC 5958, type `OneAsymmetricKey`). It wraps around the "raw DER"
1368
* format for the RSA key, as implemented by `br_encode_rsa_raw_der()`.
1369
*
1370
* The key elements are:
1371
*
1372
* - `sk`: the private key (`p`, `q`, `dp`, `dq` and `iq`)
1373
*
1374
* - `pk`: the public key (`n` and `e`)
1375
*
1376
* - `d` (size: `dlen` bytes): the private exponent
1377
*
1378
* The public key elements, and the private exponent `d`, can be
1379
* recomputed from the private key (see `br_rsa_compute_modulus()`,
1380
* `br_rsa_compute_pubexp()` and `br_rsa_compute_privexp()`).
1381
*
1382
* If `dest` is not `NULL`, then the encoded key is written at that
1383
* address, and the encoded length (in bytes) is returned. If `dest` is
1384
* `NULL`, then nothing is written, but the encoded length is still
1385
* computed and returned.
1386
*
1387
* \param dest the destination buffer (or `NULL`).
1388
* \param sk the RSA private key.
1389
* \param pk the RSA public key.
1390
* \param d the RSA private exponent.
1391
* \param dlen the RSA private exponent length (in bytes).
1392
* \return the encoded key length (in bytes).
1393
*/
1394
size_t br_encode_rsa_pkcs8_der(void *dest, const br_rsa_private_key *sk,
1395
const br_rsa_public_key *pk, const void *d, size_t dlen);
1396
1397
/**
1398
* \brief Encode an EC private key (raw DER format).
1399
*
1400
* This function encodes the provided key into the "raw" format specified
1401
* in RFC 5915 (type `ECPrivateKey`), with DER encoding rules.
1402
*
1403
* The private key is provided in `sk`, the public key being `pk`. If
1404
* `pk` is `NULL`, then the encoded key will not include the public key
1405
* in its `publicKey` field (which is nominally optional).
1406
*
1407
* If `dest` is not `NULL`, then the encoded key is written at that
1408
* address, and the encoded length (in bytes) is returned. If `dest` is
1409
* `NULL`, then nothing is written, but the encoded length is still
1410
* computed and returned.
1411
*
1412
* If the key cannot be encoded (e.g. because there is no known OBJECT
1413
* IDENTIFIER for the used curve), then 0 is returned.
1414
*
1415
* \param dest the destination buffer (or `NULL`).
1416
* \param sk the EC private key.
1417
* \param pk the EC public key (or `NULL`).
1418
* \return the encoded key length (in bytes), or 0.
1419
*/
1420
size_t br_encode_ec_raw_der(void *dest,
1421
const br_ec_private_key *sk, const br_ec_public_key *pk);
1422
1423
/**
1424
* \brief Encode an EC private key (PKCS#8 DER format).
1425
*
1426
* This function encodes the provided key into the PKCS#8 format
1427
* (RFC 5958, type `OneAsymmetricKey`). The curve is identified
1428
* by an OID provided as parameters to the `privateKeyAlgorithm`
1429
* field. The private key value (contents of the `privateKey` field)
1430
* contains the DER encoding of the `ECPrivateKey` type defined in
1431
* RFC 5915, without the `parameters` field (since they would be
1432
* redundant with the information in `privateKeyAlgorithm`).
1433
*
1434
* The private key is provided in `sk`, the public key being `pk`. If
1435
* `pk` is not `NULL`, then the encoded public key is included in the
1436
* `publicKey` field of the private key value (but not in the `publicKey`
1437
* field of the PKCS#8 `OneAsymmetricKey` wrapper).
1438
*
1439
* If `dest` is not `NULL`, then the encoded key is written at that
1440
* address, and the encoded length (in bytes) is returned. If `dest` is
1441
* `NULL`, then nothing is written, but the encoded length is still
1442
* computed and returned.
1443
*
1444
* If the key cannot be encoded (e.g. because there is no known OBJECT
1445
* IDENTIFIER for the used curve), then 0 is returned.
1446
*
1447
* \param dest the destination buffer (or `NULL`).
1448
* \param sk the EC private key.
1449
* \param pk the EC public key (or `NULL`).
1450
* \return the encoded key length (in bytes), or 0.
1451
*/
1452
size_t br_encode_ec_pkcs8_der(void *dest,
1453
const br_ec_private_key *sk, const br_ec_public_key *pk);
1454
1455
/**
1456
* \brief PEM banner for RSA private key (raw).
1457
*/
1458
#define BR_ENCODE_PEM_RSA_RAW "RSA PRIVATE KEY"
1459
1460
/**
1461
* \brief PEM banner for EC private key (raw).
1462
*/
1463
#define BR_ENCODE_PEM_EC_RAW "EC PRIVATE KEY"
1464
1465
/**
1466
* \brief PEM banner for an RSA or EC private key in PKCS#8 format.
1467
*/
1468
#define BR_ENCODE_PEM_PKCS8 "PRIVATE KEY"
1469
1470
#ifdef __cplusplus
1471
}
1472
#endif
1473
1474
#endif
1475
1476