Path: blob/main/contrib/bearssl/src/ec/ec_c25519_m15.c
39536 views
/*1* Copyright (c) 2017 Thomas Pornin <[email protected]>2*3* Permission is hereby granted, free of charge, to any person obtaining4* a copy of this software and associated documentation files (the5* "Software"), to deal in the Software without restriction, including6* without limitation the rights to use, copy, modify, merge, publish,7* distribute, sublicense, and/or sell copies of the Software, and to8* permit persons to whom the Software is furnished to do so, subject to9* the following conditions:10*11* The above copyright notice and this permission notice shall be12* included in all copies or substantial portions of the Software.13*14* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,15* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF16* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND17* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS18* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN19* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN20* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE21* SOFTWARE.22*/2324#include "inner.h"2526/* obsolete27#include <stdio.h>28#include <stdlib.h>29static void30print_int(const char *name, const uint32_t *x)31{32size_t u;33unsigned char tmp[36];3435printf("%s = ", name);36for (u = 0; u < 20; u ++) {37if (x[u] > 0x1FFF) {38printf("INVALID:");39for (u = 0; u < 20; u ++) {40printf(" %04X", x[u]);41}42printf("\n");43return;44}45}46memset(tmp, 0, sizeof tmp);47for (u = 0; u < 20; u ++) {48uint32_t w;49int j, k;5051w = x[u];52j = 13 * (int)u;53k = j & 7;54if (k != 0) {55w <<= k;56j -= k;57}58k = j >> 3;59tmp[35 - k] |= (unsigned char)w;60tmp[34 - k] |= (unsigned char)(w >> 8);61tmp[33 - k] |= (unsigned char)(w >> 16);62tmp[32 - k] |= (unsigned char)(w >> 24);63}64for (u = 4; u < 36; u ++) {65printf("%02X", tmp[u]);66}67printf("\n");68}69*/7071/*72* If BR_NO_ARITH_SHIFT is undefined, or defined to 0, then we _assume_73* that right-shifting a signed negative integer copies the sign bit74* (arithmetic right-shift). This is "implementation-defined behaviour",75* i.e. it is not undefined, but it may differ between compilers. Each76* compiler is supposed to document its behaviour in that respect. GCC77* explicitly defines that an arithmetic right shift is used. We expect78* all other compilers to do the same, because underlying CPU offer an79* arithmetic right shift opcode that could not be used otherwise.80*/81#if BR_NO_ARITH_SHIFT82#define ARSH(x, n) (((uint32_t)(x) >> (n)) \83| ((-((uint32_t)(x) >> 31)) << (32 - (n))))84#else85#define ARSH(x, n) ((*(int32_t *)&(x)) >> (n))86#endif8788/*89* Convert an integer from unsigned little-endian encoding to a sequence of90* 13-bit words in little-endian order. The final "partial" word is91* returned.92*/93static uint32_t94le8_to_le13(uint32_t *dst, const unsigned char *src, size_t len)95{96uint32_t acc;97int acc_len;9899acc = 0;100acc_len = 0;101while (len -- > 0) {102acc |= (uint32_t)(*src ++) << acc_len;103acc_len += 8;104if (acc_len >= 13) {105*dst ++ = acc & 0x1FFF;106acc >>= 13;107acc_len -= 13;108}109}110return acc;111}112113/*114* Convert an integer (13-bit words, little-endian) to unsigned115* little-endian encoding. The total encoding length is provided; all116* the destination bytes will be filled.117*/118static void119le13_to_le8(unsigned char *dst, size_t len, const uint32_t *src)120{121uint32_t acc;122int acc_len;123124acc = 0;125acc_len = 0;126while (len -- > 0) {127if (acc_len < 8) {128acc |= (*src ++) << acc_len;129acc_len += 13;130}131*dst ++ = (unsigned char)acc;132acc >>= 8;133acc_len -= 8;134}135}136137/*138* Normalise an array of words to a strict 13 bits per word. Returned139* value is the resulting carry. The source (w) and destination (d)140* arrays may be identical, but shall not overlap partially.141*/142static inline uint32_t143norm13(uint32_t *d, const uint32_t *w, size_t len)144{145size_t u;146uint32_t cc;147148cc = 0;149for (u = 0; u < len; u ++) {150int32_t z;151152z = w[u] + cc;153d[u] = z & 0x1FFF;154cc = ARSH(z, 13);155}156return cc;157}158159/*160* mul20() multiplies two 260-bit integers together. Each word must fit161* on 13 bits; source operands use 20 words, destination operand162* receives 40 words. All overlaps allowed.163*164* square20() computes the square of a 260-bit integer. Each word must165* fit on 13 bits; source operand uses 20 words, destination operand166* receives 40 words. All overlaps allowed.167*/168169#if BR_SLOW_MUL15170171static void172mul20(uint32_t *d, const uint32_t *a, const uint32_t *b)173{174/*175* Two-level Karatsuba: turns a 20x20 multiplication into176* nine 5x5 multiplications. We use 13-bit words but do not177* propagate carries immediately, so words may expand:178*179* - First Karatsuba decomposition turns the 20x20 mul on180* 13-bit words into three 10x10 muls, two on 13-bit words181* and one on 14-bit words.182*183* - Second Karatsuba decomposition further splits these into:184*185* * four 5x5 muls on 13-bit words186* * four 5x5 muls on 14-bit words187* * one 5x5 mul on 15-bit words188*189* Highest word value is 8191, 16382 or 32764, for 13-bit, 14-bit190* or 15-bit words, respectively.191*/192uint32_t u[45], v[45], w[90];193uint32_t cc;194int i;195196#define ZADD(dw, d_off, s1w, s1_off, s2w, s2_off) do { \197(dw)[5 * (d_off) + 0] = (s1w)[5 * (s1_off) + 0] \198+ (s2w)[5 * (s2_off) + 0]; \199(dw)[5 * (d_off) + 1] = (s1w)[5 * (s1_off) + 1] \200+ (s2w)[5 * (s2_off) + 1]; \201(dw)[5 * (d_off) + 2] = (s1w)[5 * (s1_off) + 2] \202+ (s2w)[5 * (s2_off) + 2]; \203(dw)[5 * (d_off) + 3] = (s1w)[5 * (s1_off) + 3] \204+ (s2w)[5 * (s2_off) + 3]; \205(dw)[5 * (d_off) + 4] = (s1w)[5 * (s1_off) + 4] \206+ (s2w)[5 * (s2_off) + 4]; \207} while (0)208209#define ZADDT(dw, d_off, sw, s_off) do { \210(dw)[5 * (d_off) + 0] += (sw)[5 * (s_off) + 0]; \211(dw)[5 * (d_off) + 1] += (sw)[5 * (s_off) + 1]; \212(dw)[5 * (d_off) + 2] += (sw)[5 * (s_off) + 2]; \213(dw)[5 * (d_off) + 3] += (sw)[5 * (s_off) + 3]; \214(dw)[5 * (d_off) + 4] += (sw)[5 * (s_off) + 4]; \215} while (0)216217#define ZSUB2F(dw, d_off, s1w, s1_off, s2w, s2_off) do { \218(dw)[5 * (d_off) + 0] -= (s1w)[5 * (s1_off) + 0] \219+ (s2w)[5 * (s2_off) + 0]; \220(dw)[5 * (d_off) + 1] -= (s1w)[5 * (s1_off) + 1] \221+ (s2w)[5 * (s2_off) + 1]; \222(dw)[5 * (d_off) + 2] -= (s1w)[5 * (s1_off) + 2] \223+ (s2w)[5 * (s2_off) + 2]; \224(dw)[5 * (d_off) + 3] -= (s1w)[5 * (s1_off) + 3] \225+ (s2w)[5 * (s2_off) + 3]; \226(dw)[5 * (d_off) + 4] -= (s1w)[5 * (s1_off) + 4] \227+ (s2w)[5 * (s2_off) + 4]; \228} while (0)229230#define CPR1(w, cprcc) do { \231uint32_t cprz = (w) + cprcc; \232(w) = cprz & 0x1FFF; \233cprcc = cprz >> 13; \234} while (0)235236#define CPR(dw, d_off) do { \237uint32_t cprcc; \238cprcc = 0; \239CPR1((dw)[(d_off) + 0], cprcc); \240CPR1((dw)[(d_off) + 1], cprcc); \241CPR1((dw)[(d_off) + 2], cprcc); \242CPR1((dw)[(d_off) + 3], cprcc); \243CPR1((dw)[(d_off) + 4], cprcc); \244CPR1((dw)[(d_off) + 5], cprcc); \245CPR1((dw)[(d_off) + 6], cprcc); \246CPR1((dw)[(d_off) + 7], cprcc); \247CPR1((dw)[(d_off) + 8], cprcc); \248(dw)[(d_off) + 9] = cprcc; \249} while (0)250251memcpy(u, a, 20 * sizeof *a);252ZADD(u, 4, a, 0, a, 1);253ZADD(u, 5, a, 2, a, 3);254ZADD(u, 6, a, 0, a, 2);255ZADD(u, 7, a, 1, a, 3);256ZADD(u, 8, u, 6, u, 7);257258memcpy(v, b, 20 * sizeof *b);259ZADD(v, 4, b, 0, b, 1);260ZADD(v, 5, b, 2, b, 3);261ZADD(v, 6, b, 0, b, 2);262ZADD(v, 7, b, 1, b, 3);263ZADD(v, 8, v, 6, v, 7);264265/*266* Do the eight first 8x8 muls. Source words are at most 16382267* each, so we can add product results together "as is" in 32-bit268* words.269*/270for (i = 0; i < 40; i += 5) {271w[(i << 1) + 0] = MUL15(u[i + 0], v[i + 0]);272w[(i << 1) + 1] = MUL15(u[i + 0], v[i + 1])273+ MUL15(u[i + 1], v[i + 0]);274w[(i << 1) + 2] = MUL15(u[i + 0], v[i + 2])275+ MUL15(u[i + 1], v[i + 1])276+ MUL15(u[i + 2], v[i + 0]);277w[(i << 1) + 3] = MUL15(u[i + 0], v[i + 3])278+ MUL15(u[i + 1], v[i + 2])279+ MUL15(u[i + 2], v[i + 1])280+ MUL15(u[i + 3], v[i + 0]);281w[(i << 1) + 4] = MUL15(u[i + 0], v[i + 4])282+ MUL15(u[i + 1], v[i + 3])283+ MUL15(u[i + 2], v[i + 2])284+ MUL15(u[i + 3], v[i + 1])285+ MUL15(u[i + 4], v[i + 0]);286w[(i << 1) + 5] = MUL15(u[i + 1], v[i + 4])287+ MUL15(u[i + 2], v[i + 3])288+ MUL15(u[i + 3], v[i + 2])289+ MUL15(u[i + 4], v[i + 1]);290w[(i << 1) + 6] = MUL15(u[i + 2], v[i + 4])291+ MUL15(u[i + 3], v[i + 3])292+ MUL15(u[i + 4], v[i + 2]);293w[(i << 1) + 7] = MUL15(u[i + 3], v[i + 4])294+ MUL15(u[i + 4], v[i + 3]);295w[(i << 1) + 8] = MUL15(u[i + 4], v[i + 4]);296w[(i << 1) + 9] = 0;297}298299/*300* For the 9th multiplication, source words are up to 32764,301* so we must do some carry propagation. If we add up to302* 4 products and the carry is no more than 524224, then the303* result fits in 32 bits, and the next carry will be no more304* than 524224 (because 4*(32764^2)+524224 < 8192*524225).305*306* We thus just skip one of the products in the middle word,307* then do a carry propagation (this reduces words to 13 bits308* each, except possibly the last, which may use up to 17 bits309* or so), then add the missing product.310*/311w[80 + 0] = MUL15(u[40 + 0], v[40 + 0]);312w[80 + 1] = MUL15(u[40 + 0], v[40 + 1])313+ MUL15(u[40 + 1], v[40 + 0]);314w[80 + 2] = MUL15(u[40 + 0], v[40 + 2])315+ MUL15(u[40 + 1], v[40 + 1])316+ MUL15(u[40 + 2], v[40 + 0]);317w[80 + 3] = MUL15(u[40 + 0], v[40 + 3])318+ MUL15(u[40 + 1], v[40 + 2])319+ MUL15(u[40 + 2], v[40 + 1])320+ MUL15(u[40 + 3], v[40 + 0]);321w[80 + 4] = MUL15(u[40 + 0], v[40 + 4])322+ MUL15(u[40 + 1], v[40 + 3])323+ MUL15(u[40 + 2], v[40 + 2])324+ MUL15(u[40 + 3], v[40 + 1]);325/* + MUL15(u[40 + 4], v[40 + 0]) */326w[80 + 5] = MUL15(u[40 + 1], v[40 + 4])327+ MUL15(u[40 + 2], v[40 + 3])328+ MUL15(u[40 + 3], v[40 + 2])329+ MUL15(u[40 + 4], v[40 + 1]);330w[80 + 6] = MUL15(u[40 + 2], v[40 + 4])331+ MUL15(u[40 + 3], v[40 + 3])332+ MUL15(u[40 + 4], v[40 + 2]);333w[80 + 7] = MUL15(u[40 + 3], v[40 + 4])334+ MUL15(u[40 + 4], v[40 + 3]);335w[80 + 8] = MUL15(u[40 + 4], v[40 + 4]);336337CPR(w, 80);338339w[80 + 4] += MUL15(u[40 + 4], v[40 + 0]);340341/*342* The products on 14-bit words in slots 6 and 7 yield values343* up to 5*(16382^2) each, and we need to subtract two such344* values from the higher word. We need the subtraction to fit345* in a _signed_ 32-bit integer, i.e. 31 bits + a sign bit.346* However, 10*(16382^2) does not fit. So we must perform a347* bit of reduction here.348*/349CPR(w, 60);350CPR(w, 70);351352/*353* Recompose results.354*/355356/* 0..1*0..1 into 0..3 */357ZSUB2F(w, 8, w, 0, w, 2);358ZSUB2F(w, 9, w, 1, w, 3);359ZADDT(w, 1, w, 8);360ZADDT(w, 2, w, 9);361362/* 2..3*2..3 into 4..7 */363ZSUB2F(w, 10, w, 4, w, 6);364ZSUB2F(w, 11, w, 5, w, 7);365ZADDT(w, 5, w, 10);366ZADDT(w, 6, w, 11);367368/* (0..1+2..3)*(0..1+2..3) into 12..15 */369ZSUB2F(w, 16, w, 12, w, 14);370ZSUB2F(w, 17, w, 13, w, 15);371ZADDT(w, 13, w, 16);372ZADDT(w, 14, w, 17);373374/* first-level recomposition */375ZSUB2F(w, 12, w, 0, w, 4);376ZSUB2F(w, 13, w, 1, w, 5);377ZSUB2F(w, 14, w, 2, w, 6);378ZSUB2F(w, 15, w, 3, w, 7);379ZADDT(w, 2, w, 12);380ZADDT(w, 3, w, 13);381ZADDT(w, 4, w, 14);382ZADDT(w, 5, w, 15);383384/*385* Perform carry propagation to bring all words down to 13 bits.386*/387cc = norm13(d, w, 40);388d[39] += (cc << 13);389390#undef ZADD391#undef ZADDT392#undef ZSUB2F393#undef CPR1394#undef CPR395}396397static inline void398square20(uint32_t *d, const uint32_t *a)399{400mul20(d, a, a);401}402403#else404405static void406mul20(uint32_t *d, const uint32_t *a, const uint32_t *b)407{408uint32_t t[39];409410t[ 0] = MUL15(a[ 0], b[ 0]);411t[ 1] = MUL15(a[ 0], b[ 1])412+ MUL15(a[ 1], b[ 0]);413t[ 2] = MUL15(a[ 0], b[ 2])414+ MUL15(a[ 1], b[ 1])415+ MUL15(a[ 2], b[ 0]);416t[ 3] = MUL15(a[ 0], b[ 3])417+ MUL15(a[ 1], b[ 2])418+ MUL15(a[ 2], b[ 1])419+ MUL15(a[ 3], b[ 0]);420t[ 4] = MUL15(a[ 0], b[ 4])421+ MUL15(a[ 1], b[ 3])422+ MUL15(a[ 2], b[ 2])423+ MUL15(a[ 3], b[ 1])424+ MUL15(a[ 4], b[ 0]);425t[ 5] = MUL15(a[ 0], b[ 5])426+ MUL15(a[ 1], b[ 4])427+ MUL15(a[ 2], b[ 3])428+ MUL15(a[ 3], b[ 2])429+ MUL15(a[ 4], b[ 1])430+ MUL15(a[ 5], b[ 0]);431t[ 6] = MUL15(a[ 0], b[ 6])432+ MUL15(a[ 1], b[ 5])433+ MUL15(a[ 2], b[ 4])434+ MUL15(a[ 3], b[ 3])435+ MUL15(a[ 4], b[ 2])436+ MUL15(a[ 5], b[ 1])437+ MUL15(a[ 6], b[ 0]);438t[ 7] = MUL15(a[ 0], b[ 7])439+ MUL15(a[ 1], b[ 6])440+ MUL15(a[ 2], b[ 5])441+ MUL15(a[ 3], b[ 4])442+ MUL15(a[ 4], b[ 3])443+ MUL15(a[ 5], b[ 2])444+ MUL15(a[ 6], b[ 1])445+ MUL15(a[ 7], b[ 0]);446t[ 8] = MUL15(a[ 0], b[ 8])447+ MUL15(a[ 1], b[ 7])448+ MUL15(a[ 2], b[ 6])449+ MUL15(a[ 3], b[ 5])450+ MUL15(a[ 4], b[ 4])451+ MUL15(a[ 5], b[ 3])452+ MUL15(a[ 6], b[ 2])453+ MUL15(a[ 7], b[ 1])454+ MUL15(a[ 8], b[ 0]);455t[ 9] = MUL15(a[ 0], b[ 9])456+ MUL15(a[ 1], b[ 8])457+ MUL15(a[ 2], b[ 7])458+ MUL15(a[ 3], b[ 6])459+ MUL15(a[ 4], b[ 5])460+ MUL15(a[ 5], b[ 4])461+ MUL15(a[ 6], b[ 3])462+ MUL15(a[ 7], b[ 2])463+ MUL15(a[ 8], b[ 1])464+ MUL15(a[ 9], b[ 0]);465t[10] = MUL15(a[ 0], b[10])466+ MUL15(a[ 1], b[ 9])467+ MUL15(a[ 2], b[ 8])468+ MUL15(a[ 3], b[ 7])469+ MUL15(a[ 4], b[ 6])470+ MUL15(a[ 5], b[ 5])471+ MUL15(a[ 6], b[ 4])472+ MUL15(a[ 7], b[ 3])473+ MUL15(a[ 8], b[ 2])474+ MUL15(a[ 9], b[ 1])475+ MUL15(a[10], b[ 0]);476t[11] = MUL15(a[ 0], b[11])477+ MUL15(a[ 1], b[10])478+ MUL15(a[ 2], b[ 9])479+ MUL15(a[ 3], b[ 8])480+ MUL15(a[ 4], b[ 7])481+ MUL15(a[ 5], b[ 6])482+ MUL15(a[ 6], b[ 5])483+ MUL15(a[ 7], b[ 4])484+ MUL15(a[ 8], b[ 3])485+ MUL15(a[ 9], b[ 2])486+ MUL15(a[10], b[ 1])487+ MUL15(a[11], b[ 0]);488t[12] = MUL15(a[ 0], b[12])489+ MUL15(a[ 1], b[11])490+ MUL15(a[ 2], b[10])491+ MUL15(a[ 3], b[ 9])492+ MUL15(a[ 4], b[ 8])493+ MUL15(a[ 5], b[ 7])494+ MUL15(a[ 6], b[ 6])495+ MUL15(a[ 7], b[ 5])496+ MUL15(a[ 8], b[ 4])497+ MUL15(a[ 9], b[ 3])498+ MUL15(a[10], b[ 2])499+ MUL15(a[11], b[ 1])500+ MUL15(a[12], b[ 0]);501t[13] = MUL15(a[ 0], b[13])502+ MUL15(a[ 1], b[12])503+ MUL15(a[ 2], b[11])504+ MUL15(a[ 3], b[10])505+ MUL15(a[ 4], b[ 9])506+ MUL15(a[ 5], b[ 8])507+ MUL15(a[ 6], b[ 7])508+ MUL15(a[ 7], b[ 6])509+ MUL15(a[ 8], b[ 5])510+ MUL15(a[ 9], b[ 4])511+ MUL15(a[10], b[ 3])512+ MUL15(a[11], b[ 2])513+ MUL15(a[12], b[ 1])514+ MUL15(a[13], b[ 0]);515t[14] = MUL15(a[ 0], b[14])516+ MUL15(a[ 1], b[13])517+ MUL15(a[ 2], b[12])518+ MUL15(a[ 3], b[11])519+ MUL15(a[ 4], b[10])520+ MUL15(a[ 5], b[ 9])521+ MUL15(a[ 6], b[ 8])522+ MUL15(a[ 7], b[ 7])523+ MUL15(a[ 8], b[ 6])524+ MUL15(a[ 9], b[ 5])525+ MUL15(a[10], b[ 4])526+ MUL15(a[11], b[ 3])527+ MUL15(a[12], b[ 2])528+ MUL15(a[13], b[ 1])529+ MUL15(a[14], b[ 0]);530t[15] = MUL15(a[ 0], b[15])531+ MUL15(a[ 1], b[14])532+ MUL15(a[ 2], b[13])533+ MUL15(a[ 3], b[12])534+ MUL15(a[ 4], b[11])535+ MUL15(a[ 5], b[10])536+ MUL15(a[ 6], b[ 9])537+ MUL15(a[ 7], b[ 8])538+ MUL15(a[ 8], b[ 7])539+ MUL15(a[ 9], b[ 6])540+ MUL15(a[10], b[ 5])541+ MUL15(a[11], b[ 4])542+ MUL15(a[12], b[ 3])543+ MUL15(a[13], b[ 2])544+ MUL15(a[14], b[ 1])545+ MUL15(a[15], b[ 0]);546t[16] = MUL15(a[ 0], b[16])547+ MUL15(a[ 1], b[15])548+ MUL15(a[ 2], b[14])549+ MUL15(a[ 3], b[13])550+ MUL15(a[ 4], b[12])551+ MUL15(a[ 5], b[11])552+ MUL15(a[ 6], b[10])553+ MUL15(a[ 7], b[ 9])554+ MUL15(a[ 8], b[ 8])555+ MUL15(a[ 9], b[ 7])556+ MUL15(a[10], b[ 6])557+ MUL15(a[11], b[ 5])558+ MUL15(a[12], b[ 4])559+ MUL15(a[13], b[ 3])560+ MUL15(a[14], b[ 2])561+ MUL15(a[15], b[ 1])562+ MUL15(a[16], b[ 0]);563t[17] = MUL15(a[ 0], b[17])564+ MUL15(a[ 1], b[16])565+ MUL15(a[ 2], b[15])566+ MUL15(a[ 3], b[14])567+ MUL15(a[ 4], b[13])568+ MUL15(a[ 5], b[12])569+ MUL15(a[ 6], b[11])570+ MUL15(a[ 7], b[10])571+ MUL15(a[ 8], b[ 9])572+ MUL15(a[ 9], b[ 8])573+ MUL15(a[10], b[ 7])574+ MUL15(a[11], b[ 6])575+ MUL15(a[12], b[ 5])576+ MUL15(a[13], b[ 4])577+ MUL15(a[14], b[ 3])578+ MUL15(a[15], b[ 2])579+ MUL15(a[16], b[ 1])580+ MUL15(a[17], b[ 0]);581t[18] = MUL15(a[ 0], b[18])582+ MUL15(a[ 1], b[17])583+ MUL15(a[ 2], b[16])584+ MUL15(a[ 3], b[15])585+ MUL15(a[ 4], b[14])586+ MUL15(a[ 5], b[13])587+ MUL15(a[ 6], b[12])588+ MUL15(a[ 7], b[11])589+ MUL15(a[ 8], b[10])590+ MUL15(a[ 9], b[ 9])591+ MUL15(a[10], b[ 8])592+ MUL15(a[11], b[ 7])593+ MUL15(a[12], b[ 6])594+ MUL15(a[13], b[ 5])595+ MUL15(a[14], b[ 4])596+ MUL15(a[15], b[ 3])597+ MUL15(a[16], b[ 2])598+ MUL15(a[17], b[ 1])599+ MUL15(a[18], b[ 0]);600t[19] = MUL15(a[ 0], b[19])601+ MUL15(a[ 1], b[18])602+ MUL15(a[ 2], b[17])603+ MUL15(a[ 3], b[16])604+ MUL15(a[ 4], b[15])605+ MUL15(a[ 5], b[14])606+ MUL15(a[ 6], b[13])607+ MUL15(a[ 7], b[12])608+ MUL15(a[ 8], b[11])609+ MUL15(a[ 9], b[10])610+ MUL15(a[10], b[ 9])611+ MUL15(a[11], b[ 8])612+ MUL15(a[12], b[ 7])613+ MUL15(a[13], b[ 6])614+ MUL15(a[14], b[ 5])615+ MUL15(a[15], b[ 4])616+ MUL15(a[16], b[ 3])617+ MUL15(a[17], b[ 2])618+ MUL15(a[18], b[ 1])619+ MUL15(a[19], b[ 0]);620t[20] = MUL15(a[ 1], b[19])621+ MUL15(a[ 2], b[18])622+ MUL15(a[ 3], b[17])623+ MUL15(a[ 4], b[16])624+ MUL15(a[ 5], b[15])625+ MUL15(a[ 6], b[14])626+ MUL15(a[ 7], b[13])627+ MUL15(a[ 8], b[12])628+ MUL15(a[ 9], b[11])629+ MUL15(a[10], b[10])630+ MUL15(a[11], b[ 9])631+ MUL15(a[12], b[ 8])632+ MUL15(a[13], b[ 7])633+ MUL15(a[14], b[ 6])634+ MUL15(a[15], b[ 5])635+ MUL15(a[16], b[ 4])636+ MUL15(a[17], b[ 3])637+ MUL15(a[18], b[ 2])638+ MUL15(a[19], b[ 1]);639t[21] = MUL15(a[ 2], b[19])640+ MUL15(a[ 3], b[18])641+ MUL15(a[ 4], b[17])642+ MUL15(a[ 5], b[16])643+ MUL15(a[ 6], b[15])644+ MUL15(a[ 7], b[14])645+ MUL15(a[ 8], b[13])646+ MUL15(a[ 9], b[12])647+ MUL15(a[10], b[11])648+ MUL15(a[11], b[10])649+ MUL15(a[12], b[ 9])650+ MUL15(a[13], b[ 8])651+ MUL15(a[14], b[ 7])652+ MUL15(a[15], b[ 6])653+ MUL15(a[16], b[ 5])654+ MUL15(a[17], b[ 4])655+ MUL15(a[18], b[ 3])656+ MUL15(a[19], b[ 2]);657t[22] = MUL15(a[ 3], b[19])658+ MUL15(a[ 4], b[18])659+ MUL15(a[ 5], b[17])660+ MUL15(a[ 6], b[16])661+ MUL15(a[ 7], b[15])662+ MUL15(a[ 8], b[14])663+ MUL15(a[ 9], b[13])664+ MUL15(a[10], b[12])665+ MUL15(a[11], b[11])666+ MUL15(a[12], b[10])667+ MUL15(a[13], b[ 9])668+ MUL15(a[14], b[ 8])669+ MUL15(a[15], b[ 7])670+ MUL15(a[16], b[ 6])671+ MUL15(a[17], b[ 5])672+ MUL15(a[18], b[ 4])673+ MUL15(a[19], b[ 3]);674t[23] = MUL15(a[ 4], b[19])675+ MUL15(a[ 5], b[18])676+ MUL15(a[ 6], b[17])677+ MUL15(a[ 7], b[16])678+ MUL15(a[ 8], b[15])679+ MUL15(a[ 9], b[14])680+ MUL15(a[10], b[13])681+ MUL15(a[11], b[12])682+ MUL15(a[12], b[11])683+ MUL15(a[13], b[10])684+ MUL15(a[14], b[ 9])685+ MUL15(a[15], b[ 8])686+ MUL15(a[16], b[ 7])687+ MUL15(a[17], b[ 6])688+ MUL15(a[18], b[ 5])689+ MUL15(a[19], b[ 4]);690t[24] = MUL15(a[ 5], b[19])691+ MUL15(a[ 6], b[18])692+ MUL15(a[ 7], b[17])693+ MUL15(a[ 8], b[16])694+ MUL15(a[ 9], b[15])695+ MUL15(a[10], b[14])696+ MUL15(a[11], b[13])697+ MUL15(a[12], b[12])698+ MUL15(a[13], b[11])699+ MUL15(a[14], b[10])700+ MUL15(a[15], b[ 9])701+ MUL15(a[16], b[ 8])702+ MUL15(a[17], b[ 7])703+ MUL15(a[18], b[ 6])704+ MUL15(a[19], b[ 5]);705t[25] = MUL15(a[ 6], b[19])706+ MUL15(a[ 7], b[18])707+ MUL15(a[ 8], b[17])708+ MUL15(a[ 9], b[16])709+ MUL15(a[10], b[15])710+ MUL15(a[11], b[14])711+ MUL15(a[12], b[13])712+ MUL15(a[13], b[12])713+ MUL15(a[14], b[11])714+ MUL15(a[15], b[10])715+ MUL15(a[16], b[ 9])716+ MUL15(a[17], b[ 8])717+ MUL15(a[18], b[ 7])718+ MUL15(a[19], b[ 6]);719t[26] = MUL15(a[ 7], b[19])720+ MUL15(a[ 8], b[18])721+ MUL15(a[ 9], b[17])722+ MUL15(a[10], b[16])723+ MUL15(a[11], b[15])724+ MUL15(a[12], b[14])725+ MUL15(a[13], b[13])726+ MUL15(a[14], b[12])727+ MUL15(a[15], b[11])728+ MUL15(a[16], b[10])729+ MUL15(a[17], b[ 9])730+ MUL15(a[18], b[ 8])731+ MUL15(a[19], b[ 7]);732t[27] = MUL15(a[ 8], b[19])733+ MUL15(a[ 9], b[18])734+ MUL15(a[10], b[17])735+ MUL15(a[11], b[16])736+ MUL15(a[12], b[15])737+ MUL15(a[13], b[14])738+ MUL15(a[14], b[13])739+ MUL15(a[15], b[12])740+ MUL15(a[16], b[11])741+ MUL15(a[17], b[10])742+ MUL15(a[18], b[ 9])743+ MUL15(a[19], b[ 8]);744t[28] = MUL15(a[ 9], b[19])745+ MUL15(a[10], b[18])746+ MUL15(a[11], b[17])747+ MUL15(a[12], b[16])748+ MUL15(a[13], b[15])749+ MUL15(a[14], b[14])750+ MUL15(a[15], b[13])751+ MUL15(a[16], b[12])752+ MUL15(a[17], b[11])753+ MUL15(a[18], b[10])754+ MUL15(a[19], b[ 9]);755t[29] = MUL15(a[10], b[19])756+ MUL15(a[11], b[18])757+ MUL15(a[12], b[17])758+ MUL15(a[13], b[16])759+ MUL15(a[14], b[15])760+ MUL15(a[15], b[14])761+ MUL15(a[16], b[13])762+ MUL15(a[17], b[12])763+ MUL15(a[18], b[11])764+ MUL15(a[19], b[10]);765t[30] = MUL15(a[11], b[19])766+ MUL15(a[12], b[18])767+ MUL15(a[13], b[17])768+ MUL15(a[14], b[16])769+ MUL15(a[15], b[15])770+ MUL15(a[16], b[14])771+ MUL15(a[17], b[13])772+ MUL15(a[18], b[12])773+ MUL15(a[19], b[11]);774t[31] = MUL15(a[12], b[19])775+ MUL15(a[13], b[18])776+ MUL15(a[14], b[17])777+ MUL15(a[15], b[16])778+ MUL15(a[16], b[15])779+ MUL15(a[17], b[14])780+ MUL15(a[18], b[13])781+ MUL15(a[19], b[12]);782t[32] = MUL15(a[13], b[19])783+ MUL15(a[14], b[18])784+ MUL15(a[15], b[17])785+ MUL15(a[16], b[16])786+ MUL15(a[17], b[15])787+ MUL15(a[18], b[14])788+ MUL15(a[19], b[13]);789t[33] = MUL15(a[14], b[19])790+ MUL15(a[15], b[18])791+ MUL15(a[16], b[17])792+ MUL15(a[17], b[16])793+ MUL15(a[18], b[15])794+ MUL15(a[19], b[14]);795t[34] = MUL15(a[15], b[19])796+ MUL15(a[16], b[18])797+ MUL15(a[17], b[17])798+ MUL15(a[18], b[16])799+ MUL15(a[19], b[15]);800t[35] = MUL15(a[16], b[19])801+ MUL15(a[17], b[18])802+ MUL15(a[18], b[17])803+ MUL15(a[19], b[16]);804t[36] = MUL15(a[17], b[19])805+ MUL15(a[18], b[18])806+ MUL15(a[19], b[17]);807t[37] = MUL15(a[18], b[19])808+ MUL15(a[19], b[18]);809t[38] = MUL15(a[19], b[19]);810811d[39] = norm13(d, t, 39);812}813814static void815square20(uint32_t *d, const uint32_t *a)816{817uint32_t t[39];818819t[ 0] = MUL15(a[ 0], a[ 0]);820t[ 1] = ((MUL15(a[ 0], a[ 1])) << 1);821t[ 2] = MUL15(a[ 1], a[ 1])822+ ((MUL15(a[ 0], a[ 2])) << 1);823t[ 3] = ((MUL15(a[ 0], a[ 3])824+ MUL15(a[ 1], a[ 2])) << 1);825t[ 4] = MUL15(a[ 2], a[ 2])826+ ((MUL15(a[ 0], a[ 4])827+ MUL15(a[ 1], a[ 3])) << 1);828t[ 5] = ((MUL15(a[ 0], a[ 5])829+ MUL15(a[ 1], a[ 4])830+ MUL15(a[ 2], a[ 3])) << 1);831t[ 6] = MUL15(a[ 3], a[ 3])832+ ((MUL15(a[ 0], a[ 6])833+ MUL15(a[ 1], a[ 5])834+ MUL15(a[ 2], a[ 4])) << 1);835t[ 7] = ((MUL15(a[ 0], a[ 7])836+ MUL15(a[ 1], a[ 6])837+ MUL15(a[ 2], a[ 5])838+ MUL15(a[ 3], a[ 4])) << 1);839t[ 8] = MUL15(a[ 4], a[ 4])840+ ((MUL15(a[ 0], a[ 8])841+ MUL15(a[ 1], a[ 7])842+ MUL15(a[ 2], a[ 6])843+ MUL15(a[ 3], a[ 5])) << 1);844t[ 9] = ((MUL15(a[ 0], a[ 9])845+ MUL15(a[ 1], a[ 8])846+ MUL15(a[ 2], a[ 7])847+ MUL15(a[ 3], a[ 6])848+ MUL15(a[ 4], a[ 5])) << 1);849t[10] = MUL15(a[ 5], a[ 5])850+ ((MUL15(a[ 0], a[10])851+ MUL15(a[ 1], a[ 9])852+ MUL15(a[ 2], a[ 8])853+ MUL15(a[ 3], a[ 7])854+ MUL15(a[ 4], a[ 6])) << 1);855t[11] = ((MUL15(a[ 0], a[11])856+ MUL15(a[ 1], a[10])857+ MUL15(a[ 2], a[ 9])858+ MUL15(a[ 3], a[ 8])859+ MUL15(a[ 4], a[ 7])860+ MUL15(a[ 5], a[ 6])) << 1);861t[12] = MUL15(a[ 6], a[ 6])862+ ((MUL15(a[ 0], a[12])863+ MUL15(a[ 1], a[11])864+ MUL15(a[ 2], a[10])865+ MUL15(a[ 3], a[ 9])866+ MUL15(a[ 4], a[ 8])867+ MUL15(a[ 5], a[ 7])) << 1);868t[13] = ((MUL15(a[ 0], a[13])869+ MUL15(a[ 1], a[12])870+ MUL15(a[ 2], a[11])871+ MUL15(a[ 3], a[10])872+ MUL15(a[ 4], a[ 9])873+ MUL15(a[ 5], a[ 8])874+ MUL15(a[ 6], a[ 7])) << 1);875t[14] = MUL15(a[ 7], a[ 7])876+ ((MUL15(a[ 0], a[14])877+ MUL15(a[ 1], a[13])878+ MUL15(a[ 2], a[12])879+ MUL15(a[ 3], a[11])880+ MUL15(a[ 4], a[10])881+ MUL15(a[ 5], a[ 9])882+ MUL15(a[ 6], a[ 8])) << 1);883t[15] = ((MUL15(a[ 0], a[15])884+ MUL15(a[ 1], a[14])885+ MUL15(a[ 2], a[13])886+ MUL15(a[ 3], a[12])887+ MUL15(a[ 4], a[11])888+ MUL15(a[ 5], a[10])889+ MUL15(a[ 6], a[ 9])890+ MUL15(a[ 7], a[ 8])) << 1);891t[16] = MUL15(a[ 8], a[ 8])892+ ((MUL15(a[ 0], a[16])893+ MUL15(a[ 1], a[15])894+ MUL15(a[ 2], a[14])895+ MUL15(a[ 3], a[13])896+ MUL15(a[ 4], a[12])897+ MUL15(a[ 5], a[11])898+ MUL15(a[ 6], a[10])899+ MUL15(a[ 7], a[ 9])) << 1);900t[17] = ((MUL15(a[ 0], a[17])901+ MUL15(a[ 1], a[16])902+ MUL15(a[ 2], a[15])903+ MUL15(a[ 3], a[14])904+ MUL15(a[ 4], a[13])905+ MUL15(a[ 5], a[12])906+ MUL15(a[ 6], a[11])907+ MUL15(a[ 7], a[10])908+ MUL15(a[ 8], a[ 9])) << 1);909t[18] = MUL15(a[ 9], a[ 9])910+ ((MUL15(a[ 0], a[18])911+ MUL15(a[ 1], a[17])912+ MUL15(a[ 2], a[16])913+ MUL15(a[ 3], a[15])914+ MUL15(a[ 4], a[14])915+ MUL15(a[ 5], a[13])916+ MUL15(a[ 6], a[12])917+ MUL15(a[ 7], a[11])918+ MUL15(a[ 8], a[10])) << 1);919t[19] = ((MUL15(a[ 0], a[19])920+ MUL15(a[ 1], a[18])921+ MUL15(a[ 2], a[17])922+ MUL15(a[ 3], a[16])923+ MUL15(a[ 4], a[15])924+ MUL15(a[ 5], a[14])925+ MUL15(a[ 6], a[13])926+ MUL15(a[ 7], a[12])927+ MUL15(a[ 8], a[11])928+ MUL15(a[ 9], a[10])) << 1);929t[20] = MUL15(a[10], a[10])930+ ((MUL15(a[ 1], a[19])931+ MUL15(a[ 2], a[18])932+ MUL15(a[ 3], a[17])933+ MUL15(a[ 4], a[16])934+ MUL15(a[ 5], a[15])935+ MUL15(a[ 6], a[14])936+ MUL15(a[ 7], a[13])937+ MUL15(a[ 8], a[12])938+ MUL15(a[ 9], a[11])) << 1);939t[21] = ((MUL15(a[ 2], a[19])940+ MUL15(a[ 3], a[18])941+ MUL15(a[ 4], a[17])942+ MUL15(a[ 5], a[16])943+ MUL15(a[ 6], a[15])944+ MUL15(a[ 7], a[14])945+ MUL15(a[ 8], a[13])946+ MUL15(a[ 9], a[12])947+ MUL15(a[10], a[11])) << 1);948t[22] = MUL15(a[11], a[11])949+ ((MUL15(a[ 3], a[19])950+ MUL15(a[ 4], a[18])951+ MUL15(a[ 5], a[17])952+ MUL15(a[ 6], a[16])953+ MUL15(a[ 7], a[15])954+ MUL15(a[ 8], a[14])955+ MUL15(a[ 9], a[13])956+ MUL15(a[10], a[12])) << 1);957t[23] = ((MUL15(a[ 4], a[19])958+ MUL15(a[ 5], a[18])959+ MUL15(a[ 6], a[17])960+ MUL15(a[ 7], a[16])961+ MUL15(a[ 8], a[15])962+ MUL15(a[ 9], a[14])963+ MUL15(a[10], a[13])964+ MUL15(a[11], a[12])) << 1);965t[24] = MUL15(a[12], a[12])966+ ((MUL15(a[ 5], a[19])967+ MUL15(a[ 6], a[18])968+ MUL15(a[ 7], a[17])969+ MUL15(a[ 8], a[16])970+ MUL15(a[ 9], a[15])971+ MUL15(a[10], a[14])972+ MUL15(a[11], a[13])) << 1);973t[25] = ((MUL15(a[ 6], a[19])974+ MUL15(a[ 7], a[18])975+ MUL15(a[ 8], a[17])976+ MUL15(a[ 9], a[16])977+ MUL15(a[10], a[15])978+ MUL15(a[11], a[14])979+ MUL15(a[12], a[13])) << 1);980t[26] = MUL15(a[13], a[13])981+ ((MUL15(a[ 7], a[19])982+ MUL15(a[ 8], a[18])983+ MUL15(a[ 9], a[17])984+ MUL15(a[10], a[16])985+ MUL15(a[11], a[15])986+ MUL15(a[12], a[14])) << 1);987t[27] = ((MUL15(a[ 8], a[19])988+ MUL15(a[ 9], a[18])989+ MUL15(a[10], a[17])990+ MUL15(a[11], a[16])991+ MUL15(a[12], a[15])992+ MUL15(a[13], a[14])) << 1);993t[28] = MUL15(a[14], a[14])994+ ((MUL15(a[ 9], a[19])995+ MUL15(a[10], a[18])996+ MUL15(a[11], a[17])997+ MUL15(a[12], a[16])998+ MUL15(a[13], a[15])) << 1);999t[29] = ((MUL15(a[10], a[19])1000+ MUL15(a[11], a[18])1001+ MUL15(a[12], a[17])1002+ MUL15(a[13], a[16])1003+ MUL15(a[14], a[15])) << 1);1004t[30] = MUL15(a[15], a[15])1005+ ((MUL15(a[11], a[19])1006+ MUL15(a[12], a[18])1007+ MUL15(a[13], a[17])1008+ MUL15(a[14], a[16])) << 1);1009t[31] = ((MUL15(a[12], a[19])1010+ MUL15(a[13], a[18])1011+ MUL15(a[14], a[17])1012+ MUL15(a[15], a[16])) << 1);1013t[32] = MUL15(a[16], a[16])1014+ ((MUL15(a[13], a[19])1015+ MUL15(a[14], a[18])1016+ MUL15(a[15], a[17])) << 1);1017t[33] = ((MUL15(a[14], a[19])1018+ MUL15(a[15], a[18])1019+ MUL15(a[16], a[17])) << 1);1020t[34] = MUL15(a[17], a[17])1021+ ((MUL15(a[15], a[19])1022+ MUL15(a[16], a[18])) << 1);1023t[35] = ((MUL15(a[16], a[19])1024+ MUL15(a[17], a[18])) << 1);1025t[36] = MUL15(a[18], a[18])1026+ ((MUL15(a[17], a[19])) << 1);1027t[37] = ((MUL15(a[18], a[19])) << 1);1028t[38] = MUL15(a[19], a[19]);10291030d[39] = norm13(d, t, 39);1031}10321033#endif10341035/*1036* Perform a "final reduction" in field F255 (field for Curve25519)1037* The source value must be less than twice the modulus. If the value1038* is not lower than the modulus, then the modulus is subtracted and1039* this function returns 1; otherwise, it leaves it untouched and it1040* returns 0.1041*/1042static uint32_t1043reduce_final_f255(uint32_t *d)1044{1045uint32_t t[20];1046uint32_t cc;1047int i;10481049memcpy(t, d, sizeof t);1050cc = 19;1051for (i = 0; i < 20; i ++) {1052uint32_t w;10531054w = t[i] + cc;1055cc = w >> 13;1056t[i] = w & 0x1FFF;1057}1058cc = t[19] >> 8;1059t[19] &= 0xFF;1060CCOPY(cc, d, t, sizeof t);1061return cc;1062}10631064static void1065f255_mulgen(uint32_t *d, const uint32_t *a, const uint32_t *b, int square)1066{1067uint32_t t[40], cc, w;10681069/*1070* Compute raw multiplication. All result words fit in 13 bits1071* each; upper word (t[39]) must fit on 5 bits, since the product1072* of two 256-bit integers must fit on 512 bits.1073*/1074if (square) {1075square20(t, a);1076} else {1077mul20(t, a, b);1078}10791080/*1081* Modular reduction: each high word is added where necessary.1082* Since the modulus is 2^255-19 and word 20 corresponds to1083* offset 20*13 = 260, word 20+k must be added to word k with1084* a factor of 19*2^5 = 608. The extra bits in word 19 are also1085* added that way.1086*/1087cc = MUL15(t[19] >> 8, 19);1088t[19] &= 0xFF;10891090#define MM1(x) do { \1091w = t[x] + cc + MUL15(t[(x) + 20], 608); \1092t[x] = w & 0x1FFF; \1093cc = w >> 13; \1094} while (0)10951096MM1( 0);1097MM1( 1);1098MM1( 2);1099MM1( 3);1100MM1( 4);1101MM1( 5);1102MM1( 6);1103MM1( 7);1104MM1( 8);1105MM1( 9);1106MM1(10);1107MM1(11);1108MM1(12);1109MM1(13);1110MM1(14);1111MM1(15);1112MM1(16);1113MM1(17);1114MM1(18);1115MM1(19);11161117#undef MM111181119cc = MUL15(w >> 8, 19);1120t[19] &= 0xFF;11211122#define MM2(x) do { \1123w = t[x] + cc; \1124d[x] = w & 0x1FFF; \1125cc = w >> 13; \1126} while (0)11271128MM2( 0);1129MM2( 1);1130MM2( 2);1131MM2( 3);1132MM2( 4);1133MM2( 5);1134MM2( 6);1135MM2( 7);1136MM2( 8);1137MM2( 9);1138MM2(10);1139MM2(11);1140MM2(12);1141MM2(13);1142MM2(14);1143MM2(15);1144MM2(16);1145MM2(17);1146MM2(18);1147MM2(19);11481149#undef MM21150}11511152/*1153* Perform a multiplication of two integers modulo 2^255-19.1154* Operands are arrays of 20 words, each containing 13 bits of data, in1155* little-endian order. Input value may be up to 2^256-1; on output, value1156* fits on 256 bits and is lower than twice the modulus.1157*1158* f255_mul() is the general multiplication, f255_square() is specialised1159* for squarings.1160*/1161#define f255_mul(d, a, b) f255_mulgen(d, a, b, 0)1162#define f255_square(d, a) f255_mulgen(d, a, a, 1)11631164/*1165* Add two values in F255. Partial reduction is performed (down to less1166* than twice the modulus).1167*/1168static void1169f255_add(uint32_t *d, const uint32_t *a, const uint32_t *b)1170{1171int i;1172uint32_t cc, w;11731174cc = 0;1175for (i = 0; i < 20; i ++) {1176w = a[i] + b[i] + cc;1177d[i] = w & 0x1FFF;1178cc = w >> 13;1179}1180cc = MUL15(w >> 8, 19);1181d[19] &= 0xFF;1182for (i = 0; i < 20; i ++) {1183w = d[i] + cc;1184d[i] = w & 0x1FFF;1185cc = w >> 13;1186}1187}11881189/*1190* Subtract one value from another in F255. Partial reduction is1191* performed (down to less than twice the modulus).1192*/1193static void1194f255_sub(uint32_t *d, const uint32_t *a, const uint32_t *b)1195{1196/*1197* We actually compute a - b + 2*p, so that the final value is1198* necessarily positive.1199*/1200int i;1201uint32_t cc, w;12021203cc = (uint32_t)-38;1204for (i = 0; i < 20; i ++) {1205w = a[i] - b[i] + cc;1206d[i] = w & 0x1FFF;1207cc = ARSH(w, 13);1208}1209cc = MUL15((w + 0x200) >> 8, 19);1210d[19] &= 0xFF;1211for (i = 0; i < 20; i ++) {1212w = d[i] + cc;1213d[i] = w & 0x1FFF;1214cc = w >> 13;1215}1216}12171218/*1219* Multiply an integer by the 'A24' constant (121665). Partial reduction1220* is performed (down to less than twice the modulus).1221*/1222static void1223f255_mul_a24(uint32_t *d, const uint32_t *a)1224{1225int i;1226uint32_t cc, w;12271228cc = 0;1229for (i = 0; i < 20; i ++) {1230w = MUL15(a[i], 121665) + cc;1231d[i] = w & 0x1FFF;1232cc = w >> 13;1233}1234cc = MUL15(w >> 8, 19);1235d[19] &= 0xFF;1236for (i = 0; i < 20; i ++) {1237w = d[i] + cc;1238d[i] = w & 0x1FFF;1239cc = w >> 13;1240}1241}12421243static const unsigned char GEN[] = {12440x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,12450x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,12460x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,12470x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x001248};12491250static const unsigned char ORDER[] = {12510x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,12520xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,12530xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,12540xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF1255};12561257static const unsigned char *1258api_generator(int curve, size_t *len)1259{1260(void)curve;1261*len = 32;1262return GEN;1263}12641265static const unsigned char *1266api_order(int curve, size_t *len)1267{1268(void)curve;1269*len = 32;1270return ORDER;1271}12721273static size_t1274api_xoff(int curve, size_t *len)1275{1276(void)curve;1277*len = 32;1278return 0;1279}12801281static void1282cswap(uint32_t *a, uint32_t *b, uint32_t ctl)1283{1284int i;12851286ctl = -ctl;1287for (i = 0; i < 20; i ++) {1288uint32_t aw, bw, tw;12891290aw = a[i];1291bw = b[i];1292tw = ctl & (aw ^ bw);1293a[i] = aw ^ tw;1294b[i] = bw ^ tw;1295}1296}12971298static uint32_t1299api_mul(unsigned char *G, size_t Glen,1300const unsigned char *kb, size_t kblen, int curve)1301{1302uint32_t x1[20], x2[20], x3[20], z2[20], z3[20];1303uint32_t a[20], aa[20], b[20], bb[20];1304uint32_t c[20], d[20], e[20], da[20], cb[20];1305unsigned char k[32];1306uint32_t swap;1307int i;13081309(void)curve;13101311/*1312* Points are encoded over exactly 32 bytes. Multipliers must fit1313* in 32 bytes as well.1314* RFC 7748 mandates that the high bit of the last point byte must1315* be ignored/cleared.1316*/1317if (Glen != 32 || kblen > 32) {1318return 0;1319}1320G[31] &= 0x7F;13211322/*1323* Initialise variables x1, x2, z2, x3 and z3. We set all of them1324* into Montgomery representation.1325*/1326x1[19] = le8_to_le13(x1, G, 32);1327memcpy(x3, x1, sizeof x1);1328memset(z2, 0, sizeof z2);1329memset(x2, 0, sizeof x2);1330x2[0] = 1;1331memset(z3, 0, sizeof z3);1332z3[0] = 1;13331334memset(k, 0, (sizeof k) - kblen);1335memcpy(k + (sizeof k) - kblen, kb, kblen);1336k[31] &= 0xF8;1337k[0] &= 0x7F;1338k[0] |= 0x40;13391340/* obsolete1341print_int("x1", x1);1342*/13431344swap = 0;1345for (i = 254; i >= 0; i --) {1346uint32_t kt;13471348kt = (k[31 - (i >> 3)] >> (i & 7)) & 1;1349swap ^= kt;1350cswap(x2, x3, swap);1351cswap(z2, z3, swap);1352swap = kt;13531354/* obsolete1355print_int("x2", x2);1356print_int("z2", z2);1357print_int("x3", x3);1358print_int("z3", z3);1359*/13601361f255_add(a, x2, z2);1362f255_square(aa, a);1363f255_sub(b, x2, z2);1364f255_square(bb, b);1365f255_sub(e, aa, bb);1366f255_add(c, x3, z3);1367f255_sub(d, x3, z3);1368f255_mul(da, d, a);1369f255_mul(cb, c, b);13701371/* obsolete1372print_int("a ", a);1373print_int("aa", aa);1374print_int("b ", b);1375print_int("bb", bb);1376print_int("e ", e);1377print_int("c ", c);1378print_int("d ", d);1379print_int("da", da);1380print_int("cb", cb);1381*/13821383f255_add(x3, da, cb);1384f255_square(x3, x3);1385f255_sub(z3, da, cb);1386f255_square(z3, z3);1387f255_mul(z3, z3, x1);1388f255_mul(x2, aa, bb);1389f255_mul_a24(z2, e);1390f255_add(z2, z2, aa);1391f255_mul(z2, e, z2);13921393/* obsolete1394print_int("x2", x2);1395print_int("z2", z2);1396print_int("x3", x3);1397print_int("z3", z3);1398*/1399}1400cswap(x2, x3, swap);1401cswap(z2, z3, swap);14021403/*1404* Inverse z2 with a modular exponentiation. This is a simple1405* square-and-multiply algorithm; we mutualise most non-squarings1406* since the exponent contains almost only ones.1407*/1408memcpy(a, z2, sizeof z2);1409for (i = 0; i < 15; i ++) {1410f255_square(a, a);1411f255_mul(a, a, z2);1412}1413memcpy(b, a, sizeof a);1414for (i = 0; i < 14; i ++) {1415int j;14161417for (j = 0; j < 16; j ++) {1418f255_square(b, b);1419}1420f255_mul(b, b, a);1421}1422for (i = 14; i >= 0; i --) {1423f255_square(b, b);1424if ((0xFFEB >> i) & 1) {1425f255_mul(b, z2, b);1426}1427}1428f255_mul(x2, x2, b);1429reduce_final_f255(x2);1430le13_to_le8(G, 32, x2);1431return 1;1432}14331434static size_t1435api_mulgen(unsigned char *R,1436const unsigned char *x, size_t xlen, int curve)1437{1438const unsigned char *G;1439size_t Glen;14401441G = api_generator(curve, &Glen);1442memcpy(R, G, Glen);1443api_mul(R, Glen, x, xlen, curve);1444return Glen;1445}14461447static uint32_t1448api_muladd(unsigned char *A, const unsigned char *B, size_t len,1449const unsigned char *x, size_t xlen,1450const unsigned char *y, size_t ylen, int curve)1451{1452/*1453* We don't implement this method, since it is used for ECDSA1454* only, and there is no ECDSA over Curve25519 (which instead1455* uses EdDSA).1456*/1457(void)A;1458(void)B;1459(void)len;1460(void)x;1461(void)xlen;1462(void)y;1463(void)ylen;1464(void)curve;1465return 0;1466}14671468/* see bearssl_ec.h */1469const br_ec_impl br_ec_c25519_m15 = {1470(uint32_t)0x20000000,1471&api_generator,1472&api_order,1473&api_xoff,1474&api_mul,1475&api_mulgen,1476&api_muladd1477};147814791480