Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/bearssl/src/ec/ec_c25519_m62.c
39536 views
1
/*
2
* Copyright (c) 2018 Thomas Pornin <[email protected]>
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining
5
* a copy of this software and associated documentation files (the
6
* "Software"), to deal in the Software without restriction, including
7
* without limitation the rights to use, copy, modify, merge, publish,
8
* distribute, sublicense, and/or sell copies of the Software, and to
9
* permit persons to whom the Software is furnished to do so, subject to
10
* the following conditions:
11
*
12
* The above copyright notice and this permission notice shall be
13
* included in all copies or substantial portions of the Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
* SOFTWARE.
23
*/
24
25
#include "inner.h"
26
27
#if BR_INT128 || BR_UMUL128
28
29
#if BR_UMUL128
30
#include <intrin.h>
31
#endif
32
33
static const unsigned char GEN[] = {
34
0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
35
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
36
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
37
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
38
};
39
40
static const unsigned char ORDER[] = {
41
0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
42
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
43
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
44
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
45
};
46
47
static const unsigned char *
48
api_generator(int curve, size_t *len)
49
{
50
(void)curve;
51
*len = 32;
52
return GEN;
53
}
54
55
static const unsigned char *
56
api_order(int curve, size_t *len)
57
{
58
(void)curve;
59
*len = 32;
60
return ORDER;
61
}
62
63
static size_t
64
api_xoff(int curve, size_t *len)
65
{
66
(void)curve;
67
*len = 32;
68
return 0;
69
}
70
71
/*
72
* A field element is encoded as five 64-bit integers, in basis 2^51.
73
* Limbs may be occasionally larger than 2^51, to save on carry
74
* propagation costs.
75
*/
76
77
#define MASK51 (((uint64_t)1 << 51) - (uint64_t)1)
78
79
/*
80
* Swap two field elements, conditionally on a flag.
81
*/
82
static inline void
83
f255_cswap(uint64_t *a, uint64_t *b, uint32_t ctl)
84
{
85
uint64_t m, w;
86
87
m = -(uint64_t)ctl;
88
w = m & (a[0] ^ b[0]); a[0] ^= w; b[0] ^= w;
89
w = m & (a[1] ^ b[1]); a[1] ^= w; b[1] ^= w;
90
w = m & (a[2] ^ b[2]); a[2] ^= w; b[2] ^= w;
91
w = m & (a[3] ^ b[3]); a[3] ^= w; b[3] ^= w;
92
w = m & (a[4] ^ b[4]); a[4] ^= w; b[4] ^= w;
93
}
94
95
/*
96
* Addition with no carry propagation. Limbs double in size.
97
*/
98
static inline void
99
f255_add(uint64_t *d, const uint64_t *a, const uint64_t *b)
100
{
101
d[0] = a[0] + b[0];
102
d[1] = a[1] + b[1];
103
d[2] = a[2] + b[2];
104
d[3] = a[3] + b[3];
105
d[4] = a[4] + b[4];
106
}
107
108
/*
109
* Subtraction.
110
* On input, limbs must fit on 60 bits each. On output, result is
111
* partially reduced, with max value 2^255+19456; moreover, all
112
* limbs will fit on 51 bits, except the low limb, which may have
113
* value up to 2^51+19455.
114
*/
115
static inline void
116
f255_sub(uint64_t *d, const uint64_t *a, const uint64_t *b)
117
{
118
uint64_t cc, w;
119
120
/*
121
* We compute d = (2^255-19)*1024 + a - b. Since the limbs
122
* fit on 60 bits, the maximum value of operands are slightly
123
* more than 2^264, but much less than 2^265-19456. This
124
* ensures that the result is positive.
125
*/
126
127
/*
128
* Initial carry is 19456, since we add 2^265-19456. Each
129
* individual subtraction may yield a carry up to 513.
130
*/
131
w = a[0] - b[0] - 19456;
132
d[0] = w & MASK51;
133
cc = -(w >> 51) & 0x3FF;
134
w = a[1] - b[1] - cc;
135
d[1] = w & MASK51;
136
cc = -(w >> 51) & 0x3FF;
137
w = a[2] - b[2] - cc;
138
d[2] = w & MASK51;
139
cc = -(w >> 51) & 0x3FF;
140
w = a[3] - b[3] - cc;
141
d[3] = w & MASK51;
142
cc = -(w >> 51) & 0x3FF;
143
d[4] = ((uint64_t)1 << 61) + a[4] - b[4] - cc;
144
145
/*
146
* Partial reduction. The intermediate result may be up to
147
* slightly above 2^265, but less than 2^265+2^255. When we
148
* truncate to 255 bits, the upper bits will be at most 1024.
149
*/
150
d[0] += 19 * (d[4] >> 51);
151
d[4] &= MASK51;
152
}
153
154
/*
155
* UMUL51(hi, lo, x, y) computes:
156
*
157
* hi = floor((x * y) / (2^51))
158
* lo = x * y mod 2^51
159
*
160
* Note that lo < 2^51, but "hi" may be larger, if the input operands are
161
* larger.
162
*/
163
#if BR_INT128
164
165
#define UMUL51(hi, lo, x, y) do { \
166
unsigned __int128 umul_tmp; \
167
umul_tmp = (unsigned __int128)(x) * (unsigned __int128)(y); \
168
(hi) = (uint64_t)(umul_tmp >> 51); \
169
(lo) = (uint64_t)umul_tmp & MASK51; \
170
} while (0)
171
172
#elif BR_UMUL128
173
174
#define UMUL51(hi, lo, x, y) do { \
175
uint64_t umul_hi, umul_lo; \
176
umul_lo = _umul128((x), (y), &umul_hi); \
177
(hi) = (umul_hi << 13) | (umul_lo >> 51); \
178
(lo) = umul_lo & MASK51; \
179
} while (0)
180
181
#endif
182
183
/*
184
* Multiplication.
185
* On input, limbs must fit on 54 bits each.
186
* On output, limb 0 is at most 2^51 + 155647, and other limbs fit
187
* on 51 bits each.
188
*/
189
static inline void
190
f255_mul(uint64_t *d, uint64_t *a, uint64_t *b)
191
{
192
uint64_t t[10], hi, lo, w, cc;
193
194
/*
195
* Perform cross products, accumulating values without carry
196
* propagation.
197
*
198
* Since input limbs fit on 54 bits each, each individual
199
* UMUL51 will produce a "hi" of less than 2^57. The maximum
200
* sum will be at most 5*(2^57-1) + 4*(2^51-1) (for t[5]),
201
* i.e. less than 324*2^51.
202
*/
203
204
UMUL51(t[1], t[0], a[0], b[0]);
205
206
UMUL51(t[2], lo, a[1], b[0]); t[1] += lo;
207
UMUL51(hi, lo, a[0], b[1]); t[1] += lo; t[2] += hi;
208
209
UMUL51(t[3], lo, a[2], b[0]); t[2] += lo;
210
UMUL51(hi, lo, a[1], b[1]); t[2] += lo; t[3] += hi;
211
UMUL51(hi, lo, a[0], b[2]); t[2] += lo; t[3] += hi;
212
213
UMUL51(t[4], lo, a[3], b[0]); t[3] += lo;
214
UMUL51(hi, lo, a[2], b[1]); t[3] += lo; t[4] += hi;
215
UMUL51(hi, lo, a[1], b[2]); t[3] += lo; t[4] += hi;
216
UMUL51(hi, lo, a[0], b[3]); t[3] += lo; t[4] += hi;
217
218
UMUL51(t[5], lo, a[4], b[0]); t[4] += lo;
219
UMUL51(hi, lo, a[3], b[1]); t[4] += lo; t[5] += hi;
220
UMUL51(hi, lo, a[2], b[2]); t[4] += lo; t[5] += hi;
221
UMUL51(hi, lo, a[1], b[3]); t[4] += lo; t[5] += hi;
222
UMUL51(hi, lo, a[0], b[4]); t[4] += lo; t[5] += hi;
223
224
UMUL51(t[6], lo, a[4], b[1]); t[5] += lo;
225
UMUL51(hi, lo, a[3], b[2]); t[5] += lo; t[6] += hi;
226
UMUL51(hi, lo, a[2], b[3]); t[5] += lo; t[6] += hi;
227
UMUL51(hi, lo, a[1], b[4]); t[5] += lo; t[6] += hi;
228
229
UMUL51(t[7], lo, a[4], b[2]); t[6] += lo;
230
UMUL51(hi, lo, a[3], b[3]); t[6] += lo; t[7] += hi;
231
UMUL51(hi, lo, a[2], b[4]); t[6] += lo; t[7] += hi;
232
233
UMUL51(t[8], lo, a[4], b[3]); t[7] += lo;
234
UMUL51(hi, lo, a[3], b[4]); t[7] += lo; t[8] += hi;
235
236
UMUL51(t[9], lo, a[4], b[4]); t[8] += lo;
237
238
/*
239
* The upper words t[5]..t[9] are folded back into the lower
240
* words, using the rule that 2^255 = 19 in the field.
241
*
242
* Since each t[i] is less than 324*2^51, the additions below
243
* will yield less than 6480*2^51 in each limb; this fits in
244
* 64 bits (6480*2^51 < 8192*2^51 = 2^64), hence there is
245
* no overflow.
246
*/
247
t[0] += 19 * t[5];
248
t[1] += 19 * t[6];
249
t[2] += 19 * t[7];
250
t[3] += 19 * t[8];
251
t[4] += 19 * t[9];
252
253
/*
254
* Propagate carries.
255
*/
256
w = t[0];
257
d[0] = w & MASK51;
258
cc = w >> 51;
259
w = t[1] + cc;
260
d[1] = w & MASK51;
261
cc = w >> 51;
262
w = t[2] + cc;
263
d[2] = w & MASK51;
264
cc = w >> 51;
265
w = t[3] + cc;
266
d[3] = w & MASK51;
267
cc = w >> 51;
268
w = t[4] + cc;
269
d[4] = w & MASK51;
270
cc = w >> 51;
271
272
/*
273
* Since the limbs were 64-bit values, the top carry is at
274
* most 8192 (in practice, that cannot be reached). We simply
275
* performed a partial reduction.
276
*/
277
d[0] += 19 * cc;
278
}
279
280
/*
281
* Multiplication by A24 = 121665.
282
* Input must have limbs of 60 bits at most.
283
*/
284
static inline void
285
f255_mul_a24(uint64_t *d, const uint64_t *a)
286
{
287
uint64_t t[5], cc, w;
288
289
/*
290
* 121665 = 15 * 8111. We first multiply by 15, with carry
291
* propagation and partial reduction.
292
*/
293
w = a[0] * 15;
294
t[0] = w & MASK51;
295
cc = w >> 51;
296
w = a[1] * 15 + cc;
297
t[1] = w & MASK51;
298
cc = w >> 51;
299
w = a[2] * 15 + cc;
300
t[2] = w & MASK51;
301
cc = w >> 51;
302
w = a[3] * 15 + cc;
303
t[3] = w & MASK51;
304
cc = w >> 51;
305
w = a[4] * 15 + cc;
306
t[4] = w & MASK51;
307
t[0] += 19 * (w >> 51);
308
309
/*
310
* Then multiplication by 8111. At that point, we known that
311
* t[0] is less than 2^51 + 19*8192, and other limbs are less
312
* than 2^51; thus, there will be no overflow.
313
*/
314
w = t[0] * 8111;
315
d[0] = w & MASK51;
316
cc = w >> 51;
317
w = t[1] * 8111 + cc;
318
d[1] = w & MASK51;
319
cc = w >> 51;
320
w = t[2] * 8111 + cc;
321
d[2] = w & MASK51;
322
cc = w >> 51;
323
w = t[3] * 8111 + cc;
324
d[3] = w & MASK51;
325
cc = w >> 51;
326
w = t[4] * 8111 + cc;
327
d[4] = w & MASK51;
328
d[0] += 19 * (w >> 51);
329
}
330
331
/*
332
* Finalize reduction.
333
* On input, limbs must fit on 51 bits, except possibly the low limb,
334
* which may be slightly above 2^51.
335
*/
336
static inline void
337
f255_final_reduce(uint64_t *a)
338
{
339
uint64_t t[5], cc, w;
340
341
/*
342
* We add 19. If the result (in t[]) is below 2^255, then a[]
343
* is already less than 2^255-19, thus already reduced.
344
* Otherwise, we subtract 2^255 from t[], in which case we
345
* have t = a - (2^255-19), and that's our result.
346
*/
347
w = a[0] + 19;
348
t[0] = w & MASK51;
349
cc = w >> 51;
350
w = a[1] + cc;
351
t[1] = w & MASK51;
352
cc = w >> 51;
353
w = a[2] + cc;
354
t[2] = w & MASK51;
355
cc = w >> 51;
356
w = a[3] + cc;
357
t[3] = w & MASK51;
358
cc = w >> 51;
359
w = a[4] + cc;
360
t[4] = w & MASK51;
361
cc = w >> 51;
362
363
/*
364
* The bit 255 of t is in cc. If that bit is 0, when a[] must
365
* be unchanged; otherwise, it must be replaced with t[].
366
*/
367
cc = -cc;
368
a[0] ^= cc & (a[0] ^ t[0]);
369
a[1] ^= cc & (a[1] ^ t[1]);
370
a[2] ^= cc & (a[2] ^ t[2]);
371
a[3] ^= cc & (a[3] ^ t[3]);
372
a[4] ^= cc & (a[4] ^ t[4]);
373
}
374
375
static uint32_t
376
api_mul(unsigned char *G, size_t Glen,
377
const unsigned char *kb, size_t kblen, int curve)
378
{
379
unsigned char k[32];
380
uint64_t x1[5], x2[5], z2[5], x3[5], z3[5];
381
uint32_t swap;
382
int i;
383
384
(void)curve;
385
386
/*
387
* Points are encoded over exactly 32 bytes. Multipliers must fit
388
* in 32 bytes as well.
389
*/
390
if (Glen != 32 || kblen > 32) {
391
return 0;
392
}
393
394
/*
395
* RFC 7748 mandates that the high bit of the last point byte must
396
* be ignored/cleared; the "& MASK51" in the initialization for
397
* x1[4] clears that bit.
398
*/
399
x1[0] = br_dec64le(&G[0]) & MASK51;
400
x1[1] = (br_dec64le(&G[6]) >> 3) & MASK51;
401
x1[2] = (br_dec64le(&G[12]) >> 6) & MASK51;
402
x1[3] = (br_dec64le(&G[19]) >> 1) & MASK51;
403
x1[4] = (br_dec64le(&G[24]) >> 12) & MASK51;
404
405
/*
406
* We can use memset() to clear values, because exact-width types
407
* like uint64_t are guaranteed to have no padding bits or
408
* trap representations.
409
*/
410
memset(x2, 0, sizeof x2);
411
x2[0] = 1;
412
memset(z2, 0, sizeof z2);
413
memcpy(x3, x1, sizeof x1);
414
memcpy(z3, x2, sizeof x2);
415
416
/*
417
* The multiplier is provided in big-endian notation, and
418
* possibly shorter than 32 bytes.
419
*/
420
memset(k, 0, (sizeof k) - kblen);
421
memcpy(k + (sizeof k) - kblen, kb, kblen);
422
k[31] &= 0xF8;
423
k[0] &= 0x7F;
424
k[0] |= 0x40;
425
426
swap = 0;
427
428
for (i = 254; i >= 0; i --) {
429
uint64_t a[5], aa[5], b[5], bb[5], e[5];
430
uint64_t c[5], d[5], da[5], cb[5];
431
uint32_t kt;
432
433
kt = (k[31 - (i >> 3)] >> (i & 7)) & 1;
434
swap ^= kt;
435
f255_cswap(x2, x3, swap);
436
f255_cswap(z2, z3, swap);
437
swap = kt;
438
439
/*
440
* At that point, limbs of x_2 and z_2 are assumed to fit
441
* on at most 52 bits each.
442
*
443
* Each f255_add() adds one bit to the maximum range of
444
* the values, but f255_sub() and f255_mul() bring back
445
* the limbs into 52 bits. All f255_add() outputs are
446
* used only as inputs for f255_mul(), which ensures
447
* that limbs remain in the proper range.
448
*/
449
450
/* A = x_2 + z_2 -- limbs fit on 53 bits each */
451
f255_add(a, x2, z2);
452
453
/* AA = A^2 */
454
f255_mul(aa, a, a);
455
456
/* B = x_2 - z_2 */
457
f255_sub(b, x2, z2);
458
459
/* BB = B^2 */
460
f255_mul(bb, b, b);
461
462
/* E = AA - BB */
463
f255_sub(e, aa, bb);
464
465
/* C = x_3 + z_3 -- limbs fit on 53 bits each */
466
f255_add(c, x3, z3);
467
468
/* D = x_3 - z_3 */
469
f255_sub(d, x3, z3);
470
471
/* DA = D * A */
472
f255_mul(da, d, a);
473
474
/* CB = C * B */
475
f255_mul(cb, c, b);
476
477
/* x_3 = (DA + CB)^2 */
478
f255_add(x3, da, cb);
479
f255_mul(x3, x3, x3);
480
481
/* z_3 = x_1 * (DA - CB)^2 */
482
f255_sub(z3, da, cb);
483
f255_mul(z3, z3, z3);
484
f255_mul(z3, x1, z3);
485
486
/* x_2 = AA * BB */
487
f255_mul(x2, aa, bb);
488
489
/* z_2 = E * (AA + a24 * E) */
490
f255_mul_a24(z2, e);
491
f255_add(z2, aa, z2);
492
f255_mul(z2, e, z2);
493
}
494
495
f255_cswap(x2, x3, swap);
496
f255_cswap(z2, z3, swap);
497
498
/*
499
* Compute 1/z2 = z2^(p-2). Since p = 2^255-19, we can mutualize
500
* most non-squarings. We use x1 and x3, now useless, as temporaries.
501
*/
502
memcpy(x1, z2, sizeof z2);
503
for (i = 0; i < 15; i ++) {
504
f255_mul(x1, x1, x1);
505
f255_mul(x1, x1, z2);
506
}
507
memcpy(x3, x1, sizeof x1);
508
for (i = 0; i < 14; i ++) {
509
int j;
510
511
for (j = 0; j < 16; j ++) {
512
f255_mul(x3, x3, x3);
513
}
514
f255_mul(x3, x3, x1);
515
}
516
for (i = 14; i >= 0; i --) {
517
f255_mul(x3, x3, x3);
518
if ((0xFFEB >> i) & 1) {
519
f255_mul(x3, z2, x3);
520
}
521
}
522
523
/*
524
* Compute x2/z2. We have 1/z2 in x3.
525
*/
526
f255_mul(x2, x2, x3);
527
f255_final_reduce(x2);
528
529
/*
530
* Encode the final x2 value in little-endian. We first assemble
531
* the limbs into 64-bit values.
532
*/
533
x2[0] |= x2[1] << 51;
534
x2[1] = (x2[1] >> 13) | (x2[2] << 38);
535
x2[2] = (x2[2] >> 26) | (x2[3] << 25);
536
x2[3] = (x2[3] >> 39) | (x2[4] << 12);
537
br_enc64le(G, x2[0]);
538
br_enc64le(G + 8, x2[1]);
539
br_enc64le(G + 16, x2[2]);
540
br_enc64le(G + 24, x2[3]);
541
return 1;
542
}
543
544
static size_t
545
api_mulgen(unsigned char *R,
546
const unsigned char *x, size_t xlen, int curve)
547
{
548
const unsigned char *G;
549
size_t Glen;
550
551
G = api_generator(curve, &Glen);
552
memcpy(R, G, Glen);
553
api_mul(R, Glen, x, xlen, curve);
554
return Glen;
555
}
556
557
static uint32_t
558
api_muladd(unsigned char *A, const unsigned char *B, size_t len,
559
const unsigned char *x, size_t xlen,
560
const unsigned char *y, size_t ylen, int curve)
561
{
562
/*
563
* We don't implement this method, since it is used for ECDSA
564
* only, and there is no ECDSA over Curve25519 (which instead
565
* uses EdDSA).
566
*/
567
(void)A;
568
(void)B;
569
(void)len;
570
(void)x;
571
(void)xlen;
572
(void)y;
573
(void)ylen;
574
(void)curve;
575
return 0;
576
}
577
578
/* see bearssl_ec.h */
579
const br_ec_impl br_ec_c25519_m62 = {
580
(uint32_t)0x20000000,
581
&api_generator,
582
&api_order,
583
&api_xoff,
584
&api_mul,
585
&api_mulgen,
586
&api_muladd
587
};
588
589
/* see bearssl_ec.h */
590
const br_ec_impl *
591
br_ec_c25519_m62_get(void)
592
{
593
return &br_ec_c25519_m62;
594
}
595
596
#else
597
598
/* see bearssl_ec.h */
599
const br_ec_impl *
600
br_ec_c25519_m62_get(void)
601
{
602
return 0;
603
}
604
605
#endif
606
607