Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/bearssl/src/ec/ec_p256_m31.c
39507 views
1
/*
2
* Copyright (c) 2017 Thomas Pornin <[email protected]>
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining
5
* a copy of this software and associated documentation files (the
6
* "Software"), to deal in the Software without restriction, including
7
* without limitation the rights to use, copy, modify, merge, publish,
8
* distribute, sublicense, and/or sell copies of the Software, and to
9
* permit persons to whom the Software is furnished to do so, subject to
10
* the following conditions:
11
*
12
* The above copyright notice and this permission notice shall be
13
* included in all copies or substantial portions of the Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
* SOFTWARE.
23
*/
24
25
#include "inner.h"
26
27
/*
28
* If BR_NO_ARITH_SHIFT is undefined, or defined to 0, then we _assume_
29
* that right-shifting a signed negative integer copies the sign bit
30
* (arithmetic right-shift). This is "implementation-defined behaviour",
31
* i.e. it is not undefined, but it may differ between compilers. Each
32
* compiler is supposed to document its behaviour in that respect. GCC
33
* explicitly defines that an arithmetic right shift is used. We expect
34
* all other compilers to do the same, because underlying CPU offer an
35
* arithmetic right shift opcode that could not be used otherwise.
36
*/
37
#if BR_NO_ARITH_SHIFT
38
#define ARSH(x, n) (((uint32_t)(x) >> (n)) \
39
| ((-((uint32_t)(x) >> 31)) << (32 - (n))))
40
#define ARSHW(x, n) (((uint64_t)(x) >> (n)) \
41
| ((-((uint64_t)(x) >> 63)) << (64 - (n))))
42
#else
43
#define ARSH(x, n) ((*(int32_t *)&(x)) >> (n))
44
#define ARSHW(x, n) ((*(int64_t *)&(x)) >> (n))
45
#endif
46
47
/*
48
* Convert an integer from unsigned big-endian encoding to a sequence of
49
* 30-bit words in little-endian order. The final "partial" word is
50
* returned.
51
*/
52
static uint32_t
53
be8_to_le30(uint32_t *dst, const unsigned char *src, size_t len)
54
{
55
uint32_t acc;
56
int acc_len;
57
58
acc = 0;
59
acc_len = 0;
60
while (len -- > 0) {
61
uint32_t b;
62
63
b = src[len];
64
if (acc_len < 22) {
65
acc |= b << acc_len;
66
acc_len += 8;
67
} else {
68
*dst ++ = (acc | (b << acc_len)) & 0x3FFFFFFF;
69
acc = b >> (30 - acc_len);
70
acc_len -= 22;
71
}
72
}
73
return acc;
74
}
75
76
/*
77
* Convert an integer (30-bit words, little-endian) to unsigned
78
* big-endian encoding. The total encoding length is provided; all
79
* the destination bytes will be filled.
80
*/
81
static void
82
le30_to_be8(unsigned char *dst, size_t len, const uint32_t *src)
83
{
84
uint32_t acc;
85
int acc_len;
86
87
acc = 0;
88
acc_len = 0;
89
while (len -- > 0) {
90
if (acc_len < 8) {
91
uint32_t w;
92
93
w = *src ++;
94
dst[len] = (unsigned char)(acc | (w << acc_len));
95
acc = w >> (8 - acc_len);
96
acc_len += 22;
97
} else {
98
dst[len] = (unsigned char)acc;
99
acc >>= 8;
100
acc_len -= 8;
101
}
102
}
103
}
104
105
/*
106
* Multiply two integers. Source integers are represented as arrays of
107
* nine 30-bit words, for values up to 2^270-1. Result is encoded over
108
* 18 words of 30 bits each.
109
*/
110
static void
111
mul9(uint32_t *d, const uint32_t *a, const uint32_t *b)
112
{
113
/*
114
* Maximum intermediate result is no more than
115
* 10376293531797946367, which fits in 64 bits. Reason:
116
*
117
* 10376293531797946367 = 9 * (2^30-1)^2 + 9663676406
118
* 10376293531797946367 < 9663676407 * 2^30
119
*
120
* Thus, adding together 9 products of 30-bit integers, with
121
* a carry of at most 9663676406, yields an integer that fits
122
* on 64 bits and generates a carry of at most 9663676406.
123
*/
124
uint64_t t[17];
125
uint64_t cc;
126
int i;
127
128
t[ 0] = MUL31(a[0], b[0]);
129
t[ 1] = MUL31(a[0], b[1])
130
+ MUL31(a[1], b[0]);
131
t[ 2] = MUL31(a[0], b[2])
132
+ MUL31(a[1], b[1])
133
+ MUL31(a[2], b[0]);
134
t[ 3] = MUL31(a[0], b[3])
135
+ MUL31(a[1], b[2])
136
+ MUL31(a[2], b[1])
137
+ MUL31(a[3], b[0]);
138
t[ 4] = MUL31(a[0], b[4])
139
+ MUL31(a[1], b[3])
140
+ MUL31(a[2], b[2])
141
+ MUL31(a[3], b[1])
142
+ MUL31(a[4], b[0]);
143
t[ 5] = MUL31(a[0], b[5])
144
+ MUL31(a[1], b[4])
145
+ MUL31(a[2], b[3])
146
+ MUL31(a[3], b[2])
147
+ MUL31(a[4], b[1])
148
+ MUL31(a[5], b[0]);
149
t[ 6] = MUL31(a[0], b[6])
150
+ MUL31(a[1], b[5])
151
+ MUL31(a[2], b[4])
152
+ MUL31(a[3], b[3])
153
+ MUL31(a[4], b[2])
154
+ MUL31(a[5], b[1])
155
+ MUL31(a[6], b[0]);
156
t[ 7] = MUL31(a[0], b[7])
157
+ MUL31(a[1], b[6])
158
+ MUL31(a[2], b[5])
159
+ MUL31(a[3], b[4])
160
+ MUL31(a[4], b[3])
161
+ MUL31(a[5], b[2])
162
+ MUL31(a[6], b[1])
163
+ MUL31(a[7], b[0]);
164
t[ 8] = MUL31(a[0], b[8])
165
+ MUL31(a[1], b[7])
166
+ MUL31(a[2], b[6])
167
+ MUL31(a[3], b[5])
168
+ MUL31(a[4], b[4])
169
+ MUL31(a[5], b[3])
170
+ MUL31(a[6], b[2])
171
+ MUL31(a[7], b[1])
172
+ MUL31(a[8], b[0]);
173
t[ 9] = MUL31(a[1], b[8])
174
+ MUL31(a[2], b[7])
175
+ MUL31(a[3], b[6])
176
+ MUL31(a[4], b[5])
177
+ MUL31(a[5], b[4])
178
+ MUL31(a[6], b[3])
179
+ MUL31(a[7], b[2])
180
+ MUL31(a[8], b[1]);
181
t[10] = MUL31(a[2], b[8])
182
+ MUL31(a[3], b[7])
183
+ MUL31(a[4], b[6])
184
+ MUL31(a[5], b[5])
185
+ MUL31(a[6], b[4])
186
+ MUL31(a[7], b[3])
187
+ MUL31(a[8], b[2]);
188
t[11] = MUL31(a[3], b[8])
189
+ MUL31(a[4], b[7])
190
+ MUL31(a[5], b[6])
191
+ MUL31(a[6], b[5])
192
+ MUL31(a[7], b[4])
193
+ MUL31(a[8], b[3]);
194
t[12] = MUL31(a[4], b[8])
195
+ MUL31(a[5], b[7])
196
+ MUL31(a[6], b[6])
197
+ MUL31(a[7], b[5])
198
+ MUL31(a[8], b[4]);
199
t[13] = MUL31(a[5], b[8])
200
+ MUL31(a[6], b[7])
201
+ MUL31(a[7], b[6])
202
+ MUL31(a[8], b[5]);
203
t[14] = MUL31(a[6], b[8])
204
+ MUL31(a[7], b[7])
205
+ MUL31(a[8], b[6]);
206
t[15] = MUL31(a[7], b[8])
207
+ MUL31(a[8], b[7]);
208
t[16] = MUL31(a[8], b[8]);
209
210
/*
211
* Propagate carries.
212
*/
213
cc = 0;
214
for (i = 0; i < 17; i ++) {
215
uint64_t w;
216
217
w = t[i] + cc;
218
d[i] = (uint32_t)w & 0x3FFFFFFF;
219
cc = w >> 30;
220
}
221
d[17] = (uint32_t)cc;
222
}
223
224
/*
225
* Square a 270-bit integer, represented as an array of nine 30-bit words.
226
* Result uses 18 words of 30 bits each.
227
*/
228
static void
229
square9(uint32_t *d, const uint32_t *a)
230
{
231
uint64_t t[17];
232
uint64_t cc;
233
int i;
234
235
t[ 0] = MUL31(a[0], a[0]);
236
t[ 1] = ((MUL31(a[0], a[1])) << 1);
237
t[ 2] = MUL31(a[1], a[1])
238
+ ((MUL31(a[0], a[2])) << 1);
239
t[ 3] = ((MUL31(a[0], a[3])
240
+ MUL31(a[1], a[2])) << 1);
241
t[ 4] = MUL31(a[2], a[2])
242
+ ((MUL31(a[0], a[4])
243
+ MUL31(a[1], a[3])) << 1);
244
t[ 5] = ((MUL31(a[0], a[5])
245
+ MUL31(a[1], a[4])
246
+ MUL31(a[2], a[3])) << 1);
247
t[ 6] = MUL31(a[3], a[3])
248
+ ((MUL31(a[0], a[6])
249
+ MUL31(a[1], a[5])
250
+ MUL31(a[2], a[4])) << 1);
251
t[ 7] = ((MUL31(a[0], a[7])
252
+ MUL31(a[1], a[6])
253
+ MUL31(a[2], a[5])
254
+ MUL31(a[3], a[4])) << 1);
255
t[ 8] = MUL31(a[4], a[4])
256
+ ((MUL31(a[0], a[8])
257
+ MUL31(a[1], a[7])
258
+ MUL31(a[2], a[6])
259
+ MUL31(a[3], a[5])) << 1);
260
t[ 9] = ((MUL31(a[1], a[8])
261
+ MUL31(a[2], a[7])
262
+ MUL31(a[3], a[6])
263
+ MUL31(a[4], a[5])) << 1);
264
t[10] = MUL31(a[5], a[5])
265
+ ((MUL31(a[2], a[8])
266
+ MUL31(a[3], a[7])
267
+ MUL31(a[4], a[6])) << 1);
268
t[11] = ((MUL31(a[3], a[8])
269
+ MUL31(a[4], a[7])
270
+ MUL31(a[5], a[6])) << 1);
271
t[12] = MUL31(a[6], a[6])
272
+ ((MUL31(a[4], a[8])
273
+ MUL31(a[5], a[7])) << 1);
274
t[13] = ((MUL31(a[5], a[8])
275
+ MUL31(a[6], a[7])) << 1);
276
t[14] = MUL31(a[7], a[7])
277
+ ((MUL31(a[6], a[8])) << 1);
278
t[15] = ((MUL31(a[7], a[8])) << 1);
279
t[16] = MUL31(a[8], a[8]);
280
281
/*
282
* Propagate carries.
283
*/
284
cc = 0;
285
for (i = 0; i < 17; i ++) {
286
uint64_t w;
287
288
w = t[i] + cc;
289
d[i] = (uint32_t)w & 0x3FFFFFFF;
290
cc = w >> 30;
291
}
292
d[17] = (uint32_t)cc;
293
}
294
295
/*
296
* Base field modulus for P-256.
297
*/
298
static const uint32_t F256[] = {
299
300
0x3FFFFFFF, 0x3FFFFFFF, 0x3FFFFFFF, 0x0000003F, 0x00000000,
301
0x00000000, 0x00001000, 0x3FFFC000, 0x0000FFFF
302
};
303
304
/*
305
* The 'b' curve equation coefficient for P-256.
306
*/
307
static const uint32_t P256_B[] = {
308
309
0x27D2604B, 0x2F38F0F8, 0x053B0F63, 0x0741AC33, 0x1886BC65,
310
0x2EF555DA, 0x293E7B3E, 0x0D762A8E, 0x00005AC6
311
};
312
313
/*
314
* Addition in the field. Source operands shall fit on 257 bits; output
315
* will be lower than twice the modulus.
316
*/
317
static void
318
add_f256(uint32_t *d, const uint32_t *a, const uint32_t *b)
319
{
320
uint32_t w, cc;
321
int i;
322
323
cc = 0;
324
for (i = 0; i < 9; i ++) {
325
w = a[i] + b[i] + cc;
326
d[i] = w & 0x3FFFFFFF;
327
cc = w >> 30;
328
}
329
w >>= 16;
330
d[8] &= 0xFFFF;
331
d[3] -= w << 6;
332
d[6] -= w << 12;
333
d[7] += w << 14;
334
cc = w;
335
for (i = 0; i < 9; i ++) {
336
w = d[i] + cc;
337
d[i] = w & 0x3FFFFFFF;
338
cc = ARSH(w, 30);
339
}
340
}
341
342
/*
343
* Subtraction in the field. Source operands shall be smaller than twice
344
* the modulus; the result will fulfil the same property.
345
*/
346
static void
347
sub_f256(uint32_t *d, const uint32_t *a, const uint32_t *b)
348
{
349
uint32_t w, cc;
350
int i;
351
352
/*
353
* We really compute a - b + 2*p to make sure that the result is
354
* positive.
355
*/
356
w = a[0] - b[0] - 0x00002;
357
d[0] = w & 0x3FFFFFFF;
358
w = a[1] - b[1] + ARSH(w, 30);
359
d[1] = w & 0x3FFFFFFF;
360
w = a[2] - b[2] + ARSH(w, 30);
361
d[2] = w & 0x3FFFFFFF;
362
w = a[3] - b[3] + ARSH(w, 30) + 0x00080;
363
d[3] = w & 0x3FFFFFFF;
364
w = a[4] - b[4] + ARSH(w, 30);
365
d[4] = w & 0x3FFFFFFF;
366
w = a[5] - b[5] + ARSH(w, 30);
367
d[5] = w & 0x3FFFFFFF;
368
w = a[6] - b[6] + ARSH(w, 30) + 0x02000;
369
d[6] = w & 0x3FFFFFFF;
370
w = a[7] - b[7] + ARSH(w, 30) - 0x08000;
371
d[7] = w & 0x3FFFFFFF;
372
w = a[8] - b[8] + ARSH(w, 30) + 0x20000;
373
d[8] = w & 0xFFFF;
374
w >>= 16;
375
d[8] &= 0xFFFF;
376
d[3] -= w << 6;
377
d[6] -= w << 12;
378
d[7] += w << 14;
379
cc = w;
380
for (i = 0; i < 9; i ++) {
381
w = d[i] + cc;
382
d[i] = w & 0x3FFFFFFF;
383
cc = ARSH(w, 30);
384
}
385
}
386
387
/*
388
* Compute a multiplication in F256. Source operands shall be less than
389
* twice the modulus.
390
*/
391
static void
392
mul_f256(uint32_t *d, const uint32_t *a, const uint32_t *b)
393
{
394
uint32_t t[18];
395
uint64_t s[18];
396
uint64_t cc, x;
397
uint32_t z, c;
398
int i;
399
400
mul9(t, a, b);
401
402
/*
403
* Modular reduction: each high word in added/subtracted where
404
* necessary.
405
*
406
* The modulus is:
407
* p = 2^256 - 2^224 + 2^192 + 2^96 - 1
408
* Therefore:
409
* 2^256 = 2^224 - 2^192 - 2^96 + 1 mod p
410
*
411
* For a word x at bit offset n (n >= 256), we have:
412
* x*2^n = x*2^(n-32) - x*2^(n-64)
413
* - x*2^(n - 160) + x*2^(n-256) mod p
414
*
415
* Thus, we can nullify the high word if we reinject it at some
416
* proper emplacements.
417
*
418
* We use 64-bit intermediate words to allow for carries to
419
* accumulate easily, before performing the final propagation.
420
*/
421
for (i = 0; i < 18; i ++) {
422
s[i] = t[i];
423
}
424
425
for (i = 17; i >= 9; i --) {
426
uint64_t y;
427
428
y = s[i];
429
s[i - 1] += ARSHW(y, 2);
430
s[i - 2] += (y << 28) & 0x3FFFFFFF;
431
s[i - 2] -= ARSHW(y, 4);
432
s[i - 3] -= (y << 26) & 0x3FFFFFFF;
433
s[i - 5] -= ARSHW(y, 10);
434
s[i - 6] -= (y << 20) & 0x3FFFFFFF;
435
s[i - 8] += ARSHW(y, 16);
436
s[i - 9] += (y << 14) & 0x3FFFFFFF;
437
}
438
439
/*
440
* Carry propagation must be signed. Moreover, we may have overdone
441
* it a bit, and obtain a negative result.
442
*
443
* The loop above ran 9 times; each time, each word was augmented
444
* by at most one extra word (in absolute value). Thus, the top
445
* word must in fine fit in 39 bits, so the carry below will fit
446
* on 9 bits.
447
*/
448
cc = 0;
449
for (i = 0; i < 9; i ++) {
450
x = s[i] + cc;
451
d[i] = (uint32_t)x & 0x3FFFFFFF;
452
cc = ARSHW(x, 30);
453
}
454
455
/*
456
* All nine words fit on 30 bits, but there may be an extra
457
* carry for a few bits (at most 9), and that carry may be
458
* negative. Moreover, we want the result to fit on 257 bits.
459
* The two lines below ensure that the word in d[] has length
460
* 256 bits, and the (signed) carry (beyond 2^256) is in cc. The
461
* significant length of cc is less than 24 bits, so we will be
462
* able to switch to 32-bit operations.
463
*/
464
cc = ARSHW(x, 16);
465
d[8] &= 0xFFFF;
466
467
/*
468
* One extra round of reduction, for cc*2^256, which means
469
* adding cc*(2^224-2^192-2^96+1) to a 256-bit (nonnegative)
470
* value. If cc is negative, then it may happen (rarely, but
471
* not neglectibly so) that the result would be negative. In
472
* order to avoid that, if cc is negative, then we add the
473
* modulus once. Note that if cc is negative, then propagating
474
* that carry must yield a value lower than the modulus, so
475
* adding the modulus once will keep the final result under
476
* twice the modulus.
477
*/
478
z = (uint32_t)cc;
479
d[3] -= z << 6;
480
d[6] -= (z << 12) & 0x3FFFFFFF;
481
d[7] -= ARSH(z, 18);
482
d[7] += (z << 14) & 0x3FFFFFFF;
483
d[8] += ARSH(z, 16);
484
c = z >> 31;
485
d[0] -= c;
486
d[3] += c << 6;
487
d[6] += c << 12;
488
d[7] -= c << 14;
489
d[8] += c << 16;
490
for (i = 0; i < 9; i ++) {
491
uint32_t w;
492
493
w = d[i] + z;
494
d[i] = w & 0x3FFFFFFF;
495
z = ARSH(w, 30);
496
}
497
}
498
499
/*
500
* Compute a square in F256. Source operand shall be less than
501
* twice the modulus.
502
*/
503
static void
504
square_f256(uint32_t *d, const uint32_t *a)
505
{
506
uint32_t t[18];
507
uint64_t s[18];
508
uint64_t cc, x;
509
uint32_t z, c;
510
int i;
511
512
square9(t, a);
513
514
/*
515
* Modular reduction: each high word in added/subtracted where
516
* necessary.
517
*
518
* The modulus is:
519
* p = 2^256 - 2^224 + 2^192 + 2^96 - 1
520
* Therefore:
521
* 2^256 = 2^224 - 2^192 - 2^96 + 1 mod p
522
*
523
* For a word x at bit offset n (n >= 256), we have:
524
* x*2^n = x*2^(n-32) - x*2^(n-64)
525
* - x*2^(n - 160) + x*2^(n-256) mod p
526
*
527
* Thus, we can nullify the high word if we reinject it at some
528
* proper emplacements.
529
*
530
* We use 64-bit intermediate words to allow for carries to
531
* accumulate easily, before performing the final propagation.
532
*/
533
for (i = 0; i < 18; i ++) {
534
s[i] = t[i];
535
}
536
537
for (i = 17; i >= 9; i --) {
538
uint64_t y;
539
540
y = s[i];
541
s[i - 1] += ARSHW(y, 2);
542
s[i - 2] += (y << 28) & 0x3FFFFFFF;
543
s[i - 2] -= ARSHW(y, 4);
544
s[i - 3] -= (y << 26) & 0x3FFFFFFF;
545
s[i - 5] -= ARSHW(y, 10);
546
s[i - 6] -= (y << 20) & 0x3FFFFFFF;
547
s[i - 8] += ARSHW(y, 16);
548
s[i - 9] += (y << 14) & 0x3FFFFFFF;
549
}
550
551
/*
552
* Carry propagation must be signed. Moreover, we may have overdone
553
* it a bit, and obtain a negative result.
554
*
555
* The loop above ran 9 times; each time, each word was augmented
556
* by at most one extra word (in absolute value). Thus, the top
557
* word must in fine fit in 39 bits, so the carry below will fit
558
* on 9 bits.
559
*/
560
cc = 0;
561
for (i = 0; i < 9; i ++) {
562
x = s[i] + cc;
563
d[i] = (uint32_t)x & 0x3FFFFFFF;
564
cc = ARSHW(x, 30);
565
}
566
567
/*
568
* All nine words fit on 30 bits, but there may be an extra
569
* carry for a few bits (at most 9), and that carry may be
570
* negative. Moreover, we want the result to fit on 257 bits.
571
* The two lines below ensure that the word in d[] has length
572
* 256 bits, and the (signed) carry (beyond 2^256) is in cc. The
573
* significant length of cc is less than 24 bits, so we will be
574
* able to switch to 32-bit operations.
575
*/
576
cc = ARSHW(x, 16);
577
d[8] &= 0xFFFF;
578
579
/*
580
* One extra round of reduction, for cc*2^256, which means
581
* adding cc*(2^224-2^192-2^96+1) to a 256-bit (nonnegative)
582
* value. If cc is negative, then it may happen (rarely, but
583
* not neglectibly so) that the result would be negative. In
584
* order to avoid that, if cc is negative, then we add the
585
* modulus once. Note that if cc is negative, then propagating
586
* that carry must yield a value lower than the modulus, so
587
* adding the modulus once will keep the final result under
588
* twice the modulus.
589
*/
590
z = (uint32_t)cc;
591
d[3] -= z << 6;
592
d[6] -= (z << 12) & 0x3FFFFFFF;
593
d[7] -= ARSH(z, 18);
594
d[7] += (z << 14) & 0x3FFFFFFF;
595
d[8] += ARSH(z, 16);
596
c = z >> 31;
597
d[0] -= c;
598
d[3] += c << 6;
599
d[6] += c << 12;
600
d[7] -= c << 14;
601
d[8] += c << 16;
602
for (i = 0; i < 9; i ++) {
603
uint32_t w;
604
605
w = d[i] + z;
606
d[i] = w & 0x3FFFFFFF;
607
z = ARSH(w, 30);
608
}
609
}
610
611
/*
612
* Perform a "final reduction" in field F256 (field for curve P-256).
613
* The source value must be less than twice the modulus. If the value
614
* is not lower than the modulus, then the modulus is subtracted and
615
* this function returns 1; otherwise, it leaves it untouched and it
616
* returns 0.
617
*/
618
static uint32_t
619
reduce_final_f256(uint32_t *d)
620
{
621
uint32_t t[9];
622
uint32_t cc;
623
int i;
624
625
cc = 0;
626
for (i = 0; i < 9; i ++) {
627
uint32_t w;
628
629
w = d[i] - F256[i] - cc;
630
cc = w >> 31;
631
t[i] = w & 0x3FFFFFFF;
632
}
633
cc ^= 1;
634
CCOPY(cc, d, t, sizeof t);
635
return cc;
636
}
637
638
/*
639
* Jacobian coordinates for a point in P-256: affine coordinates (X,Y)
640
* are such that:
641
* X = x / z^2
642
* Y = y / z^3
643
* For the point at infinity, z = 0.
644
* Each point thus admits many possible representations.
645
*
646
* Coordinates are represented in arrays of 32-bit integers, each holding
647
* 30 bits of data. Values may also be slightly greater than the modulus,
648
* but they will always be lower than twice the modulus.
649
*/
650
typedef struct {
651
uint32_t x[9];
652
uint32_t y[9];
653
uint32_t z[9];
654
} p256_jacobian;
655
656
/*
657
* Convert a point to affine coordinates:
658
* - If the point is the point at infinity, then all three coordinates
659
* are set to 0.
660
* - Otherwise, the 'z' coordinate is set to 1, and the 'x' and 'y'
661
* coordinates are the 'X' and 'Y' affine coordinates.
662
* The coordinates are guaranteed to be lower than the modulus.
663
*/
664
static void
665
p256_to_affine(p256_jacobian *P)
666
{
667
uint32_t t1[9], t2[9];
668
int i;
669
670
/*
671
* Invert z with a modular exponentiation: the modulus is
672
* p = 2^256 - 2^224 + 2^192 + 2^96 - 1, and the exponent is
673
* p-2. Exponent bit pattern (from high to low) is:
674
* - 32 bits of value 1
675
* - 31 bits of value 0
676
* - 1 bit of value 1
677
* - 96 bits of value 0
678
* - 94 bits of value 1
679
* - 1 bit of value 0
680
* - 1 bit of value 1
681
* Thus, we precompute z^(2^31-1) to speed things up.
682
*
683
* If z = 0 (point at infinity) then the modular exponentiation
684
* will yield 0, which leads to the expected result (all three
685
* coordinates set to 0).
686
*/
687
688
/*
689
* A simple square-and-multiply for z^(2^31-1). We could save about
690
* two dozen multiplications here with an addition chain, but
691
* this would require a bit more code, and extra stack buffers.
692
*/
693
memcpy(t1, P->z, sizeof P->z);
694
for (i = 0; i < 30; i ++) {
695
square_f256(t1, t1);
696
mul_f256(t1, t1, P->z);
697
}
698
699
/*
700
* Square-and-multiply. Apart from the squarings, we have a few
701
* multiplications to set bits to 1; we multiply by the original z
702
* for setting 1 bit, and by t1 for setting 31 bits.
703
*/
704
memcpy(t2, P->z, sizeof P->z);
705
for (i = 1; i < 256; i ++) {
706
square_f256(t2, t2);
707
switch (i) {
708
case 31:
709
case 190:
710
case 221:
711
case 252:
712
mul_f256(t2, t2, t1);
713
break;
714
case 63:
715
case 253:
716
case 255:
717
mul_f256(t2, t2, P->z);
718
break;
719
}
720
}
721
722
/*
723
* Now that we have 1/z, multiply x by 1/z^2 and y by 1/z^3.
724
*/
725
mul_f256(t1, t2, t2);
726
mul_f256(P->x, t1, P->x);
727
mul_f256(t1, t1, t2);
728
mul_f256(P->y, t1, P->y);
729
reduce_final_f256(P->x);
730
reduce_final_f256(P->y);
731
732
/*
733
* Multiply z by 1/z. If z = 0, then this will yield 0, otherwise
734
* this will set z to 1.
735
*/
736
mul_f256(P->z, P->z, t2);
737
reduce_final_f256(P->z);
738
}
739
740
/*
741
* Double a point in P-256. This function works for all valid points,
742
* including the point at infinity.
743
*/
744
static void
745
p256_double(p256_jacobian *Q)
746
{
747
/*
748
* Doubling formulas are:
749
*
750
* s = 4*x*y^2
751
* m = 3*(x + z^2)*(x - z^2)
752
* x' = m^2 - 2*s
753
* y' = m*(s - x') - 8*y^4
754
* z' = 2*y*z
755
*
756
* These formulas work for all points, including points of order 2
757
* and points at infinity:
758
* - If y = 0 then z' = 0. But there is no such point in P-256
759
* anyway.
760
* - If z = 0 then z' = 0.
761
*/
762
uint32_t t1[9], t2[9], t3[9], t4[9];
763
764
/*
765
* Compute z^2 in t1.
766
*/
767
square_f256(t1, Q->z);
768
769
/*
770
* Compute x-z^2 in t2 and x+z^2 in t1.
771
*/
772
add_f256(t2, Q->x, t1);
773
sub_f256(t1, Q->x, t1);
774
775
/*
776
* Compute 3*(x+z^2)*(x-z^2) in t1.
777
*/
778
mul_f256(t3, t1, t2);
779
add_f256(t1, t3, t3);
780
add_f256(t1, t3, t1);
781
782
/*
783
* Compute 4*x*y^2 (in t2) and 2*y^2 (in t3).
784
*/
785
square_f256(t3, Q->y);
786
add_f256(t3, t3, t3);
787
mul_f256(t2, Q->x, t3);
788
add_f256(t2, t2, t2);
789
790
/*
791
* Compute x' = m^2 - 2*s.
792
*/
793
square_f256(Q->x, t1);
794
sub_f256(Q->x, Q->x, t2);
795
sub_f256(Q->x, Q->x, t2);
796
797
/*
798
* Compute z' = 2*y*z.
799
*/
800
mul_f256(t4, Q->y, Q->z);
801
add_f256(Q->z, t4, t4);
802
803
/*
804
* Compute y' = m*(s - x') - 8*y^4. Note that we already have
805
* 2*y^2 in t3.
806
*/
807
sub_f256(t2, t2, Q->x);
808
mul_f256(Q->y, t1, t2);
809
square_f256(t4, t3);
810
add_f256(t4, t4, t4);
811
sub_f256(Q->y, Q->y, t4);
812
}
813
814
/*
815
* Add point P2 to point P1.
816
*
817
* This function computes the wrong result in the following cases:
818
*
819
* - If P1 == 0 but P2 != 0
820
* - If P1 != 0 but P2 == 0
821
* - If P1 == P2
822
*
823
* In all three cases, P1 is set to the point at infinity.
824
*
825
* Returned value is 0 if one of the following occurs:
826
*
827
* - P1 and P2 have the same Y coordinate
828
* - P1 == 0 and P2 == 0
829
* - The Y coordinate of one of the points is 0 and the other point is
830
* the point at infinity.
831
*
832
* The third case cannot actually happen with valid points, since a point
833
* with Y == 0 is a point of order 2, and there is no point of order 2 on
834
* curve P-256.
835
*
836
* Therefore, assuming that P1 != 0 and P2 != 0 on input, then the caller
837
* can apply the following:
838
*
839
* - If the result is not the point at infinity, then it is correct.
840
* - Otherwise, if the returned value is 1, then this is a case of
841
* P1+P2 == 0, so the result is indeed the point at infinity.
842
* - Otherwise, P1 == P2, so a "double" operation should have been
843
* performed.
844
*/
845
static uint32_t
846
p256_add(p256_jacobian *P1, const p256_jacobian *P2)
847
{
848
/*
849
* Addtions formulas are:
850
*
851
* u1 = x1 * z2^2
852
* u2 = x2 * z1^2
853
* s1 = y1 * z2^3
854
* s2 = y2 * z1^3
855
* h = u2 - u1
856
* r = s2 - s1
857
* x3 = r^2 - h^3 - 2 * u1 * h^2
858
* y3 = r * (u1 * h^2 - x3) - s1 * h^3
859
* z3 = h * z1 * z2
860
*/
861
uint32_t t1[9], t2[9], t3[9], t4[9], t5[9], t6[9], t7[9];
862
uint32_t ret;
863
int i;
864
865
/*
866
* Compute u1 = x1*z2^2 (in t1) and s1 = y1*z2^3 (in t3).
867
*/
868
square_f256(t3, P2->z);
869
mul_f256(t1, P1->x, t3);
870
mul_f256(t4, P2->z, t3);
871
mul_f256(t3, P1->y, t4);
872
873
/*
874
* Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
875
*/
876
square_f256(t4, P1->z);
877
mul_f256(t2, P2->x, t4);
878
mul_f256(t5, P1->z, t4);
879
mul_f256(t4, P2->y, t5);
880
881
/*
882
* Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4).
883
* We need to test whether r is zero, so we will do some extra
884
* reduce.
885
*/
886
sub_f256(t2, t2, t1);
887
sub_f256(t4, t4, t3);
888
reduce_final_f256(t4);
889
ret = 0;
890
for (i = 0; i < 9; i ++) {
891
ret |= t4[i];
892
}
893
ret = (ret | -ret) >> 31;
894
895
/*
896
* Compute u1*h^2 (in t6) and h^3 (in t5);
897
*/
898
square_f256(t7, t2);
899
mul_f256(t6, t1, t7);
900
mul_f256(t5, t7, t2);
901
902
/*
903
* Compute x3 = r^2 - h^3 - 2*u1*h^2.
904
*/
905
square_f256(P1->x, t4);
906
sub_f256(P1->x, P1->x, t5);
907
sub_f256(P1->x, P1->x, t6);
908
sub_f256(P1->x, P1->x, t6);
909
910
/*
911
* Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
912
*/
913
sub_f256(t6, t6, P1->x);
914
mul_f256(P1->y, t4, t6);
915
mul_f256(t1, t5, t3);
916
sub_f256(P1->y, P1->y, t1);
917
918
/*
919
* Compute z3 = h*z1*z2.
920
*/
921
mul_f256(t1, P1->z, P2->z);
922
mul_f256(P1->z, t1, t2);
923
924
return ret;
925
}
926
927
/*
928
* Add point P2 to point P1. This is a specialised function for the
929
* case when P2 is a non-zero point in affine coordinate.
930
*
931
* This function computes the wrong result in the following cases:
932
*
933
* - If P1 == 0
934
* - If P1 == P2
935
*
936
* In both cases, P1 is set to the point at infinity.
937
*
938
* Returned value is 0 if one of the following occurs:
939
*
940
* - P1 and P2 have the same Y coordinate
941
* - The Y coordinate of P2 is 0 and P1 is the point at infinity.
942
*
943
* The second case cannot actually happen with valid points, since a point
944
* with Y == 0 is a point of order 2, and there is no point of order 2 on
945
* curve P-256.
946
*
947
* Therefore, assuming that P1 != 0 on input, then the caller
948
* can apply the following:
949
*
950
* - If the result is not the point at infinity, then it is correct.
951
* - Otherwise, if the returned value is 1, then this is a case of
952
* P1+P2 == 0, so the result is indeed the point at infinity.
953
* - Otherwise, P1 == P2, so a "double" operation should have been
954
* performed.
955
*/
956
static uint32_t
957
p256_add_mixed(p256_jacobian *P1, const p256_jacobian *P2)
958
{
959
/*
960
* Addtions formulas are:
961
*
962
* u1 = x1
963
* u2 = x2 * z1^2
964
* s1 = y1
965
* s2 = y2 * z1^3
966
* h = u2 - u1
967
* r = s2 - s1
968
* x3 = r^2 - h^3 - 2 * u1 * h^2
969
* y3 = r * (u1 * h^2 - x3) - s1 * h^3
970
* z3 = h * z1
971
*/
972
uint32_t t1[9], t2[9], t3[9], t4[9], t5[9], t6[9], t7[9];
973
uint32_t ret;
974
int i;
975
976
/*
977
* Compute u1 = x1 (in t1) and s1 = y1 (in t3).
978
*/
979
memcpy(t1, P1->x, sizeof t1);
980
memcpy(t3, P1->y, sizeof t3);
981
982
/*
983
* Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
984
*/
985
square_f256(t4, P1->z);
986
mul_f256(t2, P2->x, t4);
987
mul_f256(t5, P1->z, t4);
988
mul_f256(t4, P2->y, t5);
989
990
/*
991
* Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4).
992
* We need to test whether r is zero, so we will do some extra
993
* reduce.
994
*/
995
sub_f256(t2, t2, t1);
996
sub_f256(t4, t4, t3);
997
reduce_final_f256(t4);
998
ret = 0;
999
for (i = 0; i < 9; i ++) {
1000
ret |= t4[i];
1001
}
1002
ret = (ret | -ret) >> 31;
1003
1004
/*
1005
* Compute u1*h^2 (in t6) and h^3 (in t5);
1006
*/
1007
square_f256(t7, t2);
1008
mul_f256(t6, t1, t7);
1009
mul_f256(t5, t7, t2);
1010
1011
/*
1012
* Compute x3 = r^2 - h^3 - 2*u1*h^2.
1013
*/
1014
square_f256(P1->x, t4);
1015
sub_f256(P1->x, P1->x, t5);
1016
sub_f256(P1->x, P1->x, t6);
1017
sub_f256(P1->x, P1->x, t6);
1018
1019
/*
1020
* Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
1021
*/
1022
sub_f256(t6, t6, P1->x);
1023
mul_f256(P1->y, t4, t6);
1024
mul_f256(t1, t5, t3);
1025
sub_f256(P1->y, P1->y, t1);
1026
1027
/*
1028
* Compute z3 = h*z1*z2.
1029
*/
1030
mul_f256(P1->z, P1->z, t2);
1031
1032
return ret;
1033
}
1034
1035
/*
1036
* Decode a P-256 point. This function does not support the point at
1037
* infinity. Returned value is 0 if the point is invalid, 1 otherwise.
1038
*/
1039
static uint32_t
1040
p256_decode(p256_jacobian *P, const void *src, size_t len)
1041
{
1042
const unsigned char *buf;
1043
uint32_t tx[9], ty[9], t1[9], t2[9];
1044
uint32_t bad;
1045
int i;
1046
1047
if (len != 65) {
1048
return 0;
1049
}
1050
buf = src;
1051
1052
/*
1053
* First byte must be 0x04 (uncompressed format). We could support
1054
* "hybrid format" (first byte is 0x06 or 0x07, and encodes the
1055
* least significant bit of the Y coordinate), but it is explicitly
1056
* forbidden by RFC 5480 (section 2.2).
1057
*/
1058
bad = NEQ(buf[0], 0x04);
1059
1060
/*
1061
* Decode the coordinates, and check that they are both lower
1062
* than the modulus.
1063
*/
1064
tx[8] = be8_to_le30(tx, buf + 1, 32);
1065
ty[8] = be8_to_le30(ty, buf + 33, 32);
1066
bad |= reduce_final_f256(tx);
1067
bad |= reduce_final_f256(ty);
1068
1069
/*
1070
* Check curve equation.
1071
*/
1072
square_f256(t1, tx);
1073
mul_f256(t1, tx, t1);
1074
square_f256(t2, ty);
1075
sub_f256(t1, t1, tx);
1076
sub_f256(t1, t1, tx);
1077
sub_f256(t1, t1, tx);
1078
add_f256(t1, t1, P256_B);
1079
sub_f256(t1, t1, t2);
1080
reduce_final_f256(t1);
1081
for (i = 0; i < 9; i ++) {
1082
bad |= t1[i];
1083
}
1084
1085
/*
1086
* Copy coordinates to the point structure.
1087
*/
1088
memcpy(P->x, tx, sizeof tx);
1089
memcpy(P->y, ty, sizeof ty);
1090
memset(P->z, 0, sizeof P->z);
1091
P->z[0] = 1;
1092
return EQ(bad, 0);
1093
}
1094
1095
/*
1096
* Encode a point into a buffer. This function assumes that the point is
1097
* valid, in affine coordinates, and not the point at infinity.
1098
*/
1099
static void
1100
p256_encode(void *dst, const p256_jacobian *P)
1101
{
1102
unsigned char *buf;
1103
1104
buf = dst;
1105
buf[0] = 0x04;
1106
le30_to_be8(buf + 1, 32, P->x);
1107
le30_to_be8(buf + 33, 32, P->y);
1108
}
1109
1110
/*
1111
* Multiply a curve point by an integer. The integer is assumed to be
1112
* lower than the curve order, and the base point must not be the point
1113
* at infinity.
1114
*/
1115
static void
1116
p256_mul(p256_jacobian *P, const unsigned char *x, size_t xlen)
1117
{
1118
/*
1119
* qz is a flag that is initially 1, and remains equal to 1
1120
* as long as the point is the point at infinity.
1121
*
1122
* We use a 2-bit window to handle multiplier bits by pairs.
1123
* The precomputed window really is the points P2 and P3.
1124
*/
1125
uint32_t qz;
1126
p256_jacobian P2, P3, Q, T, U;
1127
1128
/*
1129
* Compute window values.
1130
*/
1131
P2 = *P;
1132
p256_double(&P2);
1133
P3 = *P;
1134
p256_add(&P3, &P2);
1135
1136
/*
1137
* We start with Q = 0. We process multiplier bits 2 by 2.
1138
*/
1139
memset(&Q, 0, sizeof Q);
1140
qz = 1;
1141
while (xlen -- > 0) {
1142
int k;
1143
1144
for (k = 6; k >= 0; k -= 2) {
1145
uint32_t bits;
1146
uint32_t bnz;
1147
1148
p256_double(&Q);
1149
p256_double(&Q);
1150
T = *P;
1151
U = Q;
1152
bits = (*x >> k) & (uint32_t)3;
1153
bnz = NEQ(bits, 0);
1154
CCOPY(EQ(bits, 2), &T, &P2, sizeof T);
1155
CCOPY(EQ(bits, 3), &T, &P3, sizeof T);
1156
p256_add(&U, &T);
1157
CCOPY(bnz & qz, &Q, &T, sizeof Q);
1158
CCOPY(bnz & ~qz, &Q, &U, sizeof Q);
1159
qz &= ~bnz;
1160
}
1161
x ++;
1162
}
1163
*P = Q;
1164
}
1165
1166
/*
1167
* Precomputed window: k*G points, where G is the curve generator, and k
1168
* is an integer from 1 to 15 (inclusive). The X and Y coordinates of
1169
* the point are encoded as 9 words of 30 bits each (little-endian
1170
* order).
1171
*/
1172
static const uint32_t Gwin[15][18] = {
1173
1174
{ 0x1898C296, 0x1284E517, 0x1EB33A0F, 0x00DF604B,
1175
0x2440F277, 0x339B958E, 0x04247F8B, 0x347CB84B,
1176
0x00006B17, 0x37BF51F5, 0x2ED901A0, 0x3315ECEC,
1177
0x338CD5DA, 0x0F9E162B, 0x1FAD29F0, 0x27F9B8EE,
1178
0x10B8BF86, 0x00004FE3 },
1179
1180
{ 0x07669978, 0x182D23F1, 0x3F21B35A, 0x225A789D,
1181
0x351AC3C0, 0x08E00C12, 0x34F7E8A5, 0x1EC62340,
1182
0x00007CF2, 0x227873D1, 0x3812DE74, 0x0E982299,
1183
0x1F6B798F, 0x3430DBBA, 0x366B1A7D, 0x2D040293,
1184
0x154436E3, 0x00000777 },
1185
1186
{ 0x06E7FD6C, 0x2D05986F, 0x3ADA985F, 0x31ADC87B,
1187
0x0BF165E6, 0x1FBE5475, 0x30A44C8F, 0x3934698C,
1188
0x00005ECB, 0x227D5032, 0x29E6C49E, 0x04FB83D9,
1189
0x0AAC0D8E, 0x24A2ECD8, 0x2C1B3869, 0x0FF7E374,
1190
0x19031266, 0x00008734 },
1191
1192
{ 0x2B030852, 0x024C0911, 0x05596EF5, 0x07F8B6DE,
1193
0x262BD003, 0x3779967B, 0x08FBBA02, 0x128D4CB4,
1194
0x0000E253, 0x184ED8C6, 0x310B08FC, 0x30EE0055,
1195
0x3F25B0FC, 0x062D764E, 0x3FB97F6A, 0x33CC719D,
1196
0x15D69318, 0x0000E0F1 },
1197
1198
{ 0x03D033ED, 0x05552837, 0x35BE5242, 0x2320BF47,
1199
0x268FDFEF, 0x13215821, 0x140D2D78, 0x02DE9454,
1200
0x00005159, 0x3DA16DA4, 0x0742ED13, 0x0D80888D,
1201
0x004BC035, 0x0A79260D, 0x06FCDAFE, 0x2727D8AE,
1202
0x1F6A2412, 0x0000E0C1 },
1203
1204
{ 0x3C2291A9, 0x1AC2ABA4, 0x3B215B4C, 0x131D037A,
1205
0x17DDE302, 0x0C90B2E2, 0x0602C92D, 0x05CA9DA9,
1206
0x0000B01A, 0x0FC77FE2, 0x35F1214E, 0x07E16BDF,
1207
0x003DDC07, 0x2703791C, 0x3038B7EE, 0x3DAD56FE,
1208
0x041D0C8D, 0x0000E85C },
1209
1210
{ 0x3187B2A3, 0x0018A1C0, 0x00FEF5B3, 0x3E7E2E2A,
1211
0x01FB607E, 0x2CC199F0, 0x37B4625B, 0x0EDBE82F,
1212
0x00008E53, 0x01F400B4, 0x15786A1B, 0x3041B21C,
1213
0x31CD8CF2, 0x35900053, 0x1A7E0E9B, 0x318366D0,
1214
0x076F780C, 0x000073EB },
1215
1216
{ 0x1B6FB393, 0x13767707, 0x3CE97DBB, 0x348E2603,
1217
0x354CADC1, 0x09D0B4EA, 0x1B053404, 0x1DE76FBA,
1218
0x000062D9, 0x0F09957E, 0x295029A8, 0x3E76A78D,
1219
0x3B547DAE, 0x27CEE0A2, 0x0575DC45, 0x1D8244FF,
1220
0x332F647A, 0x0000AD5A },
1221
1222
{ 0x10949EE0, 0x1E7A292E, 0x06DF8B3D, 0x02B2E30B,
1223
0x31F8729E, 0x24E35475, 0x30B71878, 0x35EDBFB7,
1224
0x0000EA68, 0x0DD048FA, 0x21688929, 0x0DE823FE,
1225
0x1C53FAA9, 0x0EA0C84D, 0x052A592A, 0x1FCE7870,
1226
0x11325CB2, 0x00002A27 },
1227
1228
{ 0x04C5723F, 0x30D81A50, 0x048306E4, 0x329B11C7,
1229
0x223FB545, 0x085347A8, 0x2993E591, 0x1B5ACA8E,
1230
0x0000CEF6, 0x04AF0773, 0x28D2EEA9, 0x2751EEEC,
1231
0x037B4A7F, 0x3B4C1059, 0x08F37674, 0x2AE906E1,
1232
0x18A88A6A, 0x00008786 },
1233
1234
{ 0x34BC21D1, 0x0CCE474D, 0x15048BF4, 0x1D0BB409,
1235
0x021CDA16, 0x20DE76C3, 0x34C59063, 0x04EDE20E,
1236
0x00003ED1, 0x282A3740, 0x0BE3BBF3, 0x29889DAE,
1237
0x03413697, 0x34C68A09, 0x210EBE93, 0x0C8A224C,
1238
0x0826B331, 0x00009099 },
1239
1240
{ 0x0624E3C4, 0x140317BA, 0x2F82C99D, 0x260C0A2C,
1241
0x25D55179, 0x194DCC83, 0x3D95E462, 0x356F6A05,
1242
0x0000741D, 0x0D4481D3, 0x2657FC8B, 0x1BA5CA71,
1243
0x3AE44B0D, 0x07B1548E, 0x0E0D5522, 0x05FDC567,
1244
0x2D1AA70E, 0x00000770 },
1245
1246
{ 0x06072C01, 0x23857675, 0x1EAD58A9, 0x0B8A12D9,
1247
0x1EE2FC79, 0x0177CB61, 0x0495A618, 0x20DEB82B,
1248
0x0000177C, 0x2FC7BFD8, 0x310EEF8B, 0x1FB4DF39,
1249
0x3B8530E8, 0x0F4E7226, 0x0246B6D0, 0x2A558A24,
1250
0x163353AF, 0x000063BB },
1251
1252
{ 0x24D2920B, 0x1C249DCC, 0x2069C5E5, 0x09AB2F9E,
1253
0x36DF3CF1, 0x1991FD0C, 0x062B97A7, 0x1E80070E,
1254
0x000054E7, 0x20D0B375, 0x2E9F20BD, 0x35090081,
1255
0x1C7A9DDC, 0x22E7C371, 0x087E3016, 0x03175421,
1256
0x3C6ECA7D, 0x0000F599 },
1257
1258
{ 0x259B9D5F, 0x0D9A318F, 0x23A0EF16, 0x00EBE4B7,
1259
0x088265AE, 0x2CDE2666, 0x2BAE7ADF, 0x1371A5C6,
1260
0x0000F045, 0x0D034F36, 0x1F967378, 0x1B5FA3F4,
1261
0x0EC8739D, 0x1643E62A, 0x1653947E, 0x22D1F4E6,
1262
0x0FB8D64B, 0x0000B5B9 }
1263
};
1264
1265
/*
1266
* Lookup one of the Gwin[] values, by index. This is constant-time.
1267
*/
1268
static void
1269
lookup_Gwin(p256_jacobian *T, uint32_t idx)
1270
{
1271
uint32_t xy[18];
1272
uint32_t k;
1273
size_t u;
1274
1275
memset(xy, 0, sizeof xy);
1276
for (k = 0; k < 15; k ++) {
1277
uint32_t m;
1278
1279
m = -EQ(idx, k + 1);
1280
for (u = 0; u < 18; u ++) {
1281
xy[u] |= m & Gwin[k][u];
1282
}
1283
}
1284
memcpy(T->x, &xy[0], sizeof T->x);
1285
memcpy(T->y, &xy[9], sizeof T->y);
1286
memset(T->z, 0, sizeof T->z);
1287
T->z[0] = 1;
1288
}
1289
1290
/*
1291
* Multiply the generator by an integer. The integer is assumed non-zero
1292
* and lower than the curve order.
1293
*/
1294
static void
1295
p256_mulgen(p256_jacobian *P, const unsigned char *x, size_t xlen)
1296
{
1297
/*
1298
* qz is a flag that is initially 1, and remains equal to 1
1299
* as long as the point is the point at infinity.
1300
*
1301
* We use a 4-bit window to handle multiplier bits by groups
1302
* of 4. The precomputed window is constant static data, with
1303
* points in affine coordinates; we use a constant-time lookup.
1304
*/
1305
p256_jacobian Q;
1306
uint32_t qz;
1307
1308
memset(&Q, 0, sizeof Q);
1309
qz = 1;
1310
while (xlen -- > 0) {
1311
int k;
1312
unsigned bx;
1313
1314
bx = *x ++;
1315
for (k = 0; k < 2; k ++) {
1316
uint32_t bits;
1317
uint32_t bnz;
1318
p256_jacobian T, U;
1319
1320
p256_double(&Q);
1321
p256_double(&Q);
1322
p256_double(&Q);
1323
p256_double(&Q);
1324
bits = (bx >> 4) & 0x0F;
1325
bnz = NEQ(bits, 0);
1326
lookup_Gwin(&T, bits);
1327
U = Q;
1328
p256_add_mixed(&U, &T);
1329
CCOPY(bnz & qz, &Q, &T, sizeof Q);
1330
CCOPY(bnz & ~qz, &Q, &U, sizeof Q);
1331
qz &= ~bnz;
1332
bx <<= 4;
1333
}
1334
}
1335
*P = Q;
1336
}
1337
1338
static const unsigned char P256_G[] = {
1339
0x04, 0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47, 0xF8,
1340
0xBC, 0xE6, 0xE5, 0x63, 0xA4, 0x40, 0xF2, 0x77, 0x03, 0x7D,
1341
0x81, 0x2D, 0xEB, 0x33, 0xA0, 0xF4, 0xA1, 0x39, 0x45, 0xD8,
1342
0x98, 0xC2, 0x96, 0x4F, 0xE3, 0x42, 0xE2, 0xFE, 0x1A, 0x7F,
1343
0x9B, 0x8E, 0xE7, 0xEB, 0x4A, 0x7C, 0x0F, 0x9E, 0x16, 0x2B,
1344
0xCE, 0x33, 0x57, 0x6B, 0x31, 0x5E, 0xCE, 0xCB, 0xB6, 0x40,
1345
0x68, 0x37, 0xBF, 0x51, 0xF5
1346
};
1347
1348
static const unsigned char P256_N[] = {
1349
0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF,
1350
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xBC, 0xE6, 0xFA, 0xAD,
1351
0xA7, 0x17, 0x9E, 0x84, 0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63,
1352
0x25, 0x51
1353
};
1354
1355
static const unsigned char *
1356
api_generator(int curve, size_t *len)
1357
{
1358
(void)curve;
1359
*len = sizeof P256_G;
1360
return P256_G;
1361
}
1362
1363
static const unsigned char *
1364
api_order(int curve, size_t *len)
1365
{
1366
(void)curve;
1367
*len = sizeof P256_N;
1368
return P256_N;
1369
}
1370
1371
static size_t
1372
api_xoff(int curve, size_t *len)
1373
{
1374
(void)curve;
1375
*len = 32;
1376
return 1;
1377
}
1378
1379
static uint32_t
1380
api_mul(unsigned char *G, size_t Glen,
1381
const unsigned char *x, size_t xlen, int curve)
1382
{
1383
uint32_t r;
1384
p256_jacobian P;
1385
1386
(void)curve;
1387
if (Glen != 65) {
1388
return 0;
1389
}
1390
r = p256_decode(&P, G, Glen);
1391
p256_mul(&P, x, xlen);
1392
p256_to_affine(&P);
1393
p256_encode(G, &P);
1394
return r;
1395
}
1396
1397
static size_t
1398
api_mulgen(unsigned char *R,
1399
const unsigned char *x, size_t xlen, int curve)
1400
{
1401
p256_jacobian P;
1402
1403
(void)curve;
1404
p256_mulgen(&P, x, xlen);
1405
p256_to_affine(&P);
1406
p256_encode(R, &P);
1407
return 65;
1408
}
1409
1410
static uint32_t
1411
api_muladd(unsigned char *A, const unsigned char *B, size_t len,
1412
const unsigned char *x, size_t xlen,
1413
const unsigned char *y, size_t ylen, int curve)
1414
{
1415
p256_jacobian P, Q;
1416
uint32_t r, t, z;
1417
int i;
1418
1419
(void)curve;
1420
if (len != 65) {
1421
return 0;
1422
}
1423
r = p256_decode(&P, A, len);
1424
p256_mul(&P, x, xlen);
1425
if (B == NULL) {
1426
p256_mulgen(&Q, y, ylen);
1427
} else {
1428
r &= p256_decode(&Q, B, len);
1429
p256_mul(&Q, y, ylen);
1430
}
1431
1432
/*
1433
* The final addition may fail in case both points are equal.
1434
*/
1435
t = p256_add(&P, &Q);
1436
reduce_final_f256(P.z);
1437
z = 0;
1438
for (i = 0; i < 9; i ++) {
1439
z |= P.z[i];
1440
}
1441
z = EQ(z, 0);
1442
p256_double(&Q);
1443
1444
/*
1445
* If z is 1 then either P+Q = 0 (t = 1) or P = Q (t = 0). So we
1446
* have the following:
1447
*
1448
* z = 0, t = 0 return P (normal addition)
1449
* z = 0, t = 1 return P (normal addition)
1450
* z = 1, t = 0 return Q (a 'double' case)
1451
* z = 1, t = 1 report an error (P+Q = 0)
1452
*/
1453
CCOPY(z & ~t, &P, &Q, sizeof Q);
1454
p256_to_affine(&P);
1455
p256_encode(A, &P);
1456
r &= ~(z & t);
1457
return r;
1458
}
1459
1460
/* see bearssl_ec.h */
1461
const br_ec_impl br_ec_p256_m31 = {
1462
(uint32_t)0x00800000,
1463
&api_generator,
1464
&api_order,
1465
&api_xoff,
1466
&api_mul,
1467
&api_mulgen,
1468
&api_muladd
1469
};
1470
1471