Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/bearssl/src/ec/ec_p256_m62.c
39507 views
1
/*
2
* Copyright (c) 2018 Thomas Pornin <[email protected]>
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining
5
* a copy of this software and associated documentation files (the
6
* "Software"), to deal in the Software without restriction, including
7
* without limitation the rights to use, copy, modify, merge, publish,
8
* distribute, sublicense, and/or sell copies of the Software, and to
9
* permit persons to whom the Software is furnished to do so, subject to
10
* the following conditions:
11
*
12
* The above copyright notice and this permission notice shall be
13
* included in all copies or substantial portions of the Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
* SOFTWARE.
23
*/
24
25
#include "inner.h"
26
27
#if BR_INT128 || BR_UMUL128
28
29
#if BR_UMUL128
30
#include <intrin.h>
31
#endif
32
33
static const unsigned char P256_G[] = {
34
0x04, 0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47, 0xF8,
35
0xBC, 0xE6, 0xE5, 0x63, 0xA4, 0x40, 0xF2, 0x77, 0x03, 0x7D,
36
0x81, 0x2D, 0xEB, 0x33, 0xA0, 0xF4, 0xA1, 0x39, 0x45, 0xD8,
37
0x98, 0xC2, 0x96, 0x4F, 0xE3, 0x42, 0xE2, 0xFE, 0x1A, 0x7F,
38
0x9B, 0x8E, 0xE7, 0xEB, 0x4A, 0x7C, 0x0F, 0x9E, 0x16, 0x2B,
39
0xCE, 0x33, 0x57, 0x6B, 0x31, 0x5E, 0xCE, 0xCB, 0xB6, 0x40,
40
0x68, 0x37, 0xBF, 0x51, 0xF5
41
};
42
43
static const unsigned char P256_N[] = {
44
0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF,
45
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xBC, 0xE6, 0xFA, 0xAD,
46
0xA7, 0x17, 0x9E, 0x84, 0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63,
47
0x25, 0x51
48
};
49
50
static const unsigned char *
51
api_generator(int curve, size_t *len)
52
{
53
(void)curve;
54
*len = sizeof P256_G;
55
return P256_G;
56
}
57
58
static const unsigned char *
59
api_order(int curve, size_t *len)
60
{
61
(void)curve;
62
*len = sizeof P256_N;
63
return P256_N;
64
}
65
66
static size_t
67
api_xoff(int curve, size_t *len)
68
{
69
(void)curve;
70
*len = 32;
71
return 1;
72
}
73
74
/*
75
* A field element is encoded as five 64-bit integers, in basis 2^52.
76
* Limbs may occasionally exceed 2^52.
77
*
78
* A _partially reduced_ value is such that the following hold:
79
* - top limb is less than 2^48 + 2^30
80
* - the other limbs fit on 53 bits each
81
* In particular, such a value is less than twice the modulus p.
82
*/
83
84
#define BIT(n) ((uint64_t)1 << (n))
85
#define MASK48 (BIT(48) - BIT(0))
86
#define MASK52 (BIT(52) - BIT(0))
87
88
/* R = 2^260 mod p */
89
static const uint64_t F256_R[] = {
90
0x0000000000010, 0xF000000000000, 0xFFFFFFFFFFFFF,
91
0xFFEFFFFFFFFFF, 0x00000000FFFFF
92
};
93
94
/* Curve equation is y^2 = x^3 - 3*x + B. This constant is B*R mod p
95
(Montgomery representation of B). */
96
static const uint64_t P256_B_MONTY[] = {
97
0xDF6229C4BDDFD, 0xCA8843090D89C, 0x212ED6ACF005C,
98
0x83415A220ABF7, 0x0C30061DD4874
99
};
100
101
/*
102
* Addition in the field. Carry propagation is not performed.
103
* On input, limbs may be up to 63 bits each; on output, they will
104
* be up to one bit more than on input.
105
*/
106
static inline void
107
f256_add(uint64_t *d, const uint64_t *a, const uint64_t *b)
108
{
109
d[0] = a[0] + b[0];
110
d[1] = a[1] + b[1];
111
d[2] = a[2] + b[2];
112
d[3] = a[3] + b[3];
113
d[4] = a[4] + b[4];
114
}
115
116
/*
117
* Partially reduce the provided value.
118
* Input: limbs can go up to 61 bits each.
119
* Output: partially reduced.
120
*/
121
static inline void
122
f256_partial_reduce(uint64_t *a)
123
{
124
uint64_t w, cc, s;
125
126
/*
127
* Propagate carries.
128
*/
129
w = a[0];
130
a[0] = w & MASK52;
131
cc = w >> 52;
132
w = a[1] + cc;
133
a[1] = w & MASK52;
134
cc = w >> 52;
135
w = a[2] + cc;
136
a[2] = w & MASK52;
137
cc = w >> 52;
138
w = a[3] + cc;
139
a[3] = w & MASK52;
140
cc = w >> 52;
141
a[4] += cc;
142
143
s = a[4] >> 48; /* s < 2^14 */
144
a[0] += s; /* a[0] < 2^52 + 2^14 */
145
w = a[1] - (s << 44);
146
a[1] = w & MASK52; /* a[1] < 2^52 */
147
cc = -(w >> 52) & 0xFFF; /* cc < 16 */
148
w = a[2] - cc;
149
a[2] = w & MASK52; /* a[2] < 2^52 */
150
cc = w >> 63; /* cc = 0 or 1 */
151
w = a[3] - cc - (s << 36);
152
a[3] = w & MASK52; /* a[3] < 2^52 */
153
cc = w >> 63; /* cc = 0 or 1 */
154
w = a[4] & MASK48;
155
a[4] = w + (s << 16) - cc; /* a[4] < 2^48 + 2^30 */
156
}
157
158
/*
159
* Subtraction in the field.
160
* Input: limbs must fit on 60 bits each; in particular, the complete
161
* integer will be less than 2^268 + 2^217.
162
* Output: partially reduced.
163
*/
164
static inline void
165
f256_sub(uint64_t *d, const uint64_t *a, const uint64_t *b)
166
{
167
uint64_t t[5], w, s, cc;
168
169
/*
170
* We compute d = 2^13*p + a - b; this ensures a positive
171
* intermediate value.
172
*
173
* Each individual addition/subtraction may yield a positive or
174
* negative result; thus, we need to handle a signed carry, thus
175
* with sign extension. We prefer not to use signed types (int64_t)
176
* because conversion from unsigned to signed is cumbersome (a
177
* direct cast with the top bit set is undefined behavior; instead,
178
* we have to use pointer aliasing, using the guaranteed properties
179
* of exact-width types, but this requires the compiler to optimize
180
* away the writes and reads from RAM), and right-shifting a
181
* signed negative value is implementation-defined. Therefore,
182
* we use a custom sign extension.
183
*/
184
185
w = a[0] - b[0] - BIT(13);
186
t[0] = w & MASK52;
187
cc = w >> 52;
188
cc |= -(cc & BIT(11));
189
w = a[1] - b[1] + cc;
190
t[1] = w & MASK52;
191
cc = w >> 52;
192
cc |= -(cc & BIT(11));
193
w = a[2] - b[2] + cc;
194
t[2] = (w & MASK52) + BIT(5);
195
cc = w >> 52;
196
cc |= -(cc & BIT(11));
197
w = a[3] - b[3] + cc;
198
t[3] = (w & MASK52) + BIT(49);
199
cc = w >> 52;
200
cc |= -(cc & BIT(11));
201
t[4] = (BIT(61) - BIT(29)) + a[4] - b[4] + cc;
202
203
/*
204
* Perform partial reduction. Rule is:
205
* 2^256 = 2^224 - 2^192 - 2^96 + 1 mod p
206
*
207
* At that point:
208
* 0 <= t[0] <= 2^52 - 1
209
* 0 <= t[1] <= 2^52 - 1
210
* 2^5 <= t[2] <= 2^52 + 2^5 - 1
211
* 2^49 <= t[3] <= 2^52 + 2^49 - 1
212
* 2^59 < t[4] <= 2^61 + 2^60 - 2^29
213
*
214
* Thus, the value 's' (t[4] / 2^48) will be necessarily
215
* greater than 2048, and less than 12288.
216
*/
217
s = t[4] >> 48;
218
219
d[0] = t[0] + s; /* d[0] <= 2^52 + 12287 */
220
w = t[1] - (s << 44);
221
d[1] = w & MASK52; /* d[1] <= 2^52 - 1 */
222
cc = -(w >> 52) & 0xFFF; /* cc <= 48 */
223
w = t[2] - cc;
224
cc = w >> 63; /* cc = 0 or 1 */
225
d[2] = w + (cc << 52); /* d[2] <= 2^52 + 31 */
226
w = t[3] - cc - (s << 36);
227
cc = w >> 63; /* cc = 0 or 1 */
228
d[3] = w + (cc << 52); /* t[3] <= 2^52 + 2^49 - 1 */
229
d[4] = (t[4] & MASK48) + (s << 16) - cc; /* d[4] < 2^48 + 2^30 */
230
231
/*
232
* If s = 0, then none of the limbs is modified, and there cannot
233
* be an overflow; if s != 0, then (s << 16) > cc, and there is
234
* no overflow either.
235
*/
236
}
237
238
/*
239
* Montgomery multiplication in the field.
240
* Input: limbs must fit on 56 bits each.
241
* Output: partially reduced.
242
*/
243
static void
244
f256_montymul(uint64_t *d, const uint64_t *a, const uint64_t *b)
245
{
246
#if BR_INT128
247
248
int i;
249
uint64_t t[5];
250
251
t[0] = 0;
252
t[1] = 0;
253
t[2] = 0;
254
t[3] = 0;
255
t[4] = 0;
256
for (i = 0; i < 5; i ++) {
257
uint64_t x, f, cc, w, s;
258
unsigned __int128 z;
259
260
/*
261
* Since limbs of a[] and b[] fit on 56 bits each,
262
* each individual product fits on 112 bits. Also,
263
* the factor f fits on 52 bits, so f<<48 fits on
264
* 112 bits too. This guarantees that carries (cc)
265
* will fit on 62 bits, thus no overflow.
266
*
267
* The operations below compute:
268
* t <- (t + x*b + f*p) / 2^64
269
*/
270
x = a[i];
271
z = (unsigned __int128)b[0] * (unsigned __int128)x
272
+ (unsigned __int128)t[0];
273
f = (uint64_t)z & MASK52;
274
cc = (uint64_t)(z >> 52);
275
z = (unsigned __int128)b[1] * (unsigned __int128)x
276
+ (unsigned __int128)t[1] + cc
277
+ ((unsigned __int128)f << 44);
278
t[0] = (uint64_t)z & MASK52;
279
cc = (uint64_t)(z >> 52);
280
z = (unsigned __int128)b[2] * (unsigned __int128)x
281
+ (unsigned __int128)t[2] + cc;
282
t[1] = (uint64_t)z & MASK52;
283
cc = (uint64_t)(z >> 52);
284
z = (unsigned __int128)b[3] * (unsigned __int128)x
285
+ (unsigned __int128)t[3] + cc
286
+ ((unsigned __int128)f << 36);
287
t[2] = (uint64_t)z & MASK52;
288
cc = (uint64_t)(z >> 52);
289
z = (unsigned __int128)b[4] * (unsigned __int128)x
290
+ (unsigned __int128)t[4] + cc
291
+ ((unsigned __int128)f << 48)
292
- ((unsigned __int128)f << 16);
293
t[3] = (uint64_t)z & MASK52;
294
t[4] = (uint64_t)(z >> 52);
295
296
/*
297
* t[4] may be up to 62 bits here; we need to do a
298
* partial reduction. Note that limbs t[0] to t[3]
299
* fit on 52 bits each.
300
*/
301
s = t[4] >> 48; /* s < 2^14 */
302
t[0] += s; /* t[0] < 2^52 + 2^14 */
303
w = t[1] - (s << 44);
304
t[1] = w & MASK52; /* t[1] < 2^52 */
305
cc = -(w >> 52) & 0xFFF; /* cc < 16 */
306
w = t[2] - cc;
307
t[2] = w & MASK52; /* t[2] < 2^52 */
308
cc = w >> 63; /* cc = 0 or 1 */
309
w = t[3] - cc - (s << 36);
310
t[3] = w & MASK52; /* t[3] < 2^52 */
311
cc = w >> 63; /* cc = 0 or 1 */
312
w = t[4] & MASK48;
313
t[4] = w + (s << 16) - cc; /* t[4] < 2^48 + 2^30 */
314
315
/*
316
* The final t[4] cannot overflow because cc is 0 or 1,
317
* and cc can be 1 only if s != 0.
318
*/
319
}
320
321
d[0] = t[0];
322
d[1] = t[1];
323
d[2] = t[2];
324
d[3] = t[3];
325
d[4] = t[4];
326
327
#elif BR_UMUL128
328
329
int i;
330
uint64_t t[5];
331
332
t[0] = 0;
333
t[1] = 0;
334
t[2] = 0;
335
t[3] = 0;
336
t[4] = 0;
337
for (i = 0; i < 5; i ++) {
338
uint64_t x, f, cc, w, s, zh, zl;
339
unsigned char k;
340
341
/*
342
* Since limbs of a[] and b[] fit on 56 bits each,
343
* each individual product fits on 112 bits. Also,
344
* the factor f fits on 52 bits, so f<<48 fits on
345
* 112 bits too. This guarantees that carries (cc)
346
* will fit on 62 bits, thus no overflow.
347
*
348
* The operations below compute:
349
* t <- (t + x*b + f*p) / 2^64
350
*/
351
x = a[i];
352
zl = _umul128(b[0], x, &zh);
353
k = _addcarry_u64(0, t[0], zl, &zl);
354
(void)_addcarry_u64(k, 0, zh, &zh);
355
f = zl & MASK52;
356
cc = (zl >> 52) | (zh << 12);
357
358
zl = _umul128(b[1], x, &zh);
359
k = _addcarry_u64(0, t[1], zl, &zl);
360
(void)_addcarry_u64(k, 0, zh, &zh);
361
k = _addcarry_u64(0, cc, zl, &zl);
362
(void)_addcarry_u64(k, 0, zh, &zh);
363
k = _addcarry_u64(0, f << 44, zl, &zl);
364
(void)_addcarry_u64(k, f >> 20, zh, &zh);
365
t[0] = zl & MASK52;
366
cc = (zl >> 52) | (zh << 12);
367
368
zl = _umul128(b[2], x, &zh);
369
k = _addcarry_u64(0, t[2], zl, &zl);
370
(void)_addcarry_u64(k, 0, zh, &zh);
371
k = _addcarry_u64(0, cc, zl, &zl);
372
(void)_addcarry_u64(k, 0, zh, &zh);
373
t[1] = zl & MASK52;
374
cc = (zl >> 52) | (zh << 12);
375
376
zl = _umul128(b[3], x, &zh);
377
k = _addcarry_u64(0, t[3], zl, &zl);
378
(void)_addcarry_u64(k, 0, zh, &zh);
379
k = _addcarry_u64(0, cc, zl, &zl);
380
(void)_addcarry_u64(k, 0, zh, &zh);
381
k = _addcarry_u64(0, f << 36, zl, &zl);
382
(void)_addcarry_u64(k, f >> 28, zh, &zh);
383
t[2] = zl & MASK52;
384
cc = (zl >> 52) | (zh << 12);
385
386
zl = _umul128(b[4], x, &zh);
387
k = _addcarry_u64(0, t[4], zl, &zl);
388
(void)_addcarry_u64(k, 0, zh, &zh);
389
k = _addcarry_u64(0, cc, zl, &zl);
390
(void)_addcarry_u64(k, 0, zh, &zh);
391
k = _addcarry_u64(0, f << 48, zl, &zl);
392
(void)_addcarry_u64(k, f >> 16, zh, &zh);
393
k = _subborrow_u64(0, zl, f << 16, &zl);
394
(void)_subborrow_u64(k, zh, f >> 48, &zh);
395
t[3] = zl & MASK52;
396
t[4] = (zl >> 52) | (zh << 12);
397
398
/*
399
* t[4] may be up to 62 bits here; we need to do a
400
* partial reduction. Note that limbs t[0] to t[3]
401
* fit on 52 bits each.
402
*/
403
s = t[4] >> 48; /* s < 2^14 */
404
t[0] += s; /* t[0] < 2^52 + 2^14 */
405
w = t[1] - (s << 44);
406
t[1] = w & MASK52; /* t[1] < 2^52 */
407
cc = -(w >> 52) & 0xFFF; /* cc < 16 */
408
w = t[2] - cc;
409
t[2] = w & MASK52; /* t[2] < 2^52 */
410
cc = w >> 63; /* cc = 0 or 1 */
411
w = t[3] - cc - (s << 36);
412
t[3] = w & MASK52; /* t[3] < 2^52 */
413
cc = w >> 63; /* cc = 0 or 1 */
414
w = t[4] & MASK48;
415
t[4] = w + (s << 16) - cc; /* t[4] < 2^48 + 2^30 */
416
417
/*
418
* The final t[4] cannot overflow because cc is 0 or 1,
419
* and cc can be 1 only if s != 0.
420
*/
421
}
422
423
d[0] = t[0];
424
d[1] = t[1];
425
d[2] = t[2];
426
d[3] = t[3];
427
d[4] = t[4];
428
429
#endif
430
}
431
432
/*
433
* Montgomery squaring in the field; currently a basic wrapper around
434
* multiplication (inline, should be optimized away).
435
* TODO: see if some extra speed can be gained here.
436
*/
437
static inline void
438
f256_montysquare(uint64_t *d, const uint64_t *a)
439
{
440
f256_montymul(d, a, a);
441
}
442
443
/*
444
* Convert to Montgomery representation.
445
*/
446
static void
447
f256_tomonty(uint64_t *d, const uint64_t *a)
448
{
449
/*
450
* R2 = 2^520 mod p.
451
* If R = 2^260 mod p, then R2 = R^2 mod p; and the Montgomery
452
* multiplication of a by R2 is: a*R2/R = a*R mod p, i.e. the
453
* conversion to Montgomery representation.
454
*/
455
static const uint64_t R2[] = {
456
0x0000000000300, 0xFFFFFFFF00000, 0xFFFFEFFFFFFFB,
457
0xFDFFFFFFFFFFF, 0x0000004FFFFFF
458
};
459
460
f256_montymul(d, a, R2);
461
}
462
463
/*
464
* Convert from Montgomery representation.
465
*/
466
static void
467
f256_frommonty(uint64_t *d, const uint64_t *a)
468
{
469
/*
470
* Montgomery multiplication by 1 is division by 2^260 modulo p.
471
*/
472
static const uint64_t one[] = { 1, 0, 0, 0, 0 };
473
474
f256_montymul(d, a, one);
475
}
476
477
/*
478
* Inversion in the field. If the source value is 0 modulo p, then this
479
* returns 0 or p. This function uses Montgomery representation.
480
*/
481
static void
482
f256_invert(uint64_t *d, const uint64_t *a)
483
{
484
/*
485
* We compute a^(p-2) mod p. The exponent pattern (from high to
486
* low) is:
487
* - 32 bits of value 1
488
* - 31 bits of value 0
489
* - 1 bit of value 1
490
* - 96 bits of value 0
491
* - 94 bits of value 1
492
* - 1 bit of value 0
493
* - 1 bit of value 1
494
* To speed up the square-and-multiply algorithm, we precompute
495
* a^(2^31-1).
496
*/
497
498
uint64_t r[5], t[5];
499
int i;
500
501
memcpy(t, a, sizeof t);
502
for (i = 0; i < 30; i ++) {
503
f256_montysquare(t, t);
504
f256_montymul(t, t, a);
505
}
506
507
memcpy(r, t, sizeof t);
508
for (i = 224; i >= 0; i --) {
509
f256_montysquare(r, r);
510
switch (i) {
511
case 0:
512
case 2:
513
case 192:
514
case 224:
515
f256_montymul(r, r, a);
516
break;
517
case 3:
518
case 34:
519
case 65:
520
f256_montymul(r, r, t);
521
break;
522
}
523
}
524
memcpy(d, r, sizeof r);
525
}
526
527
/*
528
* Finalize reduction.
529
* Input value should be partially reduced.
530
* On output, limbs a[0] to a[3] fit on 52 bits each, limb a[4] fits
531
* on 48 bits, and the integer is less than p.
532
*/
533
static inline void
534
f256_final_reduce(uint64_t *a)
535
{
536
uint64_t r[5], t[5], w, cc;
537
int i;
538
539
/*
540
* Propagate carries to ensure that limbs 0 to 3 fit on 52 bits.
541
*/
542
cc = 0;
543
for (i = 0; i < 5; i ++) {
544
w = a[i] + cc;
545
r[i] = w & MASK52;
546
cc = w >> 52;
547
}
548
549
/*
550
* We compute t = r + (2^256 - p) = r + 2^224 - 2^192 - 2^96 + 1.
551
* If t < 2^256, then r < p, and we return r. Otherwise, we
552
* want to return r - p = t - 2^256.
553
*/
554
555
/*
556
* Add 2^224 + 1, and propagate carries to ensure that limbs
557
* t[0] to t[3] fit in 52 bits each.
558
*/
559
w = r[0] + 1;
560
t[0] = w & MASK52;
561
cc = w >> 52;
562
w = r[1] + cc;
563
t[1] = w & MASK52;
564
cc = w >> 52;
565
w = r[2] + cc;
566
t[2] = w & MASK52;
567
cc = w >> 52;
568
w = r[3] + cc;
569
t[3] = w & MASK52;
570
cc = w >> 52;
571
t[4] = r[4] + cc + BIT(16);
572
573
/*
574
* Subtract 2^192 + 2^96. Since we just added 2^224 + 1, the
575
* result cannot be negative.
576
*/
577
w = t[1] - BIT(44);
578
t[1] = w & MASK52;
579
cc = w >> 63;
580
w = t[2] - cc;
581
t[2] = w & MASK52;
582
cc = w >> 63;
583
w = t[3] - BIT(36) - cc;
584
t[3] = w & MASK52;
585
cc = w >> 63;
586
t[4] -= cc;
587
588
/*
589
* If the top limb t[4] fits on 48 bits, then r[] is already
590
* in the proper range. Otherwise, t[] is the value to return
591
* (truncated to 256 bits).
592
*/
593
cc = -(t[4] >> 48);
594
t[4] &= MASK48;
595
for (i = 0; i < 5; i ++) {
596
a[i] = r[i] ^ (cc & (r[i] ^ t[i]));
597
}
598
}
599
600
/*
601
* Points in affine and Jacobian coordinates.
602
*
603
* - In affine coordinates, the point-at-infinity cannot be encoded.
604
* - Jacobian coordinates (X,Y,Z) correspond to affine (X/Z^2,Y/Z^3);
605
* if Z = 0 then this is the point-at-infinity.
606
*/
607
typedef struct {
608
uint64_t x[5];
609
uint64_t y[5];
610
} p256_affine;
611
612
typedef struct {
613
uint64_t x[5];
614
uint64_t y[5];
615
uint64_t z[5];
616
} p256_jacobian;
617
618
/*
619
* Decode a field element (unsigned big endian notation).
620
*/
621
static void
622
f256_decode(uint64_t *a, const unsigned char *buf)
623
{
624
uint64_t w0, w1, w2, w3;
625
626
w3 = br_dec64be(buf + 0);
627
w2 = br_dec64be(buf + 8);
628
w1 = br_dec64be(buf + 16);
629
w0 = br_dec64be(buf + 24);
630
a[0] = w0 & MASK52;
631
a[1] = ((w0 >> 52) | (w1 << 12)) & MASK52;
632
a[2] = ((w1 >> 40) | (w2 << 24)) & MASK52;
633
a[3] = ((w2 >> 28) | (w3 << 36)) & MASK52;
634
a[4] = w3 >> 16;
635
}
636
637
/*
638
* Encode a field element (unsigned big endian notation). The field
639
* element MUST be fully reduced.
640
*/
641
static void
642
f256_encode(unsigned char *buf, const uint64_t *a)
643
{
644
uint64_t w0, w1, w2, w3;
645
646
w0 = a[0] | (a[1] << 52);
647
w1 = (a[1] >> 12) | (a[2] << 40);
648
w2 = (a[2] >> 24) | (a[3] << 28);
649
w3 = (a[3] >> 36) | (a[4] << 16);
650
br_enc64be(buf + 0, w3);
651
br_enc64be(buf + 8, w2);
652
br_enc64be(buf + 16, w1);
653
br_enc64be(buf + 24, w0);
654
}
655
656
/*
657
* Decode a point. The returned point is in Jacobian coordinates, but
658
* with z = 1. If the encoding is invalid, or encodes a point which is
659
* not on the curve, or encodes the point at infinity, then this function
660
* returns 0. Otherwise, 1 is returned.
661
*
662
* The buffer is assumed to have length exactly 65 bytes.
663
*/
664
static uint32_t
665
point_decode(p256_jacobian *P, const unsigned char *buf)
666
{
667
uint64_t x[5], y[5], t[5], x3[5], tt;
668
uint32_t r;
669
670
/*
671
* Header byte shall be 0x04.
672
*/
673
r = EQ(buf[0], 0x04);
674
675
/*
676
* Decode X and Y coordinates, and convert them into
677
* Montgomery representation.
678
*/
679
f256_decode(x, buf + 1);
680
f256_decode(y, buf + 33);
681
f256_tomonty(x, x);
682
f256_tomonty(y, y);
683
684
/*
685
* Verify y^2 = x^3 + A*x + B. In curve P-256, A = -3.
686
* Note that the Montgomery representation of 0 is 0. We must
687
* take care to apply the final reduction to make sure we have
688
* 0 and not p.
689
*/
690
f256_montysquare(t, y);
691
f256_montysquare(x3, x);
692
f256_montymul(x3, x3, x);
693
f256_sub(t, t, x3);
694
f256_add(t, t, x);
695
f256_add(t, t, x);
696
f256_add(t, t, x);
697
f256_sub(t, t, P256_B_MONTY);
698
f256_final_reduce(t);
699
tt = t[0] | t[1] | t[2] | t[3] | t[4];
700
r &= EQ((uint32_t)(tt | (tt >> 32)), 0);
701
702
/*
703
* Return the point in Jacobian coordinates (and Montgomery
704
* representation).
705
*/
706
memcpy(P->x, x, sizeof x);
707
memcpy(P->y, y, sizeof y);
708
memcpy(P->z, F256_R, sizeof F256_R);
709
return r;
710
}
711
712
/*
713
* Final conversion for a point:
714
* - The point is converted back to affine coordinates.
715
* - Final reduction is performed.
716
* - The point is encoded into the provided buffer.
717
*
718
* If the point is the point-at-infinity, all operations are performed,
719
* but the buffer contents are indeterminate, and 0 is returned. Otherwise,
720
* the encoded point is written in the buffer, and 1 is returned.
721
*/
722
static uint32_t
723
point_encode(unsigned char *buf, const p256_jacobian *P)
724
{
725
uint64_t t1[5], t2[5], z;
726
727
/* Set t1 = 1/z^2 and t2 = 1/z^3. */
728
f256_invert(t2, P->z);
729
f256_montysquare(t1, t2);
730
f256_montymul(t2, t2, t1);
731
732
/* Compute affine coordinates x (in t1) and y (in t2). */
733
f256_montymul(t1, P->x, t1);
734
f256_montymul(t2, P->y, t2);
735
736
/* Convert back from Montgomery representation, and finalize
737
reductions. */
738
f256_frommonty(t1, t1);
739
f256_frommonty(t2, t2);
740
f256_final_reduce(t1);
741
f256_final_reduce(t2);
742
743
/* Encode. */
744
buf[0] = 0x04;
745
f256_encode(buf + 1, t1);
746
f256_encode(buf + 33, t2);
747
748
/* Return success if and only if P->z != 0. */
749
z = P->z[0] | P->z[1] | P->z[2] | P->z[3] | P->z[4];
750
return NEQ((uint32_t)(z | z >> 32), 0);
751
}
752
753
/*
754
* Point doubling in Jacobian coordinates: point P is doubled.
755
* Note: if the source point is the point-at-infinity, then the result is
756
* still the point-at-infinity, which is correct. Moreover, if the three
757
* coordinates were zero, then they still are zero in the returned value.
758
*/
759
static void
760
p256_double(p256_jacobian *P)
761
{
762
/*
763
* Doubling formulas are:
764
*
765
* s = 4*x*y^2
766
* m = 3*(x + z^2)*(x - z^2)
767
* x' = m^2 - 2*s
768
* y' = m*(s - x') - 8*y^4
769
* z' = 2*y*z
770
*
771
* These formulas work for all points, including points of order 2
772
* and points at infinity:
773
* - If y = 0 then z' = 0. But there is no such point in P-256
774
* anyway.
775
* - If z = 0 then z' = 0.
776
*/
777
uint64_t t1[5], t2[5], t3[5], t4[5];
778
779
/*
780
* Compute z^2 in t1.
781
*/
782
f256_montysquare(t1, P->z);
783
784
/*
785
* Compute x-z^2 in t2 and x+z^2 in t1.
786
*/
787
f256_add(t2, P->x, t1);
788
f256_sub(t1, P->x, t1);
789
790
/*
791
* Compute 3*(x+z^2)*(x-z^2) in t1.
792
*/
793
f256_montymul(t3, t1, t2);
794
f256_add(t1, t3, t3);
795
f256_add(t1, t3, t1);
796
797
/*
798
* Compute 4*x*y^2 (in t2) and 2*y^2 (in t3).
799
*/
800
f256_montysquare(t3, P->y);
801
f256_add(t3, t3, t3);
802
f256_montymul(t2, P->x, t3);
803
f256_add(t2, t2, t2);
804
805
/*
806
* Compute x' = m^2 - 2*s.
807
*/
808
f256_montysquare(P->x, t1);
809
f256_sub(P->x, P->x, t2);
810
f256_sub(P->x, P->x, t2);
811
812
/*
813
* Compute z' = 2*y*z.
814
*/
815
f256_montymul(t4, P->y, P->z);
816
f256_add(P->z, t4, t4);
817
f256_partial_reduce(P->z);
818
819
/*
820
* Compute y' = m*(s - x') - 8*y^4. Note that we already have
821
* 2*y^2 in t3.
822
*/
823
f256_sub(t2, t2, P->x);
824
f256_montymul(P->y, t1, t2);
825
f256_montysquare(t4, t3);
826
f256_add(t4, t4, t4);
827
f256_sub(P->y, P->y, t4);
828
}
829
830
/*
831
* Point addition (Jacobian coordinates): P1 is replaced with P1+P2.
832
* This function computes the wrong result in the following cases:
833
*
834
* - If P1 == 0 but P2 != 0
835
* - If P1 != 0 but P2 == 0
836
* - If P1 == P2
837
*
838
* In all three cases, P1 is set to the point at infinity.
839
*
840
* Returned value is 0 if one of the following occurs:
841
*
842
* - P1 and P2 have the same Y coordinate.
843
* - P1 == 0 and P2 == 0.
844
* - The Y coordinate of one of the points is 0 and the other point is
845
* the point at infinity.
846
*
847
* The third case cannot actually happen with valid points, since a point
848
* with Y == 0 is a point of order 2, and there is no point of order 2 on
849
* curve P-256.
850
*
851
* Therefore, assuming that P1 != 0 and P2 != 0 on input, then the caller
852
* can apply the following:
853
*
854
* - If the result is not the point at infinity, then it is correct.
855
* - Otherwise, if the returned value is 1, then this is a case of
856
* P1+P2 == 0, so the result is indeed the point at infinity.
857
* - Otherwise, P1 == P2, so a "double" operation should have been
858
* performed.
859
*
860
* Note that you can get a returned value of 0 with a correct result,
861
* e.g. if P1 and P2 have the same Y coordinate, but distinct X coordinates.
862
*/
863
static uint32_t
864
p256_add(p256_jacobian *P1, const p256_jacobian *P2)
865
{
866
/*
867
* Addtions formulas are:
868
*
869
* u1 = x1 * z2^2
870
* u2 = x2 * z1^2
871
* s1 = y1 * z2^3
872
* s2 = y2 * z1^3
873
* h = u2 - u1
874
* r = s2 - s1
875
* x3 = r^2 - h^3 - 2 * u1 * h^2
876
* y3 = r * (u1 * h^2 - x3) - s1 * h^3
877
* z3 = h * z1 * z2
878
*/
879
uint64_t t1[5], t2[5], t3[5], t4[5], t5[5], t6[5], t7[5], tt;
880
uint32_t ret;
881
882
/*
883
* Compute u1 = x1*z2^2 (in t1) and s1 = y1*z2^3 (in t3).
884
*/
885
f256_montysquare(t3, P2->z);
886
f256_montymul(t1, P1->x, t3);
887
f256_montymul(t4, P2->z, t3);
888
f256_montymul(t3, P1->y, t4);
889
890
/*
891
* Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
892
*/
893
f256_montysquare(t4, P1->z);
894
f256_montymul(t2, P2->x, t4);
895
f256_montymul(t5, P1->z, t4);
896
f256_montymul(t4, P2->y, t5);
897
898
/*
899
* Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4).
900
* We need to test whether r is zero, so we will do some extra
901
* reduce.
902
*/
903
f256_sub(t2, t2, t1);
904
f256_sub(t4, t4, t3);
905
f256_final_reduce(t4);
906
tt = t4[0] | t4[1] | t4[2] | t4[3] | t4[4];
907
ret = (uint32_t)(tt | (tt >> 32));
908
ret = (ret | -ret) >> 31;
909
910
/*
911
* Compute u1*h^2 (in t6) and h^3 (in t5);
912
*/
913
f256_montysquare(t7, t2);
914
f256_montymul(t6, t1, t7);
915
f256_montymul(t5, t7, t2);
916
917
/*
918
* Compute x3 = r^2 - h^3 - 2*u1*h^2.
919
*/
920
f256_montysquare(P1->x, t4);
921
f256_sub(P1->x, P1->x, t5);
922
f256_sub(P1->x, P1->x, t6);
923
f256_sub(P1->x, P1->x, t6);
924
925
/*
926
* Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
927
*/
928
f256_sub(t6, t6, P1->x);
929
f256_montymul(P1->y, t4, t6);
930
f256_montymul(t1, t5, t3);
931
f256_sub(P1->y, P1->y, t1);
932
933
/*
934
* Compute z3 = h*z1*z2.
935
*/
936
f256_montymul(t1, P1->z, P2->z);
937
f256_montymul(P1->z, t1, t2);
938
939
return ret;
940
}
941
942
/*
943
* Point addition (mixed coordinates): P1 is replaced with P1+P2.
944
* This is a specialised function for the case when P2 is a non-zero point
945
* in affine coordinates.
946
*
947
* This function computes the wrong result in the following cases:
948
*
949
* - If P1 == 0
950
* - If P1 == P2
951
*
952
* In both cases, P1 is set to the point at infinity.
953
*
954
* Returned value is 0 if one of the following occurs:
955
*
956
* - P1 and P2 have the same Y (affine) coordinate.
957
* - The Y coordinate of P2 is 0 and P1 is the point at infinity.
958
*
959
* The second case cannot actually happen with valid points, since a point
960
* with Y == 0 is a point of order 2, and there is no point of order 2 on
961
* curve P-256.
962
*
963
* Therefore, assuming that P1 != 0 on input, then the caller
964
* can apply the following:
965
*
966
* - If the result is not the point at infinity, then it is correct.
967
* - Otherwise, if the returned value is 1, then this is a case of
968
* P1+P2 == 0, so the result is indeed the point at infinity.
969
* - Otherwise, P1 == P2, so a "double" operation should have been
970
* performed.
971
*
972
* Again, a value of 0 may be returned in some cases where the addition
973
* result is correct.
974
*/
975
static uint32_t
976
p256_add_mixed(p256_jacobian *P1, const p256_affine *P2)
977
{
978
/*
979
* Addtions formulas are:
980
*
981
* u1 = x1
982
* u2 = x2 * z1^2
983
* s1 = y1
984
* s2 = y2 * z1^3
985
* h = u2 - u1
986
* r = s2 - s1
987
* x3 = r^2 - h^3 - 2 * u1 * h^2
988
* y3 = r * (u1 * h^2 - x3) - s1 * h^3
989
* z3 = h * z1
990
*/
991
uint64_t t1[5], t2[5], t3[5], t4[5], t5[5], t6[5], t7[5], tt;
992
uint32_t ret;
993
994
/*
995
* Compute u1 = x1 (in t1) and s1 = y1 (in t3).
996
*/
997
memcpy(t1, P1->x, sizeof t1);
998
memcpy(t3, P1->y, sizeof t3);
999
1000
/*
1001
* Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
1002
*/
1003
f256_montysquare(t4, P1->z);
1004
f256_montymul(t2, P2->x, t4);
1005
f256_montymul(t5, P1->z, t4);
1006
f256_montymul(t4, P2->y, t5);
1007
1008
/*
1009
* Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4).
1010
* We need to test whether r is zero, so we will do some extra
1011
* reduce.
1012
*/
1013
f256_sub(t2, t2, t1);
1014
f256_sub(t4, t4, t3);
1015
f256_final_reduce(t4);
1016
tt = t4[0] | t4[1] | t4[2] | t4[3] | t4[4];
1017
ret = (uint32_t)(tt | (tt >> 32));
1018
ret = (ret | -ret) >> 31;
1019
1020
/*
1021
* Compute u1*h^2 (in t6) and h^3 (in t5);
1022
*/
1023
f256_montysquare(t7, t2);
1024
f256_montymul(t6, t1, t7);
1025
f256_montymul(t5, t7, t2);
1026
1027
/*
1028
* Compute x3 = r^2 - h^3 - 2*u1*h^2.
1029
*/
1030
f256_montysquare(P1->x, t4);
1031
f256_sub(P1->x, P1->x, t5);
1032
f256_sub(P1->x, P1->x, t6);
1033
f256_sub(P1->x, P1->x, t6);
1034
1035
/*
1036
* Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
1037
*/
1038
f256_sub(t6, t6, P1->x);
1039
f256_montymul(P1->y, t4, t6);
1040
f256_montymul(t1, t5, t3);
1041
f256_sub(P1->y, P1->y, t1);
1042
1043
/*
1044
* Compute z3 = h*z1*z2.
1045
*/
1046
f256_montymul(P1->z, P1->z, t2);
1047
1048
return ret;
1049
}
1050
1051
#if 0
1052
/* unused */
1053
/*
1054
* Point addition (mixed coordinates, complete): P1 is replaced with P1+P2.
1055
* This is a specialised function for the case when P2 is a non-zero point
1056
* in affine coordinates.
1057
*
1058
* This function returns the correct result in all cases.
1059
*/
1060
static uint32_t
1061
p256_add_complete_mixed(p256_jacobian *P1, const p256_affine *P2)
1062
{
1063
/*
1064
* Addtions formulas, in the general case, are:
1065
*
1066
* u1 = x1
1067
* u2 = x2 * z1^2
1068
* s1 = y1
1069
* s2 = y2 * z1^3
1070
* h = u2 - u1
1071
* r = s2 - s1
1072
* x3 = r^2 - h^3 - 2 * u1 * h^2
1073
* y3 = r * (u1 * h^2 - x3) - s1 * h^3
1074
* z3 = h * z1
1075
*
1076
* These formulas mishandle the two following cases:
1077
*
1078
* - If P1 is the point-at-infinity (z1 = 0), then z3 is
1079
* incorrectly set to 0.
1080
*
1081
* - If P1 = P2, then u1 = u2 and s1 = s2, and x3, y3 and z3
1082
* are all set to 0.
1083
*
1084
* However, if P1 + P2 = 0, then u1 = u2 but s1 != s2, and then
1085
* we correctly get z3 = 0 (the point-at-infinity).
1086
*
1087
* To fix the case P1 = 0, we perform at the end a copy of P2
1088
* over P1, conditional to z1 = 0.
1089
*
1090
* For P1 = P2: in that case, both h and r are set to 0, and
1091
* we get x3, y3 and z3 equal to 0. We can test for that
1092
* occurrence to make a mask which will be all-one if P1 = P2,
1093
* or all-zero otherwise; then we can compute the double of P2
1094
* and add it, combined with the mask, to (x3,y3,z3).
1095
*
1096
* Using the doubling formulas in p256_double() on (x2,y2),
1097
* simplifying since P2 is affine (i.e. z2 = 1, implicitly),
1098
* we get:
1099
* s = 4*x2*y2^2
1100
* m = 3*(x2 + 1)*(x2 - 1)
1101
* x' = m^2 - 2*s
1102
* y' = m*(s - x') - 8*y2^4
1103
* z' = 2*y2
1104
* which requires only 6 multiplications. Added to the 11
1105
* multiplications of the normal mixed addition in Jacobian
1106
* coordinates, we get a cost of 17 multiplications in total.
1107
*/
1108
uint64_t t1[5], t2[5], t3[5], t4[5], t5[5], t6[5], t7[5], tt, zz;
1109
int i;
1110
1111
/*
1112
* Set zz to -1 if P1 is the point at infinity, 0 otherwise.
1113
*/
1114
zz = P1->z[0] | P1->z[1] | P1->z[2] | P1->z[3] | P1->z[4];
1115
zz = ((zz | -zz) >> 63) - (uint64_t)1;
1116
1117
/*
1118
* Compute u1 = x1 (in t1) and s1 = y1 (in t3).
1119
*/
1120
memcpy(t1, P1->x, sizeof t1);
1121
memcpy(t3, P1->y, sizeof t3);
1122
1123
/*
1124
* Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
1125
*/
1126
f256_montysquare(t4, P1->z);
1127
f256_montymul(t2, P2->x, t4);
1128
f256_montymul(t5, P1->z, t4);
1129
f256_montymul(t4, P2->y, t5);
1130
1131
/*
1132
* Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4).
1133
* reduce.
1134
*/
1135
f256_sub(t2, t2, t1);
1136
f256_sub(t4, t4, t3);
1137
1138
/*
1139
* If both h = 0 and r = 0, then P1 = P2, and we want to set
1140
* the mask tt to -1; otherwise, the mask will be 0.
1141
*/
1142
f256_final_reduce(t2);
1143
f256_final_reduce(t4);
1144
tt = t2[0] | t2[1] | t2[2] | t2[3] | t2[4]
1145
| t4[0] | t4[1] | t4[2] | t4[3] | t4[4];
1146
tt = ((tt | -tt) >> 63) - (uint64_t)1;
1147
1148
/*
1149
* Compute u1*h^2 (in t6) and h^3 (in t5);
1150
*/
1151
f256_montysquare(t7, t2);
1152
f256_montymul(t6, t1, t7);
1153
f256_montymul(t5, t7, t2);
1154
1155
/*
1156
* Compute x3 = r^2 - h^3 - 2*u1*h^2.
1157
*/
1158
f256_montysquare(P1->x, t4);
1159
f256_sub(P1->x, P1->x, t5);
1160
f256_sub(P1->x, P1->x, t6);
1161
f256_sub(P1->x, P1->x, t6);
1162
1163
/*
1164
* Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
1165
*/
1166
f256_sub(t6, t6, P1->x);
1167
f256_montymul(P1->y, t4, t6);
1168
f256_montymul(t1, t5, t3);
1169
f256_sub(P1->y, P1->y, t1);
1170
1171
/*
1172
* Compute z3 = h*z1.
1173
*/
1174
f256_montymul(P1->z, P1->z, t2);
1175
1176
/*
1177
* The "double" result, in case P1 = P2.
1178
*/
1179
1180
/*
1181
* Compute z' = 2*y2 (in t1).
1182
*/
1183
f256_add(t1, P2->y, P2->y);
1184
f256_partial_reduce(t1);
1185
1186
/*
1187
* Compute 2*(y2^2) (in t2) and s = 4*x2*(y2^2) (in t3).
1188
*/
1189
f256_montysquare(t2, P2->y);
1190
f256_add(t2, t2, t2);
1191
f256_add(t3, t2, t2);
1192
f256_montymul(t3, P2->x, t3);
1193
1194
/*
1195
* Compute m = 3*(x2^2 - 1) (in t4).
1196
*/
1197
f256_montysquare(t4, P2->x);
1198
f256_sub(t4, t4, F256_R);
1199
f256_add(t5, t4, t4);
1200
f256_add(t4, t4, t5);
1201
1202
/*
1203
* Compute x' = m^2 - 2*s (in t5).
1204
*/
1205
f256_montysquare(t5, t4);
1206
f256_sub(t5, t3);
1207
f256_sub(t5, t3);
1208
1209
/*
1210
* Compute y' = m*(s - x') - 8*y2^4 (in t6).
1211
*/
1212
f256_sub(t6, t3, t5);
1213
f256_montymul(t6, t6, t4);
1214
f256_montysquare(t7, t2);
1215
f256_sub(t6, t6, t7);
1216
f256_sub(t6, t6, t7);
1217
1218
/*
1219
* We now have the alternate (doubling) coordinates in (t5,t6,t1).
1220
* We combine them with (x3,y3,z3).
1221
*/
1222
for (i = 0; i < 5; i ++) {
1223
P1->x[i] |= tt & t5[i];
1224
P1->y[i] |= tt & t6[i];
1225
P1->z[i] |= tt & t1[i];
1226
}
1227
1228
/*
1229
* If P1 = 0, then we get z3 = 0 (which is invalid); if z1 is 0,
1230
* then we want to replace the result with a copy of P2. The
1231
* test on z1 was done at the start, in the zz mask.
1232
*/
1233
for (i = 0; i < 5; i ++) {
1234
P1->x[i] ^= zz & (P1->x[i] ^ P2->x[i]);
1235
P1->y[i] ^= zz & (P1->y[i] ^ P2->y[i]);
1236
P1->z[i] ^= zz & (P1->z[i] ^ F256_R[i]);
1237
}
1238
}
1239
#endif
1240
1241
/*
1242
* Inner function for computing a point multiplication. A window is
1243
* provided, with points 1*P to 15*P in affine coordinates.
1244
*
1245
* Assumptions:
1246
* - All provided points are valid points on the curve.
1247
* - Multiplier is non-zero, and smaller than the curve order.
1248
* - Everything is in Montgomery representation.
1249
*/
1250
static void
1251
point_mul_inner(p256_jacobian *R, const p256_affine *W,
1252
const unsigned char *k, size_t klen)
1253
{
1254
p256_jacobian Q;
1255
uint32_t qz;
1256
1257
memset(&Q, 0, sizeof Q);
1258
qz = 1;
1259
while (klen -- > 0) {
1260
int i;
1261
unsigned bk;
1262
1263
bk = *k ++;
1264
for (i = 0; i < 2; i ++) {
1265
uint32_t bits;
1266
uint32_t bnz;
1267
p256_affine T;
1268
p256_jacobian U;
1269
uint32_t n;
1270
int j;
1271
uint64_t m;
1272
1273
p256_double(&Q);
1274
p256_double(&Q);
1275
p256_double(&Q);
1276
p256_double(&Q);
1277
bits = (bk >> 4) & 0x0F;
1278
bnz = NEQ(bits, 0);
1279
1280
/*
1281
* Lookup point in window. If the bits are 0,
1282
* we get something invalid, which is not a
1283
* problem because we will use it only if the
1284
* bits are non-zero.
1285
*/
1286
memset(&T, 0, sizeof T);
1287
for (n = 0; n < 15; n ++) {
1288
m = -(uint64_t)EQ(bits, n + 1);
1289
T.x[0] |= m & W[n].x[0];
1290
T.x[1] |= m & W[n].x[1];
1291
T.x[2] |= m & W[n].x[2];
1292
T.x[3] |= m & W[n].x[3];
1293
T.x[4] |= m & W[n].x[4];
1294
T.y[0] |= m & W[n].y[0];
1295
T.y[1] |= m & W[n].y[1];
1296
T.y[2] |= m & W[n].y[2];
1297
T.y[3] |= m & W[n].y[3];
1298
T.y[4] |= m & W[n].y[4];
1299
}
1300
1301
U = Q;
1302
p256_add_mixed(&U, &T);
1303
1304
/*
1305
* If qz is still 1, then Q was all-zeros, and this
1306
* is conserved through p256_double().
1307
*/
1308
m = -(uint64_t)(bnz & qz);
1309
for (j = 0; j < 5; j ++) {
1310
Q.x[j] ^= m & (Q.x[j] ^ T.x[j]);
1311
Q.y[j] ^= m & (Q.y[j] ^ T.y[j]);
1312
Q.z[j] ^= m & (Q.z[j] ^ F256_R[j]);
1313
}
1314
CCOPY(bnz & ~qz, &Q, &U, sizeof Q);
1315
qz &= ~bnz;
1316
bk <<= 4;
1317
}
1318
}
1319
*R = Q;
1320
}
1321
1322
/*
1323
* Convert a window from Jacobian to affine coordinates. A single
1324
* field inversion is used. This function works for windows up to
1325
* 32 elements.
1326
*
1327
* The destination array (aff[]) and the source array (jac[]) may
1328
* overlap, provided that the start of aff[] is not after the start of
1329
* jac[]. Even if the arrays do _not_ overlap, the source array is
1330
* modified.
1331
*/
1332
static void
1333
window_to_affine(p256_affine *aff, p256_jacobian *jac, int num)
1334
{
1335
/*
1336
* Convert the window points to affine coordinates. We use the
1337
* following trick to mutualize the inversion computation: if
1338
* we have z1, z2, z3, and z4, and want to invert all of them,
1339
* we compute u = 1/(z1*z2*z3*z4), and then we have:
1340
* 1/z1 = u*z2*z3*z4
1341
* 1/z2 = u*z1*z3*z4
1342
* 1/z3 = u*z1*z2*z4
1343
* 1/z4 = u*z1*z2*z3
1344
*
1345
* The partial products are computed recursively:
1346
*
1347
* - on input (z_1,z_2), return (z_2,z_1) and z_1*z_2
1348
* - on input (z_1,z_2,... z_n):
1349
* recurse on (z_1,z_2,... z_(n/2)) -> r1 and m1
1350
* recurse on (z_(n/2+1),z_(n/2+2)... z_n) -> r2 and m2
1351
* multiply elements of r1 by m2 -> s1
1352
* multiply elements of r2 by m1 -> s2
1353
* return r1||r2 and m1*m2
1354
*
1355
* In the example below, we suppose that we have 14 elements.
1356
* Let z1, z2,... zE be the 14 values to invert (index noted in
1357
* hexadecimal, starting at 1).
1358
*
1359
* - Depth 1:
1360
* swap(z1, z2); z12 = z1*z2
1361
* swap(z3, z4); z34 = z3*z4
1362
* swap(z5, z6); z56 = z5*z6
1363
* swap(z7, z8); z78 = z7*z8
1364
* swap(z9, zA); z9A = z9*zA
1365
* swap(zB, zC); zBC = zB*zC
1366
* swap(zD, zE); zDE = zD*zE
1367
*
1368
* - Depth 2:
1369
* z1 <- z1*z34, z2 <- z2*z34, z3 <- z3*z12, z4 <- z4*z12
1370
* z1234 = z12*z34
1371
* z5 <- z5*z78, z6 <- z6*z78, z7 <- z7*z56, z8 <- z8*z56
1372
* z5678 = z56*z78
1373
* z9 <- z9*zBC, zA <- zA*zBC, zB <- zB*z9A, zC <- zC*z9A
1374
* z9ABC = z9A*zBC
1375
*
1376
* - Depth 3:
1377
* z1 <- z1*z5678, z2 <- z2*z5678, z3 <- z3*z5678, z4 <- z4*z5678
1378
* z5 <- z5*z1234, z6 <- z6*z1234, z7 <- z7*z1234, z8 <- z8*z1234
1379
* z12345678 = z1234*z5678
1380
* z9 <- z9*zDE, zA <- zA*zDE, zB <- zB*zDE, zC <- zC*zDE
1381
* zD <- zD*z9ABC, zE*z9ABC
1382
* z9ABCDE = z9ABC*zDE
1383
*
1384
* - Depth 4:
1385
* multiply z1..z8 by z9ABCDE
1386
* multiply z9..zE by z12345678
1387
* final z = z12345678*z9ABCDE
1388
*/
1389
1390
uint64_t z[16][5];
1391
int i, k, s;
1392
#define zt (z[15])
1393
#define zu (z[14])
1394
#define zv (z[13])
1395
1396
/*
1397
* First recursion step (pairwise swapping and multiplication).
1398
* If there is an odd number of elements, then we "invent" an
1399
* extra one with coordinate Z = 1 (in Montgomery representation).
1400
*/
1401
for (i = 0; (i + 1) < num; i += 2) {
1402
memcpy(zt, jac[i].z, sizeof zt);
1403
memcpy(jac[i].z, jac[i + 1].z, sizeof zt);
1404
memcpy(jac[i + 1].z, zt, sizeof zt);
1405
f256_montymul(z[i >> 1], jac[i].z, jac[i + 1].z);
1406
}
1407
if ((num & 1) != 0) {
1408
memcpy(z[num >> 1], jac[num - 1].z, sizeof zt);
1409
memcpy(jac[num - 1].z, F256_R, sizeof F256_R);
1410
}
1411
1412
/*
1413
* Perform further recursion steps. At the entry of each step,
1414
* the process has been done for groups of 's' points. The
1415
* integer k is the log2 of s.
1416
*/
1417
for (k = 1, s = 2; s < num; k ++, s <<= 1) {
1418
int n;
1419
1420
for (i = 0; i < num; i ++) {
1421
f256_montymul(jac[i].z, jac[i].z, z[(i >> k) ^ 1]);
1422
}
1423
n = (num + s - 1) >> k;
1424
for (i = 0; i < (n >> 1); i ++) {
1425
f256_montymul(z[i], z[i << 1], z[(i << 1) + 1]);
1426
}
1427
if ((n & 1) != 0) {
1428
memmove(z[n >> 1], z[n], sizeof zt);
1429
}
1430
}
1431
1432
/*
1433
* Invert the final result, and convert all points.
1434
*/
1435
f256_invert(zt, z[0]);
1436
for (i = 0; i < num; i ++) {
1437
f256_montymul(zv, jac[i].z, zt);
1438
f256_montysquare(zu, zv);
1439
f256_montymul(zv, zv, zu);
1440
f256_montymul(aff[i].x, jac[i].x, zu);
1441
f256_montymul(aff[i].y, jac[i].y, zv);
1442
}
1443
}
1444
1445
/*
1446
* Multiply the provided point by an integer.
1447
* Assumptions:
1448
* - Source point is a valid curve point.
1449
* - Source point is not the point-at-infinity.
1450
* - Integer is not 0, and is lower than the curve order.
1451
* If these conditions are not met, then the result is indeterminate
1452
* (but the process is still constant-time).
1453
*/
1454
static void
1455
p256_mul(p256_jacobian *P, const unsigned char *k, size_t klen)
1456
{
1457
union {
1458
p256_affine aff[15];
1459
p256_jacobian jac[15];
1460
} window;
1461
int i;
1462
1463
/*
1464
* Compute window, in Jacobian coordinates.
1465
*/
1466
window.jac[0] = *P;
1467
for (i = 2; i < 16; i ++) {
1468
window.jac[i - 1] = window.jac[(i >> 1) - 1];
1469
if ((i & 1) == 0) {
1470
p256_double(&window.jac[i - 1]);
1471
} else {
1472
p256_add(&window.jac[i - 1], &window.jac[i >> 1]);
1473
}
1474
}
1475
1476
/*
1477
* Convert the window points to affine coordinates. Point
1478
* window[0] is the source point, already in affine coordinates.
1479
*/
1480
window_to_affine(window.aff, window.jac, 15);
1481
1482
/*
1483
* Perform point multiplication.
1484
*/
1485
point_mul_inner(P, window.aff, k, klen);
1486
}
1487
1488
/*
1489
* Precomputed window for the conventional generator: P256_Gwin[n]
1490
* contains (n+1)*G (affine coordinates, in Montgomery representation).
1491
*/
1492
static const p256_affine P256_Gwin[] = {
1493
{
1494
{ 0x30D418A9143C1, 0xC4FEDB60179E7, 0x62251075BA95F,
1495
0x5C669FB732B77, 0x08905F76B5375 },
1496
{ 0x5357CE95560A8, 0x43A19E45CDDF2, 0x21F3258B4AB8E,
1497
0xD8552E88688DD, 0x0571FF18A5885 }
1498
},
1499
{
1500
{ 0x46D410DDD64DF, 0x0B433827D8500, 0x1490D9AA6AE3C,
1501
0xA3A832205038D, 0x06BB32E52DCF3 },
1502
{ 0x48D361BEE1A57, 0xB7B236FF82F36, 0x042DBE152CD7C,
1503
0xA3AA9A8FB0E92, 0x08C577517A5B8 }
1504
},
1505
{
1506
{ 0x3F904EEBC1272, 0x9E87D81FBFFAC, 0xCBBC98B027F84,
1507
0x47E46AD77DD87, 0x06936A3FD6FF7 },
1508
{ 0x5C1FC983A7EBD, 0xC3861FE1AB04C, 0x2EE98E583E47A,
1509
0xC06A88208311A, 0x05F06A2AB587C }
1510
},
1511
{
1512
{ 0xB50D46918DCC5, 0xD7623C17374B0, 0x100AF24650A6E,
1513
0x76ABCDAACACE8, 0x077362F591B01 },
1514
{ 0xF24CE4CBABA68, 0x17AD6F4472D96, 0xDDD22E1762847,
1515
0x862EB6C36DEE5, 0x04B14C39CC5AB }
1516
},
1517
{
1518
{ 0x8AAEC45C61F5C, 0x9D4B9537DBE1B, 0x76C20C90EC649,
1519
0x3C7D41CB5AAD0, 0x0907960649052 },
1520
{ 0x9B4AE7BA4F107, 0xF75EB882BEB30, 0x7A1F6873C568E,
1521
0x915C540A9877E, 0x03A076BB9DD1E }
1522
},
1523
{
1524
{ 0x47373E77664A1, 0xF246CEE3E4039, 0x17A3AD55AE744,
1525
0x673C50A961A5B, 0x03074B5964213 },
1526
{ 0x6220D377E44BA, 0x30DFF14B593D3, 0x639F11299C2B5,
1527
0x75F5424D44CEF, 0x04C9916DEA07F }
1528
},
1529
{
1530
{ 0x354EA0173B4F1, 0x3C23C00F70746, 0x23BB082BD2021,
1531
0xE03E43EAAB50C, 0x03BA5119D3123 },
1532
{ 0xD0303F5B9D4DE, 0x17DA67BDD2847, 0xC941956742F2F,
1533
0x8670F933BDC77, 0x0AEDD9164E240 }
1534
},
1535
{
1536
{ 0x4CD19499A78FB, 0x4BF9B345527F1, 0x2CFC6B462AB5C,
1537
0x30CDF90F02AF0, 0x0763891F62652 },
1538
{ 0xA3A9532D49775, 0xD7F9EBA15F59D, 0x60BBF021E3327,
1539
0xF75C23C7B84BE, 0x06EC12F2C706D }
1540
},
1541
{
1542
{ 0x6E8F264E20E8E, 0xC79A7A84175C9, 0xC8EB00ABE6BFE,
1543
0x16A4CC09C0444, 0x005B3081D0C4E },
1544
{ 0x777AA45F33140, 0xDCE5D45E31EB7, 0xB12F1A56AF7BE,
1545
0xF9B2B6E019A88, 0x086659CDFD835 }
1546
},
1547
{
1548
{ 0xDBD19DC21EC8C, 0x94FCF81392C18, 0x250B4998F9868,
1549
0x28EB37D2CD648, 0x0C61C947E4B34 },
1550
{ 0x407880DD9E767, 0x0C83FBE080C2B, 0x9BE5D2C43A899,
1551
0xAB4EF7D2D6577, 0x08719A555B3B4 }
1552
},
1553
{
1554
{ 0x260A6245E4043, 0x53E7FDFE0EA7D, 0xAC1AB59DE4079,
1555
0x072EFF3A4158D, 0x0E7090F1949C9 },
1556
{ 0x85612B944E886, 0xE857F61C81A76, 0xAD643D250F939,
1557
0x88DAC0DAA891E, 0x089300244125B }
1558
},
1559
{
1560
{ 0x1AA7D26977684, 0x58A345A3304B7, 0x37385EABDEDEF,
1561
0x155E409D29DEE, 0x0EE1DF780B83E },
1562
{ 0x12D91CBB5B437, 0x65A8956370CAC, 0xDE6D66170ED2F,
1563
0xAC9B8228CFA8A, 0x0FF57C95C3238 }
1564
},
1565
{
1566
{ 0x25634B2ED7097, 0x9156FD30DCCC4, 0x9E98110E35676,
1567
0x7594CBCD43F55, 0x038477ACC395B },
1568
{ 0x2B90C00EE17FF, 0xF842ED2E33575, 0x1F5BC16874838,
1569
0x7968CD06422BD, 0x0BC0876AB9E7B }
1570
},
1571
{
1572
{ 0xA35BB0CF664AF, 0x68F9707E3A242, 0x832660126E48F,
1573
0x72D2717BF54C6, 0x0AAE7333ED12C },
1574
{ 0x2DB7995D586B1, 0xE732237C227B5, 0x65E7DBBE29569,
1575
0xBBBD8E4193E2A, 0x052706DC3EAA1 }
1576
},
1577
{
1578
{ 0xD8B7BC60055BE, 0xD76E27E4B72BC, 0x81937003CC23E,
1579
0xA090E337424E4, 0x02AA0E43EAD3D },
1580
{ 0x524F6383C45D2, 0x422A41B2540B8, 0x8A4797D766355,
1581
0xDF444EFA6DE77, 0x0042170A9079A }
1582
},
1583
};
1584
1585
/*
1586
* Multiply the conventional generator of the curve by the provided
1587
* integer. Return is written in *P.
1588
*
1589
* Assumptions:
1590
* - Integer is not 0, and is lower than the curve order.
1591
* If this conditions is not met, then the result is indeterminate
1592
* (but the process is still constant-time).
1593
*/
1594
static void
1595
p256_mulgen(p256_jacobian *P, const unsigned char *k, size_t klen)
1596
{
1597
point_mul_inner(P, P256_Gwin, k, klen);
1598
}
1599
1600
/*
1601
* Return 1 if all of the following hold:
1602
* - klen <= 32
1603
* - k != 0
1604
* - k is lower than the curve order
1605
* Otherwise, return 0.
1606
*
1607
* Constant-time behaviour: only klen may be observable.
1608
*/
1609
static uint32_t
1610
check_scalar(const unsigned char *k, size_t klen)
1611
{
1612
uint32_t z;
1613
int32_t c;
1614
size_t u;
1615
1616
if (klen > 32) {
1617
return 0;
1618
}
1619
z = 0;
1620
for (u = 0; u < klen; u ++) {
1621
z |= k[u];
1622
}
1623
if (klen == 32) {
1624
c = 0;
1625
for (u = 0; u < klen; u ++) {
1626
c |= -(int32_t)EQ0(c) & CMP(k[u], P256_N[u]);
1627
}
1628
} else {
1629
c = -1;
1630
}
1631
return NEQ(z, 0) & LT0(c);
1632
}
1633
1634
static uint32_t
1635
api_mul(unsigned char *G, size_t Glen,
1636
const unsigned char *k, size_t klen, int curve)
1637
{
1638
uint32_t r;
1639
p256_jacobian P;
1640
1641
(void)curve;
1642
if (Glen != 65) {
1643
return 0;
1644
}
1645
r = check_scalar(k, klen);
1646
r &= point_decode(&P, G);
1647
p256_mul(&P, k, klen);
1648
r &= point_encode(G, &P);
1649
return r;
1650
}
1651
1652
static size_t
1653
api_mulgen(unsigned char *R,
1654
const unsigned char *k, size_t klen, int curve)
1655
{
1656
p256_jacobian P;
1657
1658
(void)curve;
1659
p256_mulgen(&P, k, klen);
1660
point_encode(R, &P);
1661
return 65;
1662
}
1663
1664
static uint32_t
1665
api_muladd(unsigned char *A, const unsigned char *B, size_t len,
1666
const unsigned char *x, size_t xlen,
1667
const unsigned char *y, size_t ylen, int curve)
1668
{
1669
/*
1670
* We might want to use Shamir's trick here: make a composite
1671
* window of u*P+v*Q points, to merge the two doubling-ladders
1672
* into one. This, however, has some complications:
1673
*
1674
* - During the computation, we may hit the point-at-infinity.
1675
* Thus, we would need p256_add_complete_mixed() (complete
1676
* formulas for point addition), with a higher cost (17 muls
1677
* instead of 11).
1678
*
1679
* - A 4-bit window would be too large, since it would involve
1680
* 16*16-1 = 255 points. For the same window size as in the
1681
* p256_mul() case, we would need to reduce the window size
1682
* to 2 bits, and thus perform twice as many non-doubling
1683
* point additions.
1684
*
1685
* - The window may itself contain the point-at-infinity, and
1686
* thus cannot be in all generality be made of affine points.
1687
* Instead, we would need to make it a window of points in
1688
* Jacobian coordinates. Even p256_add_complete_mixed() would
1689
* be inappropriate.
1690
*
1691
* For these reasons, the code below performs two separate
1692
* point multiplications, then computes the final point addition
1693
* (which is both a "normal" addition, and a doubling, to handle
1694
* all cases).
1695
*/
1696
1697
p256_jacobian P, Q;
1698
uint32_t r, t, s;
1699
uint64_t z;
1700
1701
(void)curve;
1702
if (len != 65) {
1703
return 0;
1704
}
1705
r = point_decode(&P, A);
1706
p256_mul(&P, x, xlen);
1707
if (B == NULL) {
1708
p256_mulgen(&Q, y, ylen);
1709
} else {
1710
r &= point_decode(&Q, B);
1711
p256_mul(&Q, y, ylen);
1712
}
1713
1714
/*
1715
* The final addition may fail in case both points are equal.
1716
*/
1717
t = p256_add(&P, &Q);
1718
f256_final_reduce(P.z);
1719
z = P.z[0] | P.z[1] | P.z[2] | P.z[3] | P.z[4];
1720
s = EQ((uint32_t)(z | (z >> 32)), 0);
1721
p256_double(&Q);
1722
1723
/*
1724
* If s is 1 then either P+Q = 0 (t = 1) or P = Q (t = 0). So we
1725
* have the following:
1726
*
1727
* s = 0, t = 0 return P (normal addition)
1728
* s = 0, t = 1 return P (normal addition)
1729
* s = 1, t = 0 return Q (a 'double' case)
1730
* s = 1, t = 1 report an error (P+Q = 0)
1731
*/
1732
CCOPY(s & ~t, &P, &Q, sizeof Q);
1733
point_encode(A, &P);
1734
r &= ~(s & t);
1735
return r;
1736
}
1737
1738
/* see bearssl_ec.h */
1739
const br_ec_impl br_ec_p256_m62 = {
1740
(uint32_t)0x00800000,
1741
&api_generator,
1742
&api_order,
1743
&api_xoff,
1744
&api_mul,
1745
&api_mulgen,
1746
&api_muladd
1747
};
1748
1749
/* see bearssl_ec.h */
1750
const br_ec_impl *
1751
br_ec_p256_m62_get(void)
1752
{
1753
return &br_ec_p256_m62;
1754
}
1755
1756
#else
1757
1758
/* see bearssl_ec.h */
1759
const br_ec_impl *
1760
br_ec_p256_m62_get(void)
1761
{
1762
return 0;
1763
}
1764
1765
#endif
1766
1767