Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/bearssl/src/ec/ec_p256_m64.c
39507 views
1
/*
2
* Copyright (c) 2018 Thomas Pornin <[email protected]>
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining
5
* a copy of this software and associated documentation files (the
6
* "Software"), to deal in the Software without restriction, including
7
* without limitation the rights to use, copy, modify, merge, publish,
8
* distribute, sublicense, and/or sell copies of the Software, and to
9
* permit persons to whom the Software is furnished to do so, subject to
10
* the following conditions:
11
*
12
* The above copyright notice and this permission notice shall be
13
* included in all copies or substantial portions of the Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
* SOFTWARE.
23
*/
24
25
#include "inner.h"
26
27
#if BR_INT128 || BR_UMUL128
28
29
#if BR_UMUL128
30
#include <intrin.h>
31
#endif
32
33
static const unsigned char P256_G[] = {
34
0x04, 0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47, 0xF8,
35
0xBC, 0xE6, 0xE5, 0x63, 0xA4, 0x40, 0xF2, 0x77, 0x03, 0x7D,
36
0x81, 0x2D, 0xEB, 0x33, 0xA0, 0xF4, 0xA1, 0x39, 0x45, 0xD8,
37
0x98, 0xC2, 0x96, 0x4F, 0xE3, 0x42, 0xE2, 0xFE, 0x1A, 0x7F,
38
0x9B, 0x8E, 0xE7, 0xEB, 0x4A, 0x7C, 0x0F, 0x9E, 0x16, 0x2B,
39
0xCE, 0x33, 0x57, 0x6B, 0x31, 0x5E, 0xCE, 0xCB, 0xB6, 0x40,
40
0x68, 0x37, 0xBF, 0x51, 0xF5
41
};
42
43
static const unsigned char P256_N[] = {
44
0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF,
45
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xBC, 0xE6, 0xFA, 0xAD,
46
0xA7, 0x17, 0x9E, 0x84, 0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63,
47
0x25, 0x51
48
};
49
50
static const unsigned char *
51
api_generator(int curve, size_t *len)
52
{
53
(void)curve;
54
*len = sizeof P256_G;
55
return P256_G;
56
}
57
58
static const unsigned char *
59
api_order(int curve, size_t *len)
60
{
61
(void)curve;
62
*len = sizeof P256_N;
63
return P256_N;
64
}
65
66
static size_t
67
api_xoff(int curve, size_t *len)
68
{
69
(void)curve;
70
*len = 32;
71
return 1;
72
}
73
74
/*
75
* A field element is encoded as four 64-bit integers, in basis 2^64.
76
* Values may reach up to 2^256-1. Montgomery multiplication is used.
77
*/
78
79
/* R = 2^256 mod p */
80
static const uint64_t F256_R[] = {
81
0x0000000000000001, 0xFFFFFFFF00000000,
82
0xFFFFFFFFFFFFFFFF, 0x00000000FFFFFFFE
83
};
84
85
/* Curve equation is y^2 = x^3 - 3*x + B. This constant is B*R mod p
86
(Montgomery representation of B). */
87
static const uint64_t P256_B_MONTY[] = {
88
0xD89CDF6229C4BDDF, 0xACF005CD78843090,
89
0xE5A220ABF7212ED6, 0xDC30061D04874834
90
};
91
92
/*
93
* Addition in the field.
94
*/
95
static inline void
96
f256_add(uint64_t *d, const uint64_t *a, const uint64_t *b)
97
{
98
#if BR_INT128
99
unsigned __int128 w;
100
uint64_t t;
101
102
/*
103
* Do the addition, with an extra carry in t.
104
*/
105
w = (unsigned __int128)a[0] + b[0];
106
d[0] = (uint64_t)w;
107
w = (unsigned __int128)a[1] + b[1] + (w >> 64);
108
d[1] = (uint64_t)w;
109
w = (unsigned __int128)a[2] + b[2] + (w >> 64);
110
d[2] = (uint64_t)w;
111
w = (unsigned __int128)a[3] + b[3] + (w >> 64);
112
d[3] = (uint64_t)w;
113
t = (uint64_t)(w >> 64);
114
115
/*
116
* Fold carry t, using: 2^256 = 2^224 - 2^192 - 2^96 + 1 mod p.
117
*/
118
w = (unsigned __int128)d[0] + t;
119
d[0] = (uint64_t)w;
120
w = (unsigned __int128)d[1] + (w >> 64) - (t << 32);
121
d[1] = (uint64_t)w;
122
/* Here, carry "w >> 64" can only be 0 or -1 */
123
w = (unsigned __int128)d[2] - ((w >> 64) & 1);
124
d[2] = (uint64_t)w;
125
/* Again, carry is 0 or -1. But there can be carry only if t = 1,
126
in which case the addition of (t << 32) - t is positive. */
127
w = (unsigned __int128)d[3] - ((w >> 64) & 1) + (t << 32) - t;
128
d[3] = (uint64_t)w;
129
t = (uint64_t)(w >> 64);
130
131
/*
132
* There can be an extra carry here, which we must fold again.
133
*/
134
w = (unsigned __int128)d[0] + t;
135
d[0] = (uint64_t)w;
136
w = (unsigned __int128)d[1] + (w >> 64) - (t << 32);
137
d[1] = (uint64_t)w;
138
w = (unsigned __int128)d[2] - ((w >> 64) & 1);
139
d[2] = (uint64_t)w;
140
d[3] += (t << 32) - t - (uint64_t)((w >> 64) & 1);
141
142
#elif BR_UMUL128
143
144
unsigned char cc;
145
uint64_t t;
146
147
cc = _addcarry_u64(0, a[0], b[0], &d[0]);
148
cc = _addcarry_u64(cc, a[1], b[1], &d[1]);
149
cc = _addcarry_u64(cc, a[2], b[2], &d[2]);
150
cc = _addcarry_u64(cc, a[3], b[3], &d[3]);
151
152
/*
153
* If there is a carry, then we want to subtract p, which we
154
* do by adding 2^256 - p.
155
*/
156
t = cc;
157
cc = _addcarry_u64(cc, d[0], 0, &d[0]);
158
cc = _addcarry_u64(cc, d[1], -(t << 32), &d[1]);
159
cc = _addcarry_u64(cc, d[2], -t, &d[2]);
160
cc = _addcarry_u64(cc, d[3], (t << 32) - (t << 1), &d[3]);
161
162
/*
163
* We have to do it again if there still is a carry.
164
*/
165
t = cc;
166
cc = _addcarry_u64(cc, d[0], 0, &d[0]);
167
cc = _addcarry_u64(cc, d[1], -(t << 32), &d[1]);
168
cc = _addcarry_u64(cc, d[2], -t, &d[2]);
169
(void)_addcarry_u64(cc, d[3], (t << 32) - (t << 1), &d[3]);
170
171
#endif
172
}
173
174
/*
175
* Subtraction in the field.
176
*/
177
static inline void
178
f256_sub(uint64_t *d, const uint64_t *a, const uint64_t *b)
179
{
180
#if BR_INT128
181
182
unsigned __int128 w;
183
uint64_t t;
184
185
w = (unsigned __int128)a[0] - b[0];
186
d[0] = (uint64_t)w;
187
w = (unsigned __int128)a[1] - b[1] - ((w >> 64) & 1);
188
d[1] = (uint64_t)w;
189
w = (unsigned __int128)a[2] - b[2] - ((w >> 64) & 1);
190
d[2] = (uint64_t)w;
191
w = (unsigned __int128)a[3] - b[3] - ((w >> 64) & 1);
192
d[3] = (uint64_t)w;
193
t = (uint64_t)(w >> 64) & 1;
194
195
/*
196
* If there is a borrow (t = 1), then we must add the modulus
197
* p = 2^256 - 2^224 + 2^192 + 2^96 - 1.
198
*/
199
w = (unsigned __int128)d[0] - t;
200
d[0] = (uint64_t)w;
201
w = (unsigned __int128)d[1] + (t << 32) - ((w >> 64) & 1);
202
d[1] = (uint64_t)w;
203
/* Here, carry "w >> 64" can only be 0 or +1 */
204
w = (unsigned __int128)d[2] + (w >> 64);
205
d[2] = (uint64_t)w;
206
/* Again, carry is 0 or +1 */
207
w = (unsigned __int128)d[3] + (w >> 64) - (t << 32) + t;
208
d[3] = (uint64_t)w;
209
t = (uint64_t)(w >> 64) & 1;
210
211
/*
212
* There may be again a borrow, in which case we must add the
213
* modulus again.
214
*/
215
w = (unsigned __int128)d[0] - t;
216
d[0] = (uint64_t)w;
217
w = (unsigned __int128)d[1] + (t << 32) - ((w >> 64) & 1);
218
d[1] = (uint64_t)w;
219
w = (unsigned __int128)d[2] + (w >> 64);
220
d[2] = (uint64_t)w;
221
d[3] += (uint64_t)(w >> 64) - (t << 32) + t;
222
223
#elif BR_UMUL128
224
225
unsigned char cc;
226
uint64_t t;
227
228
cc = _subborrow_u64(0, a[0], b[0], &d[0]);
229
cc = _subborrow_u64(cc, a[1], b[1], &d[1]);
230
cc = _subborrow_u64(cc, a[2], b[2], &d[2]);
231
cc = _subborrow_u64(cc, a[3], b[3], &d[3]);
232
233
/*
234
* If there is a borrow, then we need to add p. We (virtually)
235
* add 2^256, then subtract 2^256 - p.
236
*/
237
t = cc;
238
cc = _subborrow_u64(0, d[0], t, &d[0]);
239
cc = _subborrow_u64(cc, d[1], -(t << 32), &d[1]);
240
cc = _subborrow_u64(cc, d[2], -t, &d[2]);
241
cc = _subborrow_u64(cc, d[3], (t << 32) - (t << 1), &d[3]);
242
243
/*
244
* If there still is a borrow, then we need to add p again.
245
*/
246
t = cc;
247
cc = _subborrow_u64(0, d[0], t, &d[0]);
248
cc = _subborrow_u64(cc, d[1], -(t << 32), &d[1]);
249
cc = _subborrow_u64(cc, d[2], -t, &d[2]);
250
(void)_subborrow_u64(cc, d[3], (t << 32) - (t << 1), &d[3]);
251
252
#endif
253
}
254
255
/*
256
* Montgomery multiplication in the field.
257
*/
258
static void
259
f256_montymul(uint64_t *d, const uint64_t *a, const uint64_t *b)
260
{
261
#if BR_INT128
262
263
uint64_t x, f, t0, t1, t2, t3, t4;
264
unsigned __int128 z, ff;
265
int i;
266
267
/*
268
* When computing d <- d + a[u]*b, we also add f*p such
269
* that d + a[u]*b + f*p is a multiple of 2^64. Since
270
* p = -1 mod 2^64, we can compute f = d[0] + a[u]*b[0] mod 2^64.
271
*/
272
273
/*
274
* Step 1: t <- (a[0]*b + f*p) / 2^64
275
* We have f = a[0]*b[0] mod 2^64. Since p = -1 mod 2^64, this
276
* ensures that (a[0]*b + f*p) is a multiple of 2^64.
277
*
278
* We also have: f*p = f*2^256 - f*2^224 + f*2^192 + f*2^96 - f.
279
*/
280
x = a[0];
281
z = (unsigned __int128)b[0] * x;
282
f = (uint64_t)z;
283
z = (unsigned __int128)b[1] * x + (z >> 64) + (uint64_t)(f << 32);
284
t0 = (uint64_t)z;
285
z = (unsigned __int128)b[2] * x + (z >> 64) + (uint64_t)(f >> 32);
286
t1 = (uint64_t)z;
287
z = (unsigned __int128)b[3] * x + (z >> 64) + f;
288
t2 = (uint64_t)z;
289
t3 = (uint64_t)(z >> 64);
290
ff = ((unsigned __int128)f << 64) - ((unsigned __int128)f << 32);
291
z = (unsigned __int128)t2 + (uint64_t)ff;
292
t2 = (uint64_t)z;
293
z = (unsigned __int128)t3 + (z >> 64) + (ff >> 64);
294
t3 = (uint64_t)z;
295
t4 = (uint64_t)(z >> 64);
296
297
/*
298
* Steps 2 to 4: t <- (t + a[i]*b + f*p) / 2^64
299
*/
300
for (i = 1; i < 4; i ++) {
301
x = a[i];
302
303
/* t <- (t + x*b - f) / 2^64 */
304
z = (unsigned __int128)b[0] * x + t0;
305
f = (uint64_t)z;
306
z = (unsigned __int128)b[1] * x + t1 + (z >> 64);
307
t0 = (uint64_t)z;
308
z = (unsigned __int128)b[2] * x + t2 + (z >> 64);
309
t1 = (uint64_t)z;
310
z = (unsigned __int128)b[3] * x + t3 + (z >> 64);
311
t2 = (uint64_t)z;
312
z = t4 + (z >> 64);
313
t3 = (uint64_t)z;
314
t4 = (uint64_t)(z >> 64);
315
316
/* t <- t + f*2^32, carry in the upper half of z */
317
z = (unsigned __int128)t0 + (uint64_t)(f << 32);
318
t0 = (uint64_t)z;
319
z = (z >> 64) + (unsigned __int128)t1 + (uint64_t)(f >> 32);
320
t1 = (uint64_t)z;
321
322
/* t <- t + f*2^192 - f*2^160 + f*2^128 */
323
ff = ((unsigned __int128)f << 64)
324
- ((unsigned __int128)f << 32) + f;
325
z = (z >> 64) + (unsigned __int128)t2 + (uint64_t)ff;
326
t2 = (uint64_t)z;
327
z = (unsigned __int128)t3 + (z >> 64) + (ff >> 64);
328
t3 = (uint64_t)z;
329
t4 += (uint64_t)(z >> 64);
330
}
331
332
/*
333
* At that point, we have computed t = (a*b + F*p) / 2^256, where
334
* F is a 256-bit integer whose limbs are the "f" coefficients
335
* in the steps above. We have:
336
* a <= 2^256-1
337
* b <= 2^256-1
338
* F <= 2^256-1
339
* Hence:
340
* a*b + F*p <= (2^256-1)*(2^256-1) + p*(2^256-1)
341
* a*b + F*p <= 2^256*(2^256 - 2 + p) + 1 - p
342
* Therefore:
343
* t < 2^256 + p - 2
344
* Since p < 2^256, it follows that:
345
* t4 can be only 0 or 1
346
* t - p < 2^256
347
* We can therefore subtract p from t, conditionally on t4, to
348
* get a nonnegative result that fits on 256 bits.
349
*/
350
z = (unsigned __int128)t0 + t4;
351
t0 = (uint64_t)z;
352
z = (unsigned __int128)t1 - (t4 << 32) + (z >> 64);
353
t1 = (uint64_t)z;
354
z = (unsigned __int128)t2 - (z >> 127);
355
t2 = (uint64_t)z;
356
t3 = t3 - (uint64_t)(z >> 127) - t4 + (t4 << 32);
357
358
d[0] = t0;
359
d[1] = t1;
360
d[2] = t2;
361
d[3] = t3;
362
363
#elif BR_UMUL128
364
365
uint64_t x, f, t0, t1, t2, t3, t4;
366
uint64_t zl, zh, ffl, ffh;
367
unsigned char k, m;
368
int i;
369
370
/*
371
* When computing d <- d + a[u]*b, we also add f*p such
372
* that d + a[u]*b + f*p is a multiple of 2^64. Since
373
* p = -1 mod 2^64, we can compute f = d[0] + a[u]*b[0] mod 2^64.
374
*/
375
376
/*
377
* Step 1: t <- (a[0]*b + f*p) / 2^64
378
* We have f = a[0]*b[0] mod 2^64. Since p = -1 mod 2^64, this
379
* ensures that (a[0]*b + f*p) is a multiple of 2^64.
380
*
381
* We also have: f*p = f*2^256 - f*2^224 + f*2^192 + f*2^96 - f.
382
*/
383
x = a[0];
384
385
zl = _umul128(b[0], x, &zh);
386
f = zl;
387
t0 = zh;
388
389
zl = _umul128(b[1], x, &zh);
390
k = _addcarry_u64(0, zl, t0, &zl);
391
(void)_addcarry_u64(k, zh, 0, &zh);
392
k = _addcarry_u64(0, zl, f << 32, &zl);
393
(void)_addcarry_u64(k, zh, 0, &zh);
394
t0 = zl;
395
t1 = zh;
396
397
zl = _umul128(b[2], x, &zh);
398
k = _addcarry_u64(0, zl, t1, &zl);
399
(void)_addcarry_u64(k, zh, 0, &zh);
400
k = _addcarry_u64(0, zl, f >> 32, &zl);
401
(void)_addcarry_u64(k, zh, 0, &zh);
402
t1 = zl;
403
t2 = zh;
404
405
zl = _umul128(b[3], x, &zh);
406
k = _addcarry_u64(0, zl, t2, &zl);
407
(void)_addcarry_u64(k, zh, 0, &zh);
408
k = _addcarry_u64(0, zl, f, &zl);
409
(void)_addcarry_u64(k, zh, 0, &zh);
410
t2 = zl;
411
t3 = zh;
412
413
t4 = _addcarry_u64(0, t3, f, &t3);
414
k = _subborrow_u64(0, t2, f << 32, &t2);
415
k = _subborrow_u64(k, t3, f >> 32, &t3);
416
(void)_subborrow_u64(k, t4, 0, &t4);
417
418
/*
419
* Steps 2 to 4: t <- (t + a[i]*b + f*p) / 2^64
420
*/
421
for (i = 1; i < 4; i ++) {
422
x = a[i];
423
/* f = t0 + x * b[0]; -- computed below */
424
425
/* t <- (t + x*b - f) / 2^64 */
426
zl = _umul128(b[0], x, &zh);
427
k = _addcarry_u64(0, zl, t0, &f);
428
(void)_addcarry_u64(k, zh, 0, &t0);
429
430
zl = _umul128(b[1], x, &zh);
431
k = _addcarry_u64(0, zl, t0, &zl);
432
(void)_addcarry_u64(k, zh, 0, &zh);
433
k = _addcarry_u64(0, zl, t1, &t0);
434
(void)_addcarry_u64(k, zh, 0, &t1);
435
436
zl = _umul128(b[2], x, &zh);
437
k = _addcarry_u64(0, zl, t1, &zl);
438
(void)_addcarry_u64(k, zh, 0, &zh);
439
k = _addcarry_u64(0, zl, t2, &t1);
440
(void)_addcarry_u64(k, zh, 0, &t2);
441
442
zl = _umul128(b[3], x, &zh);
443
k = _addcarry_u64(0, zl, t2, &zl);
444
(void)_addcarry_u64(k, zh, 0, &zh);
445
k = _addcarry_u64(0, zl, t3, &t2);
446
(void)_addcarry_u64(k, zh, 0, &t3);
447
448
t4 = _addcarry_u64(0, t3, t4, &t3);
449
450
/* t <- t + f*2^32, carry in k */
451
k = _addcarry_u64(0, t0, f << 32, &t0);
452
k = _addcarry_u64(k, t1, f >> 32, &t1);
453
454
/* t <- t + f*2^192 - f*2^160 + f*2^128 */
455
m = _subborrow_u64(0, f, f << 32, &ffl);
456
(void)_subborrow_u64(m, f, f >> 32, &ffh);
457
k = _addcarry_u64(k, t2, ffl, &t2);
458
k = _addcarry_u64(k, t3, ffh, &t3);
459
(void)_addcarry_u64(k, t4, 0, &t4);
460
}
461
462
/*
463
* At that point, we have computed t = (a*b + F*p) / 2^256, where
464
* F is a 256-bit integer whose limbs are the "f" coefficients
465
* in the steps above. We have:
466
* a <= 2^256-1
467
* b <= 2^256-1
468
* F <= 2^256-1
469
* Hence:
470
* a*b + F*p <= (2^256-1)*(2^256-1) + p*(2^256-1)
471
* a*b + F*p <= 2^256*(2^256 - 2 + p) + 1 - p
472
* Therefore:
473
* t < 2^256 + p - 2
474
* Since p < 2^256, it follows that:
475
* t4 can be only 0 or 1
476
* t - p < 2^256
477
* We can therefore subtract p from t, conditionally on t4, to
478
* get a nonnegative result that fits on 256 bits.
479
*/
480
k = _addcarry_u64(0, t0, t4, &t0);
481
k = _addcarry_u64(k, t1, -(t4 << 32), &t1);
482
k = _addcarry_u64(k, t2, -t4, &t2);
483
(void)_addcarry_u64(k, t3, (t4 << 32) - (t4 << 1), &t3);
484
485
d[0] = t0;
486
d[1] = t1;
487
d[2] = t2;
488
d[3] = t3;
489
490
#endif
491
}
492
493
/*
494
* Montgomery squaring in the field; currently a basic wrapper around
495
* multiplication (inline, should be optimized away).
496
* TODO: see if some extra speed can be gained here.
497
*/
498
static inline void
499
f256_montysquare(uint64_t *d, const uint64_t *a)
500
{
501
f256_montymul(d, a, a);
502
}
503
504
/*
505
* Convert to Montgomery representation.
506
*/
507
static void
508
f256_tomonty(uint64_t *d, const uint64_t *a)
509
{
510
/*
511
* R2 = 2^512 mod p.
512
* If R = 2^256 mod p, then R2 = R^2 mod p; and the Montgomery
513
* multiplication of a by R2 is: a*R2/R = a*R mod p, i.e. the
514
* conversion to Montgomery representation.
515
*/
516
static const uint64_t R2[] = {
517
0x0000000000000003,
518
0xFFFFFFFBFFFFFFFF,
519
0xFFFFFFFFFFFFFFFE,
520
0x00000004FFFFFFFD
521
};
522
523
f256_montymul(d, a, R2);
524
}
525
526
/*
527
* Convert from Montgomery representation.
528
*/
529
static void
530
f256_frommonty(uint64_t *d, const uint64_t *a)
531
{
532
/*
533
* Montgomery multiplication by 1 is division by 2^256 modulo p.
534
*/
535
static const uint64_t one[] = { 1, 0, 0, 0 };
536
537
f256_montymul(d, a, one);
538
}
539
540
/*
541
* Inversion in the field. If the source value is 0 modulo p, then this
542
* returns 0 or p. This function uses Montgomery representation.
543
*/
544
static void
545
f256_invert(uint64_t *d, const uint64_t *a)
546
{
547
/*
548
* We compute a^(p-2) mod p. The exponent pattern (from high to
549
* low) is:
550
* - 32 bits of value 1
551
* - 31 bits of value 0
552
* - 1 bit of value 1
553
* - 96 bits of value 0
554
* - 94 bits of value 1
555
* - 1 bit of value 0
556
* - 1 bit of value 1
557
* To speed up the square-and-multiply algorithm, we precompute
558
* a^(2^31-1).
559
*/
560
561
uint64_t r[4], t[4];
562
int i;
563
564
memcpy(t, a, sizeof t);
565
for (i = 0; i < 30; i ++) {
566
f256_montysquare(t, t);
567
f256_montymul(t, t, a);
568
}
569
570
memcpy(r, t, sizeof t);
571
for (i = 224; i >= 0; i --) {
572
f256_montysquare(r, r);
573
switch (i) {
574
case 0:
575
case 2:
576
case 192:
577
case 224:
578
f256_montymul(r, r, a);
579
break;
580
case 3:
581
case 34:
582
case 65:
583
f256_montymul(r, r, t);
584
break;
585
}
586
}
587
memcpy(d, r, sizeof r);
588
}
589
590
/*
591
* Finalize reduction.
592
* Input value fits on 256 bits. This function subtracts p if and only
593
* if the input is greater than or equal to p.
594
*/
595
static inline void
596
f256_final_reduce(uint64_t *a)
597
{
598
#if BR_INT128
599
600
uint64_t t0, t1, t2, t3, cc;
601
unsigned __int128 z;
602
603
/*
604
* We add 2^224 - 2^192 - 2^96 + 1 to a. If there is no carry,
605
* then a < p; otherwise, the addition result we computed is
606
* the value we must return.
607
*/
608
z = (unsigned __int128)a[0] + 1;
609
t0 = (uint64_t)z;
610
z = (unsigned __int128)a[1] + (z >> 64) - ((uint64_t)1 << 32);
611
t1 = (uint64_t)z;
612
z = (unsigned __int128)a[2] - (z >> 127);
613
t2 = (uint64_t)z;
614
z = (unsigned __int128)a[3] - (z >> 127) + 0xFFFFFFFF;
615
t3 = (uint64_t)z;
616
cc = -(uint64_t)(z >> 64);
617
618
a[0] ^= cc & (a[0] ^ t0);
619
a[1] ^= cc & (a[1] ^ t1);
620
a[2] ^= cc & (a[2] ^ t2);
621
a[3] ^= cc & (a[3] ^ t3);
622
623
#elif BR_UMUL128
624
625
uint64_t t0, t1, t2, t3, m;
626
unsigned char k;
627
628
k = _addcarry_u64(0, a[0], (uint64_t)1, &t0);
629
k = _addcarry_u64(k, a[1], -((uint64_t)1 << 32), &t1);
630
k = _addcarry_u64(k, a[2], -(uint64_t)1, &t2);
631
k = _addcarry_u64(k, a[3], ((uint64_t)1 << 32) - 2, &t3);
632
m = -(uint64_t)k;
633
634
a[0] ^= m & (a[0] ^ t0);
635
a[1] ^= m & (a[1] ^ t1);
636
a[2] ^= m & (a[2] ^ t2);
637
a[3] ^= m & (a[3] ^ t3);
638
639
#endif
640
}
641
642
/*
643
* Points in affine and Jacobian coordinates.
644
*
645
* - In affine coordinates, the point-at-infinity cannot be encoded.
646
* - Jacobian coordinates (X,Y,Z) correspond to affine (X/Z^2,Y/Z^3);
647
* if Z = 0 then this is the point-at-infinity.
648
*/
649
typedef struct {
650
uint64_t x[4];
651
uint64_t y[4];
652
} p256_affine;
653
654
typedef struct {
655
uint64_t x[4];
656
uint64_t y[4];
657
uint64_t z[4];
658
} p256_jacobian;
659
660
/*
661
* Decode a point. The returned point is in Jacobian coordinates, but
662
* with z = 1. If the encoding is invalid, or encodes a point which is
663
* not on the curve, or encodes the point at infinity, then this function
664
* returns 0. Otherwise, 1 is returned.
665
*
666
* The buffer is assumed to have length exactly 65 bytes.
667
*/
668
static uint32_t
669
point_decode(p256_jacobian *P, const unsigned char *buf)
670
{
671
uint64_t x[4], y[4], t[4], x3[4], tt;
672
uint32_t r;
673
674
/*
675
* Header byte shall be 0x04.
676
*/
677
r = EQ(buf[0], 0x04);
678
679
/*
680
* Decode X and Y coordinates, and convert them into
681
* Montgomery representation.
682
*/
683
x[3] = br_dec64be(buf + 1);
684
x[2] = br_dec64be(buf + 9);
685
x[1] = br_dec64be(buf + 17);
686
x[0] = br_dec64be(buf + 25);
687
y[3] = br_dec64be(buf + 33);
688
y[2] = br_dec64be(buf + 41);
689
y[1] = br_dec64be(buf + 49);
690
y[0] = br_dec64be(buf + 57);
691
f256_tomonty(x, x);
692
f256_tomonty(y, y);
693
694
/*
695
* Verify y^2 = x^3 + A*x + B. In curve P-256, A = -3.
696
* Note that the Montgomery representation of 0 is 0. We must
697
* take care to apply the final reduction to make sure we have
698
* 0 and not p.
699
*/
700
f256_montysquare(t, y);
701
f256_montysquare(x3, x);
702
f256_montymul(x3, x3, x);
703
f256_sub(t, t, x3);
704
f256_add(t, t, x);
705
f256_add(t, t, x);
706
f256_add(t, t, x);
707
f256_sub(t, t, P256_B_MONTY);
708
f256_final_reduce(t);
709
tt = t[0] | t[1] | t[2] | t[3];
710
r &= EQ((uint32_t)(tt | (tt >> 32)), 0);
711
712
/*
713
* Return the point in Jacobian coordinates (and Montgomery
714
* representation).
715
*/
716
memcpy(P->x, x, sizeof x);
717
memcpy(P->y, y, sizeof y);
718
memcpy(P->z, F256_R, sizeof F256_R);
719
return r;
720
}
721
722
/*
723
* Final conversion for a point:
724
* - The point is converted back to affine coordinates.
725
* - Final reduction is performed.
726
* - The point is encoded into the provided buffer.
727
*
728
* If the point is the point-at-infinity, all operations are performed,
729
* but the buffer contents are indeterminate, and 0 is returned. Otherwise,
730
* the encoded point is written in the buffer, and 1 is returned.
731
*/
732
static uint32_t
733
point_encode(unsigned char *buf, const p256_jacobian *P)
734
{
735
uint64_t t1[4], t2[4], z;
736
737
/* Set t1 = 1/z^2 and t2 = 1/z^3. */
738
f256_invert(t2, P->z);
739
f256_montysquare(t1, t2);
740
f256_montymul(t2, t2, t1);
741
742
/* Compute affine coordinates x (in t1) and y (in t2). */
743
f256_montymul(t1, P->x, t1);
744
f256_montymul(t2, P->y, t2);
745
746
/* Convert back from Montgomery representation, and finalize
747
reductions. */
748
f256_frommonty(t1, t1);
749
f256_frommonty(t2, t2);
750
f256_final_reduce(t1);
751
f256_final_reduce(t2);
752
753
/* Encode. */
754
buf[0] = 0x04;
755
br_enc64be(buf + 1, t1[3]);
756
br_enc64be(buf + 9, t1[2]);
757
br_enc64be(buf + 17, t1[1]);
758
br_enc64be(buf + 25, t1[0]);
759
br_enc64be(buf + 33, t2[3]);
760
br_enc64be(buf + 41, t2[2]);
761
br_enc64be(buf + 49, t2[1]);
762
br_enc64be(buf + 57, t2[0]);
763
764
/* Return success if and only if P->z != 0. */
765
z = P->z[0] | P->z[1] | P->z[2] | P->z[3];
766
return NEQ((uint32_t)(z | z >> 32), 0);
767
}
768
769
/*
770
* Point doubling in Jacobian coordinates: point P is doubled.
771
* Note: if the source point is the point-at-infinity, then the result is
772
* still the point-at-infinity, which is correct. Moreover, if the three
773
* coordinates were zero, then they still are zero in the returned value.
774
*
775
* (Note: this is true even without the final reduction: if the three
776
* coordinates are encoded as four words of value zero each, then the
777
* result will also have all-zero coordinate encodings, not the alternate
778
* encoding as the integer p.)
779
*/
780
static void
781
p256_double(p256_jacobian *P)
782
{
783
/*
784
* Doubling formulas are:
785
*
786
* s = 4*x*y^2
787
* m = 3*(x + z^2)*(x - z^2)
788
* x' = m^2 - 2*s
789
* y' = m*(s - x') - 8*y^4
790
* z' = 2*y*z
791
*
792
* These formulas work for all points, including points of order 2
793
* and points at infinity:
794
* - If y = 0 then z' = 0. But there is no such point in P-256
795
* anyway.
796
* - If z = 0 then z' = 0.
797
*/
798
uint64_t t1[4], t2[4], t3[4], t4[4];
799
800
/*
801
* Compute z^2 in t1.
802
*/
803
f256_montysquare(t1, P->z);
804
805
/*
806
* Compute x-z^2 in t2 and x+z^2 in t1.
807
*/
808
f256_add(t2, P->x, t1);
809
f256_sub(t1, P->x, t1);
810
811
/*
812
* Compute 3*(x+z^2)*(x-z^2) in t1.
813
*/
814
f256_montymul(t3, t1, t2);
815
f256_add(t1, t3, t3);
816
f256_add(t1, t3, t1);
817
818
/*
819
* Compute 4*x*y^2 (in t2) and 2*y^2 (in t3).
820
*/
821
f256_montysquare(t3, P->y);
822
f256_add(t3, t3, t3);
823
f256_montymul(t2, P->x, t3);
824
f256_add(t2, t2, t2);
825
826
/*
827
* Compute x' = m^2 - 2*s.
828
*/
829
f256_montysquare(P->x, t1);
830
f256_sub(P->x, P->x, t2);
831
f256_sub(P->x, P->x, t2);
832
833
/*
834
* Compute z' = 2*y*z.
835
*/
836
f256_montymul(t4, P->y, P->z);
837
f256_add(P->z, t4, t4);
838
839
/*
840
* Compute y' = m*(s - x') - 8*y^4. Note that we already have
841
* 2*y^2 in t3.
842
*/
843
f256_sub(t2, t2, P->x);
844
f256_montymul(P->y, t1, t2);
845
f256_montysquare(t4, t3);
846
f256_add(t4, t4, t4);
847
f256_sub(P->y, P->y, t4);
848
}
849
850
/*
851
* Point addition (Jacobian coordinates): P1 is replaced with P1+P2.
852
* This function computes the wrong result in the following cases:
853
*
854
* - If P1 == 0 but P2 != 0
855
* - If P1 != 0 but P2 == 0
856
* - If P1 == P2
857
*
858
* In all three cases, P1 is set to the point at infinity.
859
*
860
* Returned value is 0 if one of the following occurs:
861
*
862
* - P1 and P2 have the same Y coordinate.
863
* - P1 == 0 and P2 == 0.
864
* - The Y coordinate of one of the points is 0 and the other point is
865
* the point at infinity.
866
*
867
* The third case cannot actually happen with valid points, since a point
868
* with Y == 0 is a point of order 2, and there is no point of order 2 on
869
* curve P-256.
870
*
871
* Therefore, assuming that P1 != 0 and P2 != 0 on input, then the caller
872
* can apply the following:
873
*
874
* - If the result is not the point at infinity, then it is correct.
875
* - Otherwise, if the returned value is 1, then this is a case of
876
* P1+P2 == 0, so the result is indeed the point at infinity.
877
* - Otherwise, P1 == P2, so a "double" operation should have been
878
* performed.
879
*
880
* Note that you can get a returned value of 0 with a correct result,
881
* e.g. if P1 and P2 have the same Y coordinate, but distinct X coordinates.
882
*/
883
static uint32_t
884
p256_add(p256_jacobian *P1, const p256_jacobian *P2)
885
{
886
/*
887
* Addtions formulas are:
888
*
889
* u1 = x1 * z2^2
890
* u2 = x2 * z1^2
891
* s1 = y1 * z2^3
892
* s2 = y2 * z1^3
893
* h = u2 - u1
894
* r = s2 - s1
895
* x3 = r^2 - h^3 - 2 * u1 * h^2
896
* y3 = r * (u1 * h^2 - x3) - s1 * h^3
897
* z3 = h * z1 * z2
898
*/
899
uint64_t t1[4], t2[4], t3[4], t4[4], t5[4], t6[4], t7[4], tt;
900
uint32_t ret;
901
902
/*
903
* Compute u1 = x1*z2^2 (in t1) and s1 = y1*z2^3 (in t3).
904
*/
905
f256_montysquare(t3, P2->z);
906
f256_montymul(t1, P1->x, t3);
907
f256_montymul(t4, P2->z, t3);
908
f256_montymul(t3, P1->y, t4);
909
910
/*
911
* Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
912
*/
913
f256_montysquare(t4, P1->z);
914
f256_montymul(t2, P2->x, t4);
915
f256_montymul(t5, P1->z, t4);
916
f256_montymul(t4, P2->y, t5);
917
918
/*
919
* Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4).
920
* We need to test whether r is zero, so we will do some extra
921
* reduce.
922
*/
923
f256_sub(t2, t2, t1);
924
f256_sub(t4, t4, t3);
925
f256_final_reduce(t4);
926
tt = t4[0] | t4[1] | t4[2] | t4[3];
927
ret = (uint32_t)(tt | (tt >> 32));
928
ret = (ret | -ret) >> 31;
929
930
/*
931
* Compute u1*h^2 (in t6) and h^3 (in t5);
932
*/
933
f256_montysquare(t7, t2);
934
f256_montymul(t6, t1, t7);
935
f256_montymul(t5, t7, t2);
936
937
/*
938
* Compute x3 = r^2 - h^3 - 2*u1*h^2.
939
*/
940
f256_montysquare(P1->x, t4);
941
f256_sub(P1->x, P1->x, t5);
942
f256_sub(P1->x, P1->x, t6);
943
f256_sub(P1->x, P1->x, t6);
944
945
/*
946
* Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
947
*/
948
f256_sub(t6, t6, P1->x);
949
f256_montymul(P1->y, t4, t6);
950
f256_montymul(t1, t5, t3);
951
f256_sub(P1->y, P1->y, t1);
952
953
/*
954
* Compute z3 = h*z1*z2.
955
*/
956
f256_montymul(t1, P1->z, P2->z);
957
f256_montymul(P1->z, t1, t2);
958
959
return ret;
960
}
961
962
/*
963
* Point addition (mixed coordinates): P1 is replaced with P1+P2.
964
* This is a specialised function for the case when P2 is a non-zero point
965
* in affine coordinates.
966
*
967
* This function computes the wrong result in the following cases:
968
*
969
* - If P1 == 0
970
* - If P1 == P2
971
*
972
* In both cases, P1 is set to the point at infinity.
973
*
974
* Returned value is 0 if one of the following occurs:
975
*
976
* - P1 and P2 have the same Y (affine) coordinate.
977
* - The Y coordinate of P2 is 0 and P1 is the point at infinity.
978
*
979
* The second case cannot actually happen with valid points, since a point
980
* with Y == 0 is a point of order 2, and there is no point of order 2 on
981
* curve P-256.
982
*
983
* Therefore, assuming that P1 != 0 on input, then the caller
984
* can apply the following:
985
*
986
* - If the result is not the point at infinity, then it is correct.
987
* - Otherwise, if the returned value is 1, then this is a case of
988
* P1+P2 == 0, so the result is indeed the point at infinity.
989
* - Otherwise, P1 == P2, so a "double" operation should have been
990
* performed.
991
*
992
* Again, a value of 0 may be returned in some cases where the addition
993
* result is correct.
994
*/
995
static uint32_t
996
p256_add_mixed(p256_jacobian *P1, const p256_affine *P2)
997
{
998
/*
999
* Addtions formulas are:
1000
*
1001
* u1 = x1
1002
* u2 = x2 * z1^2
1003
* s1 = y1
1004
* s2 = y2 * z1^3
1005
* h = u2 - u1
1006
* r = s2 - s1
1007
* x3 = r^2 - h^3 - 2 * u1 * h^2
1008
* y3 = r * (u1 * h^2 - x3) - s1 * h^3
1009
* z3 = h * z1
1010
*/
1011
uint64_t t1[4], t2[4], t3[4], t4[4], t5[4], t6[4], t7[4], tt;
1012
uint32_t ret;
1013
1014
/*
1015
* Compute u1 = x1 (in t1) and s1 = y1 (in t3).
1016
*/
1017
memcpy(t1, P1->x, sizeof t1);
1018
memcpy(t3, P1->y, sizeof t3);
1019
1020
/*
1021
* Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
1022
*/
1023
f256_montysquare(t4, P1->z);
1024
f256_montymul(t2, P2->x, t4);
1025
f256_montymul(t5, P1->z, t4);
1026
f256_montymul(t4, P2->y, t5);
1027
1028
/*
1029
* Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4).
1030
* We need to test whether r is zero, so we will do some extra
1031
* reduce.
1032
*/
1033
f256_sub(t2, t2, t1);
1034
f256_sub(t4, t4, t3);
1035
f256_final_reduce(t4);
1036
tt = t4[0] | t4[1] | t4[2] | t4[3];
1037
ret = (uint32_t)(tt | (tt >> 32));
1038
ret = (ret | -ret) >> 31;
1039
1040
/*
1041
* Compute u1*h^2 (in t6) and h^3 (in t5);
1042
*/
1043
f256_montysquare(t7, t2);
1044
f256_montymul(t6, t1, t7);
1045
f256_montymul(t5, t7, t2);
1046
1047
/*
1048
* Compute x3 = r^2 - h^3 - 2*u1*h^2.
1049
*/
1050
f256_montysquare(P1->x, t4);
1051
f256_sub(P1->x, P1->x, t5);
1052
f256_sub(P1->x, P1->x, t6);
1053
f256_sub(P1->x, P1->x, t6);
1054
1055
/*
1056
* Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
1057
*/
1058
f256_sub(t6, t6, P1->x);
1059
f256_montymul(P1->y, t4, t6);
1060
f256_montymul(t1, t5, t3);
1061
f256_sub(P1->y, P1->y, t1);
1062
1063
/*
1064
* Compute z3 = h*z1*z2.
1065
*/
1066
f256_montymul(P1->z, P1->z, t2);
1067
1068
return ret;
1069
}
1070
1071
#if 0
1072
/* unused */
1073
/*
1074
* Point addition (mixed coordinates, complete): P1 is replaced with P1+P2.
1075
* This is a specialised function for the case when P2 is a non-zero point
1076
* in affine coordinates.
1077
*
1078
* This function returns the correct result in all cases.
1079
*/
1080
static uint32_t
1081
p256_add_complete_mixed(p256_jacobian *P1, const p256_affine *P2)
1082
{
1083
/*
1084
* Addtions formulas, in the general case, are:
1085
*
1086
* u1 = x1
1087
* u2 = x2 * z1^2
1088
* s1 = y1
1089
* s2 = y2 * z1^3
1090
* h = u2 - u1
1091
* r = s2 - s1
1092
* x3 = r^2 - h^3 - 2 * u1 * h^2
1093
* y3 = r * (u1 * h^2 - x3) - s1 * h^3
1094
* z3 = h * z1
1095
*
1096
* These formulas mishandle the two following cases:
1097
*
1098
* - If P1 is the point-at-infinity (z1 = 0), then z3 is
1099
* incorrectly set to 0.
1100
*
1101
* - If P1 = P2, then u1 = u2 and s1 = s2, and x3, y3 and z3
1102
* are all set to 0.
1103
*
1104
* However, if P1 + P2 = 0, then u1 = u2 but s1 != s2, and then
1105
* we correctly get z3 = 0 (the point-at-infinity).
1106
*
1107
* To fix the case P1 = 0, we perform at the end a copy of P2
1108
* over P1, conditional to z1 = 0.
1109
*
1110
* For P1 = P2: in that case, both h and r are set to 0, and
1111
* we get x3, y3 and z3 equal to 0. We can test for that
1112
* occurrence to make a mask which will be all-one if P1 = P2,
1113
* or all-zero otherwise; then we can compute the double of P2
1114
* and add it, combined with the mask, to (x3,y3,z3).
1115
*
1116
* Using the doubling formulas in p256_double() on (x2,y2),
1117
* simplifying since P2 is affine (i.e. z2 = 1, implicitly),
1118
* we get:
1119
* s = 4*x2*y2^2
1120
* m = 3*(x2 + 1)*(x2 - 1)
1121
* x' = m^2 - 2*s
1122
* y' = m*(s - x') - 8*y2^4
1123
* z' = 2*y2
1124
* which requires only 6 multiplications. Added to the 11
1125
* multiplications of the normal mixed addition in Jacobian
1126
* coordinates, we get a cost of 17 multiplications in total.
1127
*/
1128
uint64_t t1[4], t2[4], t3[4], t4[4], t5[4], t6[4], t7[4], tt, zz;
1129
int i;
1130
1131
/*
1132
* Set zz to -1 if P1 is the point at infinity, 0 otherwise.
1133
*/
1134
zz = P1->z[0] | P1->z[1] | P1->z[2] | P1->z[3];
1135
zz = ((zz | -zz) >> 63) - (uint64_t)1;
1136
1137
/*
1138
* Compute u1 = x1 (in t1) and s1 = y1 (in t3).
1139
*/
1140
memcpy(t1, P1->x, sizeof t1);
1141
memcpy(t3, P1->y, sizeof t3);
1142
1143
/*
1144
* Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
1145
*/
1146
f256_montysquare(t4, P1->z);
1147
f256_montymul(t2, P2->x, t4);
1148
f256_montymul(t5, P1->z, t4);
1149
f256_montymul(t4, P2->y, t5);
1150
1151
/*
1152
* Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4).
1153
* reduce.
1154
*/
1155
f256_sub(t2, t2, t1);
1156
f256_sub(t4, t4, t3);
1157
1158
/*
1159
* If both h = 0 and r = 0, then P1 = P2, and we want to set
1160
* the mask tt to -1; otherwise, the mask will be 0.
1161
*/
1162
f256_final_reduce(t2);
1163
f256_final_reduce(t4);
1164
tt = t2[0] | t2[1] | t2[2] | t2[3] | t4[0] | t4[1] | t4[2] | t4[3];
1165
tt = ((tt | -tt) >> 63) - (uint64_t)1;
1166
1167
/*
1168
* Compute u1*h^2 (in t6) and h^3 (in t5);
1169
*/
1170
f256_montysquare(t7, t2);
1171
f256_montymul(t6, t1, t7);
1172
f256_montymul(t5, t7, t2);
1173
1174
/*
1175
* Compute x3 = r^2 - h^3 - 2*u1*h^2.
1176
*/
1177
f256_montysquare(P1->x, t4);
1178
f256_sub(P1->x, P1->x, t5);
1179
f256_sub(P1->x, P1->x, t6);
1180
f256_sub(P1->x, P1->x, t6);
1181
1182
/*
1183
* Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
1184
*/
1185
f256_sub(t6, t6, P1->x);
1186
f256_montymul(P1->y, t4, t6);
1187
f256_montymul(t1, t5, t3);
1188
f256_sub(P1->y, P1->y, t1);
1189
1190
/*
1191
* Compute z3 = h*z1.
1192
*/
1193
f256_montymul(P1->z, P1->z, t2);
1194
1195
/*
1196
* The "double" result, in case P1 = P2.
1197
*/
1198
1199
/*
1200
* Compute z' = 2*y2 (in t1).
1201
*/
1202
f256_add(t1, P2->y, P2->y);
1203
1204
/*
1205
* Compute 2*(y2^2) (in t2) and s = 4*x2*(y2^2) (in t3).
1206
*/
1207
f256_montysquare(t2, P2->y);
1208
f256_add(t2, t2, t2);
1209
f256_add(t3, t2, t2);
1210
f256_montymul(t3, P2->x, t3);
1211
1212
/*
1213
* Compute m = 3*(x2^2 - 1) (in t4).
1214
*/
1215
f256_montysquare(t4, P2->x);
1216
f256_sub(t4, t4, F256_R);
1217
f256_add(t5, t4, t4);
1218
f256_add(t4, t4, t5);
1219
1220
/*
1221
* Compute x' = m^2 - 2*s (in t5).
1222
*/
1223
f256_montysquare(t5, t4);
1224
f256_sub(t5, t3);
1225
f256_sub(t5, t3);
1226
1227
/*
1228
* Compute y' = m*(s - x') - 8*y2^4 (in t6).
1229
*/
1230
f256_sub(t6, t3, t5);
1231
f256_montymul(t6, t6, t4);
1232
f256_montysquare(t7, t2);
1233
f256_sub(t6, t6, t7);
1234
f256_sub(t6, t6, t7);
1235
1236
/*
1237
* We now have the alternate (doubling) coordinates in (t5,t6,t1).
1238
* We combine them with (x3,y3,z3).
1239
*/
1240
for (i = 0; i < 4; i ++) {
1241
P1->x[i] |= tt & t5[i];
1242
P1->y[i] |= tt & t6[i];
1243
P1->z[i] |= tt & t1[i];
1244
}
1245
1246
/*
1247
* If P1 = 0, then we get z3 = 0 (which is invalid); if z1 is 0,
1248
* then we want to replace the result with a copy of P2. The
1249
* test on z1 was done at the start, in the zz mask.
1250
*/
1251
for (i = 0; i < 4; i ++) {
1252
P1->x[i] ^= zz & (P1->x[i] ^ P2->x[i]);
1253
P1->y[i] ^= zz & (P1->y[i] ^ P2->y[i]);
1254
P1->z[i] ^= zz & (P1->z[i] ^ F256_R[i]);
1255
}
1256
}
1257
#endif
1258
1259
/*
1260
* Inner function for computing a point multiplication. A window is
1261
* provided, with points 1*P to 15*P in affine coordinates.
1262
*
1263
* Assumptions:
1264
* - All provided points are valid points on the curve.
1265
* - Multiplier is non-zero, and smaller than the curve order.
1266
* - Everything is in Montgomery representation.
1267
*/
1268
static void
1269
point_mul_inner(p256_jacobian *R, const p256_affine *W,
1270
const unsigned char *k, size_t klen)
1271
{
1272
p256_jacobian Q;
1273
uint32_t qz;
1274
1275
memset(&Q, 0, sizeof Q);
1276
qz = 1;
1277
while (klen -- > 0) {
1278
int i;
1279
unsigned bk;
1280
1281
bk = *k ++;
1282
for (i = 0; i < 2; i ++) {
1283
uint32_t bits;
1284
uint32_t bnz;
1285
p256_affine T;
1286
p256_jacobian U;
1287
uint32_t n;
1288
int j;
1289
uint64_t m;
1290
1291
p256_double(&Q);
1292
p256_double(&Q);
1293
p256_double(&Q);
1294
p256_double(&Q);
1295
bits = (bk >> 4) & 0x0F;
1296
bnz = NEQ(bits, 0);
1297
1298
/*
1299
* Lookup point in window. If the bits are 0,
1300
* we get something invalid, which is not a
1301
* problem because we will use it only if the
1302
* bits are non-zero.
1303
*/
1304
memset(&T, 0, sizeof T);
1305
for (n = 0; n < 15; n ++) {
1306
m = -(uint64_t)EQ(bits, n + 1);
1307
T.x[0] |= m & W[n].x[0];
1308
T.x[1] |= m & W[n].x[1];
1309
T.x[2] |= m & W[n].x[2];
1310
T.x[3] |= m & W[n].x[3];
1311
T.y[0] |= m & W[n].y[0];
1312
T.y[1] |= m & W[n].y[1];
1313
T.y[2] |= m & W[n].y[2];
1314
T.y[3] |= m & W[n].y[3];
1315
}
1316
1317
U = Q;
1318
p256_add_mixed(&U, &T);
1319
1320
/*
1321
* If qz is still 1, then Q was all-zeros, and this
1322
* is conserved through p256_double().
1323
*/
1324
m = -(uint64_t)(bnz & qz);
1325
for (j = 0; j < 4; j ++) {
1326
Q.x[j] |= m & T.x[j];
1327
Q.y[j] |= m & T.y[j];
1328
Q.z[j] |= m & F256_R[j];
1329
}
1330
CCOPY(bnz & ~qz, &Q, &U, sizeof Q);
1331
qz &= ~bnz;
1332
bk <<= 4;
1333
}
1334
}
1335
*R = Q;
1336
}
1337
1338
/*
1339
* Convert a window from Jacobian to affine coordinates. A single
1340
* field inversion is used. This function works for windows up to
1341
* 32 elements.
1342
*
1343
* The destination array (aff[]) and the source array (jac[]) may
1344
* overlap, provided that the start of aff[] is not after the start of
1345
* jac[]. Even if the arrays do _not_ overlap, the source array is
1346
* modified.
1347
*/
1348
static void
1349
window_to_affine(p256_affine *aff, p256_jacobian *jac, int num)
1350
{
1351
/*
1352
* Convert the window points to affine coordinates. We use the
1353
* following trick to mutualize the inversion computation: if
1354
* we have z1, z2, z3, and z4, and want to inverse all of them,
1355
* we compute u = 1/(z1*z2*z3*z4), and then we have:
1356
* 1/z1 = u*z2*z3*z4
1357
* 1/z2 = u*z1*z3*z4
1358
* 1/z3 = u*z1*z2*z4
1359
* 1/z4 = u*z1*z2*z3
1360
*
1361
* The partial products are computed recursively:
1362
*
1363
* - on input (z_1,z_2), return (z_2,z_1) and z_1*z_2
1364
* - on input (z_1,z_2,... z_n):
1365
* recurse on (z_1,z_2,... z_(n/2)) -> r1 and m1
1366
* recurse on (z_(n/2+1),z_(n/2+2)... z_n) -> r2 and m2
1367
* multiply elements of r1 by m2 -> s1
1368
* multiply elements of r2 by m1 -> s2
1369
* return r1||r2 and m1*m2
1370
*
1371
* In the example below, we suppose that we have 14 elements.
1372
* Let z1, z2,... zE be the 14 values to invert (index noted in
1373
* hexadecimal, starting at 1).
1374
*
1375
* - Depth 1:
1376
* swap(z1, z2); z12 = z1*z2
1377
* swap(z3, z4); z34 = z3*z4
1378
* swap(z5, z6); z56 = z5*z6
1379
* swap(z7, z8); z78 = z7*z8
1380
* swap(z9, zA); z9A = z9*zA
1381
* swap(zB, zC); zBC = zB*zC
1382
* swap(zD, zE); zDE = zD*zE
1383
*
1384
* - Depth 2:
1385
* z1 <- z1*z34, z2 <- z2*z34, z3 <- z3*z12, z4 <- z4*z12
1386
* z1234 = z12*z34
1387
* z5 <- z5*z78, z6 <- z6*z78, z7 <- z7*z56, z8 <- z8*z56
1388
* z5678 = z56*z78
1389
* z9 <- z9*zBC, zA <- zA*zBC, zB <- zB*z9A, zC <- zC*z9A
1390
* z9ABC = z9A*zBC
1391
*
1392
* - Depth 3:
1393
* z1 <- z1*z5678, z2 <- z2*z5678, z3 <- z3*z5678, z4 <- z4*z5678
1394
* z5 <- z5*z1234, z6 <- z6*z1234, z7 <- z7*z1234, z8 <- z8*z1234
1395
* z12345678 = z1234*z5678
1396
* z9 <- z9*zDE, zA <- zA*zDE, zB <- zB*zDE, zC <- zC*zDE
1397
* zD <- zD*z9ABC, zE*z9ABC
1398
* z9ABCDE = z9ABC*zDE
1399
*
1400
* - Depth 4:
1401
* multiply z1..z8 by z9ABCDE
1402
* multiply z9..zE by z12345678
1403
* final z = z12345678*z9ABCDE
1404
*/
1405
1406
uint64_t z[16][4];
1407
int i, k, s;
1408
#define zt (z[15])
1409
#define zu (z[14])
1410
#define zv (z[13])
1411
1412
/*
1413
* First recursion step (pairwise swapping and multiplication).
1414
* If there is an odd number of elements, then we "invent" an
1415
* extra one with coordinate Z = 1 (in Montgomery representation).
1416
*/
1417
for (i = 0; (i + 1) < num; i += 2) {
1418
memcpy(zt, jac[i].z, sizeof zt);
1419
memcpy(jac[i].z, jac[i + 1].z, sizeof zt);
1420
memcpy(jac[i + 1].z, zt, sizeof zt);
1421
f256_montymul(z[i >> 1], jac[i].z, jac[i + 1].z);
1422
}
1423
if ((num & 1) != 0) {
1424
memcpy(z[num >> 1], jac[num - 1].z, sizeof zt);
1425
memcpy(jac[num - 1].z, F256_R, sizeof F256_R);
1426
}
1427
1428
/*
1429
* Perform further recursion steps. At the entry of each step,
1430
* the process has been done for groups of 's' points. The
1431
* integer k is the log2 of s.
1432
*/
1433
for (k = 1, s = 2; s < num; k ++, s <<= 1) {
1434
int n;
1435
1436
for (i = 0; i < num; i ++) {
1437
f256_montymul(jac[i].z, jac[i].z, z[(i >> k) ^ 1]);
1438
}
1439
n = (num + s - 1) >> k;
1440
for (i = 0; i < (n >> 1); i ++) {
1441
f256_montymul(z[i], z[i << 1], z[(i << 1) + 1]);
1442
}
1443
if ((n & 1) != 0) {
1444
memmove(z[n >> 1], z[n], sizeof zt);
1445
}
1446
}
1447
1448
/*
1449
* Invert the final result, and convert all points.
1450
*/
1451
f256_invert(zt, z[0]);
1452
for (i = 0; i < num; i ++) {
1453
f256_montymul(zv, jac[i].z, zt);
1454
f256_montysquare(zu, zv);
1455
f256_montymul(zv, zv, zu);
1456
f256_montymul(aff[i].x, jac[i].x, zu);
1457
f256_montymul(aff[i].y, jac[i].y, zv);
1458
}
1459
}
1460
1461
/*
1462
* Multiply the provided point by an integer.
1463
* Assumptions:
1464
* - Source point is a valid curve point.
1465
* - Source point is not the point-at-infinity.
1466
* - Integer is not 0, and is lower than the curve order.
1467
* If these conditions are not met, then the result is indeterminate
1468
* (but the process is still constant-time).
1469
*/
1470
static void
1471
p256_mul(p256_jacobian *P, const unsigned char *k, size_t klen)
1472
{
1473
union {
1474
p256_affine aff[15];
1475
p256_jacobian jac[15];
1476
} window;
1477
int i;
1478
1479
/*
1480
* Compute window, in Jacobian coordinates.
1481
*/
1482
window.jac[0] = *P;
1483
for (i = 2; i < 16; i ++) {
1484
window.jac[i - 1] = window.jac[(i >> 1) - 1];
1485
if ((i & 1) == 0) {
1486
p256_double(&window.jac[i - 1]);
1487
} else {
1488
p256_add(&window.jac[i - 1], &window.jac[i >> 1]);
1489
}
1490
}
1491
1492
/*
1493
* Convert the window points to affine coordinates. Point
1494
* window[0] is the source point, already in affine coordinates.
1495
*/
1496
window_to_affine(window.aff, window.jac, 15);
1497
1498
/*
1499
* Perform point multiplication.
1500
*/
1501
point_mul_inner(P, window.aff, k, klen);
1502
}
1503
1504
/*
1505
* Precomputed window for the conventional generator: P256_Gwin[n]
1506
* contains (n+1)*G (affine coordinates, in Montgomery representation).
1507
*/
1508
static const p256_affine P256_Gwin[] = {
1509
{
1510
{ 0x79E730D418A9143C, 0x75BA95FC5FEDB601,
1511
0x79FB732B77622510, 0x18905F76A53755C6 },
1512
{ 0xDDF25357CE95560A, 0x8B4AB8E4BA19E45C,
1513
0xD2E88688DD21F325, 0x8571FF1825885D85 }
1514
},
1515
{
1516
{ 0x850046D410DDD64D, 0xAA6AE3C1A433827D,
1517
0x732205038D1490D9, 0xF6BB32E43DCF3A3B },
1518
{ 0x2F3648D361BEE1A5, 0x152CD7CBEB236FF8,
1519
0x19A8FB0E92042DBE, 0x78C577510A5B8A3B }
1520
},
1521
{
1522
{ 0xFFAC3F904EEBC127, 0xB027F84A087D81FB,
1523
0x66AD77DD87CBBC98, 0x26936A3FB6FF747E },
1524
{ 0xB04C5C1FC983A7EB, 0x583E47AD0861FE1A,
1525
0x788208311A2EE98E, 0xD5F06A29E587CC07 }
1526
},
1527
{
1528
{ 0x74B0B50D46918DCC, 0x4650A6EDC623C173,
1529
0x0CDAACACE8100AF2, 0x577362F541B0176B },
1530
{ 0x2D96F24CE4CBABA6, 0x17628471FAD6F447,
1531
0x6B6C36DEE5DDD22E, 0x84B14C394C5AB863 }
1532
},
1533
{
1534
{ 0xBE1B8AAEC45C61F5, 0x90EC649A94B9537D,
1535
0x941CB5AAD076C20C, 0xC9079605890523C8 },
1536
{ 0xEB309B4AE7BA4F10, 0x73C568EFE5EB882B,
1537
0x3540A9877E7A1F68, 0x73A076BB2DD1E916 }
1538
},
1539
{
1540
{ 0x403947373E77664A, 0x55AE744F346CEE3E,
1541
0xD50A961A5B17A3AD, 0x13074B5954213673 },
1542
{ 0x93D36220D377E44B, 0x299C2B53ADFF14B5,
1543
0xF424D44CEF639F11, 0xA4C9916D4A07F75F }
1544
},
1545
{
1546
{ 0x0746354EA0173B4F, 0x2BD20213D23C00F7,
1547
0xF43EAAB50C23BB08, 0x13BA5119C3123E03 },
1548
{ 0x2847D0303F5B9D4D, 0x6742F2F25DA67BDD,
1549
0xEF933BDC77C94195, 0xEAEDD9156E240867 }
1550
},
1551
{
1552
{ 0x27F14CD19499A78F, 0x462AB5C56F9B3455,
1553
0x8F90F02AF02CFC6B, 0xB763891EB265230D },
1554
{ 0xF59DA3A9532D4977, 0x21E3327DCF9EBA15,
1555
0x123C7B84BE60BBF0, 0x56EC12F27706DF76 }
1556
},
1557
{
1558
{ 0x75C96E8F264E20E8, 0xABE6BFED59A7A841,
1559
0x2CC09C0444C8EB00, 0xE05B3080F0C4E16B },
1560
{ 0x1EB7777AA45F3314, 0x56AF7BEDCE5D45E3,
1561
0x2B6E019A88B12F1A, 0x086659CDFD835F9B }
1562
},
1563
{
1564
{ 0x2C18DBD19DC21EC8, 0x98F9868A0FCF8139,
1565
0x737D2CD648250B49, 0xCC61C94724B3428F },
1566
{ 0x0C2B407880DD9E76, 0xC43A8991383FBE08,
1567
0x5F7D2D65779BE5D2, 0x78719A54EB3B4AB5 }
1568
},
1569
{
1570
{ 0xEA7D260A6245E404, 0x9DE407956E7FDFE0,
1571
0x1FF3A4158DAC1AB5, 0x3E7090F1649C9073 },
1572
{ 0x1A7685612B944E88, 0x250F939EE57F61C8,
1573
0x0C0DAA891EAD643D, 0x68930023E125B88E }
1574
},
1575
{
1576
{ 0x04B71AA7D2697768, 0xABDEDEF5CA345A33,
1577
0x2409D29DEE37385E, 0x4EE1DF77CB83E156 },
1578
{ 0x0CAC12D91CBB5B43, 0x170ED2F6CA895637,
1579
0x28228CFA8ADE6D66, 0x7FF57C9553238ACA }
1580
},
1581
{
1582
{ 0xCCC425634B2ED709, 0x0E356769856FD30D,
1583
0xBCBCD43F559E9811, 0x738477AC5395B759 },
1584
{ 0x35752B90C00EE17F, 0x68748390742ED2E3,
1585
0x7CD06422BD1F5BC1, 0xFBC08769C9E7B797 }
1586
},
1587
{
1588
{ 0xA242A35BB0CF664A, 0x126E48F77F9707E3,
1589
0x1717BF54C6832660, 0xFAAE7332FD12C72E },
1590
{ 0x27B52DB7995D586B, 0xBE29569E832237C2,
1591
0xE8E4193E2A65E7DB, 0x152706DC2EAA1BBB }
1592
},
1593
{
1594
{ 0x72BCD8B7BC60055B, 0x03CC23EE56E27E4B,
1595
0xEE337424E4819370, 0xE2AA0E430AD3DA09 },
1596
{ 0x40B8524F6383C45D, 0xD766355442A41B25,
1597
0x64EFA6DE778A4797, 0x2042170A7079ADF4 }
1598
}
1599
};
1600
1601
/*
1602
* Multiply the conventional generator of the curve by the provided
1603
* integer. Return is written in *P.
1604
*
1605
* Assumptions:
1606
* - Integer is not 0, and is lower than the curve order.
1607
* If this conditions is not met, then the result is indeterminate
1608
* (but the process is still constant-time).
1609
*/
1610
static void
1611
p256_mulgen(p256_jacobian *P, const unsigned char *k, size_t klen)
1612
{
1613
point_mul_inner(P, P256_Gwin, k, klen);
1614
}
1615
1616
/*
1617
* Return 1 if all of the following hold:
1618
* - klen <= 32
1619
* - k != 0
1620
* - k is lower than the curve order
1621
* Otherwise, return 0.
1622
*
1623
* Constant-time behaviour: only klen may be observable.
1624
*/
1625
static uint32_t
1626
check_scalar(const unsigned char *k, size_t klen)
1627
{
1628
uint32_t z;
1629
int32_t c;
1630
size_t u;
1631
1632
if (klen > 32) {
1633
return 0;
1634
}
1635
z = 0;
1636
for (u = 0; u < klen; u ++) {
1637
z |= k[u];
1638
}
1639
if (klen == 32) {
1640
c = 0;
1641
for (u = 0; u < klen; u ++) {
1642
c |= -(int32_t)EQ0(c) & CMP(k[u], P256_N[u]);
1643
}
1644
} else {
1645
c = -1;
1646
}
1647
return NEQ(z, 0) & LT0(c);
1648
}
1649
1650
static uint32_t
1651
api_mul(unsigned char *G, size_t Glen,
1652
const unsigned char *k, size_t klen, int curve)
1653
{
1654
uint32_t r;
1655
p256_jacobian P;
1656
1657
(void)curve;
1658
if (Glen != 65) {
1659
return 0;
1660
}
1661
r = check_scalar(k, klen);
1662
r &= point_decode(&P, G);
1663
p256_mul(&P, k, klen);
1664
r &= point_encode(G, &P);
1665
return r;
1666
}
1667
1668
static size_t
1669
api_mulgen(unsigned char *R,
1670
const unsigned char *k, size_t klen, int curve)
1671
{
1672
p256_jacobian P;
1673
1674
(void)curve;
1675
p256_mulgen(&P, k, klen);
1676
point_encode(R, &P);
1677
return 65;
1678
}
1679
1680
static uint32_t
1681
api_muladd(unsigned char *A, const unsigned char *B, size_t len,
1682
const unsigned char *x, size_t xlen,
1683
const unsigned char *y, size_t ylen, int curve)
1684
{
1685
/*
1686
* We might want to use Shamir's trick here: make a composite
1687
* window of u*P+v*Q points, to merge the two doubling-ladders
1688
* into one. This, however, has some complications:
1689
*
1690
* - During the computation, we may hit the point-at-infinity.
1691
* Thus, we would need p256_add_complete_mixed() (complete
1692
* formulas for point addition), with a higher cost (17 muls
1693
* instead of 11).
1694
*
1695
* - A 4-bit window would be too large, since it would involve
1696
* 16*16-1 = 255 points. For the same window size as in the
1697
* p256_mul() case, we would need to reduce the window size
1698
* to 2 bits, and thus perform twice as many non-doubling
1699
* point additions.
1700
*
1701
* - The window may itself contain the point-at-infinity, and
1702
* thus cannot be in all generality be made of affine points.
1703
* Instead, we would need to make it a window of points in
1704
* Jacobian coordinates. Even p256_add_complete_mixed() would
1705
* be inappropriate.
1706
*
1707
* For these reasons, the code below performs two separate
1708
* point multiplications, then computes the final point addition
1709
* (which is both a "normal" addition, and a doubling, to handle
1710
* all cases).
1711
*/
1712
1713
p256_jacobian P, Q;
1714
uint32_t r, t, s;
1715
uint64_t z;
1716
1717
(void)curve;
1718
if (len != 65) {
1719
return 0;
1720
}
1721
r = point_decode(&P, A);
1722
p256_mul(&P, x, xlen);
1723
if (B == NULL) {
1724
p256_mulgen(&Q, y, ylen);
1725
} else {
1726
r &= point_decode(&Q, B);
1727
p256_mul(&Q, y, ylen);
1728
}
1729
1730
/*
1731
* The final addition may fail in case both points are equal.
1732
*/
1733
t = p256_add(&P, &Q);
1734
f256_final_reduce(P.z);
1735
z = P.z[0] | P.z[1] | P.z[2] | P.z[3];
1736
s = EQ((uint32_t)(z | (z >> 32)), 0);
1737
p256_double(&Q);
1738
1739
/*
1740
* If s is 1 then either P+Q = 0 (t = 1) or P = Q (t = 0). So we
1741
* have the following:
1742
*
1743
* s = 0, t = 0 return P (normal addition)
1744
* s = 0, t = 1 return P (normal addition)
1745
* s = 1, t = 0 return Q (a 'double' case)
1746
* s = 1, t = 1 report an error (P+Q = 0)
1747
*/
1748
CCOPY(s & ~t, &P, &Q, sizeof Q);
1749
point_encode(A, &P);
1750
r &= ~(s & t);
1751
return r;
1752
}
1753
1754
/* see bearssl_ec.h */
1755
const br_ec_impl br_ec_p256_m64 = {
1756
(uint32_t)0x00800000,
1757
&api_generator,
1758
&api_order,
1759
&api_xoff,
1760
&api_mul,
1761
&api_mulgen,
1762
&api_muladd
1763
};
1764
1765
/* see bearssl_ec.h */
1766
const br_ec_impl *
1767
br_ec_p256_m64_get(void)
1768
{
1769
return &br_ec_p256_m64;
1770
}
1771
1772
#else
1773
1774
/* see bearssl_ec.h */
1775
const br_ec_impl *
1776
br_ec_p256_m64_get(void)
1777
{
1778
return 0;
1779
}
1780
1781
#endif
1782
1783