Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/bearssl/src/ec/ec_prime_i31.c
39507 views
1
/*
2
* Copyright (c) 2016 Thomas Pornin <[email protected]>
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining
5
* a copy of this software and associated documentation files (the
6
* "Software"), to deal in the Software without restriction, including
7
* without limitation the rights to use, copy, modify, merge, publish,
8
* distribute, sublicense, and/or sell copies of the Software, and to
9
* permit persons to whom the Software is furnished to do so, subject to
10
* the following conditions:
11
*
12
* The above copyright notice and this permission notice shall be
13
* included in all copies or substantial portions of the Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
* SOFTWARE.
23
*/
24
25
#include "inner.h"
26
27
/*
28
* Parameters for supported curves (field modulus, and 'b' equation
29
* parameter; both values use the 'i31' format, and 'b' is in Montgomery
30
* representation).
31
*/
32
33
static const uint32_t P256_P[] = {
34
0x00000108,
35
0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x00000007,
36
0x00000000, 0x00000000, 0x00000040, 0x7FFFFF80,
37
0x000000FF
38
};
39
40
static const uint32_t P256_R2[] = {
41
0x00000108,
42
0x00014000, 0x00018000, 0x00000000, 0x7FF40000,
43
0x7FEFFFFF, 0x7FF7FFFF, 0x7FAFFFFF, 0x005FFFFF,
44
0x00000000
45
};
46
47
static const uint32_t P256_B[] = {
48
0x00000108,
49
0x6FEE1803, 0x6229C4BD, 0x21B139BE, 0x327150AA,
50
0x3567802E, 0x3F7212ED, 0x012E4355, 0x782DD38D,
51
0x0000000E
52
};
53
54
static const uint32_t P384_P[] = {
55
0x0000018C,
56
0x7FFFFFFF, 0x00000001, 0x00000000, 0x7FFFFFF8,
57
0x7FFFFFEF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF,
58
0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF,
59
0x00000FFF
60
};
61
62
static const uint32_t P384_R2[] = {
63
0x0000018C,
64
0x00000000, 0x00000080, 0x7FFFFE00, 0x000001FF,
65
0x00000800, 0x00000000, 0x7FFFE000, 0x00001FFF,
66
0x00008000, 0x00008000, 0x00000000, 0x00000000,
67
0x00000000
68
};
69
70
static const uint32_t P384_B[] = {
71
0x0000018C,
72
0x6E666840, 0x070D0392, 0x5D810231, 0x7651D50C,
73
0x17E218D6, 0x1B192002, 0x44EFE441, 0x3A524E2B,
74
0x2719BA5F, 0x41F02209, 0x36C5643E, 0x5813EFFE,
75
0x000008A5
76
};
77
78
static const uint32_t P521_P[] = {
79
0x00000219,
80
0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF,
81
0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF,
82
0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF,
83
0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF,
84
0x01FFFFFF
85
};
86
87
static const uint32_t P521_R2[] = {
88
0x00000219,
89
0x00001000, 0x00000000, 0x00000000, 0x00000000,
90
0x00000000, 0x00000000, 0x00000000, 0x00000000,
91
0x00000000, 0x00000000, 0x00000000, 0x00000000,
92
0x00000000, 0x00000000, 0x00000000, 0x00000000,
93
0x00000000
94
};
95
96
static const uint32_t P521_B[] = {
97
0x00000219,
98
0x540FC00A, 0x228FEA35, 0x2C34F1EF, 0x67BF107A,
99
0x46FC1CD5, 0x1605E9DD, 0x6937B165, 0x272A3D8F,
100
0x42785586, 0x44C8C778, 0x15F3B8B4, 0x64B73366,
101
0x03BA8B69, 0x0D05B42A, 0x21F929A2, 0x2C31C393,
102
0x00654FAE
103
};
104
105
typedef struct {
106
const uint32_t *p;
107
const uint32_t *b;
108
const uint32_t *R2;
109
uint32_t p0i;
110
size_t point_len;
111
} curve_params;
112
113
static inline const curve_params *
114
id_to_curve(int curve)
115
{
116
static const curve_params pp[] = {
117
{ P256_P, P256_B, P256_R2, 0x00000001, 65 },
118
{ P384_P, P384_B, P384_R2, 0x00000001, 97 },
119
{ P521_P, P521_B, P521_R2, 0x00000001, 133 }
120
};
121
122
return &pp[curve - BR_EC_secp256r1];
123
}
124
125
#define I31_LEN ((BR_MAX_EC_SIZE + 61) / 31)
126
127
/*
128
* Type for a point in Jacobian coordinates:
129
* -- three values, x, y and z, in Montgomery representation
130
* -- affine coordinates are X = x / z^2 and Y = y / z^3
131
* -- for the point at infinity, z = 0
132
*/
133
typedef struct {
134
uint32_t c[3][I31_LEN];
135
} jacobian;
136
137
/*
138
* We use a custom interpreter that uses a dozen registers, and
139
* only six operations:
140
* MSET(d, a) copy a into d
141
* MADD(d, a) d = d+a (modular)
142
* MSUB(d, a) d = d-a (modular)
143
* MMUL(d, a, b) d = a*b (Montgomery multiplication)
144
* MINV(d, a, b) invert d modulo p; a and b are used as scratch registers
145
* MTZ(d) clear return value if d = 0
146
* Destination of MMUL (d) must be distinct from operands (a and b).
147
* There is no such constraint for MSUB and MADD.
148
*
149
* Registers include the operand coordinates, and temporaries.
150
*/
151
#define MSET(d, a) (0x0000 + ((d) << 8) + ((a) << 4))
152
#define MADD(d, a) (0x1000 + ((d) << 8) + ((a) << 4))
153
#define MSUB(d, a) (0x2000 + ((d) << 8) + ((a) << 4))
154
#define MMUL(d, a, b) (0x3000 + ((d) << 8) + ((a) << 4) + (b))
155
#define MINV(d, a, b) (0x4000 + ((d) << 8) + ((a) << 4) + (b))
156
#define MTZ(d) (0x5000 + ((d) << 8))
157
#define ENDCODE 0
158
159
/*
160
* Registers for the input operands.
161
*/
162
#define P1x 0
163
#define P1y 1
164
#define P1z 2
165
#define P2x 3
166
#define P2y 4
167
#define P2z 5
168
169
/*
170
* Alternate names for the first input operand.
171
*/
172
#define Px 0
173
#define Py 1
174
#define Pz 2
175
176
/*
177
* Temporaries.
178
*/
179
#define t1 6
180
#define t2 7
181
#define t3 8
182
#define t4 9
183
#define t5 10
184
#define t6 11
185
#define t7 12
186
187
/*
188
* Extra scratch registers available when there is no second operand (e.g.
189
* for "double" and "affine").
190
*/
191
#define t8 3
192
#define t9 4
193
#define t10 5
194
195
/*
196
* Doubling formulas are:
197
*
198
* s = 4*x*y^2
199
* m = 3*(x + z^2)*(x - z^2)
200
* x' = m^2 - 2*s
201
* y' = m*(s - x') - 8*y^4
202
* z' = 2*y*z
203
*
204
* If y = 0 (P has order 2) then this yields infinity (z' = 0), as it
205
* should. This case should not happen anyway, because our curves have
206
* prime order, and thus do not contain any point of order 2.
207
*
208
* If P is infinity (z = 0), then again the formulas yield infinity,
209
* which is correct. Thus, this code works for all points.
210
*
211
* Cost: 8 multiplications
212
*/
213
static const uint16_t code_double[] = {
214
/*
215
* Compute z^2 (in t1).
216
*/
217
MMUL(t1, Pz, Pz),
218
219
/*
220
* Compute x-z^2 (in t2) and then x+z^2 (in t1).
221
*/
222
MSET(t2, Px),
223
MSUB(t2, t1),
224
MADD(t1, Px),
225
226
/*
227
* Compute m = 3*(x+z^2)*(x-z^2) (in t1).
228
*/
229
MMUL(t3, t1, t2),
230
MSET(t1, t3),
231
MADD(t1, t3),
232
MADD(t1, t3),
233
234
/*
235
* Compute s = 4*x*y^2 (in t2) and 2*y^2 (in t3).
236
*/
237
MMUL(t3, Py, Py),
238
MADD(t3, t3),
239
MMUL(t2, Px, t3),
240
MADD(t2, t2),
241
242
/*
243
* Compute x' = m^2 - 2*s.
244
*/
245
MMUL(Px, t1, t1),
246
MSUB(Px, t2),
247
MSUB(Px, t2),
248
249
/*
250
* Compute z' = 2*y*z.
251
*/
252
MMUL(t4, Py, Pz),
253
MSET(Pz, t4),
254
MADD(Pz, t4),
255
256
/*
257
* Compute y' = m*(s - x') - 8*y^4. Note that we already have
258
* 2*y^2 in t3.
259
*/
260
MSUB(t2, Px),
261
MMUL(Py, t1, t2),
262
MMUL(t4, t3, t3),
263
MSUB(Py, t4),
264
MSUB(Py, t4),
265
266
ENDCODE
267
};
268
269
/*
270
* Addtions formulas are:
271
*
272
* u1 = x1 * z2^2
273
* u2 = x2 * z1^2
274
* s1 = y1 * z2^3
275
* s2 = y2 * z1^3
276
* h = u2 - u1
277
* r = s2 - s1
278
* x3 = r^2 - h^3 - 2 * u1 * h^2
279
* y3 = r * (u1 * h^2 - x3) - s1 * h^3
280
* z3 = h * z1 * z2
281
*
282
* If both P1 and P2 are infinity, then z1 == 0 and z2 == 0, implying that
283
* z3 == 0, so the result is correct.
284
* If either of P1 or P2 is infinity, but not both, then z3 == 0, which is
285
* not correct.
286
* h == 0 only if u1 == u2; this happens in two cases:
287
* -- if s1 == s2 then P1 and/or P2 is infinity, or P1 == P2
288
* -- if s1 != s2 then P1 + P2 == infinity (but neither P1 or P2 is infinity)
289
*
290
* Thus, the following situations are not handled correctly:
291
* -- P1 = 0 and P2 != 0
292
* -- P1 != 0 and P2 = 0
293
* -- P1 = P2
294
* All other cases are properly computed. However, even in "incorrect"
295
* situations, the three coordinates still are properly formed field
296
* elements.
297
*
298
* The returned flag is cleared if r == 0. This happens in the following
299
* cases:
300
* -- Both points are on the same horizontal line (same Y coordinate).
301
* -- Both points are infinity.
302
* -- One point is infinity and the other is on line Y = 0.
303
* The third case cannot happen with our curves (there is no valid point
304
* on line Y = 0 since that would be a point of order 2). If the two
305
* source points are non-infinity, then remains only the case where the
306
* two points are on the same horizontal line.
307
*
308
* This allows us to detect the "P1 == P2" case, assuming that P1 != 0 and
309
* P2 != 0:
310
* -- If the returned value is not the point at infinity, then it was properly
311
* computed.
312
* -- Otherwise, if the returned flag is 1, then P1+P2 = 0, and the result
313
* is indeed the point at infinity.
314
* -- Otherwise (result is infinity, flag is 0), then P1 = P2 and we should
315
* use the 'double' code.
316
*
317
* Cost: 16 multiplications
318
*/
319
static const uint16_t code_add[] = {
320
/*
321
* Compute u1 = x1*z2^2 (in t1) and s1 = y1*z2^3 (in t3).
322
*/
323
MMUL(t3, P2z, P2z),
324
MMUL(t1, P1x, t3),
325
MMUL(t4, P2z, t3),
326
MMUL(t3, P1y, t4),
327
328
/*
329
* Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
330
*/
331
MMUL(t4, P1z, P1z),
332
MMUL(t2, P2x, t4),
333
MMUL(t5, P1z, t4),
334
MMUL(t4, P2y, t5),
335
336
/*
337
* Compute h = u2 - u1 (in t2) and r = s2 - s1 (in t4).
338
*/
339
MSUB(t2, t1),
340
MSUB(t4, t3),
341
342
/*
343
* Report cases where r = 0 through the returned flag.
344
*/
345
MTZ(t4),
346
347
/*
348
* Compute u1*h^2 (in t6) and h^3 (in t5).
349
*/
350
MMUL(t7, t2, t2),
351
MMUL(t6, t1, t7),
352
MMUL(t5, t7, t2),
353
354
/*
355
* Compute x3 = r^2 - h^3 - 2*u1*h^2.
356
* t1 and t7 can be used as scratch registers.
357
*/
358
MMUL(P1x, t4, t4),
359
MSUB(P1x, t5),
360
MSUB(P1x, t6),
361
MSUB(P1x, t6),
362
363
/*
364
* Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
365
*/
366
MSUB(t6, P1x),
367
MMUL(P1y, t4, t6),
368
MMUL(t1, t5, t3),
369
MSUB(P1y, t1),
370
371
/*
372
* Compute z3 = h*z1*z2.
373
*/
374
MMUL(t1, P1z, P2z),
375
MMUL(P1z, t1, t2),
376
377
ENDCODE
378
};
379
380
/*
381
* Check that the point is on the curve. This code snippet assumes the
382
* following conventions:
383
* -- Coordinates x and y have been freshly decoded in P1 (but not
384
* converted to Montgomery coordinates yet).
385
* -- P2x, P2y and P2z are set to, respectively, R^2, b*R and 1.
386
*/
387
static const uint16_t code_check[] = {
388
389
/* Convert x and y to Montgomery representation. */
390
MMUL(t1, P1x, P2x),
391
MMUL(t2, P1y, P2x),
392
MSET(P1x, t1),
393
MSET(P1y, t2),
394
395
/* Compute x^3 in t1. */
396
MMUL(t2, P1x, P1x),
397
MMUL(t1, P1x, t2),
398
399
/* Subtract 3*x from t1. */
400
MSUB(t1, P1x),
401
MSUB(t1, P1x),
402
MSUB(t1, P1x),
403
404
/* Add b. */
405
MADD(t1, P2y),
406
407
/* Compute y^2 in t2. */
408
MMUL(t2, P1y, P1y),
409
410
/* Compare y^2 with x^3 - 3*x + b; they must match. */
411
MSUB(t1, t2),
412
MTZ(t1),
413
414
/* Set z to 1 (in Montgomery representation). */
415
MMUL(P1z, P2x, P2z),
416
417
ENDCODE
418
};
419
420
/*
421
* Conversion back to affine coordinates. This code snippet assumes that
422
* the z coordinate of P2 is set to 1 (not in Montgomery representation).
423
*/
424
static const uint16_t code_affine[] = {
425
426
/* Save z*R in t1. */
427
MSET(t1, P1z),
428
429
/* Compute z^3 in t2. */
430
MMUL(t2, P1z, P1z),
431
MMUL(t3, P1z, t2),
432
MMUL(t2, t3, P2z),
433
434
/* Invert to (1/z^3) in t2. */
435
MINV(t2, t3, t4),
436
437
/* Compute y. */
438
MSET(t3, P1y),
439
MMUL(P1y, t2, t3),
440
441
/* Compute (1/z^2) in t3. */
442
MMUL(t3, t2, t1),
443
444
/* Compute x. */
445
MSET(t2, P1x),
446
MMUL(P1x, t2, t3),
447
448
ENDCODE
449
};
450
451
static uint32_t
452
run_code(jacobian *P1, const jacobian *P2,
453
const curve_params *cc, const uint16_t *code)
454
{
455
uint32_t r;
456
uint32_t t[13][I31_LEN];
457
size_t u;
458
459
r = 1;
460
461
/*
462
* Copy the two operands in the dedicated registers.
463
*/
464
memcpy(t[P1x], P1->c, 3 * I31_LEN * sizeof(uint32_t));
465
memcpy(t[P2x], P2->c, 3 * I31_LEN * sizeof(uint32_t));
466
467
/*
468
* Run formulas.
469
*/
470
for (u = 0;; u ++) {
471
unsigned op, d, a, b;
472
473
op = code[u];
474
if (op == 0) {
475
break;
476
}
477
d = (op >> 8) & 0x0F;
478
a = (op >> 4) & 0x0F;
479
b = op & 0x0F;
480
op >>= 12;
481
switch (op) {
482
uint32_t ctl;
483
size_t plen;
484
unsigned char tp[(BR_MAX_EC_SIZE + 7) >> 3];
485
486
case 0:
487
memcpy(t[d], t[a], I31_LEN * sizeof(uint32_t));
488
break;
489
case 1:
490
ctl = br_i31_add(t[d], t[a], 1);
491
ctl |= NOT(br_i31_sub(t[d], cc->p, 0));
492
br_i31_sub(t[d], cc->p, ctl);
493
break;
494
case 2:
495
br_i31_add(t[d], cc->p, br_i31_sub(t[d], t[a], 1));
496
break;
497
case 3:
498
br_i31_montymul(t[d], t[a], t[b], cc->p, cc->p0i);
499
break;
500
case 4:
501
plen = (cc->p[0] - (cc->p[0] >> 5) + 7) >> 3;
502
br_i31_encode(tp, plen, cc->p);
503
tp[plen - 1] -= 2;
504
br_i31_modpow(t[d], tp, plen,
505
cc->p, cc->p0i, t[a], t[b]);
506
break;
507
default:
508
r &= ~br_i31_iszero(t[d]);
509
break;
510
}
511
}
512
513
/*
514
* Copy back result.
515
*/
516
memcpy(P1->c, t[P1x], 3 * I31_LEN * sizeof(uint32_t));
517
return r;
518
}
519
520
static void
521
set_one(uint32_t *x, const uint32_t *p)
522
{
523
size_t plen;
524
525
plen = (p[0] + 63) >> 5;
526
memset(x, 0, plen * sizeof *x);
527
x[0] = p[0];
528
x[1] = 0x00000001;
529
}
530
531
static void
532
point_zero(jacobian *P, const curve_params *cc)
533
{
534
memset(P, 0, sizeof *P);
535
P->c[0][0] = P->c[1][0] = P->c[2][0] = cc->p[0];
536
}
537
538
static inline void
539
point_double(jacobian *P, const curve_params *cc)
540
{
541
run_code(P, P, cc, code_double);
542
}
543
544
static inline uint32_t
545
point_add(jacobian *P1, const jacobian *P2, const curve_params *cc)
546
{
547
return run_code(P1, P2, cc, code_add);
548
}
549
550
static void
551
point_mul(jacobian *P, const unsigned char *x, size_t xlen,
552
const curve_params *cc)
553
{
554
/*
555
* We do a simple double-and-add ladder with a 2-bit window
556
* to make only one add every two doublings. We thus first
557
* precompute 2P and 3P in some local buffers.
558
*
559
* We always perform two doublings and one addition; the
560
* addition is with P, 2P and 3P and is done in a temporary
561
* array.
562
*
563
* The addition code cannot handle cases where one of the
564
* operands is infinity, which is the case at the start of the
565
* ladder. We therefore need to maintain a flag that controls
566
* this situation.
567
*/
568
uint32_t qz;
569
jacobian P2, P3, Q, T, U;
570
571
memcpy(&P2, P, sizeof P2);
572
point_double(&P2, cc);
573
memcpy(&P3, P, sizeof P3);
574
point_add(&P3, &P2, cc);
575
576
point_zero(&Q, cc);
577
qz = 1;
578
while (xlen -- > 0) {
579
int k;
580
581
for (k = 6; k >= 0; k -= 2) {
582
uint32_t bits;
583
uint32_t bnz;
584
585
point_double(&Q, cc);
586
point_double(&Q, cc);
587
memcpy(&T, P, sizeof T);
588
memcpy(&U, &Q, sizeof U);
589
bits = (*x >> k) & (uint32_t)3;
590
bnz = NEQ(bits, 0);
591
CCOPY(EQ(bits, 2), &T, &P2, sizeof T);
592
CCOPY(EQ(bits, 3), &T, &P3, sizeof T);
593
point_add(&U, &T, cc);
594
CCOPY(bnz & qz, &Q, &T, sizeof Q);
595
CCOPY(bnz & ~qz, &Q, &U, sizeof Q);
596
qz &= ~bnz;
597
}
598
x ++;
599
}
600
memcpy(P, &Q, sizeof Q);
601
}
602
603
/*
604
* Decode point into Jacobian coordinates. This function does not support
605
* the point at infinity. If the point is invalid then this returns 0, but
606
* the coordinates are still set to properly formed field elements.
607
*/
608
static uint32_t
609
point_decode(jacobian *P, const void *src, size_t len, const curve_params *cc)
610
{
611
/*
612
* Points must use uncompressed format:
613
* -- first byte is 0x04;
614
* -- coordinates X and Y use unsigned big-endian, with the same
615
* length as the field modulus.
616
*
617
* We don't support hybrid format (uncompressed, but first byte
618
* has value 0x06 or 0x07, depending on the least significant bit
619
* of Y) because it is rather useless, and explicitly forbidden
620
* by PKIX (RFC 5480, section 2.2).
621
*
622
* We don't support compressed format either, because it is not
623
* much used in practice (there are or were patent-related
624
* concerns about point compression, which explains the lack of
625
* generalised support). Also, point compression support would
626
* need a bit more code.
627
*/
628
const unsigned char *buf;
629
size_t plen, zlen;
630
uint32_t r;
631
jacobian Q;
632
633
buf = src;
634
point_zero(P, cc);
635
plen = (cc->p[0] - (cc->p[0] >> 5) + 7) >> 3;
636
if (len != 1 + (plen << 1)) {
637
return 0;
638
}
639
r = br_i31_decode_mod(P->c[0], buf + 1, plen, cc->p);
640
r &= br_i31_decode_mod(P->c[1], buf + 1 + plen, plen, cc->p);
641
642
/*
643
* Check first byte.
644
*/
645
r &= EQ(buf[0], 0x04);
646
/* obsolete
647
r &= EQ(buf[0], 0x04) | (EQ(buf[0] & 0xFE, 0x06)
648
& ~(uint32_t)(buf[0] ^ buf[plen << 1]));
649
*/
650
651
/*
652
* Convert coordinates and check that the point is valid.
653
*/
654
zlen = ((cc->p[0] + 63) >> 5) * sizeof(uint32_t);
655
memcpy(Q.c[0], cc->R2, zlen);
656
memcpy(Q.c[1], cc->b, zlen);
657
set_one(Q.c[2], cc->p);
658
r &= ~run_code(P, &Q, cc, code_check);
659
return r;
660
}
661
662
/*
663
* Encode a point. This method assumes that the point is correct and is
664
* not the point at infinity. Encoded size is always 1+2*plen, where
665
* plen is the field modulus length, in bytes.
666
*/
667
static void
668
point_encode(void *dst, const jacobian *P, const curve_params *cc)
669
{
670
unsigned char *buf;
671
uint32_t xbl;
672
size_t plen;
673
jacobian Q, T;
674
675
buf = dst;
676
xbl = cc->p[0];
677
xbl -= (xbl >> 5);
678
plen = (xbl + 7) >> 3;
679
buf[0] = 0x04;
680
memcpy(&Q, P, sizeof *P);
681
set_one(T.c[2], cc->p);
682
run_code(&Q, &T, cc, code_affine);
683
br_i31_encode(buf + 1, plen, Q.c[0]);
684
br_i31_encode(buf + 1 + plen, plen, Q.c[1]);
685
}
686
687
static const br_ec_curve_def *
688
id_to_curve_def(int curve)
689
{
690
switch (curve) {
691
case BR_EC_secp256r1:
692
return &br_secp256r1;
693
case BR_EC_secp384r1:
694
return &br_secp384r1;
695
case BR_EC_secp521r1:
696
return &br_secp521r1;
697
}
698
return NULL;
699
}
700
701
static const unsigned char *
702
api_generator(int curve, size_t *len)
703
{
704
const br_ec_curve_def *cd;
705
706
cd = id_to_curve_def(curve);
707
*len = cd->generator_len;
708
return cd->generator;
709
}
710
711
static const unsigned char *
712
api_order(int curve, size_t *len)
713
{
714
const br_ec_curve_def *cd;
715
716
cd = id_to_curve_def(curve);
717
*len = cd->order_len;
718
return cd->order;
719
}
720
721
static size_t
722
api_xoff(int curve, size_t *len)
723
{
724
api_generator(curve, len);
725
*len >>= 1;
726
return 1;
727
}
728
729
static uint32_t
730
api_mul(unsigned char *G, size_t Glen,
731
const unsigned char *x, size_t xlen, int curve)
732
{
733
uint32_t r;
734
const curve_params *cc;
735
jacobian P;
736
737
cc = id_to_curve(curve);
738
if (Glen != cc->point_len) {
739
return 0;
740
}
741
r = point_decode(&P, G, Glen, cc);
742
point_mul(&P, x, xlen, cc);
743
point_encode(G, &P, cc);
744
return r;
745
}
746
747
static size_t
748
api_mulgen(unsigned char *R,
749
const unsigned char *x, size_t xlen, int curve)
750
{
751
const unsigned char *G;
752
size_t Glen;
753
754
G = api_generator(curve, &Glen);
755
memcpy(R, G, Glen);
756
api_mul(R, Glen, x, xlen, curve);
757
return Glen;
758
}
759
760
static uint32_t
761
api_muladd(unsigned char *A, const unsigned char *B, size_t len,
762
const unsigned char *x, size_t xlen,
763
const unsigned char *y, size_t ylen, int curve)
764
{
765
uint32_t r, t, z;
766
const curve_params *cc;
767
jacobian P, Q;
768
769
/*
770
* TODO: see about merging the two ladders. Right now, we do
771
* two independent point multiplications, which is a bit
772
* wasteful of CPU resources (but yields short code).
773
*/
774
775
cc = id_to_curve(curve);
776
if (len != cc->point_len) {
777
return 0;
778
}
779
r = point_decode(&P, A, len, cc);
780
if (B == NULL) {
781
size_t Glen;
782
783
B = api_generator(curve, &Glen);
784
}
785
r &= point_decode(&Q, B, len, cc);
786
point_mul(&P, x, xlen, cc);
787
point_mul(&Q, y, ylen, cc);
788
789
/*
790
* We want to compute P+Q. Since the base points A and B are distinct
791
* from infinity, and the multipliers are non-zero and lower than the
792
* curve order, then we know that P and Q are non-infinity. This
793
* leaves two special situations to test for:
794
* -- If P = Q then we must use point_double().
795
* -- If P+Q = 0 then we must report an error.
796
*/
797
t = point_add(&P, &Q, cc);
798
point_double(&Q, cc);
799
z = br_i31_iszero(P.c[2]);
800
801
/*
802
* If z is 1 then either P+Q = 0 (t = 1) or P = Q (t = 0). So we
803
* have the following:
804
*
805
* z = 0, t = 0 return P (normal addition)
806
* z = 0, t = 1 return P (normal addition)
807
* z = 1, t = 0 return Q (a 'double' case)
808
* z = 1, t = 1 report an error (P+Q = 0)
809
*/
810
CCOPY(z & ~t, &P, &Q, sizeof Q);
811
point_encode(A, &P, cc);
812
r &= ~(z & t);
813
814
return r;
815
}
816
817
/* see bearssl_ec.h */
818
const br_ec_impl br_ec_prime_i31 = {
819
(uint32_t)0x03800000,
820
&api_generator,
821
&api_order,
822
&api_xoff,
823
&api_mul,
824
&api_mulgen,
825
&api_muladd
826
};
827
828