Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/bearssl/src/ec/ecdsa_i15_sign_raw.c
39488 views
1
/*
2
* Copyright (c) 2017 Thomas Pornin <[email protected]>
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining
5
* a copy of this software and associated documentation files (the
6
* "Software"), to deal in the Software without restriction, including
7
* without limitation the rights to use, copy, modify, merge, publish,
8
* distribute, sublicense, and/or sell copies of the Software, and to
9
* permit persons to whom the Software is furnished to do so, subject to
10
* the following conditions:
11
*
12
* The above copyright notice and this permission notice shall be
13
* included in all copies or substantial portions of the Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
* SOFTWARE.
23
*/
24
25
#include "inner.h"
26
27
#define I15_LEN ((BR_MAX_EC_SIZE + 29) / 15)
28
#define POINT_LEN (1 + (((BR_MAX_EC_SIZE + 7) >> 3) << 1))
29
#define ORDER_LEN ((BR_MAX_EC_SIZE + 7) >> 3)
30
31
/* see bearssl_ec.h */
32
size_t
33
br_ecdsa_i15_sign_raw(const br_ec_impl *impl,
34
const br_hash_class *hf, const void *hash_value,
35
const br_ec_private_key *sk, void *sig)
36
{
37
/*
38
* IMPORTANT: this code is fit only for curves with a prime
39
* order. This is needed so that modular reduction of the X
40
* coordinate of a point can be done with a simple subtraction.
41
* We also rely on the last byte of the curve order to be distinct
42
* from 0 and 1.
43
*/
44
const br_ec_curve_def *cd;
45
uint16_t n[I15_LEN], r[I15_LEN], s[I15_LEN], x[I15_LEN];
46
uint16_t m[I15_LEN], k[I15_LEN], t1[I15_LEN], t2[I15_LEN];
47
unsigned char tt[ORDER_LEN << 1];
48
unsigned char eU[POINT_LEN];
49
size_t hash_len, nlen, ulen;
50
uint16_t n0i;
51
uint32_t ctl;
52
br_hmac_drbg_context drbg;
53
54
/*
55
* If the curve is not supported, then exit with an error.
56
*/
57
if (((impl->supported_curves >> sk->curve) & 1) == 0) {
58
return 0;
59
}
60
61
/*
62
* Get the curve parameters (generator and order).
63
*/
64
switch (sk->curve) {
65
case BR_EC_secp256r1:
66
cd = &br_secp256r1;
67
break;
68
case BR_EC_secp384r1:
69
cd = &br_secp384r1;
70
break;
71
case BR_EC_secp521r1:
72
cd = &br_secp521r1;
73
break;
74
default:
75
return 0;
76
}
77
78
/*
79
* Get modulus.
80
*/
81
nlen = cd->order_len;
82
br_i15_decode(n, cd->order, nlen);
83
n0i = br_i15_ninv15(n[1]);
84
85
/*
86
* Get private key as an i15 integer. This also checks that the
87
* private key is well-defined (not zero, and less than the
88
* curve order).
89
*/
90
if (!br_i15_decode_mod(x, sk->x, sk->xlen, n)) {
91
return 0;
92
}
93
if (br_i15_iszero(x)) {
94
return 0;
95
}
96
97
/*
98
* Get hash length.
99
*/
100
hash_len = (hf->desc >> BR_HASHDESC_OUT_OFF) & BR_HASHDESC_OUT_MASK;
101
102
/*
103
* Truncate and reduce the hash value modulo the curve order.
104
*/
105
br_ecdsa_i15_bits2int(m, hash_value, hash_len, n[0]);
106
br_i15_sub(m, n, br_i15_sub(m, n, 0) ^ 1);
107
108
/*
109
* RFC 6979 generation of the "k" value.
110
*
111
* The process uses HMAC_DRBG (with the hash function used to
112
* process the message that is to be signed). The seed is the
113
* concatenation of the encodings of the private key and
114
* the hash value (after truncation and modular reduction).
115
*/
116
br_i15_encode(tt, nlen, x);
117
br_i15_encode(tt + nlen, nlen, m);
118
br_hmac_drbg_init(&drbg, hf, tt, nlen << 1);
119
for (;;) {
120
br_hmac_drbg_generate(&drbg, tt, nlen);
121
br_ecdsa_i15_bits2int(k, tt, nlen, n[0]);
122
if (br_i15_iszero(k)) {
123
continue;
124
}
125
if (br_i15_sub(k, n, 0)) {
126
break;
127
}
128
}
129
130
/*
131
* Compute k*G and extract the X coordinate, then reduce it
132
* modulo the curve order. Since we support only curves with
133
* prime order, that reduction is only a matter of computing
134
* a subtraction.
135
*/
136
br_i15_encode(tt, nlen, k);
137
ulen = impl->mulgen(eU, tt, nlen, sk->curve);
138
br_i15_zero(r, n[0]);
139
br_i15_decode(r, &eU[1], ulen >> 1);
140
r[0] = n[0];
141
br_i15_sub(r, n, br_i15_sub(r, n, 0) ^ 1);
142
143
/*
144
* Compute 1/k in double-Montgomery representation. We do so by
145
* first converting _from_ Montgomery representation (twice),
146
* then using a modular exponentiation.
147
*/
148
br_i15_from_monty(k, n, n0i);
149
br_i15_from_monty(k, n, n0i);
150
memcpy(tt, cd->order, nlen);
151
tt[nlen - 1] -= 2;
152
br_i15_modpow(k, tt, nlen, n, n0i, t1, t2);
153
154
/*
155
* Compute s = (m+xr)/k (mod n).
156
* The k[] array contains R^2/k (double-Montgomery representation);
157
* we thus can use direct Montgomery multiplications and conversions
158
* from Montgomery, avoiding any call to br_i15_to_monty() (which
159
* is slower).
160
*/
161
br_i15_from_monty(m, n, n0i);
162
br_i15_montymul(t1, x, r, n, n0i);
163
ctl = br_i15_add(t1, m, 1);
164
ctl |= br_i15_sub(t1, n, 0) ^ 1;
165
br_i15_sub(t1, n, ctl);
166
br_i15_montymul(s, t1, k, n, n0i);
167
168
/*
169
* Encode r and s in the signature.
170
*/
171
br_i15_encode(sig, nlen, r);
172
br_i15_encode((unsigned char *)sig + nlen, nlen, s);
173
return nlen << 1;
174
}
175
176