Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/bearssl/src/ec/ecdsa_i15_vrfy_raw.c
39488 views
1
/*
2
* Copyright (c) 2017 Thomas Pornin <[email protected]>
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining
5
* a copy of this software and associated documentation files (the
6
* "Software"), to deal in the Software without restriction, including
7
* without limitation the rights to use, copy, modify, merge, publish,
8
* distribute, sublicense, and/or sell copies of the Software, and to
9
* permit persons to whom the Software is furnished to do so, subject to
10
* the following conditions:
11
*
12
* The above copyright notice and this permission notice shall be
13
* included in all copies or substantial portions of the Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
* SOFTWARE.
23
*/
24
25
#include "inner.h"
26
27
#define I15_LEN ((BR_MAX_EC_SIZE + 29) / 15)
28
#define POINT_LEN (1 + (((BR_MAX_EC_SIZE + 7) >> 3) << 1))
29
30
/* see bearssl_ec.h */
31
uint32_t
32
br_ecdsa_i15_vrfy_raw(const br_ec_impl *impl,
33
const void *hash, size_t hash_len,
34
const br_ec_public_key *pk,
35
const void *sig, size_t sig_len)
36
{
37
/*
38
* IMPORTANT: this code is fit only for curves with a prime
39
* order. This is needed so that modular reduction of the X
40
* coordinate of a point can be done with a simple subtraction.
41
*/
42
const br_ec_curve_def *cd;
43
uint16_t n[I15_LEN], r[I15_LEN], s[I15_LEN], t1[I15_LEN], t2[I15_LEN];
44
unsigned char tx[(BR_MAX_EC_SIZE + 7) >> 3];
45
unsigned char ty[(BR_MAX_EC_SIZE + 7) >> 3];
46
unsigned char eU[POINT_LEN];
47
size_t nlen, rlen, ulen;
48
uint16_t n0i;
49
uint32_t res;
50
51
/*
52
* If the curve is not supported, then report an error.
53
*/
54
if (((impl->supported_curves >> pk->curve) & 1) == 0) {
55
return 0;
56
}
57
58
/*
59
* Get the curve parameters (generator and order).
60
*/
61
switch (pk->curve) {
62
case BR_EC_secp256r1:
63
cd = &br_secp256r1;
64
break;
65
case BR_EC_secp384r1:
66
cd = &br_secp384r1;
67
break;
68
case BR_EC_secp521r1:
69
cd = &br_secp521r1;
70
break;
71
default:
72
return 0;
73
}
74
75
/*
76
* Signature length must be even.
77
*/
78
if (sig_len & 1) {
79
return 0;
80
}
81
rlen = sig_len >> 1;
82
83
/*
84
* Public key point must have the proper size for this curve.
85
*/
86
if (pk->qlen != cd->generator_len) {
87
return 0;
88
}
89
90
/*
91
* Get modulus; then decode the r and s values. They must be
92
* lower than the modulus, and s must not be null.
93
*/
94
nlen = cd->order_len;
95
br_i15_decode(n, cd->order, nlen);
96
n0i = br_i15_ninv15(n[1]);
97
if (!br_i15_decode_mod(r, sig, rlen, n)) {
98
return 0;
99
}
100
if (!br_i15_decode_mod(s, (const unsigned char *)sig + rlen, rlen, n)) {
101
return 0;
102
}
103
if (br_i15_iszero(s)) {
104
return 0;
105
}
106
107
/*
108
* Invert s. We do that with a modular exponentiation; we use
109
* the fact that for all the curves we support, the least
110
* significant byte is not 0 or 1, so we can subtract 2 without
111
* any carry to process.
112
* We also want 1/s in Montgomery representation, which can be
113
* done by converting _from_ Montgomery representation before
114
* the inversion (because (1/s)*R = 1/(s/R)).
115
*/
116
br_i15_from_monty(s, n, n0i);
117
memcpy(tx, cd->order, nlen);
118
tx[nlen - 1] -= 2;
119
br_i15_modpow(s, tx, nlen, n, n0i, t1, t2);
120
121
/*
122
* Truncate the hash to the modulus length (in bits) and reduce
123
* it modulo the curve order. The modular reduction can be done
124
* with a subtraction since the truncation already reduced the
125
* value to the modulus bit length.
126
*/
127
br_ecdsa_i15_bits2int(t1, hash, hash_len, n[0]);
128
br_i15_sub(t1, n, br_i15_sub(t1, n, 0) ^ 1);
129
130
/*
131
* Multiply the (truncated, reduced) hash value with 1/s, result in
132
* t2, encoded in ty.
133
*/
134
br_i15_montymul(t2, t1, s, n, n0i);
135
br_i15_encode(ty, nlen, t2);
136
137
/*
138
* Multiply r with 1/s, result in t1, encoded in tx.
139
*/
140
br_i15_montymul(t1, r, s, n, n0i);
141
br_i15_encode(tx, nlen, t1);
142
143
/*
144
* Compute the point x*Q + y*G.
145
*/
146
ulen = cd->generator_len;
147
memcpy(eU, pk->q, ulen);
148
res = impl->muladd(eU, NULL, ulen,
149
tx, nlen, ty, nlen, cd->curve);
150
151
/*
152
* Get the X coordinate, reduce modulo the curve order, and
153
* compare with the 'r' value.
154
*
155
* The modular reduction can be done with subtractions because
156
* we work with curves of prime order, so the curve order is
157
* close to the field order (Hasse's theorem).
158
*/
159
br_i15_zero(t1, n[0]);
160
br_i15_decode(t1, &eU[1], ulen >> 1);
161
t1[0] = n[0];
162
br_i15_sub(t1, n, br_i15_sub(t1, n, 0) ^ 1);
163
res &= ~br_i15_sub(t1, r, 1);
164
res &= br_i15_iszero(t1);
165
return res;
166
}
167
168