Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/bearssl/src/ec/ecdsa_i31_sign_raw.c
39488 views
1
/*
2
* Copyright (c) 2016 Thomas Pornin <[email protected]>
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining
5
* a copy of this software and associated documentation files (the
6
* "Software"), to deal in the Software without restriction, including
7
* without limitation the rights to use, copy, modify, merge, publish,
8
* distribute, sublicense, and/or sell copies of the Software, and to
9
* permit persons to whom the Software is furnished to do so, subject to
10
* the following conditions:
11
*
12
* The above copyright notice and this permission notice shall be
13
* included in all copies or substantial portions of the Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
* SOFTWARE.
23
*/
24
25
#include "inner.h"
26
27
#define I31_LEN ((BR_MAX_EC_SIZE + 61) / 31)
28
#define POINT_LEN (1 + (((BR_MAX_EC_SIZE + 7) >> 3) << 1))
29
#define ORDER_LEN ((BR_MAX_EC_SIZE + 7) >> 3)
30
31
/* see bearssl_ec.h */
32
size_t
33
br_ecdsa_i31_sign_raw(const br_ec_impl *impl,
34
const br_hash_class *hf, const void *hash_value,
35
const br_ec_private_key *sk, void *sig)
36
{
37
/*
38
* IMPORTANT: this code is fit only for curves with a prime
39
* order. This is needed so that modular reduction of the X
40
* coordinate of a point can be done with a simple subtraction.
41
* We also rely on the last byte of the curve order to be distinct
42
* from 0 and 1.
43
*/
44
const br_ec_curve_def *cd;
45
uint32_t n[I31_LEN], r[I31_LEN], s[I31_LEN], x[I31_LEN];
46
uint32_t m[I31_LEN], k[I31_LEN], t1[I31_LEN], t2[I31_LEN];
47
unsigned char tt[ORDER_LEN << 1];
48
unsigned char eU[POINT_LEN];
49
size_t hash_len, nlen, ulen;
50
uint32_t n0i, ctl;
51
br_hmac_drbg_context drbg;
52
53
/*
54
* If the curve is not supported, then exit with an error.
55
*/
56
if (((impl->supported_curves >> sk->curve) & 1) == 0) {
57
return 0;
58
}
59
60
/*
61
* Get the curve parameters (generator and order).
62
*/
63
switch (sk->curve) {
64
case BR_EC_secp256r1:
65
cd = &br_secp256r1;
66
break;
67
case BR_EC_secp384r1:
68
cd = &br_secp384r1;
69
break;
70
case BR_EC_secp521r1:
71
cd = &br_secp521r1;
72
break;
73
default:
74
return 0;
75
}
76
77
/*
78
* Get modulus.
79
*/
80
nlen = cd->order_len;
81
br_i31_decode(n, cd->order, nlen);
82
n0i = br_i31_ninv31(n[1]);
83
84
/*
85
* Get private key as an i31 integer. This also checks that the
86
* private key is well-defined (not zero, and less than the
87
* curve order).
88
*/
89
if (!br_i31_decode_mod(x, sk->x, sk->xlen, n)) {
90
return 0;
91
}
92
if (br_i31_iszero(x)) {
93
return 0;
94
}
95
96
/*
97
* Get hash length.
98
*/
99
hash_len = (hf->desc >> BR_HASHDESC_OUT_OFF) & BR_HASHDESC_OUT_MASK;
100
101
/*
102
* Truncate and reduce the hash value modulo the curve order.
103
*/
104
br_ecdsa_i31_bits2int(m, hash_value, hash_len, n[0]);
105
br_i31_sub(m, n, br_i31_sub(m, n, 0) ^ 1);
106
107
/*
108
* RFC 6979 generation of the "k" value.
109
*
110
* The process uses HMAC_DRBG (with the hash function used to
111
* process the message that is to be signed). The seed is the
112
* concatenation of the encodings of the private key and
113
* the hash value (after truncation and modular reduction).
114
*/
115
br_i31_encode(tt, nlen, x);
116
br_i31_encode(tt + nlen, nlen, m);
117
br_hmac_drbg_init(&drbg, hf, tt, nlen << 1);
118
for (;;) {
119
br_hmac_drbg_generate(&drbg, tt, nlen);
120
br_ecdsa_i31_bits2int(k, tt, nlen, n[0]);
121
if (br_i31_iszero(k)) {
122
continue;
123
}
124
if (br_i31_sub(k, n, 0)) {
125
break;
126
}
127
}
128
129
/*
130
* Compute k*G and extract the X coordinate, then reduce it
131
* modulo the curve order. Since we support only curves with
132
* prime order, that reduction is only a matter of computing
133
* a subtraction.
134
*/
135
br_i31_encode(tt, nlen, k);
136
ulen = impl->mulgen(eU, tt, nlen, sk->curve);
137
br_i31_zero(r, n[0]);
138
br_i31_decode(r, &eU[1], ulen >> 1);
139
r[0] = n[0];
140
br_i31_sub(r, n, br_i31_sub(r, n, 0) ^ 1);
141
142
/*
143
* Compute 1/k in double-Montgomery representation. We do so by
144
* first converting _from_ Montgomery representation (twice),
145
* then using a modular exponentiation.
146
*/
147
br_i31_from_monty(k, n, n0i);
148
br_i31_from_monty(k, n, n0i);
149
memcpy(tt, cd->order, nlen);
150
tt[nlen - 1] -= 2;
151
br_i31_modpow(k, tt, nlen, n, n0i, t1, t2);
152
153
/*
154
* Compute s = (m+xr)/k (mod n).
155
* The k[] array contains R^2/k (double-Montgomery representation);
156
* we thus can use direct Montgomery multiplications and conversions
157
* from Montgomery, avoiding any call to br_i31_to_monty() (which
158
* is slower).
159
*/
160
br_i31_from_monty(m, n, n0i);
161
br_i31_montymul(t1, x, r, n, n0i);
162
ctl = br_i31_add(t1, m, 1);
163
ctl |= br_i31_sub(t1, n, 0) ^ 1;
164
br_i31_sub(t1, n, ctl);
165
br_i31_montymul(s, t1, k, n, n0i);
166
167
/*
168
* Encode r and s in the signature.
169
*/
170
br_i31_encode(sig, nlen, r);
171
br_i31_encode((unsigned char *)sig + nlen, nlen, s);
172
return nlen << 1;
173
}
174
175