Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/bearssl/src/hash/ghash_ctmul32.c
39536 views
1
/*
2
* Copyright (c) 2016 Thomas Pornin <[email protected]>
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining
5
* a copy of this software and associated documentation files (the
6
* "Software"), to deal in the Software without restriction, including
7
* without limitation the rights to use, copy, modify, merge, publish,
8
* distribute, sublicense, and/or sell copies of the Software, and to
9
* permit persons to whom the Software is furnished to do so, subject to
10
* the following conditions:
11
*
12
* The above copyright notice and this permission notice shall be
13
* included in all copies or substantial portions of the Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
* SOFTWARE.
23
*/
24
25
#include "inner.h"
26
27
/*
28
* This implementation uses 32-bit multiplications, and only the low
29
* 32 bits for each multiplication result. This is meant primarily for
30
* the ARM Cortex M0 and M0+, whose multiplication opcode does not yield
31
* the upper 32 bits; but it might also be useful on architectures where
32
* access to the upper 32 bits requires use of specific registers that
33
* create contention (e.g. on i386, "mul" necessarily outputs the result
34
* in edx:eax, while "imul" can use any registers but is limited to the
35
* low 32 bits).
36
*
37
* The implementation trick that is used here is bit-reversing (bit 0
38
* is swapped with bit 31, bit 1 with bit 30, and so on). In GF(2)[X],
39
* for all values x and y, we have:
40
* rev32(x) * rev32(y) = rev64(x * y)
41
* In other words, if we bit-reverse (over 32 bits) the operands, then we
42
* bit-reverse (over 64 bits) the result.
43
*/
44
45
/*
46
* Multiplication in GF(2)[X], truncated to its low 32 bits.
47
*/
48
static inline uint32_t
49
bmul32(uint32_t x, uint32_t y)
50
{
51
uint32_t x0, x1, x2, x3;
52
uint32_t y0, y1, y2, y3;
53
uint32_t z0, z1, z2, z3;
54
55
x0 = x & (uint32_t)0x11111111;
56
x1 = x & (uint32_t)0x22222222;
57
x2 = x & (uint32_t)0x44444444;
58
x3 = x & (uint32_t)0x88888888;
59
y0 = y & (uint32_t)0x11111111;
60
y1 = y & (uint32_t)0x22222222;
61
y2 = y & (uint32_t)0x44444444;
62
y3 = y & (uint32_t)0x88888888;
63
z0 = (x0 * y0) ^ (x1 * y3) ^ (x2 * y2) ^ (x3 * y1);
64
z1 = (x0 * y1) ^ (x1 * y0) ^ (x2 * y3) ^ (x3 * y2);
65
z2 = (x0 * y2) ^ (x1 * y1) ^ (x2 * y0) ^ (x3 * y3);
66
z3 = (x0 * y3) ^ (x1 * y2) ^ (x2 * y1) ^ (x3 * y0);
67
z0 &= (uint32_t)0x11111111;
68
z1 &= (uint32_t)0x22222222;
69
z2 &= (uint32_t)0x44444444;
70
z3 &= (uint32_t)0x88888888;
71
return z0 | z1 | z2 | z3;
72
}
73
74
/*
75
* Bit-reverse a 32-bit word.
76
*/
77
static uint32_t
78
rev32(uint32_t x)
79
{
80
#define RMS(m, s) do { \
81
x = ((x & (uint32_t)(m)) << (s)) \
82
| ((x >> (s)) & (uint32_t)(m)); \
83
} while (0)
84
85
RMS(0x55555555, 1);
86
RMS(0x33333333, 2);
87
RMS(0x0F0F0F0F, 4);
88
RMS(0x00FF00FF, 8);
89
return (x << 16) | (x >> 16);
90
91
#undef RMS
92
}
93
94
/* see bearssl_hash.h */
95
void
96
br_ghash_ctmul32(void *y, const void *h, const void *data, size_t len)
97
{
98
/*
99
* This implementation is similar to br_ghash_ctmul() except
100
* that we have to do the multiplication twice, with the
101
* "normal" and "bit reversed" operands. Hence we end up with
102
* eighteen 32-bit multiplications instead of nine.
103
*/
104
105
const unsigned char *buf, *hb;
106
unsigned char *yb;
107
uint32_t yw[4];
108
uint32_t hw[4], hwr[4];
109
110
buf = data;
111
yb = y;
112
hb = h;
113
yw[3] = br_dec32be(yb);
114
yw[2] = br_dec32be(yb + 4);
115
yw[1] = br_dec32be(yb + 8);
116
yw[0] = br_dec32be(yb + 12);
117
hw[3] = br_dec32be(hb);
118
hw[2] = br_dec32be(hb + 4);
119
hw[1] = br_dec32be(hb + 8);
120
hw[0] = br_dec32be(hb + 12);
121
hwr[3] = rev32(hw[3]);
122
hwr[2] = rev32(hw[2]);
123
hwr[1] = rev32(hw[1]);
124
hwr[0] = rev32(hw[0]);
125
while (len > 0) {
126
const unsigned char *src;
127
unsigned char tmp[16];
128
int i;
129
uint32_t a[18], b[18], c[18];
130
uint32_t d0, d1, d2, d3, d4, d5, d6, d7;
131
uint32_t zw[8];
132
133
if (len >= 16) {
134
src = buf;
135
buf += 16;
136
len -= 16;
137
} else {
138
memcpy(tmp, buf, len);
139
memset(tmp + len, 0, (sizeof tmp) - len);
140
src = tmp;
141
len = 0;
142
}
143
yw[3] ^= br_dec32be(src);
144
yw[2] ^= br_dec32be(src + 4);
145
yw[1] ^= br_dec32be(src + 8);
146
yw[0] ^= br_dec32be(src + 12);
147
148
/*
149
* We are using Karatsuba: the 128x128 multiplication is
150
* reduced to three 64x64 multiplications, hence nine
151
* 32x32 multiplications. With the bit-reversal trick,
152
* we have to perform 18 32x32 multiplications.
153
*/
154
155
/*
156
* y[0,1]*h[0,1] -> 0,1,4
157
* y[2,3]*h[2,3] -> 2,3,5
158
* (y[0,1]+y[2,3])*(h[0,1]+h[2,3]) -> 6,7,8
159
*/
160
161
a[0] = yw[0];
162
a[1] = yw[1];
163
a[2] = yw[2];
164
a[3] = yw[3];
165
a[4] = a[0] ^ a[1];
166
a[5] = a[2] ^ a[3];
167
a[6] = a[0] ^ a[2];
168
a[7] = a[1] ^ a[3];
169
a[8] = a[6] ^ a[7];
170
171
a[ 9] = rev32(yw[0]);
172
a[10] = rev32(yw[1]);
173
a[11] = rev32(yw[2]);
174
a[12] = rev32(yw[3]);
175
a[13] = a[ 9] ^ a[10];
176
a[14] = a[11] ^ a[12];
177
a[15] = a[ 9] ^ a[11];
178
a[16] = a[10] ^ a[12];
179
a[17] = a[15] ^ a[16];
180
181
b[0] = hw[0];
182
b[1] = hw[1];
183
b[2] = hw[2];
184
b[3] = hw[3];
185
b[4] = b[0] ^ b[1];
186
b[5] = b[2] ^ b[3];
187
b[6] = b[0] ^ b[2];
188
b[7] = b[1] ^ b[3];
189
b[8] = b[6] ^ b[7];
190
191
b[ 9] = hwr[0];
192
b[10] = hwr[1];
193
b[11] = hwr[2];
194
b[12] = hwr[3];
195
b[13] = b[ 9] ^ b[10];
196
b[14] = b[11] ^ b[12];
197
b[15] = b[ 9] ^ b[11];
198
b[16] = b[10] ^ b[12];
199
b[17] = b[15] ^ b[16];
200
201
for (i = 0; i < 18; i ++) {
202
c[i] = bmul32(a[i], b[i]);
203
}
204
205
c[4] ^= c[0] ^ c[1];
206
c[5] ^= c[2] ^ c[3];
207
c[8] ^= c[6] ^ c[7];
208
209
c[13] ^= c[ 9] ^ c[10];
210
c[14] ^= c[11] ^ c[12];
211
c[17] ^= c[15] ^ c[16];
212
213
/*
214
* y[0,1]*h[0,1] -> 0,9^4,1^13,10
215
* y[2,3]*h[2,3] -> 2,11^5,3^14,12
216
* (y[0,1]+y[2,3])*(h[0,1]+h[2,3]) -> 6,15^8,7^17,16
217
*/
218
d0 = c[0];
219
d1 = c[4] ^ (rev32(c[9]) >> 1);
220
d2 = c[1] ^ c[0] ^ c[2] ^ c[6] ^ (rev32(c[13]) >> 1);
221
d3 = c[4] ^ c[5] ^ c[8]
222
^ (rev32(c[10] ^ c[9] ^ c[11] ^ c[15]) >> 1);
223
d4 = c[2] ^ c[1] ^ c[3] ^ c[7]
224
^ (rev32(c[13] ^ c[14] ^ c[17]) >> 1);
225
d5 = c[5] ^ (rev32(c[11] ^ c[10] ^ c[12] ^ c[16]) >> 1);
226
d6 = c[3] ^ (rev32(c[14]) >> 1);
227
d7 = rev32(c[12]) >> 1;
228
229
zw[0] = d0 << 1;
230
zw[1] = (d1 << 1) | (d0 >> 31);
231
zw[2] = (d2 << 1) | (d1 >> 31);
232
zw[3] = (d3 << 1) | (d2 >> 31);
233
zw[4] = (d4 << 1) | (d3 >> 31);
234
zw[5] = (d5 << 1) | (d4 >> 31);
235
zw[6] = (d6 << 1) | (d5 >> 31);
236
zw[7] = (d7 << 1) | (d6 >> 31);
237
238
for (i = 0; i < 4; i ++) {
239
uint32_t lw;
240
241
lw = zw[i];
242
zw[i + 4] ^= lw ^ (lw >> 1) ^ (lw >> 2) ^ (lw >> 7);
243
zw[i + 3] ^= (lw << 31) ^ (lw << 30) ^ (lw << 25);
244
}
245
memcpy(yw, zw + 4, sizeof yw);
246
}
247
br_enc32be(yb, yw[3]);
248
br_enc32be(yb + 4, yw[2]);
249
br_enc32be(yb + 8, yw[1]);
250
br_enc32be(yb + 12, yw[0]);
251
}
252
253