Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/bearssl/src/hash/ghash_pwr8.c
39536 views
1
/*
2
* Copyright (c) 2017 Thomas Pornin <[email protected]>
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining
5
* a copy of this software and associated documentation files (the
6
* "Software"), to deal in the Software without restriction, including
7
* without limitation the rights to use, copy, modify, merge, publish,
8
* distribute, sublicense, and/or sell copies of the Software, and to
9
* permit persons to whom the Software is furnished to do so, subject to
10
* the following conditions:
11
*
12
* The above copyright notice and this permission notice shall be
13
* included in all copies or substantial portions of the Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
* SOFTWARE.
23
*/
24
25
#define BR_POWER_ASM_MACROS 1
26
#include "inner.h"
27
28
/*
29
* This is the GHASH implementation that leverages the POWER8 opcodes.
30
*/
31
32
#if BR_POWER8
33
34
/*
35
* Some symbolic names for registers.
36
* HB0 = 16 bytes of value 0
37
* HB1 = 16 bytes of value 1
38
* HB2 = 16 bytes of value 2
39
* HB6 = 16 bytes of value 6
40
* HB7 = 16 bytes of value 7
41
* TT0, TT1 and TT2 are temporaries
42
*
43
* BSW holds the pattern for byteswapping 32-bit words; this is set only
44
* on little-endian systems. XBSW is the same register with the +32 offset
45
* for access with the VSX opcodes.
46
*/
47
#define HB0 0
48
#define HB1 1
49
#define HB2 2
50
#define HB6 3
51
#define HB7 4
52
#define TT0 5
53
#define TT1 6
54
#define TT2 7
55
56
#define BSW 8
57
#define XBSW 40
58
59
/*
60
* Macro to initialise the constants.
61
*/
62
#define INIT \
63
vxor(HB0, HB0, HB0) \
64
vspltisb(HB1, 1) \
65
vspltisb(HB2, 2) \
66
vspltisb(HB6, 6) \
67
vspltisb(HB7, 7) \
68
INIT_BSW
69
70
/*
71
* Fix endianness of a value after reading it or before writing it, if
72
* necessary.
73
*/
74
#if BR_POWER8_LE
75
#define INIT_BSW lxvw4x(XBSW, 0, %[idx2be])
76
#define FIX_ENDIAN(xx) vperm(xx, xx, xx, BSW)
77
#else
78
#define INIT_BSW
79
#define FIX_ENDIAN(xx)
80
#endif
81
82
/*
83
* Left-shift x0:x1 by one bit to the left. This is a corrective action
84
* needed because GHASH is defined in full little-endian specification,
85
* while the opcodes use full big-endian convention, so the 255-bit product
86
* ends up one bit to the right.
87
*/
88
#define SL_256(x0, x1) \
89
vsldoi(TT0, HB0, x1, 1) \
90
vsl(x0, x0, HB1) \
91
vsr(TT0, TT0, HB7) \
92
vsl(x1, x1, HB1) \
93
vxor(x0, x0, TT0)
94
95
/*
96
* Reduce x0:x1 in GF(2^128), result in xd (register xd may be the same as
97
* x0 or x1, or a different register). x0 and x1 are modified.
98
*/
99
#define REDUCE_F128(xd, x0, x1) \
100
vxor(x0, x0, x1) \
101
vsr(TT0, x1, HB1) \
102
vsr(TT1, x1, HB2) \
103
vsr(TT2, x1, HB7) \
104
vxor(x0, x0, TT0) \
105
vxor(TT1, TT1, TT2) \
106
vxor(x0, x0, TT1) \
107
vsldoi(x1, x1, HB0, 15) \
108
vsl(TT1, x1, HB6) \
109
vsl(TT2, x1, HB1) \
110
vxor(x1, TT1, TT2) \
111
vsr(TT0, x1, HB1) \
112
vsr(TT1, x1, HB2) \
113
vsr(TT2, x1, HB7) \
114
vxor(x0, x0, x1) \
115
vxor(x0, x0, TT0) \
116
vxor(TT1, TT1, TT2) \
117
vxor(xd, x0, TT1)
118
119
/* see bearssl_hash.h */
120
void
121
br_ghash_pwr8(void *y, const void *h, const void *data, size_t len)
122
{
123
const unsigned char *buf1, *buf2;
124
size_t num4, num1;
125
unsigned char tmp[64];
126
long cc0, cc1, cc2, cc3;
127
128
#if BR_POWER8_LE
129
static const uint32_t idx2be[] = {
130
0x03020100, 0x07060504, 0x0B0A0908, 0x0F0E0D0C
131
};
132
#endif
133
134
buf1 = data;
135
136
/*
137
* Assembly code requires data into two chunks; first chunk
138
* must contain a number of blocks which is a multiple of 4.
139
* Since the processing for the first chunk is faster, we want
140
* to make it as big as possible.
141
*
142
* For the remainder, there are two possibilities:
143
* -- if the remainder size is a multiple of 16, then use it
144
* in place;
145
* -- otherwise, copy it to the tmp[] array and pad it with
146
* zeros.
147
*/
148
num4 = len >> 6;
149
buf2 = buf1 + (num4 << 6);
150
len &= 63;
151
num1 = (len + 15) >> 4;
152
if ((len & 15) != 0) {
153
memcpy(tmp, buf2, len);
154
memset(tmp + len, 0, (num1 << 4) - len);
155
buf2 = tmp;
156
}
157
158
cc0 = 0;
159
cc1 = 16;
160
cc2 = 32;
161
cc3 = 48;
162
asm volatile (
163
INIT
164
165
/*
166
* Load current h (denoted hereafter h1) in v9.
167
*/
168
lxvw4x(41, 0, %[h])
169
FIX_ENDIAN(9)
170
171
/*
172
* Load current y into v28.
173
*/
174
lxvw4x(60, 0, %[y])
175
FIX_ENDIAN(28)
176
177
/*
178
* Split h1 into three registers:
179
* v17 = h1_1:h1_0
180
* v18 = 0:h1_0
181
* v19 = h1_1:0
182
*/
183
xxpermdi(49, 41, 41, 2)
184
vsldoi(18, HB0, 9, 8)
185
vsldoi(19, 9, HB0, 8)
186
187
/*
188
* If num4 is 0, skip directly to the second chunk.
189
*/
190
cmpldi(%[num4], 0)
191
beq(chunk1)
192
193
/*
194
* Compute h2 = h*h in v10.
195
*/
196
vpmsumd(10, 18, 18)
197
vpmsumd(11, 19, 19)
198
SL_256(10, 11)
199
REDUCE_F128(10, 10, 11)
200
201
/*
202
* Compute h3 = h*h*h in v11.
203
* We first split h2 into:
204
* v10 = h2_0:h2_1
205
* v11 = 0:h2_0
206
* v12 = h2_1:0
207
* Then we do the product with h1, and reduce into v11.
208
*/
209
vsldoi(11, HB0, 10, 8)
210
vsldoi(12, 10, HB0, 8)
211
vpmsumd(13, 10, 17)
212
vpmsumd(11, 11, 18)
213
vpmsumd(12, 12, 19)
214
vsldoi(14, HB0, 13, 8)
215
vsldoi(15, 13, HB0, 8)
216
vxor(11, 11, 14)
217
vxor(12, 12, 15)
218
SL_256(11, 12)
219
REDUCE_F128(11, 11, 12)
220
221
/*
222
* Compute h4 = h*h*h*h in v12. This is done by squaring h2.
223
*/
224
vsldoi(12, HB0, 10, 8)
225
vsldoi(13, 10, HB0, 8)
226
vpmsumd(12, 12, 12)
227
vpmsumd(13, 13, 13)
228
SL_256(12, 13)
229
REDUCE_F128(12, 12, 13)
230
231
/*
232
* Repack h1, h2, h3 and h4:
233
* v13 = h4_0:h3_0
234
* v14 = h4_1:h3_1
235
* v15 = h2_0:h1_0
236
* v16 = h2_1:h1_1
237
*/
238
xxpermdi(45, 44, 43, 0)
239
xxpermdi(46, 44, 43, 3)
240
xxpermdi(47, 42, 41, 0)
241
xxpermdi(48, 42, 41, 3)
242
243
/*
244
* Loop for each group of four blocks.
245
*/
246
mtctr(%[num4])
247
label(loop4)
248
/*
249
* Read the four next blocks.
250
* v20 = y + a0 = b0
251
* v21 = a1 = b1
252
* v22 = a2 = b2
253
* v23 = a3 = b3
254
*/
255
lxvw4x(52, %[cc0], %[buf1])
256
lxvw4x(53, %[cc1], %[buf1])
257
lxvw4x(54, %[cc2], %[buf1])
258
lxvw4x(55, %[cc3], %[buf1])
259
FIX_ENDIAN(20)
260
FIX_ENDIAN(21)
261
FIX_ENDIAN(22)
262
FIX_ENDIAN(23)
263
addi(%[buf1], %[buf1], 64)
264
vxor(20, 20, 28)
265
266
/*
267
* Repack the blocks into v9, v10, v11 and v12.
268
* v9 = b0_0:b1_0
269
* v10 = b0_1:b1_1
270
* v11 = b2_0:b3_0
271
* v12 = b2_1:b3_1
272
*/
273
xxpermdi(41, 52, 53, 0)
274
xxpermdi(42, 52, 53, 3)
275
xxpermdi(43, 54, 55, 0)
276
xxpermdi(44, 54, 55, 3)
277
278
/*
279
* Compute the products.
280
* v20 = b0_0*h4_0 + b1_0*h3_0
281
* v21 = b0_1*h4_0 + b1_1*h3_0
282
* v22 = b0_0*h4_1 + b1_0*h3_1
283
* v23 = b0_1*h4_1 + b1_1*h3_1
284
* v24 = b2_0*h2_0 + b3_0*h1_0
285
* v25 = b2_1*h2_0 + b3_1*h1_0
286
* v26 = b2_0*h2_1 + b3_0*h1_1
287
* v27 = b2_1*h2_1 + b3_1*h1_1
288
*/
289
vpmsumd(20, 13, 9)
290
vpmsumd(21, 13, 10)
291
vpmsumd(22, 14, 9)
292
vpmsumd(23, 14, 10)
293
vpmsumd(24, 15, 11)
294
vpmsumd(25, 15, 12)
295
vpmsumd(26, 16, 11)
296
vpmsumd(27, 16, 12)
297
298
/*
299
* Sum products into a single 256-bit result in v11:v12.
300
*/
301
vxor(11, 20, 24)
302
vxor(12, 23, 27)
303
vxor( 9, 21, 22)
304
vxor(10, 25, 26)
305
vxor(20, 9, 10)
306
vsldoi( 9, HB0, 20, 8)
307
vsldoi(10, 20, HB0, 8)
308
vxor(11, 11, 9)
309
vxor(12, 12, 10)
310
311
/*
312
* Fix and reduce in GF(2^128); this is the new y (in v28).
313
*/
314
SL_256(11, 12)
315
REDUCE_F128(28, 11, 12)
316
317
/*
318
* Loop for next group of four blocks.
319
*/
320
bdnz(loop4)
321
322
/*
323
* Process second chunk, one block at a time.
324
*/
325
label(chunk1)
326
cmpldi(%[num1], 0)
327
beq(done)
328
329
mtctr(%[num1])
330
label(loop1)
331
/*
332
* Load next data block and XOR it into y.
333
*/
334
lxvw4x(41, 0, %[buf2])
335
#if BR_POWER8_LE
336
FIX_ENDIAN(9)
337
#endif
338
addi(%[buf2], %[buf2], 16)
339
vxor(9, 28, 9)
340
341
/*
342
* Split y into doublewords:
343
* v9 = y_0:y_1
344
* v10 = 0:y_0
345
* v11 = y_1:0
346
*/
347
vsldoi(10, HB0, 9, 8)
348
vsldoi(11, 9, HB0, 8)
349
350
/*
351
* Compute products with h:
352
* v12 = y_0 * h_0
353
* v13 = y_1 * h_1
354
* v14 = y_1 * h_0 + y_0 * h_1
355
*/
356
vpmsumd(14, 9, 17)
357
vpmsumd(12, 10, 18)
358
vpmsumd(13, 11, 19)
359
360
/*
361
* Propagate v14 into v12:v13 to finalise product.
362
*/
363
vsldoi(10, HB0, 14, 8)
364
vsldoi(11, 14, HB0, 8)
365
vxor(12, 12, 10)
366
vxor(13, 13, 11)
367
368
/*
369
* Fix result and reduce into v28 (next value for y).
370
*/
371
SL_256(12, 13)
372
REDUCE_F128(28, 12, 13)
373
bdnz(loop1)
374
375
label(done)
376
/*
377
* Write back the new y.
378
*/
379
FIX_ENDIAN(28)
380
stxvw4x(60, 0, %[y])
381
382
: [buf1] "+b" (buf1), [buf2] "+b" (buf2)
383
: [y] "b" (y), [h] "b" (h), [num4] "b" (num4), [num1] "b" (num1),
384
[cc0] "b" (cc0), [cc1] "b" (cc1), [cc2] "b" (cc2), [cc3] "b" (cc3)
385
#if BR_POWER8_LE
386
, [idx2be] "b" (idx2be)
387
#endif
388
: "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9",
389
"v10", "v11", "v12", "v13", "v14", "v15", "v16", "v17", "v18", "v19",
390
"v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29",
391
"ctr", "memory"
392
);
393
}
394
395
/* see bearssl_hash.h */
396
br_ghash
397
br_ghash_pwr8_get(void)
398
{
399
return &br_ghash_pwr8;
400
}
401
402
#else
403
404
/* see bearssl_hash.h */
405
br_ghash
406
br_ghash_pwr8_get(void)
407
{
408
return 0;
409
}
410
411
#endif
412
413