Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/bearssl/src/rsa/rsa_i15_priv.c
39483 views
1
/*
2
* Copyright (c) 2017 Thomas Pornin <[email protected]>
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining
5
* a copy of this software and associated documentation files (the
6
* "Software"), to deal in the Software without restriction, including
7
* without limitation the rights to use, copy, modify, merge, publish,
8
* distribute, sublicense, and/or sell copies of the Software, and to
9
* permit persons to whom the Software is furnished to do so, subject to
10
* the following conditions:
11
*
12
* The above copyright notice and this permission notice shall be
13
* included in all copies or substantial portions of the Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
* SOFTWARE.
23
*/
24
25
#include "inner.h"
26
27
#define U (2 + ((BR_MAX_RSA_FACTOR + 14) / 15))
28
#define TLEN (8 * U)
29
30
/* see bearssl_rsa.h */
31
uint32_t
32
br_rsa_i15_private(unsigned char *x, const br_rsa_private_key *sk)
33
{
34
const unsigned char *p, *q;
35
size_t plen, qlen;
36
size_t fwlen;
37
uint16_t p0i, q0i;
38
size_t xlen, u;
39
uint16_t tmp[1 + TLEN];
40
long z;
41
uint16_t *mp, *mq, *s1, *s2, *t1, *t2, *t3;
42
uint32_t r;
43
44
/*
45
* Compute the actual lengths of p and q, in bytes.
46
* These lengths are not considered secret (we cannot really hide
47
* them anyway in constant-time code).
48
*/
49
p = sk->p;
50
plen = sk->plen;
51
while (plen > 0 && *p == 0) {
52
p ++;
53
plen --;
54
}
55
q = sk->q;
56
qlen = sk->qlen;
57
while (qlen > 0 && *q == 0) {
58
q ++;
59
qlen --;
60
}
61
62
/*
63
* Compute the maximum factor length, in words.
64
*/
65
z = (long)(plen > qlen ? plen : qlen) << 3;
66
fwlen = 1;
67
while (z > 0) {
68
z -= 15;
69
fwlen ++;
70
}
71
/*
72
* Round up the word length to an even number.
73
*/
74
fwlen += (fwlen & 1);
75
76
/*
77
* We need to fit at least 6 values in the stack buffer.
78
*/
79
if (6 * fwlen > TLEN) {
80
return 0;
81
}
82
83
/*
84
* Compute signature length (in bytes).
85
*/
86
xlen = (sk->n_bitlen + 7) >> 3;
87
88
/*
89
* Ensure 32-bit alignment for value words.
90
*/
91
mq = tmp;
92
if (((uintptr_t)mq & 2) == 0) {
93
mq ++;
94
}
95
96
/*
97
* Decode q.
98
*/
99
br_i15_decode(mq, q, qlen);
100
101
/*
102
* Decode p.
103
*/
104
t1 = mq + fwlen;
105
br_i15_decode(t1, p, plen);
106
107
/*
108
* Compute the modulus (product of the two factors), to compare
109
* it with the source value. We use br_i15_mulacc(), since it's
110
* already used later on.
111
*/
112
t2 = mq + 2 * fwlen;
113
br_i15_zero(t2, mq[0]);
114
br_i15_mulacc(t2, mq, t1);
115
116
/*
117
* We encode the modulus into bytes, to perform the comparison
118
* with bytes. We know that the product length, in bytes, is
119
* exactly xlen.
120
* The comparison actually computes the carry when subtracting
121
* the modulus from the source value; that carry must be 1 for
122
* a value in the correct range. We keep it in r, which is our
123
* accumulator for the error code.
124
*/
125
t3 = mq + 4 * fwlen;
126
br_i15_encode(t3, xlen, t2);
127
u = xlen;
128
r = 0;
129
while (u > 0) {
130
uint32_t wn, wx;
131
132
u --;
133
wn = ((unsigned char *)t3)[u];
134
wx = x[u];
135
r = ((wx - (wn + r)) >> 8) & 1;
136
}
137
138
/*
139
* Move the decoded p to another temporary buffer.
140
*/
141
mp = mq + 2 * fwlen;
142
memmove(mp, t1, fwlen * sizeof *t1);
143
144
/*
145
* Compute s2 = x^dq mod q.
146
*/
147
q0i = br_i15_ninv15(mq[1]);
148
s2 = mq + fwlen;
149
br_i15_decode_reduce(s2, x, xlen, mq);
150
r &= br_i15_modpow_opt(s2, sk->dq, sk->dqlen, mq, q0i,
151
mq + 3 * fwlen, TLEN - 3 * fwlen);
152
153
/*
154
* Compute s1 = x^dq mod q.
155
*/
156
p0i = br_i15_ninv15(mp[1]);
157
s1 = mq + 3 * fwlen;
158
br_i15_decode_reduce(s1, x, xlen, mp);
159
r &= br_i15_modpow_opt(s1, sk->dp, sk->dplen, mp, p0i,
160
mq + 4 * fwlen, TLEN - 4 * fwlen);
161
162
/*
163
* Compute:
164
* h = (s1 - s2)*(1/q) mod p
165
* s1 is an integer modulo p, but s2 is modulo q. PKCS#1 is
166
* unclear about whether p may be lower than q (some existing,
167
* widely deployed implementations of RSA don't tolerate p < q),
168
* but we want to support that occurrence, so we need to use the
169
* reduction function.
170
*
171
* Since we use br_i15_decode_reduce() for iq (purportedly, the
172
* inverse of q modulo p), we also tolerate improperly large
173
* values for this parameter.
174
*/
175
t1 = mq + 4 * fwlen;
176
t2 = mq + 5 * fwlen;
177
br_i15_reduce(t2, s2, mp);
178
br_i15_add(s1, mp, br_i15_sub(s1, t2, 1));
179
br_i15_to_monty(s1, mp);
180
br_i15_decode_reduce(t1, sk->iq, sk->iqlen, mp);
181
br_i15_montymul(t2, s1, t1, mp, p0i);
182
183
/*
184
* h is now in t2. We compute the final result:
185
* s = s2 + q*h
186
* All these operations are non-modular.
187
*
188
* We need mq, s2 and t2. We use the t3 buffer as destination.
189
* The buffers mp, s1 and t1 are no longer needed, so we can
190
* reuse them for t3. Moreover, the first step of the computation
191
* is to copy s2 into t3, after which s2 is not needed. Right
192
* now, mq is in slot 0, s2 is in slot 1, and t2 in slot 5.
193
* Therefore, we have ample room for t3 by simply using s2.
194
*/
195
t3 = s2;
196
br_i15_mulacc(t3, mq, t2);
197
198
/*
199
* Encode the result. Since we already checked the value of xlen,
200
* we can just use it right away.
201
*/
202
br_i15_encode(x, xlen, t3);
203
204
/*
205
* The only error conditions remaining at that point are invalid
206
* values for p and q (even integers).
207
*/
208
return p0i & q0i & r;
209
}
210
211