Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/bearssl/src/rsa/rsa_i31_priv.c
39483 views
1
/*
2
* Copyright (c) 2016 Thomas Pornin <[email protected]>
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining
5
* a copy of this software and associated documentation files (the
6
* "Software"), to deal in the Software without restriction, including
7
* without limitation the rights to use, copy, modify, merge, publish,
8
* distribute, sublicense, and/or sell copies of the Software, and to
9
* permit persons to whom the Software is furnished to do so, subject to
10
* the following conditions:
11
*
12
* The above copyright notice and this permission notice shall be
13
* included in all copies or substantial portions of the Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
* SOFTWARE.
23
*/
24
25
#include "inner.h"
26
27
#define U (2 + ((BR_MAX_RSA_FACTOR + 30) / 31))
28
#define TLEN (8 * U)
29
30
/* see bearssl_rsa.h */
31
uint32_t
32
br_rsa_i31_private(unsigned char *x, const br_rsa_private_key *sk)
33
{
34
const unsigned char *p, *q;
35
size_t plen, qlen;
36
size_t fwlen;
37
uint32_t p0i, q0i;
38
size_t xlen, u;
39
uint32_t tmp[1 + TLEN];
40
long z;
41
uint32_t *mp, *mq, *s1, *s2, *t1, *t2, *t3;
42
uint32_t r;
43
44
/*
45
* Compute the actual lengths of p and q, in bytes.
46
* These lengths are not considered secret (we cannot really hide
47
* them anyway in constant-time code).
48
*/
49
p = sk->p;
50
plen = sk->plen;
51
while (plen > 0 && *p == 0) {
52
p ++;
53
plen --;
54
}
55
q = sk->q;
56
qlen = sk->qlen;
57
while (qlen > 0 && *q == 0) {
58
q ++;
59
qlen --;
60
}
61
62
/*
63
* Compute the maximum factor length, in words.
64
*/
65
z = (long)(plen > qlen ? plen : qlen) << 3;
66
fwlen = 1;
67
while (z > 0) {
68
z -= 31;
69
fwlen ++;
70
}
71
72
/*
73
* Round up the word length to an even number.
74
*/
75
fwlen += (fwlen & 1);
76
77
/*
78
* We need to fit at least 6 values in the stack buffer.
79
*/
80
if (6 * fwlen > TLEN) {
81
return 0;
82
}
83
84
/*
85
* Compute modulus length (in bytes).
86
*/
87
xlen = (sk->n_bitlen + 7) >> 3;
88
89
/*
90
* Decode q.
91
*/
92
mq = tmp;
93
br_i31_decode(mq, q, qlen);
94
95
/*
96
* Decode p.
97
*/
98
t1 = mq + fwlen;
99
br_i31_decode(t1, p, plen);
100
101
/*
102
* Compute the modulus (product of the two factors), to compare
103
* it with the source value. We use br_i31_mulacc(), since it's
104
* already used later on.
105
*/
106
t2 = mq + 2 * fwlen;
107
br_i31_zero(t2, mq[0]);
108
br_i31_mulacc(t2, mq, t1);
109
110
/*
111
* We encode the modulus into bytes, to perform the comparison
112
* with bytes. We know that the product length, in bytes, is
113
* exactly xlen.
114
* The comparison actually computes the carry when subtracting
115
* the modulus from the source value; that carry must be 1 for
116
* a value in the correct range. We keep it in r, which is our
117
* accumulator for the error code.
118
*/
119
t3 = mq + 4 * fwlen;
120
br_i31_encode(t3, xlen, t2);
121
u = xlen;
122
r = 0;
123
while (u > 0) {
124
uint32_t wn, wx;
125
126
u --;
127
wn = ((unsigned char *)t3)[u];
128
wx = x[u];
129
r = ((wx - (wn + r)) >> 8) & 1;
130
}
131
132
/*
133
* Move the decoded p to another temporary buffer.
134
*/
135
mp = mq + 2 * fwlen;
136
memmove(mp, t1, fwlen * sizeof *t1);
137
138
/*
139
* Compute s2 = x^dq mod q.
140
*/
141
q0i = br_i31_ninv31(mq[1]);
142
s2 = mq + fwlen;
143
br_i31_decode_reduce(s2, x, xlen, mq);
144
r &= br_i31_modpow_opt(s2, sk->dq, sk->dqlen, mq, q0i,
145
mq + 3 * fwlen, TLEN - 3 * fwlen);
146
147
/*
148
* Compute s1 = x^dp mod p.
149
*/
150
p0i = br_i31_ninv31(mp[1]);
151
s1 = mq + 3 * fwlen;
152
br_i31_decode_reduce(s1, x, xlen, mp);
153
r &= br_i31_modpow_opt(s1, sk->dp, sk->dplen, mp, p0i,
154
mq + 4 * fwlen, TLEN - 4 * fwlen);
155
156
/*
157
* Compute:
158
* h = (s1 - s2)*(1/q) mod p
159
* s1 is an integer modulo p, but s2 is modulo q. PKCS#1 is
160
* unclear about whether p may be lower than q (some existing,
161
* widely deployed implementations of RSA don't tolerate p < q),
162
* but we want to support that occurrence, so we need to use the
163
* reduction function.
164
*
165
* Since we use br_i31_decode_reduce() for iq (purportedly, the
166
* inverse of q modulo p), we also tolerate improperly large
167
* values for this parameter.
168
*/
169
t1 = mq + 4 * fwlen;
170
t2 = mq + 5 * fwlen;
171
br_i31_reduce(t2, s2, mp);
172
br_i31_add(s1, mp, br_i31_sub(s1, t2, 1));
173
br_i31_to_monty(s1, mp);
174
br_i31_decode_reduce(t1, sk->iq, sk->iqlen, mp);
175
br_i31_montymul(t2, s1, t1, mp, p0i);
176
177
/*
178
* h is now in t2. We compute the final result:
179
* s = s2 + q*h
180
* All these operations are non-modular.
181
*
182
* We need mq, s2 and t2. We use the t3 buffer as destination.
183
* The buffers mp, s1 and t1 are no longer needed, so we can
184
* reuse them for t3. Moreover, the first step of the computation
185
* is to copy s2 into t3, after which s2 is not needed. Right
186
* now, mq is in slot 0, s2 is in slot 1, and t2 is in slot 5.
187
* Therefore, we have ample room for t3 by simply using s2.
188
*/
189
t3 = s2;
190
br_i31_mulacc(t3, mq, t2);
191
192
/*
193
* Encode the result. Since we already checked the value of xlen,
194
* we can just use it right away.
195
*/
196
br_i31_encode(x, xlen, t3);
197
198
/*
199
* The only error conditions remaining at that point are invalid
200
* values for p and q (even integers).
201
*/
202
return p0i & q0i & r;
203
}
204
205