Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/bearssl/src/symcipher/poly1305_ctmul.c
39482 views
1
/*
2
* Copyright (c) 2016 Thomas Pornin <[email protected]>
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining
5
* a copy of this software and associated documentation files (the
6
* "Software"), to deal in the Software without restriction, including
7
* without limitation the rights to use, copy, modify, merge, publish,
8
* distribute, sublicense, and/or sell copies of the Software, and to
9
* permit persons to whom the Software is furnished to do so, subject to
10
* the following conditions:
11
*
12
* The above copyright notice and this permission notice shall be
13
* included in all copies or substantial portions of the Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
* SOFTWARE.
23
*/
24
25
#include "inner.h"
26
27
/*
28
* Perform the inner processing of blocks for Poly1305. The accumulator
29
* and the r key are provided as arrays of 26-bit words (these words
30
* are allowed to have an extra bit, i.e. use 27 bits).
31
*
32
* On output, all accumulator words fit on 26 bits, except acc[1], which
33
* may be slightly larger (but by a very small amount only).
34
*/
35
static void
36
poly1305_inner(uint32_t *acc, const uint32_t *r, const void *data, size_t len)
37
{
38
/*
39
* Implementation notes: we split the 130-bit values into five
40
* 26-bit words. This gives us some space for carries.
41
*
42
* This code is inspired from the public-domain code available
43
* on:
44
* https://github.com/floodyberry/poly1305-donna
45
*
46
* Since we compute modulo 2^130-5, the "upper words" become
47
* low words with a factor of 5; that is, x*2^130 = x*5 mod p.
48
*/
49
const unsigned char *buf;
50
uint32_t a0, a1, a2, a3, a4;
51
uint32_t r0, r1, r2, r3, r4;
52
uint32_t u1, u2, u3, u4;
53
54
r0 = r[0];
55
r1 = r[1];
56
r2 = r[2];
57
r3 = r[3];
58
r4 = r[4];
59
60
u1 = r1 * 5;
61
u2 = r2 * 5;
62
u3 = r3 * 5;
63
u4 = r4 * 5;
64
65
a0 = acc[0];
66
a1 = acc[1];
67
a2 = acc[2];
68
a3 = acc[3];
69
a4 = acc[4];
70
71
buf = data;
72
while (len > 0) {
73
uint64_t w0, w1, w2, w3, w4;
74
uint64_t c;
75
unsigned char tmp[16];
76
77
/*
78
* If there is a partial block, right-pad it with zeros.
79
*/
80
if (len < 16) {
81
memset(tmp, 0, sizeof tmp);
82
memcpy(tmp, buf, len);
83
buf = tmp;
84
len = 16;
85
}
86
87
/*
88
* Decode next block and apply the "high bit"; that value
89
* is added to the accumulator.
90
*/
91
a0 += br_dec32le(buf) & 0x03FFFFFF;
92
a1 += (br_dec32le(buf + 3) >> 2) & 0x03FFFFFF;
93
a2 += (br_dec32le(buf + 6) >> 4) & 0x03FFFFFF;
94
a3 += (br_dec32le(buf + 9) >> 6) & 0x03FFFFFF;
95
a4 += (br_dec32le(buf + 12) >> 8) | 0x01000000;
96
97
/*
98
* Compute multiplication.
99
*/
100
#define M(x, y) ((uint64_t)(x) * (uint64_t)(y))
101
102
w0 = M(a0, r0) + M(a1, u4) + M(a2, u3) + M(a3, u2) + M(a4, u1);
103
w1 = M(a0, r1) + M(a1, r0) + M(a2, u4) + M(a3, u3) + M(a4, u2);
104
w2 = M(a0, r2) + M(a1, r1) + M(a2, r0) + M(a3, u4) + M(a4, u3);
105
w3 = M(a0, r3) + M(a1, r2) + M(a2, r1) + M(a3, r0) + M(a4, u4);
106
w4 = M(a0, r4) + M(a1, r3) + M(a2, r2) + M(a3, r1) + M(a4, r0);
107
108
#undef M
109
/*
110
* Perform some (partial) modular reduction. This step is
111
* enough to keep values in ranges such that there won't
112
* be carry overflows. Most of the reduction was done in
113
* the multiplication step (by using the 'u*' values, and
114
* using the fact that 2^130 = -5 mod p); here we perform
115
* some carry propagation.
116
*/
117
c = w0 >> 26;
118
a0 = (uint32_t)w0 & 0x3FFFFFF;
119
w1 += c;
120
c = w1 >> 26;
121
a1 = (uint32_t)w1 & 0x3FFFFFF;
122
w2 += c;
123
c = w2 >> 26;
124
a2 = (uint32_t)w2 & 0x3FFFFFF;
125
w3 += c;
126
c = w3 >> 26;
127
a3 = (uint32_t)w3 & 0x3FFFFFF;
128
w4 += c;
129
c = w4 >> 26;
130
a4 = (uint32_t)w4 & 0x3FFFFFF;
131
a0 += (uint32_t)c * 5;
132
a1 += a0 >> 26;
133
a0 &= 0x3FFFFFF;
134
135
buf += 16;
136
len -= 16;
137
}
138
139
acc[0] = a0;
140
acc[1] = a1;
141
acc[2] = a2;
142
acc[3] = a3;
143
acc[4] = a4;
144
}
145
146
/* see bearssl_block.h */
147
void
148
br_poly1305_ctmul_run(const void *key, const void *iv,
149
void *data, size_t len, const void *aad, size_t aad_len,
150
void *tag, br_chacha20_run ichacha, int encrypt)
151
{
152
unsigned char pkey[32], foot[16];
153
uint32_t r[5], acc[5], cc, ctl, hi;
154
uint64_t w;
155
int i;
156
157
/*
158
* Compute the MAC key. The 'r' value is the first 16 bytes of
159
* pkey[].
160
*/
161
memset(pkey, 0, sizeof pkey);
162
ichacha(key, iv, 0, pkey, sizeof pkey);
163
164
/*
165
* If encrypting, ChaCha20 must run first, followed by Poly1305.
166
* When decrypting, the operations are reversed.
167
*/
168
if (encrypt) {
169
ichacha(key, iv, 1, data, len);
170
}
171
172
/*
173
* Run Poly1305. We must process the AAD, then ciphertext, then
174
* the footer (with the lengths). Note that the AAD and ciphertext
175
* are meant to be padded with zeros up to the next multiple of 16,
176
* and the length of the footer is 16 bytes as well.
177
*/
178
179
/*
180
* Decode the 'r' value into 26-bit words, with the "clamping"
181
* operation applied.
182
*/
183
r[0] = br_dec32le(pkey) & 0x03FFFFFF;
184
r[1] = (br_dec32le(pkey + 3) >> 2) & 0x03FFFF03;
185
r[2] = (br_dec32le(pkey + 6) >> 4) & 0x03FFC0FF;
186
r[3] = (br_dec32le(pkey + 9) >> 6) & 0x03F03FFF;
187
r[4] = (br_dec32le(pkey + 12) >> 8) & 0x000FFFFF;
188
189
/*
190
* Accumulator is 0.
191
*/
192
memset(acc, 0, sizeof acc);
193
194
/*
195
* Process the additional authenticated data, ciphertext, and
196
* footer in due order.
197
*/
198
br_enc64le(foot, (uint64_t)aad_len);
199
br_enc64le(foot + 8, (uint64_t)len);
200
poly1305_inner(acc, r, aad, aad_len);
201
poly1305_inner(acc, r, data, len);
202
poly1305_inner(acc, r, foot, sizeof foot);
203
204
/*
205
* Finalise modular reduction. This is done with carry propagation
206
* and applying the '2^130 = -5 mod p' rule. Note that the output
207
* of poly1035_inner() is already mostly reduced, since only
208
* acc[1] may be (very slightly) above 2^26. A single loop back
209
* to acc[1] will be enough to make the value fit in 130 bits.
210
*/
211
cc = 0;
212
for (i = 1; i <= 6; i ++) {
213
int j;
214
215
j = (i >= 5) ? i - 5 : i;
216
acc[j] += cc;
217
cc = acc[j] >> 26;
218
acc[j] &= 0x03FFFFFF;
219
}
220
221
/*
222
* We may still have a value in the 2^130-5..2^130-1 range, in
223
* which case we must reduce it again. The code below selects,
224
* in constant-time, between 'acc' and 'acc-p',
225
*/
226
ctl = GT(acc[0], 0x03FFFFFA);
227
for (i = 1; i < 5; i ++) {
228
ctl &= EQ(acc[i], 0x03FFFFFF);
229
}
230
cc = 5;
231
for (i = 0; i < 5; i ++) {
232
uint32_t t;
233
234
t = (acc[i] + cc);
235
cc = t >> 26;
236
t &= 0x03FFFFFF;
237
acc[i] = MUX(ctl, t, acc[i]);
238
}
239
240
/*
241
* Convert back the accumulator to 32-bit words, and add the
242
* 's' value (second half of pkey[]). That addition is done
243
* modulo 2^128.
244
*/
245
w = (uint64_t)acc[0] + ((uint64_t)acc[1] << 26) + br_dec32le(pkey + 16);
246
br_enc32le((unsigned char *)tag, (uint32_t)w);
247
w = (w >> 32) + ((uint64_t)acc[2] << 20) + br_dec32le(pkey + 20);
248
br_enc32le((unsigned char *)tag + 4, (uint32_t)w);
249
w = (w >> 32) + ((uint64_t)acc[3] << 14) + br_dec32le(pkey + 24);
250
br_enc32le((unsigned char *)tag + 8, (uint32_t)w);
251
hi = (uint32_t)(w >> 32) + (acc[4] << 8) + br_dec32le(pkey + 28);
252
br_enc32le((unsigned char *)tag + 12, hi);
253
254
/*
255
* If decrypting, then ChaCha20 runs _after_ Poly1305.
256
*/
257
if (!encrypt) {
258
ichacha(key, iv, 1, data, len);
259
}
260
}
261
262