Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/bearssl/src/symcipher/poly1305_ctmul32.c
39482 views
1
/*
2
* Copyright (c) 2017 Thomas Pornin <[email protected]>
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining
5
* a copy of this software and associated documentation files (the
6
* "Software"), to deal in the Software without restriction, including
7
* without limitation the rights to use, copy, modify, merge, publish,
8
* distribute, sublicense, and/or sell copies of the Software, and to
9
* permit persons to whom the Software is furnished to do so, subject to
10
* the following conditions:
11
*
12
* The above copyright notice and this permission notice shall be
13
* included in all copies or substantial portions of the Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
* SOFTWARE.
23
*/
24
25
#include "inner.h"
26
27
/*
28
* Perform the inner processing of blocks for Poly1305.
29
*/
30
static void
31
poly1305_inner(uint32_t *a, const uint32_t *r, const void *data, size_t len)
32
{
33
/*
34
* Implementation notes: we split the 130-bit values into ten
35
* 13-bit words. This gives us some space for carries and allows
36
* using only 32x32->32 multiplications, which are way faster than
37
* 32x32->64 multiplications on the ARM Cortex-M0/M0+, and also
38
* help in making constant-time code on the Cortex-M3.
39
*
40
* Since we compute modulo 2^130-5, the "upper words" become
41
* low words with a factor of 5; that is, x*2^130 = x*5 mod p.
42
* This has already been integrated in the r[] array, which
43
* is extended to the 0..18 range.
44
*
45
* In each loop iteration, a[] and r[] words are 13-bit each,
46
* except a[1] which may use 14 bits.
47
*/
48
const unsigned char *buf;
49
50
buf = data;
51
while (len > 0) {
52
unsigned char tmp[16];
53
uint32_t b[10];
54
unsigned u, v;
55
uint32_t z, cc1, cc2;
56
57
/*
58
* If there is a partial block, right-pad it with zeros.
59
*/
60
if (len < 16) {
61
memset(tmp, 0, sizeof tmp);
62
memcpy(tmp, buf, len);
63
buf = tmp;
64
len = 16;
65
}
66
67
/*
68
* Decode next block and apply the "high bit"; that value
69
* is added to the accumulator.
70
*/
71
v = br_dec16le(buf);
72
a[0] += v & 0x01FFF;
73
v >>= 13;
74
v |= buf[2] << 3;
75
v |= buf[3] << 11;
76
a[1] += v & 0x01FFF;
77
v >>= 13;
78
v |= buf[4] << 6;
79
a[2] += v & 0x01FFF;
80
v >>= 13;
81
v |= buf[5] << 1;
82
v |= buf[6] << 9;
83
a[3] += v & 0x01FFF;
84
v >>= 13;
85
v |= buf[7] << 4;
86
v |= buf[8] << 12;
87
a[4] += v & 0x01FFF;
88
v >>= 13;
89
v |= buf[9] << 7;
90
a[5] += v & 0x01FFF;
91
v >>= 13;
92
v |= buf[10] << 2;
93
v |= buf[11] << 10;
94
a[6] += v & 0x01FFF;
95
v >>= 13;
96
v |= buf[12] << 5;
97
a[7] += v & 0x01FFF;
98
v = br_dec16le(buf + 13);
99
a[8] += v & 0x01FFF;
100
v >>= 13;
101
v |= buf[15] << 3;
102
a[9] += v | 0x00800;
103
104
/*
105
* At that point, all a[] values fit on 14 bits, while
106
* all r[] values fit on 13 bits. Thus products fit on
107
* 27 bits, and we can accumulate up to 31 of them in
108
* a 32-bit word and still have some room for carries.
109
*/
110
111
/*
112
* Now a[] contains words with values up to 14 bits each.
113
* We perform the multiplication with r[].
114
*
115
* The extended words of r[] may be larger than 13 bits
116
* (they are 5 times a 13-bit word) so the full summation
117
* may yield values up to 46 times a 27-bit word, which
118
* does not fit on a 32-bit word. To avoid that issue, we
119
* must split the loop below in two, with a carry
120
* propagation operation in the middle.
121
*/
122
cc1 = 0;
123
for (u = 0; u < 10; u ++) {
124
uint32_t s;
125
126
s = cc1
127
+ MUL15(a[0], r[u + 9 - 0])
128
+ MUL15(a[1], r[u + 9 - 1])
129
+ MUL15(a[2], r[u + 9 - 2])
130
+ MUL15(a[3], r[u + 9 - 3])
131
+ MUL15(a[4], r[u + 9 - 4]);
132
b[u] = s & 0x1FFF;
133
cc1 = s >> 13;
134
}
135
cc2 = 0;
136
for (u = 0; u < 10; u ++) {
137
uint32_t s;
138
139
s = b[u] + cc2
140
+ MUL15(a[5], r[u + 9 - 5])
141
+ MUL15(a[6], r[u + 9 - 6])
142
+ MUL15(a[7], r[u + 9 - 7])
143
+ MUL15(a[8], r[u + 9 - 8])
144
+ MUL15(a[9], r[u + 9 - 9]);
145
b[u] = s & 0x1FFF;
146
cc2 = s >> 13;
147
}
148
memcpy(a, b, sizeof b);
149
150
/*
151
* The two carries "loop back" with a factor of 5. We
152
* propagate them into a[0] and a[1].
153
*/
154
z = cc1 + cc2;
155
z += (z << 2) + a[0];
156
a[0] = z & 0x1FFF;
157
a[1] += z >> 13;
158
159
buf += 16;
160
len -= 16;
161
}
162
}
163
164
/* see bearssl_block.h */
165
void
166
br_poly1305_ctmul32_run(const void *key, const void *iv,
167
void *data, size_t len, const void *aad, size_t aad_len,
168
void *tag, br_chacha20_run ichacha, int encrypt)
169
{
170
unsigned char pkey[32], foot[16];
171
uint32_t z, r[19], acc[10], cc, ctl;
172
int i;
173
174
/*
175
* Compute the MAC key. The 'r' value is the first 16 bytes of
176
* pkey[].
177
*/
178
memset(pkey, 0, sizeof pkey);
179
ichacha(key, iv, 0, pkey, sizeof pkey);
180
181
/*
182
* If encrypting, ChaCha20 must run first, followed by Poly1305.
183
* When decrypting, the operations are reversed.
184
*/
185
if (encrypt) {
186
ichacha(key, iv, 1, data, len);
187
}
188
189
/*
190
* Run Poly1305. We must process the AAD, then ciphertext, then
191
* the footer (with the lengths). Note that the AAD and ciphertext
192
* are meant to be padded with zeros up to the next multiple of 16,
193
* and the length of the footer is 16 bytes as well.
194
*/
195
196
/*
197
* Decode the 'r' value into 13-bit words, with the "clamping"
198
* operation applied.
199
*/
200
z = br_dec32le(pkey) & 0x03FFFFFF;
201
r[9] = z & 0x1FFF;
202
r[10] = z >> 13;
203
z = (br_dec32le(pkey + 3) >> 2) & 0x03FFFF03;
204
r[11] = z & 0x1FFF;
205
r[12] = z >> 13;
206
z = (br_dec32le(pkey + 6) >> 4) & 0x03FFC0FF;
207
r[13] = z & 0x1FFF;
208
r[14] = z >> 13;
209
z = (br_dec32le(pkey + 9) >> 6) & 0x03F03FFF;
210
r[15] = z & 0x1FFF;
211
r[16] = z >> 13;
212
z = (br_dec32le(pkey + 12) >> 8) & 0x000FFFFF;
213
r[17] = z & 0x1FFF;
214
r[18] = z >> 13;
215
216
/*
217
* Extend r[] with the 5x factor pre-applied.
218
*/
219
for (i = 0; i < 9; i ++) {
220
r[i] = MUL15(5, r[i + 10]);
221
}
222
223
/*
224
* Accumulator is 0.
225
*/
226
memset(acc, 0, sizeof acc);
227
228
/*
229
* Process the additional authenticated data, ciphertext, and
230
* footer in due order.
231
*/
232
br_enc64le(foot, (uint64_t)aad_len);
233
br_enc64le(foot + 8, (uint64_t)len);
234
poly1305_inner(acc, r, aad, aad_len);
235
poly1305_inner(acc, r, data, len);
236
poly1305_inner(acc, r, foot, sizeof foot);
237
238
/*
239
* Finalise modular reduction. This is done with carry propagation
240
* and applying the '2^130 = -5 mod p' rule. Note that the output
241
* of poly1035_inner() is already mostly reduced, since only
242
* acc[1] may be (very slightly) above 2^13. A single loop back
243
* to acc[1] will be enough to make the value fit in 130 bits.
244
*/
245
cc = 0;
246
for (i = 1; i < 10; i ++) {
247
z = acc[i] + cc;
248
acc[i] = z & 0x1FFF;
249
cc = z >> 13;
250
}
251
z = acc[0] + cc + (cc << 2);
252
acc[0] = z & 0x1FFF;
253
acc[1] += z >> 13;
254
255
/*
256
* We may still have a value in the 2^130-5..2^130-1 range, in
257
* which case we must reduce it again. The code below selects,
258
* in constant-time, between 'acc' and 'acc-p',
259
*/
260
ctl = GT(acc[0], 0x1FFA);
261
for (i = 1; i < 10; i ++) {
262
ctl &= EQ(acc[i], 0x1FFF);
263
}
264
acc[0] = MUX(ctl, acc[0] - 0x1FFB, acc[0]);
265
for (i = 1; i < 10; i ++) {
266
acc[i] &= ~(-ctl);
267
}
268
269
/*
270
* Convert back the accumulator to 32-bit words, and add the
271
* 's' value (second half of pkey[]). That addition is done
272
* modulo 2^128.
273
*/
274
z = acc[0] + (acc[1] << 13) + br_dec16le(pkey + 16);
275
br_enc16le((unsigned char *)tag, z & 0xFFFF);
276
z = (z >> 16) + (acc[2] << 10) + br_dec16le(pkey + 18);
277
br_enc16le((unsigned char *)tag + 2, z & 0xFFFF);
278
z = (z >> 16) + (acc[3] << 7) + br_dec16le(pkey + 20);
279
br_enc16le((unsigned char *)tag + 4, z & 0xFFFF);
280
z = (z >> 16) + (acc[4] << 4) + br_dec16le(pkey + 22);
281
br_enc16le((unsigned char *)tag + 6, z & 0xFFFF);
282
z = (z >> 16) + (acc[5] << 1) + (acc[6] << 14) + br_dec16le(pkey + 24);
283
br_enc16le((unsigned char *)tag + 8, z & 0xFFFF);
284
z = (z >> 16) + (acc[7] << 11) + br_dec16le(pkey + 26);
285
br_enc16le((unsigned char *)tag + 10, z & 0xFFFF);
286
z = (z >> 16) + (acc[8] << 8) + br_dec16le(pkey + 28);
287
br_enc16le((unsigned char *)tag + 12, z & 0xFFFF);
288
z = (z >> 16) + (acc[9] << 5) + br_dec16le(pkey + 30);
289
br_enc16le((unsigned char *)tag + 14, z & 0xFFFF);
290
291
/*
292
* If decrypting, then ChaCha20 runs _after_ Poly1305.
293
*/
294
if (!encrypt) {
295
ichacha(key, iv, 1, data, len);
296
}
297
}
298
299