Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/elftoolchain/elfdump/elfdump.c
39586 views
1
/*-
2
* Copyright (c) 2007-2012 Kai Wang
3
* Copyright (c) 2003 David O'Brien. All rights reserved.
4
* Copyright (c) 2001 Jake Burkholder
5
* All rights reserved.
6
*
7
* Redistribution and use in source and binary forms, with or without
8
* modification, are permitted provided that the following conditions
9
* are met:
10
* 1. Redistributions of source code must retain the above copyright
11
* notice, this list of conditions and the following disclaimer.
12
* 2. Redistributions in binary form must reproduce the above copyright
13
* notice, this list of conditions and the following disclaimer in the
14
* documentation and/or other materials provided with the distribution.
15
*
16
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26
* SUCH DAMAGE.
27
*/
28
29
#include <sys/param.h>
30
#include <sys/queue.h>
31
#include <sys/stat.h>
32
33
#include <ar.h>
34
#include <assert.h>
35
#include <err.h>
36
#include <fcntl.h>
37
#include <gelf.h>
38
#include <getopt.h>
39
#include <libelftc.h>
40
#include <inttypes.h>
41
#include <stdio.h>
42
#include <stdlib.h>
43
#include <string.h>
44
#include <unistd.h>
45
46
#ifdef USE_LIBARCHIVE_AR
47
#include <archive.h>
48
#include <archive_entry.h>
49
#endif
50
51
#include "_elftc.h"
52
53
ELFTC_VCSID("$Id: elfdump.c 3762 2019-06-28 21:06:24Z emaste $");
54
55
#if defined(ELFTC_NEED_ELF_NOTE_DEFINITION)
56
#include "native-elf-format.h"
57
#if ELFTC_CLASS == ELFCLASS32
58
typedef Elf32_Nhdr Elf_Note;
59
#else
60
typedef Elf64_Nhdr Elf_Note;
61
#endif
62
#endif
63
64
/* elfdump(1) options. */
65
#define ED_DYN (1<<0)
66
#define ED_EHDR (1<<1)
67
#define ED_GOT (1<<2)
68
#define ED_HASH (1<<3)
69
#define ED_INTERP (1<<4)
70
#define ED_NOTE (1<<5)
71
#define ED_PHDR (1<<6)
72
#define ED_REL (1<<7)
73
#define ED_SHDR (1<<8)
74
#define ED_SYMTAB (1<<9)
75
#define ED_SYMVER (1<<10)
76
#define ED_CHECKSUM (1<<11)
77
#define ED_ALL ((1<<12)-1)
78
79
/* elfdump(1) run control flags. */
80
#define SOLARIS_FMT (1<<0)
81
#define PRINT_FILENAME (1<<1)
82
#define PRINT_ARSYM (1<<2)
83
#define ONLY_ARSYM (1<<3)
84
85
/* Convenient print macro. */
86
#define PRT(...) fprintf(ed->out, __VA_ARGS__)
87
88
/* Internal data structure for sections. */
89
struct section {
90
const char *name; /* section name */
91
Elf_Scn *scn; /* section scn */
92
uint64_t off; /* section offset */
93
uint64_t sz; /* section size */
94
uint64_t entsize; /* section entsize */
95
uint64_t align; /* section alignment */
96
uint64_t type; /* section type */
97
uint64_t flags; /* section flags */
98
uint64_t addr; /* section virtual addr */
99
uint32_t link; /* section link ndx */
100
uint32_t info; /* section info ndx */
101
};
102
103
struct spec_name {
104
const char *name;
105
STAILQ_ENTRY(spec_name) sn_list;
106
};
107
108
/* Structure encapsulates the global data for readelf(1). */
109
struct elfdump {
110
FILE *out; /* output redirection. */
111
const char *filename; /* current processing file. */
112
const char *archive; /* archive name */
113
int options; /* command line options. */
114
int flags; /* run control flags. */
115
Elf *elf; /* underlying ELF descriptor. */
116
#ifndef USE_LIBARCHIVE_AR
117
Elf *ar; /* ar(1) archive descriptor. */
118
#endif
119
GElf_Ehdr ehdr; /* ELF header. */
120
int ec; /* ELF class. */
121
size_t shnum; /* #sections. */
122
struct section *sl; /* list of sections. */
123
STAILQ_HEAD(, spec_name) snl; /* list of names specified by -N. */
124
};
125
126
/* Relocation entry. */
127
struct rel_entry {
128
union {
129
GElf_Rel rel;
130
GElf_Rela rela;
131
} u_r;
132
const char *symn;
133
uint32_t type;
134
};
135
136
#if defined(ELFTC_NEED_BYTEORDER_EXTENSIONS)
137
static __inline uint32_t
138
be32dec(const void *pp)
139
{
140
unsigned char const *p = (unsigned char const *)pp;
141
142
return ((p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]);
143
}
144
145
static __inline uint32_t
146
le32dec(const void *pp)
147
{
148
unsigned char const *p = (unsigned char const *)pp;
149
150
return ((p[3] << 24) | (p[2] << 16) | (p[1] << 8) | p[0]);
151
}
152
#endif
153
154
/* http://www.sco.com/developers/gabi/latest/ch5.dynamic.html#tag_encodings */
155
static const char *
156
d_tags(uint64_t tag)
157
{
158
static char unknown_buf[64];
159
160
switch (tag) {
161
case DT_NULL: return "DT_NULL";
162
case DT_NEEDED: return "DT_NEEDED";
163
case DT_PLTRELSZ: return "DT_PLTRELSZ";
164
case DT_PLTGOT: return "DT_PLTGOT";
165
case DT_HASH: return "DT_HASH";
166
case DT_STRTAB: return "DT_STRTAB";
167
case DT_SYMTAB: return "DT_SYMTAB";
168
case DT_RELA: return "DT_RELA";
169
case DT_RELASZ: return "DT_RELASZ";
170
case DT_RELAENT: return "DT_RELAENT";
171
case DT_STRSZ: return "DT_STRSZ";
172
case DT_SYMENT: return "DT_SYMENT";
173
case DT_INIT: return "DT_INIT";
174
case DT_FINI: return "DT_FINI";
175
case DT_SONAME: return "DT_SONAME";
176
case DT_RPATH: return "DT_RPATH";
177
case DT_SYMBOLIC: return "DT_SYMBOLIC";
178
case DT_REL: return "DT_REL";
179
case DT_RELSZ: return "DT_RELSZ";
180
case DT_RELENT: return "DT_RELENT";
181
case DT_PLTREL: return "DT_PLTREL";
182
case DT_DEBUG: return "DT_DEBUG";
183
case DT_TEXTREL: return "DT_TEXTREL";
184
case DT_JMPREL: return "DT_JMPREL";
185
case DT_BIND_NOW: return "DT_BIND_NOW";
186
case DT_INIT_ARRAY: return "DT_INIT_ARRAY";
187
case DT_FINI_ARRAY: return "DT_FINI_ARRAY";
188
case DT_INIT_ARRAYSZ: return "DT_INIT_ARRAYSZ";
189
case DT_FINI_ARRAYSZ: return "DT_FINI_ARRAYSZ";
190
case DT_RUNPATH: return "DT_RUNPATH";
191
case DT_FLAGS: return "DT_FLAGS";
192
case DT_PREINIT_ARRAY: return "DT_PREINIT_ARRAY"; /* XXX DT_ENCODING */
193
case DT_PREINIT_ARRAYSZ:return "DT_PREINIT_ARRAYSZ";
194
/* 0x6000000D - 0x6ffff000 operating system-specific semantics */
195
case 0x6ffffdf5: return "DT_GNU_PRELINKED";
196
case 0x6ffffdf6: return "DT_GNU_CONFLICTSZ";
197
case 0x6ffffdf7: return "DT_GNU_LIBLISTSZ";
198
case 0x6ffffdf8: return "DT_SUNW_CHECKSUM";
199
case DT_PLTPADSZ: return "DT_PLTPADSZ";
200
case DT_MOVEENT: return "DT_MOVEENT";
201
case DT_MOVESZ: return "DT_MOVESZ";
202
case 0x6ffffdfc: return "DT_FEATURE";
203
case DT_POSFLAG_1: return "DT_POSFLAG_1";
204
case DT_SYMINSZ: return "DT_SYMINSZ";
205
case DT_SYMINENT: return "DT_SYMINENT (DT_VALRNGHI)";
206
case DT_ADDRRNGLO: return "DT_ADDRRNGLO";
207
case DT_GNU_HASH: return "DT_GNU_HASH";
208
case 0x6ffffef8: return "DT_GNU_CONFLICT";
209
case 0x6ffffef9: return "DT_GNU_LIBLIST";
210
case 0x6ffffefa: return "DT_CONFIG";
211
case 0x6ffffefb: return "DT_DEPAUDIT";
212
case 0x6ffffefc: return "DT_AUDIT";
213
case 0x6ffffefd: return "DT_PLTPAD";
214
case 0x6ffffefe: return "DT_MOVETAB";
215
case DT_SYMINFO: return "DT_SYMINFO (DT_ADDRRNGHI)";
216
case DT_RELACOUNT: return "DT_RELACOUNT";
217
case DT_RELCOUNT: return "DT_RELCOUNT";
218
case DT_FLAGS_1: return "DT_FLAGS_1";
219
case DT_VERDEF: return "DT_VERDEF";
220
case DT_VERDEFNUM: return "DT_VERDEFNUM";
221
case DT_VERNEED: return "DT_VERNEED";
222
case DT_VERNEEDNUM: return "DT_VERNEEDNUM";
223
case 0x6ffffff0: return "DT_GNU_VERSYM";
224
/* 0x70000000 - 0x7fffffff processor-specific semantics */
225
case 0x70000000: return "DT_IA_64_PLT_RESERVE";
226
case DT_AUXILIARY: return "DT_AUXILIARY";
227
case DT_USED: return "DT_USED";
228
case DT_FILTER: return "DT_FILTER";
229
}
230
231
snprintf(unknown_buf, sizeof(unknown_buf),
232
"<unknown: %#llx>", (unsigned long long)tag);
233
return (unknown_buf);
234
}
235
236
static const char *
237
e_machines(unsigned int mach)
238
{
239
static char machdesc[64];
240
241
switch (mach) {
242
case EM_NONE: return "EM_NONE";
243
case EM_M32: return "EM_M32";
244
case EM_SPARC: return "EM_SPARC";
245
case EM_386: return "EM_386";
246
case EM_68K: return "EM_68K";
247
case EM_88K: return "EM_88K";
248
case EM_IAMCU: return "EM_IAMCU";
249
case EM_860: return "EM_860";
250
case EM_MIPS: return "EM_MIPS";
251
case EM_PPC: return "EM_PPC";
252
case EM_PPC64: return "EM_PPC64";
253
case EM_ARM: return "EM_ARM";
254
case EM_ALPHA: return "EM_ALPHA (legacy)";
255
case EM_SPARCV9:return "EM_SPARCV9";
256
case EM_IA_64: return "EM_IA_64";
257
case EM_X86_64: return "EM_X86_64";
258
case EM_AARCH64:return "EM_AARCH64";
259
case EM_RISCV: return "EM_RISCV";
260
}
261
snprintf(machdesc, sizeof(machdesc),
262
"(unknown machine) -- type 0x%x", mach);
263
return (machdesc);
264
}
265
266
static const char *
267
elf_type_str(unsigned int type)
268
{
269
static char s_type[32];
270
271
switch (type)
272
{
273
case ET_NONE: return "ET_NONE";
274
case ET_REL: return "ET_REL";
275
case ET_EXEC: return "ET_EXEC";
276
case ET_DYN: return "ET_DYN";
277
case ET_CORE: return "ET_CORE";
278
}
279
if (type >= ET_LOPROC)
280
snprintf(s_type, sizeof(s_type), "<proc: %#x>", type);
281
else if (type >= ET_LOOS && type <= ET_HIOS)
282
snprintf(s_type, sizeof(s_type), "<os: %#x>", type);
283
else
284
snprintf(s_type, sizeof(s_type), "<unknown: %#x", type);
285
return (s_type);
286
}
287
288
static const char *
289
elf_version_str(unsigned int ver)
290
{
291
static char s_ver[32];
292
293
switch (ver) {
294
case EV_NONE: return "EV_NONE";
295
case EV_CURRENT: return "EV_CURRENT";
296
}
297
snprintf(s_ver, sizeof(s_ver), "<unknown: %#x>", ver);
298
return (s_ver);
299
}
300
301
static const char *
302
elf_class_str(unsigned int class)
303
{
304
static char s_class[32];
305
306
switch (class) {
307
case ELFCLASSNONE: return "ELFCLASSNONE";
308
case ELFCLASS32: return "ELFCLASS32";
309
case ELFCLASS64: return "ELFCLASS64";
310
}
311
snprintf(s_class, sizeof(s_class), "<unknown: %#x>", class);
312
return (s_class);
313
}
314
315
static const char *
316
elf_data_str(unsigned int data)
317
{
318
static char s_data[32];
319
320
switch (data) {
321
case ELFDATANONE: return "ELFDATANONE";
322
case ELFDATA2LSB: return "ELFDATA2LSB";
323
case ELFDATA2MSB: return "ELFDATA2MSB";
324
}
325
snprintf(s_data, sizeof(s_data), "<unknown: %#x>", data);
326
return (s_data);
327
}
328
329
static const char *ei_abis[256] = {
330
"ELFOSABI_NONE", "ELFOSABI_HPUX", "ELFOSABI_NETBSD", "ELFOSABI_LINUX",
331
"ELFOSABI_HURD", "ELFOSABI_86OPEN", "ELFOSABI_SOLARIS", "ELFOSABI_AIX",
332
"ELFOSABI_IRIX", "ELFOSABI_FREEBSD", "ELFOSABI_TRU64",
333
"ELFOSABI_MODESTO", "ELFOSABI_OPENBSD",
334
[17] = "ELFOSABI_CLOUDABI",
335
[64] = "ELFOSABI_ARM_AEABI",
336
[97] = "ELFOSABI_ARM",
337
[255] = "ELFOSABI_STANDALONE"
338
};
339
340
static const char *
341
elf_phdr_type_str(unsigned int type)
342
{
343
static char s_type[32];
344
345
switch (type) {
346
case PT_NULL: return "PT_NULL";
347
case PT_LOAD: return "PT_LOAD";
348
case PT_DYNAMIC: return "PT_DYNAMIC";
349
case PT_INTERP: return "PT_INTERP";
350
case PT_NOTE: return "PT_NOTE";
351
case PT_SHLIB: return "PT_SHLIB";
352
case PT_PHDR: return "PT_PHDR";
353
case PT_TLS: return "PT_TLS";
354
case PT_GNU_EH_FRAME: return "PT_GNU_EH_FRAME";
355
case PT_GNU_STACK: return "PT_GNU_STACK";
356
case PT_GNU_RELRO: return "PT_GNU_RELRO";
357
case PT_OPENBSD_RANDOMIZE: return "PT_OPENBSD_RANDOMIZE";
358
case PT_OPENBSD_WXNEEDED: return "PT_OPENBSD_WXNEEDED";
359
case PT_OPENBSD_BOOTDATA: return "PT_OPENBSD_BOOTDATA";
360
}
361
snprintf(s_type, sizeof(s_type), "<unknown: %#x>", type);
362
return (s_type);
363
}
364
365
static const char *p_flags[] = {
366
"", "PF_X", "PF_W", "PF_X|PF_W", "PF_R", "PF_X|PF_R", "PF_W|PF_R",
367
"PF_X|PF_W|PF_R"
368
};
369
370
static const char *
371
sh_name(struct elfdump *ed, int ndx)
372
{
373
static char num[10];
374
375
switch (ndx) {
376
case SHN_UNDEF: return "UNDEF";
377
case SHN_ABS: return "ABS";
378
case SHN_COMMON: return "COMMON";
379
default:
380
if ((uint64_t)ndx < ed->shnum)
381
return (ed->sl[ndx].name);
382
else {
383
snprintf(num, sizeof(num), "%d", ndx);
384
return (num);
385
}
386
}
387
}
388
389
/* http://www.sco.com/developers/gabi/latest/ch4.sheader.html#sh_type */
390
static const char *
391
sh_types(uint64_t mach, uint64_t sht) {
392
static char unknown_buf[64];
393
394
if (sht < 0x60000000) {
395
switch (sht) {
396
case SHT_NULL: return "SHT_NULL";
397
case SHT_PROGBITS: return "SHT_PROGBITS";
398
case SHT_SYMTAB: return "SHT_SYMTAB";
399
case SHT_STRTAB: return "SHT_STRTAB";
400
case SHT_RELA: return "SHT_RELA";
401
case SHT_HASH: return "SHT_HASH";
402
case SHT_DYNAMIC: return "SHT_DYNAMIC";
403
case SHT_NOTE: return "SHT_NOTE";
404
case SHT_NOBITS: return "SHT_NOBITS";
405
case SHT_REL: return "SHT_REL";
406
case SHT_SHLIB: return "SHT_SHLIB";
407
case SHT_DYNSYM: return "SHT_DYNSYM";
408
case SHT_INIT_ARRAY: return "SHT_INIT_ARRAY";
409
case SHT_FINI_ARRAY: return "SHT_FINI_ARRAY";
410
case SHT_PREINIT_ARRAY: return "SHT_PREINIT_ARRAY";
411
case SHT_GROUP: return "SHT_GROUP";
412
case SHT_SYMTAB_SHNDX: return "SHT_SYMTAB_SHNDX";
413
}
414
} else if (sht < 0x70000000) {
415
/* 0x60000000-0x6fffffff operating system-specific semantics */
416
switch (sht) {
417
case 0x6ffffff0: return "XXX:VERSYM";
418
case SHT_SUNW_dof: return "SHT_SUNW_dof";
419
case SHT_GNU_HASH: return "SHT_GNU_HASH";
420
case 0x6ffffff7: return "SHT_GNU_LIBLIST";
421
case 0x6ffffffc: return "XXX:VERDEF";
422
case SHT_SUNW_verdef: return "SHT_SUNW(GNU)_verdef";
423
case SHT_SUNW_verneed: return "SHT_SUNW(GNU)_verneed";
424
case SHT_SUNW_versym: return "SHT_SUNW(GNU)_versym";
425
}
426
} else if (sht < 0x80000000) {
427
/* 0x70000000 - 0x7fffffff processor-specific semantics */
428
switch (mach) {
429
case EM_ARM:
430
switch (sht) {
431
case SHT_ARM_EXIDX: return "SHT_ARM_EXIDX";
432
case SHT_ARM_PREEMPTMAP: return "SHT_ARM_PREEMPTMAP";
433
case SHT_ARM_ATTRIBUTES: return "SHT_ARM_ATTRIBUTES";
434
case SHT_ARM_DEBUGOVERLAY:
435
return "SHT_ARM_DEBUGOVERLAY";
436
case SHT_ARM_OVERLAYSECTION:
437
return "SHT_ARM_OVERLAYSECTION";
438
}
439
break;
440
case EM_IA_64:
441
switch (sht) {
442
case 0x70000000: return "SHT_IA_64_EXT";
443
case 0x70000001: return "SHT_IA_64_UNWIND";
444
}
445
break;
446
case EM_MIPS:
447
switch (sht) {
448
case SHT_MIPS_REGINFO: return "SHT_MIPS_REGINFO";
449
case SHT_MIPS_OPTIONS: return "SHT_MIPS_OPTIONS";
450
case SHT_MIPS_ABIFLAGS: return "SHT_MIPS_ABIFLAGS";
451
}
452
break;
453
}
454
switch (sht) {
455
case 0x7ffffffd: return "XXX:AUXILIARY";
456
case 0x7fffffff: return "XXX:FILTER";
457
}
458
}
459
/* 0x80000000 - 0xffffffff application programs */
460
461
snprintf(unknown_buf, sizeof(unknown_buf),
462
"<unknown: %#llx>", (unsigned long long)sht);
463
return (unknown_buf);
464
}
465
466
/*
467
* Define known section flags. These flags are defined in the order
468
* they are to be printed out.
469
*/
470
#define DEFINE_SHFLAGS() \
471
DEFINE_SHF(WRITE) \
472
DEFINE_SHF(ALLOC) \
473
DEFINE_SHF(EXECINSTR) \
474
DEFINE_SHF(MERGE) \
475
DEFINE_SHF(STRINGS) \
476
DEFINE_SHF(INFO_LINK) \
477
DEFINE_SHF(LINK_ORDER) \
478
DEFINE_SHF(OS_NONCONFORMING) \
479
DEFINE_SHF(GROUP) \
480
DEFINE_SHF(TLS) \
481
DEFINE_SHF(COMPRESSED)
482
483
#undef DEFINE_SHF
484
#define DEFINE_SHF(F) "SHF_" #F "|"
485
#define ALLSHFLAGS DEFINE_SHFLAGS()
486
487
static const char *
488
sh_flags(uint64_t shf)
489
{
490
static char flg[sizeof(ALLSHFLAGS)+1];
491
492
flg[0] = '\0';
493
494
#undef DEFINE_SHF
495
#define DEFINE_SHF(N) \
496
if (shf & SHF_##N) \
497
strcat(flg, "SHF_" #N "|"); \
498
499
DEFINE_SHFLAGS()
500
501
flg[strlen(flg) - 1] = '\0'; /* Remove the trailing "|". */
502
503
return (flg);
504
}
505
506
static const char *
507
st_type(unsigned int mach, unsigned int type)
508
{
509
static char s_type[32];
510
511
switch (type) {
512
case STT_NOTYPE: return "STT_NOTYPE";
513
case STT_OBJECT: return "STT_OBJECT";
514
case STT_FUNC: return "STT_FUNC";
515
case STT_SECTION: return "STT_SECTION";
516
case STT_FILE: return "STT_FILE";
517
case STT_COMMON: return "STT_COMMON";
518
case STT_TLS: return "STT_TLS";
519
case 13:
520
if (mach == EM_SPARCV9)
521
return "STT_SPARC_REGISTER";
522
break;
523
}
524
snprintf(s_type, sizeof(s_type), "<unknown: %#x>", type);
525
return (s_type);
526
}
527
528
static const char *
529
st_type_S(unsigned int type)
530
{
531
static char s_type[32];
532
533
switch (type) {
534
case STT_NOTYPE: return "NOTY";
535
case STT_OBJECT: return "OBJT";
536
case STT_FUNC: return "FUNC";
537
case STT_SECTION: return "SECT";
538
case STT_FILE: return "FILE";
539
}
540
snprintf(s_type, sizeof(s_type), "<unknown: %#x>", type);
541
return (s_type);
542
}
543
544
static const char *
545
st_bindings(unsigned int sbind)
546
{
547
static char s_sbind[32];
548
549
switch (sbind) {
550
case STB_LOCAL: return "STB_LOCAL";
551
case STB_GLOBAL: return "STB_GLOBAL";
552
case STB_WEAK: return "STB_WEAK";
553
case STB_GNU_UNIQUE: return "STB_GNU_UNIQUE";
554
default:
555
if (sbind >= STB_LOOS && sbind <= STB_HIOS)
556
return "OS";
557
else if (sbind >= STB_LOPROC && sbind <= STB_HIPROC)
558
return "PROC";
559
else
560
snprintf(s_sbind, sizeof(s_sbind), "<unknown: %#x>",
561
sbind);
562
return (s_sbind);
563
}
564
}
565
566
static const char *
567
st_bindings_S(unsigned int sbind)
568
{
569
static char s_sbind[32];
570
571
switch (sbind) {
572
case STB_LOCAL: return "LOCL";
573
case STB_GLOBAL: return "GLOB";
574
case STB_WEAK: return "WEAK";
575
case STB_GNU_UNIQUE: return "UNIQ";
576
default:
577
if (sbind >= STB_LOOS && sbind <= STB_HIOS)
578
return "OS";
579
else if (sbind >= STB_LOPROC && sbind <= STB_HIPROC)
580
return "PROC";
581
else
582
snprintf(s_sbind, sizeof(s_sbind), "<%#x>",
583
sbind);
584
return (s_sbind);
585
}
586
}
587
588
static unsigned char st_others[] = {
589
'D', 'I', 'H', 'P'
590
};
591
592
static void add_name(struct elfdump *ed, const char *name);
593
static void elf_print_object(struct elfdump *ed);
594
static void elf_print_elf(struct elfdump *ed);
595
static void elf_print_ehdr(struct elfdump *ed);
596
static void elf_print_phdr(struct elfdump *ed);
597
static void elf_print_shdr(struct elfdump *ed);
598
static void elf_print_symtab(struct elfdump *ed, int i);
599
static void elf_print_symtabs(struct elfdump *ed);
600
static void elf_print_symver(struct elfdump *ed);
601
static void elf_print_verdef(struct elfdump *ed, struct section *s);
602
static void elf_print_verneed(struct elfdump *ed, struct section *s);
603
static void elf_print_interp(struct elfdump *ed);
604
static void elf_print_dynamic(struct elfdump *ed);
605
static void elf_print_rel_entry(struct elfdump *ed, struct section *s,
606
int j, struct rel_entry *r);
607
static void elf_print_rela(struct elfdump *ed, struct section *s,
608
Elf_Data *data);
609
static void elf_print_rel(struct elfdump *ed, struct section *s,
610
Elf_Data *data);
611
static void elf_print_reloc(struct elfdump *ed);
612
static void elf_print_got(struct elfdump *ed);
613
static void elf_print_got_section(struct elfdump *ed, struct section *s);
614
static void elf_print_note(struct elfdump *ed);
615
static void elf_print_svr4_hash(struct elfdump *ed, struct section *s);
616
static void elf_print_svr4_hash64(struct elfdump *ed, struct section *s);
617
static void elf_print_gnu_hash(struct elfdump *ed, struct section *s);
618
static void elf_print_hash(struct elfdump *ed);
619
static void elf_print_checksum(struct elfdump *ed);
620
static void find_gotrel(struct elfdump *ed, struct section *gs,
621
struct rel_entry *got);
622
static struct spec_name *find_name(struct elfdump *ed, const char *name);
623
static int get_ent_count(const struct section *s, int *ent_count);
624
static const char *get_symbol_name(struct elfdump *ed, uint32_t symtab, int i);
625
static const char *get_string(struct elfdump *ed, int strtab, size_t off);
626
static void get_versym(struct elfdump *ed, int i, uint16_t **vs, int *nvs);
627
static void load_sections(struct elfdump *ed);
628
static void unload_sections(struct elfdump *ed);
629
static void usage(void);
630
#ifdef USE_LIBARCHIVE_AR
631
static int ac_detect_ar(int fd);
632
static void ac_print_ar(struct elfdump *ed, int fd);
633
#else
634
static void elf_print_ar(struct elfdump *ed, int fd);
635
#endif /* USE_LIBARCHIVE_AR */
636
637
static struct option elfdump_longopts[] =
638
{
639
{ "help", no_argument, NULL, 'H' },
640
{ "version", no_argument, NULL, 'V' },
641
{ NULL, 0, NULL, 0 }
642
};
643
644
int
645
main(int ac, char **av)
646
{
647
struct elfdump *ed, ed_storage;
648
struct spec_name *sn;
649
int ch, i;
650
651
ed = &ed_storage;
652
memset(ed, 0, sizeof(*ed));
653
STAILQ_INIT(&ed->snl);
654
ed->out = stdout;
655
while ((ch = getopt_long(ac, av, "acdeiGHhknN:prsSvVw:",
656
elfdump_longopts, NULL)) != -1)
657
switch (ch) {
658
case 'a':
659
ed->options = ED_ALL;
660
break;
661
case 'c':
662
ed->options |= ED_SHDR;
663
break;
664
case 'd':
665
ed->options |= ED_DYN;
666
break;
667
case 'e':
668
ed->options |= ED_EHDR;
669
break;
670
case 'i':
671
ed->options |= ED_INTERP;
672
break;
673
case 'G':
674
ed->options |= ED_GOT;
675
break;
676
case 'h':
677
ed->options |= ED_HASH;
678
break;
679
case 'k':
680
ed->options |= ED_CHECKSUM;
681
break;
682
case 'n':
683
ed->options |= ED_NOTE;
684
break;
685
case 'N':
686
add_name(ed, optarg);
687
break;
688
case 'p':
689
ed->options |= ED_PHDR;
690
break;
691
case 'r':
692
ed->options |= ED_REL;
693
break;
694
case 's':
695
ed->options |= ED_SYMTAB;
696
break;
697
case 'S':
698
ed->flags |= SOLARIS_FMT;
699
break;
700
case 'v':
701
ed->options |= ED_SYMVER;
702
break;
703
case 'V':
704
(void) printf("%s (%s)\n", ELFTC_GETPROGNAME(),
705
elftc_version());
706
exit(EXIT_SUCCESS);
707
break;
708
case 'w':
709
if ((ed->out = fopen(optarg, "w")) == NULL)
710
err(EXIT_FAILURE, "%s", optarg);
711
break;
712
case '?':
713
case 'H':
714
default:
715
usage();
716
}
717
718
ac -= optind;
719
av += optind;
720
721
if (ed->options == 0)
722
ed->options = ED_ALL;
723
sn = NULL;
724
if (ed->options & ED_SYMTAB &&
725
(STAILQ_EMPTY(&ed->snl) || (sn = find_name(ed, "ARSYM")) != NULL)) {
726
ed->flags |= PRINT_ARSYM;
727
if (sn != NULL) {
728
STAILQ_REMOVE(&ed->snl, sn, spec_name, sn_list);
729
if (STAILQ_EMPTY(&ed->snl))
730
ed->flags |= ONLY_ARSYM;
731
}
732
}
733
if (ac == 0)
734
usage();
735
if (ac > 1)
736
ed->flags |= PRINT_FILENAME;
737
if (elf_version(EV_CURRENT) == EV_NONE)
738
errx(EXIT_FAILURE, "ELF library initialization failed: %s",
739
elf_errmsg(-1));
740
741
for (i = 0; i < ac; i++) {
742
ed->filename = av[i];
743
ed->archive = NULL;
744
elf_print_object(ed);
745
}
746
747
exit(EXIT_SUCCESS);
748
}
749
750
#ifdef USE_LIBARCHIVE_AR
751
752
/* Archive symbol table entry. */
753
struct arsym_entry {
754
char *sym_name;
755
size_t off;
756
};
757
758
/*
759
* Convenient wrapper for general libarchive error handling.
760
*/
761
#define AC(CALL) do { \
762
if ((CALL)) { \
763
warnx("%s", archive_error_string(a)); \
764
return; \
765
} \
766
} while (0)
767
768
/*
769
* Detect an ar(1) archive using libarchive(3).
770
*/
771
static int
772
ac_detect_ar(int fd)
773
{
774
struct archive *a;
775
struct archive_entry *entry;
776
int r;
777
778
r = -1;
779
if ((a = archive_read_new()) == NULL)
780
return (0);
781
archive_read_support_format_ar(a);
782
if (archive_read_open_fd(a, fd, 10240) == ARCHIVE_OK)
783
r = archive_read_next_header(a, &entry);
784
archive_read_close(a);
785
archive_read_free(a);
786
787
return (r == ARCHIVE_OK);
788
}
789
790
/*
791
* Dump an ar(1) archive using libarchive(3).
792
*/
793
static void
794
ac_print_ar(struct elfdump *ed, int fd)
795
{
796
struct archive *a;
797
struct archive_entry *entry;
798
struct arsym_entry *arsym;
799
const char *name;
800
char idx[10], *b;
801
void *buff;
802
size_t size;
803
uint32_t cnt, i;
804
int r;
805
806
if (lseek(fd, 0, SEEK_SET) == -1)
807
err(EXIT_FAILURE, "lseek failed");
808
if ((a = archive_read_new()) == NULL)
809
errx(EXIT_FAILURE, "%s", archive_error_string(a));
810
archive_read_support_format_ar(a);
811
AC(archive_read_open_fd(a, fd, 10240));
812
for(;;) {
813
r = archive_read_next_header(a, &entry);
814
if (r == ARCHIVE_FATAL)
815
errx(EXIT_FAILURE, "%s", archive_error_string(a));
816
if (r == ARCHIVE_EOF)
817
break;
818
if (r == ARCHIVE_WARN || r == ARCHIVE_RETRY)
819
warnx("%s", archive_error_string(a));
820
if (r == ARCHIVE_RETRY)
821
continue;
822
name = archive_entry_pathname(entry);
823
size = archive_entry_size(entry);
824
if (size == 0)
825
continue;
826
if ((buff = malloc(size)) == NULL) {
827
warn("malloc failed");
828
continue;
829
}
830
if (archive_read_data(a, buff, size) != (ssize_t)size) {
831
warnx("%s", archive_error_string(a));
832
free(buff);
833
continue;
834
}
835
836
/*
837
* Note that when processing arsym via libarchive, there is
838
* no way to tell which member a certain symbol belongs to,
839
* since we can not just "lseek" to a member offset and read
840
* the member header.
841
*/
842
if (!strcmp(name, "/") && ed->flags & PRINT_ARSYM) {
843
b = buff;
844
cnt = be32dec(b);
845
if (cnt == 0) {
846
free(buff);
847
continue;
848
}
849
arsym = calloc(cnt, sizeof(*arsym));
850
if (arsym == NULL)
851
err(EXIT_FAILURE, "calloc failed");
852
b += sizeof(uint32_t);
853
for (i = 0; i < cnt; i++) {
854
arsym[i].off = be32dec(b);
855
b += sizeof(uint32_t);
856
}
857
for (i = 0; i < cnt; i++) {
858
arsym[i].sym_name = b;
859
b += strlen(b) + 1;
860
}
861
if (ed->flags & SOLARIS_FMT) {
862
PRT("\nSymbol Table: (archive)\n");
863
PRT(" index offset symbol\n");
864
} else
865
PRT("\nsymbol table (archive):\n");
866
for (i = 0; i < cnt; i++) {
867
if (ed->flags & SOLARIS_FMT) {
868
snprintf(idx, sizeof(idx), "[%d]", i);
869
PRT("%10s ", idx);
870
PRT("0x%8.8jx ",
871
(uintmax_t)arsym[i].off);
872
PRT("%s\n", arsym[i].sym_name);
873
} else {
874
PRT("\nentry: %d\n", i);
875
PRT("\toffset: %#jx\n",
876
(uintmax_t)arsym[i].off);
877
PRT("\tsymbol: %s\n",
878
arsym[i].sym_name);
879
}
880
}
881
free(arsym);
882
free(buff);
883
/* No need to continue if we only dump ARSYM. */
884
if (ed->flags & ONLY_ARSYM) {
885
AC(archive_read_close(a));
886
AC(archive_read_free(a));
887
return;
888
}
889
continue;
890
}
891
if ((ed->elf = elf_memory(buff, size)) == NULL) {
892
warnx("elf_memroy() failed: %s",
893
elf_errmsg(-1));
894
free(buff);
895
continue;
896
}
897
/* Skip non-ELF member. */
898
if (elf_kind(ed->elf) == ELF_K_ELF) {
899
printf("\n%s(%s):\n", ed->archive, name);
900
elf_print_elf(ed);
901
}
902
elf_end(ed->elf);
903
free(buff);
904
}
905
AC(archive_read_close(a));
906
AC(archive_read_free(a));
907
}
908
909
#else /* USE_LIBARCHIVE_AR */
910
911
/*
912
* Dump an ar(1) archive.
913
*/
914
static void
915
elf_print_ar(struct elfdump *ed, int fd)
916
{
917
Elf *e;
918
Elf_Arhdr *arh;
919
Elf_Arsym *arsym;
920
Elf_Cmd cmd;
921
char idx[21];
922
size_t cnt, i;
923
924
ed->ar = ed->elf;
925
926
if (ed->flags & PRINT_ARSYM) {
927
cnt = 0;
928
if ((arsym = elf_getarsym(ed->ar, &cnt)) == NULL) {
929
warnx("elf_getarsym failed: %s", elf_errmsg(-1));
930
goto print_members;
931
}
932
if (cnt == 0)
933
goto print_members;
934
if (ed->flags & SOLARIS_FMT) {
935
PRT("\nSymbol Table: (archive)\n");
936
PRT(" index offset member name and symbol\n");
937
} else
938
PRT("\nsymbol table (archive):\n");
939
for (i = 0; i < cnt - 1; i++) {
940
if (elf_rand(ed->ar, arsym[i].as_off) !=
941
arsym[i].as_off) {
942
warnx("elf_rand failed: %s", elf_errmsg(-1));
943
break;
944
}
945
if ((e = elf_begin(fd, ELF_C_READ, ed->ar)) == NULL) {
946
warnx("elf_begin failed: %s", elf_errmsg(-1));
947
break;
948
}
949
if ((arh = elf_getarhdr(e)) == NULL) {
950
warnx("elf_getarhdr failed: %s",
951
elf_errmsg(-1));
952
break;
953
}
954
if (ed->flags & SOLARIS_FMT) {
955
snprintf(idx, sizeof(idx), "[%zu]", i);
956
PRT("%10s ", idx);
957
PRT("0x%8.8jx ",
958
(uintmax_t)arsym[i].as_off);
959
PRT("(%s):%s\n", arh->ar_name,
960
arsym[i].as_name);
961
} else {
962
PRT("\nentry: %zu\n", i);
963
PRT("\toffset: %#jx\n",
964
(uintmax_t)arsym[i].as_off);
965
PRT("\tmember: %s\n", arh->ar_name);
966
PRT("\tsymbol: %s\n", arsym[i].as_name);
967
}
968
elf_end(e);
969
}
970
971
/* No need to continue if we only dump ARSYM. */
972
if (ed->flags & ONLY_ARSYM)
973
return;
974
}
975
976
print_members:
977
978
/* Rewind the archive. */
979
if (elf_rand(ed->ar, SARMAG) != SARMAG) {
980
warnx("elf_rand failed: %s", elf_errmsg(-1));
981
return;
982
}
983
984
/* Dump each member of the archive. */
985
cmd = ELF_C_READ;
986
while ((ed->elf = elf_begin(fd, cmd, ed->ar)) != NULL) {
987
/* Skip non-ELF member. */
988
if (elf_kind(ed->elf) == ELF_K_ELF) {
989
if ((arh = elf_getarhdr(ed->elf)) == NULL) {
990
warnx("elf_getarhdr failed: %s",
991
elf_errmsg(-1));
992
break;
993
}
994
printf("\n%s(%s):\n", ed->archive, arh->ar_name);
995
elf_print_elf(ed);
996
}
997
cmd = elf_next(ed->elf);
998
elf_end(ed->elf);
999
}
1000
}
1001
1002
#endif /* USE_LIBARCHIVE_AR */
1003
1004
/*
1005
* Dump an object. (ELF object or ar(1) archive)
1006
*/
1007
static void
1008
elf_print_object(struct elfdump *ed)
1009
{
1010
int fd;
1011
1012
if ((fd = open(ed->filename, O_RDONLY)) == -1) {
1013
warn("open %s failed", ed->filename);
1014
return;
1015
}
1016
1017
#ifdef USE_LIBARCHIVE_AR
1018
if (ac_detect_ar(fd)) {
1019
ed->archive = ed->filename;
1020
ac_print_ar(ed, fd);
1021
return;
1022
}
1023
#endif /* USE_LIBARCHIVE_AR */
1024
1025
if ((ed->elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL) {
1026
warnx("elf_begin() failed: %s", elf_errmsg(-1));
1027
return;
1028
}
1029
1030
switch (elf_kind(ed->elf)) {
1031
case ELF_K_NONE:
1032
warnx("Not an ELF file.");
1033
return;
1034
case ELF_K_ELF:
1035
if (ed->flags & PRINT_FILENAME)
1036
printf("\n%s:\n", ed->filename);
1037
elf_print_elf(ed);
1038
break;
1039
case ELF_K_AR:
1040
#ifndef USE_LIBARCHIVE_AR
1041
ed->archive = ed->filename;
1042
elf_print_ar(ed, fd);
1043
#endif
1044
break;
1045
default:
1046
warnx("Internal: libelf returned unknown elf kind.");
1047
return;
1048
}
1049
1050
elf_end(ed->elf);
1051
}
1052
1053
/*
1054
* Dump an ELF object.
1055
*/
1056
static void
1057
elf_print_elf(struct elfdump *ed)
1058
{
1059
1060
if (gelf_getehdr(ed->elf, &ed->ehdr) == NULL) {
1061
warnx("gelf_getehdr failed: %s", elf_errmsg(-1));
1062
return;
1063
}
1064
if ((ed->ec = gelf_getclass(ed->elf)) == ELFCLASSNONE) {
1065
warnx("gelf_getclass failed: %s", elf_errmsg(-1));
1066
return;
1067
}
1068
1069
if (ed->options & (ED_SHDR | ED_DYN | ED_REL | ED_GOT | ED_SYMTAB |
1070
ED_SYMVER | ED_NOTE | ED_HASH))
1071
load_sections(ed);
1072
1073
if (ed->options & ED_EHDR)
1074
elf_print_ehdr(ed);
1075
if (ed->options & ED_PHDR)
1076
elf_print_phdr(ed);
1077
if (ed->options & ED_INTERP)
1078
elf_print_interp(ed);
1079
if (ed->options & ED_SHDR)
1080
elf_print_shdr(ed);
1081
if (ed->options & ED_DYN)
1082
elf_print_dynamic(ed);
1083
if (ed->options & ED_REL)
1084
elf_print_reloc(ed);
1085
if (ed->options & ED_GOT)
1086
elf_print_got(ed);
1087
if (ed->options & ED_SYMTAB)
1088
elf_print_symtabs(ed);
1089
if (ed->options & ED_SYMVER)
1090
elf_print_symver(ed);
1091
if (ed->options & ED_NOTE)
1092
elf_print_note(ed);
1093
if (ed->options & ED_HASH)
1094
elf_print_hash(ed);
1095
if (ed->options & ED_CHECKSUM)
1096
elf_print_checksum(ed);
1097
1098
unload_sections(ed);
1099
}
1100
1101
/*
1102
* Read the section headers from ELF object and store them in the
1103
* internal cache.
1104
*/
1105
static void
1106
load_sections(struct elfdump *ed)
1107
{
1108
struct section *s;
1109
const char *name;
1110
Elf_Scn *scn;
1111
GElf_Shdr sh;
1112
size_t shstrndx, ndx;
1113
int elferr;
1114
1115
assert(ed->sl == NULL);
1116
1117
if (!elf_getshnum(ed->elf, &ed->shnum)) {
1118
warnx("elf_getshnum failed: %s", elf_errmsg(-1));
1119
return;
1120
}
1121
if (ed->shnum == 0)
1122
return;
1123
if ((ed->sl = calloc(ed->shnum, sizeof(*ed->sl))) == NULL)
1124
err(EXIT_FAILURE, "calloc failed");
1125
if (!elf_getshstrndx(ed->elf, &shstrndx)) {
1126
warnx("elf_getshstrndx failed: %s", elf_errmsg(-1));
1127
return;
1128
}
1129
if ((scn = elf_getscn(ed->elf, 0)) == NULL) {
1130
warnx("elf_getscn failed: %s", elf_errmsg(-1));
1131
return;
1132
}
1133
(void) elf_errno();
1134
do {
1135
if (gelf_getshdr(scn, &sh) == NULL) {
1136
warnx("gelf_getshdr failed: %s", elf_errmsg(-1));
1137
(void) elf_errno();
1138
continue;
1139
}
1140
if ((name = elf_strptr(ed->elf, shstrndx, sh.sh_name)) == NULL) {
1141
(void) elf_errno();
1142
name = "ERROR";
1143
}
1144
if ((ndx = elf_ndxscn(scn)) == SHN_UNDEF)
1145
if ((elferr = elf_errno()) != 0) {
1146
warnx("elf_ndxscn failed: %s",
1147
elf_errmsg(elferr));
1148
continue;
1149
}
1150
if (ndx >= ed->shnum) {
1151
warnx("section index of '%s' out of range", name);
1152
continue;
1153
}
1154
s = &ed->sl[ndx];
1155
s->name = name;
1156
s->scn = scn;
1157
s->off = sh.sh_offset;
1158
s->sz = sh.sh_size;
1159
s->entsize = sh.sh_entsize;
1160
s->align = sh.sh_addralign;
1161
s->type = sh.sh_type;
1162
s->flags = sh.sh_flags;
1163
s->addr = sh.sh_addr;
1164
s->link = sh.sh_link;
1165
s->info = sh.sh_info;
1166
} while ((scn = elf_nextscn(ed->elf, scn)) != NULL);
1167
elferr = elf_errno();
1168
if (elferr != 0)
1169
warnx("elf_nextscn failed: %s", elf_errmsg(elferr));
1170
}
1171
1172
/*
1173
* Release section related resources.
1174
*/
1175
static void
1176
unload_sections(struct elfdump *ed)
1177
{
1178
if (ed->sl != NULL) {
1179
free(ed->sl);
1180
ed->sl = NULL;
1181
}
1182
}
1183
1184
/*
1185
* Add a name to the '-N' name list.
1186
*/
1187
static void
1188
add_name(struct elfdump *ed, const char *name)
1189
{
1190
struct spec_name *sn;
1191
1192
if (find_name(ed, name))
1193
return;
1194
if ((sn = malloc(sizeof(*sn))) == NULL) {
1195
warn("malloc failed");
1196
return;
1197
}
1198
sn->name = name;
1199
STAILQ_INSERT_TAIL(&ed->snl, sn, sn_list);
1200
}
1201
1202
/*
1203
* Lookup a name in the '-N' name list.
1204
*/
1205
static struct spec_name *
1206
find_name(struct elfdump *ed, const char *name)
1207
{
1208
struct spec_name *sn;
1209
1210
STAILQ_FOREACH(sn, &ed->snl, sn_list) {
1211
if (!strcmp(sn->name, name))
1212
return (sn);
1213
}
1214
1215
return (NULL);
1216
}
1217
1218
/*
1219
* Retrieve the name of a symbol using the section index of the symbol
1220
* table and the index of the symbol within that table.
1221
*/
1222
static const char *
1223
get_symbol_name(struct elfdump *ed, uint32_t symtab, int i)
1224
{
1225
static char sname[64];
1226
struct section *s;
1227
const char *name;
1228
GElf_Sym sym;
1229
Elf_Data *data;
1230
int elferr;
1231
1232
if (symtab >= ed->shnum)
1233
return ("");
1234
s = &ed->sl[symtab];
1235
if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM)
1236
return ("");
1237
(void) elf_errno();
1238
if ((data = elf_getdata(s->scn, NULL)) == NULL) {
1239
elferr = elf_errno();
1240
if (elferr != 0)
1241
warnx("elf_getdata failed: %s", elf_errmsg(elferr));
1242
return ("");
1243
}
1244
if (gelf_getsym(data, i, &sym) != &sym)
1245
return ("");
1246
if (GELF_ST_TYPE(sym.st_info) == STT_SECTION) {
1247
if (sym.st_shndx < ed->shnum) {
1248
snprintf(sname, sizeof(sname), "%s (section)",
1249
ed->sl[sym.st_shndx].name);
1250
return (sname);
1251
} else
1252
return ("");
1253
}
1254
if ((name = elf_strptr(ed->elf, s->link, sym.st_name)) == NULL)
1255
return ("");
1256
1257
return (name);
1258
}
1259
1260
/*
1261
* Retrieve a string using string table section index and the string offset.
1262
*/
1263
static const char*
1264
get_string(struct elfdump *ed, int strtab, size_t off)
1265
{
1266
const char *name;
1267
1268
if ((name = elf_strptr(ed->elf, strtab, off)) == NULL)
1269
return ("");
1270
1271
return (name);
1272
}
1273
1274
/*
1275
* Dump the ELF Executable Header.
1276
*/
1277
static void
1278
elf_print_ehdr(struct elfdump *ed)
1279
{
1280
1281
if (!STAILQ_EMPTY(&ed->snl))
1282
return;
1283
1284
if (ed->flags & SOLARIS_FMT) {
1285
PRT("\nELF Header\n");
1286
PRT(" ei_magic: { %#x, %c, %c, %c }\n",
1287
ed->ehdr.e_ident[0], ed->ehdr.e_ident[1],
1288
ed->ehdr.e_ident[2], ed->ehdr.e_ident[3]);
1289
PRT(" ei_class: %-18s",
1290
elf_class_str(ed->ehdr.e_ident[EI_CLASS]));
1291
PRT(" ei_data: %s\n",
1292
elf_data_str(ed->ehdr.e_ident[EI_DATA]));
1293
PRT(" e_machine: %-18s", e_machines(ed->ehdr.e_machine));
1294
PRT(" e_version: %s\n",
1295
elf_version_str(ed->ehdr.e_version));
1296
PRT(" e_type: %s\n", elf_type_str(ed->ehdr.e_type));
1297
PRT(" e_flags: %18d\n", ed->ehdr.e_flags);
1298
PRT(" e_entry: %#18jx", (uintmax_t)ed->ehdr.e_entry);
1299
PRT(" e_ehsize: %6d", ed->ehdr.e_ehsize);
1300
PRT(" e_shstrndx:%5d\n", ed->ehdr.e_shstrndx);
1301
PRT(" e_shoff: %#18jx", (uintmax_t)ed->ehdr.e_shoff);
1302
PRT(" e_shentsize: %3d", ed->ehdr.e_shentsize);
1303
PRT(" e_shnum: %5d\n", ed->ehdr.e_shnum);
1304
PRT(" e_phoff: %#18jx", (uintmax_t)ed->ehdr.e_phoff);
1305
PRT(" e_phentsize: %3d", ed->ehdr.e_phentsize);
1306
PRT(" e_phnum: %5d\n", ed->ehdr.e_phnum);
1307
} else {
1308
PRT("\nelf header:\n");
1309
PRT("\n");
1310
PRT("\te_ident: %s %s %s\n",
1311
elf_class_str(ed->ehdr.e_ident[EI_CLASS]),
1312
elf_data_str(ed->ehdr.e_ident[EI_DATA]),
1313
ei_abis[ed->ehdr.e_ident[EI_OSABI]]);
1314
PRT("\te_type: %s\n", elf_type_str(ed->ehdr.e_type));
1315
PRT("\te_machine: %s\n", e_machines(ed->ehdr.e_machine));
1316
PRT("\te_version: %s\n", elf_version_str(ed->ehdr.e_version));
1317
PRT("\te_entry: %#jx\n", (uintmax_t)ed->ehdr.e_entry);
1318
PRT("\te_phoff: %ju\n", (uintmax_t)ed->ehdr.e_phoff);
1319
PRT("\te_shoff: %ju\n", (uintmax_t) ed->ehdr.e_shoff);
1320
PRT("\te_flags: %u\n", ed->ehdr.e_flags);
1321
PRT("\te_ehsize: %u\n", ed->ehdr.e_ehsize);
1322
PRT("\te_phentsize: %u\n", ed->ehdr.e_phentsize);
1323
PRT("\te_phnum: %u\n", ed->ehdr.e_phnum);
1324
PRT("\te_shentsize: %u\n", ed->ehdr.e_shentsize);
1325
PRT("\te_shnum: %u\n", ed->ehdr.e_shnum);
1326
PRT("\te_shstrndx: %u\n", ed->ehdr.e_shstrndx);
1327
}
1328
}
1329
1330
/*
1331
* Dump the ELF Program Header Table.
1332
*/
1333
static void
1334
elf_print_phdr(struct elfdump *ed)
1335
{
1336
GElf_Phdr ph;
1337
size_t phnum, i;
1338
int header;
1339
1340
if (elf_getphnum(ed->elf, &phnum) == 0) {
1341
warnx("elf_getphnum failed: %s", elf_errmsg(-1));
1342
return;
1343
}
1344
header = 0;
1345
for (i = 0; i < phnum; i++) {
1346
if (gelf_getphdr(ed->elf, i, &ph) != &ph) {
1347
warnx("elf_getphdr failed: %s", elf_errmsg(-1));
1348
continue;
1349
}
1350
if (!STAILQ_EMPTY(&ed->snl) &&
1351
find_name(ed, elf_phdr_type_str(ph.p_type)) == NULL)
1352
continue;
1353
if (ed->flags & SOLARIS_FMT) {
1354
PRT("\nProgram Header[%zu]:\n", i);
1355
PRT(" p_vaddr: %#-14jx", (uintmax_t)ph.p_vaddr);
1356
PRT(" p_flags: [ %s ]\n",
1357
p_flags[ph.p_flags & 0x7]);
1358
PRT(" p_paddr: %#-14jx", (uintmax_t)ph.p_paddr);
1359
PRT(" p_type: [ %s ]\n",
1360
elf_phdr_type_str(ph.p_type));
1361
PRT(" p_filesz: %#-14jx",
1362
(uintmax_t)ph.p_filesz);
1363
PRT(" p_memsz: %#jx\n", (uintmax_t)ph.p_memsz);
1364
PRT(" p_offset: %#-14jx",
1365
(uintmax_t)ph.p_offset);
1366
PRT(" p_align: %#jx\n", (uintmax_t)ph.p_align);
1367
} else {
1368
if (!header) {
1369
PRT("\nprogram header:\n");
1370
header = 1;
1371
}
1372
PRT("\n");
1373
PRT("entry: %zu\n", i);
1374
PRT("\tp_type: %s\n", elf_phdr_type_str(ph.p_type));
1375
PRT("\tp_offset: %ju\n", (uintmax_t)ph.p_offset);
1376
PRT("\tp_vaddr: %#jx\n", (uintmax_t)ph.p_vaddr);
1377
PRT("\tp_paddr: %#jx\n", (uintmax_t)ph.p_paddr);
1378
PRT("\tp_filesz: %ju\n", (uintmax_t)ph.p_filesz);
1379
PRT("\tp_memsz: %ju\n", (uintmax_t)ph.p_memsz);
1380
PRT("\tp_flags: %s\n", p_flags[ph.p_flags & 0x7]);
1381
PRT("\tp_align: %ju\n", (uintmax_t)ph.p_align);
1382
}
1383
}
1384
}
1385
1386
/*
1387
* Dump the ELF Section Header Table.
1388
*/
1389
static void
1390
elf_print_shdr(struct elfdump *ed)
1391
{
1392
struct section *s;
1393
size_t i;
1394
1395
if (!STAILQ_EMPTY(&ed->snl))
1396
return;
1397
1398
if ((ed->flags & SOLARIS_FMT) == 0)
1399
PRT("\nsection header:\n");
1400
for (i = 0; i < ed->shnum; i++) {
1401
s = &ed->sl[i];
1402
if (ed->flags & SOLARIS_FMT) {
1403
if (i == 0)
1404
continue;
1405
PRT("\nSection Header[%zu]:", i);
1406
PRT(" sh_name: %s\n", s->name);
1407
PRT(" sh_addr: %#-14jx", (uintmax_t)s->addr);
1408
if (s->flags != 0)
1409
PRT(" sh_flags: [ %s ]\n", sh_flags(s->flags));
1410
else
1411
PRT(" sh_flags: 0\n");
1412
PRT(" sh_size: %#-14jx", (uintmax_t)s->sz);
1413
PRT(" sh_type: [ %s ]\n",
1414
sh_types(ed->ehdr.e_machine, s->type));
1415
PRT(" sh_offset: %#-14jx", (uintmax_t)s->off);
1416
PRT(" sh_entsize: %#jx\n", (uintmax_t)s->entsize);
1417
PRT(" sh_link: %-14u", s->link);
1418
PRT(" sh_info: %u\n", s->info);
1419
PRT(" sh_addralign: %#jx\n", (uintmax_t)s->align);
1420
} else {
1421
PRT("\n");
1422
PRT("entry: %ju\n", (uintmax_t)i);
1423
PRT("\tsh_name: %s\n", s->name);
1424
PRT("\tsh_type: %s\n",
1425
sh_types(ed->ehdr.e_machine, s->type));
1426
PRT("\tsh_flags: %s\n", sh_flags(s->flags));
1427
PRT("\tsh_addr: %#jx\n", (uintmax_t)s->addr);
1428
PRT("\tsh_offset: %ju\n", (uintmax_t)s->off);
1429
PRT("\tsh_size: %ju\n", (uintmax_t)s->sz);
1430
PRT("\tsh_link: %u\n", s->link);
1431
PRT("\tsh_info: %u\n", s->info);
1432
PRT("\tsh_addralign: %ju\n", (uintmax_t)s->align);
1433
PRT("\tsh_entsize: %ju\n", (uintmax_t)s->entsize);
1434
}
1435
}
1436
}
1437
1438
/*
1439
* Return number of entries in the given section. We'd prefer ent_count be a
1440
* size_t, but libelf APIs already use int for section indices.
1441
*/
1442
static int
1443
get_ent_count(const struct section *s, int *ent_count)
1444
{
1445
if (s->entsize == 0) {
1446
warnx("section %s has entry size 0", s->name);
1447
return (0);
1448
} else if (s->sz / s->entsize > INT_MAX) {
1449
warnx("section %s has invalid section count", s->name);
1450
return (0);
1451
}
1452
*ent_count = (int)(s->sz / s->entsize);
1453
return (1);
1454
}
1455
1456
/*
1457
* Retrieve the content of the corresponding SHT_SUNW_versym section for
1458
* a symbol table section.
1459
*/
1460
static void
1461
get_versym(struct elfdump *ed, int i, uint16_t **vs, int *nvs)
1462
{
1463
struct section *s;
1464
Elf_Data *data;
1465
size_t j;
1466
int elferr;
1467
1468
s = NULL;
1469
for (j = 0; j < ed->shnum; j++) {
1470
s = &ed->sl[j];
1471
if (s->type == SHT_SUNW_versym && s->link == (uint32_t)i)
1472
break;
1473
}
1474
if (j >= ed->shnum) {
1475
*vs = NULL;
1476
return;
1477
}
1478
(void) elf_errno();
1479
if ((data = elf_getdata(s->scn, NULL)) == NULL) {
1480
elferr = elf_errno();
1481
if (elferr != 0)
1482
warnx("elf_getdata failed: %s", elf_errmsg(elferr));
1483
*vs = NULL;
1484
return;
1485
}
1486
1487
*vs = data->d_buf;
1488
assert(data->d_size == s->sz);
1489
if (!get_ent_count(s, nvs))
1490
*nvs = 0;
1491
}
1492
1493
/*
1494
* Dump the symbol table section.
1495
*/
1496
static void
1497
elf_print_symtab(struct elfdump *ed, int i)
1498
{
1499
struct section *s;
1500
const char *name;
1501
uint16_t *vs;
1502
char idx[13];
1503
Elf_Data *data;
1504
GElf_Sym sym;
1505
int len, j, elferr, nvs;
1506
1507
s = &ed->sl[i];
1508
if (ed->flags & SOLARIS_FMT)
1509
PRT("\nSymbol Table Section: %s\n", s->name);
1510
else
1511
PRT("\nsymbol table (%s):\n", s->name);
1512
(void) elf_errno();
1513
if ((data = elf_getdata(s->scn, NULL)) == NULL) {
1514
elferr = elf_errno();
1515
if (elferr != 0)
1516
warnx("elf_getdata failed: %s", elf_errmsg(elferr));
1517
return;
1518
}
1519
vs = NULL;
1520
nvs = 0;
1521
assert(data->d_size == s->sz);
1522
if (!get_ent_count(s, &len))
1523
return;
1524
if (ed->flags & SOLARIS_FMT) {
1525
if (ed->ec == ELFCLASS32)
1526
PRT(" index value ");
1527
else
1528
PRT(" index value ");
1529
PRT("size type bind oth ver shndx name\n");
1530
get_versym(ed, i, &vs, &nvs);
1531
if (vs != NULL && nvs != len) {
1532
warnx("#symbol not equal to #versym");
1533
vs = NULL;
1534
}
1535
}
1536
for (j = 0; j < len; j++) {
1537
if (gelf_getsym(data, j, &sym) != &sym) {
1538
warnx("gelf_getsym failed: %s", elf_errmsg(-1));
1539
continue;
1540
}
1541
name = get_string(ed, s->link, sym.st_name);
1542
if (ed->flags & SOLARIS_FMT) {
1543
snprintf(idx, sizeof(idx), "[%d]", j);
1544
if (ed->ec == ELFCLASS32)
1545
PRT("%10s ", idx);
1546
else
1547
PRT("%10s ", idx);
1548
PRT("0x%8.8jx ", (uintmax_t)sym.st_value);
1549
if (ed->ec == ELFCLASS32)
1550
PRT("0x%8.8jx ", (uintmax_t)sym.st_size);
1551
else
1552
PRT("0x%12.12jx ", (uintmax_t)sym.st_size);
1553
PRT("%s ", st_type_S(GELF_ST_TYPE(sym.st_info)));
1554
PRT("%s ", st_bindings_S(GELF_ST_BIND(sym.st_info)));
1555
PRT("%c ", st_others[sym.st_other]);
1556
PRT("%3u ", (vs == NULL ? 0 : vs[j]));
1557
PRT("%-11.11s ", sh_name(ed, sym.st_shndx));
1558
PRT("%s\n", name);
1559
} else {
1560
PRT("\nentry: %d\n", j);
1561
PRT("\tst_name: %s\n", name);
1562
PRT("\tst_value: %#jx\n", (uintmax_t)sym.st_value);
1563
PRT("\tst_size: %ju\n", (uintmax_t)sym.st_size);
1564
PRT("\tst_info: %s %s\n",
1565
st_type(ed->ehdr.e_machine,
1566
GELF_ST_TYPE(sym.st_info)),
1567
st_bindings(GELF_ST_BIND(sym.st_info)));
1568
PRT("\tst_shndx: %ju\n", (uintmax_t)sym.st_shndx);
1569
}
1570
}
1571
}
1572
1573
/*
1574
* Dump the symbol tables. (.dynsym and .symtab)
1575
*/
1576
static void
1577
elf_print_symtabs(struct elfdump *ed)
1578
{
1579
size_t i;
1580
1581
for (i = 0; i < ed->shnum; i++)
1582
if ((ed->sl[i].type == SHT_SYMTAB ||
1583
ed->sl[i].type == SHT_DYNSYM) &&
1584
(STAILQ_EMPTY(&ed->snl) || find_name(ed, ed->sl[i].name)))
1585
elf_print_symtab(ed, i);
1586
}
1587
1588
/*
1589
* Dump the content of .dynamic section.
1590
*/
1591
static void
1592
elf_print_dynamic(struct elfdump *ed)
1593
{
1594
struct section *s;
1595
const char *name;
1596
char idx[13];
1597
Elf_Data *data;
1598
GElf_Dyn dyn;
1599
int elferr, i, len;
1600
1601
s = NULL;
1602
for (i = 0; (size_t)i < ed->shnum; i++) {
1603
s = &ed->sl[i];
1604
if (s->type == SHT_DYNAMIC &&
1605
(STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name)))
1606
break;
1607
}
1608
if ((size_t)i >= ed->shnum)
1609
return;
1610
1611
if (ed->flags & SOLARIS_FMT) {
1612
PRT("Dynamic Section: %s\n", s->name);
1613
PRT(" index tag value\n");
1614
} else
1615
PRT("\ndynamic:\n");
1616
(void) elf_errno();
1617
if ((data = elf_getdata(s->scn, NULL)) == NULL) {
1618
elferr = elf_errno();
1619
if (elferr != 0)
1620
warnx("elf_getdata failed: %s", elf_errmsg(elferr));
1621
return;
1622
}
1623
assert(data->d_size == s->sz);
1624
if (!get_ent_count(s, &len))
1625
return;
1626
for (i = 0; i < len; i++) {
1627
if (gelf_getdyn(data, i, &dyn) != &dyn) {
1628
warnx("gelf_getdyn failed: %s", elf_errmsg(-1));
1629
continue;
1630
}
1631
1632
if (ed->flags & SOLARIS_FMT) {
1633
snprintf(idx, sizeof(idx), "[%d]", i);
1634
PRT("%10s %-16s ", idx, d_tags(dyn.d_tag));
1635
} else {
1636
PRT("\n");
1637
PRT("entry: %d\n", i);
1638
PRT("\td_tag: %s\n", d_tags(dyn.d_tag));
1639
}
1640
switch(dyn.d_tag) {
1641
case DT_NEEDED:
1642
case DT_SONAME:
1643
case DT_RPATH:
1644
case DT_RUNPATH:
1645
if ((name = elf_strptr(ed->elf, s->link,
1646
dyn.d_un.d_val)) == NULL)
1647
name = "";
1648
if (ed->flags & SOLARIS_FMT)
1649
PRT("%#-16jx %s\n", (uintmax_t)dyn.d_un.d_val,
1650
name);
1651
else
1652
PRT("\td_val: %s\n", name);
1653
break;
1654
case DT_PLTRELSZ:
1655
case DT_RELA:
1656
case DT_RELASZ:
1657
case DT_RELAENT:
1658
case DT_RELACOUNT:
1659
case DT_STRSZ:
1660
case DT_SYMENT:
1661
case DT_RELSZ:
1662
case DT_RELENT:
1663
case DT_PLTREL:
1664
case DT_VERDEF:
1665
case DT_VERDEFNUM:
1666
case DT_VERNEED:
1667
case DT_VERNEEDNUM:
1668
case DT_VERSYM:
1669
if (ed->flags & SOLARIS_FMT)
1670
PRT("%#jx\n", (uintmax_t)dyn.d_un.d_val);
1671
else
1672
PRT("\td_val: %ju\n",
1673
(uintmax_t)dyn.d_un.d_val);
1674
break;
1675
case DT_PLTGOT:
1676
case DT_HASH:
1677
case DT_GNU_HASH:
1678
case DT_STRTAB:
1679
case DT_SYMTAB:
1680
case DT_INIT:
1681
case DT_FINI:
1682
case DT_REL:
1683
case DT_JMPREL:
1684
case DT_DEBUG:
1685
if (ed->flags & SOLARIS_FMT)
1686
PRT("%#jx\n", (uintmax_t)dyn.d_un.d_ptr);
1687
else
1688
PRT("\td_ptr: %#jx\n",
1689
(uintmax_t)dyn.d_un.d_ptr);
1690
break;
1691
case DT_NULL:
1692
case DT_SYMBOLIC:
1693
case DT_TEXTREL:
1694
default:
1695
if (ed->flags & SOLARIS_FMT)
1696
PRT("\n");
1697
break;
1698
}
1699
}
1700
}
1701
1702
/*
1703
* Dump a .rel/.rela section entry.
1704
*/
1705
static void
1706
elf_print_rel_entry(struct elfdump *ed, struct section *s, int j,
1707
struct rel_entry *r)
1708
{
1709
1710
if (ed->flags & SOLARIS_FMT) {
1711
PRT(" %-23s ", elftc_reloc_type_str(ed->ehdr.e_machine,
1712
GELF_R_TYPE(r->u_r.rel.r_info)));
1713
PRT("%#12jx ", (uintmax_t)r->u_r.rel.r_offset);
1714
if (r->type == SHT_RELA)
1715
PRT("%10jd ", (intmax_t)r->u_r.rela.r_addend);
1716
else
1717
PRT(" ");
1718
PRT("%-14s ", s->name);
1719
PRT("%s\n", r->symn);
1720
} else {
1721
PRT("\n");
1722
PRT("entry: %d\n", j);
1723
PRT("\tr_offset: %#jx\n", (uintmax_t)r->u_r.rel.r_offset);
1724
if (ed->ec == ELFCLASS32)
1725
PRT("\tr_info: %#jx\n", (uintmax_t)
1726
ELF32_R_INFO(ELF64_R_SYM(r->u_r.rel.r_info),
1727
ELF64_R_TYPE(r->u_r.rel.r_info)));
1728
else
1729
PRT("\tr_info: %#jx\n", (uintmax_t)r->u_r.rel.r_info);
1730
if (r->type == SHT_RELA)
1731
PRT("\tr_addend: %jd\n",
1732
(intmax_t)r->u_r.rela.r_addend);
1733
}
1734
}
1735
1736
/*
1737
* Dump a relocation section of type SHT_RELA.
1738
*/
1739
static void
1740
elf_print_rela(struct elfdump *ed, struct section *s, Elf_Data *data)
1741
{
1742
struct rel_entry r;
1743
int j, len;
1744
1745
if (ed->flags & SOLARIS_FMT) {
1746
PRT("\nRelocation Section: %s\n", s->name);
1747
PRT(" type offset "
1748
"addend section with respect to\n");
1749
} else
1750
PRT("\nrelocation with addend (%s):\n", s->name);
1751
r.type = SHT_RELA;
1752
assert(data->d_size == s->sz);
1753
if (!get_ent_count(s, &len))
1754
return;
1755
for (j = 0; j < len; j++) {
1756
if (gelf_getrela(data, j, &r.u_r.rela) != &r.u_r.rela) {
1757
warnx("gelf_getrela failed: %s",
1758
elf_errmsg(-1));
1759
continue;
1760
}
1761
r.symn = get_symbol_name(ed, s->link,
1762
GELF_R_SYM(r.u_r.rela.r_info));
1763
elf_print_rel_entry(ed, s, j, &r);
1764
}
1765
}
1766
1767
/*
1768
* Dump a relocation section of type SHT_REL.
1769
*/
1770
static void
1771
elf_print_rel(struct elfdump *ed, struct section *s, Elf_Data *data)
1772
{
1773
struct rel_entry r;
1774
int j, len;
1775
1776
if (ed->flags & SOLARIS_FMT) {
1777
PRT("\nRelocation Section: %s\n", s->name);
1778
PRT(" type offset "
1779
"section with respect to\n");
1780
} else
1781
PRT("\nrelocation (%s):\n", s->name);
1782
r.type = SHT_REL;
1783
assert(data->d_size == s->sz);
1784
if (!get_ent_count(s, &len))
1785
return;
1786
for (j = 0; j < len; j++) {
1787
if (gelf_getrel(data, j, &r.u_r.rel) != &r.u_r.rel) {
1788
warnx("gelf_getrel failed: %s", elf_errmsg(-1));
1789
continue;
1790
}
1791
r.symn = get_symbol_name(ed, s->link,
1792
GELF_R_SYM(r.u_r.rel.r_info));
1793
elf_print_rel_entry(ed, s, j, &r);
1794
}
1795
}
1796
1797
/*
1798
* Dump relocation sections.
1799
*/
1800
static void
1801
elf_print_reloc(struct elfdump *ed)
1802
{
1803
struct section *s;
1804
Elf_Data *data;
1805
size_t i;
1806
int elferr;
1807
1808
for (i = 0; i < ed->shnum; i++) {
1809
s = &ed->sl[i];
1810
if ((s->type == SHT_REL || s->type == SHT_RELA) &&
1811
(STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name))) {
1812
(void) elf_errno();
1813
if ((data = elf_getdata(s->scn, NULL)) == NULL) {
1814
elferr = elf_errno();
1815
if (elferr != 0)
1816
warnx("elf_getdata failed: %s",
1817
elf_errmsg(elferr));
1818
continue;
1819
}
1820
if (s->type == SHT_REL)
1821
elf_print_rel(ed, s, data);
1822
else
1823
elf_print_rela(ed, s, data);
1824
}
1825
}
1826
}
1827
1828
/*
1829
* Dump the content of PT_INTERP segment.
1830
*/
1831
static void
1832
elf_print_interp(struct elfdump *ed)
1833
{
1834
const char *s;
1835
GElf_Phdr phdr;
1836
size_t filesize, i, phnum;
1837
1838
if (!STAILQ_EMPTY(&ed->snl) && find_name(ed, "PT_INTERP") == NULL)
1839
return;
1840
1841
if ((s = elf_rawfile(ed->elf, &filesize)) == NULL) {
1842
warnx("elf_rawfile failed: %s", elf_errmsg(-1));
1843
return;
1844
}
1845
if (!elf_getphnum(ed->elf, &phnum)) {
1846
warnx("elf_getphnum failed: %s", elf_errmsg(-1));
1847
return;
1848
}
1849
for (i = 0; i < phnum; i++) {
1850
if (gelf_getphdr(ed->elf, i, &phdr) != &phdr) {
1851
warnx("elf_getphdr failed: %s", elf_errmsg(-1));
1852
continue;
1853
}
1854
if (phdr.p_type == PT_INTERP) {
1855
if (phdr.p_offset >= filesize) {
1856
warnx("invalid phdr offset");
1857
continue;
1858
}
1859
PRT("\ninterp:\n");
1860
PRT("\t%s\n", s + phdr.p_offset);
1861
}
1862
}
1863
}
1864
1865
/*
1866
* Search the relocation sections for entries referring to the .got section.
1867
*/
1868
static void
1869
find_gotrel(struct elfdump *ed, struct section *gs, struct rel_entry *got)
1870
{
1871
struct section *s;
1872
struct rel_entry r;
1873
Elf_Data *data;
1874
size_t i;
1875
int elferr, j, k, len;
1876
1877
for(i = 0; i < ed->shnum; i++) {
1878
s = &ed->sl[i];
1879
if (s->type != SHT_REL && s->type != SHT_RELA)
1880
continue;
1881
(void) elf_errno();
1882
if ((data = elf_getdata(s->scn, NULL)) == NULL) {
1883
elferr = elf_errno();
1884
if (elferr != 0)
1885
warnx("elf_getdata failed: %s",
1886
elf_errmsg(elferr));
1887
return;
1888
}
1889
memset(&r, 0, sizeof(struct rel_entry));
1890
r.type = s->type;
1891
assert(data->d_size == s->sz);
1892
if (!get_ent_count(s, &len))
1893
return;
1894
for (j = 0; j < len; j++) {
1895
if (s->type == SHT_REL) {
1896
if (gelf_getrel(data, j, &r.u_r.rel) !=
1897
&r.u_r.rel) {
1898
warnx("gelf_getrel failed: %s",
1899
elf_errmsg(-1));
1900
continue;
1901
}
1902
} else {
1903
if (gelf_getrela(data, j, &r.u_r.rela) !=
1904
&r.u_r.rela) {
1905
warnx("gelf_getrel failed: %s",
1906
elf_errmsg(-1));
1907
continue;
1908
}
1909
}
1910
if (r.u_r.rel.r_offset >= gs->addr &&
1911
r.u_r.rel.r_offset < gs->addr + gs->sz) {
1912
r.symn = get_symbol_name(ed, s->link,
1913
GELF_R_SYM(r.u_r.rel.r_info));
1914
k = (r.u_r.rel.r_offset - gs->addr) /
1915
gs->entsize;
1916
memcpy(&got[k], &r, sizeof(struct rel_entry));
1917
}
1918
}
1919
}
1920
}
1921
1922
static void
1923
elf_print_got_section(struct elfdump *ed, struct section *s)
1924
{
1925
struct rel_entry *got;
1926
Elf_Data *data, dst;
1927
int elferr, i, len;
1928
1929
if (s->entsize == 0) {
1930
/* XXX IA64 GOT section generated by gcc has entry size 0. */
1931
if (s->align != 0)
1932
s->entsize = s->align;
1933
else
1934
return;
1935
}
1936
1937
if (!get_ent_count(s, &len))
1938
return;
1939
if (ed->flags & SOLARIS_FMT)
1940
PRT("\nGlobal Offset Table Section: %s (%d entries)\n",
1941
s->name, len);
1942
else
1943
PRT("\nglobal offset table: %s\n", s->name);
1944
(void) elf_errno();
1945
if ((data = elf_getdata(s->scn, NULL)) == NULL) {
1946
elferr = elf_errno();
1947
if (elferr != 0)
1948
warnx("elf_getdata failed: %s", elf_errmsg(elferr));
1949
return;
1950
}
1951
1952
/*
1953
* GOT section has section type SHT_PROGBITS, thus libelf treats it as
1954
* byte stream and will not perform any translation on it. As a result,
1955
* an exlicit call to gelf_xlatetom is needed here. Depends on arch,
1956
* GOT section should be translated to either WORD or XWORD.
1957
*/
1958
if (ed->ec == ELFCLASS32)
1959
data->d_type = ELF_T_WORD;
1960
else
1961
data->d_type = ELF_T_XWORD;
1962
memcpy(&dst, data, sizeof(Elf_Data));
1963
if (gelf_xlatetom(ed->elf, &dst, data, ed->ehdr.e_ident[EI_DATA]) !=
1964
&dst) {
1965
warnx("gelf_xlatetom failed: %s", elf_errmsg(-1));
1966
return;
1967
}
1968
assert(dst.d_size == s->sz);
1969
if (ed->flags & SOLARIS_FMT) {
1970
/*
1971
* In verbose/Solaris mode, we search the relocation sections
1972
* and try to find the corresponding reloc entry for each GOT
1973
* section entry.
1974
*/
1975
if ((got = calloc(len, sizeof(struct rel_entry))) == NULL)
1976
err(EXIT_FAILURE, "calloc failed");
1977
find_gotrel(ed, s, got);
1978
if (ed->ec == ELFCLASS32) {
1979
PRT(" ndx addr value reloc ");
1980
PRT("addend symbol\n");
1981
} else {
1982
PRT(" ndx addr value ");
1983
PRT("reloc addend symbol\n");
1984
}
1985
for(i = 0; i < len; i++) {
1986
PRT("[%5.5d] ", i);
1987
if (ed->ec == ELFCLASS32) {
1988
PRT("%-8.8jx ",
1989
(uintmax_t) (s->addr + i * s->entsize));
1990
PRT("%-8.8x ", *((uint32_t *)dst.d_buf + i));
1991
} else {
1992
PRT("%-16.16jx ",
1993
(uintmax_t) (s->addr + i * s->entsize));
1994
PRT("%-16.16jx ",
1995
(uintmax_t) *((uint64_t *)dst.d_buf + i));
1996
}
1997
PRT("%-18s ", elftc_reloc_type_str(ed->ehdr.e_machine,
1998
GELF_R_TYPE(got[i].u_r.rel.r_info)));
1999
if (ed->ec == ELFCLASS32)
2000
PRT("%-8.8jd ",
2001
(intmax_t)got[i].u_r.rela.r_addend);
2002
else
2003
PRT("%-12.12jd ",
2004
(intmax_t)got[i].u_r.rela.r_addend);
2005
if (got[i].symn == NULL)
2006
got[i].symn = "";
2007
PRT("%s\n", got[i].symn);
2008
}
2009
free(got);
2010
} else {
2011
for(i = 0; i < len; i++) {
2012
PRT("\nentry: %d\n", i);
2013
if (ed->ec == ELFCLASS32)
2014
PRT("\t%#x\n", *((uint32_t *)dst.d_buf + i));
2015
else
2016
PRT("\t%#jx\n",
2017
(uintmax_t) *((uint64_t *)dst.d_buf + i));
2018
}
2019
}
2020
}
2021
2022
/*
2023
* Dump the content of Global Offset Table section.
2024
*/
2025
static void
2026
elf_print_got(struct elfdump *ed)
2027
{
2028
struct section *s;
2029
size_t i;
2030
2031
if (!STAILQ_EMPTY(&ed->snl))
2032
return;
2033
2034
s = NULL;
2035
for (i = 0; i < ed->shnum; i++) {
2036
s = &ed->sl[i];
2037
if (s->name && !strncmp(s->name, ".got", 4) &&
2038
(STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name)))
2039
elf_print_got_section(ed, s);
2040
}
2041
}
2042
2043
/*
2044
* Dump the content of .note.ABI-tag section.
2045
*/
2046
static void
2047
elf_print_note(struct elfdump *ed)
2048
{
2049
struct section *s;
2050
Elf_Data *data;
2051
Elf_Note *en;
2052
uint32_t namesz;
2053
uint32_t descsz;
2054
uint32_t desc;
2055
size_t count;
2056
int elferr, i;
2057
uint8_t *src;
2058
char idx[17];
2059
2060
s = NULL;
2061
for (i = 0; (size_t)i < ed->shnum; i++) {
2062
s = &ed->sl[i];
2063
if (s->type == SHT_NOTE && s->name &&
2064
!strcmp(s->name, ".note.ABI-tag") &&
2065
(STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name)))
2066
break;
2067
}
2068
if ((size_t)i >= ed->shnum)
2069
return;
2070
if (ed->flags & SOLARIS_FMT)
2071
PRT("\nNote Section: %s\n", s->name);
2072
else
2073
PRT("\nnote (%s):\n", s->name);
2074
(void) elf_errno();
2075
if ((data = elf_getdata(s->scn, NULL)) == NULL) {
2076
elferr = elf_errno();
2077
if (elferr != 0)
2078
warnx("elf_getdata failed: %s", elf_errmsg(elferr));
2079
return;
2080
}
2081
src = data->d_buf;
2082
count = data->d_size;
2083
while (count > sizeof(Elf_Note)) {
2084
en = (Elf_Note *) (uintptr_t) src;
2085
namesz = en->n_namesz;
2086
descsz = en->n_descsz;
2087
src += sizeof(Elf_Note);
2088
count -= sizeof(Elf_Note);
2089
if (roundup2(namesz, 4) + roundup2(descsz, 4) > count) {
2090
warnx("truncated note section");
2091
return;
2092
}
2093
if (ed->flags & SOLARIS_FMT) {
2094
PRT("\n type %#x\n", en->n_type);
2095
PRT(" namesz %#x:\n", en->n_namesz);
2096
PRT("%s\n", src);
2097
} else
2098
PRT("\t%s ", src);
2099
src += roundup2(namesz, 4);
2100
count -= roundup2(namesz, 4);
2101
2102
/*
2103
* Note that we dump the whole desc part if we're in
2104
* "Solaris mode", while in the normal mode, we only look
2105
* at the first 4 bytes (a 32bit word) of the desc, i.e,
2106
* we assume that it's always a FreeBSD version number.
2107
*/
2108
if (ed->flags & SOLARIS_FMT) {
2109
PRT(" descsz %#x:", en->n_descsz);
2110
for (i = 0; (uint32_t)i < descsz; i++) {
2111
if ((i & 0xF) == 0) {
2112
snprintf(idx, sizeof(idx), "desc[%d]",
2113
i);
2114
PRT("\n %-9s", idx);
2115
} else if ((i & 0x3) == 0)
2116
PRT(" ");
2117
PRT(" %2.2x", src[i]);
2118
}
2119
PRT("\n");
2120
} else {
2121
if (ed->ehdr.e_ident[EI_DATA] == ELFDATA2MSB)
2122
desc = be32dec(src);
2123
else
2124
desc = le32dec(src);
2125
PRT("%d\n", desc);
2126
}
2127
src += roundup2(descsz, 4);
2128
count -= roundup2(descsz, 4);
2129
}
2130
}
2131
2132
/*
2133
* Dump a hash table.
2134
*/
2135
static void
2136
elf_print_svr4_hash(struct elfdump *ed, struct section *s)
2137
{
2138
Elf_Data *data;
2139
uint32_t *buf;
2140
uint32_t *bucket, *chain;
2141
uint32_t nbucket, nchain;
2142
uint32_t *bl, *c, maxl, total;
2143
uint32_t i, j;
2144
int first, elferr;
2145
char idx[10];
2146
2147
if (ed->flags & SOLARIS_FMT)
2148
PRT("\nHash Section: %s\n", s->name);
2149
else
2150
PRT("\nhash table (%s):\n", s->name);
2151
(void) elf_errno();
2152
if ((data = elf_getdata(s->scn, NULL)) == NULL) {
2153
elferr = elf_errno();
2154
if (elferr != 0)
2155
warnx("elf_getdata failed: %s",
2156
elf_errmsg(elferr));
2157
return;
2158
}
2159
if (data->d_size < 2 * sizeof(uint32_t)) {
2160
warnx(".hash section too small");
2161
return;
2162
}
2163
buf = data->d_buf;
2164
nbucket = buf[0];
2165
nchain = buf[1];
2166
if (nbucket <= 0 || nchain <= 0) {
2167
warnx("Malformed .hash section");
2168
return;
2169
}
2170
if (data->d_size !=
2171
((uint64_t)nbucket + (uint64_t)nchain + 2) * sizeof(uint32_t)) {
2172
warnx("Malformed .hash section");
2173
return;
2174
}
2175
bucket = &buf[2];
2176
chain = &buf[2 + nbucket];
2177
2178
if (ed->flags & SOLARIS_FMT) {
2179
maxl = 0;
2180
if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
2181
err(EXIT_FAILURE, "calloc failed");
2182
for (i = 0; i < nbucket; i++)
2183
for (j = bucket[i]; j > 0 && j < nchain; j = chain[j])
2184
if (++bl[i] > maxl)
2185
maxl = bl[i];
2186
if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
2187
err(EXIT_FAILURE, "calloc failed");
2188
for (i = 0; i < nbucket; i++)
2189
c[bl[i]]++;
2190
PRT(" bucket symndx name\n");
2191
for (i = 0; i < nbucket; i++) {
2192
first = 1;
2193
for (j = bucket[i]; j > 0 && j < nchain; j = chain[j]) {
2194
if (first) {
2195
PRT("%10d ", i);
2196
first = 0;
2197
} else
2198
PRT(" ");
2199
snprintf(idx, sizeof(idx), "[%d]", j);
2200
PRT("%-10s ", idx);
2201
PRT("%s\n", get_symbol_name(ed, s->link, j));
2202
}
2203
}
2204
PRT("\n");
2205
total = 0;
2206
for (i = 0; i <= maxl; i++) {
2207
total += c[i] * i;
2208
PRT("%10u buckets contain %8d symbols\n", c[i], i);
2209
}
2210
PRT("%10u buckets %8u symbols (globals)\n", nbucket,
2211
total);
2212
} else {
2213
PRT("\nnbucket: %u\n", nbucket);
2214
PRT("nchain: %u\n\n", nchain);
2215
for (i = 0; i < nbucket; i++)
2216
PRT("bucket[%d]:\n\t%u\n\n", i, bucket[i]);
2217
for (i = 0; i < nchain; i++)
2218
PRT("chain[%d]:\n\t%u\n\n", i, chain[i]);
2219
}
2220
}
2221
2222
/*
2223
* Dump a 64bit hash table.
2224
*/
2225
static void
2226
elf_print_svr4_hash64(struct elfdump *ed, struct section *s)
2227
{
2228
Elf_Data *data, dst;
2229
uint64_t *buf;
2230
uint64_t *bucket, *chain;
2231
uint64_t nbucket, nchain;
2232
uint64_t *bl, *c, j, maxl, total;
2233
size_t i;
2234
int elferr, first;
2235
char idx[10];
2236
2237
if (ed->flags & SOLARIS_FMT)
2238
PRT("\nHash Section: %s\n", s->name);
2239
else
2240
PRT("\nhash table (%s):\n", s->name);
2241
2242
/*
2243
* ALPHA uses 64-bit hash entries. Since libelf assumes that
2244
* .hash section contains only 32-bit entry, an explicit
2245
* gelf_xlatetom is needed here.
2246
*/
2247
(void) elf_errno();
2248
if ((data = elf_rawdata(s->scn, NULL)) == NULL) {
2249
elferr = elf_errno();
2250
if (elferr != 0)
2251
warnx("elf_rawdata failed: %s",
2252
elf_errmsg(elferr));
2253
return;
2254
}
2255
data->d_type = ELF_T_XWORD;
2256
memcpy(&dst, data, sizeof(Elf_Data));
2257
if (gelf_xlatetom(ed->elf, &dst, data,
2258
ed->ehdr.e_ident[EI_DATA]) != &dst) {
2259
warnx("gelf_xlatetom failed: %s", elf_errmsg(-1));
2260
return;
2261
}
2262
if (dst.d_size < 2 * sizeof(uint64_t)) {
2263
warnx(".hash section too small");
2264
return;
2265
}
2266
buf = dst.d_buf;
2267
nbucket = buf[0];
2268
nchain = buf[1];
2269
if (nbucket <= 0 || nchain <= 0) {
2270
warnx("Malformed .hash section");
2271
return;
2272
}
2273
if (dst.d_size != (nbucket + nchain + 2) * sizeof(uint64_t)) {
2274
warnx("Malformed .hash section");
2275
return;
2276
}
2277
bucket = &buf[2];
2278
chain = &buf[2 + nbucket];
2279
2280
if (ed->flags & SOLARIS_FMT) {
2281
maxl = 0;
2282
if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
2283
err(EXIT_FAILURE, "calloc failed");
2284
for (i = 0; i < nbucket; i++)
2285
for (j = bucket[i]; j > 0 && j < nchain; j = chain[j])
2286
if (++bl[i] > maxl)
2287
maxl = bl[i];
2288
if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
2289
err(EXIT_FAILURE, "calloc failed");
2290
for (i = 0; i < nbucket; i++)
2291
c[bl[i]]++;
2292
PRT(" bucket symndx name\n");
2293
for (i = 0; i < nbucket; i++) {
2294
first = 1;
2295
for (j = bucket[i]; j > 0 && j < nchain; j = chain[j]) {
2296
if (first) {
2297
PRT("%10zu ", i);
2298
first = 0;
2299
} else
2300
PRT(" ");
2301
snprintf(idx, sizeof(idx), "[%zu]", (size_t)j);
2302
PRT("%-10s ", idx);
2303
PRT("%s\n", get_symbol_name(ed, s->link, j));
2304
}
2305
}
2306
PRT("\n");
2307
total = 0;
2308
for (i = 0; i <= maxl; i++) {
2309
total += c[i] * i;
2310
PRT("%10ju buckets contain %8zu symbols\n",
2311
(uintmax_t)c[i], i);
2312
}
2313
PRT("%10ju buckets %8ju symbols (globals)\n",
2314
(uintmax_t)nbucket, (uintmax_t)total);
2315
} else {
2316
PRT("\nnbucket: %ju\n", (uintmax_t)nbucket);
2317
PRT("nchain: %ju\n\n", (uintmax_t)nchain);
2318
for (i = 0; i < nbucket; i++)
2319
PRT("bucket[%zu]:\n\t%ju\n\n", i, (uintmax_t)bucket[i]);
2320
for (i = 0; i < nchain; i++)
2321
PRT("chain[%zu]:\n\t%ju\n\n", i, (uintmax_t)chain[i]);
2322
}
2323
2324
}
2325
2326
/*
2327
* Dump a GNU hash table.
2328
*/
2329
static void
2330
elf_print_gnu_hash(struct elfdump *ed, struct section *s)
2331
{
2332
struct section *ds;
2333
Elf_Data *data;
2334
uint32_t *buf;
2335
uint32_t *bucket, *chain;
2336
uint32_t nbucket, nchain, symndx, maskwords, shift2;
2337
uint32_t *bl, *c, maxl, total;
2338
uint32_t i, j;
2339
int first, elferr, dynsymcount;
2340
char idx[10];
2341
2342
if (ed->flags & SOLARIS_FMT)
2343
PRT("\nGNU Hash Section: %s\n", s->name);
2344
else
2345
PRT("\ngnu hash table (%s):\n", s->name);
2346
(void) elf_errno();
2347
if ((data = elf_getdata(s->scn, NULL)) == NULL) {
2348
elferr = elf_errno();
2349
if (elferr != 0)
2350
warnx("elf_getdata failed: %s",
2351
elf_errmsg(elferr));
2352
return;
2353
}
2354
if (data->d_size < 4 * sizeof(uint32_t)) {
2355
warnx(".gnu.hash section too small");
2356
return;
2357
}
2358
buf = data->d_buf;
2359
nbucket = buf[0];
2360
symndx = buf[1];
2361
maskwords = buf[2];
2362
shift2 = buf[3];
2363
buf += 4;
2364
if (s->link >= ed->shnum) {
2365
warnx("Malformed .gnu.hash section");
2366
return;
2367
}
2368
ds = &ed->sl[s->link];
2369
if (!get_ent_count(ds, &dynsymcount))
2370
return;
2371
if (symndx >= (uint32_t)dynsymcount) {
2372
warnx("Malformed .gnu.hash section");
2373
return;
2374
}
2375
nchain = dynsymcount - symndx;
2376
if (data->d_size != 4 * sizeof(uint32_t) + maskwords *
2377
(ed->ec == ELFCLASS32 ? sizeof(uint32_t) : sizeof(uint64_t)) +
2378
((uint64_t)nbucket + (uint64_t)nchain) * sizeof(uint32_t)) {
2379
warnx("Malformed .gnu.hash section");
2380
return;
2381
}
2382
bucket = buf + (ed->ec == ELFCLASS32 ? maskwords : maskwords * 2);
2383
chain = bucket + nbucket;
2384
2385
if (ed->flags & SOLARIS_FMT) {
2386
maxl = 0;
2387
if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
2388
err(EXIT_FAILURE, "calloc failed");
2389
for (i = 0; i < nbucket; i++)
2390
for (j = bucket[i]; j > 0 && j - symndx < nchain; j++) {
2391
if (++bl[i] > maxl)
2392
maxl = bl[i];
2393
if (chain[j - symndx] & 1)
2394
break;
2395
}
2396
if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
2397
err(EXIT_FAILURE, "calloc failed");
2398
for (i = 0; i < nbucket; i++)
2399
c[bl[i]]++;
2400
PRT(" bucket symndx name\n");
2401
for (i = 0; i < nbucket; i++) {
2402
first = 1;
2403
for (j = bucket[i]; j > 0 && j - symndx < nchain; j++) {
2404
if (first) {
2405
PRT("%10d ", i);
2406
first = 0;
2407
} else
2408
PRT(" ");
2409
snprintf(idx, sizeof(idx), "[%d]", j );
2410
PRT("%-10s ", idx);
2411
PRT("%s\n", get_symbol_name(ed, s->link, j));
2412
if (chain[j - symndx] & 1)
2413
break;
2414
}
2415
}
2416
PRT("\n");
2417
total = 0;
2418
for (i = 0; i <= maxl; i++) {
2419
total += c[i] * i;
2420
PRT("%10u buckets contain %8d symbols\n", c[i], i);
2421
}
2422
PRT("%10u buckets %8u symbols (globals)\n", nbucket,
2423
total);
2424
} else {
2425
PRT("\nnbucket: %u\n", nbucket);
2426
PRT("symndx: %u\n", symndx);
2427
PRT("maskwords: %u\n", maskwords);
2428
PRT("shift2: %u\n", shift2);
2429
PRT("nchain: %u\n\n", nchain);
2430
for (i = 0; i < nbucket; i++)
2431
PRT("bucket[%d]:\n\t%u\n\n", i, bucket[i]);
2432
for (i = 0; i < nchain; i++)
2433
PRT("chain[%d]:\n\t%u\n\n", i, chain[i]);
2434
}
2435
}
2436
2437
/*
2438
* Dump hash tables.
2439
*/
2440
static void
2441
elf_print_hash(struct elfdump *ed)
2442
{
2443
struct section *s;
2444
size_t i;
2445
2446
for (i = 0; i < ed->shnum; i++) {
2447
s = &ed->sl[i];
2448
if ((s->type == SHT_HASH || s->type == SHT_GNU_HASH) &&
2449
(STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name))) {
2450
if (s->type == SHT_GNU_HASH)
2451
elf_print_gnu_hash(ed, s);
2452
else if (ed->ehdr.e_machine == EM_ALPHA &&
2453
s->entsize == 8)
2454
elf_print_svr4_hash64(ed, s);
2455
else
2456
elf_print_svr4_hash(ed, s);
2457
}
2458
}
2459
}
2460
2461
/*
2462
* Dump the content of a Version Definition(SHT_SUNW_Verdef) Section.
2463
*/
2464
static void
2465
elf_print_verdef(struct elfdump *ed, struct section *s)
2466
{
2467
Elf_Data *data;
2468
Elf32_Verdef *vd;
2469
Elf32_Verdaux *vda;
2470
const char *str;
2471
char idx[10];
2472
uint8_t *buf, *end, *buf2;
2473
int i, j, elferr, count;
2474
2475
if (ed->flags & SOLARIS_FMT)
2476
PRT("Version Definition Section: %s\n", s->name);
2477
else
2478
PRT("\nversion definition section (%s):\n", s->name);
2479
(void) elf_errno();
2480
if ((data = elf_getdata(s->scn, NULL)) == NULL) {
2481
elferr = elf_errno();
2482
if (elferr != 0)
2483
warnx("elf_getdata failed: %s",
2484
elf_errmsg(elferr));
2485
return;
2486
}
2487
buf = data->d_buf;
2488
end = buf + data->d_size;
2489
i = 0;
2490
if (ed->flags & SOLARIS_FMT)
2491
PRT(" index version dependency\n");
2492
while (buf + sizeof(Elf32_Verdef) <= end) {
2493
vd = (Elf32_Verdef *) (uintptr_t) buf;
2494
if (ed->flags & SOLARIS_FMT) {
2495
snprintf(idx, sizeof(idx), "[%d]", vd->vd_ndx);
2496
PRT("%10s ", idx);
2497
} else {
2498
PRT("\nentry: %d\n", i++);
2499
PRT("\tvd_version: %u\n", vd->vd_version);
2500
PRT("\tvd_flags: %u\n", vd->vd_flags);
2501
PRT("\tvd_ndx: %u\n", vd->vd_ndx);
2502
PRT("\tvd_cnt: %u\n", vd->vd_cnt);
2503
PRT("\tvd_hash: %u\n", vd->vd_hash);
2504
PRT("\tvd_aux: %u\n", vd->vd_aux);
2505
PRT("\tvd_next: %u\n\n", vd->vd_next);
2506
}
2507
buf2 = buf + vd->vd_aux;
2508
j = 0;
2509
count = 0;
2510
while (buf2 + sizeof(Elf32_Verdaux) <= end && j < vd->vd_cnt) {
2511
vda = (Elf32_Verdaux *) (uintptr_t) buf2;
2512
str = get_string(ed, s->link, vda->vda_name);
2513
if (ed->flags & SOLARIS_FMT) {
2514
if (count == 0)
2515
PRT("%-26.26s", str);
2516
else if (count == 1)
2517
PRT(" %-20.20s", str);
2518
else {
2519
PRT("\n%40.40s", "");
2520
PRT("%s", str);
2521
}
2522
} else {
2523
PRT("\t\tvda: %d\n", j++);
2524
PRT("\t\t\tvda_name: %s\n", str);
2525
PRT("\t\t\tvda_next: %u\n", vda->vda_next);
2526
}
2527
if (vda->vda_next == 0) {
2528
if (ed->flags & SOLARIS_FMT) {
2529
if (vd->vd_flags & VER_FLG_BASE) {
2530
if (count == 0)
2531
PRT("%-20.20s", "");
2532
PRT("%s", "[ BASE ]");
2533
}
2534
PRT("\n");
2535
}
2536
break;
2537
}
2538
if (ed->flags & SOLARIS_FMT)
2539
count++;
2540
buf2 += vda->vda_next;
2541
}
2542
if (vd->vd_next == 0)
2543
break;
2544
buf += vd->vd_next;
2545
}
2546
}
2547
2548
/*
2549
* Dump the content of a Version Needed(SHT_SUNW_Verneed) Section.
2550
*/
2551
static void
2552
elf_print_verneed(struct elfdump *ed, struct section *s)
2553
{
2554
Elf_Data *data;
2555
Elf32_Verneed *vn;
2556
Elf32_Vernaux *vna;
2557
uint8_t *buf, *end, *buf2;
2558
int i, j, elferr, first;
2559
2560
if (ed->flags & SOLARIS_FMT)
2561
PRT("\nVersion Needed Section: %s\n", s->name);
2562
else
2563
PRT("\nversion need section (%s):\n", s->name);
2564
(void) elf_errno();
2565
if ((data = elf_getdata(s->scn, NULL)) == NULL) {
2566
elferr = elf_errno();
2567
if (elferr != 0)
2568
warnx("elf_getdata failed: %s",
2569
elf_errmsg(elferr));
2570
return;
2571
}
2572
buf = data->d_buf;
2573
end = buf + data->d_size;
2574
if (ed->flags & SOLARIS_FMT)
2575
PRT(" file version\n");
2576
i = 0;
2577
while (buf + sizeof(Elf32_Verneed) <= end) {
2578
vn = (Elf32_Verneed *) (uintptr_t) buf;
2579
if (ed->flags & SOLARIS_FMT)
2580
PRT(" %-26.26s ",
2581
get_string(ed, s->link, vn->vn_file));
2582
else {
2583
PRT("\nentry: %d\n", i++);
2584
PRT("\tvn_version: %u\n", vn->vn_version);
2585
PRT("\tvn_cnt: %u\n", vn->vn_cnt);
2586
PRT("\tvn_file: %s\n",
2587
get_string(ed, s->link, vn->vn_file));
2588
PRT("\tvn_aux: %u\n", vn->vn_aux);
2589
PRT("\tvn_next: %u\n\n", vn->vn_next);
2590
}
2591
buf2 = buf + vn->vn_aux;
2592
j = 0;
2593
first = 1;
2594
while (buf2 + sizeof(Elf32_Vernaux) <= end && j < vn->vn_cnt) {
2595
vna = (Elf32_Vernaux *) (uintptr_t) buf2;
2596
if (ed->flags & SOLARIS_FMT) {
2597
if (!first)
2598
PRT("%40.40s", "");
2599
else
2600
first = 0;
2601
PRT("%s\n", get_string(ed, s->link,
2602
vna->vna_name));
2603
} else {
2604
PRT("\t\tvna: %d\n", j++);
2605
PRT("\t\t\tvna_hash: %u\n", vna->vna_hash);
2606
PRT("\t\t\tvna_flags: %u\n", vna->vna_flags);
2607
PRT("\t\t\tvna_other: %u\n", vna->vna_other);
2608
PRT("\t\t\tvna_name: %s\n",
2609
get_string(ed, s->link, vna->vna_name));
2610
PRT("\t\t\tvna_next: %u\n", vna->vna_next);
2611
}
2612
if (vna->vna_next == 0)
2613
break;
2614
buf2 += vna->vna_next;
2615
}
2616
if (vn->vn_next == 0)
2617
break;
2618
buf += vn->vn_next;
2619
}
2620
}
2621
2622
/*
2623
* Dump the symbol-versioning sections.
2624
*/
2625
static void
2626
elf_print_symver(struct elfdump *ed)
2627
{
2628
struct section *s;
2629
size_t i;
2630
2631
for (i = 0; i < ed->shnum; i++) {
2632
s = &ed->sl[i];
2633
if (!STAILQ_EMPTY(&ed->snl) && !find_name(ed, s->name))
2634
continue;
2635
if (s->type == SHT_SUNW_verdef)
2636
elf_print_verdef(ed, s);
2637
if (s->type == SHT_SUNW_verneed)
2638
elf_print_verneed(ed, s);
2639
}
2640
}
2641
2642
/*
2643
* Dump the ELF checksum. See gelf_checksum(3) for details.
2644
*/
2645
static void
2646
elf_print_checksum(struct elfdump *ed)
2647
{
2648
2649
if (!STAILQ_EMPTY(&ed->snl))
2650
return;
2651
2652
PRT("\nelf checksum: %#lx\n", gelf_checksum(ed->elf));
2653
}
2654
2655
#define USAGE_MESSAGE "\
2656
Usage: %s [options] file...\n\
2657
Display information about ELF objects and ar(1) archives.\n\n\
2658
Options:\n\
2659
-a Show all information.\n\
2660
-c Show shared headers.\n\
2661
-d Show dynamic symbols.\n\
2662
-e Show the ELF header.\n\
2663
-G Show the GOT.\n\
2664
-H | --help Show a usage message and exit.\n\
2665
-h Show hash values.\n\
2666
-i Show the dynamic interpreter.\n\
2667
-k Show the ELF checksum.\n\
2668
-n Show the contents of note sections.\n\
2669
-N NAME Show the section named \"NAME\".\n\
2670
-p Show the program header.\n\
2671
-r Show relocations.\n\
2672
-s Show the symbol table.\n\
2673
-S Use the Solaris elfdump format.\n\
2674
-v Show symbol-versioning information.\n\
2675
-V | --version Print a version identifier and exit.\n\
2676
-w FILE Write output to \"FILE\".\n"
2677
2678
static void
2679
usage(void)
2680
{
2681
fprintf(stderr, USAGE_MESSAGE, ELFTC_GETPROGNAME());
2682
exit(EXIT_FAILURE);
2683
}
2684
2685