Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/googletest/googlemock/include/gmock/gmock-actions.h
110743 views
1
// Copyright 2007, Google Inc.
2
// All rights reserved.
3
//
4
// Redistribution and use in source and binary forms, with or without
5
// modification, are permitted provided that the following conditions are
6
// met:
7
//
8
// * Redistributions of source code must retain the above copyright
9
// notice, this list of conditions and the following disclaimer.
10
// * Redistributions in binary form must reproduce the above
11
// copyright notice, this list of conditions and the following disclaimer
12
// in the documentation and/or other materials provided with the
13
// distribution.
14
// * Neither the name of Google Inc. nor the names of its
15
// contributors may be used to endorse or promote products derived from
16
// this software without specific prior written permission.
17
//
18
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30
// Google Mock - a framework for writing C++ mock classes.
31
//
32
// The ACTION* family of macros can be used in a namespace scope to
33
// define custom actions easily. The syntax:
34
//
35
// ACTION(name) { statements; }
36
//
37
// will define an action with the given name that executes the
38
// statements. The value returned by the statements will be used as
39
// the return value of the action. Inside the statements, you can
40
// refer to the K-th (0-based) argument of the mock function by
41
// 'argK', and refer to its type by 'argK_type'. For example:
42
//
43
// ACTION(IncrementArg1) {
44
// arg1_type temp = arg1;
45
// return ++(*temp);
46
// }
47
//
48
// allows you to write
49
//
50
// ...WillOnce(IncrementArg1());
51
//
52
// You can also refer to the entire argument tuple and its type by
53
// 'args' and 'args_type', and refer to the mock function type and its
54
// return type by 'function_type' and 'return_type'.
55
//
56
// Note that you don't need to specify the types of the mock function
57
// arguments. However rest assured that your code is still type-safe:
58
// you'll get a compiler error if *arg1 doesn't support the ++
59
// operator, or if the type of ++(*arg1) isn't compatible with the
60
// mock function's return type, for example.
61
//
62
// Sometimes you'll want to parameterize the action. For that you can use
63
// another macro:
64
//
65
// ACTION_P(name, param_name) { statements; }
66
//
67
// For example:
68
//
69
// ACTION_P(Add, n) { return arg0 + n; }
70
//
71
// will allow you to write:
72
//
73
// ...WillOnce(Add(5));
74
//
75
// Note that you don't need to provide the type of the parameter
76
// either. If you need to reference the type of a parameter named
77
// 'foo', you can write 'foo_type'. For example, in the body of
78
// ACTION_P(Add, n) above, you can write 'n_type' to refer to the type
79
// of 'n'.
80
//
81
// We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support
82
// multi-parameter actions.
83
//
84
// For the purpose of typing, you can view
85
//
86
// ACTION_Pk(Foo, p1, ..., pk) { ... }
87
//
88
// as shorthand for
89
//
90
// template <typename p1_type, ..., typename pk_type>
91
// FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... }
92
//
93
// In particular, you can provide the template type arguments
94
// explicitly when invoking Foo(), as in Foo<long, bool>(5, false);
95
// although usually you can rely on the compiler to infer the types
96
// for you automatically. You can assign the result of expression
97
// Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ...,
98
// pk_type>. This can be useful when composing actions.
99
//
100
// You can also overload actions with different numbers of parameters:
101
//
102
// ACTION_P(Plus, a) { ... }
103
// ACTION_P2(Plus, a, b) { ... }
104
//
105
// While it's tempting to always use the ACTION* macros when defining
106
// a new action, you should also consider implementing ActionInterface
107
// or using MakePolymorphicAction() instead, especially if you need to
108
// use the action a lot. While these approaches require more work,
109
// they give you more control on the types of the mock function
110
// arguments and the action parameters, which in general leads to
111
// better compiler error messages that pay off in the long run. They
112
// also allow overloading actions based on parameter types (as opposed
113
// to just based on the number of parameters).
114
//
115
// CAVEAT:
116
//
117
// ACTION*() can only be used in a namespace scope as templates cannot be
118
// declared inside of a local class.
119
// Users can, however, define any local functors (e.g. a lambda) that
120
// can be used as actions.
121
//
122
// MORE INFORMATION:
123
//
124
// To learn more about using these macros, please search for 'ACTION' on
125
// https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md
126
127
// IWYU pragma: private, include "gmock/gmock.h"
128
// IWYU pragma: friend gmock/.*
129
130
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
131
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
132
133
#ifndef _WIN32_WCE
134
#include <errno.h>
135
#endif
136
137
#include <algorithm>
138
#include <exception>
139
#include <functional>
140
#include <memory>
141
#include <string>
142
#include <tuple>
143
#include <type_traits>
144
#include <utility>
145
146
#include "gmock/internal/gmock-internal-utils.h"
147
#include "gmock/internal/gmock-port.h"
148
#include "gmock/internal/gmock-pp.h"
149
150
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4100)
151
152
namespace testing {
153
154
// To implement an action Foo, define:
155
// 1. a class FooAction that implements the ActionInterface interface, and
156
// 2. a factory function that creates an Action object from a
157
// const FooAction*.
158
//
159
// The two-level delegation design follows that of Matcher, providing
160
// consistency for extension developers. It also eases ownership
161
// management as Action objects can now be copied like plain values.
162
163
namespace internal {
164
165
// BuiltInDefaultValueGetter<T, true>::Get() returns a
166
// default-constructed T value. BuiltInDefaultValueGetter<T,
167
// false>::Get() crashes with an error.
168
//
169
// This primary template is used when kDefaultConstructible is true.
170
template <typename T, bool kDefaultConstructible>
171
struct BuiltInDefaultValueGetter {
172
static T Get() { return T(); }
173
};
174
template <typename T>
175
struct BuiltInDefaultValueGetter<T, false> {
176
static T Get() {
177
Assert(false, __FILE__, __LINE__,
178
"Default action undefined for the function return type.");
179
#if defined(__GNUC__) || defined(__clang__)
180
__builtin_unreachable();
181
#elif defined(_MSC_VER)
182
__assume(0);
183
#else
184
return Invalid<T>();
185
// The above statement will never be reached, but is required in
186
// order for this function to compile.
187
#endif
188
}
189
};
190
191
// BuiltInDefaultValue<T>::Get() returns the "built-in" default value
192
// for type T, which is NULL when T is a raw pointer type, 0 when T is
193
// a numeric type, false when T is bool, or "" when T is string or
194
// std::string. In addition, in C++11 and above, it turns a
195
// default-constructed T value if T is default constructible. For any
196
// other type T, the built-in default T value is undefined, and the
197
// function will abort the process.
198
template <typename T>
199
class BuiltInDefaultValue {
200
public:
201
// This function returns true if and only if type T has a built-in default
202
// value.
203
static bool Exists() { return ::std::is_default_constructible<T>::value; }
204
205
static T Get() {
206
return BuiltInDefaultValueGetter<
207
T, ::std::is_default_constructible<T>::value>::Get();
208
}
209
};
210
211
// This partial specialization says that we use the same built-in
212
// default value for T and const T.
213
template <typename T>
214
class BuiltInDefaultValue<const T> {
215
public:
216
static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
217
static T Get() { return BuiltInDefaultValue<T>::Get(); }
218
};
219
220
// This partial specialization defines the default values for pointer
221
// types.
222
template <typename T>
223
class BuiltInDefaultValue<T*> {
224
public:
225
static bool Exists() { return true; }
226
static T* Get() { return nullptr; }
227
};
228
229
// The following specializations define the default values for
230
// specific types we care about.
231
#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
232
template <> \
233
class BuiltInDefaultValue<type> { \
234
public: \
235
static bool Exists() { return true; } \
236
static type Get() { return value; } \
237
}
238
239
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT
240
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
241
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
242
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
243
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
244
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
245
246
// There's no need for a default action for signed wchar_t, as that
247
// type is the same as wchar_t for gcc, and invalid for MSVC.
248
//
249
// There's also no need for a default action for unsigned wchar_t, as
250
// that type is the same as unsigned int for gcc, and invalid for
251
// MSVC.
252
#if GMOCK_WCHAR_T_IS_NATIVE_
253
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT
254
#endif
255
256
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT
257
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT
258
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
259
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
260
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT
261
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT
262
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT
263
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT
264
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
265
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
266
267
#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
268
269
// Partial implementations of metaprogramming types from the standard library
270
// not available in C++11.
271
272
template <typename P>
273
struct negation
274
// NOLINTNEXTLINE
275
: std::integral_constant<bool, bool(!P::value)> {};
276
277
// Base case: with zero predicates the answer is always true.
278
template <typename...>
279
struct conjunction : std::true_type {};
280
281
// With a single predicate, the answer is that predicate.
282
template <typename P1>
283
struct conjunction<P1> : P1 {};
284
285
// With multiple predicates the answer is the first predicate if that is false,
286
// and we recurse otherwise.
287
template <typename P1, typename... Ps>
288
struct conjunction<P1, Ps...>
289
: std::conditional<bool(P1::value), conjunction<Ps...>, P1>::type {};
290
291
template <typename...>
292
struct disjunction : std::false_type {};
293
294
template <typename P1>
295
struct disjunction<P1> : P1 {};
296
297
template <typename P1, typename... Ps>
298
struct disjunction<P1, Ps...>
299
// NOLINTNEXTLINE
300
: std::conditional<!bool(P1::value), disjunction<Ps...>, P1>::type {};
301
302
template <typename...>
303
using void_t = void;
304
305
// Detects whether an expression of type `From` can be implicitly converted to
306
// `To` according to [conv]. In C++17, [conv]/3 defines this as follows:
307
//
308
// An expression e can be implicitly converted to a type T if and only if
309
// the declaration T t=e; is well-formed, for some invented temporary
310
// variable t ([dcl.init]).
311
//
312
// [conv]/2 implies we can use function argument passing to detect whether this
313
// initialization is valid.
314
//
315
// Note that this is distinct from is_convertible, which requires this be valid:
316
//
317
// To test() {
318
// return declval<From>();
319
// }
320
//
321
// In particular, is_convertible doesn't give the correct answer when `To` and
322
// `From` are the same non-moveable type since `declval<From>` will be an rvalue
323
// reference, defeating the guaranteed copy elision that would otherwise make
324
// this function work.
325
//
326
// REQUIRES: `From` is not cv void.
327
template <typename From, typename To>
328
struct is_implicitly_convertible {
329
private:
330
// A function that accepts a parameter of type T. This can be called with type
331
// U successfully only if U is implicitly convertible to T.
332
template <typename T>
333
static void Accept(T);
334
335
// A function that creates a value of type T.
336
template <typename T>
337
static T Make();
338
339
// An overload be selected when implicit conversion from T to To is possible.
340
template <typename T, typename = decltype(Accept<To>(Make<T>()))>
341
static std::true_type TestImplicitConversion(int);
342
343
// A fallback overload selected in all other cases.
344
template <typename T>
345
static std::false_type TestImplicitConversion(...);
346
347
public:
348
using type = decltype(TestImplicitConversion<From>(0));
349
static constexpr bool value = type::value;
350
};
351
352
// Like std::invoke_result_t from C++17, but works only for objects with call
353
// operators (not e.g. member function pointers, which we don't need specific
354
// support for in OnceAction because std::function deals with them).
355
template <typename F, typename... Args>
356
using call_result_t = decltype(std::declval<F>()(std::declval<Args>()...));
357
358
template <typename Void, typename R, typename F, typename... Args>
359
struct is_callable_r_impl : std::false_type {};
360
361
// Specialize the struct for those template arguments where call_result_t is
362
// well-formed. When it's not, the generic template above is chosen, resulting
363
// in std::false_type.
364
template <typename R, typename F, typename... Args>
365
struct is_callable_r_impl<void_t<call_result_t<F, Args...>>, R, F, Args...>
366
: std::conditional<
367
std::is_void<R>::value, //
368
std::true_type, //
369
is_implicitly_convertible<call_result_t<F, Args...>, R>>::type {};
370
371
// Like std::is_invocable_r from C++17, but works only for objects with call
372
// operators. See the note on call_result_t.
373
template <typename R, typename F, typename... Args>
374
using is_callable_r = is_callable_r_impl<void, R, F, Args...>;
375
376
// Like std::as_const from C++17.
377
template <typename T>
378
typename std::add_const<T>::type& as_const(T& t) {
379
return t;
380
}
381
382
} // namespace internal
383
384
// Specialized for function types below.
385
template <typename F>
386
class OnceAction;
387
388
// An action that can only be used once.
389
//
390
// This is accepted by WillOnce, which doesn't require the underlying action to
391
// be copy-constructible (only move-constructible), and promises to invoke it as
392
// an rvalue reference. This allows the action to work with move-only types like
393
// std::move_only_function in a type-safe manner.
394
//
395
// For example:
396
//
397
// // Assume we have some API that needs to accept a unique pointer to some
398
// // non-copyable object Foo.
399
// void AcceptUniquePointer(std::unique_ptr<Foo> foo);
400
//
401
// // We can define an action that provides a Foo to that API. Because It
402
// // has to give away its unique pointer, it must not be called more than
403
// // once, so its call operator is &&-qualified.
404
// struct ProvideFoo {
405
// std::unique_ptr<Foo> foo;
406
//
407
// void operator()() && {
408
// AcceptUniquePointer(std::move(Foo));
409
// }
410
// };
411
//
412
// // This action can be used with WillOnce.
413
// EXPECT_CALL(mock, Call)
414
// .WillOnce(ProvideFoo{std::make_unique<Foo>(...)});
415
//
416
// // But a call to WillRepeatedly will fail to compile. This is correct,
417
// // since the action cannot correctly be used repeatedly.
418
// EXPECT_CALL(mock, Call)
419
// .WillRepeatedly(ProvideFoo{std::make_unique<Foo>(...)});
420
//
421
// A less-contrived example would be an action that returns an arbitrary type,
422
// whose &&-qualified call operator is capable of dealing with move-only types.
423
template <typename Result, typename... Args>
424
class OnceAction<Result(Args...)> final {
425
private:
426
// True iff we can use the given callable type (or lvalue reference) directly
427
// via StdFunctionAdaptor.
428
template <typename Callable>
429
using IsDirectlyCompatible = internal::conjunction<
430
// It must be possible to capture the callable in StdFunctionAdaptor.
431
std::is_constructible<typename std::decay<Callable>::type, Callable>,
432
// The callable must be compatible with our signature.
433
internal::is_callable_r<Result, typename std::decay<Callable>::type,
434
Args...>>;
435
436
// True iff we can use the given callable type via StdFunctionAdaptor once we
437
// ignore incoming arguments.
438
template <typename Callable>
439
using IsCompatibleAfterIgnoringArguments = internal::conjunction<
440
// It must be possible to capture the callable in a lambda.
441
std::is_constructible<typename std::decay<Callable>::type, Callable>,
442
// The callable must be invocable with zero arguments, returning something
443
// convertible to Result.
444
internal::is_callable_r<Result, typename std::decay<Callable>::type>>;
445
446
public:
447
// Construct from a callable that is directly compatible with our mocked
448
// signature: it accepts our function type's arguments and returns something
449
// convertible to our result type.
450
template <typename Callable,
451
typename std::enable_if<
452
internal::conjunction<
453
// Teach clang on macOS that we're not talking about a
454
// copy/move constructor here. Otherwise it gets confused
455
// when checking the is_constructible requirement of our
456
// traits above.
457
internal::negation<std::is_same<
458
OnceAction, typename std::decay<Callable>::type>>,
459
IsDirectlyCompatible<Callable>> //
460
::value,
461
int>::type = 0>
462
OnceAction(Callable&& callable) // NOLINT
463
: function_(StdFunctionAdaptor<typename std::decay<Callable>::type>(
464
{}, std::forward<Callable>(callable))) {}
465
466
// As above, but for a callable that ignores the mocked function's arguments.
467
template <typename Callable,
468
typename std::enable_if<
469
internal::conjunction<
470
// Teach clang on macOS that we're not talking about a
471
// copy/move constructor here. Otherwise it gets confused
472
// when checking the is_constructible requirement of our
473
// traits above.
474
internal::negation<std::is_same<
475
OnceAction, typename std::decay<Callable>::type>>,
476
// Exclude callables for which the overload above works.
477
// We'd rather provide the arguments if possible.
478
internal::negation<IsDirectlyCompatible<Callable>>,
479
IsCompatibleAfterIgnoringArguments<Callable>>::value,
480
int>::type = 0>
481
OnceAction(Callable&& callable) // NOLINT
482
// Call the constructor above with a callable
483
// that ignores the input arguments.
484
: OnceAction(IgnoreIncomingArguments<typename std::decay<Callable>::type>{
485
std::forward<Callable>(callable)}) {}
486
487
// We are naturally copyable because we store only an std::function, but
488
// semantically we should not be copyable.
489
OnceAction(const OnceAction&) = delete;
490
OnceAction& operator=(const OnceAction&) = delete;
491
OnceAction(OnceAction&&) = default;
492
493
// Invoke the underlying action callable with which we were constructed,
494
// handing it the supplied arguments.
495
Result Call(Args... args) && {
496
return function_(std::forward<Args>(args)...);
497
}
498
499
private:
500
// An adaptor that wraps a callable that is compatible with our signature and
501
// being invoked as an rvalue reference so that it can be used as an
502
// StdFunctionAdaptor. This throws away type safety, but that's fine because
503
// this is only used by WillOnce, which we know calls at most once.
504
//
505
// Once we have something like std::move_only_function from C++23, we can do
506
// away with this.
507
template <typename Callable>
508
class StdFunctionAdaptor final {
509
public:
510
// A tag indicating that the (otherwise universal) constructor is accepting
511
// the callable itself, instead of e.g. stealing calls for the move
512
// constructor.
513
struct CallableTag final {};
514
515
template <typename F>
516
explicit StdFunctionAdaptor(CallableTag, F&& callable)
517
: callable_(std::make_shared<Callable>(std::forward<F>(callable))) {}
518
519
// Rather than explicitly returning Result, we return whatever the wrapped
520
// callable returns. This allows for compatibility with existing uses like
521
// the following, when the mocked function returns void:
522
//
523
// EXPECT_CALL(mock_fn_, Call)
524
// .WillOnce([&] {
525
// [...]
526
// return 0;
527
// });
528
//
529
// Such a callable can be turned into std::function<void()>. If we use an
530
// explicit return type of Result here then it *doesn't* work with
531
// std::function, because we'll get a "void function should not return a
532
// value" error.
533
//
534
// We need not worry about incompatible result types because the SFINAE on
535
// OnceAction already checks this for us. std::is_invocable_r_v itself makes
536
// the same allowance for void result types.
537
template <typename... ArgRefs>
538
internal::call_result_t<Callable, ArgRefs...> operator()(
539
ArgRefs&&... args) const {
540
return std::move(*callable_)(std::forward<ArgRefs>(args)...);
541
}
542
543
private:
544
// We must put the callable on the heap so that we are copyable, which
545
// std::function needs.
546
std::shared_ptr<Callable> callable_;
547
};
548
549
// An adaptor that makes a callable that accepts zero arguments callable with
550
// our mocked arguments.
551
template <typename Callable>
552
struct IgnoreIncomingArguments {
553
internal::call_result_t<Callable> operator()(Args&&...) {
554
return std::move(callable)();
555
}
556
557
Callable callable;
558
};
559
560
std::function<Result(Args...)> function_;
561
};
562
563
// When an unexpected function call is encountered, Google Mock will
564
// let it return a default value if the user has specified one for its
565
// return type, or if the return type has a built-in default value;
566
// otherwise Google Mock won't know what value to return and will have
567
// to abort the process.
568
//
569
// The DefaultValue<T> class allows a user to specify the
570
// default value for a type T that is both copyable and publicly
571
// destructible (i.e. anything that can be used as a function return
572
// type). The usage is:
573
//
574
// // Sets the default value for type T to be foo.
575
// DefaultValue<T>::Set(foo);
576
template <typename T>
577
class DefaultValue {
578
public:
579
// Sets the default value for type T; requires T to be
580
// copy-constructable and have a public destructor.
581
static void Set(T x) {
582
delete producer_;
583
producer_ = new FixedValueProducer(x);
584
}
585
586
// Provides a factory function to be called to generate the default value.
587
// This method can be used even if T is only move-constructible, but it is not
588
// limited to that case.
589
typedef T (*FactoryFunction)();
590
static void SetFactory(FactoryFunction factory) {
591
delete producer_;
592
producer_ = new FactoryValueProducer(factory);
593
}
594
595
// Unsets the default value for type T.
596
static void Clear() {
597
delete producer_;
598
producer_ = nullptr;
599
}
600
601
// Returns true if and only if the user has set the default value for type T.
602
static bool IsSet() { return producer_ != nullptr; }
603
604
// Returns true if T has a default return value set by the user or there
605
// exists a built-in default value.
606
static bool Exists() {
607
return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
608
}
609
610
// Returns the default value for type T if the user has set one;
611
// otherwise returns the built-in default value. Requires that Exists()
612
// is true, which ensures that the return value is well-defined.
613
static T Get() {
614
return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get()
615
: producer_->Produce();
616
}
617
618
private:
619
class ValueProducer {
620
public:
621
virtual ~ValueProducer() = default;
622
virtual T Produce() = 0;
623
};
624
625
class FixedValueProducer : public ValueProducer {
626
public:
627
explicit FixedValueProducer(T value) : value_(value) {}
628
T Produce() override { return value_; }
629
630
private:
631
const T value_;
632
FixedValueProducer(const FixedValueProducer&) = delete;
633
FixedValueProducer& operator=(const FixedValueProducer&) = delete;
634
};
635
636
class FactoryValueProducer : public ValueProducer {
637
public:
638
explicit FactoryValueProducer(FactoryFunction factory)
639
: factory_(factory) {}
640
T Produce() override { return factory_(); }
641
642
private:
643
const FactoryFunction factory_;
644
FactoryValueProducer(const FactoryValueProducer&) = delete;
645
FactoryValueProducer& operator=(const FactoryValueProducer&) = delete;
646
};
647
648
static ValueProducer* producer_;
649
};
650
651
// This partial specialization allows a user to set default values for
652
// reference types.
653
template <typename T>
654
class DefaultValue<T&> {
655
public:
656
// Sets the default value for type T&.
657
static void Set(T& x) { // NOLINT
658
address_ = &x;
659
}
660
661
// Unsets the default value for type T&.
662
static void Clear() { address_ = nullptr; }
663
664
// Returns true if and only if the user has set the default value for type T&.
665
static bool IsSet() { return address_ != nullptr; }
666
667
// Returns true if T has a default return value set by the user or there
668
// exists a built-in default value.
669
static bool Exists() {
670
return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
671
}
672
673
// Returns the default value for type T& if the user has set one;
674
// otherwise returns the built-in default value if there is one;
675
// otherwise aborts the process.
676
static T& Get() {
677
return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get()
678
: *address_;
679
}
680
681
private:
682
static T* address_;
683
};
684
685
// This specialization allows DefaultValue<void>::Get() to
686
// compile.
687
template <>
688
class DefaultValue<void> {
689
public:
690
static bool Exists() { return true; }
691
static void Get() {}
692
};
693
694
// Points to the user-set default value for type T.
695
template <typename T>
696
typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr;
697
698
// Points to the user-set default value for type T&.
699
template <typename T>
700
T* DefaultValue<T&>::address_ = nullptr;
701
702
// Implement this interface to define an action for function type F.
703
template <typename F>
704
class ActionInterface {
705
public:
706
typedef typename internal::Function<F>::Result Result;
707
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
708
709
ActionInterface() = default;
710
virtual ~ActionInterface() = default;
711
712
// Performs the action. This method is not const, as in general an
713
// action can have side effects and be stateful. For example, a
714
// get-the-next-element-from-the-collection action will need to
715
// remember the current element.
716
virtual Result Perform(const ArgumentTuple& args) = 0;
717
718
private:
719
ActionInterface(const ActionInterface&) = delete;
720
ActionInterface& operator=(const ActionInterface&) = delete;
721
};
722
723
template <typename F>
724
class Action;
725
726
// An Action<R(Args...)> is a copyable and IMMUTABLE (except by assignment)
727
// object that represents an action to be taken when a mock function of type
728
// R(Args...) is called. The implementation of Action<T> is just a
729
// std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! You
730
// can view an object implementing ActionInterface<F> as a concrete action
731
// (including its current state), and an Action<F> object as a handle to it.
732
template <typename R, typename... Args>
733
class Action<R(Args...)> {
734
private:
735
using F = R(Args...);
736
737
// Adapter class to allow constructing Action from a legacy ActionInterface.
738
// New code should create Actions from functors instead.
739
struct ActionAdapter {
740
// Adapter must be copyable to satisfy std::function requirements.
741
::std::shared_ptr<ActionInterface<F>> impl_;
742
743
template <typename... InArgs>
744
typename internal::Function<F>::Result operator()(InArgs&&... args) {
745
return impl_->Perform(
746
::std::forward_as_tuple(::std::forward<InArgs>(args)...));
747
}
748
};
749
750
template <typename G>
751
using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>;
752
753
public:
754
typedef typename internal::Function<F>::Result Result;
755
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
756
757
// Constructs a null Action. Needed for storing Action objects in
758
// STL containers.
759
Action() = default;
760
761
// Construct an Action from a specified callable.
762
// This cannot take std::function directly, because then Action would not be
763
// directly constructible from lambda (it would require two conversions).
764
template <
765
typename G,
766
typename = typename std::enable_if<internal::disjunction<
767
IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>,
768
G>>::value>::type>
769
Action(G&& fun) { // NOLINT
770
Init(::std::forward<G>(fun), IsCompatibleFunctor<G>());
771
}
772
773
// Constructs an Action from its implementation.
774
explicit Action(ActionInterface<F>* impl)
775
: fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {}
776
777
// This constructor allows us to turn an Action<Func> object into an
778
// Action<F>, as long as F's arguments can be implicitly converted
779
// to Func's and Func's return type can be implicitly converted to F's.
780
template <typename Func>
781
Action(const Action<Func>& action) // NOLINT
782
: fun_(action.fun_) {}
783
784
// Returns true if and only if this is the DoDefault() action.
785
bool IsDoDefault() const { return fun_ == nullptr; }
786
787
// Performs the action. Note that this method is const even though
788
// the corresponding method in ActionInterface is not. The reason
789
// is that a const Action<F> means that it cannot be re-bound to
790
// another concrete action, not that the concrete action it binds to
791
// cannot change state. (Think of the difference between a const
792
// pointer and a pointer to const.)
793
Result Perform(ArgumentTuple args) const {
794
if (IsDoDefault()) {
795
internal::IllegalDoDefault(__FILE__, __LINE__);
796
}
797
return internal::Apply(fun_, ::std::move(args));
798
}
799
800
// An action can be used as a OnceAction, since it's obviously safe to call it
801
// once.
802
operator OnceAction<F>() const { // NOLINT
803
// Return a OnceAction-compatible callable that calls Perform with the
804
// arguments it is provided. We could instead just return fun_, but then
805
// we'd need to handle the IsDoDefault() case separately.
806
struct OA {
807
Action<F> action;
808
809
R operator()(Args... args) && {
810
return action.Perform(
811
std::forward_as_tuple(std::forward<Args>(args)...));
812
}
813
};
814
815
return OA{*this};
816
}
817
818
private:
819
template <typename G>
820
friend class Action;
821
822
template <typename G>
823
void Init(G&& g, ::std::true_type) {
824
fun_ = ::std::forward<G>(g);
825
}
826
827
template <typename G>
828
void Init(G&& g, ::std::false_type) {
829
fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)};
830
}
831
832
template <typename FunctionImpl>
833
struct IgnoreArgs {
834
template <typename... InArgs>
835
Result operator()(const InArgs&...) const {
836
return function_impl();
837
}
838
template <typename... InArgs>
839
Result operator()(const InArgs&...) {
840
return function_impl();
841
}
842
843
FunctionImpl function_impl;
844
};
845
846
// fun_ is an empty function if and only if this is the DoDefault() action.
847
::std::function<F> fun_;
848
};
849
850
// The PolymorphicAction class template makes it easy to implement a
851
// polymorphic action (i.e. an action that can be used in mock
852
// functions of than one type, e.g. Return()).
853
//
854
// To define a polymorphic action, a user first provides a COPYABLE
855
// implementation class that has a Perform() method template:
856
//
857
// class FooAction {
858
// public:
859
// template <typename Result, typename ArgumentTuple>
860
// Result Perform(const ArgumentTuple& args) const {
861
// // Processes the arguments and returns a result, using
862
// // std::get<N>(args) to get the N-th (0-based) argument in the tuple.
863
// }
864
// ...
865
// };
866
//
867
// Then the user creates the polymorphic action using
868
// MakePolymorphicAction(object) where object has type FooAction. See
869
// the definition of Return(void) and SetArgumentPointee<N>(value) for
870
// complete examples.
871
template <typename Impl>
872
class PolymorphicAction {
873
public:
874
explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
875
876
template <typename F>
877
operator Action<F>() const {
878
return Action<F>(new MonomorphicImpl<F>(impl_));
879
}
880
881
private:
882
template <typename F>
883
class MonomorphicImpl : public ActionInterface<F> {
884
public:
885
typedef typename internal::Function<F>::Result Result;
886
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
887
888
explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
889
890
Result Perform(const ArgumentTuple& args) override {
891
return impl_.template Perform<Result>(args);
892
}
893
894
private:
895
Impl impl_;
896
};
897
898
Impl impl_;
899
};
900
901
// Creates an Action from its implementation and returns it. The
902
// created Action object owns the implementation.
903
template <typename F>
904
Action<F> MakeAction(ActionInterface<F>* impl) {
905
return Action<F>(impl);
906
}
907
908
// Creates a polymorphic action from its implementation. This is
909
// easier to use than the PolymorphicAction<Impl> constructor as it
910
// doesn't require you to explicitly write the template argument, e.g.
911
//
912
// MakePolymorphicAction(foo);
913
// vs
914
// PolymorphicAction<TypeOfFoo>(foo);
915
template <typename Impl>
916
inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
917
return PolymorphicAction<Impl>(impl);
918
}
919
920
namespace internal {
921
922
// Helper struct to specialize ReturnAction to execute a move instead of a copy
923
// on return. Useful for move-only types, but could be used on any type.
924
template <typename T>
925
struct ByMoveWrapper {
926
explicit ByMoveWrapper(T value) : payload(std::move(value)) {}
927
T payload;
928
};
929
930
// The general implementation of Return(R). Specializations follow below.
931
template <typename R>
932
class ReturnAction final {
933
public:
934
explicit ReturnAction(R value) : value_(std::move(value)) {}
935
936
template <typename U, typename... Args,
937
typename = typename std::enable_if<conjunction<
938
// See the requirements documented on Return.
939
negation<std::is_same<void, U>>, //
940
negation<std::is_reference<U>>, //
941
std::is_convertible<R, U>, //
942
std::is_move_constructible<U>>::value>::type>
943
operator OnceAction<U(Args...)>() && { // NOLINT
944
return Impl<U>(std::move(value_));
945
}
946
947
template <typename U, typename... Args,
948
typename = typename std::enable_if<conjunction<
949
// See the requirements documented on Return.
950
negation<std::is_same<void, U>>, //
951
negation<std::is_reference<U>>, //
952
std::is_convertible<const R&, U>, //
953
std::is_copy_constructible<U>>::value>::type>
954
operator Action<U(Args...)>() const { // NOLINT
955
return Impl<U>(value_);
956
}
957
958
private:
959
// Implements the Return(x) action for a mock function that returns type U.
960
template <typename U>
961
class Impl final {
962
public:
963
// The constructor used when the return value is allowed to move from the
964
// input value (i.e. we are converting to OnceAction).
965
explicit Impl(R&& input_value)
966
: state_(new State(std::move(input_value))) {}
967
968
// The constructor used when the return value is not allowed to move from
969
// the input value (i.e. we are converting to Action).
970
explicit Impl(const R& input_value) : state_(new State(input_value)) {}
971
972
U operator()() && { return std::move(state_->value); }
973
U operator()() const& { return state_->value; }
974
975
private:
976
// We put our state on the heap so that the compiler-generated copy/move
977
// constructors work correctly even when U is a reference-like type. This is
978
// necessary only because we eagerly create State::value (see the note on
979
// that symbol for details). If we instead had only the input value as a
980
// member then the default constructors would work fine.
981
//
982
// For example, when R is std::string and U is std::string_view, value is a
983
// reference to the string backed by input_value. The copy constructor would
984
// copy both, so that we wind up with a new input_value object (with the
985
// same contents) and a reference to the *old* input_value object rather
986
// than the new one.
987
struct State {
988
explicit State(const R& input_value_in)
989
: input_value(input_value_in),
990
// Make an implicit conversion to Result before initializing the U
991
// object we store, avoiding calling any explicit constructor of U
992
// from R.
993
//
994
// This simulates the language rules: a function with return type U
995
// that does `return R()` requires R to be implicitly convertible to
996
// U, and uses that path for the conversion, even U Result has an
997
// explicit constructor from R.
998
value(ImplicitCast_<U>(internal::as_const(input_value))) {}
999
1000
// As above, but for the case where we're moving from the ReturnAction
1001
// object because it's being used as a OnceAction.
1002
explicit State(R&& input_value_in)
1003
: input_value(std::move(input_value_in)),
1004
// For the same reason as above we make an implicit conversion to U
1005
// before initializing the value.
1006
//
1007
// Unlike above we provide the input value as an rvalue to the
1008
// implicit conversion because this is a OnceAction: it's fine if it
1009
// wants to consume the input value.
1010
value(ImplicitCast_<U>(std::move(input_value))) {}
1011
1012
// A copy of the value originally provided by the user. We retain this in
1013
// addition to the value of the mock function's result type below in case
1014
// the latter is a reference-like type. See the std::string_view example
1015
// in the documentation on Return.
1016
R input_value;
1017
1018
// The value we actually return, as the type returned by the mock function
1019
// itself.
1020
//
1021
// We eagerly initialize this here, rather than lazily doing the implicit
1022
// conversion automatically each time Perform is called, for historical
1023
// reasons: in 2009-11, commit a070cbd91c (Google changelist 13540126)
1024
// made the Action<U()> conversion operator eagerly convert the R value to
1025
// U, but without keeping the R alive. This broke the use case discussed
1026
// in the documentation for Return, making reference-like types such as
1027
// std::string_view not safe to use as U where the input type R is a
1028
// value-like type such as std::string.
1029
//
1030
// The example the commit gave was not very clear, nor was the issue
1031
// thread (https://github.com/google/googlemock/issues/86), but it seems
1032
// the worry was about reference-like input types R that flatten to a
1033
// value-like type U when being implicitly converted. An example of this
1034
// is std::vector<bool>::reference, which is often a proxy type with an
1035
// reference to the underlying vector:
1036
//
1037
// // Helper method: have the mock function return bools according
1038
// // to the supplied script.
1039
// void SetActions(MockFunction<bool(size_t)>& mock,
1040
// const std::vector<bool>& script) {
1041
// for (size_t i = 0; i < script.size(); ++i) {
1042
// EXPECT_CALL(mock, Call(i)).WillOnce(Return(script[i]));
1043
// }
1044
// }
1045
//
1046
// TEST(Foo, Bar) {
1047
// // Set actions using a temporary vector, whose operator[]
1048
// // returns proxy objects that references that will be
1049
// // dangling once the call to SetActions finishes and the
1050
// // vector is destroyed.
1051
// MockFunction<bool(size_t)> mock;
1052
// SetActions(mock, {false, true});
1053
//
1054
// EXPECT_FALSE(mock.AsStdFunction()(0));
1055
// EXPECT_TRUE(mock.AsStdFunction()(1));
1056
// }
1057
//
1058
// This eager conversion helps with a simple case like this, but doesn't
1059
// fully make these types work in general. For example the following still
1060
// uses a dangling reference:
1061
//
1062
// TEST(Foo, Baz) {
1063
// MockFunction<std::vector<std::string>()> mock;
1064
//
1065
// // Return the same vector twice, and then the empty vector
1066
// // thereafter.
1067
// auto action = Return(std::initializer_list<std::string>{
1068
// "taco", "burrito",
1069
// });
1070
//
1071
// EXPECT_CALL(mock, Call)
1072
// .WillOnce(action)
1073
// .WillOnce(action)
1074
// .WillRepeatedly(Return(std::vector<std::string>{}));
1075
//
1076
// EXPECT_THAT(mock.AsStdFunction()(),
1077
// ElementsAre("taco", "burrito"));
1078
// EXPECT_THAT(mock.AsStdFunction()(),
1079
// ElementsAre("taco", "burrito"));
1080
// EXPECT_THAT(mock.AsStdFunction()(), IsEmpty());
1081
// }
1082
//
1083
U value;
1084
};
1085
1086
const std::shared_ptr<State> state_;
1087
};
1088
1089
R value_;
1090
};
1091
1092
// A specialization of ReturnAction<R> when R is ByMoveWrapper<T> for some T.
1093
//
1094
// This version applies the type system-defeating hack of moving from T even in
1095
// the const call operator, checking at runtime that it isn't called more than
1096
// once, since the user has declared their intent to do so by using ByMove.
1097
template <typename T>
1098
class ReturnAction<ByMoveWrapper<T>> final {
1099
public:
1100
explicit ReturnAction(ByMoveWrapper<T> wrapper)
1101
: state_(new State(std::move(wrapper.payload))) {}
1102
1103
T operator()() const {
1104
GTEST_CHECK_(!state_->called)
1105
<< "A ByMove() action must be performed at most once.";
1106
1107
state_->called = true;
1108
return std::move(state_->value);
1109
}
1110
1111
private:
1112
// We store our state on the heap so that we are copyable as required by
1113
// Action, despite the fact that we are stateful and T may not be copyable.
1114
struct State {
1115
explicit State(T&& value_in) : value(std::move(value_in)) {}
1116
1117
T value;
1118
bool called = false;
1119
};
1120
1121
const std::shared_ptr<State> state_;
1122
};
1123
1124
// Implements the ReturnNull() action.
1125
class ReturnNullAction {
1126
public:
1127
// Allows ReturnNull() to be used in any pointer-returning function. In C++11
1128
// this is enforced by returning nullptr, and in non-C++11 by asserting a
1129
// pointer type on compile time.
1130
template <typename Result, typename ArgumentTuple>
1131
static Result Perform(const ArgumentTuple&) {
1132
return nullptr;
1133
}
1134
};
1135
1136
// Implements the Return() action.
1137
class ReturnVoidAction {
1138
public:
1139
// Allows Return() to be used in any void-returning function.
1140
template <typename Result, typename ArgumentTuple>
1141
static void Perform(const ArgumentTuple&) {
1142
static_assert(std::is_void<Result>::value, "Result should be void.");
1143
}
1144
};
1145
1146
// Implements the polymorphic ReturnRef(x) action, which can be used
1147
// in any function that returns a reference to the type of x,
1148
// regardless of the argument types.
1149
template <typename T>
1150
class ReturnRefAction {
1151
public:
1152
// Constructs a ReturnRefAction object from the reference to be returned.
1153
explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT
1154
1155
// This template type conversion operator allows ReturnRef(x) to be
1156
// used in ANY function that returns a reference to x's type.
1157
template <typename F>
1158
operator Action<F>() const {
1159
typedef typename Function<F>::Result Result;
1160
// Asserts that the function return type is a reference. This
1161
// catches the user error of using ReturnRef(x) when Return(x)
1162
// should be used, and generates some helpful error message.
1163
static_assert(std::is_reference<Result>::value,
1164
"use Return instead of ReturnRef to return a value");
1165
return Action<F>(new Impl<F>(ref_));
1166
}
1167
1168
private:
1169
// Implements the ReturnRef(x) action for a particular function type F.
1170
template <typename F>
1171
class Impl : public ActionInterface<F> {
1172
public:
1173
typedef typename Function<F>::Result Result;
1174
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
1175
1176
explicit Impl(T& ref) : ref_(ref) {} // NOLINT
1177
1178
Result Perform(const ArgumentTuple&) override { return ref_; }
1179
1180
private:
1181
T& ref_;
1182
};
1183
1184
T& ref_;
1185
};
1186
1187
// Implements the polymorphic ReturnRefOfCopy(x) action, which can be
1188
// used in any function that returns a reference to the type of x,
1189
// regardless of the argument types.
1190
template <typename T>
1191
class ReturnRefOfCopyAction {
1192
public:
1193
// Constructs a ReturnRefOfCopyAction object from the reference to
1194
// be returned.
1195
explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT
1196
1197
// This template type conversion operator allows ReturnRefOfCopy(x) to be
1198
// used in ANY function that returns a reference to x's type.
1199
template <typename F>
1200
operator Action<F>() const {
1201
typedef typename Function<F>::Result Result;
1202
// Asserts that the function return type is a reference. This
1203
// catches the user error of using ReturnRefOfCopy(x) when Return(x)
1204
// should be used, and generates some helpful error message.
1205
static_assert(std::is_reference<Result>::value,
1206
"use Return instead of ReturnRefOfCopy to return a value");
1207
return Action<F>(new Impl<F>(value_));
1208
}
1209
1210
private:
1211
// Implements the ReturnRefOfCopy(x) action for a particular function type F.
1212
template <typename F>
1213
class Impl : public ActionInterface<F> {
1214
public:
1215
typedef typename Function<F>::Result Result;
1216
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
1217
1218
explicit Impl(const T& value) : value_(value) {} // NOLINT
1219
1220
Result Perform(const ArgumentTuple&) override { return value_; }
1221
1222
private:
1223
T value_;
1224
};
1225
1226
const T value_;
1227
};
1228
1229
// Implements the polymorphic ReturnRoundRobin(v) action, which can be
1230
// used in any function that returns the element_type of v.
1231
template <typename T>
1232
class ReturnRoundRobinAction {
1233
public:
1234
explicit ReturnRoundRobinAction(std::vector<T> values) {
1235
GTEST_CHECK_(!values.empty())
1236
<< "ReturnRoundRobin requires at least one element.";
1237
state_->values = std::move(values);
1238
}
1239
1240
template <typename... Args>
1241
T operator()(Args&&...) const {
1242
return state_->Next();
1243
}
1244
1245
private:
1246
struct State {
1247
T Next() {
1248
T ret_val = values[i++];
1249
if (i == values.size()) i = 0;
1250
return ret_val;
1251
}
1252
1253
std::vector<T> values;
1254
size_t i = 0;
1255
};
1256
std::shared_ptr<State> state_ = std::make_shared<State>();
1257
};
1258
1259
// Implements the polymorphic DoDefault() action.
1260
class DoDefaultAction {
1261
public:
1262
// This template type conversion operator allows DoDefault() to be
1263
// used in any function.
1264
template <typename F>
1265
operator Action<F>() const {
1266
return Action<F>();
1267
} // NOLINT
1268
};
1269
1270
// Implements the Assign action to set a given pointer referent to a
1271
// particular value.
1272
template <typename T1, typename T2>
1273
class AssignAction {
1274
public:
1275
AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
1276
1277
template <typename Result, typename ArgumentTuple>
1278
void Perform(const ArgumentTuple& /* args */) const {
1279
*ptr_ = value_;
1280
}
1281
1282
private:
1283
T1* const ptr_;
1284
const T2 value_;
1285
};
1286
1287
#ifndef GTEST_OS_WINDOWS_MOBILE
1288
1289
// Implements the SetErrnoAndReturn action to simulate return from
1290
// various system calls and libc functions.
1291
template <typename T>
1292
class SetErrnoAndReturnAction {
1293
public:
1294
SetErrnoAndReturnAction(int errno_value, T result)
1295
: errno_(errno_value), result_(result) {}
1296
template <typename Result, typename ArgumentTuple>
1297
Result Perform(const ArgumentTuple& /* args */) const {
1298
errno = errno_;
1299
return result_;
1300
}
1301
1302
private:
1303
const int errno_;
1304
const T result_;
1305
};
1306
1307
#endif // !GTEST_OS_WINDOWS_MOBILE
1308
1309
// Implements the SetArgumentPointee<N>(x) action for any function
1310
// whose N-th argument (0-based) is a pointer to x's type.
1311
template <size_t N, typename A, typename = void>
1312
struct SetArgumentPointeeAction {
1313
A value;
1314
1315
template <typename... Args>
1316
void operator()(const Args&... args) const {
1317
*::std::get<N>(std::tie(args...)) = value;
1318
}
1319
};
1320
1321
// Implements the Invoke(object_ptr, &Class::Method) action.
1322
template <class Class, typename MethodPtr>
1323
struct InvokeMethodAction {
1324
Class* const obj_ptr;
1325
const MethodPtr method_ptr;
1326
1327
template <typename... Args>
1328
auto operator()(Args&&... args) const
1329
-> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) {
1330
return (obj_ptr->*method_ptr)(std::forward<Args>(args)...);
1331
}
1332
};
1333
1334
// Implements the InvokeWithoutArgs(f) action. The template argument
1335
// FunctionImpl is the implementation type of f, which can be either a
1336
// function pointer or a functor. InvokeWithoutArgs(f) can be used as an
1337
// Action<F> as long as f's type is compatible with F.
1338
template <typename FunctionImpl>
1339
struct InvokeWithoutArgsAction {
1340
FunctionImpl function_impl;
1341
1342
// Allows InvokeWithoutArgs(f) to be used as any action whose type is
1343
// compatible with f.
1344
template <typename... Args>
1345
auto operator()(const Args&...) -> decltype(function_impl()) {
1346
return function_impl();
1347
}
1348
};
1349
1350
// Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
1351
template <class Class, typename MethodPtr>
1352
struct InvokeMethodWithoutArgsAction {
1353
Class* const obj_ptr;
1354
const MethodPtr method_ptr;
1355
1356
using ReturnType =
1357
decltype((std::declval<Class*>()->*std::declval<MethodPtr>())());
1358
1359
template <typename... Args>
1360
ReturnType operator()(const Args&...) const {
1361
return (obj_ptr->*method_ptr)();
1362
}
1363
};
1364
1365
// Implements the IgnoreResult(action) action.
1366
template <typename A>
1367
class IgnoreResultAction {
1368
public:
1369
explicit IgnoreResultAction(const A& action) : action_(action) {}
1370
1371
template <typename F>
1372
operator Action<F>() const {
1373
// Assert statement belongs here because this is the best place to verify
1374
// conditions on F. It produces the clearest error messages
1375
// in most compilers.
1376
// Impl really belongs in this scope as a local class but can't
1377
// because MSVC produces duplicate symbols in different translation units
1378
// in this case. Until MS fixes that bug we put Impl into the class scope
1379
// and put the typedef both here (for use in assert statement) and
1380
// in the Impl class. But both definitions must be the same.
1381
typedef typename internal::Function<F>::Result Result;
1382
1383
// Asserts at compile time that F returns void.
1384
static_assert(std::is_void<Result>::value, "Result type should be void.");
1385
1386
return Action<F>(new Impl<F>(action_));
1387
}
1388
1389
private:
1390
template <typename F>
1391
class Impl : public ActionInterface<F> {
1392
public:
1393
typedef typename internal::Function<F>::Result Result;
1394
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
1395
1396
explicit Impl(const A& action) : action_(action) {}
1397
1398
void Perform(const ArgumentTuple& args) override {
1399
// Performs the action and ignores its result.
1400
action_.Perform(args);
1401
}
1402
1403
private:
1404
// Type OriginalFunction is the same as F except that its return
1405
// type is IgnoredValue.
1406
typedef
1407
typename internal::Function<F>::MakeResultIgnoredValue OriginalFunction;
1408
1409
const Action<OriginalFunction> action_;
1410
};
1411
1412
const A action_;
1413
};
1414
1415
template <typename InnerAction, size_t... I>
1416
struct WithArgsAction {
1417
InnerAction inner_action;
1418
1419
// The signature of the function as seen by the inner action, given an out
1420
// action with the given result and argument types.
1421
template <typename R, typename... Args>
1422
using InnerSignature =
1423
R(typename std::tuple_element<I, std::tuple<Args...>>::type...);
1424
1425
// Rather than a call operator, we must define conversion operators to
1426
// particular action types. This is necessary for embedded actions like
1427
// DoDefault(), which rely on an action conversion operators rather than
1428
// providing a call operator because even with a particular set of arguments
1429
// they don't have a fixed return type.
1430
1431
template <
1432
typename R, typename... Args,
1433
typename std::enable_if<
1434
std::is_convertible<InnerAction,
1435
// Unfortunately we can't use the InnerSignature
1436
// alias here; MSVC complains about the I
1437
// parameter pack not being expanded (error C3520)
1438
// despite it being expanded in the type alias.
1439
// TupleElement is also an MSVC workaround.
1440
// See its definition for details.
1441
OnceAction<R(internal::TupleElement<
1442
I, std::tuple<Args...>>...)>>::value,
1443
int>::type = 0>
1444
operator OnceAction<R(Args...)>() && { // NOLINT
1445
struct OA {
1446
OnceAction<InnerSignature<R, Args...>> inner_action;
1447
1448
R operator()(Args&&... args) && {
1449
return std::move(inner_action)
1450
.Call(std::get<I>(
1451
std::forward_as_tuple(std::forward<Args>(args)...))...);
1452
}
1453
};
1454
1455
return OA{std::move(inner_action)};
1456
}
1457
1458
// As above, but in the case where we want to create a OnceAction from a const
1459
// WithArgsAction. This is fine as long as the inner action doesn't need to
1460
// move any of its state to create a OnceAction.
1461
template <
1462
typename R, typename... Args,
1463
typename std::enable_if<
1464
std::is_convertible<const InnerAction&,
1465
OnceAction<R(internal::TupleElement<
1466
I, std::tuple<Args...>>...)>>::value,
1467
int>::type = 0>
1468
operator OnceAction<R(Args...)>() const& { // NOLINT
1469
struct OA {
1470
OnceAction<InnerSignature<R, Args...>> inner_action;
1471
1472
R operator()(Args&&... args) && {
1473
return std::move(inner_action)
1474
.Call(std::get<I>(
1475
std::forward_as_tuple(std::forward<Args>(args)...))...);
1476
}
1477
};
1478
1479
return OA{inner_action};
1480
}
1481
1482
template <
1483
typename R, typename... Args,
1484
typename std::enable_if<
1485
std::is_convertible<const InnerAction&,
1486
// Unfortunately we can't use the InnerSignature
1487
// alias here; MSVC complains about the I
1488
// parameter pack not being expanded (error C3520)
1489
// despite it being expanded in the type alias.
1490
// TupleElement is also an MSVC workaround.
1491
// See its definition for details.
1492
Action<R(internal::TupleElement<
1493
I, std::tuple<Args...>>...)>>::value,
1494
int>::type = 0>
1495
operator Action<R(Args...)>() const { // NOLINT
1496
Action<InnerSignature<R, Args...>> converted(inner_action);
1497
1498
return [converted](Args&&... args) -> R {
1499
return converted.Perform(std::forward_as_tuple(
1500
std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...));
1501
};
1502
}
1503
};
1504
1505
template <typename... Actions>
1506
class DoAllAction;
1507
1508
// Base case: only a single action.
1509
template <typename FinalAction>
1510
class DoAllAction<FinalAction> {
1511
public:
1512
struct UserConstructorTag {};
1513
1514
template <typename T>
1515
explicit DoAllAction(UserConstructorTag, T&& action)
1516
: final_action_(std::forward<T>(action)) {}
1517
1518
// Rather than a call operator, we must define conversion operators to
1519
// particular action types. This is necessary for embedded actions like
1520
// DoDefault(), which rely on an action conversion operators rather than
1521
// providing a call operator because even with a particular set of arguments
1522
// they don't have a fixed return type.
1523
1524
// We support conversion to OnceAction whenever the sub-action does.
1525
template <typename R, typename... Args,
1526
typename std::enable_if<
1527
std::is_convertible<FinalAction, OnceAction<R(Args...)>>::value,
1528
int>::type = 0>
1529
operator OnceAction<R(Args...)>() && { // NOLINT
1530
return std::move(final_action_);
1531
}
1532
1533
// We also support conversion to OnceAction whenever the sub-action supports
1534
// conversion to Action (since any Action can also be a OnceAction).
1535
template <
1536
typename R, typename... Args,
1537
typename std::enable_if<
1538
conjunction<
1539
negation<
1540
std::is_convertible<FinalAction, OnceAction<R(Args...)>>>,
1541
std::is_convertible<FinalAction, Action<R(Args...)>>>::value,
1542
int>::type = 0>
1543
operator OnceAction<R(Args...)>() && { // NOLINT
1544
return Action<R(Args...)>(std::move(final_action_));
1545
}
1546
1547
// We support conversion to Action whenever the sub-action does.
1548
template <
1549
typename R, typename... Args,
1550
typename std::enable_if<
1551
std::is_convertible<const FinalAction&, Action<R(Args...)>>::value,
1552
int>::type = 0>
1553
operator Action<R(Args...)>() const { // NOLINT
1554
return final_action_;
1555
}
1556
1557
private:
1558
FinalAction final_action_;
1559
};
1560
1561
// Recursive case: support N actions by calling the initial action and then
1562
// calling through to the base class containing N-1 actions.
1563
template <typename InitialAction, typename... OtherActions>
1564
class DoAllAction<InitialAction, OtherActions...>
1565
: private DoAllAction<OtherActions...> {
1566
private:
1567
using Base = DoAllAction<OtherActions...>;
1568
1569
// The type of reference that should be provided to an initial action for a
1570
// mocked function parameter of type T.
1571
//
1572
// There are two quirks here:
1573
//
1574
// * Unlike most forwarding functions, we pass scalars through by value.
1575
// This isn't strictly necessary because an lvalue reference would work
1576
// fine too and be consistent with other non-reference types, but it's
1577
// perhaps less surprising.
1578
//
1579
// For example if the mocked function has signature void(int), then it
1580
// might seem surprising for the user's initial action to need to be
1581
// convertible to Action<void(const int&)>. This is perhaps less
1582
// surprising for a non-scalar type where there may be a performance
1583
// impact, or it might even be impossible, to pass by value.
1584
//
1585
// * More surprisingly, `const T&` is often not a const reference type.
1586
// By the reference collapsing rules in C++17 [dcl.ref]/6, if T refers to
1587
// U& or U&& for some non-scalar type U, then InitialActionArgType<T> is
1588
// U&. In other words, we may hand over a non-const reference.
1589
//
1590
// So for example, given some non-scalar type Obj we have the following
1591
// mappings:
1592
//
1593
// T InitialActionArgType<T>
1594
// ------- -----------------------
1595
// Obj const Obj&
1596
// Obj& Obj&
1597
// Obj&& Obj&
1598
// const Obj const Obj&
1599
// const Obj& const Obj&
1600
// const Obj&& const Obj&
1601
//
1602
// In other words, the initial actions get a mutable view of an non-scalar
1603
// argument if and only if the mock function itself accepts a non-const
1604
// reference type. They are never given an rvalue reference to an
1605
// non-scalar type.
1606
//
1607
// This situation makes sense if you imagine use with a matcher that is
1608
// designed to write through a reference. For example, if the caller wants
1609
// to fill in a reference argument and then return a canned value:
1610
//
1611
// EXPECT_CALL(mock, Call)
1612
// .WillOnce(DoAll(SetArgReferee<0>(17), Return(19)));
1613
//
1614
template <typename T>
1615
using InitialActionArgType =
1616
typename std::conditional<std::is_scalar<T>::value, T, const T&>::type;
1617
1618
public:
1619
struct UserConstructorTag {};
1620
1621
template <typename T, typename... U>
1622
explicit DoAllAction(UserConstructorTag, T&& initial_action,
1623
U&&... other_actions)
1624
: Base({}, std::forward<U>(other_actions)...),
1625
initial_action_(std::forward<T>(initial_action)) {}
1626
1627
// We support conversion to OnceAction whenever both the initial action and
1628
// the rest support conversion to OnceAction.
1629
template <
1630
typename R, typename... Args,
1631
typename std::enable_if<
1632
conjunction<std::is_convertible<
1633
InitialAction,
1634
OnceAction<void(InitialActionArgType<Args>...)>>,
1635
std::is_convertible<Base, OnceAction<R(Args...)>>>::value,
1636
int>::type = 0>
1637
operator OnceAction<R(Args...)>() && { // NOLINT
1638
// Return an action that first calls the initial action with arguments
1639
// filtered through InitialActionArgType, then forwards arguments directly
1640
// to the base class to deal with the remaining actions.
1641
struct OA {
1642
OnceAction<void(InitialActionArgType<Args>...)> initial_action;
1643
OnceAction<R(Args...)> remaining_actions;
1644
1645
R operator()(Args... args) && {
1646
std::move(initial_action)
1647
.Call(static_cast<InitialActionArgType<Args>>(args)...);
1648
1649
return std::move(remaining_actions).Call(std::forward<Args>(args)...);
1650
}
1651
};
1652
1653
return OA{
1654
std::move(initial_action_),
1655
std::move(static_cast<Base&>(*this)),
1656
};
1657
}
1658
1659
// We also support conversion to OnceAction whenever the initial action
1660
// supports conversion to Action (since any Action can also be a OnceAction).
1661
//
1662
// The remaining sub-actions must also be compatible, but we don't need to
1663
// special case them because the base class deals with them.
1664
template <
1665
typename R, typename... Args,
1666
typename std::enable_if<
1667
conjunction<
1668
negation<std::is_convertible<
1669
InitialAction,
1670
OnceAction<void(InitialActionArgType<Args>...)>>>,
1671
std::is_convertible<InitialAction,
1672
Action<void(InitialActionArgType<Args>...)>>,
1673
std::is_convertible<Base, OnceAction<R(Args...)>>>::value,
1674
int>::type = 0>
1675
operator OnceAction<R(Args...)>() && { // NOLINT
1676
return DoAll(
1677
Action<void(InitialActionArgType<Args>...)>(std::move(initial_action_)),
1678
std::move(static_cast<Base&>(*this)));
1679
}
1680
1681
// We support conversion to Action whenever both the initial action and the
1682
// rest support conversion to Action.
1683
template <
1684
typename R, typename... Args,
1685
typename std::enable_if<
1686
conjunction<
1687
std::is_convertible<const InitialAction&,
1688
Action<void(InitialActionArgType<Args>...)>>,
1689
std::is_convertible<const Base&, Action<R(Args...)>>>::value,
1690
int>::type = 0>
1691
operator Action<R(Args...)>() const { // NOLINT
1692
// Return an action that first calls the initial action with arguments
1693
// filtered through InitialActionArgType, then forwards arguments directly
1694
// to the base class to deal with the remaining actions.
1695
struct OA {
1696
Action<void(InitialActionArgType<Args>...)> initial_action;
1697
Action<R(Args...)> remaining_actions;
1698
1699
R operator()(Args... args) const {
1700
initial_action.Perform(std::forward_as_tuple(
1701
static_cast<InitialActionArgType<Args>>(args)...));
1702
1703
return remaining_actions.Perform(
1704
std::forward_as_tuple(std::forward<Args>(args)...));
1705
}
1706
};
1707
1708
return OA{
1709
initial_action_,
1710
static_cast<const Base&>(*this),
1711
};
1712
}
1713
1714
private:
1715
InitialAction initial_action_;
1716
};
1717
1718
template <typename T, typename... Params>
1719
struct ReturnNewAction {
1720
T* operator()() const {
1721
return internal::Apply(
1722
[](const Params&... unpacked_params) {
1723
return new T(unpacked_params...);
1724
},
1725
params);
1726
}
1727
std::tuple<Params...> params;
1728
};
1729
1730
template <size_t k>
1731
struct ReturnArgAction {
1732
template <typename... Args,
1733
typename = typename std::enable_if<(k < sizeof...(Args))>::type>
1734
auto operator()(Args&&... args) const -> decltype(std::get<k>(
1735
std::forward_as_tuple(std::forward<Args>(args)...))) {
1736
return std::get<k>(std::forward_as_tuple(std::forward<Args>(args)...));
1737
}
1738
};
1739
1740
template <size_t k, typename Ptr>
1741
struct SaveArgAction {
1742
Ptr pointer;
1743
1744
template <typename... Args>
1745
void operator()(const Args&... args) const {
1746
*pointer = std::get<k>(std::tie(args...));
1747
}
1748
};
1749
1750
template <size_t k, typename Ptr>
1751
struct SaveArgByMoveAction {
1752
Ptr pointer;
1753
1754
template <typename... Args>
1755
void operator()(Args&&... args) const {
1756
*pointer = std::move(std::get<k>(std::tie(args...)));
1757
}
1758
};
1759
1760
template <size_t k, typename Ptr>
1761
struct SaveArgPointeeAction {
1762
Ptr pointer;
1763
1764
template <typename... Args>
1765
void operator()(const Args&... args) const {
1766
*pointer = *std::get<k>(std::tie(args...));
1767
}
1768
};
1769
1770
template <size_t k, typename T>
1771
struct SetArgRefereeAction {
1772
T value;
1773
1774
template <typename... Args>
1775
void operator()(Args&&... args) const {
1776
using argk_type =
1777
typename ::std::tuple_element<k, std::tuple<Args...>>::type;
1778
static_assert(std::is_lvalue_reference<argk_type>::value,
1779
"Argument must be a reference type.");
1780
std::get<k>(std::tie(args...)) = value;
1781
}
1782
};
1783
1784
template <size_t k, typename I1, typename I2>
1785
struct SetArrayArgumentAction {
1786
I1 first;
1787
I2 last;
1788
1789
template <typename... Args>
1790
void operator()(const Args&... args) const {
1791
auto value = std::get<k>(std::tie(args...));
1792
for (auto it = first; it != last; ++it, (void)++value) {
1793
*value = *it;
1794
}
1795
}
1796
};
1797
1798
template <size_t k>
1799
struct DeleteArgAction {
1800
template <typename... Args>
1801
void operator()(const Args&... args) const {
1802
delete std::get<k>(std::tie(args...));
1803
}
1804
};
1805
1806
template <typename Ptr>
1807
struct ReturnPointeeAction {
1808
Ptr pointer;
1809
template <typename... Args>
1810
auto operator()(const Args&...) const -> decltype(*pointer) {
1811
return *pointer;
1812
}
1813
};
1814
1815
#if GTEST_HAS_EXCEPTIONS
1816
template <typename T>
1817
struct ThrowAction {
1818
T exception;
1819
// We use a conversion operator to adapt to any return type.
1820
template <typename R, typename... Args>
1821
operator Action<R(Args...)>() const { // NOLINT
1822
T copy = exception;
1823
return [copy](Args...) -> R { throw copy; };
1824
}
1825
};
1826
struct RethrowAction {
1827
std::exception_ptr exception;
1828
template <typename R, typename... Args>
1829
operator Action<R(Args...)>() const { // NOLINT
1830
return [ex = exception](Args...) -> R { std::rethrow_exception(ex); };
1831
}
1832
};
1833
#endif // GTEST_HAS_EXCEPTIONS
1834
1835
} // namespace internal
1836
1837
// An Unused object can be implicitly constructed from ANY value.
1838
// This is handy when defining actions that ignore some or all of the
1839
// mock function arguments. For example, given
1840
//
1841
// MOCK_METHOD3(Foo, double(const string& label, double x, double y));
1842
// MOCK_METHOD3(Bar, double(int index, double x, double y));
1843
//
1844
// instead of
1845
//
1846
// double DistanceToOriginWithLabel(const string& label, double x, double y) {
1847
// return sqrt(x*x + y*y);
1848
// }
1849
// double DistanceToOriginWithIndex(int index, double x, double y) {
1850
// return sqrt(x*x + y*y);
1851
// }
1852
// ...
1853
// EXPECT_CALL(mock, Foo("abc", _, _))
1854
// .WillOnce(Invoke(DistanceToOriginWithLabel));
1855
// EXPECT_CALL(mock, Bar(5, _, _))
1856
// .WillOnce(Invoke(DistanceToOriginWithIndex));
1857
//
1858
// you could write
1859
//
1860
// // We can declare any uninteresting argument as Unused.
1861
// double DistanceToOrigin(Unused, double x, double y) {
1862
// return sqrt(x*x + y*y);
1863
// }
1864
// ...
1865
// EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
1866
// EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
1867
typedef internal::IgnoredValue Unused;
1868
1869
// Creates an action that does actions a1, a2, ..., sequentially in
1870
// each invocation. All but the last action will have a readonly view of the
1871
// arguments.
1872
template <typename... Action>
1873
internal::DoAllAction<typename std::decay<Action>::type...> DoAll(
1874
Action&&... action) {
1875
return internal::DoAllAction<typename std::decay<Action>::type...>(
1876
{}, std::forward<Action>(action)...);
1877
}
1878
1879
// WithArg<k>(an_action) creates an action that passes the k-th
1880
// (0-based) argument of the mock function to an_action and performs
1881
// it. It adapts an action accepting one argument to one that accepts
1882
// multiple arguments. For convenience, we also provide
1883
// WithArgs<k>(an_action) (defined below) as a synonym.
1884
template <size_t k, typename InnerAction>
1885
internal::WithArgsAction<typename std::decay<InnerAction>::type, k> WithArg(
1886
InnerAction&& action) {
1887
return {std::forward<InnerAction>(action)};
1888
}
1889
1890
// WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
1891
// the selected arguments of the mock function to an_action and
1892
// performs it. It serves as an adaptor between actions with
1893
// different argument lists.
1894
template <size_t k, size_t... ks, typename InnerAction>
1895
internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...>
1896
WithArgs(InnerAction&& action) {
1897
return {std::forward<InnerAction>(action)};
1898
}
1899
1900
// WithoutArgs(inner_action) can be used in a mock function with a
1901
// non-empty argument list to perform inner_action, which takes no
1902
// argument. In other words, it adapts an action accepting no
1903
// argument to one that accepts (and ignores) arguments.
1904
template <typename InnerAction>
1905
internal::WithArgsAction<typename std::decay<InnerAction>::type> WithoutArgs(
1906
InnerAction&& action) {
1907
return {std::forward<InnerAction>(action)};
1908
}
1909
1910
// Creates an action that returns a value.
1911
//
1912
// The returned type can be used with a mock function returning a non-void,
1913
// non-reference type U as follows:
1914
//
1915
// * If R is convertible to U and U is move-constructible, then the action can
1916
// be used with WillOnce.
1917
//
1918
// * If const R& is convertible to U and U is copy-constructible, then the
1919
// action can be used with both WillOnce and WillRepeatedly.
1920
//
1921
// The mock expectation contains the R value from which the U return value is
1922
// constructed (a move/copy of the argument to Return). This means that the R
1923
// value will survive at least until the mock object's expectations are cleared
1924
// or the mock object is destroyed, meaning that U can safely be a
1925
// reference-like type such as std::string_view:
1926
//
1927
// // The mock function returns a view of a copy of the string fed to
1928
// // Return. The view is valid even after the action is performed.
1929
// MockFunction<std::string_view()> mock;
1930
// EXPECT_CALL(mock, Call).WillOnce(Return(std::string("taco")));
1931
// const std::string_view result = mock.AsStdFunction()();
1932
// EXPECT_EQ("taco", result);
1933
//
1934
template <typename R>
1935
internal::ReturnAction<R> Return(R value) {
1936
return internal::ReturnAction<R>(std::move(value));
1937
}
1938
1939
// Creates an action that returns NULL.
1940
inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
1941
return MakePolymorphicAction(internal::ReturnNullAction());
1942
}
1943
1944
// Creates an action that returns from a void function.
1945
inline PolymorphicAction<internal::ReturnVoidAction> Return() {
1946
return MakePolymorphicAction(internal::ReturnVoidAction());
1947
}
1948
1949
// Creates an action that returns the reference to a variable.
1950
template <typename R>
1951
inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT
1952
return internal::ReturnRefAction<R>(x);
1953
}
1954
1955
// Prevent using ReturnRef on reference to temporary.
1956
template <typename R, R* = nullptr>
1957
internal::ReturnRefAction<R> ReturnRef(R&&) = delete;
1958
1959
// Creates an action that returns the reference to a copy of the
1960
// argument. The copy is created when the action is constructed and
1961
// lives as long as the action.
1962
template <typename R>
1963
inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
1964
return internal::ReturnRefOfCopyAction<R>(x);
1965
}
1966
1967
// DEPRECATED: use Return(x) directly with WillOnce.
1968
//
1969
// Modifies the parent action (a Return() action) to perform a move of the
1970
// argument instead of a copy.
1971
// Return(ByMove()) actions can only be executed once and will assert this
1972
// invariant.
1973
template <typename R>
1974
internal::ByMoveWrapper<R> ByMove(R x) {
1975
return internal::ByMoveWrapper<R>(std::move(x));
1976
}
1977
1978
// Creates an action that returns an element of `vals`. Calling this action will
1979
// repeatedly return the next value from `vals` until it reaches the end and
1980
// will restart from the beginning.
1981
template <typename T>
1982
internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) {
1983
return internal::ReturnRoundRobinAction<T>(std::move(vals));
1984
}
1985
1986
// Creates an action that returns an element of `vals`. Calling this action will
1987
// repeatedly return the next value from `vals` until it reaches the end and
1988
// will restart from the beginning.
1989
template <typename T>
1990
internal::ReturnRoundRobinAction<T> ReturnRoundRobin(
1991
std::initializer_list<T> vals) {
1992
return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals));
1993
}
1994
1995
// Creates an action that does the default action for the give mock function.
1996
inline internal::DoDefaultAction DoDefault() {
1997
return internal::DoDefaultAction();
1998
}
1999
2000
// Creates an action that sets the variable pointed by the N-th
2001
// (0-based) function argument to 'value'.
2002
template <size_t N, typename T>
2003
internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) {
2004
return {std::move(value)};
2005
}
2006
2007
// The following version is DEPRECATED.
2008
template <size_t N, typename T>
2009
internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) {
2010
return {std::move(value)};
2011
}
2012
2013
// Creates an action that sets a pointer referent to a given value.
2014
template <typename T1, typename T2>
2015
PolymorphicAction<internal::AssignAction<T1, T2>> Assign(T1* ptr, T2 val) {
2016
return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
2017
}
2018
2019
#ifndef GTEST_OS_WINDOWS_MOBILE
2020
2021
// Creates an action that sets errno and returns the appropriate error.
2022
template <typename T>
2023
PolymorphicAction<internal::SetErrnoAndReturnAction<T>> SetErrnoAndReturn(
2024
int errval, T result) {
2025
return MakePolymorphicAction(
2026
internal::SetErrnoAndReturnAction<T>(errval, result));
2027
}
2028
2029
#endif // !GTEST_OS_WINDOWS_MOBILE
2030
2031
// Various overloads for Invoke().
2032
2033
// Legacy function.
2034
// Actions can now be implicitly constructed from callables. No need to create
2035
// wrapper objects.
2036
// This function exists for backwards compatibility.
2037
template <typename FunctionImpl>
2038
typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) {
2039
return std::forward<FunctionImpl>(function_impl);
2040
}
2041
2042
// Creates an action that invokes the given method on the given object
2043
// with the mock function's arguments.
2044
template <class Class, typename MethodPtr>
2045
internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr,
2046
MethodPtr method_ptr) {
2047
return {obj_ptr, method_ptr};
2048
}
2049
2050
// Creates an action that invokes 'function_impl' with no argument.
2051
template <typename FunctionImpl>
2052
internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type>
2053
InvokeWithoutArgs(FunctionImpl function_impl) {
2054
return {std::move(function_impl)};
2055
}
2056
2057
// Creates an action that invokes the given method on the given object
2058
// with no argument.
2059
template <class Class, typename MethodPtr>
2060
internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs(
2061
Class* obj_ptr, MethodPtr method_ptr) {
2062
return {obj_ptr, method_ptr};
2063
}
2064
2065
// Creates an action that performs an_action and throws away its
2066
// result. In other words, it changes the return type of an_action to
2067
// void. an_action MUST NOT return void, or the code won't compile.
2068
template <typename A>
2069
inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
2070
return internal::IgnoreResultAction<A>(an_action);
2071
}
2072
2073
// Creates a reference wrapper for the given L-value. If necessary,
2074
// you can explicitly specify the type of the reference. For example,
2075
// suppose 'derived' is an object of type Derived, ByRef(derived)
2076
// would wrap a Derived&. If you want to wrap a const Base& instead,
2077
// where Base is a base class of Derived, just write:
2078
//
2079
// ByRef<const Base>(derived)
2080
//
2081
// N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper.
2082
// However, it may still be used for consistency with ByMove().
2083
template <typename T>
2084
inline ::std::reference_wrapper<T> ByRef(T& l_value) { // NOLINT
2085
return ::std::reference_wrapper<T>(l_value);
2086
}
2087
2088
// The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new
2089
// instance of type T, constructed on the heap with constructor arguments
2090
// a1, a2, ..., and a_k. The caller assumes ownership of the returned value.
2091
template <typename T, typename... Params>
2092
internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew(
2093
Params&&... params) {
2094
return {std::forward_as_tuple(std::forward<Params>(params)...)};
2095
}
2096
2097
// Action ReturnArg<k>() returns the k-th argument of the mock function.
2098
template <size_t k>
2099
internal::ReturnArgAction<k> ReturnArg() {
2100
return {};
2101
}
2102
2103
// Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
2104
// mock function to *pointer.
2105
template <size_t k, typename Ptr>
2106
internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) {
2107
return {pointer};
2108
}
2109
2110
// Action SaveArgByMove<k>(pointer) moves the k-th (0-based) argument of the
2111
// mock function into *pointer.
2112
template <size_t k, typename Ptr>
2113
internal::SaveArgByMoveAction<k, Ptr> SaveArgByMove(Ptr pointer) {
2114
return {pointer};
2115
}
2116
2117
// Action SaveArgPointee<k>(pointer) saves the value pointed to
2118
// by the k-th (0-based) argument of the mock function to *pointer.
2119
template <size_t k, typename Ptr>
2120
internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) {
2121
return {pointer};
2122
}
2123
2124
// Action SetArgReferee<k>(value) assigns 'value' to the variable
2125
// referenced by the k-th (0-based) argument of the mock function.
2126
template <size_t k, typename T>
2127
internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee(
2128
T&& value) {
2129
return {std::forward<T>(value)};
2130
}
2131
2132
// Action SetArrayArgument<k>(first, last) copies the elements in
2133
// source range [first, last) to the array pointed to by the k-th
2134
// (0-based) argument, which can be either a pointer or an
2135
// iterator. The action does not take ownership of the elements in the
2136
// source range.
2137
template <size_t k, typename I1, typename I2>
2138
internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first,
2139
I2 last) {
2140
return {first, last};
2141
}
2142
2143
// Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock
2144
// function.
2145
template <size_t k>
2146
internal::DeleteArgAction<k> DeleteArg() {
2147
return {};
2148
}
2149
2150
// This action returns the value pointed to by 'pointer'.
2151
template <typename Ptr>
2152
internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) {
2153
return {pointer};
2154
}
2155
2156
#if GTEST_HAS_EXCEPTIONS
2157
// Action Throw(exception) can be used in a mock function of any type
2158
// to throw the given exception. Any copyable value can be thrown,
2159
// except for std::exception_ptr, which is likely a mistake if
2160
// thrown directly.
2161
template <typename T>
2162
typename std::enable_if<
2163
!std::is_base_of<std::exception_ptr, typename std::decay<T>::type>::value,
2164
internal::ThrowAction<typename std::decay<T>::type>>::type
2165
Throw(T&& exception) {
2166
return {std::forward<T>(exception)};
2167
}
2168
// Action Rethrow(exception_ptr) can be used in a mock function of any type
2169
// to rethrow any exception_ptr. Note that the same object is thrown each time.
2170
inline internal::RethrowAction Rethrow(std::exception_ptr exception) {
2171
return {std::move(exception)};
2172
}
2173
#endif // GTEST_HAS_EXCEPTIONS
2174
2175
namespace internal {
2176
2177
// A macro from the ACTION* family (defined later in gmock-generated-actions.h)
2178
// defines an action that can be used in a mock function. Typically,
2179
// these actions only care about a subset of the arguments of the mock
2180
// function. For example, if such an action only uses the second
2181
// argument, it can be used in any mock function that takes >= 2
2182
// arguments where the type of the second argument is compatible.
2183
//
2184
// Therefore, the action implementation must be prepared to take more
2185
// arguments than it needs. The ExcessiveArg type is used to
2186
// represent those excessive arguments. In order to keep the compiler
2187
// error messages tractable, we define it in the testing namespace
2188
// instead of testing::internal. However, this is an INTERNAL TYPE
2189
// and subject to change without notice, so a user MUST NOT USE THIS
2190
// TYPE DIRECTLY.
2191
struct ExcessiveArg {};
2192
2193
// Builds an implementation of an Action<> for some particular signature, using
2194
// a class defined by an ACTION* macro.
2195
template <typename F, typename Impl>
2196
struct ActionImpl;
2197
2198
template <typename Impl>
2199
struct ImplBase {
2200
struct Holder {
2201
// Allows each copy of the Action<> to get to the Impl.
2202
explicit operator const Impl&() const { return *ptr; }
2203
std::shared_ptr<Impl> ptr;
2204
};
2205
using type = typename std::conditional<std::is_constructible<Impl>::value,
2206
Impl, Holder>::type;
2207
};
2208
2209
template <typename R, typename... Args, typename Impl>
2210
struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type {
2211
using Base = typename ImplBase<Impl>::type;
2212
using function_type = R(Args...);
2213
using args_type = std::tuple<Args...>;
2214
2215
ActionImpl() = default; // Only defined if appropriate for Base.
2216
explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} {}
2217
2218
R operator()(Args&&... arg) const {
2219
static constexpr size_t kMaxArgs =
2220
sizeof...(Args) <= 10 ? sizeof...(Args) : 10;
2221
return Apply(std::make_index_sequence<kMaxArgs>{},
2222
std::make_index_sequence<10 - kMaxArgs>{},
2223
args_type{std::forward<Args>(arg)...});
2224
}
2225
2226
template <std::size_t... arg_id, std::size_t... excess_id>
2227
R Apply(std::index_sequence<arg_id...>, std::index_sequence<excess_id...>,
2228
const args_type& args) const {
2229
// Impl need not be specific to the signature of action being implemented;
2230
// only the implementing function body needs to have all of the specific
2231
// types instantiated. Up to 10 of the args that are provided by the
2232
// args_type get passed, followed by a dummy of unspecified type for the
2233
// remainder up to 10 explicit args.
2234
static constexpr ExcessiveArg kExcessArg{};
2235
return static_cast<const Impl&>(*this)
2236
.template gmock_PerformImpl<
2237
/*function_type=*/function_type, /*return_type=*/R,
2238
/*args_type=*/args_type,
2239
/*argN_type=*/
2240
typename std::tuple_element<arg_id, args_type>::type...>(
2241
/*args=*/args, std::get<arg_id>(args)...,
2242
((void)excess_id, kExcessArg)...);
2243
}
2244
};
2245
2246
// Stores a default-constructed Impl as part of the Action<>'s
2247
// std::function<>. The Impl should be trivial to copy.
2248
template <typename F, typename Impl>
2249
::testing::Action<F> MakeAction() {
2250
return ::testing::Action<F>(ActionImpl<F, Impl>());
2251
}
2252
2253
// Stores just the one given instance of Impl.
2254
template <typename F, typename Impl>
2255
::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) {
2256
return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl)));
2257
}
2258
2259
#define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \
2260
, [[maybe_unused]] const arg##i##_type& arg##i
2261
#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \
2262
[[maybe_unused]] const args_type& args GMOCK_PP_REPEAT( \
2263
GMOCK_INTERNAL_ARG_UNUSED, , 10)
2264
2265
#define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i
2266
#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \
2267
const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10)
2268
2269
#define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type
2270
#define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \
2271
GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10))
2272
2273
#define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type
2274
#define GMOCK_ACTION_TYPENAME_PARAMS_(params) \
2275
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params))
2276
2277
#define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type
2278
#define GMOCK_ACTION_TYPE_PARAMS_(params) \
2279
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params))
2280
2281
#define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \
2282
, param##_type gmock_p##i
2283
#define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \
2284
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params))
2285
2286
#define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \
2287
, std::forward<param##_type>(gmock_p##i)
2288
#define GMOCK_ACTION_GVALUE_PARAMS_(params) \
2289
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params))
2290
2291
#define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \
2292
, param(::std::forward<param##_type>(gmock_p##i))
2293
#define GMOCK_ACTION_INIT_PARAMS_(params) \
2294
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params))
2295
2296
#define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param;
2297
#define GMOCK_ACTION_FIELD_PARAMS_(params) \
2298
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params)
2299
2300
#define GMOCK_INTERNAL_ACTION(name, full_name, params) \
2301
template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
2302
class full_name { \
2303
public: \
2304
explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \
2305
: impl_(std::make_shared<gmock_Impl>( \
2306
GMOCK_ACTION_GVALUE_PARAMS_(params))) {} \
2307
full_name(const full_name&) = default; \
2308
full_name(full_name&&) noexcept = default; \
2309
template <typename F> \
2310
operator ::testing::Action<F>() const { \
2311
return ::testing::internal::MakeAction<F>(impl_); \
2312
} \
2313
\
2314
private: \
2315
class gmock_Impl { \
2316
public: \
2317
explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \
2318
: GMOCK_ACTION_INIT_PARAMS_(params) {} \
2319
template <typename function_type, typename return_type, \
2320
typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
2321
return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
2322
GMOCK_ACTION_FIELD_PARAMS_(params) \
2323
}; \
2324
std::shared_ptr<const gmock_Impl> impl_; \
2325
}; \
2326
template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
2327
[[nodiscard]] inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \
2328
GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)); \
2329
template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
2330
inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \
2331
GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \
2332
return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \
2333
GMOCK_ACTION_GVALUE_PARAMS_(params)); \
2334
} \
2335
template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
2336
template <typename function_type, typename return_type, typename args_type, \
2337
GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
2338
return_type \
2339
full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl::gmock_PerformImpl( \
2340
GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
2341
2342
} // namespace internal
2343
2344
// Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored.
2345
#define ACTION(name) \
2346
class name##Action { \
2347
public: \
2348
explicit name##Action() noexcept {} \
2349
name##Action(const name##Action&) noexcept {} \
2350
template <typename F> \
2351
operator ::testing::Action<F>() const { \
2352
return ::testing::internal::MakeAction<F, gmock_Impl>(); \
2353
} \
2354
\
2355
private: \
2356
class gmock_Impl { \
2357
public: \
2358
template <typename function_type, typename return_type, \
2359
typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
2360
return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
2361
}; \
2362
}; \
2363
[[nodiscard]] inline name##Action name(); \
2364
inline name##Action name() { return name##Action(); } \
2365
template <typename function_type, typename return_type, typename args_type, \
2366
GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
2367
return_type name##Action::gmock_Impl::gmock_PerformImpl( \
2368
GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
2369
2370
#define ACTION_P(name, ...) \
2371
GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__))
2372
2373
#define ACTION_P2(name, ...) \
2374
GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__))
2375
2376
#define ACTION_P3(name, ...) \
2377
GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__))
2378
2379
#define ACTION_P4(name, ...) \
2380
GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__))
2381
2382
#define ACTION_P5(name, ...) \
2383
GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__))
2384
2385
#define ACTION_P6(name, ...) \
2386
GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__))
2387
2388
#define ACTION_P7(name, ...) \
2389
GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__))
2390
2391
#define ACTION_P8(name, ...) \
2392
GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__))
2393
2394
#define ACTION_P9(name, ...) \
2395
GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__))
2396
2397
#define ACTION_P10(name, ...) \
2398
GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__))
2399
2400
} // namespace testing
2401
2402
GTEST_DISABLE_MSC_WARNINGS_POP_() // 4100
2403
2404
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
2405
2406