Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/googletest/googlemock/test/gmock-actions_test.cc
108818 views
1
// Copyright 2007, Google Inc.
2
// All rights reserved.
3
//
4
// Redistribution and use in source and binary forms, with or without
5
// modification, are permitted provided that the following conditions are
6
// met:
7
//
8
// * Redistributions of source code must retain the above copyright
9
// notice, this list of conditions and the following disclaimer.
10
// * Redistributions in binary form must reproduce the above
11
// copyright notice, this list of conditions and the following disclaimer
12
// in the documentation and/or other materials provided with the
13
// distribution.
14
// * Neither the name of Google Inc. nor the names of its
15
// contributors may be used to endorse or promote products derived from
16
// this software without specific prior written permission.
17
//
18
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30
// Google Mock - a framework for writing C++ mock classes.
31
//
32
// This file tests the built-in actions.
33
34
#include "gmock/gmock-actions.h"
35
36
#include <algorithm>
37
#include <functional>
38
#include <iterator>
39
#include <memory>
40
#include <sstream>
41
#include <string>
42
#include <tuple>
43
#include <type_traits>
44
#include <utility>
45
#include <vector>
46
47
#include "gmock/gmock.h"
48
#include "gmock/internal/gmock-port.h"
49
#include "gtest/gtest-spi.h"
50
#include "gtest/gtest.h"
51
#include "gtest/internal/gtest-port.h"
52
53
// Silence C4100 (unreferenced formal parameter) and C4503 (decorated name
54
// length exceeded) for MSVC.
55
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4100 4503)
56
#if defined(_MSC_VER) && (_MSC_VER == 1900)
57
// and silence C4800 (C4800: 'int *const ': forcing value
58
// to bool 'true' or 'false') for MSVC 15
59
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4800)
60
#endif
61
62
namespace testing {
63
namespace {
64
65
using ::testing::internal::BuiltInDefaultValue;
66
67
TEST(TypeTraits, Negation) {
68
// Direct use with std types.
69
static_assert(std::is_base_of<std::false_type,
70
internal::negation<std::true_type>>::value,
71
"");
72
73
static_assert(std::is_base_of<std::true_type,
74
internal::negation<std::false_type>>::value,
75
"");
76
77
// With other types that fit the requirement of a value member that is
78
// convertible to bool.
79
static_assert(std::is_base_of<
80
std::true_type,
81
internal::negation<std::integral_constant<int, 0>>>::value,
82
"");
83
84
static_assert(std::is_base_of<
85
std::false_type,
86
internal::negation<std::integral_constant<int, 1>>>::value,
87
"");
88
89
static_assert(std::is_base_of<
90
std::false_type,
91
internal::negation<std::integral_constant<int, -1>>>::value,
92
"");
93
}
94
95
// Weird false/true types that aren't actually bool constants (but should still
96
// be legal according to [meta.logical] because `bool(T::value)` is valid), are
97
// distinct from std::false_type and std::true_type, and are distinct from other
98
// instantiations of the same template.
99
//
100
// These let us check finicky details mandated by the standard like
101
// "std::conjunction should evaluate to a type that inherits from the first
102
// false-y input".
103
template <int>
104
struct MyFalse : std::integral_constant<int, 0> {};
105
106
template <int>
107
struct MyTrue : std::integral_constant<int, -1> {};
108
109
TEST(TypeTraits, Conjunction) {
110
// Base case: always true.
111
static_assert(std::is_base_of<std::true_type, internal::conjunction<>>::value,
112
"");
113
114
// One predicate: inherits from that predicate, regardless of value.
115
static_assert(
116
std::is_base_of<MyFalse<0>, internal::conjunction<MyFalse<0>>>::value,
117
"");
118
119
static_assert(
120
std::is_base_of<MyTrue<0>, internal::conjunction<MyTrue<0>>>::value, "");
121
122
// Multiple predicates, with at least one false: inherits from that one.
123
static_assert(
124
std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>,
125
MyTrue<2>>>::value,
126
"");
127
128
static_assert(
129
std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>,
130
MyFalse<2>>>::value,
131
"");
132
133
// Short circuiting: in the case above, additional predicates need not even
134
// define a value member.
135
struct Empty {};
136
static_assert(
137
std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>,
138
Empty>>::value,
139
"");
140
141
// All predicates true: inherits from the last.
142
static_assert(
143
std::is_base_of<MyTrue<2>, internal::conjunction<MyTrue<0>, MyTrue<1>,
144
MyTrue<2>>>::value,
145
"");
146
}
147
148
TEST(TypeTraits, Disjunction) {
149
// Base case: always false.
150
static_assert(
151
std::is_base_of<std::false_type, internal::disjunction<>>::value, "");
152
153
// One predicate: inherits from that predicate, regardless of value.
154
static_assert(
155
std::is_base_of<MyFalse<0>, internal::disjunction<MyFalse<0>>>::value,
156
"");
157
158
static_assert(
159
std::is_base_of<MyTrue<0>, internal::disjunction<MyTrue<0>>>::value, "");
160
161
// Multiple predicates, with at least one true: inherits from that one.
162
static_assert(
163
std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>,
164
MyFalse<2>>>::value,
165
"");
166
167
static_assert(
168
std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>,
169
MyTrue<2>>>::value,
170
"");
171
172
// Short circuiting: in the case above, additional predicates need not even
173
// define a value member.
174
struct Empty {};
175
static_assert(
176
std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>,
177
Empty>>::value,
178
"");
179
180
// All predicates false: inherits from the last.
181
static_assert(
182
std::is_base_of<MyFalse<2>, internal::disjunction<MyFalse<0>, MyFalse<1>,
183
MyFalse<2>>>::value,
184
"");
185
}
186
187
TEST(TypeTraits, IsInvocableRV) {
188
struct C {
189
int operator()() const { return 0; }
190
void operator()(int) & {}
191
std::string operator()(int) && { return ""; };
192
};
193
194
// The first overload is callable for const and non-const rvalues and lvalues.
195
// It can be used to obtain an int, cv void, or anything int is convertible
196
// to.
197
static_assert(internal::is_callable_r<int, C>::value, "");
198
static_assert(internal::is_callable_r<int, C&>::value, "");
199
static_assert(internal::is_callable_r<int, const C>::value, "");
200
static_assert(internal::is_callable_r<int, const C&>::value, "");
201
202
static_assert(internal::is_callable_r<void, C>::value, "");
203
static_assert(internal::is_callable_r<const volatile void, C>::value, "");
204
static_assert(internal::is_callable_r<char, C>::value, "");
205
206
// It's possible to provide an int. If it's given to an lvalue, the result is
207
// void. Otherwise it is std::string (which is also treated as allowed for a
208
// void result type).
209
static_assert(internal::is_callable_r<void, C&, int>::value, "");
210
static_assert(!internal::is_callable_r<int, C&, int>::value, "");
211
static_assert(!internal::is_callable_r<std::string, C&, int>::value, "");
212
static_assert(!internal::is_callable_r<void, const C&, int>::value, "");
213
214
static_assert(internal::is_callable_r<std::string, C, int>::value, "");
215
static_assert(internal::is_callable_r<void, C, int>::value, "");
216
static_assert(!internal::is_callable_r<int, C, int>::value, "");
217
218
// It's not possible to provide other arguments.
219
static_assert(!internal::is_callable_r<void, C, std::string>::value, "");
220
static_assert(!internal::is_callable_r<void, C, int, int>::value, "");
221
222
// In C++17 and above, where it's guaranteed that functions can return
223
// non-moveable objects, everything should work fine for non-moveable rsult
224
// types too.
225
// TODO(b/396121064) - Fix this test under MSVC
226
#ifndef _MSC_VER
227
{
228
struct NonMoveable {
229
NonMoveable() = default;
230
NonMoveable(NonMoveable&&) = delete;
231
};
232
233
static_assert(!std::is_move_constructible_v<NonMoveable>);
234
235
struct Callable {
236
NonMoveable operator()() { return NonMoveable(); }
237
};
238
239
static_assert(internal::is_callable_r<NonMoveable, Callable>::value);
240
static_assert(internal::is_callable_r<void, Callable>::value);
241
static_assert(
242
internal::is_callable_r<const volatile void, Callable>::value);
243
244
static_assert(!internal::is_callable_r<int, Callable>::value);
245
static_assert(!internal::is_callable_r<NonMoveable, Callable, int>::value);
246
}
247
#endif // _MSC_VER
248
249
// Nothing should choke when we try to call other arguments besides directly
250
// callable objects, but they should not show up as callable.
251
static_assert(!internal::is_callable_r<void, int>::value, "");
252
static_assert(!internal::is_callable_r<void, void (C::*)()>::value, "");
253
static_assert(!internal::is_callable_r<void, void (C::*)(), C*>::value, "");
254
}
255
256
// Tests that BuiltInDefaultValue<T*>::Get() returns NULL.
257
TEST(BuiltInDefaultValueTest, IsNullForPointerTypes) {
258
EXPECT_TRUE(BuiltInDefaultValue<int*>::Get() == nullptr);
259
EXPECT_TRUE(BuiltInDefaultValue<const char*>::Get() == nullptr);
260
EXPECT_TRUE(BuiltInDefaultValue<void*>::Get() == nullptr);
261
}
262
263
// Tests that BuiltInDefaultValue<T*>::Exists() return true.
264
TEST(BuiltInDefaultValueTest, ExistsForPointerTypes) {
265
EXPECT_TRUE(BuiltInDefaultValue<int*>::Exists());
266
EXPECT_TRUE(BuiltInDefaultValue<const char*>::Exists());
267
EXPECT_TRUE(BuiltInDefaultValue<void*>::Exists());
268
}
269
270
// Tests that BuiltInDefaultValue<T>::Get() returns 0 when T is a
271
// built-in numeric type.
272
TEST(BuiltInDefaultValueTest, IsZeroForNumericTypes) {
273
EXPECT_EQ(0U, BuiltInDefaultValue<unsigned char>::Get());
274
EXPECT_EQ(0, BuiltInDefaultValue<signed char>::Get());
275
EXPECT_EQ(0, BuiltInDefaultValue<char>::Get());
276
#if GMOCK_WCHAR_T_IS_NATIVE_
277
#if !defined(__WCHAR_UNSIGNED__)
278
EXPECT_EQ(0, BuiltInDefaultValue<wchar_t>::Get());
279
#else
280
EXPECT_EQ(0U, BuiltInDefaultValue<wchar_t>::Get());
281
#endif
282
#endif
283
EXPECT_EQ(0U, BuiltInDefaultValue<unsigned short>::Get()); // NOLINT
284
EXPECT_EQ(0, BuiltInDefaultValue<signed short>::Get()); // NOLINT
285
EXPECT_EQ(0, BuiltInDefaultValue<short>::Get()); // NOLINT
286
EXPECT_EQ(0U, BuiltInDefaultValue<unsigned int>::Get());
287
EXPECT_EQ(0, BuiltInDefaultValue<signed int>::Get());
288
EXPECT_EQ(0, BuiltInDefaultValue<int>::Get());
289
EXPECT_EQ(0U, BuiltInDefaultValue<unsigned long>::Get()); // NOLINT
290
EXPECT_EQ(0, BuiltInDefaultValue<signed long>::Get()); // NOLINT
291
EXPECT_EQ(0, BuiltInDefaultValue<long>::Get()); // NOLINT
292
EXPECT_EQ(0U, BuiltInDefaultValue<unsigned long long>::Get()); // NOLINT
293
EXPECT_EQ(0, BuiltInDefaultValue<signed long long>::Get()); // NOLINT
294
EXPECT_EQ(0, BuiltInDefaultValue<long long>::Get()); // NOLINT
295
EXPECT_EQ(0, BuiltInDefaultValue<float>::Get());
296
EXPECT_EQ(0, BuiltInDefaultValue<double>::Get());
297
}
298
299
// Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a
300
// built-in numeric type.
301
TEST(BuiltInDefaultValueTest, ExistsForNumericTypes) {
302
EXPECT_TRUE(BuiltInDefaultValue<unsigned char>::Exists());
303
EXPECT_TRUE(BuiltInDefaultValue<signed char>::Exists());
304
EXPECT_TRUE(BuiltInDefaultValue<char>::Exists());
305
#if GMOCK_WCHAR_T_IS_NATIVE_
306
EXPECT_TRUE(BuiltInDefaultValue<wchar_t>::Exists());
307
#endif
308
EXPECT_TRUE(BuiltInDefaultValue<unsigned short>::Exists()); // NOLINT
309
EXPECT_TRUE(BuiltInDefaultValue<signed short>::Exists()); // NOLINT
310
EXPECT_TRUE(BuiltInDefaultValue<short>::Exists()); // NOLINT
311
EXPECT_TRUE(BuiltInDefaultValue<unsigned int>::Exists());
312
EXPECT_TRUE(BuiltInDefaultValue<signed int>::Exists());
313
EXPECT_TRUE(BuiltInDefaultValue<int>::Exists());
314
EXPECT_TRUE(BuiltInDefaultValue<unsigned long>::Exists()); // NOLINT
315
EXPECT_TRUE(BuiltInDefaultValue<signed long>::Exists()); // NOLINT
316
EXPECT_TRUE(BuiltInDefaultValue<long>::Exists()); // NOLINT
317
EXPECT_TRUE(BuiltInDefaultValue<unsigned long long>::Exists()); // NOLINT
318
EXPECT_TRUE(BuiltInDefaultValue<signed long long>::Exists()); // NOLINT
319
EXPECT_TRUE(BuiltInDefaultValue<long long>::Exists()); // NOLINT
320
EXPECT_TRUE(BuiltInDefaultValue<float>::Exists());
321
EXPECT_TRUE(BuiltInDefaultValue<double>::Exists());
322
}
323
324
// Tests that BuiltInDefaultValue<bool>::Get() returns false.
325
TEST(BuiltInDefaultValueTest, IsFalseForBool) {
326
EXPECT_FALSE(BuiltInDefaultValue<bool>::Get());
327
}
328
329
// Tests that BuiltInDefaultValue<bool>::Exists() returns true.
330
TEST(BuiltInDefaultValueTest, BoolExists) {
331
EXPECT_TRUE(BuiltInDefaultValue<bool>::Exists());
332
}
333
334
// Tests that BuiltInDefaultValue<T>::Get() returns "" when T is a
335
// string type.
336
TEST(BuiltInDefaultValueTest, IsEmptyStringForString) {
337
EXPECT_EQ("", BuiltInDefaultValue<::std::string>::Get());
338
}
339
340
// Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a
341
// string type.
342
TEST(BuiltInDefaultValueTest, ExistsForString) {
343
EXPECT_TRUE(BuiltInDefaultValue<::std::string>::Exists());
344
}
345
346
// Tests that BuiltInDefaultValue<const T>::Get() returns the same
347
// value as BuiltInDefaultValue<T>::Get() does.
348
TEST(BuiltInDefaultValueTest, WorksForConstTypes) {
349
EXPECT_EQ("", BuiltInDefaultValue<const std::string>::Get());
350
EXPECT_EQ(0, BuiltInDefaultValue<const int>::Get());
351
EXPECT_TRUE(BuiltInDefaultValue<char* const>::Get() == nullptr);
352
EXPECT_FALSE(BuiltInDefaultValue<const bool>::Get());
353
}
354
355
// A type that's default constructible.
356
class MyDefaultConstructible {
357
public:
358
MyDefaultConstructible() : value_(42) {}
359
360
int value() const { return value_; }
361
362
private:
363
int value_;
364
};
365
366
// A type that's not default constructible.
367
class MyNonDefaultConstructible {
368
public:
369
// Does not have a default ctor.
370
explicit MyNonDefaultConstructible(int a_value) : value_(a_value) {}
371
372
int value() const { return value_; }
373
374
private:
375
int value_;
376
};
377
378
TEST(BuiltInDefaultValueTest, ExistsForDefaultConstructibleType) {
379
EXPECT_TRUE(BuiltInDefaultValue<MyDefaultConstructible>::Exists());
380
}
381
382
TEST(BuiltInDefaultValueTest, IsDefaultConstructedForDefaultConstructibleType) {
383
EXPECT_EQ(42, BuiltInDefaultValue<MyDefaultConstructible>::Get().value());
384
}
385
386
TEST(BuiltInDefaultValueTest, DoesNotExistForNonDefaultConstructibleType) {
387
EXPECT_FALSE(BuiltInDefaultValue<MyNonDefaultConstructible>::Exists());
388
}
389
390
// Tests that BuiltInDefaultValue<T&>::Get() aborts the program.
391
TEST(BuiltInDefaultValueDeathTest, IsUndefinedForReferences) {
392
EXPECT_DEATH_IF_SUPPORTED({ BuiltInDefaultValue<int&>::Get(); }, "");
393
EXPECT_DEATH_IF_SUPPORTED({ BuiltInDefaultValue<const char&>::Get(); }, "");
394
}
395
396
TEST(BuiltInDefaultValueDeathTest, IsUndefinedForNonDefaultConstructibleType) {
397
EXPECT_DEATH_IF_SUPPORTED(
398
{ BuiltInDefaultValue<MyNonDefaultConstructible>::Get(); }, "");
399
}
400
401
// Tests that DefaultValue<T>::IsSet() is false initially.
402
TEST(DefaultValueTest, IsInitiallyUnset) {
403
EXPECT_FALSE(DefaultValue<int>::IsSet());
404
EXPECT_FALSE(DefaultValue<MyDefaultConstructible>::IsSet());
405
EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::IsSet());
406
}
407
408
// Tests that DefaultValue<T> can be set and then unset.
409
TEST(DefaultValueTest, CanBeSetAndUnset) {
410
EXPECT_TRUE(DefaultValue<int>::Exists());
411
EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::Exists());
412
413
DefaultValue<int>::Set(1);
414
DefaultValue<const MyNonDefaultConstructible>::Set(
415
MyNonDefaultConstructible(42));
416
417
EXPECT_EQ(1, DefaultValue<int>::Get());
418
EXPECT_EQ(42, DefaultValue<const MyNonDefaultConstructible>::Get().value());
419
420
EXPECT_TRUE(DefaultValue<int>::Exists());
421
EXPECT_TRUE(DefaultValue<const MyNonDefaultConstructible>::Exists());
422
423
DefaultValue<int>::Clear();
424
DefaultValue<const MyNonDefaultConstructible>::Clear();
425
426
EXPECT_FALSE(DefaultValue<int>::IsSet());
427
EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::IsSet());
428
429
EXPECT_TRUE(DefaultValue<int>::Exists());
430
EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::Exists());
431
}
432
433
// Tests that DefaultValue<T>::Get() returns the
434
// BuiltInDefaultValue<T>::Get() when DefaultValue<T>::IsSet() is
435
// false.
436
TEST(DefaultValueDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) {
437
EXPECT_FALSE(DefaultValue<int>::IsSet());
438
EXPECT_TRUE(DefaultValue<int>::Exists());
439
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible>::IsSet());
440
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible>::Exists());
441
442
EXPECT_EQ(0, DefaultValue<int>::Get());
443
444
EXPECT_DEATH_IF_SUPPORTED(
445
{ DefaultValue<MyNonDefaultConstructible>::Get(); }, "");
446
}
447
448
TEST(DefaultValueTest, GetWorksForMoveOnlyIfSet) {
449
EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists());
450
EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Get() == nullptr);
451
DefaultValue<std::unique_ptr<int>>::SetFactory(
452
[] { return std::make_unique<int>(42); });
453
EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists());
454
std::unique_ptr<int> i = DefaultValue<std::unique_ptr<int>>::Get();
455
EXPECT_EQ(42, *i);
456
}
457
458
// Tests that DefaultValue<void>::Get() returns void.
459
TEST(DefaultValueTest, GetWorksForVoid) { return DefaultValue<void>::Get(); }
460
461
// Tests using DefaultValue with a reference type.
462
463
// Tests that DefaultValue<T&>::IsSet() is false initially.
464
TEST(DefaultValueOfReferenceTest, IsInitiallyUnset) {
465
EXPECT_FALSE(DefaultValue<int&>::IsSet());
466
EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::IsSet());
467
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
468
}
469
470
// Tests that DefaultValue<T&>::Exists is false initially.
471
TEST(DefaultValueOfReferenceTest, IsInitiallyNotExisting) {
472
EXPECT_FALSE(DefaultValue<int&>::Exists());
473
EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::Exists());
474
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::Exists());
475
}
476
477
// Tests that DefaultValue<T&> can be set and then unset.
478
TEST(DefaultValueOfReferenceTest, CanBeSetAndUnset) {
479
int n = 1;
480
DefaultValue<const int&>::Set(n);
481
MyNonDefaultConstructible x(42);
482
DefaultValue<MyNonDefaultConstructible&>::Set(x);
483
484
EXPECT_TRUE(DefaultValue<const int&>::Exists());
485
EXPECT_TRUE(DefaultValue<MyNonDefaultConstructible&>::Exists());
486
487
EXPECT_EQ(&n, &(DefaultValue<const int&>::Get()));
488
EXPECT_EQ(&x, &(DefaultValue<MyNonDefaultConstructible&>::Get()));
489
490
DefaultValue<const int&>::Clear();
491
DefaultValue<MyNonDefaultConstructible&>::Clear();
492
493
EXPECT_FALSE(DefaultValue<const int&>::Exists());
494
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::Exists());
495
496
EXPECT_FALSE(DefaultValue<const int&>::IsSet());
497
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
498
}
499
500
// Tests that DefaultValue<T&>::Get() returns the
501
// BuiltInDefaultValue<T&>::Get() when DefaultValue<T&>::IsSet() is
502
// false.
503
TEST(DefaultValueOfReferenceDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) {
504
EXPECT_FALSE(DefaultValue<int&>::IsSet());
505
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
506
507
EXPECT_DEATH_IF_SUPPORTED({ DefaultValue<int&>::Get(); }, "");
508
EXPECT_DEATH_IF_SUPPORTED(
509
{ DefaultValue<MyNonDefaultConstructible>::Get(); }, "");
510
}
511
512
// Tests that ActionInterface can be implemented by defining the
513
// Perform method.
514
515
typedef int MyGlobalFunction(bool, int);
516
517
class MyActionImpl : public ActionInterface<MyGlobalFunction> {
518
public:
519
int Perform(const std::tuple<bool, int>& args) override {
520
return std::get<0>(args) ? std::get<1>(args) : 0;
521
}
522
};
523
524
TEST(ActionInterfaceTest, CanBeImplementedByDefiningPerform) {
525
MyActionImpl my_action_impl;
526
(void)my_action_impl;
527
}
528
529
TEST(ActionInterfaceTest, MakeAction) {
530
Action<MyGlobalFunction> action = MakeAction(new MyActionImpl);
531
532
// When exercising the Perform() method of Action<F>, we must pass
533
// it a tuple whose size and type are compatible with F's argument
534
// types. For example, if F is int(), then Perform() takes a
535
// 0-tuple; if F is void(bool, int), then Perform() takes a
536
// std::tuple<bool, int>, and so on.
537
EXPECT_EQ(5, action.Perform(std::make_tuple(true, 5)));
538
}
539
540
// Tests that Action<F> can be constructed from a pointer to
541
// ActionInterface<F>.
542
TEST(ActionTest, CanBeConstructedFromActionInterface) {
543
Action<MyGlobalFunction> action(new MyActionImpl);
544
}
545
546
// Tests that Action<F> delegates actual work to ActionInterface<F>.
547
TEST(ActionTest, DelegatesWorkToActionInterface) {
548
const Action<MyGlobalFunction> action(new MyActionImpl);
549
550
EXPECT_EQ(5, action.Perform(std::make_tuple(true, 5)));
551
EXPECT_EQ(0, action.Perform(std::make_tuple(false, 1)));
552
}
553
554
// Tests that Action<F> can be copied.
555
TEST(ActionTest, IsCopyable) {
556
Action<MyGlobalFunction> a1(new MyActionImpl);
557
Action<MyGlobalFunction> a2(a1); // Tests the copy constructor.
558
559
// a1 should continue to work after being copied from.
560
EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5)));
561
EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 1)));
562
563
// a2 should work like the action it was copied from.
564
EXPECT_EQ(5, a2.Perform(std::make_tuple(true, 5)));
565
EXPECT_EQ(0, a2.Perform(std::make_tuple(false, 1)));
566
567
a2 = a1; // Tests the assignment operator.
568
569
// a1 should continue to work after being copied from.
570
EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5)));
571
EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 1)));
572
573
// a2 should work like the action it was copied from.
574
EXPECT_EQ(5, a2.Perform(std::make_tuple(true, 5)));
575
EXPECT_EQ(0, a2.Perform(std::make_tuple(false, 1)));
576
}
577
578
// Tests that an Action<From> object can be converted to a
579
// compatible Action<To> object.
580
581
class IsNotZero : public ActionInterface<bool(int)> { // NOLINT
582
public:
583
bool Perform(const std::tuple<int>& arg) override {
584
return std::get<0>(arg) != 0;
585
}
586
};
587
588
TEST(ActionTest, CanBeConvertedToOtherActionType) {
589
const Action<bool(int)> a1(new IsNotZero); // NOLINT
590
const Action<int(char)> a2 = Action<int(char)>(a1); // NOLINT
591
EXPECT_EQ(1, a2.Perform(std::make_tuple('a')));
592
EXPECT_EQ(0, a2.Perform(std::make_tuple('\0')));
593
}
594
595
// The following two classes are for testing MakePolymorphicAction().
596
597
// Implements a polymorphic action that returns the second of the
598
// arguments it receives.
599
class ReturnSecondArgumentAction {
600
public:
601
// We want to verify that MakePolymorphicAction() can work with a
602
// polymorphic action whose Perform() method template is either
603
// const or not. This lets us verify the non-const case.
604
template <typename Result, typename ArgumentTuple>
605
Result Perform(const ArgumentTuple& args) {
606
return std::get<1>(args);
607
}
608
};
609
610
// Implements a polymorphic action that can be used in a nullary
611
// function to return 0.
612
class ReturnZeroFromNullaryFunctionAction {
613
public:
614
// For testing that MakePolymorphicAction() works when the
615
// implementation class' Perform() method template takes only one
616
// template parameter.
617
//
618
// We want to verify that MakePolymorphicAction() can work with a
619
// polymorphic action whose Perform() method template is either
620
// const or not. This lets us verify the const case.
621
template <typename Result>
622
Result Perform(const std::tuple<>&) const {
623
return 0;
624
}
625
};
626
627
// These functions verify that MakePolymorphicAction() returns a
628
// PolymorphicAction<T> where T is the argument's type.
629
630
PolymorphicAction<ReturnSecondArgumentAction> ReturnSecondArgument() {
631
return MakePolymorphicAction(ReturnSecondArgumentAction());
632
}
633
634
PolymorphicAction<ReturnZeroFromNullaryFunctionAction>
635
ReturnZeroFromNullaryFunction() {
636
return MakePolymorphicAction(ReturnZeroFromNullaryFunctionAction());
637
}
638
639
// Tests that MakePolymorphicAction() turns a polymorphic action
640
// implementation class into a polymorphic action.
641
TEST(MakePolymorphicActionTest, ConstructsActionFromImpl) {
642
Action<int(bool, int, double)> a1 = ReturnSecondArgument(); // NOLINT
643
EXPECT_EQ(5, a1.Perform(std::make_tuple(false, 5, 2.0)));
644
}
645
646
// Tests that MakePolymorphicAction() works when the implementation
647
// class' Perform() method template has only one template parameter.
648
TEST(MakePolymorphicActionTest, WorksWhenPerformHasOneTemplateParameter) {
649
Action<int()> a1 = ReturnZeroFromNullaryFunction();
650
EXPECT_EQ(0, a1.Perform(std::make_tuple()));
651
652
Action<void*()> a2 = ReturnZeroFromNullaryFunction();
653
EXPECT_TRUE(a2.Perform(std::make_tuple()) == nullptr);
654
}
655
656
// Tests that Return() works as an action for void-returning
657
// functions.
658
TEST(ReturnTest, WorksForVoid) {
659
const Action<void(int)> ret = Return(); // NOLINT
660
return ret.Perform(std::make_tuple(1));
661
}
662
663
// Tests that Return(v) returns v.
664
TEST(ReturnTest, ReturnsGivenValue) {
665
Action<int()> ret = Return(1); // NOLINT
666
EXPECT_EQ(1, ret.Perform(std::make_tuple()));
667
668
ret = Return(-5);
669
EXPECT_EQ(-5, ret.Perform(std::make_tuple()));
670
}
671
672
// Tests that Return("string literal") works.
673
TEST(ReturnTest, AcceptsStringLiteral) {
674
Action<const char*()> a1 = Return("Hello");
675
EXPECT_STREQ("Hello", a1.Perform(std::make_tuple()));
676
677
Action<std::string()> a2 = Return("world");
678
EXPECT_EQ("world", a2.Perform(std::make_tuple()));
679
}
680
681
// Return(x) should work fine when the mock function's return type is a
682
// reference-like wrapper for decltype(x), as when x is a std::string and the
683
// mock function returns std::string_view.
684
TEST(ReturnTest, SupportsReferenceLikeReturnType) {
685
// A reference wrapper for std::vector<int>, implicitly convertible from it.
686
struct Result {
687
const std::vector<int>* v;
688
Result(const std::vector<int>& vec) : v(&vec) {} // NOLINT
689
};
690
691
// Set up an action for a mock function that returns the reference wrapper
692
// type, initializing it with an actual vector.
693
//
694
// The returned wrapper should be initialized with a copy of that vector
695
// that's embedded within the action itself (which should stay alive as long
696
// as the mock object is alive), rather than e.g. a reference to the temporary
697
// we feed to Return. This should work fine both for WillOnce and
698
// WillRepeatedly.
699
MockFunction<Result()> mock;
700
EXPECT_CALL(mock, Call)
701
.WillOnce(Return(std::vector<int>{17, 19, 23}))
702
.WillRepeatedly(Return(std::vector<int>{29, 31, 37}));
703
704
EXPECT_THAT(mock.AsStdFunction()(),
705
Field(&Result::v, Pointee(ElementsAre(17, 19, 23))));
706
707
EXPECT_THAT(mock.AsStdFunction()(),
708
Field(&Result::v, Pointee(ElementsAre(29, 31, 37))));
709
}
710
711
TEST(ReturnTest, PrefersConversionOperator) {
712
// Define types In and Out such that:
713
//
714
// * In is implicitly convertible to Out.
715
// * Out also has an explicit constructor from In.
716
//
717
struct In;
718
struct Out {
719
int x;
720
721
explicit Out(const int val) : x(val) {}
722
explicit Out(const In&) : x(0) {}
723
};
724
725
struct In {
726
operator Out() const { return Out{19}; } // NOLINT
727
};
728
729
// Assumption check: the C++ language rules are such that a function that
730
// returns Out which uses In a return statement will use the implicit
731
// conversion path rather than the explicit constructor.
732
EXPECT_THAT([]() -> Out { return In(); }(), Field(&Out::x, 19));
733
734
// Return should work the same way: if the mock function's return type is Out
735
// and we feed Return an In value, then the Out should be created through the
736
// implicit conversion path rather than the explicit constructor.
737
MockFunction<Out()> mock;
738
EXPECT_CALL(mock, Call).WillOnce(Return(In()));
739
EXPECT_THAT(mock.AsStdFunction()(), Field(&Out::x, 19));
740
}
741
742
// It should be possible to use Return(R) with a mock function result type U
743
// that is convertible from const R& but *not* R (such as
744
// std::reference_wrapper). This should work for both WillOnce and
745
// WillRepeatedly.
746
TEST(ReturnTest, ConversionRequiresConstLvalueReference) {
747
using R = int;
748
using U = std::reference_wrapper<const int>;
749
750
static_assert(std::is_convertible<const R&, U>::value, "");
751
static_assert(!std::is_convertible<R, U>::value, "");
752
753
MockFunction<U()> mock;
754
EXPECT_CALL(mock, Call).WillOnce(Return(17)).WillRepeatedly(Return(19));
755
756
EXPECT_EQ(17, mock.AsStdFunction()());
757
EXPECT_EQ(19, mock.AsStdFunction()());
758
}
759
760
// Return(x) should not be usable with a mock function result type that's
761
// implicitly convertible from decltype(x) but requires a non-const lvalue
762
// reference to the input. It doesn't make sense for the conversion operator to
763
// modify the input.
764
TEST(ReturnTest, ConversionRequiresMutableLvalueReference) {
765
// Set up a type that is implicitly convertible from std::string&, but not
766
// std::string&& or `const std::string&`.
767
//
768
// Avoid asserting about conversion from std::string on MSVC, which seems to
769
// implement std::is_convertible incorrectly in this case.
770
struct S {
771
S(std::string&) {} // NOLINT
772
};
773
774
static_assert(std::is_convertible<std::string&, S>::value, "");
775
#ifndef _MSC_VER
776
static_assert(!std::is_convertible<std::string&&, S>::value, "");
777
#endif
778
static_assert(!std::is_convertible<const std::string&, S>::value, "");
779
780
// It shouldn't be possible to use the result of Return(std::string) in a
781
// context where an S is needed.
782
//
783
// Here too we disable the assertion for MSVC, since its incorrect
784
// implementation of is_convertible causes our SFINAE to be wrong.
785
using RA = decltype(Return(std::string()));
786
787
static_assert(!std::is_convertible<RA, Action<S()>>::value, "");
788
#ifndef _MSC_VER
789
static_assert(!std::is_convertible<RA, OnceAction<S()>>::value, "");
790
#endif
791
}
792
793
TEST(ReturnTest, MoveOnlyResultType) {
794
// Return should support move-only result types when used with WillOnce.
795
{
796
MockFunction<std::unique_ptr<int>()> mock;
797
EXPECT_CALL(mock, Call)
798
// NOLINTNEXTLINE
799
.WillOnce(Return(std::unique_ptr<int>(new int(17))));
800
801
EXPECT_THAT(mock.AsStdFunction()(), Pointee(17));
802
}
803
804
// The result of Return should not be convertible to Action (so it can't be
805
// used with WillRepeatedly).
806
static_assert(!std::is_convertible<decltype(Return(std::unique_ptr<int>())),
807
Action<std::unique_ptr<int>()>>::value,
808
"");
809
}
810
811
// Tests that Return(v) is covariant.
812
813
struct Base {
814
bool operator==(const Base&) { return true; }
815
};
816
817
struct Derived : public Base {
818
bool operator==(const Derived&) { return true; }
819
};
820
821
TEST(ReturnTest, IsCovariant) {
822
Base base;
823
Derived derived;
824
Action<Base*()> ret = Return(&base);
825
EXPECT_EQ(&base, ret.Perform(std::make_tuple()));
826
827
ret = Return(&derived);
828
EXPECT_EQ(&derived, ret.Perform(std::make_tuple()));
829
}
830
831
// Tests that the type of the value passed into Return is converted into T
832
// when the action is cast to Action<T(...)> rather than when the action is
833
// performed. See comments on testing::internal::ReturnAction in
834
// gmock-actions.h for more information.
835
class FromType {
836
public:
837
explicit FromType(bool* is_converted) : converted_(is_converted) {}
838
bool* converted() const { return converted_; }
839
840
private:
841
bool* const converted_;
842
};
843
844
class ToType {
845
public:
846
// Must allow implicit conversion due to use in ImplicitCast_<T>.
847
ToType(const FromType& x) { *x.converted() = true; } // NOLINT
848
};
849
850
TEST(ReturnTest, ConvertsArgumentWhenConverted) {
851
bool converted = false;
852
FromType x(&converted);
853
Action<ToType()> action(Return(x));
854
EXPECT_TRUE(converted) << "Return must convert its argument in its own "
855
<< "conversion operator.";
856
converted = false;
857
action.Perform(std::tuple<>());
858
EXPECT_FALSE(converted) << "Action must NOT convert its argument "
859
<< "when performed.";
860
}
861
862
// Tests that ReturnNull() returns NULL in a pointer-returning function.
863
TEST(ReturnNullTest, WorksInPointerReturningFunction) {
864
const Action<int*()> a1 = ReturnNull();
865
EXPECT_TRUE(a1.Perform(std::make_tuple()) == nullptr);
866
867
const Action<const char*(bool)> a2 = ReturnNull(); // NOLINT
868
EXPECT_TRUE(a2.Perform(std::make_tuple(true)) == nullptr);
869
}
870
871
// Tests that ReturnNull() returns NULL for shared_ptr and unique_ptr returning
872
// functions.
873
TEST(ReturnNullTest, WorksInSmartPointerReturningFunction) {
874
const Action<std::unique_ptr<const int>()> a1 = ReturnNull();
875
EXPECT_TRUE(a1.Perform(std::make_tuple()) == nullptr);
876
877
const Action<std::shared_ptr<int>(std::string)> a2 = ReturnNull();
878
EXPECT_TRUE(a2.Perform(std::make_tuple("foo")) == nullptr);
879
}
880
881
// Tests that ReturnRef(v) works for reference types.
882
TEST(ReturnRefTest, WorksForReference) {
883
const int n = 0;
884
const Action<const int&(bool)> ret = ReturnRef(n); // NOLINT
885
886
EXPECT_EQ(&n, &ret.Perform(std::make_tuple(true)));
887
}
888
889
// Tests that ReturnRef(v) is covariant.
890
TEST(ReturnRefTest, IsCovariant) {
891
Base base;
892
Derived derived;
893
Action<Base&()> a = ReturnRef(base);
894
EXPECT_EQ(&base, &a.Perform(std::make_tuple()));
895
896
a = ReturnRef(derived);
897
EXPECT_EQ(&derived, &a.Perform(std::make_tuple()));
898
}
899
900
template <typename T, typename = decltype(ReturnRef(std::declval<T&&>()))>
901
bool CanCallReturnRef(T&&) {
902
return true;
903
}
904
bool CanCallReturnRef(Unused) { return false; }
905
906
// Tests that ReturnRef(v) is working with non-temporaries (T&)
907
TEST(ReturnRefTest, WorksForNonTemporary) {
908
int scalar_value = 123;
909
EXPECT_TRUE(CanCallReturnRef(scalar_value));
910
911
std::string non_scalar_value("ABC");
912
EXPECT_TRUE(CanCallReturnRef(non_scalar_value));
913
914
const int const_scalar_value{321};
915
EXPECT_TRUE(CanCallReturnRef(const_scalar_value));
916
917
const std::string const_non_scalar_value("CBA");
918
EXPECT_TRUE(CanCallReturnRef(const_non_scalar_value));
919
}
920
921
// Tests that ReturnRef(v) is not working with temporaries (T&&)
922
TEST(ReturnRefTest, DoesNotWorkForTemporary) {
923
auto scalar_value = []() -> int { return 123; };
924
EXPECT_FALSE(CanCallReturnRef(scalar_value()));
925
926
auto non_scalar_value = []() -> std::string { return "ABC"; };
927
EXPECT_FALSE(CanCallReturnRef(non_scalar_value()));
928
929
// cannot use here callable returning "const scalar type",
930
// because such const for scalar return type is ignored
931
EXPECT_FALSE(CanCallReturnRef(static_cast<const int>(321)));
932
933
auto const_non_scalar_value = []() -> const std::string { return "CBA"; };
934
EXPECT_FALSE(CanCallReturnRef(const_non_scalar_value()));
935
}
936
937
// Tests that ReturnRefOfCopy(v) works for reference types.
938
TEST(ReturnRefOfCopyTest, WorksForReference) {
939
int n = 42;
940
const Action<const int&()> ret = ReturnRefOfCopy(n);
941
942
EXPECT_NE(&n, &ret.Perform(std::make_tuple()));
943
EXPECT_EQ(42, ret.Perform(std::make_tuple()));
944
945
n = 43;
946
EXPECT_NE(&n, &ret.Perform(std::make_tuple()));
947
EXPECT_EQ(42, ret.Perform(std::make_tuple()));
948
}
949
950
// Tests that ReturnRefOfCopy(v) is covariant.
951
TEST(ReturnRefOfCopyTest, IsCovariant) {
952
Base base;
953
Derived derived;
954
Action<Base&()> a = ReturnRefOfCopy(base);
955
EXPECT_NE(&base, &a.Perform(std::make_tuple()));
956
957
a = ReturnRefOfCopy(derived);
958
EXPECT_NE(&derived, &a.Perform(std::make_tuple()));
959
}
960
961
// Tests that ReturnRoundRobin(v) works with initializer lists
962
TEST(ReturnRoundRobinTest, WorksForInitList) {
963
Action<int()> ret = ReturnRoundRobin({1, 2, 3});
964
965
EXPECT_EQ(1, ret.Perform(std::make_tuple()));
966
EXPECT_EQ(2, ret.Perform(std::make_tuple()));
967
EXPECT_EQ(3, ret.Perform(std::make_tuple()));
968
EXPECT_EQ(1, ret.Perform(std::make_tuple()));
969
EXPECT_EQ(2, ret.Perform(std::make_tuple()));
970
EXPECT_EQ(3, ret.Perform(std::make_tuple()));
971
}
972
973
// Tests that ReturnRoundRobin(v) works with vectors
974
TEST(ReturnRoundRobinTest, WorksForVector) {
975
std::vector<double> v = {4.4, 5.5, 6.6};
976
Action<double()> ret = ReturnRoundRobin(v);
977
978
EXPECT_EQ(4.4, ret.Perform(std::make_tuple()));
979
EXPECT_EQ(5.5, ret.Perform(std::make_tuple()));
980
EXPECT_EQ(6.6, ret.Perform(std::make_tuple()));
981
EXPECT_EQ(4.4, ret.Perform(std::make_tuple()));
982
EXPECT_EQ(5.5, ret.Perform(std::make_tuple()));
983
EXPECT_EQ(6.6, ret.Perform(std::make_tuple()));
984
}
985
986
// Tests that DoDefault() does the default action for the mock method.
987
988
class MockClass {
989
public:
990
MockClass() = default;
991
992
MOCK_METHOD1(IntFunc, int(bool flag)); // NOLINT
993
MOCK_METHOD0(Foo, MyNonDefaultConstructible());
994
MOCK_METHOD0(MakeUnique, std::unique_ptr<int>());
995
MOCK_METHOD0(MakeUniqueBase, std::unique_ptr<Base>());
996
MOCK_METHOD0(MakeVectorUnique, std::vector<std::unique_ptr<int>>());
997
MOCK_METHOD1(TakeUnique, int(std::unique_ptr<int>));
998
MOCK_METHOD2(TakeUnique,
999
int(const std::unique_ptr<int>&, std::unique_ptr<int>));
1000
1001
private:
1002
MockClass(const MockClass&) = delete;
1003
MockClass& operator=(const MockClass&) = delete;
1004
};
1005
1006
// Tests that DoDefault() returns the built-in default value for the
1007
// return type by default.
1008
TEST(DoDefaultTest, ReturnsBuiltInDefaultValueByDefault) {
1009
MockClass mock;
1010
EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault());
1011
EXPECT_EQ(0, mock.IntFunc(true));
1012
}
1013
1014
// Tests that DoDefault() throws (when exceptions are enabled) or aborts
1015
// the process when there is no built-in default value for the return type.
1016
TEST(DoDefaultDeathTest, DiesForUnknowType) {
1017
MockClass mock;
1018
EXPECT_CALL(mock, Foo()).WillRepeatedly(DoDefault());
1019
#if GTEST_HAS_EXCEPTIONS
1020
EXPECT_ANY_THROW(mock.Foo());
1021
#else
1022
EXPECT_DEATH_IF_SUPPORTED({ mock.Foo(); }, "");
1023
#endif
1024
}
1025
1026
// Tests that using DoDefault() inside a composite action leads to a
1027
// run-time error.
1028
1029
void VoidFunc(bool /* flag */) {}
1030
1031
TEST(DoDefaultDeathTest, DiesIfUsedInCompositeAction) {
1032
MockClass mock;
1033
EXPECT_CALL(mock, IntFunc(_))
1034
.WillRepeatedly(DoAll(Invoke(VoidFunc), DoDefault()));
1035
1036
// Ideally we should verify the error message as well. Sadly,
1037
// EXPECT_DEATH() can only capture stderr, while Google Mock's
1038
// errors are printed on stdout. Therefore we have to settle for
1039
// not verifying the message.
1040
EXPECT_DEATH_IF_SUPPORTED({ mock.IntFunc(true); }, "");
1041
}
1042
1043
// Tests that DoDefault() returns the default value set by
1044
// DefaultValue<T>::Set() when it's not overridden by an ON_CALL().
1045
TEST(DoDefaultTest, ReturnsUserSpecifiedPerTypeDefaultValueWhenThereIsOne) {
1046
DefaultValue<int>::Set(1);
1047
MockClass mock;
1048
EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault());
1049
EXPECT_EQ(1, mock.IntFunc(false));
1050
DefaultValue<int>::Clear();
1051
}
1052
1053
// Tests that DoDefault() does the action specified by ON_CALL().
1054
TEST(DoDefaultTest, DoesWhatOnCallSpecifies) {
1055
MockClass mock;
1056
ON_CALL(mock, IntFunc(_)).WillByDefault(Return(2));
1057
EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault());
1058
EXPECT_EQ(2, mock.IntFunc(false));
1059
}
1060
1061
// Tests that using DoDefault() in ON_CALL() leads to a run-time failure.
1062
TEST(DoDefaultTest, CannotBeUsedInOnCall) {
1063
MockClass mock;
1064
EXPECT_NONFATAL_FAILURE(
1065
{ // NOLINT
1066
ON_CALL(mock, IntFunc(_)).WillByDefault(DoDefault());
1067
},
1068
"DoDefault() cannot be used in ON_CALL()");
1069
}
1070
1071
// Tests that SetArgPointee<N>(v) sets the variable pointed to by
1072
// the N-th (0-based) argument to v.
1073
TEST(SetArgPointeeTest, SetsTheNthPointee) {
1074
typedef void MyFunction(bool, int*, char*);
1075
Action<MyFunction> a = SetArgPointee<1>(2);
1076
1077
int n = 0;
1078
char ch = '\0';
1079
a.Perform(std::make_tuple(true, &n, &ch));
1080
EXPECT_EQ(2, n);
1081
EXPECT_EQ('\0', ch);
1082
1083
a = SetArgPointee<2>('a');
1084
n = 0;
1085
ch = '\0';
1086
a.Perform(std::make_tuple(true, &n, &ch));
1087
EXPECT_EQ(0, n);
1088
EXPECT_EQ('a', ch);
1089
}
1090
1091
// Tests that SetArgPointee<N>() accepts a string literal.
1092
TEST(SetArgPointeeTest, AcceptsStringLiteral) {
1093
typedef void MyFunction(std::string*, const char**);
1094
Action<MyFunction> a = SetArgPointee<0>("hi");
1095
std::string str;
1096
const char* ptr = nullptr;
1097
a.Perform(std::make_tuple(&str, &ptr));
1098
EXPECT_EQ("hi", str);
1099
EXPECT_TRUE(ptr == nullptr);
1100
1101
a = SetArgPointee<1>("world");
1102
str = "";
1103
a.Perform(std::make_tuple(&str, &ptr));
1104
EXPECT_EQ("", str);
1105
EXPECT_STREQ("world", ptr);
1106
}
1107
1108
TEST(SetArgPointeeTest, AcceptsWideStringLiteral) {
1109
typedef void MyFunction(const wchar_t**);
1110
Action<MyFunction> a = SetArgPointee<0>(L"world");
1111
const wchar_t* ptr = nullptr;
1112
a.Perform(std::make_tuple(&ptr));
1113
EXPECT_STREQ(L"world", ptr);
1114
1115
#if GTEST_HAS_STD_WSTRING
1116
1117
typedef void MyStringFunction(std::wstring*);
1118
Action<MyStringFunction> a2 = SetArgPointee<0>(L"world");
1119
std::wstring str = L"";
1120
a2.Perform(std::make_tuple(&str));
1121
EXPECT_EQ(L"world", str);
1122
1123
#endif
1124
}
1125
1126
// Tests that SetArgPointee<N>() accepts a char pointer.
1127
TEST(SetArgPointeeTest, AcceptsCharPointer) {
1128
typedef void MyFunction(bool, std::string*, const char**);
1129
const char* const hi = "hi";
1130
Action<MyFunction> a = SetArgPointee<1>(hi);
1131
std::string str;
1132
const char* ptr = nullptr;
1133
a.Perform(std::make_tuple(true, &str, &ptr));
1134
EXPECT_EQ("hi", str);
1135
EXPECT_TRUE(ptr == nullptr);
1136
1137
char world_array[] = "world";
1138
char* const world = world_array;
1139
a = SetArgPointee<2>(world);
1140
str = "";
1141
a.Perform(std::make_tuple(true, &str, &ptr));
1142
EXPECT_EQ("", str);
1143
EXPECT_EQ(world, ptr);
1144
}
1145
1146
TEST(SetArgPointeeTest, AcceptsWideCharPointer) {
1147
typedef void MyFunction(bool, const wchar_t**);
1148
const wchar_t* const hi = L"hi";
1149
Action<MyFunction> a = SetArgPointee<1>(hi);
1150
const wchar_t* ptr = nullptr;
1151
a.Perform(std::make_tuple(true, &ptr));
1152
EXPECT_EQ(hi, ptr);
1153
1154
#if GTEST_HAS_STD_WSTRING
1155
1156
typedef void MyStringFunction(bool, std::wstring*);
1157
wchar_t world_array[] = L"world";
1158
wchar_t* const world = world_array;
1159
Action<MyStringFunction> a2 = SetArgPointee<1>(world);
1160
std::wstring str;
1161
a2.Perform(std::make_tuple(true, &str));
1162
EXPECT_EQ(world_array, str);
1163
#endif
1164
}
1165
1166
// Tests that SetArgumentPointee<N>(v) sets the variable pointed to by
1167
// the N-th (0-based) argument to v.
1168
TEST(SetArgumentPointeeTest, SetsTheNthPointee) {
1169
typedef void MyFunction(bool, int*, char*);
1170
Action<MyFunction> a = SetArgumentPointee<1>(2);
1171
1172
int n = 0;
1173
char ch = '\0';
1174
a.Perform(std::make_tuple(true, &n, &ch));
1175
EXPECT_EQ(2, n);
1176
EXPECT_EQ('\0', ch);
1177
1178
a = SetArgumentPointee<2>('a');
1179
n = 0;
1180
ch = '\0';
1181
a.Perform(std::make_tuple(true, &n, &ch));
1182
EXPECT_EQ(0, n);
1183
EXPECT_EQ('a', ch);
1184
}
1185
1186
// Sample functions and functors for testing Invoke() and etc.
1187
int Nullary() { return 1; }
1188
1189
class NullaryFunctor {
1190
public:
1191
int operator()() { return 2; }
1192
};
1193
1194
bool g_done = false;
1195
void VoidNullary() { g_done = true; }
1196
1197
class VoidNullaryFunctor {
1198
public:
1199
void operator()() { g_done = true; }
1200
};
1201
1202
short Short(short n) { return n; } // NOLINT
1203
char Char(char ch) { return ch; }
1204
1205
const char* CharPtr(const char* s) { return s; }
1206
1207
bool Unary(int x) { return x < 0; }
1208
1209
const char* Binary(const char* input, short n) { return input + n; } // NOLINT
1210
1211
void VoidBinary(int, char) { g_done = true; }
1212
1213
int Ternary(int x, char y, short z) { return x + y + z; } // NOLINT
1214
1215
int SumOf4(int a, int b, int c, int d) { return a + b + c + d; }
1216
1217
class Foo {
1218
public:
1219
Foo() : value_(123) {}
1220
1221
int Nullary() const { return value_; }
1222
1223
private:
1224
int value_;
1225
};
1226
1227
// Tests InvokeWithoutArgs(function).
1228
TEST(InvokeWithoutArgsTest, Function) {
1229
// As an action that takes one argument.
1230
Action<int(int)> a = InvokeWithoutArgs(Nullary); // NOLINT
1231
EXPECT_EQ(1, a.Perform(std::make_tuple(2)));
1232
1233
// As an action that takes two arguments.
1234
Action<int(int, double)> a2 = InvokeWithoutArgs(Nullary); // NOLINT
1235
EXPECT_EQ(1, a2.Perform(std::make_tuple(2, 3.5)));
1236
1237
// As an action that returns void.
1238
Action<void(int)> a3 = InvokeWithoutArgs(VoidNullary); // NOLINT
1239
g_done = false;
1240
a3.Perform(std::make_tuple(1));
1241
EXPECT_TRUE(g_done);
1242
}
1243
1244
// Tests InvokeWithoutArgs(functor).
1245
TEST(InvokeWithoutArgsTest, Functor) {
1246
// As an action that takes no argument.
1247
Action<int()> a = InvokeWithoutArgs(NullaryFunctor()); // NOLINT
1248
EXPECT_EQ(2, a.Perform(std::make_tuple()));
1249
1250
// As an action that takes three arguments.
1251
Action<int(int, double, char)> a2 = // NOLINT
1252
InvokeWithoutArgs(NullaryFunctor());
1253
EXPECT_EQ(2, a2.Perform(std::make_tuple(3, 3.5, 'a')));
1254
1255
// As an action that returns void.
1256
Action<void()> a3 = InvokeWithoutArgs(VoidNullaryFunctor());
1257
g_done = false;
1258
a3.Perform(std::make_tuple());
1259
EXPECT_TRUE(g_done);
1260
}
1261
1262
// Tests InvokeWithoutArgs(obj_ptr, method).
1263
TEST(InvokeWithoutArgsTest, Method) {
1264
Foo foo;
1265
Action<int(bool, char)> a = // NOLINT
1266
InvokeWithoutArgs(&foo, &Foo::Nullary);
1267
EXPECT_EQ(123, a.Perform(std::make_tuple(true, 'a')));
1268
}
1269
1270
// Tests using IgnoreResult() on a polymorphic action.
1271
TEST(IgnoreResultTest, PolymorphicAction) {
1272
Action<void(int)> a = IgnoreResult(Return(5)); // NOLINT
1273
a.Perform(std::make_tuple(1));
1274
}
1275
1276
// Tests using IgnoreResult() on a monomorphic action.
1277
1278
int ReturnOne() {
1279
g_done = true;
1280
return 1;
1281
}
1282
1283
TEST(IgnoreResultTest, MonomorphicAction) {
1284
g_done = false;
1285
Action<void()> a = IgnoreResult(Invoke(ReturnOne));
1286
a.Perform(std::make_tuple());
1287
EXPECT_TRUE(g_done);
1288
}
1289
1290
// Tests using IgnoreResult() on an action that returns a class type.
1291
1292
MyNonDefaultConstructible ReturnMyNonDefaultConstructible(double /* x */) {
1293
g_done = true;
1294
return MyNonDefaultConstructible(42);
1295
}
1296
1297
TEST(IgnoreResultTest, ActionReturningClass) {
1298
g_done = false;
1299
Action<void(int)> a =
1300
IgnoreResult(Invoke(ReturnMyNonDefaultConstructible)); // NOLINT
1301
a.Perform(std::make_tuple(2));
1302
EXPECT_TRUE(g_done);
1303
}
1304
1305
TEST(AssignTest, Int) {
1306
int x = 0;
1307
Action<void(int)> a = Assign(&x, 5);
1308
a.Perform(std::make_tuple(0));
1309
EXPECT_EQ(5, x);
1310
}
1311
1312
TEST(AssignTest, String) {
1313
::std::string x;
1314
Action<void(void)> a = Assign(&x, "Hello, world");
1315
a.Perform(std::make_tuple());
1316
EXPECT_EQ("Hello, world", x);
1317
}
1318
1319
TEST(AssignTest, CompatibleTypes) {
1320
double x = 0;
1321
Action<void(int)> a = Assign(&x, 5);
1322
a.Perform(std::make_tuple(0));
1323
EXPECT_DOUBLE_EQ(5, x);
1324
}
1325
1326
// DoAll should support &&-qualified actions when used with WillOnce.
1327
TEST(DoAll, SupportsRefQualifiedActions) {
1328
struct InitialAction {
1329
void operator()(const int arg) && { EXPECT_EQ(17, arg); }
1330
};
1331
1332
struct FinalAction {
1333
int operator()() && { return 19; }
1334
};
1335
1336
MockFunction<int(int)> mock;
1337
EXPECT_CALL(mock, Call).WillOnce(DoAll(InitialAction{}, FinalAction{}));
1338
EXPECT_EQ(19, mock.AsStdFunction()(17));
1339
}
1340
1341
// DoAll should never provide rvalue references to the initial actions. If the
1342
// mock action itself accepts an rvalue reference or a non-scalar object by
1343
// value then the final action should receive an rvalue reference, but initial
1344
// actions should receive only lvalue references.
1345
TEST(DoAll, ProvidesLvalueReferencesToInitialActions) {
1346
struct Obj {};
1347
1348
// Mock action accepts by value: the initial action should be fed a const
1349
// lvalue reference, and the final action an rvalue reference.
1350
{
1351
struct InitialAction {
1352
void operator()(Obj&) const { FAIL() << "Unexpected call"; }
1353
void operator()(const Obj&) const {}
1354
void operator()(Obj&&) const { FAIL() << "Unexpected call"; }
1355
void operator()(const Obj&&) const { FAIL() << "Unexpected call"; }
1356
};
1357
1358
MockFunction<void(Obj)> mock;
1359
EXPECT_CALL(mock, Call)
1360
.WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}))
1361
.WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}));
1362
1363
mock.AsStdFunction()(Obj{});
1364
mock.AsStdFunction()(Obj{});
1365
}
1366
1367
// Mock action accepts by const lvalue reference: both actions should receive
1368
// a const lvalue reference.
1369
{
1370
struct InitialAction {
1371
void operator()(Obj&) const { FAIL() << "Unexpected call"; }
1372
void operator()(const Obj&) const {}
1373
void operator()(Obj&&) const { FAIL() << "Unexpected call"; }
1374
void operator()(const Obj&&) const { FAIL() << "Unexpected call"; }
1375
};
1376
1377
MockFunction<void(const Obj&)> mock;
1378
EXPECT_CALL(mock, Call)
1379
.WillOnce(DoAll(InitialAction{}, InitialAction{}, [](const Obj&) {}))
1380
.WillRepeatedly(
1381
DoAll(InitialAction{}, InitialAction{}, [](const Obj&) {}));
1382
1383
mock.AsStdFunction()(Obj{});
1384
mock.AsStdFunction()(Obj{});
1385
}
1386
1387
// Mock action accepts by non-const lvalue reference: both actions should get
1388
// a non-const lvalue reference if they want them.
1389
{
1390
struct InitialAction {
1391
void operator()(Obj&) const {}
1392
void operator()(Obj&&) const { FAIL() << "Unexpected call"; }
1393
};
1394
1395
MockFunction<void(Obj&)> mock;
1396
EXPECT_CALL(mock, Call)
1397
.WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {}))
1398
.WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {}));
1399
1400
Obj obj;
1401
mock.AsStdFunction()(obj);
1402
mock.AsStdFunction()(obj);
1403
}
1404
1405
// Mock action accepts by rvalue reference: the initial actions should receive
1406
// a non-const lvalue reference if it wants it, and the final action an rvalue
1407
// reference.
1408
{
1409
struct InitialAction {
1410
void operator()(Obj&) const {}
1411
void operator()(Obj&&) const { FAIL() << "Unexpected call"; }
1412
};
1413
1414
MockFunction<void(Obj&&)> mock;
1415
EXPECT_CALL(mock, Call)
1416
.WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}))
1417
.WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}));
1418
1419
mock.AsStdFunction()(Obj{});
1420
mock.AsStdFunction()(Obj{});
1421
}
1422
1423
// &&-qualified initial actions should also be allowed with WillOnce.
1424
{
1425
struct InitialAction {
1426
void operator()(Obj&) && {}
1427
};
1428
1429
MockFunction<void(Obj&)> mock;
1430
EXPECT_CALL(mock, Call)
1431
.WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {}));
1432
1433
Obj obj;
1434
mock.AsStdFunction()(obj);
1435
}
1436
1437
{
1438
struct InitialAction {
1439
void operator()(Obj&) && {}
1440
};
1441
1442
MockFunction<void(Obj&&)> mock;
1443
EXPECT_CALL(mock, Call)
1444
.WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}));
1445
1446
mock.AsStdFunction()(Obj{});
1447
}
1448
}
1449
1450
// DoAll should support being used with type-erased Action objects, both through
1451
// WillOnce and WillRepeatedly.
1452
TEST(DoAll, SupportsTypeErasedActions) {
1453
// With only type-erased actions.
1454
const Action<void()> initial_action = [] {};
1455
const Action<int()> final_action = [] { return 17; };
1456
1457
MockFunction<int()> mock;
1458
EXPECT_CALL(mock, Call)
1459
.WillOnce(DoAll(initial_action, initial_action, final_action))
1460
.WillRepeatedly(DoAll(initial_action, initial_action, final_action));
1461
1462
EXPECT_EQ(17, mock.AsStdFunction()());
1463
1464
// With &&-qualified and move-only final action.
1465
{
1466
struct FinalAction {
1467
FinalAction() = default;
1468
FinalAction(FinalAction&&) = default;
1469
1470
int operator()() && { return 17; }
1471
};
1472
1473
EXPECT_CALL(mock, Call)
1474
.WillOnce(DoAll(initial_action, initial_action, FinalAction{}));
1475
1476
EXPECT_EQ(17, mock.AsStdFunction()());
1477
}
1478
}
1479
1480
// A DoAll action should be convertible to a OnceAction, even when its component
1481
// sub-actions are user-provided types that define only an Action conversion
1482
// operator. If they supposed being called more than once then they also support
1483
// being called at most once.
1484
TEST(DoAll, ConvertibleToOnceActionWithUserProvidedActionConversion) {
1485
// Simplest case: only one sub-action.
1486
struct CustomFinal final {
1487
operator Action<int()>() { // NOLINT
1488
return Return(17);
1489
}
1490
1491
operator Action<int(int, char)>() { // NOLINT
1492
return Return(19);
1493
}
1494
};
1495
1496
{
1497
OnceAction<int()> action = DoAll(CustomFinal{});
1498
EXPECT_EQ(17, std::move(action).Call());
1499
}
1500
1501
{
1502
OnceAction<int(int, char)> action = DoAll(CustomFinal{});
1503
EXPECT_EQ(19, std::move(action).Call(0, 0));
1504
}
1505
1506
// It should also work with multiple sub-actions.
1507
struct CustomInitial final {
1508
operator Action<void()>() { // NOLINT
1509
return [] {};
1510
}
1511
1512
operator Action<void(int, char)>() { // NOLINT
1513
return [] {};
1514
}
1515
};
1516
1517
{
1518
OnceAction<int()> action = DoAll(CustomInitial{}, CustomFinal{});
1519
EXPECT_EQ(17, std::move(action).Call());
1520
}
1521
1522
{
1523
OnceAction<int(int, char)> action = DoAll(CustomInitial{}, CustomFinal{});
1524
EXPECT_EQ(19, std::move(action).Call(0, 0));
1525
}
1526
}
1527
1528
// Tests using WithArgs and with an action that takes 1 argument.
1529
TEST(WithArgsTest, OneArg) {
1530
Action<bool(double x, int n)> a = WithArgs<1>(Invoke(Unary)); // NOLINT
1531
EXPECT_TRUE(a.Perform(std::make_tuple(1.5, -1)));
1532
EXPECT_FALSE(a.Perform(std::make_tuple(1.5, 1)));
1533
}
1534
1535
// Tests using WithArgs with an action that takes 2 arguments.
1536
TEST(WithArgsTest, TwoArgs) {
1537
Action<const char*(const char* s, double x, short n)> a = // NOLINT
1538
WithArgs<0, 2>(Invoke(Binary));
1539
const char s[] = "Hello";
1540
EXPECT_EQ(s + 2, a.Perform(std::make_tuple(CharPtr(s), 0.5, Short(2))));
1541
}
1542
1543
struct ConcatAll {
1544
std::string operator()() const { return {}; }
1545
template <typename... I>
1546
std::string operator()(const char* a, I... i) const {
1547
return a + ConcatAll()(i...);
1548
}
1549
};
1550
1551
// Tests using WithArgs with an action that takes 10 arguments.
1552
TEST(WithArgsTest, TenArgs) {
1553
Action<std::string(const char*, const char*, const char*, const char*)> a =
1554
WithArgs<0, 1, 2, 3, 2, 1, 0, 1, 2, 3>(Invoke(ConcatAll{}));
1555
EXPECT_EQ("0123210123",
1556
a.Perform(std::make_tuple(CharPtr("0"), CharPtr("1"), CharPtr("2"),
1557
CharPtr("3"))));
1558
}
1559
1560
// Tests using WithArgs with an action that is not Invoke().
1561
class SubtractAction : public ActionInterface<int(int, int)> {
1562
public:
1563
int Perform(const std::tuple<int, int>& args) override {
1564
return std::get<0>(args) - std::get<1>(args);
1565
}
1566
};
1567
1568
TEST(WithArgsTest, NonInvokeAction) {
1569
Action<int(const std::string&, int, int)> a =
1570
WithArgs<2, 1>(MakeAction(new SubtractAction));
1571
std::tuple<std::string, int, int> dummy =
1572
std::make_tuple(std::string("hi"), 2, 10);
1573
EXPECT_EQ(8, a.Perform(dummy));
1574
}
1575
1576
// Tests using WithArgs to pass all original arguments in the original order.
1577
TEST(WithArgsTest, Identity) {
1578
Action<int(int x, char y, short z)> a = // NOLINT
1579
WithArgs<0, 1, 2>(Invoke(Ternary));
1580
EXPECT_EQ(123, a.Perform(std::make_tuple(100, Char(20), Short(3))));
1581
}
1582
1583
// Tests using WithArgs with repeated arguments.
1584
TEST(WithArgsTest, RepeatedArguments) {
1585
Action<int(bool, int m, int n)> a = // NOLINT
1586
WithArgs<1, 1, 1, 1>(Invoke(SumOf4));
1587
EXPECT_EQ(4, a.Perform(std::make_tuple(false, 1, 10)));
1588
}
1589
1590
// Tests using WithArgs with reversed argument order.
1591
TEST(WithArgsTest, ReversedArgumentOrder) {
1592
Action<const char*(short n, const char* input)> a = // NOLINT
1593
WithArgs<1, 0>(Invoke(Binary));
1594
const char s[] = "Hello";
1595
EXPECT_EQ(s + 2, a.Perform(std::make_tuple(Short(2), CharPtr(s))));
1596
}
1597
1598
// Tests using WithArgs with compatible, but not identical, argument types.
1599
TEST(WithArgsTest, ArgsOfCompatibleTypes) {
1600
Action<long(short x, char y, double z, char c)> a = // NOLINT
1601
WithArgs<0, 1, 3>(Invoke(Ternary));
1602
EXPECT_EQ(123,
1603
a.Perform(std::make_tuple(Short(100), Char(20), 5.6, Char(3))));
1604
}
1605
1606
// Tests using WithArgs with an action that returns void.
1607
TEST(WithArgsTest, VoidAction) {
1608
Action<void(double x, char c, int n)> a = WithArgs<2, 1>(Invoke(VoidBinary));
1609
g_done = false;
1610
a.Perform(std::make_tuple(1.5, 'a', 3));
1611
EXPECT_TRUE(g_done);
1612
}
1613
1614
TEST(WithArgsTest, ReturnReference) {
1615
Action<int&(int&, void*)> aa = WithArgs<0>([](int& a) -> int& { return a; });
1616
int i = 0;
1617
const int& res = aa.Perform(std::forward_as_tuple(i, nullptr));
1618
EXPECT_EQ(&i, &res);
1619
}
1620
1621
TEST(WithArgsTest, InnerActionWithConversion) {
1622
Action<Derived*()> inner = [] { return nullptr; };
1623
1624
MockFunction<Base*(double)> mock;
1625
EXPECT_CALL(mock, Call)
1626
.WillOnce(WithoutArgs(inner))
1627
.WillRepeatedly(WithoutArgs(inner));
1628
1629
EXPECT_EQ(nullptr, mock.AsStdFunction()(1.1));
1630
EXPECT_EQ(nullptr, mock.AsStdFunction()(1.1));
1631
}
1632
1633
// It should be possible to use an &&-qualified inner action as long as the
1634
// whole shebang is used as an rvalue with WillOnce.
1635
TEST(WithArgsTest, RefQualifiedInnerAction) {
1636
struct SomeAction {
1637
int operator()(const int arg) && {
1638
EXPECT_EQ(17, arg);
1639
return 19;
1640
}
1641
};
1642
1643
MockFunction<int(int, int)> mock;
1644
EXPECT_CALL(mock, Call).WillOnce(WithArg<1>(SomeAction{}));
1645
EXPECT_EQ(19, mock.AsStdFunction()(0, 17));
1646
}
1647
1648
// It should be fine to provide an lvalue WithArgsAction to WillOnce, even when
1649
// the inner action only wants to convert to OnceAction.
1650
TEST(WithArgsTest, ProvideAsLvalueToWillOnce) {
1651
struct SomeAction {
1652
operator OnceAction<int(int)>() const { // NOLINT
1653
return [](const int arg) { return arg + 2; };
1654
}
1655
};
1656
1657
const auto wa = WithArg<1>(SomeAction{});
1658
1659
MockFunction<int(int, int)> mock;
1660
EXPECT_CALL(mock, Call).WillOnce(wa);
1661
EXPECT_EQ(19, mock.AsStdFunction()(0, 17));
1662
}
1663
1664
#ifndef GTEST_OS_WINDOWS_MOBILE
1665
1666
class SetErrnoAndReturnTest : public testing::Test {
1667
protected:
1668
void SetUp() override { errno = 0; }
1669
void TearDown() override { errno = 0; }
1670
};
1671
1672
TEST_F(SetErrnoAndReturnTest, Int) {
1673
Action<int(void)> a = SetErrnoAndReturn(ENOTTY, -5);
1674
EXPECT_EQ(-5, a.Perform(std::make_tuple()));
1675
EXPECT_EQ(ENOTTY, errno);
1676
}
1677
1678
TEST_F(SetErrnoAndReturnTest, Ptr) {
1679
int x;
1680
Action<int*(void)> a = SetErrnoAndReturn(ENOTTY, &x);
1681
EXPECT_EQ(&x, a.Perform(std::make_tuple()));
1682
EXPECT_EQ(ENOTTY, errno);
1683
}
1684
1685
TEST_F(SetErrnoAndReturnTest, CompatibleTypes) {
1686
Action<double()> a = SetErrnoAndReturn(EINVAL, 5);
1687
EXPECT_DOUBLE_EQ(5.0, a.Perform(std::make_tuple()));
1688
EXPECT_EQ(EINVAL, errno);
1689
}
1690
1691
#endif // !GTEST_OS_WINDOWS_MOBILE
1692
1693
// Tests ByRef().
1694
1695
// Tests that the result of ByRef() is copyable.
1696
TEST(ByRefTest, IsCopyable) {
1697
const std::string s1 = "Hi";
1698
const std::string s2 = "Hello";
1699
1700
auto ref_wrapper = ByRef(s1);
1701
const std::string& r1 = ref_wrapper;
1702
EXPECT_EQ(&s1, &r1);
1703
1704
// Assigns a new value to ref_wrapper.
1705
ref_wrapper = ByRef(s2);
1706
const std::string& r2 = ref_wrapper;
1707
EXPECT_EQ(&s2, &r2);
1708
1709
auto ref_wrapper1 = ByRef(s1);
1710
// Copies ref_wrapper1 to ref_wrapper.
1711
ref_wrapper = ref_wrapper1;
1712
const std::string& r3 = ref_wrapper;
1713
EXPECT_EQ(&s1, &r3);
1714
}
1715
1716
// Tests using ByRef() on a const value.
1717
TEST(ByRefTest, ConstValue) {
1718
const int n = 0;
1719
// int& ref = ByRef(n); // This shouldn't compile - we have a
1720
// negative compilation test to catch it.
1721
const int& const_ref = ByRef(n);
1722
EXPECT_EQ(&n, &const_ref);
1723
}
1724
1725
// Tests using ByRef() on a non-const value.
1726
TEST(ByRefTest, NonConstValue) {
1727
int n = 0;
1728
1729
// ByRef(n) can be used as either an int&,
1730
int& ref = ByRef(n);
1731
EXPECT_EQ(&n, &ref);
1732
1733
// or a const int&.
1734
const int& const_ref = ByRef(n);
1735
EXPECT_EQ(&n, &const_ref);
1736
}
1737
1738
// Tests explicitly specifying the type when using ByRef().
1739
TEST(ByRefTest, ExplicitType) {
1740
int n = 0;
1741
const int& r1 = ByRef<const int>(n);
1742
EXPECT_EQ(&n, &r1);
1743
1744
// ByRef<char>(n); // This shouldn't compile - we have a negative
1745
// compilation test to catch it.
1746
1747
Derived d;
1748
Derived& r2 = ByRef<Derived>(d);
1749
EXPECT_EQ(&d, &r2);
1750
1751
const Derived& r3 = ByRef<const Derived>(d);
1752
EXPECT_EQ(&d, &r3);
1753
1754
Base& r4 = ByRef<Base>(d);
1755
EXPECT_EQ(&d, &r4);
1756
1757
const Base& r5 = ByRef<const Base>(d);
1758
EXPECT_EQ(&d, &r5);
1759
1760
// The following shouldn't compile - we have a negative compilation
1761
// test for it.
1762
//
1763
// Base b;
1764
// ByRef<Derived>(b);
1765
}
1766
1767
// Tests that Google Mock prints expression ByRef(x) as a reference to x.
1768
TEST(ByRefTest, PrintsCorrectly) {
1769
int n = 42;
1770
::std::stringstream expected, actual;
1771
testing::internal::UniversalPrinter<const int&>::Print(n, &expected);
1772
testing::internal::UniversalPrint(ByRef(n), &actual);
1773
EXPECT_EQ(expected.str(), actual.str());
1774
}
1775
1776
struct UnaryConstructorClass {
1777
explicit UnaryConstructorClass(int v) : value(v) {}
1778
int value;
1779
};
1780
1781
// Tests using ReturnNew() with a unary constructor.
1782
TEST(ReturnNewTest, Unary) {
1783
Action<UnaryConstructorClass*()> a = ReturnNew<UnaryConstructorClass>(4000);
1784
UnaryConstructorClass* c = a.Perform(std::make_tuple());
1785
EXPECT_EQ(4000, c->value);
1786
delete c;
1787
}
1788
1789
TEST(ReturnNewTest, UnaryWorksWhenMockMethodHasArgs) {
1790
Action<UnaryConstructorClass*(bool, int)> a =
1791
ReturnNew<UnaryConstructorClass>(4000);
1792
UnaryConstructorClass* c = a.Perform(std::make_tuple(false, 5));
1793
EXPECT_EQ(4000, c->value);
1794
delete c;
1795
}
1796
1797
TEST(ReturnNewTest, UnaryWorksWhenMockMethodReturnsPointerToConst) {
1798
Action<const UnaryConstructorClass*()> a =
1799
ReturnNew<UnaryConstructorClass>(4000);
1800
const UnaryConstructorClass* c = a.Perform(std::make_tuple());
1801
EXPECT_EQ(4000, c->value);
1802
delete c;
1803
}
1804
1805
class TenArgConstructorClass {
1806
public:
1807
TenArgConstructorClass(int a1, int a2, int a3, int a4, int a5, int a6, int a7,
1808
int a8, int a9, int a10)
1809
: value_(a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10) {}
1810
int value_;
1811
};
1812
1813
// Tests using ReturnNew() with a 10-argument constructor.
1814
TEST(ReturnNewTest, ConstructorThatTakes10Arguments) {
1815
Action<TenArgConstructorClass*()> a = ReturnNew<TenArgConstructorClass>(
1816
1000000000, 200000000, 30000000, 4000000, 500000, 60000, 7000, 800, 90,
1817
0);
1818
TenArgConstructorClass* c = a.Perform(std::make_tuple());
1819
EXPECT_EQ(1234567890, c->value_);
1820
delete c;
1821
}
1822
1823
std::unique_ptr<int> UniquePtrSource() { return std::make_unique<int>(19); }
1824
1825
std::vector<std::unique_ptr<int>> VectorUniquePtrSource() {
1826
std::vector<std::unique_ptr<int>> out;
1827
out.emplace_back(new int(7));
1828
return out;
1829
}
1830
1831
TEST(MockMethodTest, CanReturnMoveOnlyValue_Return) {
1832
MockClass mock;
1833
std::unique_ptr<int> i(new int(19));
1834
EXPECT_CALL(mock, MakeUnique()).WillOnce(Return(ByMove(std::move(i))));
1835
EXPECT_CALL(mock, MakeVectorUnique())
1836
.WillOnce(Return(ByMove(VectorUniquePtrSource())));
1837
Derived* d = new Derived;
1838
EXPECT_CALL(mock, MakeUniqueBase())
1839
.WillOnce(Return(ByMove(std::unique_ptr<Derived>(d))));
1840
1841
std::unique_ptr<int> result1 = mock.MakeUnique();
1842
EXPECT_EQ(19, *result1);
1843
1844
std::vector<std::unique_ptr<int>> vresult = mock.MakeVectorUnique();
1845
EXPECT_EQ(1u, vresult.size());
1846
EXPECT_NE(nullptr, vresult[0]);
1847
EXPECT_EQ(7, *vresult[0]);
1848
1849
std::unique_ptr<Base> result2 = mock.MakeUniqueBase();
1850
EXPECT_EQ(d, result2.get());
1851
}
1852
1853
TEST(MockMethodTest, CanReturnMoveOnlyValue_DoAllReturn) {
1854
testing::MockFunction<void()> mock_function;
1855
MockClass mock;
1856
std::unique_ptr<int> i(new int(19));
1857
EXPECT_CALL(mock_function, Call());
1858
EXPECT_CALL(mock, MakeUnique())
1859
.WillOnce(DoAll(InvokeWithoutArgs(&mock_function,
1860
&testing::MockFunction<void()>::Call),
1861
Return(ByMove(std::move(i)))));
1862
1863
std::unique_ptr<int> result1 = mock.MakeUnique();
1864
EXPECT_EQ(19, *result1);
1865
}
1866
1867
TEST(MockMethodTest, CanReturnMoveOnlyValue_Invoke) {
1868
MockClass mock;
1869
1870
// Check default value
1871
DefaultValue<std::unique_ptr<int>>::SetFactory(
1872
[] { return std::make_unique<int>(42); });
1873
EXPECT_EQ(42, *mock.MakeUnique());
1874
1875
EXPECT_CALL(mock, MakeUnique()).WillRepeatedly(Invoke(UniquePtrSource));
1876
EXPECT_CALL(mock, MakeVectorUnique())
1877
.WillRepeatedly(Invoke(VectorUniquePtrSource));
1878
std::unique_ptr<int> result1 = mock.MakeUnique();
1879
EXPECT_EQ(19, *result1);
1880
std::unique_ptr<int> result2 = mock.MakeUnique();
1881
EXPECT_EQ(19, *result2);
1882
EXPECT_NE(result1, result2);
1883
1884
std::vector<std::unique_ptr<int>> vresult = mock.MakeVectorUnique();
1885
EXPECT_EQ(1u, vresult.size());
1886
EXPECT_NE(nullptr, vresult[0]);
1887
EXPECT_EQ(7, *vresult[0]);
1888
}
1889
1890
TEST(MockMethodTest, CanTakeMoveOnlyValue) {
1891
MockClass mock;
1892
auto make = [](int i) { return std::make_unique<int>(i); };
1893
1894
EXPECT_CALL(mock, TakeUnique(_)).WillRepeatedly([](std::unique_ptr<int> i) {
1895
return *i;
1896
});
1897
// DoAll() does not compile, since it would move from its arguments twice.
1898
// EXPECT_CALL(mock, TakeUnique(_, _))
1899
// .WillRepeatedly(DoAll(Invoke([](std::unique_ptr<int> j) {}),
1900
// Return(1)));
1901
EXPECT_CALL(mock, TakeUnique(testing::Pointee(7)))
1902
.WillOnce(Return(-7))
1903
.RetiresOnSaturation();
1904
EXPECT_CALL(mock, TakeUnique(testing::IsNull()))
1905
.WillOnce(Return(-1))
1906
.RetiresOnSaturation();
1907
1908
EXPECT_EQ(5, mock.TakeUnique(make(5)));
1909
EXPECT_EQ(-7, mock.TakeUnique(make(7)));
1910
EXPECT_EQ(7, mock.TakeUnique(make(7)));
1911
EXPECT_EQ(7, mock.TakeUnique(make(7)));
1912
EXPECT_EQ(-1, mock.TakeUnique({}));
1913
1914
// Some arguments are moved, some passed by reference.
1915
auto lvalue = make(6);
1916
EXPECT_CALL(mock, TakeUnique(_, _))
1917
.WillOnce([](const std::unique_ptr<int>& i, std::unique_ptr<int> j) {
1918
return *i * *j;
1919
});
1920
EXPECT_EQ(42, mock.TakeUnique(lvalue, make(7)));
1921
1922
// The unique_ptr can be saved by the action.
1923
std::unique_ptr<int> saved;
1924
EXPECT_CALL(mock, TakeUnique(_)).WillOnce([&saved](std::unique_ptr<int> i) {
1925
saved = std::move(i);
1926
return 0;
1927
});
1928
EXPECT_EQ(0, mock.TakeUnique(make(42)));
1929
EXPECT_EQ(42, *saved);
1930
}
1931
1932
// It should be possible to use callables with an &&-qualified call operator
1933
// with WillOnce, since they will be called only once. This allows actions to
1934
// contain and manipulate move-only types.
1935
TEST(MockMethodTest, ActionHasRvalueRefQualifiedCallOperator) {
1936
struct Return17 {
1937
int operator()() && { return 17; }
1938
};
1939
1940
// Action is directly compatible with mocked function type.
1941
{
1942
MockFunction<int()> mock;
1943
EXPECT_CALL(mock, Call).WillOnce(Return17());
1944
1945
EXPECT_EQ(17, mock.AsStdFunction()());
1946
}
1947
1948
// Action doesn't want mocked function arguments.
1949
{
1950
MockFunction<int(int)> mock;
1951
EXPECT_CALL(mock, Call).WillOnce(Return17());
1952
1953
EXPECT_EQ(17, mock.AsStdFunction()(0));
1954
}
1955
}
1956
1957
// Edge case: if an action has both a const-qualified and an &&-qualified call
1958
// operator, there should be no "ambiguous call" errors. The &&-qualified
1959
// operator should be used by WillOnce (since it doesn't need to retain the
1960
// action beyond one call), and the const-qualified one by WillRepeatedly.
1961
TEST(MockMethodTest, ActionHasMultipleCallOperators) {
1962
struct ReturnInt {
1963
int operator()() && { return 17; }
1964
int operator()() const& { return 19; }
1965
};
1966
1967
// Directly compatible with mocked function type.
1968
{
1969
MockFunction<int()> mock;
1970
EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt());
1971
1972
EXPECT_EQ(17, mock.AsStdFunction()());
1973
EXPECT_EQ(19, mock.AsStdFunction()());
1974
EXPECT_EQ(19, mock.AsStdFunction()());
1975
}
1976
1977
// Ignores function arguments.
1978
{
1979
MockFunction<int(int)> mock;
1980
EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt());
1981
1982
EXPECT_EQ(17, mock.AsStdFunction()(0));
1983
EXPECT_EQ(19, mock.AsStdFunction()(0));
1984
EXPECT_EQ(19, mock.AsStdFunction()(0));
1985
}
1986
}
1987
1988
// WillOnce should have no problem coping with a move-only action, whether it is
1989
// &&-qualified or not.
1990
TEST(MockMethodTest, MoveOnlyAction) {
1991
// &&-qualified
1992
{
1993
struct Return17 {
1994
Return17() = default;
1995
Return17(Return17&&) = default;
1996
1997
Return17(const Return17&) = delete;
1998
Return17 operator=(const Return17&) = delete;
1999
2000
int operator()() && { return 17; }
2001
};
2002
2003
MockFunction<int()> mock;
2004
EXPECT_CALL(mock, Call).WillOnce(Return17());
2005
EXPECT_EQ(17, mock.AsStdFunction()());
2006
}
2007
2008
// Not &&-qualified
2009
{
2010
struct Return17 {
2011
Return17() = default;
2012
Return17(Return17&&) = default;
2013
2014
Return17(const Return17&) = delete;
2015
Return17 operator=(const Return17&) = delete;
2016
2017
int operator()() const { return 17; }
2018
};
2019
2020
MockFunction<int()> mock;
2021
EXPECT_CALL(mock, Call).WillOnce(Return17());
2022
EXPECT_EQ(17, mock.AsStdFunction()());
2023
}
2024
}
2025
2026
// It should be possible to use an action that returns a value with a mock
2027
// function that doesn't, both through WillOnce and WillRepeatedly.
2028
TEST(MockMethodTest, ActionReturnsIgnoredValue) {
2029
struct ReturnInt {
2030
int operator()() const { return 0; }
2031
};
2032
2033
MockFunction<void()> mock;
2034
EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt());
2035
2036
mock.AsStdFunction()();
2037
mock.AsStdFunction()();
2038
}
2039
2040
// Despite the fanciness around move-only actions and so on, it should still be
2041
// possible to hand an lvalue reference to a copyable action to WillOnce.
2042
TEST(MockMethodTest, WillOnceCanAcceptLvalueReference) {
2043
MockFunction<int()> mock;
2044
2045
const auto action = [] { return 17; };
2046
EXPECT_CALL(mock, Call).WillOnce(action);
2047
2048
EXPECT_EQ(17, mock.AsStdFunction()());
2049
}
2050
2051
// A callable that doesn't use SFINAE to restrict its call operator's overload
2052
// set, but is still picky about which arguments it will accept.
2053
struct StaticAssertSingleArgument {
2054
template <typename... Args>
2055
static constexpr bool CheckArgs() {
2056
static_assert(sizeof...(Args) == 1, "");
2057
return true;
2058
}
2059
2060
template <typename... Args, bool = CheckArgs<Args...>()>
2061
int operator()(Args...) const {
2062
return 17;
2063
}
2064
};
2065
2066
// WillOnce and WillRepeatedly should both work fine with naïve implementations
2067
// of actions that don't use SFINAE to limit the overload set for their call
2068
// operator. If they are compatible with the actual mocked signature, we
2069
// shouldn't probe them with no arguments and trip a static_assert.
2070
TEST(MockMethodTest, ActionSwallowsAllArguments) {
2071
MockFunction<int(int)> mock;
2072
EXPECT_CALL(mock, Call)
2073
.WillOnce(StaticAssertSingleArgument{})
2074
.WillRepeatedly(StaticAssertSingleArgument{});
2075
2076
EXPECT_EQ(17, mock.AsStdFunction()(0));
2077
EXPECT_EQ(17, mock.AsStdFunction()(0));
2078
}
2079
2080
struct ActionWithTemplatedConversionOperators {
2081
template <typename... Args>
2082
operator OnceAction<int(Args...)>() && { // NOLINT
2083
return [] { return 17; };
2084
}
2085
2086
template <typename... Args>
2087
operator Action<int(Args...)>() const { // NOLINT
2088
return [] { return 19; };
2089
}
2090
};
2091
2092
// It should be fine to hand both WillOnce and WillRepeatedly a function that
2093
// defines templated conversion operators to OnceAction and Action. WillOnce
2094
// should prefer the OnceAction version.
2095
TEST(MockMethodTest, ActionHasTemplatedConversionOperators) {
2096
MockFunction<int()> mock;
2097
EXPECT_CALL(mock, Call)
2098
.WillOnce(ActionWithTemplatedConversionOperators{})
2099
.WillRepeatedly(ActionWithTemplatedConversionOperators{});
2100
2101
EXPECT_EQ(17, mock.AsStdFunction()());
2102
EXPECT_EQ(19, mock.AsStdFunction()());
2103
}
2104
2105
// Tests for std::function based action.
2106
2107
int Add(int val, int& ref, int* ptr) { // NOLINT
2108
int result = val + ref + *ptr;
2109
ref = 42;
2110
*ptr = 43;
2111
return result;
2112
}
2113
2114
int Deref(std::unique_ptr<int> ptr) { return *ptr; }
2115
2116
struct Double {
2117
template <typename T>
2118
T operator()(T t) {
2119
return 2 * t;
2120
}
2121
};
2122
2123
std::unique_ptr<int> UniqueInt(int i) { return std::make_unique<int>(i); }
2124
2125
TEST(FunctorActionTest, ActionFromFunction) {
2126
Action<int(int, int&, int*)> a = &Add;
2127
int x = 1, y = 2, z = 3;
2128
EXPECT_EQ(6, a.Perform(std::forward_as_tuple(x, y, &z)));
2129
EXPECT_EQ(42, y);
2130
EXPECT_EQ(43, z);
2131
2132
Action<int(std::unique_ptr<int>)> a1 = &Deref;
2133
EXPECT_EQ(7, a1.Perform(std::make_tuple(UniqueInt(7))));
2134
}
2135
2136
TEST(FunctorActionTest, ActionFromLambda) {
2137
Action<int(bool, int)> a1 = [](bool b, int i) { return b ? i : 0; };
2138
EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5)));
2139
EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 5)));
2140
2141
std::unique_ptr<int> saved;
2142
Action<void(std::unique_ptr<int>)> a2 = [&saved](std::unique_ptr<int> p) {
2143
saved = std::move(p);
2144
};
2145
a2.Perform(std::make_tuple(UniqueInt(5)));
2146
EXPECT_EQ(5, *saved);
2147
}
2148
2149
TEST(FunctorActionTest, PolymorphicFunctor) {
2150
Action<int(int)> ai = Double();
2151
EXPECT_EQ(2, ai.Perform(std::make_tuple(1)));
2152
Action<double(double)> ad = Double(); // Double? Double double!
2153
EXPECT_EQ(3.0, ad.Perform(std::make_tuple(1.5)));
2154
}
2155
2156
TEST(FunctorActionTest, TypeConversion) {
2157
// Numeric promotions are allowed.
2158
const Action<bool(int)> a1 = [](int i) { return i > 1; };
2159
const Action<int(bool)> a2 = Action<int(bool)>(a1);
2160
EXPECT_EQ(1, a1.Perform(std::make_tuple(42)));
2161
EXPECT_EQ(0, a2.Perform(std::make_tuple(42)));
2162
2163
// Implicit constructors are allowed.
2164
const Action<bool(std::string)> s1 = [](std::string s) { return !s.empty(); };
2165
const Action<int(const char*)> s2 = Action<int(const char*)>(s1);
2166
EXPECT_EQ(0, s2.Perform(std::make_tuple("")));
2167
EXPECT_EQ(1, s2.Perform(std::make_tuple("hello")));
2168
2169
// Also between the lambda and the action itself.
2170
const Action<bool(std::string)> x1 = [](Unused) { return 42; };
2171
const Action<bool(std::string)> x2 = [] { return 42; };
2172
EXPECT_TRUE(x1.Perform(std::make_tuple("hello")));
2173
EXPECT_TRUE(x2.Perform(std::make_tuple("hello")));
2174
2175
// Ensure decay occurs where required.
2176
std::function<int()> f = [] { return 7; };
2177
Action<int(int)> d = f;
2178
f = nullptr;
2179
EXPECT_EQ(7, d.Perform(std::make_tuple(1)));
2180
2181
// Ensure creation of an empty action succeeds.
2182
Action<void(int)>(nullptr);
2183
}
2184
2185
TEST(FunctorActionTest, UnusedArguments) {
2186
// Verify that users can ignore uninteresting arguments.
2187
Action<int(int, double y, double z)> a = [](int i, Unused, Unused) {
2188
return 2 * i;
2189
};
2190
std::tuple<int, double, double> dummy = std::make_tuple(3, 7.3, 9.44);
2191
EXPECT_EQ(6, a.Perform(dummy));
2192
}
2193
2194
// Test that basic built-in actions work with move-only arguments.
2195
TEST(MoveOnlyArgumentsTest, ReturningActions) {
2196
Action<int(std::unique_ptr<int>)> a = Return(1);
2197
EXPECT_EQ(1, a.Perform(std::make_tuple(nullptr)));
2198
2199
a = testing::WithoutArgs([]() { return 7; });
2200
EXPECT_EQ(7, a.Perform(std::make_tuple(nullptr)));
2201
2202
Action<void(std::unique_ptr<int>, int*)> a2 = testing::SetArgPointee<1>(3);
2203
int x = 0;
2204
a2.Perform(std::make_tuple(nullptr, &x));
2205
EXPECT_EQ(x, 3);
2206
}
2207
2208
ACTION(ReturnArity) { return std::tuple_size<args_type>::value; }
2209
2210
TEST(ActionMacro, LargeArity) {
2211
EXPECT_EQ(
2212
1, testing::Action<int(int)>(ReturnArity()).Perform(std::make_tuple(0)));
2213
EXPECT_EQ(
2214
10,
2215
testing::Action<int(int, int, int, int, int, int, int, int, int, int)>(
2216
ReturnArity())
2217
.Perform(std::make_tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)));
2218
EXPECT_EQ(
2219
20,
2220
testing::Action<int(int, int, int, int, int, int, int, int, int, int, int,
2221
int, int, int, int, int, int, int, int, int)>(
2222
ReturnArity())
2223
.Perform(std::make_tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
2224
14, 15, 16, 17, 18, 19)));
2225
}
2226
2227
} // namespace
2228
} // namespace testing
2229
2230
#if defined(_MSC_VER) && (_MSC_VER == 1900)
2231
GTEST_DISABLE_MSC_WARNINGS_POP_() // 4800
2232
#endif
2233
GTEST_DISABLE_MSC_WARNINGS_POP_() // 4100 4503
2234
2235