Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/jemalloc/src/ckh.c
39478 views
1
/*
2
*******************************************************************************
3
* Implementation of (2^1+,2) cuckoo hashing, where 2^1+ indicates that each
4
* hash bucket contains 2^n cells, for n >= 1, and 2 indicates that two hash
5
* functions are employed. The original cuckoo hashing algorithm was described
6
* in:
7
*
8
* Pagh, R., F.F. Rodler (2004) Cuckoo Hashing. Journal of Algorithms
9
* 51(2):122-144.
10
*
11
* Generalization of cuckoo hashing was discussed in:
12
*
13
* Erlingsson, U., M. Manasse, F. McSherry (2006) A cool and practical
14
* alternative to traditional hash tables. In Proceedings of the 7th
15
* Workshop on Distributed Data and Structures (WDAS'06), Santa Clara, CA,
16
* January 2006.
17
*
18
* This implementation uses precisely two hash functions because that is the
19
* fewest that can work, and supporting multiple hashes is an implementation
20
* burden. Here is a reproduction of Figure 1 from Erlingsson et al. (2006)
21
* that shows approximate expected maximum load factors for various
22
* configurations:
23
*
24
* | #cells/bucket |
25
* #hashes | 1 | 2 | 4 | 8 |
26
* --------+-------+-------+-------+-------+
27
* 1 | 0.006 | 0.006 | 0.03 | 0.12 |
28
* 2 | 0.49 | 0.86 |>0.93< |>0.96< |
29
* 3 | 0.91 | 0.97 | 0.98 | 0.999 |
30
* 4 | 0.97 | 0.99 | 0.999 | |
31
*
32
* The number of cells per bucket is chosen such that a bucket fits in one cache
33
* line. So, on 32- and 64-bit systems, we use (8,2) and (4,2) cuckoo hashing,
34
* respectively.
35
*
36
******************************************************************************/
37
#include "jemalloc/internal/jemalloc_preamble.h"
38
39
#include "jemalloc/internal/ckh.h"
40
41
#include "jemalloc/internal/jemalloc_internal_includes.h"
42
43
#include "jemalloc/internal/assert.h"
44
#include "jemalloc/internal/hash.h"
45
#include "jemalloc/internal/malloc_io.h"
46
#include "jemalloc/internal/prng.h"
47
#include "jemalloc/internal/util.h"
48
49
/******************************************************************************/
50
/* Function prototypes for non-inline static functions. */
51
52
static bool ckh_grow(tsd_t *tsd, ckh_t *ckh);
53
static void ckh_shrink(tsd_t *tsd, ckh_t *ckh);
54
55
/******************************************************************************/
56
57
/*
58
* Search bucket for key and return the cell number if found; SIZE_T_MAX
59
* otherwise.
60
*/
61
static size_t
62
ckh_bucket_search(ckh_t *ckh, size_t bucket, const void *key) {
63
ckhc_t *cell;
64
unsigned i;
65
66
for (i = 0; i < (ZU(1) << LG_CKH_BUCKET_CELLS); i++) {
67
cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + i];
68
if (cell->key != NULL && ckh->keycomp(key, cell->key)) {
69
return (bucket << LG_CKH_BUCKET_CELLS) + i;
70
}
71
}
72
73
return SIZE_T_MAX;
74
}
75
76
/*
77
* Search table for key and return cell number if found; SIZE_T_MAX otherwise.
78
*/
79
static size_t
80
ckh_isearch(ckh_t *ckh, const void *key) {
81
size_t hashes[2], bucket, cell;
82
83
assert(ckh != NULL);
84
85
ckh->hash(key, hashes);
86
87
/* Search primary bucket. */
88
bucket = hashes[0] & ((ZU(1) << ckh->lg_curbuckets) - 1);
89
cell = ckh_bucket_search(ckh, bucket, key);
90
if (cell != SIZE_T_MAX) {
91
return cell;
92
}
93
94
/* Search secondary bucket. */
95
bucket = hashes[1] & ((ZU(1) << ckh->lg_curbuckets) - 1);
96
cell = ckh_bucket_search(ckh, bucket, key);
97
return cell;
98
}
99
100
static bool
101
ckh_try_bucket_insert(ckh_t *ckh, size_t bucket, const void *key,
102
const void *data) {
103
ckhc_t *cell;
104
unsigned offset, i;
105
106
/*
107
* Cycle through the cells in the bucket, starting at a random position.
108
* The randomness avoids worst-case search overhead as buckets fill up.
109
*/
110
offset = (unsigned)prng_lg_range_u64(&ckh->prng_state,
111
LG_CKH_BUCKET_CELLS);
112
for (i = 0; i < (ZU(1) << LG_CKH_BUCKET_CELLS); i++) {
113
cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) +
114
((i + offset) & ((ZU(1) << LG_CKH_BUCKET_CELLS) - 1))];
115
if (cell->key == NULL) {
116
cell->key = key;
117
cell->data = data;
118
ckh->count++;
119
return false;
120
}
121
}
122
123
return true;
124
}
125
126
/*
127
* No space is available in bucket. Randomly evict an item, then try to find an
128
* alternate location for that item. Iteratively repeat this
129
* eviction/relocation procedure until either success or detection of an
130
* eviction/relocation bucket cycle.
131
*/
132
static bool
133
ckh_evict_reloc_insert(ckh_t *ckh, size_t argbucket, void const **argkey,
134
void const **argdata) {
135
const void *key, *data, *tkey, *tdata;
136
ckhc_t *cell;
137
size_t hashes[2], bucket, tbucket;
138
unsigned i;
139
140
bucket = argbucket;
141
key = *argkey;
142
data = *argdata;
143
while (true) {
144
/*
145
* Choose a random item within the bucket to evict. This is
146
* critical to correct function, because without (eventually)
147
* evicting all items within a bucket during iteration, it
148
* would be possible to get stuck in an infinite loop if there
149
* were an item for which both hashes indicated the same
150
* bucket.
151
*/
152
i = (unsigned)prng_lg_range_u64(&ckh->prng_state,
153
LG_CKH_BUCKET_CELLS);
154
cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + i];
155
assert(cell->key != NULL);
156
157
/* Swap cell->{key,data} and {key,data} (evict). */
158
tkey = cell->key; tdata = cell->data;
159
cell->key = key; cell->data = data;
160
key = tkey; data = tdata;
161
162
#ifdef CKH_COUNT
163
ckh->nrelocs++;
164
#endif
165
166
/* Find the alternate bucket for the evicted item. */
167
ckh->hash(key, hashes);
168
tbucket = hashes[1] & ((ZU(1) << ckh->lg_curbuckets) - 1);
169
if (tbucket == bucket) {
170
tbucket = hashes[0] & ((ZU(1) << ckh->lg_curbuckets)
171
- 1);
172
/*
173
* It may be that (tbucket == bucket) still, if the
174
* item's hashes both indicate this bucket. However,
175
* we are guaranteed to eventually escape this bucket
176
* during iteration, assuming pseudo-random item
177
* selection (true randomness would make infinite
178
* looping a remote possibility). The reason we can
179
* never get trapped forever is that there are two
180
* cases:
181
*
182
* 1) This bucket == argbucket, so we will quickly
183
* detect an eviction cycle and terminate.
184
* 2) An item was evicted to this bucket from another,
185
* which means that at least one item in this bucket
186
* has hashes that indicate distinct buckets.
187
*/
188
}
189
/* Check for a cycle. */
190
if (tbucket == argbucket) {
191
*argkey = key;
192
*argdata = data;
193
return true;
194
}
195
196
bucket = tbucket;
197
if (!ckh_try_bucket_insert(ckh, bucket, key, data)) {
198
return false;
199
}
200
}
201
}
202
203
static bool
204
ckh_try_insert(ckh_t *ckh, void const**argkey, void const**argdata) {
205
size_t hashes[2], bucket;
206
const void *key = *argkey;
207
const void *data = *argdata;
208
209
ckh->hash(key, hashes);
210
211
/* Try to insert in primary bucket. */
212
bucket = hashes[0] & ((ZU(1) << ckh->lg_curbuckets) - 1);
213
if (!ckh_try_bucket_insert(ckh, bucket, key, data)) {
214
return false;
215
}
216
217
/* Try to insert in secondary bucket. */
218
bucket = hashes[1] & ((ZU(1) << ckh->lg_curbuckets) - 1);
219
if (!ckh_try_bucket_insert(ckh, bucket, key, data)) {
220
return false;
221
}
222
223
/*
224
* Try to find a place for this item via iterative eviction/relocation.
225
*/
226
return ckh_evict_reloc_insert(ckh, bucket, argkey, argdata);
227
}
228
229
/*
230
* Try to rebuild the hash table from scratch by inserting all items from the
231
* old table into the new.
232
*/
233
static bool
234
ckh_rebuild(ckh_t *ckh, ckhc_t *aTab) {
235
size_t count, i, nins;
236
const void *key, *data;
237
238
count = ckh->count;
239
ckh->count = 0;
240
for (i = nins = 0; nins < count; i++) {
241
if (aTab[i].key != NULL) {
242
key = aTab[i].key;
243
data = aTab[i].data;
244
if (ckh_try_insert(ckh, &key, &data)) {
245
ckh->count = count;
246
return true;
247
}
248
nins++;
249
}
250
}
251
252
return false;
253
}
254
255
static bool
256
ckh_grow(tsd_t *tsd, ckh_t *ckh) {
257
bool ret;
258
ckhc_t *tab, *ttab;
259
unsigned lg_prevbuckets, lg_curcells;
260
261
#ifdef CKH_COUNT
262
ckh->ngrows++;
263
#endif
264
265
/*
266
* It is possible (though unlikely, given well behaved hashes) that the
267
* table will have to be doubled more than once in order to create a
268
* usable table.
269
*/
270
lg_prevbuckets = ckh->lg_curbuckets;
271
lg_curcells = ckh->lg_curbuckets + LG_CKH_BUCKET_CELLS;
272
while (true) {
273
size_t usize;
274
275
lg_curcells++;
276
usize = sz_sa2u(sizeof(ckhc_t) << lg_curcells, CACHELINE);
277
if (unlikely(usize == 0
278
|| usize > SC_LARGE_MAXCLASS)) {
279
ret = true;
280
goto label_return;
281
}
282
tab = (ckhc_t *)ipallocztm(tsd_tsdn(tsd), usize, CACHELINE,
283
true, NULL, true, arena_ichoose(tsd, NULL));
284
if (tab == NULL) {
285
ret = true;
286
goto label_return;
287
}
288
/* Swap in new table. */
289
ttab = ckh->tab;
290
ckh->tab = tab;
291
tab = ttab;
292
ckh->lg_curbuckets = lg_curcells - LG_CKH_BUCKET_CELLS;
293
294
if (!ckh_rebuild(ckh, tab)) {
295
idalloctm(tsd_tsdn(tsd), tab, NULL, NULL, true, true);
296
break;
297
}
298
299
/* Rebuilding failed, so back out partially rebuilt table. */
300
idalloctm(tsd_tsdn(tsd), ckh->tab, NULL, NULL, true, true);
301
ckh->tab = tab;
302
ckh->lg_curbuckets = lg_prevbuckets;
303
}
304
305
ret = false;
306
label_return:
307
return ret;
308
}
309
310
static void
311
ckh_shrink(tsd_t *tsd, ckh_t *ckh) {
312
ckhc_t *tab, *ttab;
313
size_t usize;
314
unsigned lg_prevbuckets, lg_curcells;
315
316
/*
317
* It is possible (though unlikely, given well behaved hashes) that the
318
* table rebuild will fail.
319
*/
320
lg_prevbuckets = ckh->lg_curbuckets;
321
lg_curcells = ckh->lg_curbuckets + LG_CKH_BUCKET_CELLS - 1;
322
usize = sz_sa2u(sizeof(ckhc_t) << lg_curcells, CACHELINE);
323
if (unlikely(usize == 0 || usize > SC_LARGE_MAXCLASS)) {
324
return;
325
}
326
tab = (ckhc_t *)ipallocztm(tsd_tsdn(tsd), usize, CACHELINE, true, NULL,
327
true, arena_ichoose(tsd, NULL));
328
if (tab == NULL) {
329
/*
330
* An OOM error isn't worth propagating, since it doesn't
331
* prevent this or future operations from proceeding.
332
*/
333
return;
334
}
335
/* Swap in new table. */
336
ttab = ckh->tab;
337
ckh->tab = tab;
338
tab = ttab;
339
ckh->lg_curbuckets = lg_curcells - LG_CKH_BUCKET_CELLS;
340
341
if (!ckh_rebuild(ckh, tab)) {
342
idalloctm(tsd_tsdn(tsd), tab, NULL, NULL, true, true);
343
#ifdef CKH_COUNT
344
ckh->nshrinks++;
345
#endif
346
return;
347
}
348
349
/* Rebuilding failed, so back out partially rebuilt table. */
350
idalloctm(tsd_tsdn(tsd), ckh->tab, NULL, NULL, true, true);
351
ckh->tab = tab;
352
ckh->lg_curbuckets = lg_prevbuckets;
353
#ifdef CKH_COUNT
354
ckh->nshrinkfails++;
355
#endif
356
}
357
358
bool
359
ckh_new(tsd_t *tsd, ckh_t *ckh, size_t minitems, ckh_hash_t *ckh_hash,
360
ckh_keycomp_t *keycomp) {
361
bool ret;
362
size_t mincells, usize;
363
unsigned lg_mincells;
364
365
assert(minitems > 0);
366
assert(ckh_hash != NULL);
367
assert(keycomp != NULL);
368
369
#ifdef CKH_COUNT
370
ckh->ngrows = 0;
371
ckh->nshrinks = 0;
372
ckh->nshrinkfails = 0;
373
ckh->ninserts = 0;
374
ckh->nrelocs = 0;
375
#endif
376
ckh->prng_state = 42; /* Value doesn't really matter. */
377
ckh->count = 0;
378
379
/*
380
* Find the minimum power of 2 that is large enough to fit minitems
381
* entries. We are using (2+,2) cuckoo hashing, which has an expected
382
* maximum load factor of at least ~0.86, so 0.75 is a conservative load
383
* factor that will typically allow mincells items to fit without ever
384
* growing the table.
385
*/
386
assert(LG_CKH_BUCKET_CELLS > 0);
387
mincells = ((minitems + (3 - (minitems % 3))) / 3) << 2;
388
for (lg_mincells = LG_CKH_BUCKET_CELLS;
389
(ZU(1) << lg_mincells) < mincells;
390
lg_mincells++) {
391
/* Do nothing. */
392
}
393
ckh->lg_minbuckets = lg_mincells - LG_CKH_BUCKET_CELLS;
394
ckh->lg_curbuckets = lg_mincells - LG_CKH_BUCKET_CELLS;
395
ckh->hash = ckh_hash;
396
ckh->keycomp = keycomp;
397
398
usize = sz_sa2u(sizeof(ckhc_t) << lg_mincells, CACHELINE);
399
if (unlikely(usize == 0 || usize > SC_LARGE_MAXCLASS)) {
400
ret = true;
401
goto label_return;
402
}
403
ckh->tab = (ckhc_t *)ipallocztm(tsd_tsdn(tsd), usize, CACHELINE, true,
404
NULL, true, arena_ichoose(tsd, NULL));
405
if (ckh->tab == NULL) {
406
ret = true;
407
goto label_return;
408
}
409
410
ret = false;
411
label_return:
412
return ret;
413
}
414
415
void
416
ckh_delete(tsd_t *tsd, ckh_t *ckh) {
417
assert(ckh != NULL);
418
419
#ifdef CKH_VERBOSE
420
malloc_printf(
421
"%s(%p): ngrows: %"FMTu64", nshrinks: %"FMTu64","
422
" nshrinkfails: %"FMTu64", ninserts: %"FMTu64","
423
" nrelocs: %"FMTu64"\n", __func__, ckh,
424
(unsigned long long)ckh->ngrows,
425
(unsigned long long)ckh->nshrinks,
426
(unsigned long long)ckh->nshrinkfails,
427
(unsigned long long)ckh->ninserts,
428
(unsigned long long)ckh->nrelocs);
429
#endif
430
431
idalloctm(tsd_tsdn(tsd), ckh->tab, NULL, NULL, true, true);
432
if (config_debug) {
433
memset(ckh, JEMALLOC_FREE_JUNK, sizeof(ckh_t));
434
}
435
}
436
437
size_t
438
ckh_count(ckh_t *ckh) {
439
assert(ckh != NULL);
440
441
return ckh->count;
442
}
443
444
bool
445
ckh_iter(ckh_t *ckh, size_t *tabind, void **key, void **data) {
446
size_t i, ncells;
447
448
for (i = *tabind, ncells = (ZU(1) << (ckh->lg_curbuckets +
449
LG_CKH_BUCKET_CELLS)); i < ncells; i++) {
450
if (ckh->tab[i].key != NULL) {
451
if (key != NULL) {
452
*key = (void *)ckh->tab[i].key;
453
}
454
if (data != NULL) {
455
*data = (void *)ckh->tab[i].data;
456
}
457
*tabind = i + 1;
458
return false;
459
}
460
}
461
462
return true;
463
}
464
465
bool
466
ckh_insert(tsd_t *tsd, ckh_t *ckh, const void *key, const void *data) {
467
bool ret;
468
469
assert(ckh != NULL);
470
assert(ckh_search(ckh, key, NULL, NULL));
471
472
#ifdef CKH_COUNT
473
ckh->ninserts++;
474
#endif
475
476
while (ckh_try_insert(ckh, &key, &data)) {
477
if (ckh_grow(tsd, ckh)) {
478
ret = true;
479
goto label_return;
480
}
481
}
482
483
ret = false;
484
label_return:
485
return ret;
486
}
487
488
bool
489
ckh_remove(tsd_t *tsd, ckh_t *ckh, const void *searchkey, void **key,
490
void **data) {
491
size_t cell;
492
493
assert(ckh != NULL);
494
495
cell = ckh_isearch(ckh, searchkey);
496
if (cell != SIZE_T_MAX) {
497
if (key != NULL) {
498
*key = (void *)ckh->tab[cell].key;
499
}
500
if (data != NULL) {
501
*data = (void *)ckh->tab[cell].data;
502
}
503
ckh->tab[cell].key = NULL;
504
ckh->tab[cell].data = NULL; /* Not necessary. */
505
506
ckh->count--;
507
/* Try to halve the table if it is less than 1/4 full. */
508
if (ckh->count < (ZU(1) << (ckh->lg_curbuckets
509
+ LG_CKH_BUCKET_CELLS - 2)) && ckh->lg_curbuckets
510
> ckh->lg_minbuckets) {
511
/* Ignore error due to OOM. */
512
ckh_shrink(tsd, ckh);
513
}
514
515
return false;
516
}
517
518
return true;
519
}
520
521
bool
522
ckh_search(ckh_t *ckh, const void *searchkey, void **key, void **data) {
523
size_t cell;
524
525
assert(ckh != NULL);
526
527
cell = ckh_isearch(ckh, searchkey);
528
if (cell != SIZE_T_MAX) {
529
if (key != NULL) {
530
*key = (void *)ckh->tab[cell].key;
531
}
532
if (data != NULL) {
533
*data = (void *)ckh->tab[cell].data;
534
}
535
return false;
536
}
537
538
return true;
539
}
540
541
void
542
ckh_string_hash(const void *key, size_t r_hash[2]) {
543
hash(key, strlen((const char *)key), 0x94122f33U, r_hash);
544
}
545
546
bool
547
ckh_string_keycomp(const void *k1, const void *k2) {
548
assert(k1 != NULL);
549
assert(k2 != NULL);
550
551
return !strcmp((char *)k1, (char *)k2);
552
}
553
554
void
555
ckh_pointer_hash(const void *key, size_t r_hash[2]) {
556
union {
557
const void *v;
558
size_t i;
559
} u;
560
561
assert(sizeof(u.v) == sizeof(u.i));
562
u.v = key;
563
hash(&u.i, sizeof(u.i), 0xd983396eU, r_hash);
564
}
565
566
bool
567
ckh_pointer_keycomp(const void *k1, const void *k2) {
568
return (k1 == k2);
569
}
570
571