Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/jemalloc/src/prof_data.c
39478 views
1
#include "jemalloc/internal/jemalloc_preamble.h"
2
#include "jemalloc/internal/jemalloc_internal_includes.h"
3
4
#include "jemalloc/internal/assert.h"
5
#include "jemalloc/internal/ckh.h"
6
#include "jemalloc/internal/hash.h"
7
#include "jemalloc/internal/malloc_io.h"
8
#include "jemalloc/internal/prof_data.h"
9
10
/*
11
* This file defines and manages the core profiling data structures.
12
*
13
* Conceptually, profiling data can be imagined as a table with three columns:
14
* thread, stack trace, and current allocation size. (When prof_accum is on,
15
* there's one additional column which is the cumulative allocation size.)
16
*
17
* Implementation wise, each thread maintains a hash recording the stack trace
18
* to allocation size correspondences, which are basically the individual rows
19
* in the table. In addition, two global "indices" are built to make data
20
* aggregation efficient (for dumping): bt2gctx and tdatas, which are basically
21
* the "grouped by stack trace" and "grouped by thread" views of the same table,
22
* respectively. Note that the allocation size is only aggregated to the two
23
* indices at dumping time, so as to optimize for performance.
24
*/
25
26
/******************************************************************************/
27
28
malloc_mutex_t bt2gctx_mtx;
29
malloc_mutex_t tdatas_mtx;
30
malloc_mutex_t prof_dump_mtx;
31
32
/*
33
* Table of mutexes that are shared among gctx's. These are leaf locks, so
34
* there is no problem with using them for more than one gctx at the same time.
35
* The primary motivation for this sharing though is that gctx's are ephemeral,
36
* and destroying mutexes causes complications for systems that allocate when
37
* creating/destroying mutexes.
38
*/
39
malloc_mutex_t *gctx_locks;
40
static atomic_u_t cum_gctxs; /* Atomic counter. */
41
42
/*
43
* Table of mutexes that are shared among tdata's. No operations require
44
* holding multiple tdata locks, so there is no problem with using them for more
45
* than one tdata at the same time, even though a gctx lock may be acquired
46
* while holding a tdata lock.
47
*/
48
malloc_mutex_t *tdata_locks;
49
50
/*
51
* Global hash of (prof_bt_t *)-->(prof_gctx_t *). This is the master data
52
* structure that knows about all backtraces currently captured.
53
*/
54
static ckh_t bt2gctx;
55
56
/*
57
* Tree of all extant prof_tdata_t structures, regardless of state,
58
* {attached,detached,expired}.
59
*/
60
static prof_tdata_tree_t tdatas;
61
62
size_t prof_unbiased_sz[PROF_SC_NSIZES];
63
size_t prof_shifted_unbiased_cnt[PROF_SC_NSIZES];
64
65
/******************************************************************************/
66
/* Red-black trees. */
67
68
static int
69
prof_tctx_comp(const prof_tctx_t *a, const prof_tctx_t *b) {
70
uint64_t a_thr_uid = a->thr_uid;
71
uint64_t b_thr_uid = b->thr_uid;
72
int ret = (a_thr_uid > b_thr_uid) - (a_thr_uid < b_thr_uid);
73
if (ret == 0) {
74
uint64_t a_thr_discrim = a->thr_discrim;
75
uint64_t b_thr_discrim = b->thr_discrim;
76
ret = (a_thr_discrim > b_thr_discrim) - (a_thr_discrim <
77
b_thr_discrim);
78
if (ret == 0) {
79
uint64_t a_tctx_uid = a->tctx_uid;
80
uint64_t b_tctx_uid = b->tctx_uid;
81
ret = (a_tctx_uid > b_tctx_uid) - (a_tctx_uid <
82
b_tctx_uid);
83
}
84
}
85
return ret;
86
}
87
88
rb_gen(static UNUSED, tctx_tree_, prof_tctx_tree_t, prof_tctx_t,
89
tctx_link, prof_tctx_comp)
90
91
static int
92
prof_gctx_comp(const prof_gctx_t *a, const prof_gctx_t *b) {
93
unsigned a_len = a->bt.len;
94
unsigned b_len = b->bt.len;
95
unsigned comp_len = (a_len < b_len) ? a_len : b_len;
96
int ret = memcmp(a->bt.vec, b->bt.vec, comp_len * sizeof(void *));
97
if (ret == 0) {
98
ret = (a_len > b_len) - (a_len < b_len);
99
}
100
return ret;
101
}
102
103
rb_gen(static UNUSED, gctx_tree_, prof_gctx_tree_t, prof_gctx_t, dump_link,
104
prof_gctx_comp)
105
106
static int
107
prof_tdata_comp(const prof_tdata_t *a, const prof_tdata_t *b) {
108
int ret;
109
uint64_t a_uid = a->thr_uid;
110
uint64_t b_uid = b->thr_uid;
111
112
ret = ((a_uid > b_uid) - (a_uid < b_uid));
113
if (ret == 0) {
114
uint64_t a_discrim = a->thr_discrim;
115
uint64_t b_discrim = b->thr_discrim;
116
117
ret = ((a_discrim > b_discrim) - (a_discrim < b_discrim));
118
}
119
return ret;
120
}
121
122
rb_gen(static UNUSED, tdata_tree_, prof_tdata_tree_t, prof_tdata_t, tdata_link,
123
prof_tdata_comp)
124
125
/******************************************************************************/
126
127
static malloc_mutex_t *
128
prof_gctx_mutex_choose(void) {
129
unsigned ngctxs = atomic_fetch_add_u(&cum_gctxs, 1, ATOMIC_RELAXED);
130
131
return &gctx_locks[(ngctxs - 1) % PROF_NCTX_LOCKS];
132
}
133
134
static malloc_mutex_t *
135
prof_tdata_mutex_choose(uint64_t thr_uid) {
136
return &tdata_locks[thr_uid % PROF_NTDATA_LOCKS];
137
}
138
139
bool
140
prof_data_init(tsd_t *tsd) {
141
tdata_tree_new(&tdatas);
142
return ckh_new(tsd, &bt2gctx, PROF_CKH_MINITEMS,
143
prof_bt_hash, prof_bt_keycomp);
144
}
145
146
static void
147
prof_enter(tsd_t *tsd, prof_tdata_t *tdata) {
148
cassert(config_prof);
149
assert(tdata == prof_tdata_get(tsd, false));
150
151
if (tdata != NULL) {
152
assert(!tdata->enq);
153
tdata->enq = true;
154
}
155
156
malloc_mutex_lock(tsd_tsdn(tsd), &bt2gctx_mtx);
157
}
158
159
static void
160
prof_leave(tsd_t *tsd, prof_tdata_t *tdata) {
161
cassert(config_prof);
162
assert(tdata == prof_tdata_get(tsd, false));
163
164
malloc_mutex_unlock(tsd_tsdn(tsd), &bt2gctx_mtx);
165
166
if (tdata != NULL) {
167
bool idump, gdump;
168
169
assert(tdata->enq);
170
tdata->enq = false;
171
idump = tdata->enq_idump;
172
tdata->enq_idump = false;
173
gdump = tdata->enq_gdump;
174
tdata->enq_gdump = false;
175
176
if (idump) {
177
prof_idump(tsd_tsdn(tsd));
178
}
179
if (gdump) {
180
prof_gdump(tsd_tsdn(tsd));
181
}
182
}
183
}
184
185
static prof_gctx_t *
186
prof_gctx_create(tsdn_t *tsdn, prof_bt_t *bt) {
187
/*
188
* Create a single allocation that has space for vec of length bt->len.
189
*/
190
size_t size = offsetof(prof_gctx_t, vec) + (bt->len * sizeof(void *));
191
prof_gctx_t *gctx = (prof_gctx_t *)iallocztm(tsdn, size,
192
sz_size2index(size), false, NULL, true, arena_get(TSDN_NULL, 0, true),
193
true);
194
if (gctx == NULL) {
195
return NULL;
196
}
197
gctx->lock = prof_gctx_mutex_choose();
198
/*
199
* Set nlimbo to 1, in order to avoid a race condition with
200
* prof_tctx_destroy()/prof_gctx_try_destroy().
201
*/
202
gctx->nlimbo = 1;
203
tctx_tree_new(&gctx->tctxs);
204
/* Duplicate bt. */
205
memcpy(gctx->vec, bt->vec, bt->len * sizeof(void *));
206
gctx->bt.vec = gctx->vec;
207
gctx->bt.len = bt->len;
208
return gctx;
209
}
210
211
static void
212
prof_gctx_try_destroy(tsd_t *tsd, prof_tdata_t *tdata_self,
213
prof_gctx_t *gctx) {
214
cassert(config_prof);
215
216
/*
217
* Check that gctx is still unused by any thread cache before destroying
218
* it. prof_lookup() increments gctx->nlimbo in order to avoid a race
219
* condition with this function, as does prof_tctx_destroy() in order to
220
* avoid a race between the main body of prof_tctx_destroy() and entry
221
* into this function.
222
*/
223
prof_enter(tsd, tdata_self);
224
malloc_mutex_lock(tsd_tsdn(tsd), gctx->lock);
225
assert(gctx->nlimbo != 0);
226
if (tctx_tree_empty(&gctx->tctxs) && gctx->nlimbo == 1) {
227
/* Remove gctx from bt2gctx. */
228
if (ckh_remove(tsd, &bt2gctx, &gctx->bt, NULL, NULL)) {
229
not_reached();
230
}
231
prof_leave(tsd, tdata_self);
232
/* Destroy gctx. */
233
malloc_mutex_unlock(tsd_tsdn(tsd), gctx->lock);
234
idalloctm(tsd_tsdn(tsd), gctx, NULL, NULL, true, true);
235
} else {
236
/*
237
* Compensate for increment in prof_tctx_destroy() or
238
* prof_lookup().
239
*/
240
gctx->nlimbo--;
241
malloc_mutex_unlock(tsd_tsdn(tsd), gctx->lock);
242
prof_leave(tsd, tdata_self);
243
}
244
}
245
246
static bool
247
prof_gctx_should_destroy(prof_gctx_t *gctx) {
248
if (opt_prof_accum) {
249
return false;
250
}
251
if (!tctx_tree_empty(&gctx->tctxs)) {
252
return false;
253
}
254
if (gctx->nlimbo != 0) {
255
return false;
256
}
257
return true;
258
}
259
260
static bool
261
prof_lookup_global(tsd_t *tsd, prof_bt_t *bt, prof_tdata_t *tdata,
262
void **p_btkey, prof_gctx_t **p_gctx, bool *p_new_gctx) {
263
union {
264
prof_gctx_t *p;
265
void *v;
266
} gctx, tgctx;
267
union {
268
prof_bt_t *p;
269
void *v;
270
} btkey;
271
bool new_gctx;
272
273
prof_enter(tsd, tdata);
274
if (ckh_search(&bt2gctx, bt, &btkey.v, &gctx.v)) {
275
/* bt has never been seen before. Insert it. */
276
prof_leave(tsd, tdata);
277
tgctx.p = prof_gctx_create(tsd_tsdn(tsd), bt);
278
if (tgctx.v == NULL) {
279
return true;
280
}
281
prof_enter(tsd, tdata);
282
if (ckh_search(&bt2gctx, bt, &btkey.v, &gctx.v)) {
283
gctx.p = tgctx.p;
284
btkey.p = &gctx.p->bt;
285
if (ckh_insert(tsd, &bt2gctx, btkey.v, gctx.v)) {
286
/* OOM. */
287
prof_leave(tsd, tdata);
288
idalloctm(tsd_tsdn(tsd), gctx.v, NULL, NULL,
289
true, true);
290
return true;
291
}
292
new_gctx = true;
293
} else {
294
new_gctx = false;
295
}
296
} else {
297
tgctx.v = NULL;
298
new_gctx = false;
299
}
300
301
if (!new_gctx) {
302
/*
303
* Increment nlimbo, in order to avoid a race condition with
304
* prof_tctx_destroy()/prof_gctx_try_destroy().
305
*/
306
malloc_mutex_lock(tsd_tsdn(tsd), gctx.p->lock);
307
gctx.p->nlimbo++;
308
malloc_mutex_unlock(tsd_tsdn(tsd), gctx.p->lock);
309
new_gctx = false;
310
311
if (tgctx.v != NULL) {
312
/* Lost race to insert. */
313
idalloctm(tsd_tsdn(tsd), tgctx.v, NULL, NULL, true,
314
true);
315
}
316
}
317
prof_leave(tsd, tdata);
318
319
*p_btkey = btkey.v;
320
*p_gctx = gctx.p;
321
*p_new_gctx = new_gctx;
322
return false;
323
}
324
325
prof_tctx_t *
326
prof_lookup(tsd_t *tsd, prof_bt_t *bt) {
327
union {
328
prof_tctx_t *p;
329
void *v;
330
} ret;
331
prof_tdata_t *tdata;
332
bool not_found;
333
334
cassert(config_prof);
335
336
tdata = prof_tdata_get(tsd, false);
337
assert(tdata != NULL);
338
339
malloc_mutex_lock(tsd_tsdn(tsd), tdata->lock);
340
not_found = ckh_search(&tdata->bt2tctx, bt, NULL, &ret.v);
341
if (!not_found) { /* Note double negative! */
342
ret.p->prepared = true;
343
}
344
malloc_mutex_unlock(tsd_tsdn(tsd), tdata->lock);
345
if (not_found) {
346
void *btkey;
347
prof_gctx_t *gctx;
348
bool new_gctx, error;
349
350
/*
351
* This thread's cache lacks bt. Look for it in the global
352
* cache.
353
*/
354
if (prof_lookup_global(tsd, bt, tdata, &btkey, &gctx,
355
&new_gctx)) {
356
return NULL;
357
}
358
359
/* Link a prof_tctx_t into gctx for this thread. */
360
ret.v = iallocztm(tsd_tsdn(tsd), sizeof(prof_tctx_t),
361
sz_size2index(sizeof(prof_tctx_t)), false, NULL, true,
362
arena_ichoose(tsd, NULL), true);
363
if (ret.p == NULL) {
364
if (new_gctx) {
365
prof_gctx_try_destroy(tsd, tdata, gctx);
366
}
367
return NULL;
368
}
369
ret.p->tdata = tdata;
370
ret.p->thr_uid = tdata->thr_uid;
371
ret.p->thr_discrim = tdata->thr_discrim;
372
ret.p->recent_count = 0;
373
memset(&ret.p->cnts, 0, sizeof(prof_cnt_t));
374
ret.p->gctx = gctx;
375
ret.p->tctx_uid = tdata->tctx_uid_next++;
376
ret.p->prepared = true;
377
ret.p->state = prof_tctx_state_initializing;
378
malloc_mutex_lock(tsd_tsdn(tsd), tdata->lock);
379
error = ckh_insert(tsd, &tdata->bt2tctx, btkey, ret.v);
380
malloc_mutex_unlock(tsd_tsdn(tsd), tdata->lock);
381
if (error) {
382
if (new_gctx) {
383
prof_gctx_try_destroy(tsd, tdata, gctx);
384
}
385
idalloctm(tsd_tsdn(tsd), ret.v, NULL, NULL, true, true);
386
return NULL;
387
}
388
malloc_mutex_lock(tsd_tsdn(tsd), gctx->lock);
389
ret.p->state = prof_tctx_state_nominal;
390
tctx_tree_insert(&gctx->tctxs, ret.p);
391
gctx->nlimbo--;
392
malloc_mutex_unlock(tsd_tsdn(tsd), gctx->lock);
393
}
394
395
return ret.p;
396
}
397
398
/* Used in unit tests. */
399
static prof_tdata_t *
400
prof_tdata_count_iter(prof_tdata_tree_t *tdatas_ptr, prof_tdata_t *tdata,
401
void *arg) {
402
size_t *tdata_count = (size_t *)arg;
403
404
(*tdata_count)++;
405
406
return NULL;
407
}
408
409
/* Used in unit tests. */
410
size_t
411
prof_tdata_count(void) {
412
size_t tdata_count = 0;
413
tsdn_t *tsdn;
414
415
tsdn = tsdn_fetch();
416
malloc_mutex_lock(tsdn, &tdatas_mtx);
417
tdata_tree_iter(&tdatas, NULL, prof_tdata_count_iter,
418
(void *)&tdata_count);
419
malloc_mutex_unlock(tsdn, &tdatas_mtx);
420
421
return tdata_count;
422
}
423
424
/* Used in unit tests. */
425
size_t
426
prof_bt_count(void) {
427
size_t bt_count;
428
tsd_t *tsd;
429
prof_tdata_t *tdata;
430
431
tsd = tsd_fetch();
432
tdata = prof_tdata_get(tsd, false);
433
if (tdata == NULL) {
434
return 0;
435
}
436
437
malloc_mutex_lock(tsd_tsdn(tsd), &bt2gctx_mtx);
438
bt_count = ckh_count(&bt2gctx);
439
malloc_mutex_unlock(tsd_tsdn(tsd), &bt2gctx_mtx);
440
441
return bt_count;
442
}
443
444
char *
445
prof_thread_name_alloc(tsd_t *tsd, const char *thread_name) {
446
char *ret;
447
size_t size;
448
449
if (thread_name == NULL) {
450
return NULL;
451
}
452
453
size = strlen(thread_name) + 1;
454
if (size == 1) {
455
return "";
456
}
457
458
ret = iallocztm(tsd_tsdn(tsd), size, sz_size2index(size), false, NULL,
459
true, arena_get(TSDN_NULL, 0, true), true);
460
if (ret == NULL) {
461
return NULL;
462
}
463
memcpy(ret, thread_name, size);
464
return ret;
465
}
466
467
int
468
prof_thread_name_set_impl(tsd_t *tsd, const char *thread_name) {
469
assert(tsd_reentrancy_level_get(tsd) == 0);
470
471
prof_tdata_t *tdata;
472
unsigned i;
473
char *s;
474
475
tdata = prof_tdata_get(tsd, true);
476
if (tdata == NULL) {
477
return EAGAIN;
478
}
479
480
/* Validate input. */
481
if (thread_name == NULL) {
482
return EFAULT;
483
}
484
for (i = 0; thread_name[i] != '\0'; i++) {
485
char c = thread_name[i];
486
if (!isgraph(c) && !isblank(c)) {
487
return EFAULT;
488
}
489
}
490
491
s = prof_thread_name_alloc(tsd, thread_name);
492
if (s == NULL) {
493
return EAGAIN;
494
}
495
496
if (tdata->thread_name != NULL) {
497
idalloctm(tsd_tsdn(tsd), tdata->thread_name, NULL, NULL, true,
498
true);
499
tdata->thread_name = NULL;
500
}
501
if (strlen(s) > 0) {
502
tdata->thread_name = s;
503
}
504
return 0;
505
}
506
507
JEMALLOC_FORMAT_PRINTF(3, 4)
508
static void
509
prof_dump_printf(write_cb_t *prof_dump_write, void *cbopaque,
510
const char *format, ...) {
511
va_list ap;
512
char buf[PROF_PRINTF_BUFSIZE];
513
514
va_start(ap, format);
515
malloc_vsnprintf(buf, sizeof(buf), format, ap);
516
va_end(ap);
517
prof_dump_write(cbopaque, buf);
518
}
519
520
/*
521
* Casting a double to a uint64_t may not necessarily be in range; this can be
522
* UB. I don't think this is practically possible with the cur counters, but
523
* plausibly could be with the accum counters.
524
*/
525
#ifdef JEMALLOC_PROF
526
static uint64_t
527
prof_double_uint64_cast(double d) {
528
/*
529
* Note: UINT64_MAX + 1 is exactly representable as a double on all
530
* reasonable platforms (certainly those we'll support). Writing this
531
* as !(a < b) instead of (a >= b) means that we're NaN-safe.
532
*/
533
double rounded = round(d);
534
if (!(rounded < (double)UINT64_MAX)) {
535
return UINT64_MAX;
536
}
537
return (uint64_t)rounded;
538
}
539
#endif
540
541
void prof_unbias_map_init() {
542
/* See the comment in prof_sample_new_event_wait */
543
#ifdef JEMALLOC_PROF
544
for (szind_t i = 0; i < SC_NSIZES; i++) {
545
double sz = (double)sz_index2size(i);
546
double rate = (double)(ZU(1) << lg_prof_sample);
547
double div_val = 1.0 - exp(-sz / rate);
548
double unbiased_sz = sz / div_val;
549
/*
550
* The "true" right value for the unbiased count is
551
* 1.0/(1 - exp(-sz/rate)). The problem is, we keep the counts
552
* as integers (for a variety of reasons -- rounding errors
553
* could trigger asserts, and not all libcs can properly handle
554
* floating point arithmetic during malloc calls inside libc).
555
* Rounding to an integer, though, can lead to rounding errors
556
* of over 30% for sizes close to the sampling rate. So
557
* instead, we multiply by a constant, dividing the maximum
558
* possible roundoff error by that constant. To avoid overflow
559
* in summing up size_t values, the largest safe constant we can
560
* pick is the size of the smallest allocation.
561
*/
562
double cnt_shift = (double)(ZU(1) << SC_LG_TINY_MIN);
563
double shifted_unbiased_cnt = cnt_shift / div_val;
564
prof_unbiased_sz[i] = (size_t)round(unbiased_sz);
565
prof_shifted_unbiased_cnt[i] = (size_t)round(
566
shifted_unbiased_cnt);
567
}
568
#else
569
unreachable();
570
#endif
571
}
572
573
/*
574
* The unbiasing story is long. The jeprof unbiasing logic was copied from
575
* pprof. Both shared an issue: they unbiased using the average size of the
576
* allocations at a particular stack trace. This can work out OK if allocations
577
* are mostly of the same size given some stack, but not otherwise. We now
578
* internally track what the unbiased results ought to be. We can't just report
579
* them as they are though; they'll still go through the jeprof unbiasing
580
* process. Instead, we figure out what values we can feed *into* jeprof's
581
* unbiasing mechanism that will lead to getting the right values out.
582
*
583
* It'll unbias count and aggregate size as:
584
*
585
* c_out = c_in * 1/(1-exp(-s_in/c_in/R)
586
* s_out = s_in * 1/(1-exp(-s_in/c_in/R)
587
*
588
* We want to solve for the values of c_in and s_in that will
589
* give the c_out and s_out that we've computed internally.
590
*
591
* Let's do a change of variables (both to make the math easier and to make it
592
* easier to write):
593
* x = s_in / c_in
594
* y = s_in
595
* k = 1/R.
596
*
597
* Then
598
* c_out = y/x * 1/(1-exp(-k*x))
599
* s_out = y * 1/(1-exp(-k*x))
600
*
601
* The first equation gives:
602
* y = x * c_out * (1-exp(-k*x))
603
* The second gives:
604
* y = s_out * (1-exp(-k*x))
605
* So we have
606
* x = s_out / c_out.
607
* And all the other values fall out from that.
608
*
609
* This is all a fair bit of work. The thing we get out of it is that we don't
610
* break backwards compatibility with jeprof (and the various tools that have
611
* copied its unbiasing logic). Eventually, we anticipate a v3 heap profile
612
* dump format based on JSON, at which point I think much of this logic can get
613
* cleaned up (since we'll be taking a compatibility break there anyways).
614
*/
615
static void
616
prof_do_unbias(uint64_t c_out_shifted_i, uint64_t s_out_i, uint64_t *r_c_in,
617
uint64_t *r_s_in) {
618
#ifdef JEMALLOC_PROF
619
if (c_out_shifted_i == 0 || s_out_i == 0) {
620
*r_c_in = 0;
621
*r_s_in = 0;
622
return;
623
}
624
/*
625
* See the note in prof_unbias_map_init() to see why we take c_out in a
626
* shifted form.
627
*/
628
double c_out = (double)c_out_shifted_i
629
/ (double)(ZU(1) << SC_LG_TINY_MIN);
630
double s_out = (double)s_out_i;
631
double R = (double)(ZU(1) << lg_prof_sample);
632
633
double x = s_out / c_out;
634
double y = s_out * (1.0 - exp(-x / R));
635
636
double c_in = y / x;
637
double s_in = y;
638
639
*r_c_in = prof_double_uint64_cast(c_in);
640
*r_s_in = prof_double_uint64_cast(s_in);
641
#else
642
unreachable();
643
#endif
644
}
645
646
static void
647
prof_dump_print_cnts(write_cb_t *prof_dump_write, void *cbopaque,
648
const prof_cnt_t *cnts) {
649
uint64_t curobjs;
650
uint64_t curbytes;
651
uint64_t accumobjs;
652
uint64_t accumbytes;
653
if (opt_prof_unbias) {
654
prof_do_unbias(cnts->curobjs_shifted_unbiased,
655
cnts->curbytes_unbiased, &curobjs, &curbytes);
656
prof_do_unbias(cnts->accumobjs_shifted_unbiased,
657
cnts->accumbytes_unbiased, &accumobjs, &accumbytes);
658
} else {
659
curobjs = cnts->curobjs;
660
curbytes = cnts->curbytes;
661
accumobjs = cnts->accumobjs;
662
accumbytes = cnts->accumbytes;
663
}
664
prof_dump_printf(prof_dump_write, cbopaque,
665
"%"FMTu64": %"FMTu64" [%"FMTu64": %"FMTu64"]",
666
curobjs, curbytes, accumobjs, accumbytes);
667
}
668
669
static void
670
prof_tctx_merge_tdata(tsdn_t *tsdn, prof_tctx_t *tctx, prof_tdata_t *tdata) {
671
malloc_mutex_assert_owner(tsdn, tctx->tdata->lock);
672
673
malloc_mutex_lock(tsdn, tctx->gctx->lock);
674
675
switch (tctx->state) {
676
case prof_tctx_state_initializing:
677
malloc_mutex_unlock(tsdn, tctx->gctx->lock);
678
return;
679
case prof_tctx_state_nominal:
680
tctx->state = prof_tctx_state_dumping;
681
malloc_mutex_unlock(tsdn, tctx->gctx->lock);
682
683
memcpy(&tctx->dump_cnts, &tctx->cnts, sizeof(prof_cnt_t));
684
685
tdata->cnt_summed.curobjs += tctx->dump_cnts.curobjs;
686
tdata->cnt_summed.curobjs_shifted_unbiased
687
+= tctx->dump_cnts.curobjs_shifted_unbiased;
688
tdata->cnt_summed.curbytes += tctx->dump_cnts.curbytes;
689
tdata->cnt_summed.curbytes_unbiased
690
+= tctx->dump_cnts.curbytes_unbiased;
691
if (opt_prof_accum) {
692
tdata->cnt_summed.accumobjs +=
693
tctx->dump_cnts.accumobjs;
694
tdata->cnt_summed.accumobjs_shifted_unbiased +=
695
tctx->dump_cnts.accumobjs_shifted_unbiased;
696
tdata->cnt_summed.accumbytes +=
697
tctx->dump_cnts.accumbytes;
698
tdata->cnt_summed.accumbytes_unbiased +=
699
tctx->dump_cnts.accumbytes_unbiased;
700
}
701
break;
702
case prof_tctx_state_dumping:
703
case prof_tctx_state_purgatory:
704
not_reached();
705
}
706
}
707
708
static void
709
prof_tctx_merge_gctx(tsdn_t *tsdn, prof_tctx_t *tctx, prof_gctx_t *gctx) {
710
malloc_mutex_assert_owner(tsdn, gctx->lock);
711
712
gctx->cnt_summed.curobjs += tctx->dump_cnts.curobjs;
713
gctx->cnt_summed.curobjs_shifted_unbiased
714
+= tctx->dump_cnts.curobjs_shifted_unbiased;
715
gctx->cnt_summed.curbytes += tctx->dump_cnts.curbytes;
716
gctx->cnt_summed.curbytes_unbiased += tctx->dump_cnts.curbytes_unbiased;
717
if (opt_prof_accum) {
718
gctx->cnt_summed.accumobjs += tctx->dump_cnts.accumobjs;
719
gctx->cnt_summed.accumobjs_shifted_unbiased
720
+= tctx->dump_cnts.accumobjs_shifted_unbiased;
721
gctx->cnt_summed.accumbytes += tctx->dump_cnts.accumbytes;
722
gctx->cnt_summed.accumbytes_unbiased
723
+= tctx->dump_cnts.accumbytes_unbiased;
724
}
725
}
726
727
static prof_tctx_t *
728
prof_tctx_merge_iter(prof_tctx_tree_t *tctxs, prof_tctx_t *tctx, void *arg) {
729
tsdn_t *tsdn = (tsdn_t *)arg;
730
731
malloc_mutex_assert_owner(tsdn, tctx->gctx->lock);
732
733
switch (tctx->state) {
734
case prof_tctx_state_nominal:
735
/* New since dumping started; ignore. */
736
break;
737
case prof_tctx_state_dumping:
738
case prof_tctx_state_purgatory:
739
prof_tctx_merge_gctx(tsdn, tctx, tctx->gctx);
740
break;
741
default:
742
not_reached();
743
}
744
745
return NULL;
746
}
747
748
typedef struct prof_dump_iter_arg_s prof_dump_iter_arg_t;
749
struct prof_dump_iter_arg_s {
750
tsdn_t *tsdn;
751
write_cb_t *prof_dump_write;
752
void *cbopaque;
753
};
754
755
static prof_tctx_t *
756
prof_tctx_dump_iter(prof_tctx_tree_t *tctxs, prof_tctx_t *tctx, void *opaque) {
757
prof_dump_iter_arg_t *arg = (prof_dump_iter_arg_t *)opaque;
758
malloc_mutex_assert_owner(arg->tsdn, tctx->gctx->lock);
759
760
switch (tctx->state) {
761
case prof_tctx_state_initializing:
762
case prof_tctx_state_nominal:
763
/* Not captured by this dump. */
764
break;
765
case prof_tctx_state_dumping:
766
case prof_tctx_state_purgatory:
767
prof_dump_printf(arg->prof_dump_write, arg->cbopaque,
768
" t%"FMTu64": ", tctx->thr_uid);
769
prof_dump_print_cnts(arg->prof_dump_write, arg->cbopaque,
770
&tctx->dump_cnts);
771
arg->prof_dump_write(arg->cbopaque, "\n");
772
break;
773
default:
774
not_reached();
775
}
776
return NULL;
777
}
778
779
static prof_tctx_t *
780
prof_tctx_finish_iter(prof_tctx_tree_t *tctxs, prof_tctx_t *tctx, void *arg) {
781
tsdn_t *tsdn = (tsdn_t *)arg;
782
prof_tctx_t *ret;
783
784
malloc_mutex_assert_owner(tsdn, tctx->gctx->lock);
785
786
switch (tctx->state) {
787
case prof_tctx_state_nominal:
788
/* New since dumping started; ignore. */
789
break;
790
case prof_tctx_state_dumping:
791
tctx->state = prof_tctx_state_nominal;
792
break;
793
case prof_tctx_state_purgatory:
794
ret = tctx;
795
goto label_return;
796
default:
797
not_reached();
798
}
799
800
ret = NULL;
801
label_return:
802
return ret;
803
}
804
805
static void
806
prof_dump_gctx_prep(tsdn_t *tsdn, prof_gctx_t *gctx, prof_gctx_tree_t *gctxs) {
807
cassert(config_prof);
808
809
malloc_mutex_lock(tsdn, gctx->lock);
810
811
/*
812
* Increment nlimbo so that gctx won't go away before dump.
813
* Additionally, link gctx into the dump list so that it is included in
814
* prof_dump()'s second pass.
815
*/
816
gctx->nlimbo++;
817
gctx_tree_insert(gctxs, gctx);
818
819
memset(&gctx->cnt_summed, 0, sizeof(prof_cnt_t));
820
821
malloc_mutex_unlock(tsdn, gctx->lock);
822
}
823
824
typedef struct prof_gctx_merge_iter_arg_s prof_gctx_merge_iter_arg_t;
825
struct prof_gctx_merge_iter_arg_s {
826
tsdn_t *tsdn;
827
size_t *leak_ngctx;
828
};
829
830
static prof_gctx_t *
831
prof_gctx_merge_iter(prof_gctx_tree_t *gctxs, prof_gctx_t *gctx, void *opaque) {
832
prof_gctx_merge_iter_arg_t *arg = (prof_gctx_merge_iter_arg_t *)opaque;
833
834
malloc_mutex_lock(arg->tsdn, gctx->lock);
835
tctx_tree_iter(&gctx->tctxs, NULL, prof_tctx_merge_iter,
836
(void *)arg->tsdn);
837
if (gctx->cnt_summed.curobjs != 0) {
838
(*arg->leak_ngctx)++;
839
}
840
malloc_mutex_unlock(arg->tsdn, gctx->lock);
841
842
return NULL;
843
}
844
845
static void
846
prof_gctx_finish(tsd_t *tsd, prof_gctx_tree_t *gctxs) {
847
prof_tdata_t *tdata = prof_tdata_get(tsd, false);
848
prof_gctx_t *gctx;
849
850
/*
851
* Standard tree iteration won't work here, because as soon as we
852
* decrement gctx->nlimbo and unlock gctx, another thread can
853
* concurrently destroy it, which will corrupt the tree. Therefore,
854
* tear down the tree one node at a time during iteration.
855
*/
856
while ((gctx = gctx_tree_first(gctxs)) != NULL) {
857
gctx_tree_remove(gctxs, gctx);
858
malloc_mutex_lock(tsd_tsdn(tsd), gctx->lock);
859
{
860
prof_tctx_t *next;
861
862
next = NULL;
863
do {
864
prof_tctx_t *to_destroy =
865
tctx_tree_iter(&gctx->tctxs, next,
866
prof_tctx_finish_iter,
867
(void *)tsd_tsdn(tsd));
868
if (to_destroy != NULL) {
869
next = tctx_tree_next(&gctx->tctxs,
870
to_destroy);
871
tctx_tree_remove(&gctx->tctxs,
872
to_destroy);
873
idalloctm(tsd_tsdn(tsd), to_destroy,
874
NULL, NULL, true, true);
875
} else {
876
next = NULL;
877
}
878
} while (next != NULL);
879
}
880
gctx->nlimbo--;
881
if (prof_gctx_should_destroy(gctx)) {
882
gctx->nlimbo++;
883
malloc_mutex_unlock(tsd_tsdn(tsd), gctx->lock);
884
prof_gctx_try_destroy(tsd, tdata, gctx);
885
} else {
886
malloc_mutex_unlock(tsd_tsdn(tsd), gctx->lock);
887
}
888
}
889
}
890
891
typedef struct prof_tdata_merge_iter_arg_s prof_tdata_merge_iter_arg_t;
892
struct prof_tdata_merge_iter_arg_s {
893
tsdn_t *tsdn;
894
prof_cnt_t *cnt_all;
895
};
896
897
static prof_tdata_t *
898
prof_tdata_merge_iter(prof_tdata_tree_t *tdatas_ptr, prof_tdata_t *tdata,
899
void *opaque) {
900
prof_tdata_merge_iter_arg_t *arg =
901
(prof_tdata_merge_iter_arg_t *)opaque;
902
903
malloc_mutex_lock(arg->tsdn, tdata->lock);
904
if (!tdata->expired) {
905
size_t tabind;
906
union {
907
prof_tctx_t *p;
908
void *v;
909
} tctx;
910
911
tdata->dumping = true;
912
memset(&tdata->cnt_summed, 0, sizeof(prof_cnt_t));
913
for (tabind = 0; !ckh_iter(&tdata->bt2tctx, &tabind, NULL,
914
&tctx.v);) {
915
prof_tctx_merge_tdata(arg->tsdn, tctx.p, tdata);
916
}
917
918
arg->cnt_all->curobjs += tdata->cnt_summed.curobjs;
919
arg->cnt_all->curobjs_shifted_unbiased
920
+= tdata->cnt_summed.curobjs_shifted_unbiased;
921
arg->cnt_all->curbytes += tdata->cnt_summed.curbytes;
922
arg->cnt_all->curbytes_unbiased
923
+= tdata->cnt_summed.curbytes_unbiased;
924
if (opt_prof_accum) {
925
arg->cnt_all->accumobjs += tdata->cnt_summed.accumobjs;
926
arg->cnt_all->accumobjs_shifted_unbiased
927
+= tdata->cnt_summed.accumobjs_shifted_unbiased;
928
arg->cnt_all->accumbytes +=
929
tdata->cnt_summed.accumbytes;
930
arg->cnt_all->accumbytes_unbiased +=
931
tdata->cnt_summed.accumbytes_unbiased;
932
}
933
} else {
934
tdata->dumping = false;
935
}
936
malloc_mutex_unlock(arg->tsdn, tdata->lock);
937
938
return NULL;
939
}
940
941
static prof_tdata_t *
942
prof_tdata_dump_iter(prof_tdata_tree_t *tdatas_ptr, prof_tdata_t *tdata,
943
void *opaque) {
944
if (!tdata->dumping) {
945
return NULL;
946
}
947
948
prof_dump_iter_arg_t *arg = (prof_dump_iter_arg_t *)opaque;
949
prof_dump_printf(arg->prof_dump_write, arg->cbopaque, " t%"FMTu64": ",
950
tdata->thr_uid);
951
prof_dump_print_cnts(arg->prof_dump_write, arg->cbopaque,
952
&tdata->cnt_summed);
953
if (tdata->thread_name != NULL) {
954
arg->prof_dump_write(arg->cbopaque, " ");
955
arg->prof_dump_write(arg->cbopaque, tdata->thread_name);
956
}
957
arg->prof_dump_write(arg->cbopaque, "\n");
958
return NULL;
959
}
960
961
static void
962
prof_dump_header(prof_dump_iter_arg_t *arg, const prof_cnt_t *cnt_all) {
963
prof_dump_printf(arg->prof_dump_write, arg->cbopaque,
964
"heap_v2/%"FMTu64"\n t*: ", ((uint64_t)1U << lg_prof_sample));
965
prof_dump_print_cnts(arg->prof_dump_write, arg->cbopaque, cnt_all);
966
arg->prof_dump_write(arg->cbopaque, "\n");
967
968
malloc_mutex_lock(arg->tsdn, &tdatas_mtx);
969
tdata_tree_iter(&tdatas, NULL, prof_tdata_dump_iter, arg);
970
malloc_mutex_unlock(arg->tsdn, &tdatas_mtx);
971
}
972
973
static void
974
prof_dump_gctx(prof_dump_iter_arg_t *arg, prof_gctx_t *gctx,
975
const prof_bt_t *bt, prof_gctx_tree_t *gctxs) {
976
cassert(config_prof);
977
malloc_mutex_assert_owner(arg->tsdn, gctx->lock);
978
979
/* Avoid dumping such gctx's that have no useful data. */
980
if ((!opt_prof_accum && gctx->cnt_summed.curobjs == 0) ||
981
(opt_prof_accum && gctx->cnt_summed.accumobjs == 0)) {
982
assert(gctx->cnt_summed.curobjs == 0);
983
assert(gctx->cnt_summed.curbytes == 0);
984
/*
985
* These asserts would not be correct -- see the comment on races
986
* in prof.c
987
* assert(gctx->cnt_summed.curobjs_unbiased == 0);
988
* assert(gctx->cnt_summed.curbytes_unbiased == 0);
989
*/
990
assert(gctx->cnt_summed.accumobjs == 0);
991
assert(gctx->cnt_summed.accumobjs_shifted_unbiased == 0);
992
assert(gctx->cnt_summed.accumbytes == 0);
993
assert(gctx->cnt_summed.accumbytes_unbiased == 0);
994
return;
995
}
996
997
arg->prof_dump_write(arg->cbopaque, "@");
998
for (unsigned i = 0; i < bt->len; i++) {
999
prof_dump_printf(arg->prof_dump_write, arg->cbopaque,
1000
" %#"FMTxPTR, (uintptr_t)bt->vec[i]);
1001
}
1002
1003
arg->prof_dump_write(arg->cbopaque, "\n t*: ");
1004
prof_dump_print_cnts(arg->prof_dump_write, arg->cbopaque,
1005
&gctx->cnt_summed);
1006
arg->prof_dump_write(arg->cbopaque, "\n");
1007
1008
tctx_tree_iter(&gctx->tctxs, NULL, prof_tctx_dump_iter, arg);
1009
}
1010
1011
/*
1012
* See prof_sample_new_event_wait() comment for why the body of this function
1013
* is conditionally compiled.
1014
*/
1015
static void
1016
prof_leakcheck(const prof_cnt_t *cnt_all, size_t leak_ngctx) {
1017
#ifdef JEMALLOC_PROF
1018
/*
1019
* Scaling is equivalent AdjustSamples() in jeprof, but the result may
1020
* differ slightly from what jeprof reports, because here we scale the
1021
* summary values, whereas jeprof scales each context individually and
1022
* reports the sums of the scaled values.
1023
*/
1024
if (cnt_all->curbytes != 0) {
1025
double sample_period = (double)((uint64_t)1 << lg_prof_sample);
1026
double ratio = (((double)cnt_all->curbytes) /
1027
(double)cnt_all->curobjs) / sample_period;
1028
double scale_factor = 1.0 / (1.0 - exp(-ratio));
1029
uint64_t curbytes = (uint64_t)round(((double)cnt_all->curbytes)
1030
* scale_factor);
1031
uint64_t curobjs = (uint64_t)round(((double)cnt_all->curobjs) *
1032
scale_factor);
1033
1034
malloc_printf("<jemalloc>: Leak approximation summary: ~%"FMTu64
1035
" byte%s, ~%"FMTu64" object%s, >= %zu context%s\n",
1036
curbytes, (curbytes != 1) ? "s" : "", curobjs, (curobjs !=
1037
1) ? "s" : "", leak_ngctx, (leak_ngctx != 1) ? "s" : "");
1038
malloc_printf(
1039
"<jemalloc>: Run jeprof on dump output for leak detail\n");
1040
if (opt_prof_leak_error) {
1041
malloc_printf(
1042
"<jemalloc>: Exiting with error code because memory"
1043
" leaks were detected\n");
1044
/*
1045
* Use _exit() with underscore to avoid calling atexit()
1046
* and entering endless cycle.
1047
*/
1048
_exit(1);
1049
}
1050
}
1051
#endif
1052
}
1053
1054
static prof_gctx_t *
1055
prof_gctx_dump_iter(prof_gctx_tree_t *gctxs, prof_gctx_t *gctx, void *opaque) {
1056
prof_dump_iter_arg_t *arg = (prof_dump_iter_arg_t *)opaque;
1057
malloc_mutex_lock(arg->tsdn, gctx->lock);
1058
prof_dump_gctx(arg, gctx, &gctx->bt, gctxs);
1059
malloc_mutex_unlock(arg->tsdn, gctx->lock);
1060
return NULL;
1061
}
1062
1063
static void
1064
prof_dump_prep(tsd_t *tsd, prof_tdata_t *tdata, prof_cnt_t *cnt_all,
1065
size_t *leak_ngctx, prof_gctx_tree_t *gctxs) {
1066
size_t tabind;
1067
union {
1068
prof_gctx_t *p;
1069
void *v;
1070
} gctx;
1071
1072
prof_enter(tsd, tdata);
1073
1074
/*
1075
* Put gctx's in limbo and clear their counters in preparation for
1076
* summing.
1077
*/
1078
gctx_tree_new(gctxs);
1079
for (tabind = 0; !ckh_iter(&bt2gctx, &tabind, NULL, &gctx.v);) {
1080
prof_dump_gctx_prep(tsd_tsdn(tsd), gctx.p, gctxs);
1081
}
1082
1083
/*
1084
* Iterate over tdatas, and for the non-expired ones snapshot their tctx
1085
* stats and merge them into the associated gctx's.
1086
*/
1087
memset(cnt_all, 0, sizeof(prof_cnt_t));
1088
prof_tdata_merge_iter_arg_t prof_tdata_merge_iter_arg = {tsd_tsdn(tsd),
1089
cnt_all};
1090
malloc_mutex_lock(tsd_tsdn(tsd), &tdatas_mtx);
1091
tdata_tree_iter(&tdatas, NULL, prof_tdata_merge_iter,
1092
&prof_tdata_merge_iter_arg);
1093
malloc_mutex_unlock(tsd_tsdn(tsd), &tdatas_mtx);
1094
1095
/* Merge tctx stats into gctx's. */
1096
*leak_ngctx = 0;
1097
prof_gctx_merge_iter_arg_t prof_gctx_merge_iter_arg = {tsd_tsdn(tsd),
1098
leak_ngctx};
1099
gctx_tree_iter(gctxs, NULL, prof_gctx_merge_iter,
1100
&prof_gctx_merge_iter_arg);
1101
1102
prof_leave(tsd, tdata);
1103
}
1104
1105
void
1106
prof_dump_impl(tsd_t *tsd, write_cb_t *prof_dump_write, void *cbopaque,
1107
prof_tdata_t *tdata, bool leakcheck) {
1108
malloc_mutex_assert_owner(tsd_tsdn(tsd), &prof_dump_mtx);
1109
prof_cnt_t cnt_all;
1110
size_t leak_ngctx;
1111
prof_gctx_tree_t gctxs;
1112
prof_dump_prep(tsd, tdata, &cnt_all, &leak_ngctx, &gctxs);
1113
prof_dump_iter_arg_t prof_dump_iter_arg = {tsd_tsdn(tsd),
1114
prof_dump_write, cbopaque};
1115
prof_dump_header(&prof_dump_iter_arg, &cnt_all);
1116
gctx_tree_iter(&gctxs, NULL, prof_gctx_dump_iter, &prof_dump_iter_arg);
1117
prof_gctx_finish(tsd, &gctxs);
1118
if (leakcheck) {
1119
prof_leakcheck(&cnt_all, leak_ngctx);
1120
}
1121
}
1122
1123
/* Used in unit tests. */
1124
void
1125
prof_cnt_all(prof_cnt_t *cnt_all) {
1126
tsd_t *tsd = tsd_fetch();
1127
prof_tdata_t *tdata = prof_tdata_get(tsd, false);
1128
if (tdata == NULL) {
1129
memset(cnt_all, 0, sizeof(prof_cnt_t));
1130
} else {
1131
size_t leak_ngctx;
1132
prof_gctx_tree_t gctxs;
1133
prof_dump_prep(tsd, tdata, cnt_all, &leak_ngctx, &gctxs);
1134
prof_gctx_finish(tsd, &gctxs);
1135
}
1136
}
1137
1138
void
1139
prof_bt_hash(const void *key, size_t r_hash[2]) {
1140
prof_bt_t *bt = (prof_bt_t *)key;
1141
1142
cassert(config_prof);
1143
1144
hash(bt->vec, bt->len * sizeof(void *), 0x94122f33U, r_hash);
1145
}
1146
1147
bool
1148
prof_bt_keycomp(const void *k1, const void *k2) {
1149
const prof_bt_t *bt1 = (prof_bt_t *)k1;
1150
const prof_bt_t *bt2 = (prof_bt_t *)k2;
1151
1152
cassert(config_prof);
1153
1154
if (bt1->len != bt2->len) {
1155
return false;
1156
}
1157
return (memcmp(bt1->vec, bt2->vec, bt1->len * sizeof(void *)) == 0);
1158
}
1159
1160
prof_tdata_t *
1161
prof_tdata_init_impl(tsd_t *tsd, uint64_t thr_uid, uint64_t thr_discrim,
1162
char *thread_name, bool active) {
1163
assert(tsd_reentrancy_level_get(tsd) == 0);
1164
1165
prof_tdata_t *tdata;
1166
1167
cassert(config_prof);
1168
1169
/* Initialize an empty cache for this thread. */
1170
tdata = (prof_tdata_t *)iallocztm(tsd_tsdn(tsd), sizeof(prof_tdata_t),
1171
sz_size2index(sizeof(prof_tdata_t)), false, NULL, true,
1172
arena_get(TSDN_NULL, 0, true), true);
1173
if (tdata == NULL) {
1174
return NULL;
1175
}
1176
1177
tdata->lock = prof_tdata_mutex_choose(thr_uid);
1178
tdata->thr_uid = thr_uid;
1179
tdata->thr_discrim = thr_discrim;
1180
tdata->thread_name = thread_name;
1181
tdata->attached = true;
1182
tdata->expired = false;
1183
tdata->tctx_uid_next = 0;
1184
1185
if (ckh_new(tsd, &tdata->bt2tctx, PROF_CKH_MINITEMS, prof_bt_hash,
1186
prof_bt_keycomp)) {
1187
idalloctm(tsd_tsdn(tsd), tdata, NULL, NULL, true, true);
1188
return NULL;
1189
}
1190
1191
tdata->enq = false;
1192
tdata->enq_idump = false;
1193
tdata->enq_gdump = false;
1194
1195
tdata->dumping = false;
1196
tdata->active = active;
1197
1198
malloc_mutex_lock(tsd_tsdn(tsd), &tdatas_mtx);
1199
tdata_tree_insert(&tdatas, tdata);
1200
malloc_mutex_unlock(tsd_tsdn(tsd), &tdatas_mtx);
1201
1202
return tdata;
1203
}
1204
1205
static bool
1206
prof_tdata_should_destroy_unlocked(prof_tdata_t *tdata, bool even_if_attached) {
1207
if (tdata->attached && !even_if_attached) {
1208
return false;
1209
}
1210
if (ckh_count(&tdata->bt2tctx) != 0) {
1211
return false;
1212
}
1213
return true;
1214
}
1215
1216
static bool
1217
prof_tdata_should_destroy(tsdn_t *tsdn, prof_tdata_t *tdata,
1218
bool even_if_attached) {
1219
malloc_mutex_assert_owner(tsdn, tdata->lock);
1220
1221
return prof_tdata_should_destroy_unlocked(tdata, even_if_attached);
1222
}
1223
1224
static void
1225
prof_tdata_destroy_locked(tsd_t *tsd, prof_tdata_t *tdata,
1226
bool even_if_attached) {
1227
malloc_mutex_assert_owner(tsd_tsdn(tsd), &tdatas_mtx);
1228
malloc_mutex_assert_not_owner(tsd_tsdn(tsd), tdata->lock);
1229
1230
tdata_tree_remove(&tdatas, tdata);
1231
1232
assert(prof_tdata_should_destroy_unlocked(tdata, even_if_attached));
1233
1234
if (tdata->thread_name != NULL) {
1235
idalloctm(tsd_tsdn(tsd), tdata->thread_name, NULL, NULL, true,
1236
true);
1237
}
1238
ckh_delete(tsd, &tdata->bt2tctx);
1239
idalloctm(tsd_tsdn(tsd), tdata, NULL, NULL, true, true);
1240
}
1241
1242
static void
1243
prof_tdata_destroy(tsd_t *tsd, prof_tdata_t *tdata, bool even_if_attached) {
1244
malloc_mutex_lock(tsd_tsdn(tsd), &tdatas_mtx);
1245
prof_tdata_destroy_locked(tsd, tdata, even_if_attached);
1246
malloc_mutex_unlock(tsd_tsdn(tsd), &tdatas_mtx);
1247
}
1248
1249
void
1250
prof_tdata_detach(tsd_t *tsd, prof_tdata_t *tdata) {
1251
bool destroy_tdata;
1252
1253
malloc_mutex_lock(tsd_tsdn(tsd), tdata->lock);
1254
if (tdata->attached) {
1255
destroy_tdata = prof_tdata_should_destroy(tsd_tsdn(tsd), tdata,
1256
true);
1257
/*
1258
* Only detach if !destroy_tdata, because detaching would allow
1259
* another thread to win the race to destroy tdata.
1260
*/
1261
if (!destroy_tdata) {
1262
tdata->attached = false;
1263
}
1264
tsd_prof_tdata_set(tsd, NULL);
1265
} else {
1266
destroy_tdata = false;
1267
}
1268
malloc_mutex_unlock(tsd_tsdn(tsd), tdata->lock);
1269
if (destroy_tdata) {
1270
prof_tdata_destroy(tsd, tdata, true);
1271
}
1272
}
1273
1274
static bool
1275
prof_tdata_expire(tsdn_t *tsdn, prof_tdata_t *tdata) {
1276
bool destroy_tdata;
1277
1278
malloc_mutex_lock(tsdn, tdata->lock);
1279
if (!tdata->expired) {
1280
tdata->expired = true;
1281
destroy_tdata = prof_tdata_should_destroy(tsdn, tdata, false);
1282
} else {
1283
destroy_tdata = false;
1284
}
1285
malloc_mutex_unlock(tsdn, tdata->lock);
1286
1287
return destroy_tdata;
1288
}
1289
1290
static prof_tdata_t *
1291
prof_tdata_reset_iter(prof_tdata_tree_t *tdatas_ptr, prof_tdata_t *tdata,
1292
void *arg) {
1293
tsdn_t *tsdn = (tsdn_t *)arg;
1294
1295
return (prof_tdata_expire(tsdn, tdata) ? tdata : NULL);
1296
}
1297
1298
void
1299
prof_reset(tsd_t *tsd, size_t lg_sample) {
1300
prof_tdata_t *next;
1301
1302
assert(lg_sample < (sizeof(uint64_t) << 3));
1303
1304
malloc_mutex_lock(tsd_tsdn(tsd), &prof_dump_mtx);
1305
malloc_mutex_lock(tsd_tsdn(tsd), &tdatas_mtx);
1306
1307
lg_prof_sample = lg_sample;
1308
prof_unbias_map_init();
1309
1310
next = NULL;
1311
do {
1312
prof_tdata_t *to_destroy = tdata_tree_iter(&tdatas, next,
1313
prof_tdata_reset_iter, (void *)tsd);
1314
if (to_destroy != NULL) {
1315
next = tdata_tree_next(&tdatas, to_destroy);
1316
prof_tdata_destroy_locked(tsd, to_destroy, false);
1317
} else {
1318
next = NULL;
1319
}
1320
} while (next != NULL);
1321
1322
malloc_mutex_unlock(tsd_tsdn(tsd), &tdatas_mtx);
1323
malloc_mutex_unlock(tsd_tsdn(tsd), &prof_dump_mtx);
1324
}
1325
1326
static bool
1327
prof_tctx_should_destroy(tsd_t *tsd, prof_tctx_t *tctx) {
1328
malloc_mutex_assert_owner(tsd_tsdn(tsd), tctx->tdata->lock);
1329
1330
if (opt_prof_accum) {
1331
return false;
1332
}
1333
if (tctx->cnts.curobjs != 0) {
1334
return false;
1335
}
1336
if (tctx->prepared) {
1337
return false;
1338
}
1339
if (tctx->recent_count != 0) {
1340
return false;
1341
}
1342
return true;
1343
}
1344
1345
static void
1346
prof_tctx_destroy(tsd_t *tsd, prof_tctx_t *tctx) {
1347
malloc_mutex_assert_owner(tsd_tsdn(tsd), tctx->tdata->lock);
1348
1349
assert(tctx->cnts.curobjs == 0);
1350
assert(tctx->cnts.curbytes == 0);
1351
/*
1352
* These asserts are not correct -- see the comment about races in
1353
* prof.c
1354
*
1355
* assert(tctx->cnts.curobjs_shifted_unbiased == 0);
1356
* assert(tctx->cnts.curbytes_unbiased == 0);
1357
*/
1358
assert(!opt_prof_accum);
1359
assert(tctx->cnts.accumobjs == 0);
1360
assert(tctx->cnts.accumbytes == 0);
1361
/*
1362
* These ones are, since accumbyte counts never go down. Either
1363
* prof_accum is off (in which case these should never have changed from
1364
* their initial value of zero), or it's on (in which case we shouldn't
1365
* be destroying this tctx).
1366
*/
1367
assert(tctx->cnts.accumobjs_shifted_unbiased == 0);
1368
assert(tctx->cnts.accumbytes_unbiased == 0);
1369
1370
prof_gctx_t *gctx = tctx->gctx;
1371
1372
{
1373
prof_tdata_t *tdata = tctx->tdata;
1374
tctx->tdata = NULL;
1375
ckh_remove(tsd, &tdata->bt2tctx, &gctx->bt, NULL, NULL);
1376
bool destroy_tdata = prof_tdata_should_destroy(tsd_tsdn(tsd),
1377
tdata, false);
1378
malloc_mutex_unlock(tsd_tsdn(tsd), tdata->lock);
1379
if (destroy_tdata) {
1380
prof_tdata_destroy(tsd, tdata, false);
1381
}
1382
}
1383
1384
bool destroy_tctx, destroy_gctx;
1385
1386
malloc_mutex_lock(tsd_tsdn(tsd), gctx->lock);
1387
switch (tctx->state) {
1388
case prof_tctx_state_nominal:
1389
tctx_tree_remove(&gctx->tctxs, tctx);
1390
destroy_tctx = true;
1391
if (prof_gctx_should_destroy(gctx)) {
1392
/*
1393
* Increment gctx->nlimbo in order to keep another
1394
* thread from winning the race to destroy gctx while
1395
* this one has gctx->lock dropped. Without this, it
1396
* would be possible for another thread to:
1397
*
1398
* 1) Sample an allocation associated with gctx.
1399
* 2) Deallocate the sampled object.
1400
* 3) Successfully prof_gctx_try_destroy(gctx).
1401
*
1402
* The result would be that gctx no longer exists by the
1403
* time this thread accesses it in
1404
* prof_gctx_try_destroy().
1405
*/
1406
gctx->nlimbo++;
1407
destroy_gctx = true;
1408
} else {
1409
destroy_gctx = false;
1410
}
1411
break;
1412
case prof_tctx_state_dumping:
1413
/*
1414
* A dumping thread needs tctx to remain valid until dumping
1415
* has finished. Change state such that the dumping thread will
1416
* complete destruction during a late dump iteration phase.
1417
*/
1418
tctx->state = prof_tctx_state_purgatory;
1419
destroy_tctx = false;
1420
destroy_gctx = false;
1421
break;
1422
default:
1423
not_reached();
1424
destroy_tctx = false;
1425
destroy_gctx = false;
1426
}
1427
malloc_mutex_unlock(tsd_tsdn(tsd), gctx->lock);
1428
if (destroy_gctx) {
1429
prof_gctx_try_destroy(tsd, prof_tdata_get(tsd, false), gctx);
1430
}
1431
if (destroy_tctx) {
1432
idalloctm(tsd_tsdn(tsd), tctx, NULL, NULL, true, true);
1433
}
1434
}
1435
1436
void
1437
prof_tctx_try_destroy(tsd_t *tsd, prof_tctx_t *tctx) {
1438
malloc_mutex_assert_owner(tsd_tsdn(tsd), tctx->tdata->lock);
1439
if (prof_tctx_should_destroy(tsd, tctx)) {
1440
/* tctx->tdata->lock will be released in prof_tctx_destroy(). */
1441
prof_tctx_destroy(tsd, tctx);
1442
} else {
1443
malloc_mutex_unlock(tsd_tsdn(tsd), tctx->tdata->lock);
1444
}
1445
}
1446
1447
/******************************************************************************/
1448
1449