Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/libpcap/gencode.c
39476 views
1
/*
2
* Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3
* The Regents of the University of California. All rights reserved.
4
*
5
* Redistribution and use in source and binary forms, with or without
6
* modification, are permitted provided that: (1) source code distributions
7
* retain the above copyright notice and this paragraph in its entirety, (2)
8
* distributions including binary code include the above copyright notice and
9
* this paragraph in its entirety in the documentation or other materials
10
* provided with the distribution, and (3) all advertising materials mentioning
11
* features or use of this software display the following acknowledgement:
12
* ``This product includes software developed by the University of California,
13
* Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14
* the University nor the names of its contributors may be used to endorse
15
* or promote products derived from this software without specific prior
16
* written permission.
17
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20
*/
21
22
#include <config.h>
23
24
#ifdef _WIN32
25
#include <ws2tcpip.h>
26
#else
27
#include <sys/socket.h>
28
29
#ifdef __NetBSD__
30
#include <sys/param.h>
31
#endif
32
33
#include <netinet/in.h>
34
#include <arpa/inet.h>
35
#endif /* _WIN32 */
36
37
#include <stdlib.h>
38
#include <string.h>
39
#include <memory.h>
40
#include <setjmp.h>
41
#include <stdarg.h>
42
#include <stdio.h>
43
44
#ifdef MSDOS
45
#include "pcap-dos.h"
46
#endif
47
48
#include "pcap-int.h"
49
50
#include "extract.h"
51
52
#include "ethertype.h"
53
#include "nlpid.h"
54
#include "llc.h"
55
#include "gencode.h"
56
#include "ieee80211.h"
57
#include "atmuni31.h"
58
#include "sunatmpos.h"
59
#include "pflog.h"
60
#include "ppp.h"
61
#include "pcap/sll.h"
62
#include "pcap/ipnet.h"
63
#include "arcnet.h"
64
#include "diag-control.h"
65
66
#include "scanner.h"
67
68
#if defined(__linux__)
69
#include <linux/types.h>
70
#include <linux/if_packet.h>
71
#include <linux/filter.h>
72
#endif
73
74
#ifndef offsetof
75
#define offsetof(s, e) ((size_t)&((s *)0)->e)
76
#endif
77
78
#ifdef _WIN32
79
#ifdef INET6
80
#if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
81
/* IPv6 address */
82
struct in6_addr
83
{
84
union
85
{
86
uint8_t u6_addr8[16];
87
uint16_t u6_addr16[8];
88
uint32_t u6_addr32[4];
89
} in6_u;
90
#define s6_addr in6_u.u6_addr8
91
#define s6_addr16 in6_u.u6_addr16
92
#define s6_addr32 in6_u.u6_addr32
93
#define s6_addr64 in6_u.u6_addr64
94
};
95
96
typedef unsigned short sa_family_t;
97
98
#define __SOCKADDR_COMMON(sa_prefix) \
99
sa_family_t sa_prefix##family
100
101
/* Ditto, for IPv6. */
102
struct sockaddr_in6
103
{
104
__SOCKADDR_COMMON (sin6_);
105
uint16_t sin6_port; /* Transport layer port # */
106
uint32_t sin6_flowinfo; /* IPv6 flow information */
107
struct in6_addr sin6_addr; /* IPv6 address */
108
};
109
110
#ifndef EAI_ADDRFAMILY
111
struct addrinfo {
112
int ai_flags; /* AI_PASSIVE, AI_CANONNAME */
113
int ai_family; /* PF_xxx */
114
int ai_socktype; /* SOCK_xxx */
115
int ai_protocol; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
116
size_t ai_addrlen; /* length of ai_addr */
117
char *ai_canonname; /* canonical name for hostname */
118
struct sockaddr *ai_addr; /* binary address */
119
struct addrinfo *ai_next; /* next structure in linked list */
120
};
121
#endif /* EAI_ADDRFAMILY */
122
#endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
123
#endif /* INET6 */
124
#else /* _WIN32 */
125
#include <netdb.h> /* for "struct addrinfo" */
126
#endif /* _WIN32 */
127
#include <pcap/namedb.h>
128
129
#include "nametoaddr.h"
130
131
#define ETHERMTU 1500
132
133
#ifndef IPPROTO_HOPOPTS
134
#define IPPROTO_HOPOPTS 0
135
#endif
136
#ifndef IPPROTO_ROUTING
137
#define IPPROTO_ROUTING 43
138
#endif
139
#ifndef IPPROTO_FRAGMENT
140
#define IPPROTO_FRAGMENT 44
141
#endif
142
#ifndef IPPROTO_DSTOPTS
143
#define IPPROTO_DSTOPTS 60
144
#endif
145
#ifndef IPPROTO_SCTP
146
#define IPPROTO_SCTP 132
147
#endif
148
149
#define GENEVE_PORT 6081
150
151
#ifdef HAVE_OS_PROTO_H
152
#include "os-proto.h"
153
#endif
154
155
#define JMP(c) ((c)|BPF_JMP|BPF_K)
156
157
/*
158
* "Push" the current value of the link-layer header type and link-layer
159
* header offset onto a "stack", and set a new value. (It's not a
160
* full-blown stack; we keep only the top two items.)
161
*/
162
#define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
163
{ \
164
(cs)->prevlinktype = (cs)->linktype; \
165
(cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
166
(cs)->linktype = (new_linktype); \
167
(cs)->off_linkhdr.is_variable = (new_is_variable); \
168
(cs)->off_linkhdr.constant_part = (new_constant_part); \
169
(cs)->off_linkhdr.reg = (new_reg); \
170
(cs)->is_geneve = 0; \
171
}
172
173
/*
174
* Offset "not set" value.
175
*/
176
#define OFFSET_NOT_SET 0xffffffffU
177
178
/*
179
* Absolute offsets, which are offsets from the beginning of the raw
180
* packet data, are, in the general case, the sum of a variable value
181
* and a constant value; the variable value may be absent, in which
182
* case the offset is only the constant value, and the constant value
183
* may be zero, in which case the offset is only the variable value.
184
*
185
* bpf_abs_offset is a structure containing all that information:
186
*
187
* is_variable is 1 if there's a variable part.
188
*
189
* constant_part is the constant part of the value, possibly zero;
190
*
191
* if is_variable is 1, reg is the register number for a register
192
* containing the variable value if the register has been assigned,
193
* and -1 otherwise.
194
*/
195
typedef struct {
196
int is_variable;
197
u_int constant_part;
198
int reg;
199
} bpf_abs_offset;
200
201
/*
202
* Value passed to gen_load_a() to indicate what the offset argument
203
* is relative to the beginning of.
204
*/
205
enum e_offrel {
206
OR_PACKET, /* full packet data */
207
OR_LINKHDR, /* link-layer header */
208
OR_PREVLINKHDR, /* previous link-layer header */
209
OR_LLC, /* 802.2 LLC header */
210
OR_PREVMPLSHDR, /* previous MPLS header */
211
OR_LINKTYPE, /* link-layer type */
212
OR_LINKPL, /* link-layer payload */
213
OR_LINKPL_NOSNAP, /* link-layer payload, with no SNAP header at the link layer */
214
OR_TRAN_IPV4, /* transport-layer header, with IPv4 network layer */
215
OR_TRAN_IPV6 /* transport-layer header, with IPv6 network layer */
216
};
217
218
/*
219
* We divvy out chunks of memory rather than call malloc each time so
220
* we don't have to worry about leaking memory. It's probably
221
* not a big deal if all this memory was wasted but if this ever
222
* goes into a library that would probably not be a good idea.
223
*
224
* XXX - this *is* in a library....
225
*/
226
#define NCHUNKS 16
227
#define CHUNK0SIZE 1024
228
struct chunk {
229
size_t n_left;
230
void *m;
231
};
232
233
/* Code generator state */
234
235
struct _compiler_state {
236
jmp_buf top_ctx;
237
pcap_t *bpf_pcap;
238
int error_set;
239
240
struct icode ic;
241
242
int snaplen;
243
244
int linktype;
245
int prevlinktype;
246
int outermostlinktype;
247
248
bpf_u_int32 netmask;
249
int no_optimize;
250
251
/* Hack for handling VLAN and MPLS stacks. */
252
u_int label_stack_depth;
253
u_int vlan_stack_depth;
254
255
/* XXX */
256
u_int pcap_fddipad;
257
258
/*
259
* As errors are handled by a longjmp, anything allocated must
260
* be freed in the longjmp handler, so it must be reachable
261
* from that handler.
262
*
263
* One thing that's allocated is the result of pcap_nametoaddrinfo();
264
* it must be freed with freeaddrinfo(). This variable points to
265
* any addrinfo structure that would need to be freed.
266
*/
267
struct addrinfo *ai;
268
269
/*
270
* Another thing that's allocated is the result of pcap_ether_aton();
271
* it must be freed with free(). This variable points to any
272
* address that would need to be freed.
273
*/
274
u_char *e;
275
276
/*
277
* Various code constructs need to know the layout of the packet.
278
* These values give the necessary offsets from the beginning
279
* of the packet data.
280
*/
281
282
/*
283
* Absolute offset of the beginning of the link-layer header.
284
*/
285
bpf_abs_offset off_linkhdr;
286
287
/*
288
* If we're checking a link-layer header for a packet encapsulated
289
* in another protocol layer, this is the equivalent information
290
* for the previous layers' link-layer header from the beginning
291
* of the raw packet data.
292
*/
293
bpf_abs_offset off_prevlinkhdr;
294
295
/*
296
* This is the equivalent information for the outermost layers'
297
* link-layer header.
298
*/
299
bpf_abs_offset off_outermostlinkhdr;
300
301
/*
302
* Absolute offset of the beginning of the link-layer payload.
303
*/
304
bpf_abs_offset off_linkpl;
305
306
/*
307
* "off_linktype" is the offset to information in the link-layer
308
* header giving the packet type. This is an absolute offset
309
* from the beginning of the packet.
310
*
311
* For Ethernet, it's the offset of the Ethernet type field; this
312
* means that it must have a value that skips VLAN tags.
313
*
314
* For link-layer types that always use 802.2 headers, it's the
315
* offset of the LLC header; this means that it must have a value
316
* that skips VLAN tags.
317
*
318
* For PPP, it's the offset of the PPP type field.
319
*
320
* For Cisco HDLC, it's the offset of the CHDLC type field.
321
*
322
* For BSD loopback, it's the offset of the AF_ value.
323
*
324
* For Linux cooked sockets, it's the offset of the type field.
325
*
326
* off_linktype.constant_part is set to OFFSET_NOT_SET for no
327
* encapsulation, in which case, IP is assumed.
328
*/
329
bpf_abs_offset off_linktype;
330
331
/*
332
* TRUE if the link layer includes an ATM pseudo-header.
333
*/
334
int is_atm;
335
336
/*
337
* TRUE if "geneve" appeared in the filter; it causes us to
338
* generate code that checks for a Geneve header and assume
339
* that later filters apply to the encapsulated payload.
340
*/
341
int is_geneve;
342
343
/*
344
* TRUE if we need variable length part of VLAN offset
345
*/
346
int is_vlan_vloffset;
347
348
/*
349
* These are offsets for the ATM pseudo-header.
350
*/
351
u_int off_vpi;
352
u_int off_vci;
353
u_int off_proto;
354
355
/*
356
* These are offsets for the MTP2 fields.
357
*/
358
u_int off_li;
359
u_int off_li_hsl;
360
361
/*
362
* These are offsets for the MTP3 fields.
363
*/
364
u_int off_sio;
365
u_int off_opc;
366
u_int off_dpc;
367
u_int off_sls;
368
369
/*
370
* This is the offset of the first byte after the ATM pseudo_header,
371
* or -1 if there is no ATM pseudo-header.
372
*/
373
u_int off_payload;
374
375
/*
376
* These are offsets to the beginning of the network-layer header.
377
* They are relative to the beginning of the link-layer payload
378
* (i.e., they don't include off_linkhdr.constant_part or
379
* off_linkpl.constant_part).
380
*
381
* If the link layer never uses 802.2 LLC:
382
*
383
* "off_nl" and "off_nl_nosnap" are the same.
384
*
385
* If the link layer always uses 802.2 LLC:
386
*
387
* "off_nl" is the offset if there's a SNAP header following
388
* the 802.2 header;
389
*
390
* "off_nl_nosnap" is the offset if there's no SNAP header.
391
*
392
* If the link layer is Ethernet:
393
*
394
* "off_nl" is the offset if the packet is an Ethernet II packet
395
* (we assume no 802.3+802.2+SNAP);
396
*
397
* "off_nl_nosnap" is the offset if the packet is an 802.3 packet
398
* with an 802.2 header following it.
399
*/
400
u_int off_nl;
401
u_int off_nl_nosnap;
402
403
/*
404
* Here we handle simple allocation of the scratch registers.
405
* If too many registers are alloc'd, the allocator punts.
406
*/
407
int regused[BPF_MEMWORDS];
408
int curreg;
409
410
/*
411
* Memory chunks.
412
*/
413
struct chunk chunks[NCHUNKS];
414
int cur_chunk;
415
};
416
417
/*
418
* For use by routines outside this file.
419
*/
420
/* VARARGS */
421
void
422
bpf_set_error(compiler_state_t *cstate, const char *fmt, ...)
423
{
424
va_list ap;
425
426
/*
427
* If we've already set an error, don't override it.
428
* The lexical analyzer reports some errors by setting
429
* the error and then returning a LEX_ERROR token, which
430
* is not recognized by any grammar rule, and thus forces
431
* the parse to stop. We don't want the error reported
432
* by the lexical analyzer to be overwritten by the syntax
433
* error.
434
*/
435
if (!cstate->error_set) {
436
va_start(ap, fmt);
437
(void)vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
438
fmt, ap);
439
va_end(ap);
440
cstate->error_set = 1;
441
}
442
}
443
444
/*
445
* For use *ONLY* in routines in this file.
446
*/
447
static void PCAP_NORETURN bpf_error(compiler_state_t *, const char *, ...)
448
PCAP_PRINTFLIKE(2, 3);
449
450
/* VARARGS */
451
static void PCAP_NORETURN
452
bpf_error(compiler_state_t *cstate, const char *fmt, ...)
453
{
454
va_list ap;
455
456
va_start(ap, fmt);
457
(void)vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
458
fmt, ap);
459
va_end(ap);
460
longjmp(cstate->top_ctx, 1);
461
/*NOTREACHED*/
462
#ifdef _AIX
463
PCAP_UNREACHABLE
464
#endif /* _AIX */
465
}
466
467
static int init_linktype(compiler_state_t *, pcap_t *);
468
469
static void init_regs(compiler_state_t *);
470
static int alloc_reg(compiler_state_t *);
471
static void free_reg(compiler_state_t *, int);
472
473
static void initchunks(compiler_state_t *cstate);
474
static void *newchunk_nolongjmp(compiler_state_t *cstate, size_t);
475
static void *newchunk(compiler_state_t *cstate, size_t);
476
static void freechunks(compiler_state_t *cstate);
477
static inline struct block *new_block(compiler_state_t *cstate, int);
478
static inline struct slist *new_stmt(compiler_state_t *cstate, int);
479
static struct block *gen_retblk(compiler_state_t *cstate, int);
480
static inline void syntax(compiler_state_t *cstate);
481
482
static void backpatch(struct block *, struct block *);
483
static void merge(struct block *, struct block *);
484
static struct block *gen_cmp(compiler_state_t *, enum e_offrel, u_int,
485
u_int, bpf_u_int32);
486
static struct block *gen_cmp_gt(compiler_state_t *, enum e_offrel, u_int,
487
u_int, bpf_u_int32);
488
static struct block *gen_cmp_ge(compiler_state_t *, enum e_offrel, u_int,
489
u_int, bpf_u_int32);
490
static struct block *gen_cmp_lt(compiler_state_t *, enum e_offrel, u_int,
491
u_int, bpf_u_int32);
492
static struct block *gen_cmp_le(compiler_state_t *, enum e_offrel, u_int,
493
u_int, bpf_u_int32);
494
static struct block *gen_mcmp(compiler_state_t *, enum e_offrel, u_int,
495
u_int, bpf_u_int32, bpf_u_int32);
496
static struct block *gen_bcmp(compiler_state_t *, enum e_offrel, u_int,
497
u_int, const u_char *);
498
static struct block *gen_ncmp(compiler_state_t *, enum e_offrel, u_int,
499
u_int, bpf_u_int32, int, int, bpf_u_int32);
500
static struct slist *gen_load_absoffsetrel(compiler_state_t *, bpf_abs_offset *,
501
u_int, u_int);
502
static struct slist *gen_load_a(compiler_state_t *, enum e_offrel, u_int,
503
u_int);
504
static struct slist *gen_loadx_iphdrlen(compiler_state_t *);
505
static struct block *gen_uncond(compiler_state_t *, int);
506
static inline struct block *gen_true(compiler_state_t *);
507
static inline struct block *gen_false(compiler_state_t *);
508
static struct block *gen_ether_linktype(compiler_state_t *, bpf_u_int32);
509
static struct block *gen_ipnet_linktype(compiler_state_t *, bpf_u_int32);
510
static struct block *gen_linux_sll_linktype(compiler_state_t *, bpf_u_int32);
511
static struct slist *gen_load_pflog_llprefixlen(compiler_state_t *);
512
static struct slist *gen_load_prism_llprefixlen(compiler_state_t *);
513
static struct slist *gen_load_avs_llprefixlen(compiler_state_t *);
514
static struct slist *gen_load_radiotap_llprefixlen(compiler_state_t *);
515
static struct slist *gen_load_ppi_llprefixlen(compiler_state_t *);
516
static void insert_compute_vloffsets(compiler_state_t *, struct block *);
517
static struct slist *gen_abs_offset_varpart(compiler_state_t *,
518
bpf_abs_offset *);
519
static bpf_u_int32 ethertype_to_ppptype(bpf_u_int32);
520
static struct block *gen_linktype(compiler_state_t *, bpf_u_int32);
521
static struct block *gen_snap(compiler_state_t *, bpf_u_int32, bpf_u_int32);
522
static struct block *gen_llc_linktype(compiler_state_t *, bpf_u_int32);
523
static struct block *gen_hostop(compiler_state_t *, bpf_u_int32, bpf_u_int32,
524
int, bpf_u_int32, u_int, u_int);
525
#ifdef INET6
526
static struct block *gen_hostop6(compiler_state_t *, struct in6_addr *,
527
struct in6_addr *, int, bpf_u_int32, u_int, u_int);
528
#endif
529
static struct block *gen_ahostop(compiler_state_t *, const u_char *, int);
530
static struct block *gen_ehostop(compiler_state_t *, const u_char *, int);
531
static struct block *gen_fhostop(compiler_state_t *, const u_char *, int);
532
static struct block *gen_thostop(compiler_state_t *, const u_char *, int);
533
static struct block *gen_wlanhostop(compiler_state_t *, const u_char *, int);
534
static struct block *gen_ipfchostop(compiler_state_t *, const u_char *, int);
535
static struct block *gen_dnhostop(compiler_state_t *, bpf_u_int32, int);
536
static struct block *gen_mpls_linktype(compiler_state_t *, bpf_u_int32);
537
static struct block *gen_host(compiler_state_t *, bpf_u_int32, bpf_u_int32,
538
int, int, int);
539
#ifdef INET6
540
static struct block *gen_host6(compiler_state_t *, struct in6_addr *,
541
struct in6_addr *, int, int, int);
542
#endif
543
#ifndef INET6
544
static struct block *gen_gateway(compiler_state_t *, const u_char *,
545
struct addrinfo *, int, int);
546
#endif
547
static struct block *gen_ipfrag(compiler_state_t *);
548
static struct block *gen_portatom(compiler_state_t *, int, bpf_u_int32);
549
static struct block *gen_portrangeatom(compiler_state_t *, u_int, bpf_u_int32,
550
bpf_u_int32);
551
static struct block *gen_portatom6(compiler_state_t *, int, bpf_u_int32);
552
static struct block *gen_portrangeatom6(compiler_state_t *, u_int, bpf_u_int32,
553
bpf_u_int32);
554
static struct block *gen_portop(compiler_state_t *, u_int, u_int, int);
555
static struct block *gen_port(compiler_state_t *, u_int, int, int);
556
static struct block *gen_portrangeop(compiler_state_t *, u_int, u_int,
557
bpf_u_int32, int);
558
static struct block *gen_portrange(compiler_state_t *, u_int, u_int, int, int);
559
struct block *gen_portop6(compiler_state_t *, u_int, u_int, int);
560
static struct block *gen_port6(compiler_state_t *, u_int, int, int);
561
static struct block *gen_portrangeop6(compiler_state_t *, u_int, u_int,
562
bpf_u_int32, int);
563
static struct block *gen_portrange6(compiler_state_t *, u_int, u_int, int, int);
564
static int lookup_proto(compiler_state_t *, const char *, int);
565
#if !defined(NO_PROTOCHAIN)
566
static struct block *gen_protochain(compiler_state_t *, bpf_u_int32, int);
567
#endif /* !defined(NO_PROTOCHAIN) */
568
static struct block *gen_proto(compiler_state_t *, bpf_u_int32, int, int);
569
static struct slist *xfer_to_x(compiler_state_t *, struct arth *);
570
static struct slist *xfer_to_a(compiler_state_t *, struct arth *);
571
static struct block *gen_mac_multicast(compiler_state_t *, int);
572
static struct block *gen_len(compiler_state_t *, int, int);
573
static struct block *gen_check_802_11_data_frame(compiler_state_t *);
574
static struct block *gen_geneve_ll_check(compiler_state_t *cstate);
575
576
static struct block *gen_ppi_dlt_check(compiler_state_t *);
577
static struct block *gen_atmfield_code_internal(compiler_state_t *, int,
578
bpf_u_int32, int, int);
579
static struct block *gen_atmtype_llc(compiler_state_t *);
580
static struct block *gen_msg_abbrev(compiler_state_t *, int type);
581
582
static void
583
initchunks(compiler_state_t *cstate)
584
{
585
int i;
586
587
for (i = 0; i < NCHUNKS; i++) {
588
cstate->chunks[i].n_left = 0;
589
cstate->chunks[i].m = NULL;
590
}
591
cstate->cur_chunk = 0;
592
}
593
594
static void *
595
newchunk_nolongjmp(compiler_state_t *cstate, size_t n)
596
{
597
struct chunk *cp;
598
int k;
599
size_t size;
600
601
#ifndef __NetBSD__
602
/* XXX Round up to nearest long. */
603
n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
604
#else
605
/* XXX Round up to structure boundary. */
606
n = ALIGN(n);
607
#endif
608
609
cp = &cstate->chunks[cstate->cur_chunk];
610
if (n > cp->n_left) {
611
++cp;
612
k = ++cstate->cur_chunk;
613
if (k >= NCHUNKS) {
614
bpf_set_error(cstate, "out of memory");
615
return (NULL);
616
}
617
size = CHUNK0SIZE << k;
618
cp->m = (void *)malloc(size);
619
if (cp->m == NULL) {
620
bpf_set_error(cstate, "out of memory");
621
return (NULL);
622
}
623
memset((char *)cp->m, 0, size);
624
cp->n_left = size;
625
if (n > size) {
626
bpf_set_error(cstate, "out of memory");
627
return (NULL);
628
}
629
}
630
cp->n_left -= n;
631
return (void *)((char *)cp->m + cp->n_left);
632
}
633
634
static void *
635
newchunk(compiler_state_t *cstate, size_t n)
636
{
637
void *p;
638
639
p = newchunk_nolongjmp(cstate, n);
640
if (p == NULL) {
641
longjmp(cstate->top_ctx, 1);
642
/*NOTREACHED*/
643
}
644
return (p);
645
}
646
647
static void
648
freechunks(compiler_state_t *cstate)
649
{
650
int i;
651
652
for (i = 0; i < NCHUNKS; ++i)
653
if (cstate->chunks[i].m != NULL)
654
free(cstate->chunks[i].m);
655
}
656
657
/*
658
* A strdup whose allocations are freed after code generation is over.
659
* This is used by the lexical analyzer, so it can't longjmp; it just
660
* returns NULL on an allocation error, and the callers must check
661
* for it.
662
*/
663
char *
664
sdup(compiler_state_t *cstate, const char *s)
665
{
666
size_t n = strlen(s) + 1;
667
char *cp = newchunk_nolongjmp(cstate, n);
668
669
if (cp == NULL)
670
return (NULL);
671
pcapint_strlcpy(cp, s, n);
672
return (cp);
673
}
674
675
static inline struct block *
676
new_block(compiler_state_t *cstate, int code)
677
{
678
struct block *p;
679
680
p = (struct block *)newchunk(cstate, sizeof(*p));
681
p->s.code = code;
682
p->head = p;
683
684
return p;
685
}
686
687
static inline struct slist *
688
new_stmt(compiler_state_t *cstate, int code)
689
{
690
struct slist *p;
691
692
p = (struct slist *)newchunk(cstate, sizeof(*p));
693
p->s.code = code;
694
695
return p;
696
}
697
698
static struct block *
699
gen_retblk(compiler_state_t *cstate, int v)
700
{
701
struct block *b = new_block(cstate, BPF_RET|BPF_K);
702
703
b->s.k = v;
704
return b;
705
}
706
707
static inline PCAP_NORETURN_DEF void
708
syntax(compiler_state_t *cstate)
709
{
710
bpf_error(cstate, "syntax error in filter expression");
711
}
712
713
int
714
pcap_compile(pcap_t *p, struct bpf_program *program,
715
const char *buf, int optimize, bpf_u_int32 mask)
716
{
717
#ifdef _WIN32
718
static int done = 0;
719
#endif
720
compiler_state_t cstate;
721
const char * volatile xbuf = buf;
722
yyscan_t scanner = NULL;
723
volatile YY_BUFFER_STATE in_buffer = NULL;
724
u_int len;
725
int rc;
726
727
/*
728
* If this pcap_t hasn't been activated, it doesn't have a
729
* link-layer type, so we can't use it.
730
*/
731
if (!p->activated) {
732
(void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
733
"not-yet-activated pcap_t passed to pcap_compile");
734
return (PCAP_ERROR);
735
}
736
737
#ifdef _WIN32
738
if (!done) {
739
pcap_wsockinit();
740
done = 1;
741
}
742
#endif
743
744
#ifdef ENABLE_REMOTE
745
/*
746
* If the device on which we're capturing need to be notified
747
* that a new filter is being compiled, do so.
748
*
749
* This allows them to save a copy of it, in case, for example,
750
* they're implementing a form of remote packet capture, and
751
* want the remote machine to filter out the packets in which
752
* it's sending the packets it's captured.
753
*
754
* XXX - the fact that we happen to be compiling a filter
755
* doesn't necessarily mean we'll be installing it as the
756
* filter for this pcap_t; we might be running it from userland
757
* on captured packets to do packet classification. We really
758
* need a better way of handling this, but this is all that
759
* the WinPcap remote capture code did.
760
*/
761
if (p->save_current_filter_op != NULL)
762
(p->save_current_filter_op)(p, buf);
763
#endif
764
765
initchunks(&cstate);
766
cstate.no_optimize = 0;
767
#ifdef INET6
768
cstate.ai = NULL;
769
#endif
770
cstate.e = NULL;
771
cstate.ic.root = NULL;
772
cstate.ic.cur_mark = 0;
773
cstate.bpf_pcap = p;
774
cstate.error_set = 0;
775
init_regs(&cstate);
776
777
cstate.netmask = mask;
778
779
cstate.snaplen = pcap_snapshot(p);
780
if (cstate.snaplen == 0) {
781
(void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
782
"snaplen of 0 rejects all packets");
783
rc = PCAP_ERROR;
784
goto quit;
785
}
786
787
if (pcap_lex_init(&scanner) != 0) {
788
pcapint_fmt_errmsg_for_errno(p->errbuf, PCAP_ERRBUF_SIZE,
789
errno, "can't initialize scanner");
790
rc = PCAP_ERROR;
791
goto quit;
792
}
793
in_buffer = pcap__scan_string(xbuf ? xbuf : "", scanner);
794
795
/*
796
* Associate the compiler state with the lexical analyzer
797
* state.
798
*/
799
pcap_set_extra(&cstate, scanner);
800
801
if (init_linktype(&cstate, p) == -1) {
802
rc = PCAP_ERROR;
803
goto quit;
804
}
805
if (pcap_parse(scanner, &cstate) != 0) {
806
#ifdef INET6
807
if (cstate.ai != NULL)
808
freeaddrinfo(cstate.ai);
809
#endif
810
if (cstate.e != NULL)
811
free(cstate.e);
812
rc = PCAP_ERROR;
813
goto quit;
814
}
815
816
if (cstate.ic.root == NULL) {
817
/*
818
* Catch errors reported by gen_retblk().
819
*/
820
if (setjmp(cstate.top_ctx)) {
821
rc = PCAP_ERROR;
822
goto quit;
823
}
824
cstate.ic.root = gen_retblk(&cstate, cstate.snaplen);
825
}
826
827
if (optimize && !cstate.no_optimize) {
828
if (bpf_optimize(&cstate.ic, p->errbuf) == -1) {
829
/* Failure */
830
rc = PCAP_ERROR;
831
goto quit;
832
}
833
if (cstate.ic.root == NULL ||
834
(cstate.ic.root->s.code == (BPF_RET|BPF_K) && cstate.ic.root->s.k == 0)) {
835
(void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
836
"expression rejects all packets");
837
rc = PCAP_ERROR;
838
goto quit;
839
}
840
}
841
program->bf_insns = icode_to_fcode(&cstate.ic,
842
cstate.ic.root, &len, p->errbuf);
843
if (program->bf_insns == NULL) {
844
/* Failure */
845
rc = PCAP_ERROR;
846
goto quit;
847
}
848
program->bf_len = len;
849
850
rc = 0; /* We're all okay */
851
852
quit:
853
/*
854
* Clean up everything for the lexical analyzer.
855
*/
856
if (in_buffer != NULL)
857
pcap__delete_buffer(in_buffer, scanner);
858
if (scanner != NULL)
859
pcap_lex_destroy(scanner);
860
861
/*
862
* Clean up our own allocated memory.
863
*/
864
freechunks(&cstate);
865
866
return (rc);
867
}
868
869
/*
870
* entry point for using the compiler with no pcap open
871
* pass in all the stuff that is needed explicitly instead.
872
*/
873
int
874
pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
875
struct bpf_program *program,
876
const char *buf, int optimize, bpf_u_int32 mask)
877
{
878
pcap_t *p;
879
int ret;
880
881
p = pcap_open_dead(linktype_arg, snaplen_arg);
882
if (p == NULL)
883
return (PCAP_ERROR);
884
ret = pcap_compile(p, program, buf, optimize, mask);
885
pcap_close(p);
886
return (ret);
887
}
888
889
/*
890
* Clean up a "struct bpf_program" by freeing all the memory allocated
891
* in it.
892
*/
893
void
894
pcap_freecode(struct bpf_program *program)
895
{
896
program->bf_len = 0;
897
if (program->bf_insns != NULL) {
898
free((char *)program->bf_insns);
899
program->bf_insns = NULL;
900
}
901
}
902
903
/*
904
* Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
905
* which of the jt and jf fields has been resolved and which is a pointer
906
* back to another unresolved block (or nil). At least one of the fields
907
* in each block is already resolved.
908
*/
909
static void
910
backpatch(struct block *list, struct block *target)
911
{
912
struct block *next;
913
914
while (list) {
915
if (!list->sense) {
916
next = JT(list);
917
JT(list) = target;
918
} else {
919
next = JF(list);
920
JF(list) = target;
921
}
922
list = next;
923
}
924
}
925
926
/*
927
* Merge the lists in b0 and b1, using the 'sense' field to indicate
928
* which of jt and jf is the link.
929
*/
930
static void
931
merge(struct block *b0, struct block *b1)
932
{
933
register struct block **p = &b0;
934
935
/* Find end of list. */
936
while (*p)
937
p = !((*p)->sense) ? &JT(*p) : &JF(*p);
938
939
/* Concatenate the lists. */
940
*p = b1;
941
}
942
943
int
944
finish_parse(compiler_state_t *cstate, struct block *p)
945
{
946
struct block *ppi_dlt_check;
947
948
/*
949
* Catch errors reported by us and routines below us, and return -1
950
* on an error.
951
*/
952
if (setjmp(cstate->top_ctx))
953
return (-1);
954
955
/*
956
* Insert before the statements of the first (root) block any
957
* statements needed to load the lengths of any variable-length
958
* headers into registers.
959
*
960
* XXX - a fancier strategy would be to insert those before the
961
* statements of all blocks that use those lengths and that
962
* have no predecessors that use them, so that we only compute
963
* the lengths if we need them. There might be even better
964
* approaches than that.
965
*
966
* However, those strategies would be more complicated, and
967
* as we don't generate code to compute a length if the
968
* program has no tests that use the length, and as most
969
* tests will probably use those lengths, we would just
970
* postpone computing the lengths so that it's not done
971
* for tests that fail early, and it's not clear that's
972
* worth the effort.
973
*/
974
insert_compute_vloffsets(cstate, p->head);
975
976
/*
977
* For DLT_PPI captures, generate a check of the per-packet
978
* DLT value to make sure it's DLT_IEEE802_11.
979
*
980
* XXX - TurboCap cards use DLT_PPI for Ethernet.
981
* Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
982
* with appropriate Ethernet information and use that rather
983
* than using something such as DLT_PPI where you don't know
984
* the link-layer header type until runtime, which, in the
985
* general case, would force us to generate both Ethernet *and*
986
* 802.11 code (*and* anything else for which PPI is used)
987
* and choose between them early in the BPF program?
988
*/
989
ppi_dlt_check = gen_ppi_dlt_check(cstate);
990
if (ppi_dlt_check != NULL)
991
gen_and(ppi_dlt_check, p);
992
993
backpatch(p, gen_retblk(cstate, cstate->snaplen));
994
p->sense = !p->sense;
995
backpatch(p, gen_retblk(cstate, 0));
996
cstate->ic.root = p->head;
997
return (0);
998
}
999
1000
void
1001
gen_and(struct block *b0, struct block *b1)
1002
{
1003
backpatch(b0, b1->head);
1004
b0->sense = !b0->sense;
1005
b1->sense = !b1->sense;
1006
merge(b1, b0);
1007
b1->sense = !b1->sense;
1008
b1->head = b0->head;
1009
}
1010
1011
void
1012
gen_or(struct block *b0, struct block *b1)
1013
{
1014
b0->sense = !b0->sense;
1015
backpatch(b0, b1->head);
1016
b0->sense = !b0->sense;
1017
merge(b1, b0);
1018
b1->head = b0->head;
1019
}
1020
1021
void
1022
gen_not(struct block *b)
1023
{
1024
b->sense = !b->sense;
1025
}
1026
1027
static struct block *
1028
gen_cmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1029
u_int size, bpf_u_int32 v)
1030
{
1031
return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
1032
}
1033
1034
static struct block *
1035
gen_cmp_gt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1036
u_int size, bpf_u_int32 v)
1037
{
1038
return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
1039
}
1040
1041
static struct block *
1042
gen_cmp_ge(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1043
u_int size, bpf_u_int32 v)
1044
{
1045
return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
1046
}
1047
1048
static struct block *
1049
gen_cmp_lt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1050
u_int size, bpf_u_int32 v)
1051
{
1052
return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
1053
}
1054
1055
static struct block *
1056
gen_cmp_le(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1057
u_int size, bpf_u_int32 v)
1058
{
1059
return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
1060
}
1061
1062
static struct block *
1063
gen_mcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1064
u_int size, bpf_u_int32 v, bpf_u_int32 mask)
1065
{
1066
return gen_ncmp(cstate, offrel, offset, size, mask, BPF_JEQ, 0, v);
1067
}
1068
1069
static struct block *
1070
gen_bcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1071
u_int size, const u_char *v)
1072
{
1073
register struct block *b, *tmp;
1074
1075
b = NULL;
1076
while (size >= 4) {
1077
register const u_char *p = &v[size - 4];
1078
1079
tmp = gen_cmp(cstate, offrel, offset + size - 4, BPF_W,
1080
EXTRACT_BE_U_4(p));
1081
if (b != NULL)
1082
gen_and(b, tmp);
1083
b = tmp;
1084
size -= 4;
1085
}
1086
while (size >= 2) {
1087
register const u_char *p = &v[size - 2];
1088
1089
tmp = gen_cmp(cstate, offrel, offset + size - 2, BPF_H,
1090
EXTRACT_BE_U_2(p));
1091
if (b != NULL)
1092
gen_and(b, tmp);
1093
b = tmp;
1094
size -= 2;
1095
}
1096
if (size > 0) {
1097
tmp = gen_cmp(cstate, offrel, offset, BPF_B, v[0]);
1098
if (b != NULL)
1099
gen_and(b, tmp);
1100
b = tmp;
1101
}
1102
return b;
1103
}
1104
1105
/*
1106
* AND the field of size "size" at offset "offset" relative to the header
1107
* specified by "offrel" with "mask", and compare it with the value "v"
1108
* with the test specified by "jtype"; if "reverse" is true, the test
1109
* should test the opposite of "jtype".
1110
*/
1111
static struct block *
1112
gen_ncmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1113
u_int size, bpf_u_int32 mask, int jtype, int reverse,
1114
bpf_u_int32 v)
1115
{
1116
struct slist *s, *s2;
1117
struct block *b;
1118
1119
s = gen_load_a(cstate, offrel, offset, size);
1120
1121
if (mask != 0xffffffff) {
1122
s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1123
s2->s.k = mask;
1124
sappend(s, s2);
1125
}
1126
1127
b = new_block(cstate, JMP(jtype));
1128
b->stmts = s;
1129
b->s.k = v;
1130
if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
1131
gen_not(b);
1132
return b;
1133
}
1134
1135
static int
1136
init_linktype(compiler_state_t *cstate, pcap_t *p)
1137
{
1138
cstate->pcap_fddipad = p->fddipad;
1139
1140
/*
1141
* We start out with only one link-layer header.
1142
*/
1143
cstate->outermostlinktype = pcap_datalink(p);
1144
cstate->off_outermostlinkhdr.constant_part = 0;
1145
cstate->off_outermostlinkhdr.is_variable = 0;
1146
cstate->off_outermostlinkhdr.reg = -1;
1147
1148
cstate->prevlinktype = cstate->outermostlinktype;
1149
cstate->off_prevlinkhdr.constant_part = 0;
1150
cstate->off_prevlinkhdr.is_variable = 0;
1151
cstate->off_prevlinkhdr.reg = -1;
1152
1153
cstate->linktype = cstate->outermostlinktype;
1154
cstate->off_linkhdr.constant_part = 0;
1155
cstate->off_linkhdr.is_variable = 0;
1156
cstate->off_linkhdr.reg = -1;
1157
1158
/*
1159
* XXX
1160
*/
1161
cstate->off_linkpl.constant_part = 0;
1162
cstate->off_linkpl.is_variable = 0;
1163
cstate->off_linkpl.reg = -1;
1164
1165
cstate->off_linktype.constant_part = 0;
1166
cstate->off_linktype.is_variable = 0;
1167
cstate->off_linktype.reg = -1;
1168
1169
/*
1170
* Assume it's not raw ATM with a pseudo-header, for now.
1171
*/
1172
cstate->is_atm = 0;
1173
cstate->off_vpi = OFFSET_NOT_SET;
1174
cstate->off_vci = OFFSET_NOT_SET;
1175
cstate->off_proto = OFFSET_NOT_SET;
1176
cstate->off_payload = OFFSET_NOT_SET;
1177
1178
/*
1179
* And not Geneve.
1180
*/
1181
cstate->is_geneve = 0;
1182
1183
/*
1184
* No variable length VLAN offset by default
1185
*/
1186
cstate->is_vlan_vloffset = 0;
1187
1188
/*
1189
* And assume we're not doing SS7.
1190
*/
1191
cstate->off_li = OFFSET_NOT_SET;
1192
cstate->off_li_hsl = OFFSET_NOT_SET;
1193
cstate->off_sio = OFFSET_NOT_SET;
1194
cstate->off_opc = OFFSET_NOT_SET;
1195
cstate->off_dpc = OFFSET_NOT_SET;
1196
cstate->off_sls = OFFSET_NOT_SET;
1197
1198
cstate->label_stack_depth = 0;
1199
cstate->vlan_stack_depth = 0;
1200
1201
switch (cstate->linktype) {
1202
1203
case DLT_ARCNET:
1204
cstate->off_linktype.constant_part = 2;
1205
cstate->off_linkpl.constant_part = 6;
1206
cstate->off_nl = 0; /* XXX in reality, variable! */
1207
cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1208
break;
1209
1210
case DLT_ARCNET_LINUX:
1211
cstate->off_linktype.constant_part = 4;
1212
cstate->off_linkpl.constant_part = 8;
1213
cstate->off_nl = 0; /* XXX in reality, variable! */
1214
cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1215
break;
1216
1217
case DLT_EN10MB:
1218
cstate->off_linktype.constant_part = 12;
1219
cstate->off_linkpl.constant_part = 14; /* Ethernet header length */
1220
cstate->off_nl = 0; /* Ethernet II */
1221
cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
1222
break;
1223
1224
case DLT_SLIP:
1225
/*
1226
* SLIP doesn't have a link level type. The 16 byte
1227
* header is hacked into our SLIP driver.
1228
*/
1229
cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1230
cstate->off_linkpl.constant_part = 16;
1231
cstate->off_nl = 0;
1232
cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1233
break;
1234
1235
case DLT_SLIP_BSDOS:
1236
/* XXX this may be the same as the DLT_PPP_BSDOS case */
1237
cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1238
/* XXX end */
1239
cstate->off_linkpl.constant_part = 24;
1240
cstate->off_nl = 0;
1241
cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1242
break;
1243
1244
case DLT_NULL:
1245
case DLT_LOOP:
1246
cstate->off_linktype.constant_part = 0;
1247
cstate->off_linkpl.constant_part = 4;
1248
cstate->off_nl = 0;
1249
cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1250
break;
1251
1252
case DLT_ENC:
1253
cstate->off_linktype.constant_part = 0;
1254
cstate->off_linkpl.constant_part = 12;
1255
cstate->off_nl = 0;
1256
cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1257
break;
1258
1259
case DLT_PPP:
1260
case DLT_PPP_PPPD:
1261
case DLT_C_HDLC: /* BSD/OS Cisco HDLC */
1262
case DLT_HDLC: /* NetBSD (Cisco) HDLC */
1263
case DLT_PPP_SERIAL: /* NetBSD sync/async serial PPP */
1264
cstate->off_linktype.constant_part = 2; /* skip HDLC-like framing */
1265
cstate->off_linkpl.constant_part = 4; /* skip HDLC-like framing and protocol field */
1266
cstate->off_nl = 0;
1267
cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1268
break;
1269
1270
case DLT_PPP_ETHER:
1271
/*
1272
* This does no include the Ethernet header, and
1273
* only covers session state.
1274
*/
1275
cstate->off_linktype.constant_part = 6;
1276
cstate->off_linkpl.constant_part = 8;
1277
cstate->off_nl = 0;
1278
cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1279
break;
1280
1281
case DLT_PPP_BSDOS:
1282
cstate->off_linktype.constant_part = 5;
1283
cstate->off_linkpl.constant_part = 24;
1284
cstate->off_nl = 0;
1285
cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1286
break;
1287
1288
case DLT_FDDI:
1289
/*
1290
* FDDI doesn't really have a link-level type field.
1291
* We set "off_linktype" to the offset of the LLC header.
1292
*
1293
* To check for Ethernet types, we assume that SSAP = SNAP
1294
* is being used and pick out the encapsulated Ethernet type.
1295
* XXX - should we generate code to check for SNAP?
1296
*/
1297
cstate->off_linktype.constant_part = 13;
1298
cstate->off_linktype.constant_part += cstate->pcap_fddipad;
1299
cstate->off_linkpl.constant_part = 13; /* FDDI MAC header length */
1300
cstate->off_linkpl.constant_part += cstate->pcap_fddipad;
1301
cstate->off_nl = 8; /* 802.2+SNAP */
1302
cstate->off_nl_nosnap = 3; /* 802.2 */
1303
break;
1304
1305
case DLT_IEEE802:
1306
/*
1307
* Token Ring doesn't really have a link-level type field.
1308
* We set "off_linktype" to the offset of the LLC header.
1309
*
1310
* To check for Ethernet types, we assume that SSAP = SNAP
1311
* is being used and pick out the encapsulated Ethernet type.
1312
* XXX - should we generate code to check for SNAP?
1313
*
1314
* XXX - the header is actually variable-length.
1315
* Some various Linux patched versions gave 38
1316
* as "off_linktype" and 40 as "off_nl"; however,
1317
* if a token ring packet has *no* routing
1318
* information, i.e. is not source-routed, the correct
1319
* values are 20 and 22, as they are in the vanilla code.
1320
*
1321
* A packet is source-routed iff the uppermost bit
1322
* of the first byte of the source address, at an
1323
* offset of 8, has the uppermost bit set. If the
1324
* packet is source-routed, the total number of bytes
1325
* of routing information is 2 plus bits 0x1F00 of
1326
* the 16-bit value at an offset of 14 (shifted right
1327
* 8 - figure out which byte that is).
1328
*/
1329
cstate->off_linktype.constant_part = 14;
1330
cstate->off_linkpl.constant_part = 14; /* Token Ring MAC header length */
1331
cstate->off_nl = 8; /* 802.2+SNAP */
1332
cstate->off_nl_nosnap = 3; /* 802.2 */
1333
break;
1334
1335
case DLT_PRISM_HEADER:
1336
case DLT_IEEE802_11_RADIO_AVS:
1337
case DLT_IEEE802_11_RADIO:
1338
cstate->off_linkhdr.is_variable = 1;
1339
/* Fall through, 802.11 doesn't have a variable link
1340
* prefix but is otherwise the same. */
1341
/* FALLTHROUGH */
1342
1343
case DLT_IEEE802_11:
1344
/*
1345
* 802.11 doesn't really have a link-level type field.
1346
* We set "off_linktype.constant_part" to the offset of
1347
* the LLC header.
1348
*
1349
* To check for Ethernet types, we assume that SSAP = SNAP
1350
* is being used and pick out the encapsulated Ethernet type.
1351
* XXX - should we generate code to check for SNAP?
1352
*
1353
* We also handle variable-length radio headers here.
1354
* The Prism header is in theory variable-length, but in
1355
* practice it's always 144 bytes long. However, some
1356
* drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1357
* sometimes or always supply an AVS header, so we
1358
* have to check whether the radio header is a Prism
1359
* header or an AVS header, so, in practice, it's
1360
* variable-length.
1361
*/
1362
cstate->off_linktype.constant_part = 24;
1363
cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
1364
cstate->off_linkpl.is_variable = 1;
1365
cstate->off_nl = 8; /* 802.2+SNAP */
1366
cstate->off_nl_nosnap = 3; /* 802.2 */
1367
break;
1368
1369
case DLT_PPI:
1370
/*
1371
* At the moment we treat PPI the same way that we treat
1372
* normal Radiotap encoded packets. The difference is in
1373
* the function that generates the code at the beginning
1374
* to compute the header length. Since this code generator
1375
* of PPI supports bare 802.11 encapsulation only (i.e.
1376
* the encapsulated DLT should be DLT_IEEE802_11) we
1377
* generate code to check for this too.
1378
*/
1379
cstate->off_linktype.constant_part = 24;
1380
cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
1381
cstate->off_linkpl.is_variable = 1;
1382
cstate->off_linkhdr.is_variable = 1;
1383
cstate->off_nl = 8; /* 802.2+SNAP */
1384
cstate->off_nl_nosnap = 3; /* 802.2 */
1385
break;
1386
1387
case DLT_ATM_RFC1483:
1388
case DLT_ATM_CLIP: /* Linux ATM defines this */
1389
/*
1390
* assume routed, non-ISO PDUs
1391
* (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1392
*
1393
* XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1394
* or PPP with the PPP NLPID (e.g., PPPoA)? The
1395
* latter would presumably be treated the way PPPoE
1396
* should be, so you can do "pppoe and udp port 2049"
1397
* or "pppoa and tcp port 80" and have it check for
1398
* PPPo{A,E} and a PPP protocol of IP and....
1399
*/
1400
cstate->off_linktype.constant_part = 0;
1401
cstate->off_linkpl.constant_part = 0; /* packet begins with LLC header */
1402
cstate->off_nl = 8; /* 802.2+SNAP */
1403
cstate->off_nl_nosnap = 3; /* 802.2 */
1404
break;
1405
1406
case DLT_SUNATM:
1407
/*
1408
* Full Frontal ATM; you get AALn PDUs with an ATM
1409
* pseudo-header.
1410
*/
1411
cstate->is_atm = 1;
1412
cstate->off_vpi = SUNATM_VPI_POS;
1413
cstate->off_vci = SUNATM_VCI_POS;
1414
cstate->off_proto = PROTO_POS;
1415
cstate->off_payload = SUNATM_PKT_BEGIN_POS;
1416
cstate->off_linktype.constant_part = cstate->off_payload;
1417
cstate->off_linkpl.constant_part = cstate->off_payload; /* if LLC-encapsulated */
1418
cstate->off_nl = 8; /* 802.2+SNAP */
1419
cstate->off_nl_nosnap = 3; /* 802.2 */
1420
break;
1421
1422
case DLT_RAW:
1423
case DLT_IPV4:
1424
case DLT_IPV6:
1425
cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1426
cstate->off_linkpl.constant_part = 0;
1427
cstate->off_nl = 0;
1428
cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1429
break;
1430
1431
case DLT_LINUX_SLL: /* fake header for Linux cooked socket v1 */
1432
cstate->off_linktype.constant_part = 14;
1433
cstate->off_linkpl.constant_part = 16;
1434
cstate->off_nl = 0;
1435
cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1436
break;
1437
1438
case DLT_LINUX_SLL2: /* fake header for Linux cooked socket v2 */
1439
cstate->off_linktype.constant_part = 0;
1440
cstate->off_linkpl.constant_part = 20;
1441
cstate->off_nl = 0;
1442
cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1443
break;
1444
1445
case DLT_LTALK:
1446
/*
1447
* LocalTalk does have a 1-byte type field in the LLAP header,
1448
* but really it just indicates whether there is a "short" or
1449
* "long" DDP packet following.
1450
*/
1451
cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1452
cstate->off_linkpl.constant_part = 0;
1453
cstate->off_nl = 0;
1454
cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1455
break;
1456
1457
case DLT_IP_OVER_FC:
1458
/*
1459
* RFC 2625 IP-over-Fibre-Channel doesn't really have a
1460
* link-level type field. We set "off_linktype" to the
1461
* offset of the LLC header.
1462
*
1463
* To check for Ethernet types, we assume that SSAP = SNAP
1464
* is being used and pick out the encapsulated Ethernet type.
1465
* XXX - should we generate code to check for SNAP? RFC
1466
* 2625 says SNAP should be used.
1467
*/
1468
cstate->off_linktype.constant_part = 16;
1469
cstate->off_linkpl.constant_part = 16;
1470
cstate->off_nl = 8; /* 802.2+SNAP */
1471
cstate->off_nl_nosnap = 3; /* 802.2 */
1472
break;
1473
1474
case DLT_FRELAY:
1475
/*
1476
* XXX - we should set this to handle SNAP-encapsulated
1477
* frames (NLPID of 0x80).
1478
*/
1479
cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1480
cstate->off_linkpl.constant_part = 0;
1481
cstate->off_nl = 0;
1482
cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1483
break;
1484
1485
/*
1486
* the only BPF-interesting FRF.16 frames are non-control frames;
1487
* Frame Relay has a variable length link-layer
1488
* so lets start with offset 4 for now and increments later on (FIXME);
1489
*/
1490
case DLT_MFR:
1491
cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1492
cstate->off_linkpl.constant_part = 0;
1493
cstate->off_nl = 4;
1494
cstate->off_nl_nosnap = 0; /* XXX - for now -> no 802.2 LLC */
1495
break;
1496
1497
case DLT_APPLE_IP_OVER_IEEE1394:
1498
cstate->off_linktype.constant_part = 16;
1499
cstate->off_linkpl.constant_part = 18;
1500
cstate->off_nl = 0;
1501
cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1502
break;
1503
1504
case DLT_SYMANTEC_FIREWALL:
1505
cstate->off_linktype.constant_part = 6;
1506
cstate->off_linkpl.constant_part = 44;
1507
cstate->off_nl = 0; /* Ethernet II */
1508
cstate->off_nl_nosnap = 0; /* XXX - what does it do with 802.3 packets? */
1509
break;
1510
1511
case DLT_PFLOG:
1512
cstate->off_linktype.constant_part = 0;
1513
cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
1514
cstate->off_linkpl.is_variable = 1;
1515
cstate->off_nl = 0;
1516
cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1517
break;
1518
1519
case DLT_JUNIPER_MFR:
1520
case DLT_JUNIPER_MLFR:
1521
case DLT_JUNIPER_MLPPP:
1522
case DLT_JUNIPER_PPP:
1523
case DLT_JUNIPER_CHDLC:
1524
case DLT_JUNIPER_FRELAY:
1525
cstate->off_linktype.constant_part = 4;
1526
cstate->off_linkpl.constant_part = 4;
1527
cstate->off_nl = 0;
1528
cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1529
break;
1530
1531
case DLT_JUNIPER_ATM1:
1532
cstate->off_linktype.constant_part = 4; /* in reality variable between 4-8 */
1533
cstate->off_linkpl.constant_part = 4; /* in reality variable between 4-8 */
1534
cstate->off_nl = 0;
1535
cstate->off_nl_nosnap = 10;
1536
break;
1537
1538
case DLT_JUNIPER_ATM2:
1539
cstate->off_linktype.constant_part = 8; /* in reality variable between 8-12 */
1540
cstate->off_linkpl.constant_part = 8; /* in reality variable between 8-12 */
1541
cstate->off_nl = 0;
1542
cstate->off_nl_nosnap = 10;
1543
break;
1544
1545
/* frames captured on a Juniper PPPoE service PIC
1546
* contain raw ethernet frames */
1547
case DLT_JUNIPER_PPPOE:
1548
case DLT_JUNIPER_ETHER:
1549
cstate->off_linkpl.constant_part = 14;
1550
cstate->off_linktype.constant_part = 16;
1551
cstate->off_nl = 18; /* Ethernet II */
1552
cstate->off_nl_nosnap = 21; /* 802.3+802.2 */
1553
break;
1554
1555
case DLT_JUNIPER_PPPOE_ATM:
1556
cstate->off_linktype.constant_part = 4;
1557
cstate->off_linkpl.constant_part = 6;
1558
cstate->off_nl = 0;
1559
cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1560
break;
1561
1562
case DLT_JUNIPER_GGSN:
1563
cstate->off_linktype.constant_part = 6;
1564
cstate->off_linkpl.constant_part = 12;
1565
cstate->off_nl = 0;
1566
cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1567
break;
1568
1569
case DLT_JUNIPER_ES:
1570
cstate->off_linktype.constant_part = 6;
1571
cstate->off_linkpl.constant_part = OFFSET_NOT_SET; /* not really a network layer but raw IP addresses */
1572
cstate->off_nl = OFFSET_NOT_SET; /* not really a network layer but raw IP addresses */
1573
cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1574
break;
1575
1576
case DLT_JUNIPER_MONITOR:
1577
cstate->off_linktype.constant_part = 12;
1578
cstate->off_linkpl.constant_part = 12;
1579
cstate->off_nl = 0; /* raw IP/IP6 header */
1580
cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1581
break;
1582
1583
case DLT_BACNET_MS_TP:
1584
cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1585
cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1586
cstate->off_nl = OFFSET_NOT_SET;
1587
cstate->off_nl_nosnap = OFFSET_NOT_SET;
1588
break;
1589
1590
case DLT_JUNIPER_SERVICES:
1591
cstate->off_linktype.constant_part = 12;
1592
cstate->off_linkpl.constant_part = OFFSET_NOT_SET; /* L3 proto location dep. on cookie type */
1593
cstate->off_nl = OFFSET_NOT_SET; /* L3 proto location dep. on cookie type */
1594
cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1595
break;
1596
1597
case DLT_JUNIPER_VP:
1598
cstate->off_linktype.constant_part = 18;
1599
cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1600
cstate->off_nl = OFFSET_NOT_SET;
1601
cstate->off_nl_nosnap = OFFSET_NOT_SET;
1602
break;
1603
1604
case DLT_JUNIPER_ST:
1605
cstate->off_linktype.constant_part = 18;
1606
cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1607
cstate->off_nl = OFFSET_NOT_SET;
1608
cstate->off_nl_nosnap = OFFSET_NOT_SET;
1609
break;
1610
1611
case DLT_JUNIPER_ISM:
1612
cstate->off_linktype.constant_part = 8;
1613
cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1614
cstate->off_nl = OFFSET_NOT_SET;
1615
cstate->off_nl_nosnap = OFFSET_NOT_SET;
1616
break;
1617
1618
case DLT_JUNIPER_VS:
1619
case DLT_JUNIPER_SRX_E2E:
1620
case DLT_JUNIPER_FIBRECHANNEL:
1621
case DLT_JUNIPER_ATM_CEMIC:
1622
cstate->off_linktype.constant_part = 8;
1623
cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1624
cstate->off_nl = OFFSET_NOT_SET;
1625
cstate->off_nl_nosnap = OFFSET_NOT_SET;
1626
break;
1627
1628
case DLT_MTP2:
1629
cstate->off_li = 2;
1630
cstate->off_li_hsl = 4;
1631
cstate->off_sio = 3;
1632
cstate->off_opc = 4;
1633
cstate->off_dpc = 4;
1634
cstate->off_sls = 7;
1635
cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1636
cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1637
cstate->off_nl = OFFSET_NOT_SET;
1638
cstate->off_nl_nosnap = OFFSET_NOT_SET;
1639
break;
1640
1641
case DLT_MTP2_WITH_PHDR:
1642
cstate->off_li = 6;
1643
cstate->off_li_hsl = 8;
1644
cstate->off_sio = 7;
1645
cstate->off_opc = 8;
1646
cstate->off_dpc = 8;
1647
cstate->off_sls = 11;
1648
cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1649
cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1650
cstate->off_nl = OFFSET_NOT_SET;
1651
cstate->off_nl_nosnap = OFFSET_NOT_SET;
1652
break;
1653
1654
case DLT_ERF:
1655
cstate->off_li = 22;
1656
cstate->off_li_hsl = 24;
1657
cstate->off_sio = 23;
1658
cstate->off_opc = 24;
1659
cstate->off_dpc = 24;
1660
cstate->off_sls = 27;
1661
cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1662
cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1663
cstate->off_nl = OFFSET_NOT_SET;
1664
cstate->off_nl_nosnap = OFFSET_NOT_SET;
1665
break;
1666
1667
case DLT_PFSYNC:
1668
cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1669
cstate->off_linkpl.constant_part = 4;
1670
cstate->off_nl = 0;
1671
cstate->off_nl_nosnap = 0;
1672
break;
1673
1674
case DLT_AX25_KISS:
1675
/*
1676
* Currently, only raw "link[N:M]" filtering is supported.
1677
*/
1678
cstate->off_linktype.constant_part = OFFSET_NOT_SET; /* variable, min 15, max 71 steps of 7 */
1679
cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1680
cstate->off_nl = OFFSET_NOT_SET; /* variable, min 16, max 71 steps of 7 */
1681
cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1682
break;
1683
1684
case DLT_IPNET:
1685
cstate->off_linktype.constant_part = 1;
1686
cstate->off_linkpl.constant_part = 24; /* ipnet header length */
1687
cstate->off_nl = 0;
1688
cstate->off_nl_nosnap = OFFSET_NOT_SET;
1689
break;
1690
1691
case DLT_NETANALYZER:
1692
cstate->off_linkhdr.constant_part = 4; /* Ethernet header is past 4-byte pseudo-header */
1693
cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1694
cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* pseudo-header+Ethernet header length */
1695
cstate->off_nl = 0; /* Ethernet II */
1696
cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
1697
break;
1698
1699
case DLT_NETANALYZER_TRANSPARENT:
1700
cstate->off_linkhdr.constant_part = 12; /* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1701
cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1702
cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* pseudo-header+preamble+SFD+Ethernet header length */
1703
cstate->off_nl = 0; /* Ethernet II */
1704
cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
1705
break;
1706
1707
default:
1708
/*
1709
* For values in the range in which we've assigned new
1710
* DLT_ values, only raw "link[N:M]" filtering is supported.
1711
*/
1712
if (cstate->linktype >= DLT_HIGH_MATCHING_MIN &&
1713
cstate->linktype <= DLT_HIGH_MATCHING_MAX) {
1714
cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1715
cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1716
cstate->off_nl = OFFSET_NOT_SET;
1717
cstate->off_nl_nosnap = OFFSET_NOT_SET;
1718
} else {
1719
bpf_set_error(cstate, "unknown data link type %d (min %d, max %d)",
1720
cstate->linktype, DLT_HIGH_MATCHING_MIN, DLT_HIGH_MATCHING_MAX);
1721
return (-1);
1722
}
1723
break;
1724
}
1725
1726
cstate->off_outermostlinkhdr = cstate->off_prevlinkhdr = cstate->off_linkhdr;
1727
return (0);
1728
}
1729
1730
/*
1731
* Load a value relative to the specified absolute offset.
1732
*/
1733
static struct slist *
1734
gen_load_absoffsetrel(compiler_state_t *cstate, bpf_abs_offset *abs_offset,
1735
u_int offset, u_int size)
1736
{
1737
struct slist *s, *s2;
1738
1739
s = gen_abs_offset_varpart(cstate, abs_offset);
1740
1741
/*
1742
* If "s" is non-null, it has code to arrange that the X register
1743
* contains the variable part of the absolute offset, so we
1744
* generate a load relative to that, with an offset of
1745
* abs_offset->constant_part + offset.
1746
*
1747
* Otherwise, we can do an absolute load with an offset of
1748
* abs_offset->constant_part + offset.
1749
*/
1750
if (s != NULL) {
1751
/*
1752
* "s" points to a list of statements that puts the
1753
* variable part of the absolute offset into the X register.
1754
* Do an indirect load, to use the X register as an offset.
1755
*/
1756
s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1757
s2->s.k = abs_offset->constant_part + offset;
1758
sappend(s, s2);
1759
} else {
1760
/*
1761
* There is no variable part of the absolute offset, so
1762
* just do an absolute load.
1763
*/
1764
s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1765
s->s.k = abs_offset->constant_part + offset;
1766
}
1767
return s;
1768
}
1769
1770
/*
1771
* Load a value relative to the beginning of the specified header.
1772
*/
1773
static struct slist *
1774
gen_load_a(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1775
u_int size)
1776
{
1777
struct slist *s, *s2;
1778
1779
/*
1780
* Squelch warnings from compilers that *don't* assume that
1781
* offrel always has a valid enum value and therefore don't
1782
* assume that we'll always go through one of the case arms.
1783
*
1784
* If we have a default case, compilers that *do* assume that
1785
* will then complain about the default case code being
1786
* unreachable.
1787
*
1788
* Damned if you do, damned if you don't.
1789
*/
1790
s = NULL;
1791
1792
switch (offrel) {
1793
1794
case OR_PACKET:
1795
s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1796
s->s.k = offset;
1797
break;
1798
1799
case OR_LINKHDR:
1800
s = gen_load_absoffsetrel(cstate, &cstate->off_linkhdr, offset, size);
1801
break;
1802
1803
case OR_PREVLINKHDR:
1804
s = gen_load_absoffsetrel(cstate, &cstate->off_prevlinkhdr, offset, size);
1805
break;
1806
1807
case OR_LLC:
1808
s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, offset, size);
1809
break;
1810
1811
case OR_PREVMPLSHDR:
1812
s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl - 4 + offset, size);
1813
break;
1814
1815
case OR_LINKPL:
1816
s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + offset, size);
1817
break;
1818
1819
case OR_LINKPL_NOSNAP:
1820
s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl_nosnap + offset, size);
1821
break;
1822
1823
case OR_LINKTYPE:
1824
s = gen_load_absoffsetrel(cstate, &cstate->off_linktype, offset, size);
1825
break;
1826
1827
case OR_TRAN_IPV4:
1828
/*
1829
* Load the X register with the length of the IPv4 header
1830
* (plus the offset of the link-layer header, if it's
1831
* preceded by a variable-length header such as a radio
1832
* header), in bytes.
1833
*/
1834
s = gen_loadx_iphdrlen(cstate);
1835
1836
/*
1837
* Load the item at {offset of the link-layer payload} +
1838
* {offset, relative to the start of the link-layer
1839
* payload, of the IPv4 header} + {length of the IPv4 header} +
1840
* {specified offset}.
1841
*
1842
* If the offset of the link-layer payload is variable,
1843
* the variable part of that offset is included in the
1844
* value in the X register, and we include the constant
1845
* part in the offset of the load.
1846
*/
1847
s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1848
s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + offset;
1849
sappend(s, s2);
1850
break;
1851
1852
case OR_TRAN_IPV6:
1853
s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + 40 + offset, size);
1854
break;
1855
}
1856
return s;
1857
}
1858
1859
/*
1860
* Generate code to load into the X register the sum of the length of
1861
* the IPv4 header and the variable part of the offset of the link-layer
1862
* payload.
1863
*/
1864
static struct slist *
1865
gen_loadx_iphdrlen(compiler_state_t *cstate)
1866
{
1867
struct slist *s, *s2;
1868
1869
s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
1870
if (s != NULL) {
1871
/*
1872
* The offset of the link-layer payload has a variable
1873
* part. "s" points to a list of statements that put
1874
* the variable part of that offset into the X register.
1875
*
1876
* The 4*([k]&0xf) addressing mode can't be used, as we
1877
* don't have a constant offset, so we have to load the
1878
* value in question into the A register and add to it
1879
* the value from the X register.
1880
*/
1881
s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
1882
s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1883
sappend(s, s2);
1884
s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1885
s2->s.k = 0xf;
1886
sappend(s, s2);
1887
s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
1888
s2->s.k = 2;
1889
sappend(s, s2);
1890
1891
/*
1892
* The A register now contains the length of the IP header.
1893
* We need to add to it the variable part of the offset of
1894
* the link-layer payload, which is still in the X
1895
* register, and move the result into the X register.
1896
*/
1897
sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
1898
sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
1899
} else {
1900
/*
1901
* The offset of the link-layer payload is a constant,
1902
* so no code was generated to load the (nonexistent)
1903
* variable part of that offset.
1904
*
1905
* This means we can use the 4*([k]&0xf) addressing
1906
* mode. Load the length of the IPv4 header, which
1907
* is at an offset of cstate->off_nl from the beginning of
1908
* the link-layer payload, and thus at an offset of
1909
* cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
1910
* of the raw packet data, using that addressing mode.
1911
*/
1912
s = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
1913
s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1914
}
1915
return s;
1916
}
1917
1918
1919
static struct block *
1920
gen_uncond(compiler_state_t *cstate, int rsense)
1921
{
1922
struct block *b;
1923
struct slist *s;
1924
1925
s = new_stmt(cstate, BPF_LD|BPF_IMM);
1926
s->s.k = !rsense;
1927
b = new_block(cstate, JMP(BPF_JEQ));
1928
b->stmts = s;
1929
1930
return b;
1931
}
1932
1933
static inline struct block *
1934
gen_true(compiler_state_t *cstate)
1935
{
1936
return gen_uncond(cstate, 1);
1937
}
1938
1939
static inline struct block *
1940
gen_false(compiler_state_t *cstate)
1941
{
1942
return gen_uncond(cstate, 0);
1943
}
1944
1945
/*
1946
* Byte-swap a 32-bit number.
1947
* ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1948
* big-endian platforms.)
1949
*/
1950
#define SWAPLONG(y) \
1951
((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1952
1953
/*
1954
* Generate code to match a particular packet type.
1955
*
1956
* "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1957
* value, if <= ETHERMTU. We use that to determine whether to
1958
* match the type/length field or to check the type/length field for
1959
* a value <= ETHERMTU to see whether it's a type field and then do
1960
* the appropriate test.
1961
*/
1962
static struct block *
1963
gen_ether_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
1964
{
1965
struct block *b0, *b1;
1966
1967
switch (ll_proto) {
1968
1969
case LLCSAP_ISONS:
1970
case LLCSAP_IP:
1971
case LLCSAP_NETBEUI:
1972
/*
1973
* OSI protocols and NetBEUI always use 802.2 encapsulation,
1974
* so we check the DSAP and SSAP.
1975
*
1976
* LLCSAP_IP checks for IP-over-802.2, rather
1977
* than IP-over-Ethernet or IP-over-SNAP.
1978
*
1979
* XXX - should we check both the DSAP and the
1980
* SSAP, like this, or should we check just the
1981
* DSAP, as we do for other types <= ETHERMTU
1982
* (i.e., other SAP values)?
1983
*/
1984
b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1985
gen_not(b0);
1986
b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (ll_proto << 8) | ll_proto);
1987
gen_and(b0, b1);
1988
return b1;
1989
1990
case LLCSAP_IPX:
1991
/*
1992
* Check for;
1993
*
1994
* Ethernet_II frames, which are Ethernet
1995
* frames with a frame type of ETHERTYPE_IPX;
1996
*
1997
* Ethernet_802.3 frames, which are 802.3
1998
* frames (i.e., the type/length field is
1999
* a length field, <= ETHERMTU, rather than
2000
* a type field) with the first two bytes
2001
* after the Ethernet/802.3 header being
2002
* 0xFFFF;
2003
*
2004
* Ethernet_802.2 frames, which are 802.3
2005
* frames with an 802.2 LLC header and
2006
* with the IPX LSAP as the DSAP in the LLC
2007
* header;
2008
*
2009
* Ethernet_SNAP frames, which are 802.3
2010
* frames with an LLC header and a SNAP
2011
* header and with an OUI of 0x000000
2012
* (encapsulated Ethernet) and a protocol
2013
* ID of ETHERTYPE_IPX in the SNAP header.
2014
*
2015
* XXX - should we generate the same code both
2016
* for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
2017
*/
2018
2019
/*
2020
* This generates code to check both for the
2021
* IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
2022
*/
2023
b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
2024
b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, 0xFFFF);
2025
gen_or(b0, b1);
2026
2027
/*
2028
* Now we add code to check for SNAP frames with
2029
* ETHERTYPE_IPX, i.e. Ethernet_SNAP.
2030
*/
2031
b0 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2032
gen_or(b0, b1);
2033
2034
/*
2035
* Now we generate code to check for 802.3
2036
* frames in general.
2037
*/
2038
b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2039
gen_not(b0);
2040
2041
/*
2042
* Now add the check for 802.3 frames before the
2043
* check for Ethernet_802.2 and Ethernet_802.3,
2044
* as those checks should only be done on 802.3
2045
* frames, not on Ethernet frames.
2046
*/
2047
gen_and(b0, b1);
2048
2049
/*
2050
* Now add the check for Ethernet_II frames, and
2051
* do that before checking for the other frame
2052
* types.
2053
*/
2054
b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ETHERTYPE_IPX);
2055
gen_or(b0, b1);
2056
return b1;
2057
2058
case ETHERTYPE_ATALK:
2059
case ETHERTYPE_AARP:
2060
/*
2061
* EtherTalk (AppleTalk protocols on Ethernet link
2062
* layer) may use 802.2 encapsulation.
2063
*/
2064
2065
/*
2066
* Check for 802.2 encapsulation (EtherTalk phase 2?);
2067
* we check for an Ethernet type field less than
2068
* 1500, which means it's an 802.3 length field.
2069
*/
2070
b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2071
gen_not(b0);
2072
2073
/*
2074
* 802.2-encapsulated ETHERTYPE_ATALK packets are
2075
* SNAP packets with an organization code of
2076
* 0x080007 (Apple, for Appletalk) and a protocol
2077
* type of ETHERTYPE_ATALK (Appletalk).
2078
*
2079
* 802.2-encapsulated ETHERTYPE_AARP packets are
2080
* SNAP packets with an organization code of
2081
* 0x000000 (encapsulated Ethernet) and a protocol
2082
* type of ETHERTYPE_AARP (Appletalk ARP).
2083
*/
2084
if (ll_proto == ETHERTYPE_ATALK)
2085
b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2086
else /* ll_proto == ETHERTYPE_AARP */
2087
b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2088
gen_and(b0, b1);
2089
2090
/*
2091
* Check for Ethernet encapsulation (Ethertalk
2092
* phase 1?); we just check for the Ethernet
2093
* protocol type.
2094
*/
2095
b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2096
2097
gen_or(b0, b1);
2098
return b1;
2099
2100
default:
2101
if (ll_proto <= ETHERMTU) {
2102
/*
2103
* This is an LLC SAP value, so the frames
2104
* that match would be 802.2 frames.
2105
* Check that the frame is an 802.2 frame
2106
* (i.e., that the length/type field is
2107
* a length field, <= ETHERMTU) and
2108
* then check the DSAP.
2109
*/
2110
b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2111
gen_not(b0);
2112
b1 = gen_cmp(cstate, OR_LINKTYPE, 2, BPF_B, ll_proto);
2113
gen_and(b0, b1);
2114
return b1;
2115
} else {
2116
/*
2117
* This is an Ethernet type, so compare
2118
* the length/type field with it (if
2119
* the frame is an 802.2 frame, the length
2120
* field will be <= ETHERMTU, and, as
2121
* "ll_proto" is > ETHERMTU, this test
2122
* will fail and the frame won't match,
2123
* which is what we want).
2124
*/
2125
return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2126
}
2127
}
2128
}
2129
2130
static struct block *
2131
gen_loopback_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2132
{
2133
/*
2134
* For DLT_NULL, the link-layer header is a 32-bit word
2135
* containing an AF_ value in *host* byte order, and for
2136
* DLT_ENC, the link-layer header begins with a 32-bit
2137
* word containing an AF_ value in host byte order.
2138
*
2139
* In addition, if we're reading a saved capture file,
2140
* the host byte order in the capture may not be the
2141
* same as the host byte order on this machine.
2142
*
2143
* For DLT_LOOP, the link-layer header is a 32-bit
2144
* word containing an AF_ value in *network* byte order.
2145
*/
2146
if (cstate->linktype == DLT_NULL || cstate->linktype == DLT_ENC) {
2147
/*
2148
* The AF_ value is in host byte order, but the BPF
2149
* interpreter will convert it to network byte order.
2150
*
2151
* If this is a save file, and it's from a machine
2152
* with the opposite byte order to ours, we byte-swap
2153
* the AF_ value.
2154
*
2155
* Then we run it through "htonl()", and generate
2156
* code to compare against the result.
2157
*/
2158
if (cstate->bpf_pcap->rfile != NULL && cstate->bpf_pcap->swapped)
2159
ll_proto = SWAPLONG(ll_proto);
2160
ll_proto = htonl(ll_proto);
2161
}
2162
return (gen_cmp(cstate, OR_LINKHDR, 0, BPF_W, ll_proto));
2163
}
2164
2165
/*
2166
* "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2167
* or IPv6 then we have an error.
2168
*/
2169
static struct block *
2170
gen_ipnet_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2171
{
2172
switch (ll_proto) {
2173
2174
case ETHERTYPE_IP:
2175
return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, IPH_AF_INET);
2176
/*NOTREACHED*/
2177
2178
case ETHERTYPE_IPV6:
2179
return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, IPH_AF_INET6);
2180
/*NOTREACHED*/
2181
2182
default:
2183
break;
2184
}
2185
2186
return gen_false(cstate);
2187
}
2188
2189
/*
2190
* Generate code to match a particular packet type.
2191
*
2192
* "ll_proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2193
* value, if <= ETHERMTU. We use that to determine whether to
2194
* match the type field or to check the type field for the special
2195
* LINUX_SLL_P_802_2 value and then do the appropriate test.
2196
*/
2197
static struct block *
2198
gen_linux_sll_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2199
{
2200
struct block *b0, *b1;
2201
2202
switch (ll_proto) {
2203
2204
case LLCSAP_ISONS:
2205
case LLCSAP_IP:
2206
case LLCSAP_NETBEUI:
2207
/*
2208
* OSI protocols and NetBEUI always use 802.2 encapsulation,
2209
* so we check the DSAP and SSAP.
2210
*
2211
* LLCSAP_IP checks for IP-over-802.2, rather
2212
* than IP-over-Ethernet or IP-over-SNAP.
2213
*
2214
* XXX - should we check both the DSAP and the
2215
* SSAP, like this, or should we check just the
2216
* DSAP, as we do for other types <= ETHERMTU
2217
* (i.e., other SAP values)?
2218
*/
2219
b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2220
b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (ll_proto << 8) | ll_proto);
2221
gen_and(b0, b1);
2222
return b1;
2223
2224
case LLCSAP_IPX:
2225
/*
2226
* Ethernet_II frames, which are Ethernet
2227
* frames with a frame type of ETHERTYPE_IPX;
2228
*
2229
* Ethernet_802.3 frames, which have a frame
2230
* type of LINUX_SLL_P_802_3;
2231
*
2232
* Ethernet_802.2 frames, which are 802.3
2233
* frames with an 802.2 LLC header (i.e, have
2234
* a frame type of LINUX_SLL_P_802_2) and
2235
* with the IPX LSAP as the DSAP in the LLC
2236
* header;
2237
*
2238
* Ethernet_SNAP frames, which are 802.3
2239
* frames with an LLC header and a SNAP
2240
* header and with an OUI of 0x000000
2241
* (encapsulated Ethernet) and a protocol
2242
* ID of ETHERTYPE_IPX in the SNAP header.
2243
*
2244
* First, do the checks on LINUX_SLL_P_802_2
2245
* frames; generate the check for either
2246
* Ethernet_802.2 or Ethernet_SNAP frames, and
2247
* then put a check for LINUX_SLL_P_802_2 frames
2248
* before it.
2249
*/
2250
b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
2251
b1 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2252
gen_or(b0, b1);
2253
b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2254
gen_and(b0, b1);
2255
2256
/*
2257
* Now check for 802.3 frames and OR that with
2258
* the previous test.
2259
*/
2260
b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_3);
2261
gen_or(b0, b1);
2262
2263
/*
2264
* Now add the check for Ethernet_II frames, and
2265
* do that before checking for the other frame
2266
* types.
2267
*/
2268
b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ETHERTYPE_IPX);
2269
gen_or(b0, b1);
2270
return b1;
2271
2272
case ETHERTYPE_ATALK:
2273
case ETHERTYPE_AARP:
2274
/*
2275
* EtherTalk (AppleTalk protocols on Ethernet link
2276
* layer) may use 802.2 encapsulation.
2277
*/
2278
2279
/*
2280
* Check for 802.2 encapsulation (EtherTalk phase 2?);
2281
* we check for the 802.2 protocol type in the
2282
* "Ethernet type" field.
2283
*/
2284
b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2285
2286
/*
2287
* 802.2-encapsulated ETHERTYPE_ATALK packets are
2288
* SNAP packets with an organization code of
2289
* 0x080007 (Apple, for Appletalk) and a protocol
2290
* type of ETHERTYPE_ATALK (Appletalk).
2291
*
2292
* 802.2-encapsulated ETHERTYPE_AARP packets are
2293
* SNAP packets with an organization code of
2294
* 0x000000 (encapsulated Ethernet) and a protocol
2295
* type of ETHERTYPE_AARP (Appletalk ARP).
2296
*/
2297
if (ll_proto == ETHERTYPE_ATALK)
2298
b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2299
else /* ll_proto == ETHERTYPE_AARP */
2300
b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2301
gen_and(b0, b1);
2302
2303
/*
2304
* Check for Ethernet encapsulation (Ethertalk
2305
* phase 1?); we just check for the Ethernet
2306
* protocol type.
2307
*/
2308
b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2309
2310
gen_or(b0, b1);
2311
return b1;
2312
2313
default:
2314
if (ll_proto <= ETHERMTU) {
2315
/*
2316
* This is an LLC SAP value, so the frames
2317
* that match would be 802.2 frames.
2318
* Check for the 802.2 protocol type
2319
* in the "Ethernet type" field, and
2320
* then check the DSAP.
2321
*/
2322
b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2323
b1 = gen_cmp(cstate, OR_LINKHDR, cstate->off_linkpl.constant_part, BPF_B,
2324
ll_proto);
2325
gen_and(b0, b1);
2326
return b1;
2327
} else {
2328
/*
2329
* This is an Ethernet type, so compare
2330
* the length/type field with it (if
2331
* the frame is an 802.2 frame, the length
2332
* field will be <= ETHERMTU, and, as
2333
* "ll_proto" is > ETHERMTU, this test
2334
* will fail and the frame won't match,
2335
* which is what we want).
2336
*/
2337
return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2338
}
2339
}
2340
}
2341
2342
/*
2343
* Load a value relative to the beginning of the link-layer header after the
2344
* pflog header.
2345
*/
2346
static struct slist *
2347
gen_load_pflog_llprefixlen(compiler_state_t *cstate)
2348
{
2349
struct slist *s1, *s2;
2350
2351
/*
2352
* Generate code to load the length of the pflog header into
2353
* the register assigned to hold that length, if one has been
2354
* assigned. (If one hasn't been assigned, no code we've
2355
* generated uses that prefix, so we don't need to generate any
2356
* code to load it.)
2357
*/
2358
if (cstate->off_linkpl.reg != -1) {
2359
/*
2360
* The length is in the first byte of the header.
2361
*/
2362
s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2363
s1->s.k = 0;
2364
2365
/*
2366
* Round it up to a multiple of 4.
2367
* Add 3, and clear the lower 2 bits.
2368
*/
2369
s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
2370
s2->s.k = 3;
2371
sappend(s1, s2);
2372
s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2373
s2->s.k = 0xfffffffc;
2374
sappend(s1, s2);
2375
2376
/*
2377
* Now allocate a register to hold that value and store
2378
* it.
2379
*/
2380
s2 = new_stmt(cstate, BPF_ST);
2381
s2->s.k = cstate->off_linkpl.reg;
2382
sappend(s1, s2);
2383
2384
/*
2385
* Now move it into the X register.
2386
*/
2387
s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2388
sappend(s1, s2);
2389
2390
return (s1);
2391
} else
2392
return (NULL);
2393
}
2394
2395
static struct slist *
2396
gen_load_prism_llprefixlen(compiler_state_t *cstate)
2397
{
2398
struct slist *s1, *s2;
2399
struct slist *sjeq_avs_cookie;
2400
struct slist *sjcommon;
2401
2402
/*
2403
* This code is not compatible with the optimizer, as
2404
* we are generating jmp instructions within a normal
2405
* slist of instructions
2406
*/
2407
cstate->no_optimize = 1;
2408
2409
/*
2410
* Generate code to load the length of the radio header into
2411
* the register assigned to hold that length, if one has been
2412
* assigned. (If one hasn't been assigned, no code we've
2413
* generated uses that prefix, so we don't need to generate any
2414
* code to load it.)
2415
*
2416
* Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2417
* or always use the AVS header rather than the Prism header.
2418
* We load a 4-byte big-endian value at the beginning of the
2419
* raw packet data, and see whether, when masked with 0xFFFFF000,
2420
* it's equal to 0x80211000. If so, that indicates that it's
2421
* an AVS header (the masked-out bits are the version number).
2422
* Otherwise, it's a Prism header.
2423
*
2424
* XXX - the Prism header is also, in theory, variable-length,
2425
* but no known software generates headers that aren't 144
2426
* bytes long.
2427
*/
2428
if (cstate->off_linkhdr.reg != -1) {
2429
/*
2430
* Load the cookie.
2431
*/
2432
s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2433
s1->s.k = 0;
2434
2435
/*
2436
* AND it with 0xFFFFF000.
2437
*/
2438
s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2439
s2->s.k = 0xFFFFF000;
2440
sappend(s1, s2);
2441
2442
/*
2443
* Compare with 0x80211000.
2444
*/
2445
sjeq_avs_cookie = new_stmt(cstate, JMP(BPF_JEQ));
2446
sjeq_avs_cookie->s.k = 0x80211000;
2447
sappend(s1, sjeq_avs_cookie);
2448
2449
/*
2450
* If it's AVS:
2451
*
2452
* The 4 bytes at an offset of 4 from the beginning of
2453
* the AVS header are the length of the AVS header.
2454
* That field is big-endian.
2455
*/
2456
s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2457
s2->s.k = 4;
2458
sappend(s1, s2);
2459
sjeq_avs_cookie->s.jt = s2;
2460
2461
/*
2462
* Now jump to the code to allocate a register
2463
* into which to save the header length and
2464
* store the length there. (The "jump always"
2465
* instruction needs to have the k field set;
2466
* it's added to the PC, so, as we're jumping
2467
* over a single instruction, it should be 1.)
2468
*/
2469
sjcommon = new_stmt(cstate, JMP(BPF_JA));
2470
sjcommon->s.k = 1;
2471
sappend(s1, sjcommon);
2472
2473
/*
2474
* Now for the code that handles the Prism header.
2475
* Just load the length of the Prism header (144)
2476
* into the A register. Have the test for an AVS
2477
* header branch here if we don't have an AVS header.
2478
*/
2479
s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
2480
s2->s.k = 144;
2481
sappend(s1, s2);
2482
sjeq_avs_cookie->s.jf = s2;
2483
2484
/*
2485
* Now allocate a register to hold that value and store
2486
* it. The code for the AVS header will jump here after
2487
* loading the length of the AVS header.
2488
*/
2489
s2 = new_stmt(cstate, BPF_ST);
2490
s2->s.k = cstate->off_linkhdr.reg;
2491
sappend(s1, s2);
2492
sjcommon->s.jf = s2;
2493
2494
/*
2495
* Now move it into the X register.
2496
*/
2497
s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2498
sappend(s1, s2);
2499
2500
return (s1);
2501
} else
2502
return (NULL);
2503
}
2504
2505
static struct slist *
2506
gen_load_avs_llprefixlen(compiler_state_t *cstate)
2507
{
2508
struct slist *s1, *s2;
2509
2510
/*
2511
* Generate code to load the length of the AVS header into
2512
* the register assigned to hold that length, if one has been
2513
* assigned. (If one hasn't been assigned, no code we've
2514
* generated uses that prefix, so we don't need to generate any
2515
* code to load it.)
2516
*/
2517
if (cstate->off_linkhdr.reg != -1) {
2518
/*
2519
* The 4 bytes at an offset of 4 from the beginning of
2520
* the AVS header are the length of the AVS header.
2521
* That field is big-endian.
2522
*/
2523
s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2524
s1->s.k = 4;
2525
2526
/*
2527
* Now allocate a register to hold that value and store
2528
* it.
2529
*/
2530
s2 = new_stmt(cstate, BPF_ST);
2531
s2->s.k = cstate->off_linkhdr.reg;
2532
sappend(s1, s2);
2533
2534
/*
2535
* Now move it into the X register.
2536
*/
2537
s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2538
sappend(s1, s2);
2539
2540
return (s1);
2541
} else
2542
return (NULL);
2543
}
2544
2545
static struct slist *
2546
gen_load_radiotap_llprefixlen(compiler_state_t *cstate)
2547
{
2548
struct slist *s1, *s2;
2549
2550
/*
2551
* Generate code to load the length of the radiotap header into
2552
* the register assigned to hold that length, if one has been
2553
* assigned. (If one hasn't been assigned, no code we've
2554
* generated uses that prefix, so we don't need to generate any
2555
* code to load it.)
2556
*/
2557
if (cstate->off_linkhdr.reg != -1) {
2558
/*
2559
* The 2 bytes at offsets of 2 and 3 from the beginning
2560
* of the radiotap header are the length of the radiotap
2561
* header; unfortunately, it's little-endian, so we have
2562
* to load it a byte at a time and construct the value.
2563
*/
2564
2565
/*
2566
* Load the high-order byte, at an offset of 3, shift it
2567
* left a byte, and put the result in the X register.
2568
*/
2569
s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2570
s1->s.k = 3;
2571
s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2572
sappend(s1, s2);
2573
s2->s.k = 8;
2574
s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2575
sappend(s1, s2);
2576
2577
/*
2578
* Load the next byte, at an offset of 2, and OR the
2579
* value from the X register into it.
2580
*/
2581
s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2582
sappend(s1, s2);
2583
s2->s.k = 2;
2584
s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2585
sappend(s1, s2);
2586
2587
/*
2588
* Now allocate a register to hold that value and store
2589
* it.
2590
*/
2591
s2 = new_stmt(cstate, BPF_ST);
2592
s2->s.k = cstate->off_linkhdr.reg;
2593
sappend(s1, s2);
2594
2595
/*
2596
* Now move it into the X register.
2597
*/
2598
s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2599
sappend(s1, s2);
2600
2601
return (s1);
2602
} else
2603
return (NULL);
2604
}
2605
2606
/*
2607
* At the moment we treat PPI as normal Radiotap encoded
2608
* packets. The difference is in the function that generates
2609
* the code at the beginning to compute the header length.
2610
* Since this code generator of PPI supports bare 802.11
2611
* encapsulation only (i.e. the encapsulated DLT should be
2612
* DLT_IEEE802_11) we generate code to check for this too;
2613
* that's done in finish_parse().
2614
*/
2615
static struct slist *
2616
gen_load_ppi_llprefixlen(compiler_state_t *cstate)
2617
{
2618
struct slist *s1, *s2;
2619
2620
/*
2621
* Generate code to load the length of the radiotap header
2622
* into the register assigned to hold that length, if one has
2623
* been assigned.
2624
*/
2625
if (cstate->off_linkhdr.reg != -1) {
2626
/*
2627
* The 2 bytes at offsets of 2 and 3 from the beginning
2628
* of the radiotap header are the length of the radiotap
2629
* header; unfortunately, it's little-endian, so we have
2630
* to load it a byte at a time and construct the value.
2631
*/
2632
2633
/*
2634
* Load the high-order byte, at an offset of 3, shift it
2635
* left a byte, and put the result in the X register.
2636
*/
2637
s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2638
s1->s.k = 3;
2639
s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2640
sappend(s1, s2);
2641
s2->s.k = 8;
2642
s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2643
sappend(s1, s2);
2644
2645
/*
2646
* Load the next byte, at an offset of 2, and OR the
2647
* value from the X register into it.
2648
*/
2649
s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2650
sappend(s1, s2);
2651
s2->s.k = 2;
2652
s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2653
sappend(s1, s2);
2654
2655
/*
2656
* Now allocate a register to hold that value and store
2657
* it.
2658
*/
2659
s2 = new_stmt(cstate, BPF_ST);
2660
s2->s.k = cstate->off_linkhdr.reg;
2661
sappend(s1, s2);
2662
2663
/*
2664
* Now move it into the X register.
2665
*/
2666
s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2667
sappend(s1, s2);
2668
2669
return (s1);
2670
} else
2671
return (NULL);
2672
}
2673
2674
/*
2675
* Load a value relative to the beginning of the link-layer header after the 802.11
2676
* header, i.e. LLC_SNAP.
2677
* The link-layer header doesn't necessarily begin at the beginning
2678
* of the packet data; there might be a variable-length prefix containing
2679
* radio information.
2680
*/
2681
static struct slist *
2682
gen_load_802_11_header_len(compiler_state_t *cstate, struct slist *s, struct slist *snext)
2683
{
2684
struct slist *s2;
2685
struct slist *sjset_data_frame_1;
2686
struct slist *sjset_data_frame_2;
2687
struct slist *sjset_qos;
2688
struct slist *sjset_radiotap_flags_present;
2689
struct slist *sjset_radiotap_ext_present;
2690
struct slist *sjset_radiotap_tsft_present;
2691
struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2692
struct slist *s_roundup;
2693
2694
if (cstate->off_linkpl.reg == -1) {
2695
/*
2696
* No register has been assigned to the offset of
2697
* the link-layer payload, which means nobody needs
2698
* it; don't bother computing it - just return
2699
* what we already have.
2700
*/
2701
return (s);
2702
}
2703
2704
/*
2705
* This code is not compatible with the optimizer, as
2706
* we are generating jmp instructions within a normal
2707
* slist of instructions
2708
*/
2709
cstate->no_optimize = 1;
2710
2711
/*
2712
* If "s" is non-null, it has code to arrange that the X register
2713
* contains the length of the prefix preceding the link-layer
2714
* header.
2715
*
2716
* Otherwise, the length of the prefix preceding the link-layer
2717
* header is "off_outermostlinkhdr.constant_part".
2718
*/
2719
if (s == NULL) {
2720
/*
2721
* There is no variable-length header preceding the
2722
* link-layer header.
2723
*
2724
* Load the length of the fixed-length prefix preceding
2725
* the link-layer header (if any) into the X register,
2726
* and store it in the cstate->off_linkpl.reg register.
2727
* That length is off_outermostlinkhdr.constant_part.
2728
*/
2729
s = new_stmt(cstate, BPF_LDX|BPF_IMM);
2730
s->s.k = cstate->off_outermostlinkhdr.constant_part;
2731
}
2732
2733
/*
2734
* The X register contains the offset of the beginning of the
2735
* link-layer header; add 24, which is the minimum length
2736
* of the MAC header for a data frame, to that, and store it
2737
* in cstate->off_linkpl.reg, and then load the Frame Control field,
2738
* which is at the offset in the X register, with an indexed load.
2739
*/
2740
s2 = new_stmt(cstate, BPF_MISC|BPF_TXA);
2741
sappend(s, s2);
2742
s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
2743
s2->s.k = 24;
2744
sappend(s, s2);
2745
s2 = new_stmt(cstate, BPF_ST);
2746
s2->s.k = cstate->off_linkpl.reg;
2747
sappend(s, s2);
2748
2749
s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
2750
s2->s.k = 0;
2751
sappend(s, s2);
2752
2753
/*
2754
* Check the Frame Control field to see if this is a data frame;
2755
* a data frame has the 0x08 bit (b3) in that field set and the
2756
* 0x04 bit (b2) clear.
2757
*/
2758
sjset_data_frame_1 = new_stmt(cstate, JMP(BPF_JSET));
2759
sjset_data_frame_1->s.k = 0x08;
2760
sappend(s, sjset_data_frame_1);
2761
2762
/*
2763
* If b3 is set, test b2, otherwise go to the first statement of
2764
* the rest of the program.
2765
*/
2766
sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(cstate, JMP(BPF_JSET));
2767
sjset_data_frame_2->s.k = 0x04;
2768
sappend(s, sjset_data_frame_2);
2769
sjset_data_frame_1->s.jf = snext;
2770
2771
/*
2772
* If b2 is not set, this is a data frame; test the QoS bit.
2773
* Otherwise, go to the first statement of the rest of the
2774
* program.
2775
*/
2776
sjset_data_frame_2->s.jt = snext;
2777
sjset_data_frame_2->s.jf = sjset_qos = new_stmt(cstate, JMP(BPF_JSET));
2778
sjset_qos->s.k = 0x80; /* QoS bit */
2779
sappend(s, sjset_qos);
2780
2781
/*
2782
* If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
2783
* field.
2784
* Otherwise, go to the first statement of the rest of the
2785
* program.
2786
*/
2787
sjset_qos->s.jt = s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
2788
s2->s.k = cstate->off_linkpl.reg;
2789
sappend(s, s2);
2790
s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2791
s2->s.k = 2;
2792
sappend(s, s2);
2793
s2 = new_stmt(cstate, BPF_ST);
2794
s2->s.k = cstate->off_linkpl.reg;
2795
sappend(s, s2);
2796
2797
/*
2798
* If we have a radiotap header, look at it to see whether
2799
* there's Atheros padding between the MAC-layer header
2800
* and the payload.
2801
*
2802
* Note: all of the fields in the radiotap header are
2803
* little-endian, so we byte-swap all of the values
2804
* we test against, as they will be loaded as big-endian
2805
* values.
2806
*
2807
* XXX - in the general case, we would have to scan through
2808
* *all* the presence bits, if there's more than one word of
2809
* presence bits. That would require a loop, meaning that
2810
* we wouldn't be able to run the filter in the kernel.
2811
*
2812
* We assume here that the Atheros adapters that insert the
2813
* annoying padding don't have multiple antennae and therefore
2814
* do not generate radiotap headers with multiple presence words.
2815
*/
2816
if (cstate->linktype == DLT_IEEE802_11_RADIO) {
2817
/*
2818
* Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2819
* in the first presence flag word?
2820
*/
2821
sjset_qos->s.jf = s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_W);
2822
s2->s.k = 4;
2823
sappend(s, s2);
2824
2825
sjset_radiotap_flags_present = new_stmt(cstate, JMP(BPF_JSET));
2826
sjset_radiotap_flags_present->s.k = SWAPLONG(0x00000002);
2827
sappend(s, sjset_radiotap_flags_present);
2828
2829
/*
2830
* If not, skip all of this.
2831
*/
2832
sjset_radiotap_flags_present->s.jf = snext;
2833
2834
/*
2835
* Otherwise, is the "extension" bit set in that word?
2836
*/
2837
sjset_radiotap_ext_present = new_stmt(cstate, JMP(BPF_JSET));
2838
sjset_radiotap_ext_present->s.k = SWAPLONG(0x80000000);
2839
sappend(s, sjset_radiotap_ext_present);
2840
sjset_radiotap_flags_present->s.jt = sjset_radiotap_ext_present;
2841
2842
/*
2843
* If so, skip all of this.
2844
*/
2845
sjset_radiotap_ext_present->s.jt = snext;
2846
2847
/*
2848
* Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2849
*/
2850
sjset_radiotap_tsft_present = new_stmt(cstate, JMP(BPF_JSET));
2851
sjset_radiotap_tsft_present->s.k = SWAPLONG(0x00000001);
2852
sappend(s, sjset_radiotap_tsft_present);
2853
sjset_radiotap_ext_present->s.jf = sjset_radiotap_tsft_present;
2854
2855
/*
2856
* If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2857
* at an offset of 16 from the beginning of the raw packet
2858
* data (8 bytes for the radiotap header and 8 bytes for
2859
* the TSFT field).
2860
*
2861
* Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2862
* is set.
2863
*/
2864
s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2865
s2->s.k = 16;
2866
sappend(s, s2);
2867
sjset_radiotap_tsft_present->s.jt = s2;
2868
2869
sjset_tsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2870
sjset_tsft_datapad->s.k = 0x20;
2871
sappend(s, sjset_tsft_datapad);
2872
2873
/*
2874
* If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2875
* at an offset of 8 from the beginning of the raw packet
2876
* data (8 bytes for the radiotap header).
2877
*
2878
* Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2879
* is set.
2880
*/
2881
s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2882
s2->s.k = 8;
2883
sappend(s, s2);
2884
sjset_radiotap_tsft_present->s.jf = s2;
2885
2886
sjset_notsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2887
sjset_notsft_datapad->s.k = 0x20;
2888
sappend(s, sjset_notsft_datapad);
2889
2890
/*
2891
* In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2892
* set, round the length of the 802.11 header to
2893
* a multiple of 4. Do that by adding 3 and then
2894
* dividing by and multiplying by 4, which we do by
2895
* ANDing with ~3.
2896
*/
2897
s_roundup = new_stmt(cstate, BPF_LD|BPF_MEM);
2898
s_roundup->s.k = cstate->off_linkpl.reg;
2899
sappend(s, s_roundup);
2900
s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2901
s2->s.k = 3;
2902
sappend(s, s2);
2903
s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_IMM);
2904
s2->s.k = (bpf_u_int32)~3;
2905
sappend(s, s2);
2906
s2 = new_stmt(cstate, BPF_ST);
2907
s2->s.k = cstate->off_linkpl.reg;
2908
sappend(s, s2);
2909
2910
sjset_tsft_datapad->s.jt = s_roundup;
2911
sjset_tsft_datapad->s.jf = snext;
2912
sjset_notsft_datapad->s.jt = s_roundup;
2913
sjset_notsft_datapad->s.jf = snext;
2914
} else
2915
sjset_qos->s.jf = snext;
2916
2917
return s;
2918
}
2919
2920
static void
2921
insert_compute_vloffsets(compiler_state_t *cstate, struct block *b)
2922
{
2923
struct slist *s;
2924
2925
/* There is an implicit dependency between the link
2926
* payload and link header since the payload computation
2927
* includes the variable part of the header. Therefore,
2928
* if nobody else has allocated a register for the link
2929
* header and we need it, do it now. */
2930
if (cstate->off_linkpl.reg != -1 && cstate->off_linkhdr.is_variable &&
2931
cstate->off_linkhdr.reg == -1)
2932
cstate->off_linkhdr.reg = alloc_reg(cstate);
2933
2934
/*
2935
* For link-layer types that have a variable-length header
2936
* preceding the link-layer header, generate code to load
2937
* the offset of the link-layer header into the register
2938
* assigned to that offset, if any.
2939
*
2940
* XXX - this, and the next switch statement, won't handle
2941
* encapsulation of 802.11 or 802.11+radio information in
2942
* some other protocol stack. That's significantly more
2943
* complicated.
2944
*/
2945
switch (cstate->outermostlinktype) {
2946
2947
case DLT_PRISM_HEADER:
2948
s = gen_load_prism_llprefixlen(cstate);
2949
break;
2950
2951
case DLT_IEEE802_11_RADIO_AVS:
2952
s = gen_load_avs_llprefixlen(cstate);
2953
break;
2954
2955
case DLT_IEEE802_11_RADIO:
2956
s = gen_load_radiotap_llprefixlen(cstate);
2957
break;
2958
2959
case DLT_PPI:
2960
s = gen_load_ppi_llprefixlen(cstate);
2961
break;
2962
2963
default:
2964
s = NULL;
2965
break;
2966
}
2967
2968
/*
2969
* For link-layer types that have a variable-length link-layer
2970
* header, generate code to load the offset of the link-layer
2971
* payload into the register assigned to that offset, if any.
2972
*/
2973
switch (cstate->outermostlinktype) {
2974
2975
case DLT_IEEE802_11:
2976
case DLT_PRISM_HEADER:
2977
case DLT_IEEE802_11_RADIO_AVS:
2978
case DLT_IEEE802_11_RADIO:
2979
case DLT_PPI:
2980
s = gen_load_802_11_header_len(cstate, s, b->stmts);
2981
break;
2982
2983
case DLT_PFLOG:
2984
s = gen_load_pflog_llprefixlen(cstate);
2985
break;
2986
}
2987
2988
/*
2989
* If there is no initialization yet and we need variable
2990
* length offsets for VLAN, initialize them to zero
2991
*/
2992
if (s == NULL && cstate->is_vlan_vloffset) {
2993
struct slist *s2;
2994
2995
if (cstate->off_linkpl.reg == -1)
2996
cstate->off_linkpl.reg = alloc_reg(cstate);
2997
if (cstate->off_linktype.reg == -1)
2998
cstate->off_linktype.reg = alloc_reg(cstate);
2999
3000
s = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
3001
s->s.k = 0;
3002
s2 = new_stmt(cstate, BPF_ST);
3003
s2->s.k = cstate->off_linkpl.reg;
3004
sappend(s, s2);
3005
s2 = new_stmt(cstate, BPF_ST);
3006
s2->s.k = cstate->off_linktype.reg;
3007
sappend(s, s2);
3008
}
3009
3010
/*
3011
* If we have any offset-loading code, append all the
3012
* existing statements in the block to those statements,
3013
* and make the resulting list the list of statements
3014
* for the block.
3015
*/
3016
if (s != NULL) {
3017
sappend(s, b->stmts);
3018
b->stmts = s;
3019
}
3020
}
3021
3022
static struct block *
3023
gen_ppi_dlt_check(compiler_state_t *cstate)
3024
{
3025
struct slist *s_load_dlt;
3026
struct block *b;
3027
3028
if (cstate->linktype == DLT_PPI)
3029
{
3030
/* Create the statements that check for the DLT
3031
*/
3032
s_load_dlt = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
3033
s_load_dlt->s.k = 4;
3034
3035
b = new_block(cstate, JMP(BPF_JEQ));
3036
3037
b->stmts = s_load_dlt;
3038
b->s.k = SWAPLONG(DLT_IEEE802_11);
3039
}
3040
else
3041
{
3042
b = NULL;
3043
}
3044
3045
return b;
3046
}
3047
3048
/*
3049
* Take an absolute offset, and:
3050
*
3051
* if it has no variable part, return NULL;
3052
*
3053
* if it has a variable part, generate code to load the register
3054
* containing that variable part into the X register, returning
3055
* a pointer to that code - if no register for that offset has
3056
* been allocated, allocate it first.
3057
*
3058
* (The code to set that register will be generated later, but will
3059
* be placed earlier in the code sequence.)
3060
*/
3061
static struct slist *
3062
gen_abs_offset_varpart(compiler_state_t *cstate, bpf_abs_offset *off)
3063
{
3064
struct slist *s;
3065
3066
if (off->is_variable) {
3067
if (off->reg == -1) {
3068
/*
3069
* We haven't yet assigned a register for the
3070
* variable part of the offset of the link-layer
3071
* header; allocate one.
3072
*/
3073
off->reg = alloc_reg(cstate);
3074
}
3075
3076
/*
3077
* Load the register containing the variable part of the
3078
* offset of the link-layer header into the X register.
3079
*/
3080
s = new_stmt(cstate, BPF_LDX|BPF_MEM);
3081
s->s.k = off->reg;
3082
return s;
3083
} else {
3084
/*
3085
* That offset isn't variable, there's no variable part,
3086
* so we don't need to generate any code.
3087
*/
3088
return NULL;
3089
}
3090
}
3091
3092
/*
3093
* Map an Ethernet type to the equivalent PPP type.
3094
*/
3095
static bpf_u_int32
3096
ethertype_to_ppptype(bpf_u_int32 ll_proto)
3097
{
3098
switch (ll_proto) {
3099
3100
case ETHERTYPE_IP:
3101
ll_proto = PPP_IP;
3102
break;
3103
3104
case ETHERTYPE_IPV6:
3105
ll_proto = PPP_IPV6;
3106
break;
3107
3108
case ETHERTYPE_DN:
3109
ll_proto = PPP_DECNET;
3110
break;
3111
3112
case ETHERTYPE_ATALK:
3113
ll_proto = PPP_APPLE;
3114
break;
3115
3116
case ETHERTYPE_NS:
3117
ll_proto = PPP_NS;
3118
break;
3119
3120
case LLCSAP_ISONS:
3121
ll_proto = PPP_OSI;
3122
break;
3123
3124
case LLCSAP_8021D:
3125
/*
3126
* I'm assuming the "Bridging PDU"s that go
3127
* over PPP are Spanning Tree Protocol
3128
* Bridging PDUs.
3129
*/
3130
ll_proto = PPP_BRPDU;
3131
break;
3132
3133
case LLCSAP_IPX:
3134
ll_proto = PPP_IPX;
3135
break;
3136
}
3137
return (ll_proto);
3138
}
3139
3140
/*
3141
* Generate any tests that, for encapsulation of a link-layer packet
3142
* inside another protocol stack, need to be done to check for those
3143
* link-layer packets (and that haven't already been done by a check
3144
* for that encapsulation).
3145
*/
3146
static struct block *
3147
gen_prevlinkhdr_check(compiler_state_t *cstate)
3148
{
3149
struct block *b0;
3150
3151
if (cstate->is_geneve)
3152
return gen_geneve_ll_check(cstate);
3153
3154
switch (cstate->prevlinktype) {
3155
3156
case DLT_SUNATM:
3157
/*
3158
* This is LANE-encapsulated Ethernet; check that the LANE
3159
* packet doesn't begin with an LE Control marker, i.e.
3160
* that it's data, not a control message.
3161
*
3162
* (We've already generated a test for LANE.)
3163
*/
3164
b0 = gen_cmp(cstate, OR_PREVLINKHDR, SUNATM_PKT_BEGIN_POS, BPF_H, 0xFF00);
3165
gen_not(b0);
3166
return b0;
3167
3168
default:
3169
/*
3170
* No such tests are necessary.
3171
*/
3172
return NULL;
3173
}
3174
/*NOTREACHED*/
3175
}
3176
3177
/*
3178
* The three different values we should check for when checking for an
3179
* IPv6 packet with DLT_NULL.
3180
*/
3181
#define BSD_AFNUM_INET6_BSD 24 /* NetBSD, OpenBSD, BSD/OS, Npcap */
3182
#define BSD_AFNUM_INET6_FREEBSD 28 /* FreeBSD */
3183
#define BSD_AFNUM_INET6_DARWIN 30 /* macOS, iOS, other Darwin-based OSes */
3184
3185
/*
3186
* Generate code to match a particular packet type by matching the
3187
* link-layer type field or fields in the 802.2 LLC header.
3188
*
3189
* "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3190
* value, if <= ETHERMTU.
3191
*/
3192
static struct block *
3193
gen_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
3194
{
3195
struct block *b0, *b1, *b2;
3196
const char *description;
3197
3198
/* are we checking MPLS-encapsulated packets? */
3199
if (cstate->label_stack_depth > 0)
3200
return gen_mpls_linktype(cstate, ll_proto);
3201
3202
switch (cstate->linktype) {
3203
3204
case DLT_EN10MB:
3205
case DLT_NETANALYZER:
3206
case DLT_NETANALYZER_TRANSPARENT:
3207
/* Geneve has an EtherType regardless of whether there is an
3208
* L2 header. */
3209
if (!cstate->is_geneve)
3210
b0 = gen_prevlinkhdr_check(cstate);
3211
else
3212
b0 = NULL;
3213
3214
b1 = gen_ether_linktype(cstate, ll_proto);
3215
if (b0 != NULL)
3216
gen_and(b0, b1);
3217
return b1;
3218
/*NOTREACHED*/
3219
3220
case DLT_C_HDLC:
3221
case DLT_HDLC:
3222
switch (ll_proto) {
3223
3224
case LLCSAP_ISONS:
3225
ll_proto = (ll_proto << 8 | LLCSAP_ISONS);
3226
/* fall through */
3227
3228
default:
3229
return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
3230
/*NOTREACHED*/
3231
}
3232
3233
case DLT_IEEE802_11:
3234
case DLT_PRISM_HEADER:
3235
case DLT_IEEE802_11_RADIO_AVS:
3236
case DLT_IEEE802_11_RADIO:
3237
case DLT_PPI:
3238
/*
3239
* Check that we have a data frame.
3240
*/
3241
b0 = gen_check_802_11_data_frame(cstate);
3242
3243
/*
3244
* Now check for the specified link-layer type.
3245
*/
3246
b1 = gen_llc_linktype(cstate, ll_proto);
3247
gen_and(b0, b1);
3248
return b1;
3249
/*NOTREACHED*/
3250
3251
case DLT_FDDI:
3252
/*
3253
* XXX - check for LLC frames.
3254
*/
3255
return gen_llc_linktype(cstate, ll_proto);
3256
/*NOTREACHED*/
3257
3258
case DLT_IEEE802:
3259
/*
3260
* XXX - check for LLC PDUs, as per IEEE 802.5.
3261
*/
3262
return gen_llc_linktype(cstate, ll_proto);
3263
/*NOTREACHED*/
3264
3265
case DLT_ATM_RFC1483:
3266
case DLT_ATM_CLIP:
3267
case DLT_IP_OVER_FC:
3268
return gen_llc_linktype(cstate, ll_proto);
3269
/*NOTREACHED*/
3270
3271
case DLT_SUNATM:
3272
/*
3273
* Check for an LLC-encapsulated version of this protocol;
3274
* if we were checking for LANE, linktype would no longer
3275
* be DLT_SUNATM.
3276
*
3277
* Check for LLC encapsulation and then check the protocol.
3278
*/
3279
b0 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3280
b1 = gen_llc_linktype(cstate, ll_proto);
3281
gen_and(b0, b1);
3282
return b1;
3283
/*NOTREACHED*/
3284
3285
case DLT_LINUX_SLL:
3286
return gen_linux_sll_linktype(cstate, ll_proto);
3287
/*NOTREACHED*/
3288
3289
case DLT_SLIP:
3290
case DLT_SLIP_BSDOS:
3291
case DLT_RAW:
3292
/*
3293
* These types don't provide any type field; packets
3294
* are always IPv4 or IPv6.
3295
*
3296
* XXX - for IPv4, check for a version number of 4, and,
3297
* for IPv6, check for a version number of 6?
3298
*/
3299
switch (ll_proto) {
3300
3301
case ETHERTYPE_IP:
3302
/* Check for a version number of 4. */
3303
return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x40, 0xF0);
3304
3305
case ETHERTYPE_IPV6:
3306
/* Check for a version number of 6. */
3307
return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x60, 0xF0);
3308
3309
default:
3310
return gen_false(cstate); /* always false */
3311
}
3312
/*NOTREACHED*/
3313
3314
case DLT_IPV4:
3315
/*
3316
* Raw IPv4, so no type field.
3317
*/
3318
if (ll_proto == ETHERTYPE_IP)
3319
return gen_true(cstate); /* always true */
3320
3321
/* Checking for something other than IPv4; always false */
3322
return gen_false(cstate);
3323
/*NOTREACHED*/
3324
3325
case DLT_IPV6:
3326
/*
3327
* Raw IPv6, so no type field.
3328
*/
3329
if (ll_proto == ETHERTYPE_IPV6)
3330
return gen_true(cstate); /* always true */
3331
3332
/* Checking for something other than IPv6; always false */
3333
return gen_false(cstate);
3334
/*NOTREACHED*/
3335
3336
case DLT_PPP:
3337
case DLT_PPP_PPPD:
3338
case DLT_PPP_SERIAL:
3339
case DLT_PPP_ETHER:
3340
/*
3341
* We use Ethernet protocol types inside libpcap;
3342
* map them to the corresponding PPP protocol types.
3343
*/
3344
return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3345
ethertype_to_ppptype(ll_proto));
3346
/*NOTREACHED*/
3347
3348
case DLT_PPP_BSDOS:
3349
/*
3350
* We use Ethernet protocol types inside libpcap;
3351
* map them to the corresponding PPP protocol types.
3352
*/
3353
switch (ll_proto) {
3354
3355
case ETHERTYPE_IP:
3356
/*
3357
* Also check for Van Jacobson-compressed IP.
3358
* XXX - do this for other forms of PPP?
3359
*/
3360
b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_IP);
3361
b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJC);
3362
gen_or(b0, b1);
3363
b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJNC);
3364
gen_or(b1, b0);
3365
return b0;
3366
3367
default:
3368
return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3369
ethertype_to_ppptype(ll_proto));
3370
}
3371
/*NOTREACHED*/
3372
3373
case DLT_NULL:
3374
case DLT_LOOP:
3375
case DLT_ENC:
3376
switch (ll_proto) {
3377
3378
case ETHERTYPE_IP:
3379
return (gen_loopback_linktype(cstate, AF_INET));
3380
3381
case ETHERTYPE_IPV6:
3382
/*
3383
* AF_ values may, unfortunately, be platform-
3384
* dependent; AF_INET isn't, because everybody
3385
* used 4.2BSD's value, but AF_INET6 is, because
3386
* 4.2BSD didn't have a value for it (given that
3387
* IPv6 didn't exist back in the early 1980's),
3388
* and they all picked their own values.
3389
*
3390
* This means that, if we're reading from a
3391
* savefile, we need to check for all the
3392
* possible values.
3393
*
3394
* If we're doing a live capture, we only need
3395
* to check for this platform's value; however,
3396
* Npcap uses 24, which isn't Windows's AF_INET6
3397
* value. (Given the multiple different values,
3398
* programs that read pcap files shouldn't be
3399
* checking for their platform's AF_INET6 value
3400
* anyway, they should check for all of the
3401
* possible values. and they might as well do
3402
* that even for live captures.)
3403
*/
3404
if (cstate->bpf_pcap->rfile != NULL) {
3405
/*
3406
* Savefile - check for all three
3407
* possible IPv6 values.
3408
*/
3409
b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_BSD);
3410
b1 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_FREEBSD);
3411
gen_or(b0, b1);
3412
b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_DARWIN);
3413
gen_or(b0, b1);
3414
return (b1);
3415
} else {
3416
/*
3417
* Live capture, so we only need to
3418
* check for the value used on this
3419
* platform.
3420
*/
3421
#ifdef _WIN32
3422
/*
3423
* Npcap doesn't use Windows's AF_INET6,
3424
* as that collides with AF_IPX on
3425
* some BSDs (both have the value 23).
3426
* Instead, it uses 24.
3427
*/
3428
return (gen_loopback_linktype(cstate, 24));
3429
#else /* _WIN32 */
3430
#ifdef AF_INET6
3431
return (gen_loopback_linktype(cstate, AF_INET6));
3432
#else /* AF_INET6 */
3433
/*
3434
* I guess this platform doesn't support
3435
* IPv6, so we just reject all packets.
3436
*/
3437
return gen_false(cstate);
3438
#endif /* AF_INET6 */
3439
#endif /* _WIN32 */
3440
}
3441
3442
default:
3443
/*
3444
* Not a type on which we support filtering.
3445
* XXX - support those that have AF_ values
3446
* #defined on this platform, at least?
3447
*/
3448
return gen_false(cstate);
3449
}
3450
3451
case DLT_PFLOG:
3452
/*
3453
* af field is host byte order in contrast to the rest of
3454
* the packet.
3455
*/
3456
if (ll_proto == ETHERTYPE_IP)
3457
return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3458
BPF_B, AF_INET));
3459
else if (ll_proto == ETHERTYPE_IPV6)
3460
return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3461
BPF_B, AF_INET6));
3462
else
3463
return gen_false(cstate);
3464
/*NOTREACHED*/
3465
3466
case DLT_ARCNET:
3467
case DLT_ARCNET_LINUX:
3468
/*
3469
* XXX should we check for first fragment if the protocol
3470
* uses PHDS?
3471
*/
3472
switch (ll_proto) {
3473
3474
default:
3475
return gen_false(cstate);
3476
3477
case ETHERTYPE_IPV6:
3478
return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3479
ARCTYPE_INET6));
3480
3481
case ETHERTYPE_IP:
3482
b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3483
ARCTYPE_IP);
3484
b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3485
ARCTYPE_IP_OLD);
3486
gen_or(b0, b1);
3487
return (b1);
3488
3489
case ETHERTYPE_ARP:
3490
b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3491
ARCTYPE_ARP);
3492
b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3493
ARCTYPE_ARP_OLD);
3494
gen_or(b0, b1);
3495
return (b1);
3496
3497
case ETHERTYPE_REVARP:
3498
return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3499
ARCTYPE_REVARP));
3500
3501
case ETHERTYPE_ATALK:
3502
return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3503
ARCTYPE_ATALK));
3504
}
3505
/*NOTREACHED*/
3506
3507
case DLT_LTALK:
3508
switch (ll_proto) {
3509
case ETHERTYPE_ATALK:
3510
return gen_true(cstate);
3511
default:
3512
return gen_false(cstate);
3513
}
3514
/*NOTREACHED*/
3515
3516
case DLT_FRELAY:
3517
/*
3518
* XXX - assumes a 2-byte Frame Relay header with
3519
* DLCI and flags. What if the address is longer?
3520
*/
3521
switch (ll_proto) {
3522
3523
case ETHERTYPE_IP:
3524
/*
3525
* Check for the special NLPID for IP.
3526
*/
3527
return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0xcc);
3528
3529
case ETHERTYPE_IPV6:
3530
/*
3531
* Check for the special NLPID for IPv6.
3532
*/
3533
return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0x8e);
3534
3535
case LLCSAP_ISONS:
3536
/*
3537
* Check for several OSI protocols.
3538
*
3539
* Frame Relay packets typically have an OSI
3540
* NLPID at the beginning; we check for each
3541
* of them.
3542
*
3543
* What we check for is the NLPID and a frame
3544
* control field of UI, i.e. 0x03 followed
3545
* by the NLPID.
3546
*/
3547
b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3548
b1 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3549
b2 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3550
gen_or(b1, b2);
3551
gen_or(b0, b2);
3552
return b2;
3553
3554
default:
3555
return gen_false(cstate);
3556
}
3557
/*NOTREACHED*/
3558
3559
case DLT_MFR:
3560
bpf_error(cstate, "Multi-link Frame Relay link-layer type filtering not implemented");
3561
3562
case DLT_JUNIPER_MFR:
3563
case DLT_JUNIPER_MLFR:
3564
case DLT_JUNIPER_MLPPP:
3565
case DLT_JUNIPER_ATM1:
3566
case DLT_JUNIPER_ATM2:
3567
case DLT_JUNIPER_PPPOE:
3568
case DLT_JUNIPER_PPPOE_ATM:
3569
case DLT_JUNIPER_GGSN:
3570
case DLT_JUNIPER_ES:
3571
case DLT_JUNIPER_MONITOR:
3572
case DLT_JUNIPER_SERVICES:
3573
case DLT_JUNIPER_ETHER:
3574
case DLT_JUNIPER_PPP:
3575
case DLT_JUNIPER_FRELAY:
3576
case DLT_JUNIPER_CHDLC:
3577
case DLT_JUNIPER_VP:
3578
case DLT_JUNIPER_ST:
3579
case DLT_JUNIPER_ISM:
3580
case DLT_JUNIPER_VS:
3581
case DLT_JUNIPER_SRX_E2E:
3582
case DLT_JUNIPER_FIBRECHANNEL:
3583
case DLT_JUNIPER_ATM_CEMIC:
3584
3585
/* just lets verify the magic number for now -
3586
* on ATM we may have up to 6 different encapsulations on the wire
3587
* and need a lot of heuristics to figure out that the payload
3588
* might be;
3589
*
3590
* FIXME encapsulation specific BPF_ filters
3591
*/
3592
return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3593
3594
case DLT_BACNET_MS_TP:
3595
return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x55FF0000, 0xffff0000);
3596
3597
case DLT_IPNET:
3598
return gen_ipnet_linktype(cstate, ll_proto);
3599
3600
case DLT_LINUX_IRDA:
3601
bpf_error(cstate, "IrDA link-layer type filtering not implemented");
3602
3603
case DLT_DOCSIS:
3604
bpf_error(cstate, "DOCSIS link-layer type filtering not implemented");
3605
3606
case DLT_MTP2:
3607
case DLT_MTP2_WITH_PHDR:
3608
bpf_error(cstate, "MTP2 link-layer type filtering not implemented");
3609
3610
case DLT_ERF:
3611
bpf_error(cstate, "ERF link-layer type filtering not implemented");
3612
3613
case DLT_PFSYNC:
3614
bpf_error(cstate, "PFSYNC link-layer type filtering not implemented");
3615
3616
case DLT_LINUX_LAPD:
3617
bpf_error(cstate, "LAPD link-layer type filtering not implemented");
3618
3619
case DLT_USB_FREEBSD:
3620
case DLT_USB_LINUX:
3621
case DLT_USB_LINUX_MMAPPED:
3622
case DLT_USBPCAP:
3623
bpf_error(cstate, "USB link-layer type filtering not implemented");
3624
3625
case DLT_BLUETOOTH_HCI_H4:
3626
case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3627
bpf_error(cstate, "Bluetooth link-layer type filtering not implemented");
3628
3629
case DLT_CAN20B:
3630
case DLT_CAN_SOCKETCAN:
3631
bpf_error(cstate, "CAN link-layer type filtering not implemented");
3632
3633
case DLT_IEEE802_15_4:
3634
case DLT_IEEE802_15_4_LINUX:
3635
case DLT_IEEE802_15_4_NONASK_PHY:
3636
case DLT_IEEE802_15_4_NOFCS:
3637
case DLT_IEEE802_15_4_TAP:
3638
bpf_error(cstate, "IEEE 802.15.4 link-layer type filtering not implemented");
3639
3640
case DLT_IEEE802_16_MAC_CPS_RADIO:
3641
bpf_error(cstate, "IEEE 802.16 link-layer type filtering not implemented");
3642
3643
case DLT_SITA:
3644
bpf_error(cstate, "SITA link-layer type filtering not implemented");
3645
3646
case DLT_RAIF1:
3647
bpf_error(cstate, "RAIF1 link-layer type filtering not implemented");
3648
3649
case DLT_IPMB_KONTRON:
3650
case DLT_IPMB_LINUX:
3651
bpf_error(cstate, "IPMB link-layer type filtering not implemented");
3652
3653
case DLT_AX25_KISS:
3654
bpf_error(cstate, "AX.25 link-layer type filtering not implemented");
3655
3656
case DLT_NFLOG:
3657
/* Using the fixed-size NFLOG header it is possible to tell only
3658
* the address family of the packet, other meaningful data is
3659
* either missing or behind TLVs.
3660
*/
3661
bpf_error(cstate, "NFLOG link-layer type filtering not implemented");
3662
3663
default:
3664
/*
3665
* Does this link-layer header type have a field
3666
* indicating the type of the next protocol? If
3667
* so, off_linktype.constant_part will be the offset of that
3668
* field in the packet; if not, it will be OFFSET_NOT_SET.
3669
*/
3670
if (cstate->off_linktype.constant_part != OFFSET_NOT_SET) {
3671
/*
3672
* Yes; assume it's an Ethernet type. (If
3673
* it's not, it needs to be handled specially
3674
* above.)
3675
*/
3676
return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
3677
/*NOTREACHED */
3678
} else {
3679
/*
3680
* No; report an error.
3681
*/
3682
description = pcap_datalink_val_to_description_or_dlt(cstate->linktype);
3683
bpf_error(cstate, "%s link-layer type filtering not implemented",
3684
description);
3685
/*NOTREACHED */
3686
}
3687
}
3688
}
3689
3690
/*
3691
* Check for an LLC SNAP packet with a given organization code and
3692
* protocol type; we check the entire contents of the 802.2 LLC and
3693
* snap headers, checking for DSAP and SSAP of SNAP and a control
3694
* field of 0x03 in the LLC header, and for the specified organization
3695
* code and protocol type in the SNAP header.
3696
*/
3697
static struct block *
3698
gen_snap(compiler_state_t *cstate, bpf_u_int32 orgcode, bpf_u_int32 ptype)
3699
{
3700
u_char snapblock[8];
3701
3702
snapblock[0] = LLCSAP_SNAP; /* DSAP = SNAP */
3703
snapblock[1] = LLCSAP_SNAP; /* SSAP = SNAP */
3704
snapblock[2] = 0x03; /* control = UI */
3705
snapblock[3] = (u_char)(orgcode >> 16); /* upper 8 bits of organization code */
3706
snapblock[4] = (u_char)(orgcode >> 8); /* middle 8 bits of organization code */
3707
snapblock[5] = (u_char)(orgcode >> 0); /* lower 8 bits of organization code */
3708
snapblock[6] = (u_char)(ptype >> 8); /* upper 8 bits of protocol type */
3709
snapblock[7] = (u_char)(ptype >> 0); /* lower 8 bits of protocol type */
3710
return gen_bcmp(cstate, OR_LLC, 0, 8, snapblock);
3711
}
3712
3713
/*
3714
* Generate code to match frames with an LLC header.
3715
*/
3716
static struct block *
3717
gen_llc_internal(compiler_state_t *cstate)
3718
{
3719
struct block *b0, *b1;
3720
3721
switch (cstate->linktype) {
3722
3723
case DLT_EN10MB:
3724
/*
3725
* We check for an Ethernet type field less than
3726
* 1500, which means it's an 802.3 length field.
3727
*/
3728
b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
3729
gen_not(b0);
3730
3731
/*
3732
* Now check for the purported DSAP and SSAP not being
3733
* 0xFF, to rule out NetWare-over-802.3.
3734
*/
3735
b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, 0xFFFF);
3736
gen_not(b1);
3737
gen_and(b0, b1);
3738
return b1;
3739
3740
case DLT_SUNATM:
3741
/*
3742
* We check for LLC traffic.
3743
*/
3744
b0 = gen_atmtype_llc(cstate);
3745
return b0;
3746
3747
case DLT_IEEE802: /* Token Ring */
3748
/*
3749
* XXX - check for LLC frames.
3750
*/
3751
return gen_true(cstate);
3752
3753
case DLT_FDDI:
3754
/*
3755
* XXX - check for LLC frames.
3756
*/
3757
return gen_true(cstate);
3758
3759
case DLT_ATM_RFC1483:
3760
/*
3761
* For LLC encapsulation, these are defined to have an
3762
* 802.2 LLC header.
3763
*
3764
* For VC encapsulation, they don't, but there's no
3765
* way to check for that; the protocol used on the VC
3766
* is negotiated out of band.
3767
*/
3768
return gen_true(cstate);
3769
3770
case DLT_IEEE802_11:
3771
case DLT_PRISM_HEADER:
3772
case DLT_IEEE802_11_RADIO:
3773
case DLT_IEEE802_11_RADIO_AVS:
3774
case DLT_PPI:
3775
/*
3776
* Check that we have a data frame.
3777
*/
3778
b0 = gen_check_802_11_data_frame(cstate);
3779
return b0;
3780
3781
default:
3782
bpf_error(cstate, "'llc' not supported for %s",
3783
pcap_datalink_val_to_description_or_dlt(cstate->linktype));
3784
/*NOTREACHED*/
3785
}
3786
}
3787
3788
struct block *
3789
gen_llc(compiler_state_t *cstate)
3790
{
3791
/*
3792
* Catch errors reported by us and routines below us, and return NULL
3793
* on an error.
3794
*/
3795
if (setjmp(cstate->top_ctx))
3796
return (NULL);
3797
3798
return gen_llc_internal(cstate);
3799
}
3800
3801
struct block *
3802
gen_llc_i(compiler_state_t *cstate)
3803
{
3804
struct block *b0, *b1;
3805
struct slist *s;
3806
3807
/*
3808
* Catch errors reported by us and routines below us, and return NULL
3809
* on an error.
3810
*/
3811
if (setjmp(cstate->top_ctx))
3812
return (NULL);
3813
3814
/*
3815
* Check whether this is an LLC frame.
3816
*/
3817
b0 = gen_llc_internal(cstate);
3818
3819
/*
3820
* Load the control byte and test the low-order bit; it must
3821
* be clear for I frames.
3822
*/
3823
s = gen_load_a(cstate, OR_LLC, 2, BPF_B);
3824
b1 = new_block(cstate, JMP(BPF_JSET));
3825
b1->s.k = 0x01;
3826
b1->stmts = s;
3827
gen_not(b1);
3828
gen_and(b0, b1);
3829
return b1;
3830
}
3831
3832
struct block *
3833
gen_llc_s(compiler_state_t *cstate)
3834
{
3835
struct block *b0, *b1;
3836
3837
/*
3838
* Catch errors reported by us and routines below us, and return NULL
3839
* on an error.
3840
*/
3841
if (setjmp(cstate->top_ctx))
3842
return (NULL);
3843
3844
/*
3845
* Check whether this is an LLC frame.
3846
*/
3847
b0 = gen_llc_internal(cstate);
3848
3849
/*
3850
* Now compare the low-order 2 bit of the control byte against
3851
* the appropriate value for S frames.
3852
*/
3853
b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_S_FMT, 0x03);
3854
gen_and(b0, b1);
3855
return b1;
3856
}
3857
3858
struct block *
3859
gen_llc_u(compiler_state_t *cstate)
3860
{
3861
struct block *b0, *b1;
3862
3863
/*
3864
* Catch errors reported by us and routines below us, and return NULL
3865
* on an error.
3866
*/
3867
if (setjmp(cstate->top_ctx))
3868
return (NULL);
3869
3870
/*
3871
* Check whether this is an LLC frame.
3872
*/
3873
b0 = gen_llc_internal(cstate);
3874
3875
/*
3876
* Now compare the low-order 2 bit of the control byte against
3877
* the appropriate value for U frames.
3878
*/
3879
b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_U_FMT, 0x03);
3880
gen_and(b0, b1);
3881
return b1;
3882
}
3883
3884
struct block *
3885
gen_llc_s_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3886
{
3887
struct block *b0, *b1;
3888
3889
/*
3890
* Catch errors reported by us and routines below us, and return NULL
3891
* on an error.
3892
*/
3893
if (setjmp(cstate->top_ctx))
3894
return (NULL);
3895
3896
/*
3897
* Check whether this is an LLC frame.
3898
*/
3899
b0 = gen_llc_internal(cstate);
3900
3901
/*
3902
* Now check for an S frame with the appropriate type.
3903
*/
3904
b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_S_CMD_MASK);
3905
gen_and(b0, b1);
3906
return b1;
3907
}
3908
3909
struct block *
3910
gen_llc_u_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3911
{
3912
struct block *b0, *b1;
3913
3914
/*
3915
* Catch errors reported by us and routines below us, and return NULL
3916
* on an error.
3917
*/
3918
if (setjmp(cstate->top_ctx))
3919
return (NULL);
3920
3921
/*
3922
* Check whether this is an LLC frame.
3923
*/
3924
b0 = gen_llc_internal(cstate);
3925
3926
/*
3927
* Now check for a U frame with the appropriate type.
3928
*/
3929
b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_U_CMD_MASK);
3930
gen_and(b0, b1);
3931
return b1;
3932
}
3933
3934
/*
3935
* Generate code to match a particular packet type, for link-layer types
3936
* using 802.2 LLC headers.
3937
*
3938
* This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3939
* for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3940
*
3941
* "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3942
* value, if <= ETHERMTU. We use that to determine whether to
3943
* match the DSAP or both DSAP and LSAP or to check the OUI and
3944
* protocol ID in a SNAP header.
3945
*/
3946
static struct block *
3947
gen_llc_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
3948
{
3949
/*
3950
* XXX - handle token-ring variable-length header.
3951
*/
3952
switch (ll_proto) {
3953
3954
case LLCSAP_IP:
3955
case LLCSAP_ISONS:
3956
case LLCSAP_NETBEUI:
3957
/*
3958
* XXX - should we check both the DSAP and the
3959
* SSAP, like this, or should we check just the
3960
* DSAP, as we do for other SAP values?
3961
*/
3962
return gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_u_int32)
3963
((ll_proto << 8) | ll_proto));
3964
3965
case LLCSAP_IPX:
3966
/*
3967
* XXX - are there ever SNAP frames for IPX on
3968
* non-Ethernet 802.x networks?
3969
*/
3970
return gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
3971
3972
case ETHERTYPE_ATALK:
3973
/*
3974
* 802.2-encapsulated ETHERTYPE_ATALK packets are
3975
* SNAP packets with an organization code of
3976
* 0x080007 (Apple, for Appletalk) and a protocol
3977
* type of ETHERTYPE_ATALK (Appletalk).
3978
*
3979
* XXX - check for an organization code of
3980
* encapsulated Ethernet as well?
3981
*/
3982
return gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
3983
3984
default:
3985
/*
3986
* XXX - we don't have to check for IPX 802.3
3987
* here, but should we check for the IPX Ethertype?
3988
*/
3989
if (ll_proto <= ETHERMTU) {
3990
/*
3991
* This is an LLC SAP value, so check
3992
* the DSAP.
3993
*/
3994
return gen_cmp(cstate, OR_LLC, 0, BPF_B, ll_proto);
3995
} else {
3996
/*
3997
* This is an Ethernet type; we assume that it's
3998
* unlikely that it'll appear in the right place
3999
* at random, and therefore check only the
4000
* location that would hold the Ethernet type
4001
* in a SNAP frame with an organization code of
4002
* 0x000000 (encapsulated Ethernet).
4003
*
4004
* XXX - if we were to check for the SNAP DSAP and
4005
* LSAP, as per XXX, and were also to check for an
4006
* organization code of 0x000000 (encapsulated
4007
* Ethernet), we'd do
4008
*
4009
* return gen_snap(cstate, 0x000000, ll_proto);
4010
*
4011
* here; for now, we don't, as per the above.
4012
* I don't know whether it's worth the extra CPU
4013
* time to do the right check or not.
4014
*/
4015
return gen_cmp(cstate, OR_LLC, 6, BPF_H, ll_proto);
4016
}
4017
}
4018
}
4019
4020
static struct block *
4021
gen_hostop(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
4022
int dir, bpf_u_int32 ll_proto, u_int src_off, u_int dst_off)
4023
{
4024
struct block *b0, *b1;
4025
u_int offset;
4026
4027
switch (dir) {
4028
4029
case Q_SRC:
4030
offset = src_off;
4031
break;
4032
4033
case Q_DST:
4034
offset = dst_off;
4035
break;
4036
4037
case Q_AND:
4038
b0 = gen_hostop(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4039
b1 = gen_hostop(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4040
gen_and(b0, b1);
4041
return b1;
4042
4043
case Q_DEFAULT:
4044
case Q_OR:
4045
b0 = gen_hostop(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4046
b1 = gen_hostop(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4047
gen_or(b0, b1);
4048
return b1;
4049
4050
case Q_ADDR1:
4051
bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4052
/*NOTREACHED*/
4053
4054
case Q_ADDR2:
4055
bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4056
/*NOTREACHED*/
4057
4058
case Q_ADDR3:
4059
bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4060
/*NOTREACHED*/
4061
4062
case Q_ADDR4:
4063
bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4064
/*NOTREACHED*/
4065
4066
case Q_RA:
4067
bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4068
/*NOTREACHED*/
4069
4070
case Q_TA:
4071
bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4072
/*NOTREACHED*/
4073
4074
default:
4075
abort();
4076
/*NOTREACHED*/
4077
}
4078
b0 = gen_linktype(cstate, ll_proto);
4079
b1 = gen_mcmp(cstate, OR_LINKPL, offset, BPF_W, addr, mask);
4080
gen_and(b0, b1);
4081
return b1;
4082
}
4083
4084
#ifdef INET6
4085
static struct block *
4086
gen_hostop6(compiler_state_t *cstate, struct in6_addr *addr,
4087
struct in6_addr *mask, int dir, bpf_u_int32 ll_proto, u_int src_off,
4088
u_int dst_off)
4089
{
4090
struct block *b0, *b1;
4091
u_int offset;
4092
/*
4093
* Code below needs to access four separate 32-bit parts of the 128-bit
4094
* IPv6 address and mask. In some OSes this is as simple as using the
4095
* s6_addr32 pseudo-member of struct in6_addr, which contains a union of
4096
* 8-, 16- and 32-bit arrays. In other OSes this is not the case, as
4097
* far as libpcap sees it. Hence copy the data before use to avoid
4098
* potential unaligned memory access and the associated compiler
4099
* warnings (whether genuine or not).
4100
*/
4101
bpf_u_int32 a[4], m[4];
4102
4103
switch (dir) {
4104
4105
case Q_SRC:
4106
offset = src_off;
4107
break;
4108
4109
case Q_DST:
4110
offset = dst_off;
4111
break;
4112
4113
case Q_AND:
4114
b0 = gen_hostop6(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4115
b1 = gen_hostop6(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4116
gen_and(b0, b1);
4117
return b1;
4118
4119
case Q_DEFAULT:
4120
case Q_OR:
4121
b0 = gen_hostop6(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4122
b1 = gen_hostop6(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4123
gen_or(b0, b1);
4124
return b1;
4125
4126
case Q_ADDR1:
4127
bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4128
/*NOTREACHED*/
4129
4130
case Q_ADDR2:
4131
bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4132
/*NOTREACHED*/
4133
4134
case Q_ADDR3:
4135
bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4136
/*NOTREACHED*/
4137
4138
case Q_ADDR4:
4139
bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4140
/*NOTREACHED*/
4141
4142
case Q_RA:
4143
bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4144
/*NOTREACHED*/
4145
4146
case Q_TA:
4147
bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4148
/*NOTREACHED*/
4149
4150
default:
4151
abort();
4152
/*NOTREACHED*/
4153
}
4154
/* this order is important */
4155
memcpy(a, addr, sizeof(a));
4156
memcpy(m, mask, sizeof(m));
4157
b1 = gen_mcmp(cstate, OR_LINKPL, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
4158
b0 = gen_mcmp(cstate, OR_LINKPL, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
4159
gen_and(b0, b1);
4160
b0 = gen_mcmp(cstate, OR_LINKPL, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
4161
gen_and(b0, b1);
4162
b0 = gen_mcmp(cstate, OR_LINKPL, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
4163
gen_and(b0, b1);
4164
b0 = gen_linktype(cstate, ll_proto);
4165
gen_and(b0, b1);
4166
return b1;
4167
}
4168
#endif
4169
4170
static struct block *
4171
gen_ehostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4172
{
4173
register struct block *b0, *b1;
4174
4175
switch (dir) {
4176
case Q_SRC:
4177
return gen_bcmp(cstate, OR_LINKHDR, 6, 6, eaddr);
4178
4179
case Q_DST:
4180
return gen_bcmp(cstate, OR_LINKHDR, 0, 6, eaddr);
4181
4182
case Q_AND:
4183
b0 = gen_ehostop(cstate, eaddr, Q_SRC);
4184
b1 = gen_ehostop(cstate, eaddr, Q_DST);
4185
gen_and(b0, b1);
4186
return b1;
4187
4188
case Q_DEFAULT:
4189
case Q_OR:
4190
b0 = gen_ehostop(cstate, eaddr, Q_SRC);
4191
b1 = gen_ehostop(cstate, eaddr, Q_DST);
4192
gen_or(b0, b1);
4193
return b1;
4194
4195
case Q_ADDR1:
4196
bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11 with 802.11 headers");
4197
/*NOTREACHED*/
4198
4199
case Q_ADDR2:
4200
bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11 with 802.11 headers");
4201
/*NOTREACHED*/
4202
4203
case Q_ADDR3:
4204
bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11 with 802.11 headers");
4205
/*NOTREACHED*/
4206
4207
case Q_ADDR4:
4208
bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11 with 802.11 headers");
4209
/*NOTREACHED*/
4210
4211
case Q_RA:
4212
bpf_error(cstate, "'ra' is only supported on 802.11 with 802.11 headers");
4213
/*NOTREACHED*/
4214
4215
case Q_TA:
4216
bpf_error(cstate, "'ta' is only supported on 802.11 with 802.11 headers");
4217
/*NOTREACHED*/
4218
}
4219
abort();
4220
/*NOTREACHED*/
4221
}
4222
4223
/*
4224
* Like gen_ehostop, but for DLT_FDDI
4225
*/
4226
static struct block *
4227
gen_fhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4228
{
4229
struct block *b0, *b1;
4230
4231
switch (dir) {
4232
case Q_SRC:
4233
return gen_bcmp(cstate, OR_LINKHDR, 6 + 1 + cstate->pcap_fddipad, 6, eaddr);
4234
4235
case Q_DST:
4236
return gen_bcmp(cstate, OR_LINKHDR, 0 + 1 + cstate->pcap_fddipad, 6, eaddr);
4237
4238
case Q_AND:
4239
b0 = gen_fhostop(cstate, eaddr, Q_SRC);
4240
b1 = gen_fhostop(cstate, eaddr, Q_DST);
4241
gen_and(b0, b1);
4242
return b1;
4243
4244
case Q_DEFAULT:
4245
case Q_OR:
4246
b0 = gen_fhostop(cstate, eaddr, Q_SRC);
4247
b1 = gen_fhostop(cstate, eaddr, Q_DST);
4248
gen_or(b0, b1);
4249
return b1;
4250
4251
case Q_ADDR1:
4252
bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4253
/*NOTREACHED*/
4254
4255
case Q_ADDR2:
4256
bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4257
/*NOTREACHED*/
4258
4259
case Q_ADDR3:
4260
bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4261
/*NOTREACHED*/
4262
4263
case Q_ADDR4:
4264
bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4265
/*NOTREACHED*/
4266
4267
case Q_RA:
4268
bpf_error(cstate, "'ra' is only supported on 802.11");
4269
/*NOTREACHED*/
4270
4271
case Q_TA:
4272
bpf_error(cstate, "'ta' is only supported on 802.11");
4273
/*NOTREACHED*/
4274
}
4275
abort();
4276
/*NOTREACHED*/
4277
}
4278
4279
/*
4280
* Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
4281
*/
4282
static struct block *
4283
gen_thostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4284
{
4285
register struct block *b0, *b1;
4286
4287
switch (dir) {
4288
case Q_SRC:
4289
return gen_bcmp(cstate, OR_LINKHDR, 8, 6, eaddr);
4290
4291
case Q_DST:
4292
return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4293
4294
case Q_AND:
4295
b0 = gen_thostop(cstate, eaddr, Q_SRC);
4296
b1 = gen_thostop(cstate, eaddr, Q_DST);
4297
gen_and(b0, b1);
4298
return b1;
4299
4300
case Q_DEFAULT:
4301
case Q_OR:
4302
b0 = gen_thostop(cstate, eaddr, Q_SRC);
4303
b1 = gen_thostop(cstate, eaddr, Q_DST);
4304
gen_or(b0, b1);
4305
return b1;
4306
4307
case Q_ADDR1:
4308
bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4309
/*NOTREACHED*/
4310
4311
case Q_ADDR2:
4312
bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4313
/*NOTREACHED*/
4314
4315
case Q_ADDR3:
4316
bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4317
/*NOTREACHED*/
4318
4319
case Q_ADDR4:
4320
bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4321
/*NOTREACHED*/
4322
4323
case Q_RA:
4324
bpf_error(cstate, "'ra' is only supported on 802.11");
4325
/*NOTREACHED*/
4326
4327
case Q_TA:
4328
bpf_error(cstate, "'ta' is only supported on 802.11");
4329
/*NOTREACHED*/
4330
}
4331
abort();
4332
/*NOTREACHED*/
4333
}
4334
4335
/*
4336
* Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
4337
* various 802.11 + radio headers.
4338
*/
4339
static struct block *
4340
gen_wlanhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4341
{
4342
register struct block *b0, *b1, *b2;
4343
register struct slist *s;
4344
4345
#ifdef ENABLE_WLAN_FILTERING_PATCH
4346
/*
4347
* TODO GV 20070613
4348
* We need to disable the optimizer because the optimizer is buggy
4349
* and wipes out some LD instructions generated by the below
4350
* code to validate the Frame Control bits
4351
*/
4352
cstate->no_optimize = 1;
4353
#endif /* ENABLE_WLAN_FILTERING_PATCH */
4354
4355
switch (dir) {
4356
case Q_SRC:
4357
/*
4358
* Oh, yuk.
4359
*
4360
* For control frames, there is no SA.
4361
*
4362
* For management frames, SA is at an
4363
* offset of 10 from the beginning of
4364
* the packet.
4365
*
4366
* For data frames, SA is at an offset
4367
* of 10 from the beginning of the packet
4368
* if From DS is clear, at an offset of
4369
* 16 from the beginning of the packet
4370
* if From DS is set and To DS is clear,
4371
* and an offset of 24 from the beginning
4372
* of the packet if From DS is set and To DS
4373
* is set.
4374
*/
4375
4376
/*
4377
* Generate the tests to be done for data frames
4378
* with From DS set.
4379
*
4380
* First, check for To DS set, i.e. check "link[1] & 0x01".
4381
*/
4382
s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4383
b1 = new_block(cstate, JMP(BPF_JSET));
4384
b1->s.k = 0x01; /* To DS */
4385
b1->stmts = s;
4386
4387
/*
4388
* If To DS is set, the SA is at 24.
4389
*/
4390
b0 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4391
gen_and(b1, b0);
4392
4393
/*
4394
* Now, check for To DS not set, i.e. check
4395
* "!(link[1] & 0x01)".
4396
*/
4397
s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4398
b2 = new_block(cstate, JMP(BPF_JSET));
4399
b2->s.k = 0x01; /* To DS */
4400
b2->stmts = s;
4401
gen_not(b2);
4402
4403
/*
4404
* If To DS is not set, the SA is at 16.
4405
*/
4406
b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4407
gen_and(b2, b1);
4408
4409
/*
4410
* Now OR together the last two checks. That gives
4411
* the complete set of checks for data frames with
4412
* From DS set.
4413
*/
4414
gen_or(b1, b0);
4415
4416
/*
4417
* Now check for From DS being set, and AND that with
4418
* the ORed-together checks.
4419
*/
4420
s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4421
b1 = new_block(cstate, JMP(BPF_JSET));
4422
b1->s.k = 0x02; /* From DS */
4423
b1->stmts = s;
4424
gen_and(b1, b0);
4425
4426
/*
4427
* Now check for data frames with From DS not set.
4428
*/
4429
s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4430
b2 = new_block(cstate, JMP(BPF_JSET));
4431
b2->s.k = 0x02; /* From DS */
4432
b2->stmts = s;
4433
gen_not(b2);
4434
4435
/*
4436
* If From DS isn't set, the SA is at 10.
4437
*/
4438
b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4439
gen_and(b2, b1);
4440
4441
/*
4442
* Now OR together the checks for data frames with
4443
* From DS not set and for data frames with From DS
4444
* set; that gives the checks done for data frames.
4445
*/
4446
gen_or(b1, b0);
4447
4448
/*
4449
* Now check for a data frame.
4450
* I.e, check "link[0] & 0x08".
4451
*/
4452
s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4453
b1 = new_block(cstate, JMP(BPF_JSET));
4454
b1->s.k = 0x08;
4455
b1->stmts = s;
4456
4457
/*
4458
* AND that with the checks done for data frames.
4459
*/
4460
gen_and(b1, b0);
4461
4462
/*
4463
* If the high-order bit of the type value is 0, this
4464
* is a management frame.
4465
* I.e, check "!(link[0] & 0x08)".
4466
*/
4467
s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4468
b2 = new_block(cstate, JMP(BPF_JSET));
4469
b2->s.k = 0x08;
4470
b2->stmts = s;
4471
gen_not(b2);
4472
4473
/*
4474
* For management frames, the SA is at 10.
4475
*/
4476
b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4477
gen_and(b2, b1);
4478
4479
/*
4480
* OR that with the checks done for data frames.
4481
* That gives the checks done for management and
4482
* data frames.
4483
*/
4484
gen_or(b1, b0);
4485
4486
/*
4487
* If the low-order bit of the type value is 1,
4488
* this is either a control frame or a frame
4489
* with a reserved type, and thus not a
4490
* frame with an SA.
4491
*
4492
* I.e., check "!(link[0] & 0x04)".
4493
*/
4494
s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4495
b1 = new_block(cstate, JMP(BPF_JSET));
4496
b1->s.k = 0x04;
4497
b1->stmts = s;
4498
gen_not(b1);
4499
4500
/*
4501
* AND that with the checks for data and management
4502
* frames.
4503
*/
4504
gen_and(b1, b0);
4505
return b0;
4506
4507
case Q_DST:
4508
/*
4509
* Oh, yuk.
4510
*
4511
* For control frames, there is no DA.
4512
*
4513
* For management frames, DA is at an
4514
* offset of 4 from the beginning of
4515
* the packet.
4516
*
4517
* For data frames, DA is at an offset
4518
* of 4 from the beginning of the packet
4519
* if To DS is clear and at an offset of
4520
* 16 from the beginning of the packet
4521
* if To DS is set.
4522
*/
4523
4524
/*
4525
* Generate the tests to be done for data frames.
4526
*
4527
* First, check for To DS set, i.e. "link[1] & 0x01".
4528
*/
4529
s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4530
b1 = new_block(cstate, JMP(BPF_JSET));
4531
b1->s.k = 0x01; /* To DS */
4532
b1->stmts = s;
4533
4534
/*
4535
* If To DS is set, the DA is at 16.
4536
*/
4537
b0 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4538
gen_and(b1, b0);
4539
4540
/*
4541
* Now, check for To DS not set, i.e. check
4542
* "!(link[1] & 0x01)".
4543
*/
4544
s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4545
b2 = new_block(cstate, JMP(BPF_JSET));
4546
b2->s.k = 0x01; /* To DS */
4547
b2->stmts = s;
4548
gen_not(b2);
4549
4550
/*
4551
* If To DS is not set, the DA is at 4.
4552
*/
4553
b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4554
gen_and(b2, b1);
4555
4556
/*
4557
* Now OR together the last two checks. That gives
4558
* the complete set of checks for data frames.
4559
*/
4560
gen_or(b1, b0);
4561
4562
/*
4563
* Now check for a data frame.
4564
* I.e, check "link[0] & 0x08".
4565
*/
4566
s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4567
b1 = new_block(cstate, JMP(BPF_JSET));
4568
b1->s.k = 0x08;
4569
b1->stmts = s;
4570
4571
/*
4572
* AND that with the checks done for data frames.
4573
*/
4574
gen_and(b1, b0);
4575
4576
/*
4577
* If the high-order bit of the type value is 0, this
4578
* is a management frame.
4579
* I.e, check "!(link[0] & 0x08)".
4580
*/
4581
s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4582
b2 = new_block(cstate, JMP(BPF_JSET));
4583
b2->s.k = 0x08;
4584
b2->stmts = s;
4585
gen_not(b2);
4586
4587
/*
4588
* For management frames, the DA is at 4.
4589
*/
4590
b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4591
gen_and(b2, b1);
4592
4593
/*
4594
* OR that with the checks done for data frames.
4595
* That gives the checks done for management and
4596
* data frames.
4597
*/
4598
gen_or(b1, b0);
4599
4600
/*
4601
* If the low-order bit of the type value is 1,
4602
* this is either a control frame or a frame
4603
* with a reserved type, and thus not a
4604
* frame with an SA.
4605
*
4606
* I.e., check "!(link[0] & 0x04)".
4607
*/
4608
s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4609
b1 = new_block(cstate, JMP(BPF_JSET));
4610
b1->s.k = 0x04;
4611
b1->stmts = s;
4612
gen_not(b1);
4613
4614
/*
4615
* AND that with the checks for data and management
4616
* frames.
4617
*/
4618
gen_and(b1, b0);
4619
return b0;
4620
4621
case Q_AND:
4622
b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4623
b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4624
gen_and(b0, b1);
4625
return b1;
4626
4627
case Q_DEFAULT:
4628
case Q_OR:
4629
b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4630
b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4631
gen_or(b0, b1);
4632
return b1;
4633
4634
/*
4635
* XXX - add BSSID keyword?
4636
*/
4637
case Q_ADDR1:
4638
return (gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr));
4639
4640
case Q_ADDR2:
4641
/*
4642
* Not present in CTS or ACK control frames.
4643
*/
4644
b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4645
IEEE80211_FC0_TYPE_MASK);
4646
gen_not(b0);
4647
b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4648
IEEE80211_FC0_SUBTYPE_MASK);
4649
gen_not(b1);
4650
b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4651
IEEE80211_FC0_SUBTYPE_MASK);
4652
gen_not(b2);
4653
gen_and(b1, b2);
4654
gen_or(b0, b2);
4655
b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4656
gen_and(b2, b1);
4657
return b1;
4658
4659
case Q_ADDR3:
4660
/*
4661
* Not present in control frames.
4662
*/
4663
b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4664
IEEE80211_FC0_TYPE_MASK);
4665
gen_not(b0);
4666
b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4667
gen_and(b0, b1);
4668
return b1;
4669
4670
case Q_ADDR4:
4671
/*
4672
* Present only if the direction mask has both "From DS"
4673
* and "To DS" set. Neither control frames nor management
4674
* frames should have both of those set, so we don't
4675
* check the frame type.
4676
*/
4677
b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B,
4678
IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4679
b1 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4680
gen_and(b0, b1);
4681
return b1;
4682
4683
case Q_RA:
4684
/*
4685
* Not present in management frames; addr1 in other
4686
* frames.
4687
*/
4688
4689
/*
4690
* If the high-order bit of the type value is 0, this
4691
* is a management frame.
4692
* I.e, check "(link[0] & 0x08)".
4693
*/
4694
s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4695
b1 = new_block(cstate, JMP(BPF_JSET));
4696
b1->s.k = 0x08;
4697
b1->stmts = s;
4698
4699
/*
4700
* Check addr1.
4701
*/
4702
b0 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4703
4704
/*
4705
* AND that with the check of addr1.
4706
*/
4707
gen_and(b1, b0);
4708
return (b0);
4709
4710
case Q_TA:
4711
/*
4712
* Not present in management frames; addr2, if present,
4713
* in other frames.
4714
*/
4715
4716
/*
4717
* Not present in CTS or ACK control frames.
4718
*/
4719
b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4720
IEEE80211_FC0_TYPE_MASK);
4721
gen_not(b0);
4722
b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4723
IEEE80211_FC0_SUBTYPE_MASK);
4724
gen_not(b1);
4725
b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4726
IEEE80211_FC0_SUBTYPE_MASK);
4727
gen_not(b2);
4728
gen_and(b1, b2);
4729
gen_or(b0, b2);
4730
4731
/*
4732
* If the high-order bit of the type value is 0, this
4733
* is a management frame.
4734
* I.e, check "(link[0] & 0x08)".
4735
*/
4736
s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4737
b1 = new_block(cstate, JMP(BPF_JSET));
4738
b1->s.k = 0x08;
4739
b1->stmts = s;
4740
4741
/*
4742
* AND that with the check for frames other than
4743
* CTS and ACK frames.
4744
*/
4745
gen_and(b1, b2);
4746
4747
/*
4748
* Check addr2.
4749
*/
4750
b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4751
gen_and(b2, b1);
4752
return b1;
4753
}
4754
abort();
4755
/*NOTREACHED*/
4756
}
4757
4758
/*
4759
* Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4760
* (We assume that the addresses are IEEE 48-bit MAC addresses,
4761
* as the RFC states.)
4762
*/
4763
static struct block *
4764
gen_ipfchostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4765
{
4766
register struct block *b0, *b1;
4767
4768
switch (dir) {
4769
case Q_SRC:
4770
return gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4771
4772
case Q_DST:
4773
return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4774
4775
case Q_AND:
4776
b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4777
b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4778
gen_and(b0, b1);
4779
return b1;
4780
4781
case Q_DEFAULT:
4782
case Q_OR:
4783
b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4784
b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4785
gen_or(b0, b1);
4786
return b1;
4787
4788
case Q_ADDR1:
4789
bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4790
/*NOTREACHED*/
4791
4792
case Q_ADDR2:
4793
bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4794
/*NOTREACHED*/
4795
4796
case Q_ADDR3:
4797
bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4798
/*NOTREACHED*/
4799
4800
case Q_ADDR4:
4801
bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4802
/*NOTREACHED*/
4803
4804
case Q_RA:
4805
bpf_error(cstate, "'ra' is only supported on 802.11");
4806
/*NOTREACHED*/
4807
4808
case Q_TA:
4809
bpf_error(cstate, "'ta' is only supported on 802.11");
4810
/*NOTREACHED*/
4811
}
4812
abort();
4813
/*NOTREACHED*/
4814
}
4815
4816
/*
4817
* This is quite tricky because there may be pad bytes in front of the
4818
* DECNET header, and then there are two possible data packet formats that
4819
* carry both src and dst addresses, plus 5 packet types in a format that
4820
* carries only the src node, plus 2 types that use a different format and
4821
* also carry just the src node.
4822
*
4823
* Yuck.
4824
*
4825
* Instead of doing those all right, we just look for data packets with
4826
* 0 or 1 bytes of padding. If you want to look at other packets, that
4827
* will require a lot more hacking.
4828
*
4829
* To add support for filtering on DECNET "areas" (network numbers)
4830
* one would want to add a "mask" argument to this routine. That would
4831
* make the filter even more inefficient, although one could be clever
4832
* and not generate masking instructions if the mask is 0xFFFF.
4833
*/
4834
static struct block *
4835
gen_dnhostop(compiler_state_t *cstate, bpf_u_int32 addr, int dir)
4836
{
4837
struct block *b0, *b1, *b2, *tmp;
4838
u_int offset_lh; /* offset if long header is received */
4839
u_int offset_sh; /* offset if short header is received */
4840
4841
switch (dir) {
4842
4843
case Q_DST:
4844
offset_sh = 1; /* follows flags */
4845
offset_lh = 7; /* flgs,darea,dsubarea,HIORD */
4846
break;
4847
4848
case Q_SRC:
4849
offset_sh = 3; /* follows flags, dstnode */
4850
offset_lh = 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4851
break;
4852
4853
case Q_AND:
4854
/* Inefficient because we do our Calvinball dance twice */
4855
b0 = gen_dnhostop(cstate, addr, Q_SRC);
4856
b1 = gen_dnhostop(cstate, addr, Q_DST);
4857
gen_and(b0, b1);
4858
return b1;
4859
4860
case Q_DEFAULT:
4861
case Q_OR:
4862
/* Inefficient because we do our Calvinball dance twice */
4863
b0 = gen_dnhostop(cstate, addr, Q_SRC);
4864
b1 = gen_dnhostop(cstate, addr, Q_DST);
4865
gen_or(b0, b1);
4866
return b1;
4867
4868
case Q_ADDR1:
4869
bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4870
/*NOTREACHED*/
4871
4872
case Q_ADDR2:
4873
bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4874
/*NOTREACHED*/
4875
4876
case Q_ADDR3:
4877
bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4878
/*NOTREACHED*/
4879
4880
case Q_ADDR4:
4881
bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4882
/*NOTREACHED*/
4883
4884
case Q_RA:
4885
bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4886
/*NOTREACHED*/
4887
4888
case Q_TA:
4889
bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4890
/*NOTREACHED*/
4891
4892
default:
4893
abort();
4894
/*NOTREACHED*/
4895
}
4896
b0 = gen_linktype(cstate, ETHERTYPE_DN);
4897
/* Check for pad = 1, long header case */
4898
tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4899
(bpf_u_int32)ntohs(0x0681), (bpf_u_int32)ntohs(0x07FF));
4900
b1 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_lh,
4901
BPF_H, (bpf_u_int32)ntohs((u_short)addr));
4902
gen_and(tmp, b1);
4903
/* Check for pad = 0, long header case */
4904
tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_u_int32)0x06,
4905
(bpf_u_int32)0x7);
4906
b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_lh, BPF_H,
4907
(bpf_u_int32)ntohs((u_short)addr));
4908
gen_and(tmp, b2);
4909
gen_or(b2, b1);
4910
/* Check for pad = 1, short header case */
4911
tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4912
(bpf_u_int32)ntohs(0x0281), (bpf_u_int32)ntohs(0x07FF));
4913
b2 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_sh, BPF_H,
4914
(bpf_u_int32)ntohs((u_short)addr));
4915
gen_and(tmp, b2);
4916
gen_or(b2, b1);
4917
/* Check for pad = 0, short header case */
4918
tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_u_int32)0x02,
4919
(bpf_u_int32)0x7);
4920
b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_sh, BPF_H,
4921
(bpf_u_int32)ntohs((u_short)addr));
4922
gen_and(tmp, b2);
4923
gen_or(b2, b1);
4924
4925
/* Combine with test for cstate->linktype */
4926
gen_and(b0, b1);
4927
return b1;
4928
}
4929
4930
/*
4931
* Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4932
* test the bottom-of-stack bit, and then check the version number
4933
* field in the IP header.
4934
*/
4935
static struct block *
4936
gen_mpls_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
4937
{
4938
struct block *b0, *b1;
4939
4940
switch (ll_proto) {
4941
4942
case ETHERTYPE_IP:
4943
/* match the bottom-of-stack bit */
4944
b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
4945
/* match the IPv4 version number */
4946
b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x40, 0xf0);
4947
gen_and(b0, b1);
4948
return b1;
4949
4950
case ETHERTYPE_IPV6:
4951
/* match the bottom-of-stack bit */
4952
b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
4953
/* match the IPv4 version number */
4954
b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x60, 0xf0);
4955
gen_and(b0, b1);
4956
return b1;
4957
4958
default:
4959
/* FIXME add other L3 proto IDs */
4960
bpf_error(cstate, "unsupported protocol over mpls");
4961
/*NOTREACHED*/
4962
}
4963
}
4964
4965
static struct block *
4966
gen_host(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
4967
int proto, int dir, int type)
4968
{
4969
struct block *b0, *b1;
4970
const char *typestr;
4971
4972
if (type == Q_NET)
4973
typestr = "net";
4974
else
4975
typestr = "host";
4976
4977
switch (proto) {
4978
4979
case Q_DEFAULT:
4980
b0 = gen_host(cstate, addr, mask, Q_IP, dir, type);
4981
/*
4982
* Only check for non-IPv4 addresses if we're not
4983
* checking MPLS-encapsulated packets.
4984
*/
4985
if (cstate->label_stack_depth == 0) {
4986
b1 = gen_host(cstate, addr, mask, Q_ARP, dir, type);
4987
gen_or(b0, b1);
4988
b0 = gen_host(cstate, addr, mask, Q_RARP, dir, type);
4989
gen_or(b1, b0);
4990
}
4991
return b0;
4992
4993
case Q_LINK:
4994
bpf_error(cstate, "link-layer modifier applied to %s", typestr);
4995
4996
case Q_IP:
4997
return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_IP, 12, 16);
4998
4999
case Q_RARP:
5000
return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
5001
5002
case Q_ARP:
5003
return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_ARP, 14, 24);
5004
5005
case Q_SCTP:
5006
bpf_error(cstate, "'sctp' modifier applied to %s", typestr);
5007
5008
case Q_TCP:
5009
bpf_error(cstate, "'tcp' modifier applied to %s", typestr);
5010
5011
case Q_UDP:
5012
bpf_error(cstate, "'udp' modifier applied to %s", typestr);
5013
5014
case Q_ICMP:
5015
bpf_error(cstate, "'icmp' modifier applied to %s", typestr);
5016
5017
case Q_IGMP:
5018
bpf_error(cstate, "'igmp' modifier applied to %s", typestr);
5019
5020
case Q_IGRP:
5021
bpf_error(cstate, "'igrp' modifier applied to %s", typestr);
5022
5023
case Q_ATALK:
5024
bpf_error(cstate, "AppleTalk host filtering not implemented");
5025
5026
case Q_DECNET:
5027
return gen_dnhostop(cstate, addr, dir);
5028
5029
case Q_LAT:
5030
bpf_error(cstate, "LAT host filtering not implemented");
5031
5032
case Q_SCA:
5033
bpf_error(cstate, "SCA host filtering not implemented");
5034
5035
case Q_MOPRC:
5036
bpf_error(cstate, "MOPRC host filtering not implemented");
5037
5038
case Q_MOPDL:
5039
bpf_error(cstate, "MOPDL host filtering not implemented");
5040
5041
case Q_IPV6:
5042
bpf_error(cstate, "'ip6' modifier applied to ip host");
5043
5044
case Q_ICMPV6:
5045
bpf_error(cstate, "'icmp6' modifier applied to %s", typestr);
5046
5047
case Q_AH:
5048
bpf_error(cstate, "'ah' modifier applied to %s", typestr);
5049
5050
case Q_ESP:
5051
bpf_error(cstate, "'esp' modifier applied to %s", typestr);
5052
5053
case Q_PIM:
5054
bpf_error(cstate, "'pim' modifier applied to %s", typestr);
5055
5056
case Q_VRRP:
5057
bpf_error(cstate, "'vrrp' modifier applied to %s", typestr);
5058
5059
case Q_AARP:
5060
bpf_error(cstate, "AARP host filtering not implemented");
5061
5062
case Q_ISO:
5063
bpf_error(cstate, "ISO host filtering not implemented");
5064
5065
case Q_ESIS:
5066
bpf_error(cstate, "'esis' modifier applied to %s", typestr);
5067
5068
case Q_ISIS:
5069
bpf_error(cstate, "'isis' modifier applied to %s", typestr);
5070
5071
case Q_CLNP:
5072
bpf_error(cstate, "'clnp' modifier applied to %s", typestr);
5073
5074
case Q_STP:
5075
bpf_error(cstate, "'stp' modifier applied to %s", typestr);
5076
5077
case Q_IPX:
5078
bpf_error(cstate, "IPX host filtering not implemented");
5079
5080
case Q_NETBEUI:
5081
bpf_error(cstate, "'netbeui' modifier applied to %s", typestr);
5082
5083
case Q_ISIS_L1:
5084
bpf_error(cstate, "'l1' modifier applied to %s", typestr);
5085
5086
case Q_ISIS_L2:
5087
bpf_error(cstate, "'l2' modifier applied to %s", typestr);
5088
5089
case Q_ISIS_IIH:
5090
bpf_error(cstate, "'iih' modifier applied to %s", typestr);
5091
5092
case Q_ISIS_SNP:
5093
bpf_error(cstate, "'snp' modifier applied to %s", typestr);
5094
5095
case Q_ISIS_CSNP:
5096
bpf_error(cstate, "'csnp' modifier applied to %s", typestr);
5097
5098
case Q_ISIS_PSNP:
5099
bpf_error(cstate, "'psnp' modifier applied to %s", typestr);
5100
5101
case Q_ISIS_LSP:
5102
bpf_error(cstate, "'lsp' modifier applied to %s", typestr);
5103
5104
case Q_RADIO:
5105
bpf_error(cstate, "'radio' modifier applied to %s", typestr);
5106
5107
case Q_CARP:
5108
bpf_error(cstate, "'carp' modifier applied to %s", typestr);
5109
5110
default:
5111
abort();
5112
}
5113
/*NOTREACHED*/
5114
}
5115
5116
#ifdef INET6
5117
static struct block *
5118
gen_host6(compiler_state_t *cstate, struct in6_addr *addr,
5119
struct in6_addr *mask, int proto, int dir, int type)
5120
{
5121
const char *typestr;
5122
5123
if (type == Q_NET)
5124
typestr = "net";
5125
else
5126
typestr = "host";
5127
5128
switch (proto) {
5129
5130
case Q_DEFAULT:
5131
return gen_host6(cstate, addr, mask, Q_IPV6, dir, type);
5132
5133
case Q_LINK:
5134
bpf_error(cstate, "link-layer modifier applied to ip6 %s", typestr);
5135
5136
case Q_IP:
5137
bpf_error(cstate, "'ip' modifier applied to ip6 %s", typestr);
5138
5139
case Q_RARP:
5140
bpf_error(cstate, "'rarp' modifier applied to ip6 %s", typestr);
5141
5142
case Q_ARP:
5143
bpf_error(cstate, "'arp' modifier applied to ip6 %s", typestr);
5144
5145
case Q_SCTP:
5146
bpf_error(cstate, "'sctp' modifier applied to ip6 %s", typestr);
5147
5148
case Q_TCP:
5149
bpf_error(cstate, "'tcp' modifier applied to ip6 %s", typestr);
5150
5151
case Q_UDP:
5152
bpf_error(cstate, "'udp' modifier applied to ip6 %s", typestr);
5153
5154
case Q_ICMP:
5155
bpf_error(cstate, "'icmp' modifier applied to ip6 %s", typestr);
5156
5157
case Q_IGMP:
5158
bpf_error(cstate, "'igmp' modifier applied to ip6 %s", typestr);
5159
5160
case Q_IGRP:
5161
bpf_error(cstate, "'igrp' modifier applied to ip6 %s", typestr);
5162
5163
case Q_ATALK:
5164
bpf_error(cstate, "AppleTalk modifier applied to ip6 %s", typestr);
5165
5166
case Q_DECNET:
5167
bpf_error(cstate, "'decnet' modifier applied to ip6 %s", typestr);
5168
5169
case Q_LAT:
5170
bpf_error(cstate, "'lat' modifier applied to ip6 %s", typestr);
5171
5172
case Q_SCA:
5173
bpf_error(cstate, "'sca' modifier applied to ip6 %s", typestr);
5174
5175
case Q_MOPRC:
5176
bpf_error(cstate, "'moprc' modifier applied to ip6 %s", typestr);
5177
5178
case Q_MOPDL:
5179
bpf_error(cstate, "'mopdl' modifier applied to ip6 %s", typestr);
5180
5181
case Q_IPV6:
5182
return gen_hostop6(cstate, addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
5183
5184
case Q_ICMPV6:
5185
bpf_error(cstate, "'icmp6' modifier applied to ip6 %s", typestr);
5186
5187
case Q_AH:
5188
bpf_error(cstate, "'ah' modifier applied to ip6 %s", typestr);
5189
5190
case Q_ESP:
5191
bpf_error(cstate, "'esp' modifier applied to ip6 %s", typestr);
5192
5193
case Q_PIM:
5194
bpf_error(cstate, "'pim' modifier applied to ip6 %s", typestr);
5195
5196
case Q_VRRP:
5197
bpf_error(cstate, "'vrrp' modifier applied to ip6 %s", typestr);
5198
5199
case Q_AARP:
5200
bpf_error(cstate, "'aarp' modifier applied to ip6 %s", typestr);
5201
5202
case Q_ISO:
5203
bpf_error(cstate, "'iso' modifier applied to ip6 %s", typestr);
5204
5205
case Q_ESIS:
5206
bpf_error(cstate, "'esis' modifier applied to ip6 %s", typestr);
5207
5208
case Q_ISIS:
5209
bpf_error(cstate, "'isis' modifier applied to ip6 %s", typestr);
5210
5211
case Q_CLNP:
5212
bpf_error(cstate, "'clnp' modifier applied to ip6 %s", typestr);
5213
5214
case Q_STP:
5215
bpf_error(cstate, "'stp' modifier applied to ip6 %s", typestr);
5216
5217
case Q_IPX:
5218
bpf_error(cstate, "'ipx' modifier applied to ip6 %s", typestr);
5219
5220
case Q_NETBEUI:
5221
bpf_error(cstate, "'netbeui' modifier applied to ip6 %s", typestr);
5222
5223
case Q_ISIS_L1:
5224
bpf_error(cstate, "'l1' modifier applied to ip6 %s", typestr);
5225
5226
case Q_ISIS_L2:
5227
bpf_error(cstate, "'l2' modifier applied to ip6 %s", typestr);
5228
5229
case Q_ISIS_IIH:
5230
bpf_error(cstate, "'iih' modifier applied to ip6 %s", typestr);
5231
5232
case Q_ISIS_SNP:
5233
bpf_error(cstate, "'snp' modifier applied to ip6 %s", typestr);
5234
5235
case Q_ISIS_CSNP:
5236
bpf_error(cstate, "'csnp' modifier applied to ip6 %s", typestr);
5237
5238
case Q_ISIS_PSNP:
5239
bpf_error(cstate, "'psnp' modifier applied to ip6 %s", typestr);
5240
5241
case Q_ISIS_LSP:
5242
bpf_error(cstate, "'lsp' modifier applied to ip6 %s", typestr);
5243
5244
case Q_RADIO:
5245
bpf_error(cstate, "'radio' modifier applied to ip6 %s", typestr);
5246
5247
case Q_CARP:
5248
bpf_error(cstate, "'carp' modifier applied to ip6 %s", typestr);
5249
5250
default:
5251
abort();
5252
}
5253
/*NOTREACHED*/
5254
}
5255
#endif
5256
5257
#ifndef INET6
5258
static struct block *
5259
gen_gateway(compiler_state_t *cstate, const u_char *eaddr,
5260
struct addrinfo *alist, int proto, int dir)
5261
{
5262
struct block *b0, *b1, *tmp;
5263
struct addrinfo *ai;
5264
struct sockaddr_in *sin;
5265
5266
if (dir != 0)
5267
bpf_error(cstate, "direction applied to 'gateway'");
5268
5269
switch (proto) {
5270
case Q_DEFAULT:
5271
case Q_IP:
5272
case Q_ARP:
5273
case Q_RARP:
5274
switch (cstate->linktype) {
5275
case DLT_EN10MB:
5276
case DLT_NETANALYZER:
5277
case DLT_NETANALYZER_TRANSPARENT:
5278
b1 = gen_prevlinkhdr_check(cstate);
5279
b0 = gen_ehostop(cstate, eaddr, Q_OR);
5280
if (b1 != NULL)
5281
gen_and(b1, b0);
5282
break;
5283
case DLT_FDDI:
5284
b0 = gen_fhostop(cstate, eaddr, Q_OR);
5285
break;
5286
case DLT_IEEE802:
5287
b0 = gen_thostop(cstate, eaddr, Q_OR);
5288
break;
5289
case DLT_IEEE802_11:
5290
case DLT_PRISM_HEADER:
5291
case DLT_IEEE802_11_RADIO_AVS:
5292
case DLT_IEEE802_11_RADIO:
5293
case DLT_PPI:
5294
b0 = gen_wlanhostop(cstate, eaddr, Q_OR);
5295
break;
5296
case DLT_SUNATM:
5297
/*
5298
* This is LLC-multiplexed traffic; if it were
5299
* LANE, cstate->linktype would have been set to
5300
* DLT_EN10MB.
5301
*/
5302
bpf_error(cstate,
5303
"'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5304
case DLT_IP_OVER_FC:
5305
b0 = gen_ipfchostop(cstate, eaddr, Q_OR);
5306
break;
5307
default:
5308
bpf_error(cstate,
5309
"'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5310
}
5311
b1 = NULL;
5312
for (ai = alist; ai != NULL; ai = ai->ai_next) {
5313
/*
5314
* Does it have an address?
5315
*/
5316
if (ai->ai_addr != NULL) {
5317
/*
5318
* Yes. Is it an IPv4 address?
5319
*/
5320
if (ai->ai_addr->sa_family == AF_INET) {
5321
/*
5322
* Generate an entry for it.
5323
*/
5324
sin = (struct sockaddr_in *)ai->ai_addr;
5325
tmp = gen_host(cstate,
5326
ntohl(sin->sin_addr.s_addr),
5327
0xffffffff, proto, Q_OR, Q_HOST);
5328
/*
5329
* Is it the *first* IPv4 address?
5330
*/
5331
if (b1 == NULL) {
5332
/*
5333
* Yes, so start with it.
5334
*/
5335
b1 = tmp;
5336
} else {
5337
/*
5338
* No, so OR it into the
5339
* existing set of
5340
* addresses.
5341
*/
5342
gen_or(b1, tmp);
5343
b1 = tmp;
5344
}
5345
}
5346
}
5347
}
5348
if (b1 == NULL) {
5349
/*
5350
* No IPv4 addresses found.
5351
*/
5352
return (NULL);
5353
}
5354
gen_not(b1);
5355
gen_and(b0, b1);
5356
return b1;
5357
}
5358
bpf_error(cstate, "illegal modifier of 'gateway'");
5359
/*NOTREACHED*/
5360
}
5361
#endif
5362
5363
static struct block *
5364
gen_proto_abbrev_internal(compiler_state_t *cstate, int proto)
5365
{
5366
struct block *b0;
5367
struct block *b1;
5368
5369
switch (proto) {
5370
5371
case Q_SCTP:
5372
b1 = gen_proto(cstate, IPPROTO_SCTP, Q_DEFAULT, Q_DEFAULT);
5373
break;
5374
5375
case Q_TCP:
5376
b1 = gen_proto(cstate, IPPROTO_TCP, Q_DEFAULT, Q_DEFAULT);
5377
break;
5378
5379
case Q_UDP:
5380
b1 = gen_proto(cstate, IPPROTO_UDP, Q_DEFAULT, Q_DEFAULT);
5381
break;
5382
5383
case Q_ICMP:
5384
b1 = gen_proto(cstate, IPPROTO_ICMP, Q_IP, Q_DEFAULT);
5385
break;
5386
5387
#ifndef IPPROTO_IGMP
5388
#define IPPROTO_IGMP 2
5389
#endif
5390
5391
case Q_IGMP:
5392
b1 = gen_proto(cstate, IPPROTO_IGMP, Q_IP, Q_DEFAULT);
5393
break;
5394
5395
#ifndef IPPROTO_IGRP
5396
#define IPPROTO_IGRP 9
5397
#endif
5398
case Q_IGRP:
5399
b1 = gen_proto(cstate, IPPROTO_IGRP, Q_IP, Q_DEFAULT);
5400
break;
5401
5402
#ifndef IPPROTO_PIM
5403
#define IPPROTO_PIM 103
5404
#endif
5405
5406
case Q_PIM:
5407
b1 = gen_proto(cstate, IPPROTO_PIM, Q_DEFAULT, Q_DEFAULT);
5408
break;
5409
5410
#ifndef IPPROTO_VRRP
5411
#define IPPROTO_VRRP 112
5412
#endif
5413
5414
case Q_VRRP:
5415
b1 = gen_proto(cstate, IPPROTO_VRRP, Q_IP, Q_DEFAULT);
5416
break;
5417
5418
#ifndef IPPROTO_CARP
5419
#define IPPROTO_CARP 112
5420
#endif
5421
5422
case Q_CARP:
5423
b1 = gen_proto(cstate, IPPROTO_CARP, Q_IP, Q_DEFAULT);
5424
break;
5425
5426
case Q_IP:
5427
b1 = gen_linktype(cstate, ETHERTYPE_IP);
5428
break;
5429
5430
case Q_ARP:
5431
b1 = gen_linktype(cstate, ETHERTYPE_ARP);
5432
break;
5433
5434
case Q_RARP:
5435
b1 = gen_linktype(cstate, ETHERTYPE_REVARP);
5436
break;
5437
5438
case Q_LINK:
5439
bpf_error(cstate, "link layer applied in wrong context");
5440
5441
case Q_ATALK:
5442
b1 = gen_linktype(cstate, ETHERTYPE_ATALK);
5443
break;
5444
5445
case Q_AARP:
5446
b1 = gen_linktype(cstate, ETHERTYPE_AARP);
5447
break;
5448
5449
case Q_DECNET:
5450
b1 = gen_linktype(cstate, ETHERTYPE_DN);
5451
break;
5452
5453
case Q_SCA:
5454
b1 = gen_linktype(cstate, ETHERTYPE_SCA);
5455
break;
5456
5457
case Q_LAT:
5458
b1 = gen_linktype(cstate, ETHERTYPE_LAT);
5459
break;
5460
5461
case Q_MOPDL:
5462
b1 = gen_linktype(cstate, ETHERTYPE_MOPDL);
5463
break;
5464
5465
case Q_MOPRC:
5466
b1 = gen_linktype(cstate, ETHERTYPE_MOPRC);
5467
break;
5468
5469
case Q_IPV6:
5470
b1 = gen_linktype(cstate, ETHERTYPE_IPV6);
5471
break;
5472
5473
#ifndef IPPROTO_ICMPV6
5474
#define IPPROTO_ICMPV6 58
5475
#endif
5476
case Q_ICMPV6:
5477
b1 = gen_proto(cstate, IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
5478
break;
5479
5480
#ifndef IPPROTO_AH
5481
#define IPPROTO_AH 51
5482
#endif
5483
case Q_AH:
5484
b1 = gen_proto(cstate, IPPROTO_AH, Q_DEFAULT, Q_DEFAULT);
5485
break;
5486
5487
#ifndef IPPROTO_ESP
5488
#define IPPROTO_ESP 50
5489
#endif
5490
case Q_ESP:
5491
b1 = gen_proto(cstate, IPPROTO_ESP, Q_DEFAULT, Q_DEFAULT);
5492
break;
5493
5494
case Q_ISO:
5495
b1 = gen_linktype(cstate, LLCSAP_ISONS);
5496
break;
5497
5498
case Q_ESIS:
5499
b1 = gen_proto(cstate, ISO9542_ESIS, Q_ISO, Q_DEFAULT);
5500
break;
5501
5502
case Q_ISIS:
5503
b1 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5504
break;
5505
5506
case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
5507
b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5508
b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5509
gen_or(b0, b1);
5510
b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5511
gen_or(b0, b1);
5512
b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5513
gen_or(b0, b1);
5514
b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5515
gen_or(b0, b1);
5516
break;
5517
5518
case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
5519
b0 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5520
b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5521
gen_or(b0, b1);
5522
b0 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5523
gen_or(b0, b1);
5524
b0 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5525
gen_or(b0, b1);
5526
b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5527
gen_or(b0, b1);
5528
break;
5529
5530
case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
5531
b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5532
b1 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5533
gen_or(b0, b1);
5534
b0 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
5535
gen_or(b0, b1);
5536
break;
5537
5538
case Q_ISIS_LSP:
5539
b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5540
b1 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5541
gen_or(b0, b1);
5542
break;
5543
5544
case Q_ISIS_SNP:
5545
b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5546
b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5547
gen_or(b0, b1);
5548
b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5549
gen_or(b0, b1);
5550
b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5551
gen_or(b0, b1);
5552
break;
5553
5554
case Q_ISIS_CSNP:
5555
b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5556
b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5557
gen_or(b0, b1);
5558
break;
5559
5560
case Q_ISIS_PSNP:
5561
b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5562
b1 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5563
gen_or(b0, b1);
5564
break;
5565
5566
case Q_CLNP:
5567
b1 = gen_proto(cstate, ISO8473_CLNP, Q_ISO, Q_DEFAULT);
5568
break;
5569
5570
case Q_STP:
5571
b1 = gen_linktype(cstate, LLCSAP_8021D);
5572
break;
5573
5574
case Q_IPX:
5575
b1 = gen_linktype(cstate, LLCSAP_IPX);
5576
break;
5577
5578
case Q_NETBEUI:
5579
b1 = gen_linktype(cstate, LLCSAP_NETBEUI);
5580
break;
5581
5582
case Q_RADIO:
5583
bpf_error(cstate, "'radio' is not a valid protocol type");
5584
5585
default:
5586
abort();
5587
}
5588
return b1;
5589
}
5590
5591
struct block *
5592
gen_proto_abbrev(compiler_state_t *cstate, int proto)
5593
{
5594
/*
5595
* Catch errors reported by us and routines below us, and return NULL
5596
* on an error.
5597
*/
5598
if (setjmp(cstate->top_ctx))
5599
return (NULL);
5600
5601
return gen_proto_abbrev_internal(cstate, proto);
5602
}
5603
5604
static struct block *
5605
gen_ipfrag(compiler_state_t *cstate)
5606
{
5607
struct slist *s;
5608
struct block *b;
5609
5610
/* not IPv4 frag other than the first frag */
5611
s = gen_load_a(cstate, OR_LINKPL, 6, BPF_H);
5612
b = new_block(cstate, JMP(BPF_JSET));
5613
b->s.k = 0x1fff;
5614
b->stmts = s;
5615
gen_not(b);
5616
5617
return b;
5618
}
5619
5620
/*
5621
* Generate a comparison to a port value in the transport-layer header
5622
* at the specified offset from the beginning of that header.
5623
*
5624
* XXX - this handles a variable-length prefix preceding the link-layer
5625
* header, such as the radiotap or AVS radio prefix, but doesn't handle
5626
* variable-length link-layer headers (such as Token Ring or 802.11
5627
* headers).
5628
*/
5629
static struct block *
5630
gen_portatom(compiler_state_t *cstate, int off, bpf_u_int32 v)
5631
{
5632
return gen_cmp(cstate, OR_TRAN_IPV4, off, BPF_H, v);
5633
}
5634
5635
static struct block *
5636
gen_portatom6(compiler_state_t *cstate, int off, bpf_u_int32 v)
5637
{
5638
return gen_cmp(cstate, OR_TRAN_IPV6, off, BPF_H, v);
5639
}
5640
5641
static struct block *
5642
gen_portop(compiler_state_t *cstate, u_int port, u_int proto, int dir)
5643
{
5644
struct block *b0, *b1, *tmp;
5645
5646
/* ip proto 'proto' and not a fragment other than the first fragment */
5647
tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, proto);
5648
b0 = gen_ipfrag(cstate);
5649
gen_and(tmp, b0);
5650
5651
switch (dir) {
5652
case Q_SRC:
5653
b1 = gen_portatom(cstate, 0, port);
5654
break;
5655
5656
case Q_DST:
5657
b1 = gen_portatom(cstate, 2, port);
5658
break;
5659
5660
case Q_AND:
5661
tmp = gen_portatom(cstate, 0, port);
5662
b1 = gen_portatom(cstate, 2, port);
5663
gen_and(tmp, b1);
5664
break;
5665
5666
case Q_DEFAULT:
5667
case Q_OR:
5668
tmp = gen_portatom(cstate, 0, port);
5669
b1 = gen_portatom(cstate, 2, port);
5670
gen_or(tmp, b1);
5671
break;
5672
5673
case Q_ADDR1:
5674
bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for ports");
5675
/*NOTREACHED*/
5676
5677
case Q_ADDR2:
5678
bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for ports");
5679
/*NOTREACHED*/
5680
5681
case Q_ADDR3:
5682
bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for ports");
5683
/*NOTREACHED*/
5684
5685
case Q_ADDR4:
5686
bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for ports");
5687
/*NOTREACHED*/
5688
5689
case Q_RA:
5690
bpf_error(cstate, "'ra' is not a valid qualifier for ports");
5691
/*NOTREACHED*/
5692
5693
case Q_TA:
5694
bpf_error(cstate, "'ta' is not a valid qualifier for ports");
5695
/*NOTREACHED*/
5696
5697
default:
5698
abort();
5699
/*NOTREACHED*/
5700
}
5701
gen_and(b0, b1);
5702
5703
return b1;
5704
}
5705
5706
static struct block *
5707
gen_port(compiler_state_t *cstate, u_int port, int ip_proto, int dir)
5708
{
5709
struct block *b0, *b1, *tmp;
5710
5711
/*
5712
* ether proto ip
5713
*
5714
* For FDDI, RFC 1188 says that SNAP encapsulation is used,
5715
* not LLC encapsulation with LLCSAP_IP.
5716
*
5717
* For IEEE 802 networks - which includes 802.5 token ring
5718
* (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5719
* says that SNAP encapsulation is used, not LLC encapsulation
5720
* with LLCSAP_IP.
5721
*
5722
* For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5723
* RFC 2225 say that SNAP encapsulation is used, not LLC
5724
* encapsulation with LLCSAP_IP.
5725
*
5726
* So we always check for ETHERTYPE_IP.
5727
*/
5728
b0 = gen_linktype(cstate, ETHERTYPE_IP);
5729
5730
switch (ip_proto) {
5731
case IPPROTO_UDP:
5732
case IPPROTO_TCP:
5733
case IPPROTO_SCTP:
5734
b1 = gen_portop(cstate, port, (u_int)ip_proto, dir);
5735
break;
5736
5737
case PROTO_UNDEF:
5738
tmp = gen_portop(cstate, port, IPPROTO_TCP, dir);
5739
b1 = gen_portop(cstate, port, IPPROTO_UDP, dir);
5740
gen_or(tmp, b1);
5741
tmp = gen_portop(cstate, port, IPPROTO_SCTP, dir);
5742
gen_or(tmp, b1);
5743
break;
5744
5745
default:
5746
abort();
5747
}
5748
gen_and(b0, b1);
5749
return b1;
5750
}
5751
5752
struct block *
5753
gen_portop6(compiler_state_t *cstate, u_int port, u_int proto, int dir)
5754
{
5755
struct block *b0, *b1, *tmp;
5756
5757
/* ip6 proto 'proto' */
5758
/* XXX - catch the first fragment of a fragmented packet? */
5759
b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, proto);
5760
5761
switch (dir) {
5762
case Q_SRC:
5763
b1 = gen_portatom6(cstate, 0, port);
5764
break;
5765
5766
case Q_DST:
5767
b1 = gen_portatom6(cstate, 2, port);
5768
break;
5769
5770
case Q_AND:
5771
tmp = gen_portatom6(cstate, 0, port);
5772
b1 = gen_portatom6(cstate, 2, port);
5773
gen_and(tmp, b1);
5774
break;
5775
5776
case Q_DEFAULT:
5777
case Q_OR:
5778
tmp = gen_portatom6(cstate, 0, port);
5779
b1 = gen_portatom6(cstate, 2, port);
5780
gen_or(tmp, b1);
5781
break;
5782
5783
default:
5784
abort();
5785
}
5786
gen_and(b0, b1);
5787
5788
return b1;
5789
}
5790
5791
static struct block *
5792
gen_port6(compiler_state_t *cstate, u_int port, int ip_proto, int dir)
5793
{
5794
struct block *b0, *b1, *tmp;
5795
5796
/* link proto ip6 */
5797
b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5798
5799
switch (ip_proto) {
5800
case IPPROTO_UDP:
5801
case IPPROTO_TCP:
5802
case IPPROTO_SCTP:
5803
b1 = gen_portop6(cstate, port, (u_int)ip_proto, dir);
5804
break;
5805
5806
case PROTO_UNDEF:
5807
tmp = gen_portop6(cstate, port, IPPROTO_TCP, dir);
5808
b1 = gen_portop6(cstate, port, IPPROTO_UDP, dir);
5809
gen_or(tmp, b1);
5810
tmp = gen_portop6(cstate, port, IPPROTO_SCTP, dir);
5811
gen_or(tmp, b1);
5812
break;
5813
5814
default:
5815
abort();
5816
}
5817
gen_and(b0, b1);
5818
return b1;
5819
}
5820
5821
/* gen_portrange code */
5822
static struct block *
5823
gen_portrangeatom(compiler_state_t *cstate, u_int off, bpf_u_int32 v1,
5824
bpf_u_int32 v2)
5825
{
5826
struct block *b1, *b2;
5827
5828
if (v1 > v2) {
5829
/*
5830
* Reverse the order of the ports, so v1 is the lower one.
5831
*/
5832
bpf_u_int32 vtemp;
5833
5834
vtemp = v1;
5835
v1 = v2;
5836
v2 = vtemp;
5837
}
5838
5839
b1 = gen_cmp_ge(cstate, OR_TRAN_IPV4, off, BPF_H, v1);
5840
b2 = gen_cmp_le(cstate, OR_TRAN_IPV4, off, BPF_H, v2);
5841
5842
gen_and(b1, b2);
5843
5844
return b2;
5845
}
5846
5847
static struct block *
5848
gen_portrangeop(compiler_state_t *cstate, u_int port1, u_int port2,
5849
bpf_u_int32 proto, int dir)
5850
{
5851
struct block *b0, *b1, *tmp;
5852
5853
/* ip proto 'proto' and not a fragment other than the first fragment */
5854
tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, proto);
5855
b0 = gen_ipfrag(cstate);
5856
gen_and(tmp, b0);
5857
5858
switch (dir) {
5859
case Q_SRC:
5860
b1 = gen_portrangeatom(cstate, 0, port1, port2);
5861
break;
5862
5863
case Q_DST:
5864
b1 = gen_portrangeatom(cstate, 2, port1, port2);
5865
break;
5866
5867
case Q_AND:
5868
tmp = gen_portrangeatom(cstate, 0, port1, port2);
5869
b1 = gen_portrangeatom(cstate, 2, port1, port2);
5870
gen_and(tmp, b1);
5871
break;
5872
5873
case Q_DEFAULT:
5874
case Q_OR:
5875
tmp = gen_portrangeatom(cstate, 0, port1, port2);
5876
b1 = gen_portrangeatom(cstate, 2, port1, port2);
5877
gen_or(tmp, b1);
5878
break;
5879
5880
case Q_ADDR1:
5881
bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for port ranges");
5882
/*NOTREACHED*/
5883
5884
case Q_ADDR2:
5885
bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for port ranges");
5886
/*NOTREACHED*/
5887
5888
case Q_ADDR3:
5889
bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for port ranges");
5890
/*NOTREACHED*/
5891
5892
case Q_ADDR4:
5893
bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for port ranges");
5894
/*NOTREACHED*/
5895
5896
case Q_RA:
5897
bpf_error(cstate, "'ra' is not a valid qualifier for port ranges");
5898
/*NOTREACHED*/
5899
5900
case Q_TA:
5901
bpf_error(cstate, "'ta' is not a valid qualifier for port ranges");
5902
/*NOTREACHED*/
5903
5904
default:
5905
abort();
5906
/*NOTREACHED*/
5907
}
5908
gen_and(b0, b1);
5909
5910
return b1;
5911
}
5912
5913
static struct block *
5914
gen_portrange(compiler_state_t *cstate, u_int port1, u_int port2, int ip_proto,
5915
int dir)
5916
{
5917
struct block *b0, *b1, *tmp;
5918
5919
/* link proto ip */
5920
b0 = gen_linktype(cstate, ETHERTYPE_IP);
5921
5922
switch (ip_proto) {
5923
case IPPROTO_UDP:
5924
case IPPROTO_TCP:
5925
case IPPROTO_SCTP:
5926
b1 = gen_portrangeop(cstate, port1, port2, (bpf_u_int32)ip_proto,
5927
dir);
5928
break;
5929
5930
case PROTO_UNDEF:
5931
tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_TCP, dir);
5932
b1 = gen_portrangeop(cstate, port1, port2, IPPROTO_UDP, dir);
5933
gen_or(tmp, b1);
5934
tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_SCTP, dir);
5935
gen_or(tmp, b1);
5936
break;
5937
5938
default:
5939
abort();
5940
}
5941
gen_and(b0, b1);
5942
return b1;
5943
}
5944
5945
static struct block *
5946
gen_portrangeatom6(compiler_state_t *cstate, u_int off, bpf_u_int32 v1,
5947
bpf_u_int32 v2)
5948
{
5949
struct block *b1, *b2;
5950
5951
if (v1 > v2) {
5952
/*
5953
* Reverse the order of the ports, so v1 is the lower one.
5954
*/
5955
bpf_u_int32 vtemp;
5956
5957
vtemp = v1;
5958
v1 = v2;
5959
v2 = vtemp;
5960
}
5961
5962
b1 = gen_cmp_ge(cstate, OR_TRAN_IPV6, off, BPF_H, v1);
5963
b2 = gen_cmp_le(cstate, OR_TRAN_IPV6, off, BPF_H, v2);
5964
5965
gen_and(b1, b2);
5966
5967
return b2;
5968
}
5969
5970
static struct block *
5971
gen_portrangeop6(compiler_state_t *cstate, u_int port1, u_int port2,
5972
bpf_u_int32 proto, int dir)
5973
{
5974
struct block *b0, *b1, *tmp;
5975
5976
/* ip6 proto 'proto' */
5977
/* XXX - catch the first fragment of a fragmented packet? */
5978
b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, proto);
5979
5980
switch (dir) {
5981
case Q_SRC:
5982
b1 = gen_portrangeatom6(cstate, 0, port1, port2);
5983
break;
5984
5985
case Q_DST:
5986
b1 = gen_portrangeatom6(cstate, 2, port1, port2);
5987
break;
5988
5989
case Q_AND:
5990
tmp = gen_portrangeatom6(cstate, 0, port1, port2);
5991
b1 = gen_portrangeatom6(cstate, 2, port1, port2);
5992
gen_and(tmp, b1);
5993
break;
5994
5995
case Q_DEFAULT:
5996
case Q_OR:
5997
tmp = gen_portrangeatom6(cstate, 0, port1, port2);
5998
b1 = gen_portrangeatom6(cstate, 2, port1, port2);
5999
gen_or(tmp, b1);
6000
break;
6001
6002
default:
6003
abort();
6004
}
6005
gen_and(b0, b1);
6006
6007
return b1;
6008
}
6009
6010
static struct block *
6011
gen_portrange6(compiler_state_t *cstate, u_int port1, u_int port2, int ip_proto,
6012
int dir)
6013
{
6014
struct block *b0, *b1, *tmp;
6015
6016
/* link proto ip6 */
6017
b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6018
6019
switch (ip_proto) {
6020
case IPPROTO_UDP:
6021
case IPPROTO_TCP:
6022
case IPPROTO_SCTP:
6023
b1 = gen_portrangeop6(cstate, port1, port2, (bpf_u_int32)ip_proto,
6024
dir);
6025
break;
6026
6027
case PROTO_UNDEF:
6028
tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_TCP, dir);
6029
b1 = gen_portrangeop6(cstate, port1, port2, IPPROTO_UDP, dir);
6030
gen_or(tmp, b1);
6031
tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_SCTP, dir);
6032
gen_or(tmp, b1);
6033
break;
6034
6035
default:
6036
abort();
6037
}
6038
gen_and(b0, b1);
6039
return b1;
6040
}
6041
6042
static int
6043
lookup_proto(compiler_state_t *cstate, const char *name, int proto)
6044
{
6045
register int v;
6046
6047
switch (proto) {
6048
6049
case Q_DEFAULT:
6050
case Q_IP:
6051
case Q_IPV6:
6052
v = pcap_nametoproto(name);
6053
if (v == PROTO_UNDEF)
6054
bpf_error(cstate, "unknown ip proto '%s'", name);
6055
break;
6056
6057
case Q_LINK:
6058
/* XXX should look up h/w protocol type based on cstate->linktype */
6059
v = pcap_nametoeproto(name);
6060
if (v == PROTO_UNDEF) {
6061
v = pcap_nametollc(name);
6062
if (v == PROTO_UNDEF)
6063
bpf_error(cstate, "unknown ether proto '%s'", name);
6064
}
6065
break;
6066
6067
case Q_ISO:
6068
if (strcmp(name, "esis") == 0)
6069
v = ISO9542_ESIS;
6070
else if (strcmp(name, "isis") == 0)
6071
v = ISO10589_ISIS;
6072
else if (strcmp(name, "clnp") == 0)
6073
v = ISO8473_CLNP;
6074
else
6075
bpf_error(cstate, "unknown osi proto '%s'", name);
6076
break;
6077
6078
default:
6079
v = PROTO_UNDEF;
6080
break;
6081
}
6082
return v;
6083
}
6084
6085
#if !defined(NO_PROTOCHAIN)
6086
static struct block *
6087
gen_protochain(compiler_state_t *cstate, bpf_u_int32 v, int proto)
6088
{
6089
struct block *b0, *b;
6090
struct slist *s[100];
6091
int fix2, fix3, fix4, fix5;
6092
int ahcheck, again, end;
6093
int i, max;
6094
int reg2 = alloc_reg(cstate);
6095
6096
memset(s, 0, sizeof(s));
6097
fix3 = fix4 = fix5 = 0;
6098
6099
switch (proto) {
6100
case Q_IP:
6101
case Q_IPV6:
6102
break;
6103
case Q_DEFAULT:
6104
b0 = gen_protochain(cstate, v, Q_IP);
6105
b = gen_protochain(cstate, v, Q_IPV6);
6106
gen_or(b0, b);
6107
return b;
6108
default:
6109
bpf_error(cstate, "bad protocol applied for 'protochain'");
6110
/*NOTREACHED*/
6111
}
6112
6113
/*
6114
* We don't handle variable-length prefixes before the link-layer
6115
* header, or variable-length link-layer headers, here yet.
6116
* We might want to add BPF instructions to do the protochain
6117
* work, to simplify that and, on platforms that have a BPF
6118
* interpreter with the new instructions, let the filtering
6119
* be done in the kernel. (We already require a modified BPF
6120
* engine to do the protochain stuff, to support backward
6121
* branches, and backward branch support is unlikely to appear
6122
* in kernel BPF engines.)
6123
*/
6124
if (cstate->off_linkpl.is_variable)
6125
bpf_error(cstate, "'protochain' not supported with variable length headers");
6126
6127
/*
6128
* To quote a comment in optimize.c:
6129
*
6130
* "These data structures are used in a Cocke and Schwartz style
6131
* value numbering scheme. Since the flowgraph is acyclic,
6132
* exit values can be propagated from a node's predecessors
6133
* provided it is uniquely defined."
6134
*
6135
* "Acyclic" means "no backward branches", which means "no
6136
* loops", so we have to turn the optimizer off.
6137
*/
6138
cstate->no_optimize = 1;
6139
6140
/*
6141
* s[0] is a dummy entry to protect other BPF insn from damage
6142
* by s[fix] = foo with uninitialized variable "fix". It is somewhat
6143
* hard to find interdependency made by jump table fixup.
6144
*/
6145
i = 0;
6146
s[i] = new_stmt(cstate, 0); /*dummy*/
6147
i++;
6148
6149
switch (proto) {
6150
case Q_IP:
6151
b0 = gen_linktype(cstate, ETHERTYPE_IP);
6152
6153
/* A = ip->ip_p */
6154
s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
6155
s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 9;
6156
i++;
6157
/* X = ip->ip_hl << 2 */
6158
s[i] = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
6159
s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6160
i++;
6161
break;
6162
6163
case Q_IPV6:
6164
b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6165
6166
/* A = ip6->ip_nxt */
6167
s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
6168
s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 6;
6169
i++;
6170
/* X = sizeof(struct ip6_hdr) */
6171
s[i] = new_stmt(cstate, BPF_LDX|BPF_IMM);
6172
s[i]->s.k = 40;
6173
i++;
6174
break;
6175
6176
default:
6177
bpf_error(cstate, "unsupported proto to gen_protochain");
6178
/*NOTREACHED*/
6179
}
6180
6181
/* again: if (A == v) goto end; else fall through; */
6182
again = i;
6183
s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6184
s[i]->s.k = v;
6185
s[i]->s.jt = NULL; /*later*/
6186
s[i]->s.jf = NULL; /*update in next stmt*/
6187
fix5 = i;
6188
i++;
6189
6190
#ifndef IPPROTO_NONE
6191
#define IPPROTO_NONE 59
6192
#endif
6193
/* if (A == IPPROTO_NONE) goto end */
6194
s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6195
s[i]->s.jt = NULL; /*later*/
6196
s[i]->s.jf = NULL; /*update in next stmt*/
6197
s[i]->s.k = IPPROTO_NONE;
6198
s[fix5]->s.jf = s[i];
6199
fix2 = i;
6200
i++;
6201
6202
if (proto == Q_IPV6) {
6203
int v6start, v6end, v6advance, j;
6204
6205
v6start = i;
6206
/* if (A == IPPROTO_HOPOPTS) goto v6advance */
6207
s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6208
s[i]->s.jt = NULL; /*later*/
6209
s[i]->s.jf = NULL; /*update in next stmt*/
6210
s[i]->s.k = IPPROTO_HOPOPTS;
6211
s[fix2]->s.jf = s[i];
6212
i++;
6213
/* if (A == IPPROTO_DSTOPTS) goto v6advance */
6214
s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6215
s[i]->s.jt = NULL; /*later*/
6216
s[i]->s.jf = NULL; /*update in next stmt*/
6217
s[i]->s.k = IPPROTO_DSTOPTS;
6218
i++;
6219
/* if (A == IPPROTO_ROUTING) goto v6advance */
6220
s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6221
s[i]->s.jt = NULL; /*later*/
6222
s[i]->s.jf = NULL; /*update in next stmt*/
6223
s[i]->s.k = IPPROTO_ROUTING;
6224
i++;
6225
/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
6226
s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6227
s[i]->s.jt = NULL; /*later*/
6228
s[i]->s.jf = NULL; /*later*/
6229
s[i]->s.k = IPPROTO_FRAGMENT;
6230
fix3 = i;
6231
v6end = i;
6232
i++;
6233
6234
/* v6advance: */
6235
v6advance = i;
6236
6237
/*
6238
* in short,
6239
* A = P[X + packet head];
6240
* X = X + (P[X + packet head + 1] + 1) * 8;
6241
*/
6242
/* A = P[X + packet head] */
6243
s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6244
s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6245
i++;
6246
/* MEM[reg2] = A */
6247
s[i] = new_stmt(cstate, BPF_ST);
6248
s[i]->s.k = reg2;
6249
i++;
6250
/* A = P[X + packet head + 1]; */
6251
s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6252
s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 1;
6253
i++;
6254
/* A += 1 */
6255
s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6256
s[i]->s.k = 1;
6257
i++;
6258
/* A *= 8 */
6259
s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6260
s[i]->s.k = 8;
6261
i++;
6262
/* A += X */
6263
s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
6264
s[i]->s.k = 0;
6265
i++;
6266
/* X = A; */
6267
s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6268
i++;
6269
/* A = MEM[reg2] */
6270
s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6271
s[i]->s.k = reg2;
6272
i++;
6273
6274
/* goto again; (must use BPF_JA for backward jump) */
6275
s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6276
s[i]->s.k = again - i - 1;
6277
s[i - 1]->s.jf = s[i];
6278
i++;
6279
6280
/* fixup */
6281
for (j = v6start; j <= v6end; j++)
6282
s[j]->s.jt = s[v6advance];
6283
} else {
6284
/* nop */
6285
s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6286
s[i]->s.k = 0;
6287
s[fix2]->s.jf = s[i];
6288
i++;
6289
}
6290
6291
/* ahcheck: */
6292
ahcheck = i;
6293
/* if (A == IPPROTO_AH) then fall through; else goto end; */
6294
s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6295
s[i]->s.jt = NULL; /*later*/
6296
s[i]->s.jf = NULL; /*later*/
6297
s[i]->s.k = IPPROTO_AH;
6298
if (fix3)
6299
s[fix3]->s.jf = s[ahcheck];
6300
fix4 = i;
6301
i++;
6302
6303
/*
6304
* in short,
6305
* A = P[X];
6306
* X = X + (P[X + 1] + 2) * 4;
6307
*/
6308
/* A = X */
6309
s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
6310
i++;
6311
/* A = P[X + packet head]; */
6312
s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6313
s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6314
i++;
6315
/* MEM[reg2] = A */
6316
s[i] = new_stmt(cstate, BPF_ST);
6317
s[i]->s.k = reg2;
6318
i++;
6319
/* A = X */
6320
s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
6321
i++;
6322
/* A += 1 */
6323
s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6324
s[i]->s.k = 1;
6325
i++;
6326
/* X = A */
6327
s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6328
i++;
6329
/* A = P[X + packet head] */
6330
s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6331
s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6332
i++;
6333
/* A += 2 */
6334
s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6335
s[i]->s.k = 2;
6336
i++;
6337
/* A *= 4 */
6338
s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6339
s[i]->s.k = 4;
6340
i++;
6341
/* X = A; */
6342
s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6343
i++;
6344
/* A = MEM[reg2] */
6345
s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6346
s[i]->s.k = reg2;
6347
i++;
6348
6349
/* goto again; (must use BPF_JA for backward jump) */
6350
s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6351
s[i]->s.k = again - i - 1;
6352
i++;
6353
6354
/* end: nop */
6355
end = i;
6356
s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6357
s[i]->s.k = 0;
6358
s[fix2]->s.jt = s[end];
6359
s[fix4]->s.jf = s[end];
6360
s[fix5]->s.jt = s[end];
6361
i++;
6362
6363
/*
6364
* make slist chain
6365
*/
6366
max = i;
6367
for (i = 0; i < max - 1; i++)
6368
s[i]->next = s[i + 1];
6369
s[max - 1]->next = NULL;
6370
6371
/*
6372
* emit final check
6373
*/
6374
b = new_block(cstate, JMP(BPF_JEQ));
6375
b->stmts = s[1]; /*remember, s[0] is dummy*/
6376
b->s.k = v;
6377
6378
free_reg(cstate, reg2);
6379
6380
gen_and(b0, b);
6381
return b;
6382
}
6383
#endif /* !defined(NO_PROTOCHAIN) */
6384
6385
static struct block *
6386
gen_check_802_11_data_frame(compiler_state_t *cstate)
6387
{
6388
struct slist *s;
6389
struct block *b0, *b1;
6390
6391
/*
6392
* A data frame has the 0x08 bit (b3) in the frame control field set
6393
* and the 0x04 bit (b2) clear.
6394
*/
6395
s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
6396
b0 = new_block(cstate, JMP(BPF_JSET));
6397
b0->s.k = 0x08;
6398
b0->stmts = s;
6399
6400
s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
6401
b1 = new_block(cstate, JMP(BPF_JSET));
6402
b1->s.k = 0x04;
6403
b1->stmts = s;
6404
gen_not(b1);
6405
6406
gen_and(b1, b0);
6407
6408
return b0;
6409
}
6410
6411
/*
6412
* Generate code that checks whether the packet is a packet for protocol
6413
* <proto> and whether the type field in that protocol's header has
6414
* the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
6415
* IP packet and checks the protocol number in the IP header against <v>.
6416
*
6417
* If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
6418
* against Q_IP and Q_IPV6.
6419
*/
6420
static struct block *
6421
gen_proto(compiler_state_t *cstate, bpf_u_int32 v, int proto, int dir)
6422
{
6423
struct block *b0, *b1;
6424
struct block *b2;
6425
6426
if (dir != Q_DEFAULT)
6427
bpf_error(cstate, "direction applied to 'proto'");
6428
6429
switch (proto) {
6430
case Q_DEFAULT:
6431
b0 = gen_proto(cstate, v, Q_IP, dir);
6432
b1 = gen_proto(cstate, v, Q_IPV6, dir);
6433
gen_or(b0, b1);
6434
return b1;
6435
6436
case Q_LINK:
6437
return gen_linktype(cstate, v);
6438
6439
case Q_IP:
6440
/*
6441
* For FDDI, RFC 1188 says that SNAP encapsulation is used,
6442
* not LLC encapsulation with LLCSAP_IP.
6443
*
6444
* For IEEE 802 networks - which includes 802.5 token ring
6445
* (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
6446
* says that SNAP encapsulation is used, not LLC encapsulation
6447
* with LLCSAP_IP.
6448
*
6449
* For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
6450
* RFC 2225 say that SNAP encapsulation is used, not LLC
6451
* encapsulation with LLCSAP_IP.
6452
*
6453
* So we always check for ETHERTYPE_IP.
6454
*/
6455
b0 = gen_linktype(cstate, ETHERTYPE_IP);
6456
b1 = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, v);
6457
gen_and(b0, b1);
6458
return b1;
6459
6460
case Q_ARP:
6461
bpf_error(cstate, "arp does not encapsulate another protocol");
6462
/*NOTREACHED*/
6463
6464
case Q_RARP:
6465
bpf_error(cstate, "rarp does not encapsulate another protocol");
6466
/*NOTREACHED*/
6467
6468
case Q_SCTP:
6469
bpf_error(cstate, "'sctp proto' is bogus");
6470
/*NOTREACHED*/
6471
6472
case Q_TCP:
6473
bpf_error(cstate, "'tcp proto' is bogus");
6474
/*NOTREACHED*/
6475
6476
case Q_UDP:
6477
bpf_error(cstate, "'udp proto' is bogus");
6478
/*NOTREACHED*/
6479
6480
case Q_ICMP:
6481
bpf_error(cstate, "'icmp proto' is bogus");
6482
/*NOTREACHED*/
6483
6484
case Q_IGMP:
6485
bpf_error(cstate, "'igmp proto' is bogus");
6486
/*NOTREACHED*/
6487
6488
case Q_IGRP:
6489
bpf_error(cstate, "'igrp proto' is bogus");
6490
/*NOTREACHED*/
6491
6492
case Q_ATALK:
6493
bpf_error(cstate, "AppleTalk encapsulation is not specifiable");
6494
/*NOTREACHED*/
6495
6496
case Q_DECNET:
6497
bpf_error(cstate, "DECNET encapsulation is not specifiable");
6498
/*NOTREACHED*/
6499
6500
case Q_LAT:
6501
bpf_error(cstate, "LAT does not encapsulate another protocol");
6502
/*NOTREACHED*/
6503
6504
case Q_SCA:
6505
bpf_error(cstate, "SCA does not encapsulate another protocol");
6506
/*NOTREACHED*/
6507
6508
case Q_MOPRC:
6509
bpf_error(cstate, "MOPRC does not encapsulate another protocol");
6510
/*NOTREACHED*/
6511
6512
case Q_MOPDL:
6513
bpf_error(cstate, "MOPDL does not encapsulate another protocol");
6514
/*NOTREACHED*/
6515
6516
case Q_IPV6:
6517
b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6518
/*
6519
* Also check for a fragment header before the final
6520
* header.
6521
*/
6522
b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, IPPROTO_FRAGMENT);
6523
b1 = gen_cmp(cstate, OR_LINKPL, 40, BPF_B, v);
6524
gen_and(b2, b1);
6525
b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, v);
6526
gen_or(b2, b1);
6527
gen_and(b0, b1);
6528
return b1;
6529
6530
case Q_ICMPV6:
6531
bpf_error(cstate, "'icmp6 proto' is bogus");
6532
/*NOTREACHED*/
6533
6534
case Q_AH:
6535
bpf_error(cstate, "'ah proto' is bogus");
6536
/*NOTREACHED*/
6537
6538
case Q_ESP:
6539
bpf_error(cstate, "'esp proto' is bogus");
6540
/*NOTREACHED*/
6541
6542
case Q_PIM:
6543
bpf_error(cstate, "'pim proto' is bogus");
6544
/*NOTREACHED*/
6545
6546
case Q_VRRP:
6547
bpf_error(cstate, "'vrrp proto' is bogus");
6548
/*NOTREACHED*/
6549
6550
case Q_AARP:
6551
bpf_error(cstate, "'aarp proto' is bogus");
6552
/*NOTREACHED*/
6553
6554
case Q_ISO:
6555
switch (cstate->linktype) {
6556
6557
case DLT_FRELAY:
6558
/*
6559
* Frame Relay packets typically have an OSI
6560
* NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
6561
* generates code to check for all the OSI
6562
* NLPIDs, so calling it and then adding a check
6563
* for the particular NLPID for which we're
6564
* looking is bogus, as we can just check for
6565
* the NLPID.
6566
*
6567
* What we check for is the NLPID and a frame
6568
* control field value of UI, i.e. 0x03 followed
6569
* by the NLPID.
6570
*
6571
* XXX - assumes a 2-byte Frame Relay header with
6572
* DLCI and flags. What if the address is longer?
6573
*
6574
* XXX - what about SNAP-encapsulated frames?
6575
*/
6576
return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | v);
6577
/*NOTREACHED*/
6578
6579
case DLT_C_HDLC:
6580
case DLT_HDLC:
6581
/*
6582
* Cisco uses an Ethertype lookalike - for OSI,
6583
* it's 0xfefe.
6584
*/
6585
b0 = gen_linktype(cstate, LLCSAP_ISONS<<8 | LLCSAP_ISONS);
6586
/* OSI in C-HDLC is stuffed with a fudge byte */
6587
b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 1, BPF_B, v);
6588
gen_and(b0, b1);
6589
return b1;
6590
6591
default:
6592
b0 = gen_linktype(cstate, LLCSAP_ISONS);
6593
b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 0, BPF_B, v);
6594
gen_and(b0, b1);
6595
return b1;
6596
}
6597
6598
case Q_ESIS:
6599
bpf_error(cstate, "'esis proto' is bogus");
6600
/*NOTREACHED*/
6601
6602
case Q_ISIS:
6603
b0 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
6604
/*
6605
* 4 is the offset of the PDU type relative to the IS-IS
6606
* header.
6607
*/
6608
b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 4, BPF_B, v);
6609
gen_and(b0, b1);
6610
return b1;
6611
6612
case Q_CLNP:
6613
bpf_error(cstate, "'clnp proto' is not supported");
6614
/*NOTREACHED*/
6615
6616
case Q_STP:
6617
bpf_error(cstate, "'stp proto' is bogus");
6618
/*NOTREACHED*/
6619
6620
case Q_IPX:
6621
bpf_error(cstate, "'ipx proto' is bogus");
6622
/*NOTREACHED*/
6623
6624
case Q_NETBEUI:
6625
bpf_error(cstate, "'netbeui proto' is bogus");
6626
/*NOTREACHED*/
6627
6628
case Q_ISIS_L1:
6629
bpf_error(cstate, "'l1 proto' is bogus");
6630
/*NOTREACHED*/
6631
6632
case Q_ISIS_L2:
6633
bpf_error(cstate, "'l2 proto' is bogus");
6634
/*NOTREACHED*/
6635
6636
case Q_ISIS_IIH:
6637
bpf_error(cstate, "'iih proto' is bogus");
6638
/*NOTREACHED*/
6639
6640
case Q_ISIS_SNP:
6641
bpf_error(cstate, "'snp proto' is bogus");
6642
/*NOTREACHED*/
6643
6644
case Q_ISIS_CSNP:
6645
bpf_error(cstate, "'csnp proto' is bogus");
6646
/*NOTREACHED*/
6647
6648
case Q_ISIS_PSNP:
6649
bpf_error(cstate, "'psnp proto' is bogus");
6650
/*NOTREACHED*/
6651
6652
case Q_ISIS_LSP:
6653
bpf_error(cstate, "'lsp proto' is bogus");
6654
/*NOTREACHED*/
6655
6656
case Q_RADIO:
6657
bpf_error(cstate, "'radio proto' is bogus");
6658
/*NOTREACHED*/
6659
6660
case Q_CARP:
6661
bpf_error(cstate, "'carp proto' is bogus");
6662
/*NOTREACHED*/
6663
6664
default:
6665
abort();
6666
/*NOTREACHED*/
6667
}
6668
/*NOTREACHED*/
6669
}
6670
6671
/*
6672
* Convert a non-numeric name to a port number.
6673
*/
6674
static int
6675
nametoport(compiler_state_t *cstate, const char *name, int ipproto)
6676
{
6677
struct addrinfo hints, *res, *ai;
6678
int error;
6679
struct sockaddr_in *in4;
6680
#ifdef INET6
6681
struct sockaddr_in6 *in6;
6682
#endif
6683
int port = -1;
6684
6685
/*
6686
* We check for both TCP and UDP in case there are
6687
* ambiguous entries.
6688
*/
6689
memset(&hints, 0, sizeof(hints));
6690
hints.ai_family = PF_UNSPEC;
6691
hints.ai_socktype = (ipproto == IPPROTO_TCP) ? SOCK_STREAM : SOCK_DGRAM;
6692
hints.ai_protocol = ipproto;
6693
error = getaddrinfo(NULL, name, &hints, &res);
6694
if (error != 0) {
6695
switch (error) {
6696
6697
case EAI_NONAME:
6698
case EAI_SERVICE:
6699
/*
6700
* No such port. Just return -1.
6701
*/
6702
break;
6703
6704
#ifdef EAI_SYSTEM
6705
case EAI_SYSTEM:
6706
/*
6707
* We don't use strerror() because it's not
6708
* guaranteed to be thread-safe on all platforms
6709
* (probably because it might use a non-thread-local
6710
* buffer into which to format an error message
6711
* if the error code isn't one for which it has
6712
* a canned string; three cheers for C string
6713
* handling).
6714
*/
6715
bpf_set_error(cstate, "getaddrinfo(\"%s\" fails with system error: %d",
6716
name, errno);
6717
port = -2; /* a real error */
6718
break;
6719
#endif
6720
6721
default:
6722
/*
6723
* This is a real error, not just "there's
6724
* no such service name".
6725
*
6726
* We don't use gai_strerror() because it's not
6727
* guaranteed to be thread-safe on all platforms
6728
* (probably because it might use a non-thread-local
6729
* buffer into which to format an error message
6730
* if the error code isn't one for which it has
6731
* a canned string; three cheers for C string
6732
* handling).
6733
*/
6734
bpf_set_error(cstate, "getaddrinfo(\"%s\") fails with error: %d",
6735
name, error);
6736
port = -2; /* a real error */
6737
break;
6738
}
6739
} else {
6740
/*
6741
* OK, we found it. Did it find anything?
6742
*/
6743
for (ai = res; ai != NULL; ai = ai->ai_next) {
6744
/*
6745
* Does it have an address?
6746
*/
6747
if (ai->ai_addr != NULL) {
6748
/*
6749
* Yes. Get a port number; we're done.
6750
*/
6751
if (ai->ai_addr->sa_family == AF_INET) {
6752
in4 = (struct sockaddr_in *)ai->ai_addr;
6753
port = ntohs(in4->sin_port);
6754
break;
6755
}
6756
#ifdef INET6
6757
if (ai->ai_addr->sa_family == AF_INET6) {
6758
in6 = (struct sockaddr_in6 *)ai->ai_addr;
6759
port = ntohs(in6->sin6_port);
6760
break;
6761
}
6762
#endif
6763
}
6764
}
6765
freeaddrinfo(res);
6766
}
6767
return port;
6768
}
6769
6770
/*
6771
* Convert a string to a port number.
6772
*/
6773
static bpf_u_int32
6774
stringtoport(compiler_state_t *cstate, const char *string, size_t string_size,
6775
int *proto)
6776
{
6777
stoulen_ret ret;
6778
char *cpy;
6779
bpf_u_int32 val;
6780
int tcp_port = -1;
6781
int udp_port = -1;
6782
6783
/*
6784
* See if it's a number.
6785
*/
6786
ret = stoulen(string, string_size, &val, cstate);
6787
switch (ret) {
6788
6789
case STOULEN_OK:
6790
/* Unknown port type - it's just a number. */
6791
*proto = PROTO_UNDEF;
6792
break;
6793
6794
case STOULEN_NOT_OCTAL_NUMBER:
6795
case STOULEN_NOT_HEX_NUMBER:
6796
case STOULEN_NOT_DECIMAL_NUMBER:
6797
/*
6798
* Not a valid number; try looking it up as a port.
6799
*/
6800
cpy = malloc(string_size + 1); /* +1 for terminating '\0' */
6801
memcpy(cpy, string, string_size);
6802
cpy[string_size] = '\0';
6803
tcp_port = nametoport(cstate, cpy, IPPROTO_TCP);
6804
if (tcp_port == -2) {
6805
/*
6806
* We got a hard error; the error string has
6807
* already been set.
6808
*/
6809
free(cpy);
6810
longjmp(cstate->top_ctx, 1);
6811
/*NOTREACHED*/
6812
}
6813
udp_port = nametoport(cstate, cpy, IPPROTO_UDP);
6814
if (udp_port == -2) {
6815
/*
6816
* We got a hard error; the error string has
6817
* already been set.
6818
*/
6819
free(cpy);
6820
longjmp(cstate->top_ctx, 1);
6821
/*NOTREACHED*/
6822
}
6823
6824
/*
6825
* We need to check /etc/services for ambiguous entries.
6826
* If we find an ambiguous entry, and it has the
6827
* same port number, change the proto to PROTO_UNDEF
6828
* so both TCP and UDP will be checked.
6829
*/
6830
if (tcp_port >= 0) {
6831
val = (bpf_u_int32)tcp_port;
6832
*proto = IPPROTO_TCP;
6833
if (udp_port >= 0) {
6834
if (udp_port == tcp_port)
6835
*proto = PROTO_UNDEF;
6836
#ifdef notdef
6837
else
6838
/* Can't handle ambiguous names that refer
6839
to different port numbers. */
6840
warning("ambiguous port %s in /etc/services",
6841
cpy);
6842
#endif
6843
}
6844
free(cpy);
6845
break;
6846
}
6847
if (udp_port >= 0) {
6848
val = (bpf_u_int32)udp_port;
6849
*proto = IPPROTO_UDP;
6850
free(cpy);
6851
break;
6852
}
6853
#if defined(ultrix) || defined(__osf__)
6854
/* Special hack in case NFS isn't in /etc/services */
6855
if (strcmp(cpy, "nfs") == 0) {
6856
val = 2049;
6857
*proto = PROTO_UNDEF;
6858
free(cpy);
6859
break;
6860
}
6861
#endif
6862
bpf_set_error(cstate, "'%s' is not a valid port", cpy);
6863
free(cpy);
6864
longjmp(cstate->top_ctx, 1);
6865
/*NOTREACHED*/
6866
6867
case STOULEN_ERROR:
6868
/* Error already set. */
6869
longjmp(cstate->top_ctx, 1);
6870
/*NOTREACHED*/
6871
6872
default:
6873
/* Should not happen */
6874
bpf_set_error(cstate, "stoulen returned %d - this should not happen", ret);
6875
longjmp(cstate->top_ctx, 1);
6876
/*NOTREACHED*/
6877
}
6878
return (val);
6879
}
6880
6881
/*
6882
* Convert a string in the form PPP-PPP, which correspond to ports, to
6883
* a starting and ending port in a port range.
6884
*/
6885
static void
6886
stringtoportrange(compiler_state_t *cstate, const char *string,
6887
bpf_u_int32 *port1, bpf_u_int32 *port2, int *proto)
6888
{
6889
char *hyphen_off;
6890
const char *first, *second;
6891
size_t first_size, second_size;
6892
int save_proto;
6893
6894
if ((hyphen_off = strchr(string, '-')) == NULL)
6895
bpf_error(cstate, "port range '%s' contains no hyphen", string);
6896
6897
/*
6898
* Make sure there are no other hyphens.
6899
*
6900
* XXX - we support named ports, but there are some port names
6901
* in /etc/services that include hyphens, so this would rule
6902
* that out.
6903
*/
6904
if (strchr(hyphen_off + 1, '-') != NULL)
6905
bpf_error(cstate, "port range '%s' contains more than one hyphen",
6906
string);
6907
6908
/*
6909
* Get the length of the first port.
6910
*/
6911
first = string;
6912
first_size = hyphen_off - string;
6913
if (first_size == 0) {
6914
/* Range of "-port", which we don't support. */
6915
bpf_error(cstate, "port range '%s' has no starting port", string);
6916
}
6917
6918
/*
6919
* Try to convert it to a port.
6920
*/
6921
*port1 = stringtoport(cstate, first, first_size, proto);
6922
save_proto = *proto;
6923
6924
/*
6925
* Get the length of the second port.
6926
*/
6927
second = hyphen_off + 1;
6928
second_size = strlen(second);
6929
if (second_size == 0) {
6930
/* Range of "port-", which we don't support. */
6931
bpf_error(cstate, "port range '%s' has no ending port", string);
6932
}
6933
6934
/*
6935
* Try to convert it to a port.
6936
*/
6937
*port2 = stringtoport(cstate, second, second_size, proto);
6938
if (*proto != save_proto)
6939
*proto = PROTO_UNDEF;
6940
}
6941
6942
struct block *
6943
gen_scode(compiler_state_t *cstate, const char *name, struct qual q)
6944
{
6945
int proto = q.proto;
6946
int dir = q.dir;
6947
int tproto;
6948
u_char *eaddr;
6949
bpf_u_int32 mask, addr;
6950
struct addrinfo *res, *res0;
6951
struct sockaddr_in *sin4;
6952
#ifdef INET6
6953
int tproto6;
6954
struct sockaddr_in6 *sin6;
6955
struct in6_addr mask128;
6956
#endif /*INET6*/
6957
struct block *b, *tmp;
6958
int port, real_proto;
6959
bpf_u_int32 port1, port2;
6960
6961
/*
6962
* Catch errors reported by us and routines below us, and return NULL
6963
* on an error.
6964
*/
6965
if (setjmp(cstate->top_ctx))
6966
return (NULL);
6967
6968
switch (q.addr) {
6969
6970
case Q_NET:
6971
addr = pcap_nametonetaddr(name);
6972
if (addr == 0)
6973
bpf_error(cstate, "unknown network '%s'", name);
6974
/* Left justify network addr and calculate its network mask */
6975
mask = 0xffffffff;
6976
while (addr && (addr & 0xff000000) == 0) {
6977
addr <<= 8;
6978
mask <<= 8;
6979
}
6980
return gen_host(cstate, addr, mask, proto, dir, q.addr);
6981
6982
case Q_DEFAULT:
6983
case Q_HOST:
6984
if (proto == Q_LINK) {
6985
switch (cstate->linktype) {
6986
6987
case DLT_EN10MB:
6988
case DLT_NETANALYZER:
6989
case DLT_NETANALYZER_TRANSPARENT:
6990
eaddr = pcap_ether_hostton(name);
6991
if (eaddr == NULL)
6992
bpf_error(cstate,
6993
"unknown ether host '%s'", name);
6994
tmp = gen_prevlinkhdr_check(cstate);
6995
b = gen_ehostop(cstate, eaddr, dir);
6996
if (tmp != NULL)
6997
gen_and(tmp, b);
6998
free(eaddr);
6999
return b;
7000
7001
case DLT_FDDI:
7002
eaddr = pcap_ether_hostton(name);
7003
if (eaddr == NULL)
7004
bpf_error(cstate,
7005
"unknown FDDI host '%s'", name);
7006
b = gen_fhostop(cstate, eaddr, dir);
7007
free(eaddr);
7008
return b;
7009
7010
case DLT_IEEE802:
7011
eaddr = pcap_ether_hostton(name);
7012
if (eaddr == NULL)
7013
bpf_error(cstate,
7014
"unknown token ring host '%s'", name);
7015
b = gen_thostop(cstate, eaddr, dir);
7016
free(eaddr);
7017
return b;
7018
7019
case DLT_IEEE802_11:
7020
case DLT_PRISM_HEADER:
7021
case DLT_IEEE802_11_RADIO_AVS:
7022
case DLT_IEEE802_11_RADIO:
7023
case DLT_PPI:
7024
eaddr = pcap_ether_hostton(name);
7025
if (eaddr == NULL)
7026
bpf_error(cstate,
7027
"unknown 802.11 host '%s'", name);
7028
b = gen_wlanhostop(cstate, eaddr, dir);
7029
free(eaddr);
7030
return b;
7031
7032
case DLT_IP_OVER_FC:
7033
eaddr = pcap_ether_hostton(name);
7034
if (eaddr == NULL)
7035
bpf_error(cstate,
7036
"unknown Fibre Channel host '%s'", name);
7037
b = gen_ipfchostop(cstate, eaddr, dir);
7038
free(eaddr);
7039
return b;
7040
}
7041
7042
bpf_error(cstate, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
7043
} else if (proto == Q_DECNET) {
7044
unsigned short dn_addr;
7045
7046
if (!__pcap_nametodnaddr(name, &dn_addr)) {
7047
#ifdef DECNETLIB
7048
bpf_error(cstate, "unknown decnet host name '%s'\n", name);
7049
#else
7050
bpf_error(cstate, "decnet name support not included, '%s' cannot be translated\n",
7051
name);
7052
#endif
7053
}
7054
/*
7055
* I don't think DECNET hosts can be multihomed, so
7056
* there is no need to build up a list of addresses
7057
*/
7058
return (gen_host(cstate, dn_addr, 0, proto, dir, q.addr));
7059
} else {
7060
#ifdef INET6
7061
memset(&mask128, 0xff, sizeof(mask128));
7062
#endif
7063
res0 = res = pcap_nametoaddrinfo(name);
7064
if (res == NULL)
7065
bpf_error(cstate, "unknown host '%s'", name);
7066
cstate->ai = res;
7067
b = tmp = NULL;
7068
tproto = proto;
7069
#ifdef INET6
7070
tproto6 = proto;
7071
#endif
7072
if (cstate->off_linktype.constant_part == OFFSET_NOT_SET &&
7073
tproto == Q_DEFAULT) {
7074
tproto = Q_IP;
7075
#ifdef INET6
7076
tproto6 = Q_IPV6;
7077
#endif
7078
}
7079
for (res = res0; res; res = res->ai_next) {
7080
switch (res->ai_family) {
7081
case AF_INET:
7082
#ifdef INET6
7083
if (tproto == Q_IPV6)
7084
continue;
7085
#endif
7086
7087
sin4 = (struct sockaddr_in *)
7088
res->ai_addr;
7089
tmp = gen_host(cstate, ntohl(sin4->sin_addr.s_addr),
7090
0xffffffff, tproto, dir, q.addr);
7091
break;
7092
#ifdef INET6
7093
case AF_INET6:
7094
if (tproto6 == Q_IP)
7095
continue;
7096
7097
sin6 = (struct sockaddr_in6 *)
7098
res->ai_addr;
7099
tmp = gen_host6(cstate, &sin6->sin6_addr,
7100
&mask128, tproto6, dir, q.addr);
7101
break;
7102
#endif
7103
default:
7104
continue;
7105
}
7106
if (b)
7107
gen_or(b, tmp);
7108
b = tmp;
7109
}
7110
cstate->ai = NULL;
7111
freeaddrinfo(res0);
7112
if (b == NULL) {
7113
bpf_error(cstate, "unknown host '%s'%s", name,
7114
(proto == Q_DEFAULT)
7115
? ""
7116
: " for specified address family");
7117
}
7118
return b;
7119
}
7120
7121
case Q_PORT:
7122
if (proto != Q_DEFAULT &&
7123
proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
7124
bpf_error(cstate, "illegal qualifier of 'port'");
7125
if (pcap_nametoport(name, &port, &real_proto) == 0)
7126
bpf_error(cstate, "unknown port '%s'", name);
7127
if (proto == Q_UDP) {
7128
if (real_proto == IPPROTO_TCP)
7129
bpf_error(cstate, "port '%s' is tcp", name);
7130
else if (real_proto == IPPROTO_SCTP)
7131
bpf_error(cstate, "port '%s' is sctp", name);
7132
else
7133
/* override PROTO_UNDEF */
7134
real_proto = IPPROTO_UDP;
7135
}
7136
if (proto == Q_TCP) {
7137
if (real_proto == IPPROTO_UDP)
7138
bpf_error(cstate, "port '%s' is udp", name);
7139
7140
else if (real_proto == IPPROTO_SCTP)
7141
bpf_error(cstate, "port '%s' is sctp", name);
7142
else
7143
/* override PROTO_UNDEF */
7144
real_proto = IPPROTO_TCP;
7145
}
7146
if (proto == Q_SCTP) {
7147
if (real_proto == IPPROTO_UDP)
7148
bpf_error(cstate, "port '%s' is udp", name);
7149
7150
else if (real_proto == IPPROTO_TCP)
7151
bpf_error(cstate, "port '%s' is tcp", name);
7152
else
7153
/* override PROTO_UNDEF */
7154
real_proto = IPPROTO_SCTP;
7155
}
7156
if (port < 0)
7157
bpf_error(cstate, "illegal port number %d < 0", port);
7158
if (port > 65535)
7159
bpf_error(cstate, "illegal port number %d > 65535", port);
7160
b = gen_port(cstate, port, real_proto, dir);
7161
gen_or(gen_port6(cstate, port, real_proto, dir), b);
7162
return b;
7163
7164
case Q_PORTRANGE:
7165
if (proto != Q_DEFAULT &&
7166
proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
7167
bpf_error(cstate, "illegal qualifier of 'portrange'");
7168
stringtoportrange(cstate, name, &port1, &port2, &real_proto);
7169
if (proto == Q_UDP) {
7170
if (real_proto == IPPROTO_TCP)
7171
bpf_error(cstate, "port in range '%s' is tcp", name);
7172
else if (real_proto == IPPROTO_SCTP)
7173
bpf_error(cstate, "port in range '%s' is sctp", name);
7174
else
7175
/* override PROTO_UNDEF */
7176
real_proto = IPPROTO_UDP;
7177
}
7178
if (proto == Q_TCP) {
7179
if (real_proto == IPPROTO_UDP)
7180
bpf_error(cstate, "port in range '%s' is udp", name);
7181
else if (real_proto == IPPROTO_SCTP)
7182
bpf_error(cstate, "port in range '%s' is sctp", name);
7183
else
7184
/* override PROTO_UNDEF */
7185
real_proto = IPPROTO_TCP;
7186
}
7187
if (proto == Q_SCTP) {
7188
if (real_proto == IPPROTO_UDP)
7189
bpf_error(cstate, "port in range '%s' is udp", name);
7190
else if (real_proto == IPPROTO_TCP)
7191
bpf_error(cstate, "port in range '%s' is tcp", name);
7192
else
7193
/* override PROTO_UNDEF */
7194
real_proto = IPPROTO_SCTP;
7195
}
7196
if (port1 > 65535)
7197
bpf_error(cstate, "illegal port number %d > 65535", port1);
7198
if (port2 > 65535)
7199
bpf_error(cstate, "illegal port number %d > 65535", port2);
7200
7201
b = gen_portrange(cstate, port1, port2, real_proto, dir);
7202
gen_or(gen_portrange6(cstate, port1, port2, real_proto, dir), b);
7203
return b;
7204
7205
case Q_GATEWAY:
7206
#ifndef INET6
7207
eaddr = pcap_ether_hostton(name);
7208
if (eaddr == NULL)
7209
bpf_error(cstate, "unknown ether host: %s", name);
7210
7211
res = pcap_nametoaddrinfo(name);
7212
cstate->ai = res;
7213
if (res == NULL)
7214
bpf_error(cstate, "unknown host '%s'", name);
7215
b = gen_gateway(cstate, eaddr, res, proto, dir);
7216
cstate->ai = NULL;
7217
freeaddrinfo(res);
7218
if (b == NULL)
7219
bpf_error(cstate, "unknown host '%s'", name);
7220
return b;
7221
#else
7222
bpf_error(cstate, "'gateway' not supported in this configuration");
7223
#endif /*INET6*/
7224
7225
case Q_PROTO:
7226
real_proto = lookup_proto(cstate, name, proto);
7227
if (real_proto >= 0)
7228
return gen_proto(cstate, real_proto, proto, dir);
7229
else
7230
bpf_error(cstate, "unknown protocol: %s", name);
7231
7232
#if !defined(NO_PROTOCHAIN)
7233
case Q_PROTOCHAIN:
7234
real_proto = lookup_proto(cstate, name, proto);
7235
if (real_proto >= 0)
7236
return gen_protochain(cstate, real_proto, proto);
7237
else
7238
bpf_error(cstate, "unknown protocol: %s", name);
7239
#endif /* !defined(NO_PROTOCHAIN) */
7240
7241
case Q_UNDEF:
7242
syntax(cstate);
7243
/*NOTREACHED*/
7244
}
7245
abort();
7246
/*NOTREACHED*/
7247
}
7248
7249
struct block *
7250
gen_mcode(compiler_state_t *cstate, const char *s1, const char *s2,
7251
bpf_u_int32 masklen, struct qual q)
7252
{
7253
register int nlen, mlen;
7254
bpf_u_int32 n, m;
7255
7256
/*
7257
* Catch errors reported by us and routines below us, and return NULL
7258
* on an error.
7259
*/
7260
if (setjmp(cstate->top_ctx))
7261
return (NULL);
7262
7263
nlen = __pcap_atoin(s1, &n);
7264
if (nlen < 0)
7265
bpf_error(cstate, "invalid IPv4 address '%s'", s1);
7266
/* Promote short ipaddr */
7267
n <<= 32 - nlen;
7268
7269
if (s2 != NULL) {
7270
mlen = __pcap_atoin(s2, &m);
7271
if (mlen < 0)
7272
bpf_error(cstate, "invalid IPv4 address '%s'", s2);
7273
/* Promote short ipaddr */
7274
m <<= 32 - mlen;
7275
if ((n & ~m) != 0)
7276
bpf_error(cstate, "non-network bits set in \"%s mask %s\"",
7277
s1, s2);
7278
} else {
7279
/* Convert mask len to mask */
7280
if (masklen > 32)
7281
bpf_error(cstate, "mask length must be <= 32");
7282
if (masklen == 0) {
7283
/*
7284
* X << 32 is not guaranteed by C to be 0; it's
7285
* undefined.
7286
*/
7287
m = 0;
7288
} else
7289
m = 0xffffffff << (32 - masklen);
7290
if ((n & ~m) != 0)
7291
bpf_error(cstate, "non-network bits set in \"%s/%d\"",
7292
s1, masklen);
7293
}
7294
7295
switch (q.addr) {
7296
7297
case Q_NET:
7298
return gen_host(cstate, n, m, q.proto, q.dir, q.addr);
7299
7300
default:
7301
bpf_error(cstate, "Mask syntax for networks only");
7302
/*NOTREACHED*/
7303
}
7304
/*NOTREACHED*/
7305
}
7306
7307
struct block *
7308
gen_ncode(compiler_state_t *cstate, const char *s, bpf_u_int32 v, struct qual q)
7309
{
7310
bpf_u_int32 mask;
7311
int proto;
7312
int dir;
7313
register int vlen;
7314
7315
/*
7316
* Catch errors reported by us and routines below us, and return NULL
7317
* on an error.
7318
*/
7319
if (setjmp(cstate->top_ctx))
7320
return (NULL);
7321
7322
proto = q.proto;
7323
dir = q.dir;
7324
if (s == NULL)
7325
vlen = 32;
7326
else if (q.proto == Q_DECNET) {
7327
vlen = __pcap_atodn(s, &v);
7328
if (vlen == 0)
7329
bpf_error(cstate, "malformed decnet address '%s'", s);
7330
} else {
7331
vlen = __pcap_atoin(s, &v);
7332
if (vlen < 0)
7333
bpf_error(cstate, "invalid IPv4 address '%s'", s);
7334
}
7335
7336
switch (q.addr) {
7337
7338
case Q_DEFAULT:
7339
case Q_HOST:
7340
case Q_NET:
7341
if (proto == Q_DECNET)
7342
return gen_host(cstate, v, 0, proto, dir, q.addr);
7343
else if (proto == Q_LINK) {
7344
bpf_error(cstate, "illegal link layer address");
7345
} else {
7346
mask = 0xffffffff;
7347
if (s == NULL && q.addr == Q_NET) {
7348
/* Promote short net number */
7349
while (v && (v & 0xff000000) == 0) {
7350
v <<= 8;
7351
mask <<= 8;
7352
}
7353
} else {
7354
/* Promote short ipaddr */
7355
v <<= 32 - vlen;
7356
mask <<= 32 - vlen ;
7357
}
7358
return gen_host(cstate, v, mask, proto, dir, q.addr);
7359
}
7360
7361
case Q_PORT:
7362
if (proto == Q_UDP)
7363
proto = IPPROTO_UDP;
7364
else if (proto == Q_TCP)
7365
proto = IPPROTO_TCP;
7366
else if (proto == Q_SCTP)
7367
proto = IPPROTO_SCTP;
7368
else if (proto == Q_DEFAULT)
7369
proto = PROTO_UNDEF;
7370
else
7371
bpf_error(cstate, "illegal qualifier of 'port'");
7372
7373
if (v > 65535)
7374
bpf_error(cstate, "illegal port number %u > 65535", v);
7375
7376
{
7377
struct block *b;
7378
b = gen_port(cstate, v, proto, dir);
7379
gen_or(gen_port6(cstate, v, proto, dir), b);
7380
return b;
7381
}
7382
7383
case Q_PORTRANGE:
7384
if (proto == Q_UDP)
7385
proto = IPPROTO_UDP;
7386
else if (proto == Q_TCP)
7387
proto = IPPROTO_TCP;
7388
else if (proto == Q_SCTP)
7389
proto = IPPROTO_SCTP;
7390
else if (proto == Q_DEFAULT)
7391
proto = PROTO_UNDEF;
7392
else
7393
bpf_error(cstate, "illegal qualifier of 'portrange'");
7394
7395
if (v > 65535)
7396
bpf_error(cstate, "illegal port number %u > 65535", v);
7397
7398
{
7399
struct block *b;
7400
b = gen_portrange(cstate, v, v, proto, dir);
7401
gen_or(gen_portrange6(cstate, v, v, proto, dir), b);
7402
return b;
7403
}
7404
7405
case Q_GATEWAY:
7406
bpf_error(cstate, "'gateway' requires a name");
7407
/*NOTREACHED*/
7408
7409
case Q_PROTO:
7410
return gen_proto(cstate, v, proto, dir);
7411
7412
#if !defined(NO_PROTOCHAIN)
7413
case Q_PROTOCHAIN:
7414
return gen_protochain(cstate, v, proto);
7415
#endif
7416
7417
case Q_UNDEF:
7418
syntax(cstate);
7419
/*NOTREACHED*/
7420
7421
default:
7422
abort();
7423
/*NOTREACHED*/
7424
}
7425
/*NOTREACHED*/
7426
}
7427
7428
#ifdef INET6
7429
struct block *
7430
gen_mcode6(compiler_state_t *cstate, const char *s, bpf_u_int32 masklen,
7431
struct qual q)
7432
{
7433
struct addrinfo *res;
7434
struct in6_addr *addr;
7435
struct in6_addr mask;
7436
struct block *b;
7437
bpf_u_int32 a[4], m[4]; /* Same as in gen_hostop6(). */
7438
7439
/*
7440
* Catch errors reported by us and routines below us, and return NULL
7441
* on an error.
7442
*/
7443
if (setjmp(cstate->top_ctx))
7444
return (NULL);
7445
7446
res = pcap_nametoaddrinfo(s);
7447
if (!res)
7448
bpf_error(cstate, "invalid ip6 address %s", s);
7449
cstate->ai = res;
7450
if (res->ai_next)
7451
bpf_error(cstate, "%s resolved to multiple address", s);
7452
addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
7453
7454
if (masklen > sizeof(mask.s6_addr) * 8)
7455
bpf_error(cstate, "mask length must be <= %zu", sizeof(mask.s6_addr) * 8);
7456
memset(&mask, 0, sizeof(mask));
7457
memset(&mask.s6_addr, 0xff, masklen / 8);
7458
if (masklen % 8) {
7459
mask.s6_addr[masklen / 8] =
7460
(0xff << (8 - masklen % 8)) & 0xff;
7461
}
7462
7463
memcpy(a, addr, sizeof(a));
7464
memcpy(m, &mask, sizeof(m));
7465
if ((a[0] & ~m[0]) || (a[1] & ~m[1])
7466
|| (a[2] & ~m[2]) || (a[3] & ~m[3])) {
7467
bpf_error(cstate, "non-network bits set in \"%s/%d\"", s, masklen);
7468
}
7469
7470
switch (q.addr) {
7471
7472
case Q_DEFAULT:
7473
case Q_HOST:
7474
if (masklen != 128)
7475
bpf_error(cstate, "Mask syntax for networks only");
7476
/* FALLTHROUGH */
7477
7478
case Q_NET:
7479
b = gen_host6(cstate, addr, &mask, q.proto, q.dir, q.addr);
7480
cstate->ai = NULL;
7481
freeaddrinfo(res);
7482
return b;
7483
7484
default:
7485
bpf_error(cstate, "invalid qualifier against IPv6 address");
7486
/*NOTREACHED*/
7487
}
7488
}
7489
#endif /*INET6*/
7490
7491
struct block *
7492
gen_ecode(compiler_state_t *cstate, const char *s, struct qual q)
7493
{
7494
struct block *b, *tmp;
7495
7496
/*
7497
* Catch errors reported by us and routines below us, and return NULL
7498
* on an error.
7499
*/
7500
if (setjmp(cstate->top_ctx))
7501
return (NULL);
7502
7503
if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
7504
cstate->e = pcap_ether_aton(s);
7505
if (cstate->e == NULL)
7506
bpf_error(cstate, "malloc");
7507
switch (cstate->linktype) {
7508
case DLT_EN10MB:
7509
case DLT_NETANALYZER:
7510
case DLT_NETANALYZER_TRANSPARENT:
7511
tmp = gen_prevlinkhdr_check(cstate);
7512
b = gen_ehostop(cstate, cstate->e, (int)q.dir);
7513
if (tmp != NULL)
7514
gen_and(tmp, b);
7515
break;
7516
case DLT_FDDI:
7517
b = gen_fhostop(cstate, cstate->e, (int)q.dir);
7518
break;
7519
case DLT_IEEE802:
7520
b = gen_thostop(cstate, cstate->e, (int)q.dir);
7521
break;
7522
case DLT_IEEE802_11:
7523
case DLT_PRISM_HEADER:
7524
case DLT_IEEE802_11_RADIO_AVS:
7525
case DLT_IEEE802_11_RADIO:
7526
case DLT_PPI:
7527
b = gen_wlanhostop(cstate, cstate->e, (int)q.dir);
7528
break;
7529
case DLT_IP_OVER_FC:
7530
b = gen_ipfchostop(cstate, cstate->e, (int)q.dir);
7531
break;
7532
default:
7533
free(cstate->e);
7534
cstate->e = NULL;
7535
bpf_error(cstate, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
7536
/*NOTREACHED*/
7537
}
7538
free(cstate->e);
7539
cstate->e = NULL;
7540
return (b);
7541
}
7542
bpf_error(cstate, "ethernet address used in non-ether expression");
7543
/*NOTREACHED*/
7544
}
7545
7546
void
7547
sappend(struct slist *s0, struct slist *s1)
7548
{
7549
/*
7550
* This is definitely not the best way to do this, but the
7551
* lists will rarely get long.
7552
*/
7553
while (s0->next)
7554
s0 = s0->next;
7555
s0->next = s1;
7556
}
7557
7558
static struct slist *
7559
xfer_to_x(compiler_state_t *cstate, struct arth *a)
7560
{
7561
struct slist *s;
7562
7563
s = new_stmt(cstate, BPF_LDX|BPF_MEM);
7564
s->s.k = a->regno;
7565
return s;
7566
}
7567
7568
static struct slist *
7569
xfer_to_a(compiler_state_t *cstate, struct arth *a)
7570
{
7571
struct slist *s;
7572
7573
s = new_stmt(cstate, BPF_LD|BPF_MEM);
7574
s->s.k = a->regno;
7575
return s;
7576
}
7577
7578
/*
7579
* Modify "index" to use the value stored into its register as an
7580
* offset relative to the beginning of the header for the protocol
7581
* "proto", and allocate a register and put an item "size" bytes long
7582
* (1, 2, or 4) at that offset into that register, making it the register
7583
* for "index".
7584
*/
7585
static struct arth *
7586
gen_load_internal(compiler_state_t *cstate, int proto, struct arth *inst,
7587
bpf_u_int32 size)
7588
{
7589
int size_code;
7590
struct slist *s, *tmp;
7591
struct block *b;
7592
int regno = alloc_reg(cstate);
7593
7594
free_reg(cstate, inst->regno);
7595
switch (size) {
7596
7597
default:
7598
bpf_error(cstate, "data size must be 1, 2, or 4");
7599
/*NOTREACHED*/
7600
7601
case 1:
7602
size_code = BPF_B;
7603
break;
7604
7605
case 2:
7606
size_code = BPF_H;
7607
break;
7608
7609
case 4:
7610
size_code = BPF_W;
7611
break;
7612
}
7613
switch (proto) {
7614
default:
7615
bpf_error(cstate, "unsupported index operation");
7616
7617
case Q_RADIO:
7618
/*
7619
* The offset is relative to the beginning of the packet
7620
* data, if we have a radio header. (If we don't, this
7621
* is an error.)
7622
*/
7623
if (cstate->linktype != DLT_IEEE802_11_RADIO_AVS &&
7624
cstate->linktype != DLT_IEEE802_11_RADIO &&
7625
cstate->linktype != DLT_PRISM_HEADER)
7626
bpf_error(cstate, "radio information not present in capture");
7627
7628
/*
7629
* Load into the X register the offset computed into the
7630
* register specified by "index".
7631
*/
7632
s = xfer_to_x(cstate, inst);
7633
7634
/*
7635
* Load the item at that offset.
7636
*/
7637
tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7638
sappend(s, tmp);
7639
sappend(inst->s, s);
7640
break;
7641
7642
case Q_LINK:
7643
/*
7644
* The offset is relative to the beginning of
7645
* the link-layer header.
7646
*
7647
* XXX - what about ATM LANE? Should the index be
7648
* relative to the beginning of the AAL5 frame, so
7649
* that 0 refers to the beginning of the LE Control
7650
* field, or relative to the beginning of the LAN
7651
* frame, so that 0 refers, for Ethernet LANE, to
7652
* the beginning of the destination address?
7653
*/
7654
s = gen_abs_offset_varpart(cstate, &cstate->off_linkhdr);
7655
7656
/*
7657
* If "s" is non-null, it has code to arrange that the
7658
* X register contains the length of the prefix preceding
7659
* the link-layer header. Add to it the offset computed
7660
* into the register specified by "index", and move that
7661
* into the X register. Otherwise, just load into the X
7662
* register the offset computed into the register specified
7663
* by "index".
7664
*/
7665
if (s != NULL) {
7666
sappend(s, xfer_to_a(cstate, inst));
7667
sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7668
sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7669
} else
7670
s = xfer_to_x(cstate, inst);
7671
7672
/*
7673
* Load the item at the sum of the offset we've put in the
7674
* X register and the offset of the start of the link
7675
* layer header (which is 0 if the radio header is
7676
* variable-length; that header length is what we put
7677
* into the X register and then added to the index).
7678
*/
7679
tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7680
tmp->s.k = cstate->off_linkhdr.constant_part;
7681
sappend(s, tmp);
7682
sappend(inst->s, s);
7683
break;
7684
7685
case Q_IP:
7686
case Q_ARP:
7687
case Q_RARP:
7688
case Q_ATALK:
7689
case Q_DECNET:
7690
case Q_SCA:
7691
case Q_LAT:
7692
case Q_MOPRC:
7693
case Q_MOPDL:
7694
case Q_IPV6:
7695
/*
7696
* The offset is relative to the beginning of
7697
* the network-layer header.
7698
* XXX - are there any cases where we want
7699
* cstate->off_nl_nosnap?
7700
*/
7701
s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7702
7703
/*
7704
* If "s" is non-null, it has code to arrange that the
7705
* X register contains the variable part of the offset
7706
* of the link-layer payload. Add to it the offset
7707
* computed into the register specified by "index",
7708
* and move that into the X register. Otherwise, just
7709
* load into the X register the offset computed into
7710
* the register specified by "index".
7711
*/
7712
if (s != NULL) {
7713
sappend(s, xfer_to_a(cstate, inst));
7714
sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7715
sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7716
} else
7717
s = xfer_to_x(cstate, inst);
7718
7719
/*
7720
* Load the item at the sum of the offset we've put in the
7721
* X register, the offset of the start of the network
7722
* layer header from the beginning of the link-layer
7723
* payload, and the constant part of the offset of the
7724
* start of the link-layer payload.
7725
*/
7726
tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7727
tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7728
sappend(s, tmp);
7729
sappend(inst->s, s);
7730
7731
/*
7732
* Do the computation only if the packet contains
7733
* the protocol in question.
7734
*/
7735
b = gen_proto_abbrev_internal(cstate, proto);
7736
if (inst->b)
7737
gen_and(inst->b, b);
7738
inst->b = b;
7739
break;
7740
7741
case Q_SCTP:
7742
case Q_TCP:
7743
case Q_UDP:
7744
case Q_ICMP:
7745
case Q_IGMP:
7746
case Q_IGRP:
7747
case Q_PIM:
7748
case Q_VRRP:
7749
case Q_CARP:
7750
/*
7751
* The offset is relative to the beginning of
7752
* the transport-layer header.
7753
*
7754
* Load the X register with the length of the IPv4 header
7755
* (plus the offset of the link-layer header, if it's
7756
* a variable-length header), in bytes.
7757
*
7758
* XXX - are there any cases where we want
7759
* cstate->off_nl_nosnap?
7760
* XXX - we should, if we're built with
7761
* IPv6 support, generate code to load either
7762
* IPv4, IPv6, or both, as appropriate.
7763
*/
7764
s = gen_loadx_iphdrlen(cstate);
7765
7766
/*
7767
* The X register now contains the sum of the variable
7768
* part of the offset of the link-layer payload and the
7769
* length of the network-layer header.
7770
*
7771
* Load into the A register the offset relative to
7772
* the beginning of the transport layer header,
7773
* add the X register to that, move that to the
7774
* X register, and load with an offset from the
7775
* X register equal to the sum of the constant part of
7776
* the offset of the link-layer payload and the offset,
7777
* relative to the beginning of the link-layer payload,
7778
* of the network-layer header.
7779
*/
7780
sappend(s, xfer_to_a(cstate, inst));
7781
sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7782
sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7783
sappend(s, tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code));
7784
tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7785
sappend(inst->s, s);
7786
7787
/*
7788
* Do the computation only if the packet contains
7789
* the protocol in question - which is true only
7790
* if this is an IP datagram and is the first or
7791
* only fragment of that datagram.
7792
*/
7793
gen_and(gen_proto_abbrev_internal(cstate, proto), b = gen_ipfrag(cstate));
7794
if (inst->b)
7795
gen_and(inst->b, b);
7796
gen_and(gen_proto_abbrev_internal(cstate, Q_IP), b);
7797
inst->b = b;
7798
break;
7799
case Q_ICMPV6:
7800
/*
7801
* Do the computation only if the packet contains
7802
* the protocol in question.
7803
*/
7804
b = gen_proto_abbrev_internal(cstate, Q_IPV6);
7805
if (inst->b)
7806
gen_and(inst->b, b);
7807
inst->b = b;
7808
7809
/*
7810
* Check if we have an icmp6 next header
7811
*/
7812
b = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, 58);
7813
if (inst->b)
7814
gen_and(inst->b, b);
7815
inst->b = b;
7816
7817
s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7818
/*
7819
* If "s" is non-null, it has code to arrange that the
7820
* X register contains the variable part of the offset
7821
* of the link-layer payload. Add to it the offset
7822
* computed into the register specified by "index",
7823
* and move that into the X register. Otherwise, just
7824
* load into the X register the offset computed into
7825
* the register specified by "index".
7826
*/
7827
if (s != NULL) {
7828
sappend(s, xfer_to_a(cstate, inst));
7829
sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7830
sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7831
} else
7832
s = xfer_to_x(cstate, inst);
7833
7834
/*
7835
* Load the item at the sum of the offset we've put in the
7836
* X register, the offset of the start of the network
7837
* layer header from the beginning of the link-layer
7838
* payload, and the constant part of the offset of the
7839
* start of the link-layer payload.
7840
*/
7841
tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7842
tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 40;
7843
7844
sappend(s, tmp);
7845
sappend(inst->s, s);
7846
7847
break;
7848
}
7849
inst->regno = regno;
7850
s = new_stmt(cstate, BPF_ST);
7851
s->s.k = regno;
7852
sappend(inst->s, s);
7853
7854
return inst;
7855
}
7856
7857
struct arth *
7858
gen_load(compiler_state_t *cstate, int proto, struct arth *inst,
7859
bpf_u_int32 size)
7860
{
7861
/*
7862
* Catch errors reported by us and routines below us, and return NULL
7863
* on an error.
7864
*/
7865
if (setjmp(cstate->top_ctx))
7866
return (NULL);
7867
7868
return gen_load_internal(cstate, proto, inst, size);
7869
}
7870
7871
static struct block *
7872
gen_relation_internal(compiler_state_t *cstate, int code, struct arth *a0,
7873
struct arth *a1, int reversed)
7874
{
7875
struct slist *s0, *s1, *s2;
7876
struct block *b, *tmp;
7877
7878
s0 = xfer_to_x(cstate, a1);
7879
s1 = xfer_to_a(cstate, a0);
7880
if (code == BPF_JEQ) {
7881
s2 = new_stmt(cstate, BPF_ALU|BPF_SUB|BPF_X);
7882
b = new_block(cstate, JMP(code));
7883
sappend(s1, s2);
7884
}
7885
else
7886
b = new_block(cstate, BPF_JMP|code|BPF_X);
7887
if (reversed)
7888
gen_not(b);
7889
7890
sappend(s0, s1);
7891
sappend(a1->s, s0);
7892
sappend(a0->s, a1->s);
7893
7894
b->stmts = a0->s;
7895
7896
free_reg(cstate, a0->regno);
7897
free_reg(cstate, a1->regno);
7898
7899
/* 'and' together protocol checks */
7900
if (a0->b) {
7901
if (a1->b) {
7902
gen_and(a0->b, tmp = a1->b);
7903
}
7904
else
7905
tmp = a0->b;
7906
} else
7907
tmp = a1->b;
7908
7909
if (tmp)
7910
gen_and(tmp, b);
7911
7912
return b;
7913
}
7914
7915
struct block *
7916
gen_relation(compiler_state_t *cstate, int code, struct arth *a0,
7917
struct arth *a1, int reversed)
7918
{
7919
/*
7920
* Catch errors reported by us and routines below us, and return NULL
7921
* on an error.
7922
*/
7923
if (setjmp(cstate->top_ctx))
7924
return (NULL);
7925
7926
return gen_relation_internal(cstate, code, a0, a1, reversed);
7927
}
7928
7929
struct arth *
7930
gen_loadlen(compiler_state_t *cstate)
7931
{
7932
int regno;
7933
struct arth *a;
7934
struct slist *s;
7935
7936
/*
7937
* Catch errors reported by us and routines below us, and return NULL
7938
* on an error.
7939
*/
7940
if (setjmp(cstate->top_ctx))
7941
return (NULL);
7942
7943
regno = alloc_reg(cstate);
7944
a = (struct arth *)newchunk(cstate, sizeof(*a));
7945
s = new_stmt(cstate, BPF_LD|BPF_LEN);
7946
s->next = new_stmt(cstate, BPF_ST);
7947
s->next->s.k = regno;
7948
a->s = s;
7949
a->regno = regno;
7950
7951
return a;
7952
}
7953
7954
static struct arth *
7955
gen_loadi_internal(compiler_state_t *cstate, bpf_u_int32 val)
7956
{
7957
struct arth *a;
7958
struct slist *s;
7959
int reg;
7960
7961
a = (struct arth *)newchunk(cstate, sizeof(*a));
7962
7963
reg = alloc_reg(cstate);
7964
7965
s = new_stmt(cstate, BPF_LD|BPF_IMM);
7966
s->s.k = val;
7967
s->next = new_stmt(cstate, BPF_ST);
7968
s->next->s.k = reg;
7969
a->s = s;
7970
a->regno = reg;
7971
7972
return a;
7973
}
7974
7975
struct arth *
7976
gen_loadi(compiler_state_t *cstate, bpf_u_int32 val)
7977
{
7978
/*
7979
* Catch errors reported by us and routines below us, and return NULL
7980
* on an error.
7981
*/
7982
if (setjmp(cstate->top_ctx))
7983
return (NULL);
7984
7985
return gen_loadi_internal(cstate, val);
7986
}
7987
7988
/*
7989
* The a_arg dance is to avoid annoying whining by compilers that
7990
* a might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7991
* It's not *used* after setjmp returns.
7992
*/
7993
struct arth *
7994
gen_neg(compiler_state_t *cstate, struct arth *a_arg)
7995
{
7996
struct arth *a = a_arg;
7997
struct slist *s;
7998
7999
/*
8000
* Catch errors reported by us and routines below us, and return NULL
8001
* on an error.
8002
*/
8003
if (setjmp(cstate->top_ctx))
8004
return (NULL);
8005
8006
s = xfer_to_a(cstate, a);
8007
sappend(a->s, s);
8008
s = new_stmt(cstate, BPF_ALU|BPF_NEG);
8009
s->s.k = 0;
8010
sappend(a->s, s);
8011
s = new_stmt(cstate, BPF_ST);
8012
s->s.k = a->regno;
8013
sappend(a->s, s);
8014
8015
return a;
8016
}
8017
8018
/*
8019
* The a0_arg dance is to avoid annoying whining by compilers that
8020
* a0 might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
8021
* It's not *used* after setjmp returns.
8022
*/
8023
struct arth *
8024
gen_arth(compiler_state_t *cstate, int code, struct arth *a0_arg,
8025
struct arth *a1)
8026
{
8027
struct arth *a0 = a0_arg;
8028
struct slist *s0, *s1, *s2;
8029
8030
/*
8031
* Catch errors reported by us and routines below us, and return NULL
8032
* on an error.
8033
*/
8034
if (setjmp(cstate->top_ctx))
8035
return (NULL);
8036
8037
/*
8038
* Disallow division by, or modulus by, zero; we do this here
8039
* so that it gets done even if the optimizer is disabled.
8040
*
8041
* Also disallow shifts by a value greater than 31; we do this
8042
* here, for the same reason.
8043
*/
8044
if (code == BPF_DIV) {
8045
if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
8046
bpf_error(cstate, "division by zero");
8047
} else if (code == BPF_MOD) {
8048
if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
8049
bpf_error(cstate, "modulus by zero");
8050
} else if (code == BPF_LSH || code == BPF_RSH) {
8051
if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k > 31)
8052
bpf_error(cstate, "shift by more than 31 bits");
8053
}
8054
s0 = xfer_to_x(cstate, a1);
8055
s1 = xfer_to_a(cstate, a0);
8056
s2 = new_stmt(cstate, BPF_ALU|BPF_X|code);
8057
8058
sappend(s1, s2);
8059
sappend(s0, s1);
8060
sappend(a1->s, s0);
8061
sappend(a0->s, a1->s);
8062
8063
free_reg(cstate, a0->regno);
8064
free_reg(cstate, a1->regno);
8065
8066
s0 = new_stmt(cstate, BPF_ST);
8067
a0->regno = s0->s.k = alloc_reg(cstate);
8068
sappend(a0->s, s0);
8069
8070
return a0;
8071
}
8072
8073
/*
8074
* Initialize the table of used registers and the current register.
8075
*/
8076
static void
8077
init_regs(compiler_state_t *cstate)
8078
{
8079
cstate->curreg = 0;
8080
memset(cstate->regused, 0, sizeof cstate->regused);
8081
}
8082
8083
/*
8084
* Return the next free register.
8085
*/
8086
static int
8087
alloc_reg(compiler_state_t *cstate)
8088
{
8089
int n = BPF_MEMWORDS;
8090
8091
while (--n >= 0) {
8092
if (cstate->regused[cstate->curreg])
8093
cstate->curreg = (cstate->curreg + 1) % BPF_MEMWORDS;
8094
else {
8095
cstate->regused[cstate->curreg] = 1;
8096
return cstate->curreg;
8097
}
8098
}
8099
bpf_error(cstate, "too many registers needed to evaluate expression");
8100
/*NOTREACHED*/
8101
}
8102
8103
/*
8104
* Return a register to the table so it can
8105
* be used later.
8106
*/
8107
static void
8108
free_reg(compiler_state_t *cstate, int n)
8109
{
8110
cstate->regused[n] = 0;
8111
}
8112
8113
static struct block *
8114
gen_len(compiler_state_t *cstate, int jmp, int n)
8115
{
8116
struct slist *s;
8117
struct block *b;
8118
8119
s = new_stmt(cstate, BPF_LD|BPF_LEN);
8120
b = new_block(cstate, JMP(jmp));
8121
b->stmts = s;
8122
b->s.k = n;
8123
8124
return b;
8125
}
8126
8127
struct block *
8128
gen_greater(compiler_state_t *cstate, int n)
8129
{
8130
/*
8131
* Catch errors reported by us and routines below us, and return NULL
8132
* on an error.
8133
*/
8134
if (setjmp(cstate->top_ctx))
8135
return (NULL);
8136
8137
return gen_len(cstate, BPF_JGE, n);
8138
}
8139
8140
/*
8141
* Actually, this is less than or equal.
8142
*/
8143
struct block *
8144
gen_less(compiler_state_t *cstate, int n)
8145
{
8146
struct block *b;
8147
8148
/*
8149
* Catch errors reported by us and routines below us, and return NULL
8150
* on an error.
8151
*/
8152
if (setjmp(cstate->top_ctx))
8153
return (NULL);
8154
8155
b = gen_len(cstate, BPF_JGT, n);
8156
gen_not(b);
8157
8158
return b;
8159
}
8160
8161
/*
8162
* This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
8163
* the beginning of the link-layer header.
8164
* XXX - that means you can't test values in the radiotap header, but
8165
* as that header is difficult if not impossible to parse generally
8166
* without a loop, that might not be a severe problem. A new keyword
8167
* "radio" could be added for that, although what you'd really want
8168
* would be a way of testing particular radio header values, which
8169
* would generate code appropriate to the radio header in question.
8170
*/
8171
struct block *
8172
gen_byteop(compiler_state_t *cstate, int op, int idx, bpf_u_int32 val)
8173
{
8174
struct block *b;
8175
struct slist *s;
8176
8177
/*
8178
* Catch errors reported by us and routines below us, and return NULL
8179
* on an error.
8180
*/
8181
if (setjmp(cstate->top_ctx))
8182
return (NULL);
8183
8184
switch (op) {
8185
default:
8186
abort();
8187
8188
case '=':
8189
return gen_cmp(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
8190
8191
case '<':
8192
b = gen_cmp_lt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
8193
return b;
8194
8195
case '>':
8196
b = gen_cmp_gt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
8197
return b;
8198
8199
case '|':
8200
s = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_K);
8201
break;
8202
8203
case '&':
8204
s = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
8205
break;
8206
}
8207
s->s.k = val;
8208
b = new_block(cstate, JMP(BPF_JEQ));
8209
b->stmts = s;
8210
gen_not(b);
8211
8212
return b;
8213
}
8214
8215
static const u_char abroadcast[] = { 0x0 };
8216
8217
struct block *
8218
gen_broadcast(compiler_state_t *cstate, int proto)
8219
{
8220
bpf_u_int32 hostmask;
8221
struct block *b0, *b1, *b2;
8222
static const u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
8223
8224
/*
8225
* Catch errors reported by us and routines below us, and return NULL
8226
* on an error.
8227
*/
8228
if (setjmp(cstate->top_ctx))
8229
return (NULL);
8230
8231
switch (proto) {
8232
8233
case Q_DEFAULT:
8234
case Q_LINK:
8235
switch (cstate->linktype) {
8236
case DLT_ARCNET:
8237
case DLT_ARCNET_LINUX:
8238
return gen_ahostop(cstate, abroadcast, Q_DST);
8239
case DLT_EN10MB:
8240
case DLT_NETANALYZER:
8241
case DLT_NETANALYZER_TRANSPARENT:
8242
b1 = gen_prevlinkhdr_check(cstate);
8243
b0 = gen_ehostop(cstate, ebroadcast, Q_DST);
8244
if (b1 != NULL)
8245
gen_and(b1, b0);
8246
return b0;
8247
case DLT_FDDI:
8248
return gen_fhostop(cstate, ebroadcast, Q_DST);
8249
case DLT_IEEE802:
8250
return gen_thostop(cstate, ebroadcast, Q_DST);
8251
case DLT_IEEE802_11:
8252
case DLT_PRISM_HEADER:
8253
case DLT_IEEE802_11_RADIO_AVS:
8254
case DLT_IEEE802_11_RADIO:
8255
case DLT_PPI:
8256
return gen_wlanhostop(cstate, ebroadcast, Q_DST);
8257
case DLT_IP_OVER_FC:
8258
return gen_ipfchostop(cstate, ebroadcast, Q_DST);
8259
default:
8260
bpf_error(cstate, "not a broadcast link");
8261
}
8262
/*NOTREACHED*/
8263
8264
case Q_IP:
8265
/*
8266
* We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
8267
* as an indication that we don't know the netmask, and fail
8268
* in that case.
8269
*/
8270
if (cstate->netmask == PCAP_NETMASK_UNKNOWN)
8271
bpf_error(cstate, "netmask not known, so 'ip broadcast' not supported");
8272
b0 = gen_linktype(cstate, ETHERTYPE_IP);
8273
hostmask = ~cstate->netmask;
8274
b1 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W, 0, hostmask);
8275
b2 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W,
8276
~0 & hostmask, hostmask);
8277
gen_or(b1, b2);
8278
gen_and(b0, b2);
8279
return b2;
8280
}
8281
bpf_error(cstate, "only link-layer/IP broadcast filters supported");
8282
/*NOTREACHED*/
8283
}
8284
8285
/*
8286
* Generate code to test the low-order bit of a MAC address (that's
8287
* the bottom bit of the *first* byte).
8288
*/
8289
static struct block *
8290
gen_mac_multicast(compiler_state_t *cstate, int offset)
8291
{
8292
register struct block *b0;
8293
register struct slist *s;
8294
8295
/* link[offset] & 1 != 0 */
8296
s = gen_load_a(cstate, OR_LINKHDR, offset, BPF_B);
8297
b0 = new_block(cstate, JMP(BPF_JSET));
8298
b0->s.k = 1;
8299
b0->stmts = s;
8300
return b0;
8301
}
8302
8303
struct block *
8304
gen_multicast(compiler_state_t *cstate, int proto)
8305
{
8306
register struct block *b0, *b1, *b2;
8307
register struct slist *s;
8308
8309
/*
8310
* Catch errors reported by us and routines below us, and return NULL
8311
* on an error.
8312
*/
8313
if (setjmp(cstate->top_ctx))
8314
return (NULL);
8315
8316
switch (proto) {
8317
8318
case Q_DEFAULT:
8319
case Q_LINK:
8320
switch (cstate->linktype) {
8321
case DLT_ARCNET:
8322
case DLT_ARCNET_LINUX:
8323
/* all ARCnet multicasts use the same address */
8324
return gen_ahostop(cstate, abroadcast, Q_DST);
8325
case DLT_EN10MB:
8326
case DLT_NETANALYZER:
8327
case DLT_NETANALYZER_TRANSPARENT:
8328
b1 = gen_prevlinkhdr_check(cstate);
8329
/* ether[0] & 1 != 0 */
8330
b0 = gen_mac_multicast(cstate, 0);
8331
if (b1 != NULL)
8332
gen_and(b1, b0);
8333
return b0;
8334
case DLT_FDDI:
8335
/*
8336
* XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
8337
*
8338
* XXX - was that referring to bit-order issues?
8339
*/
8340
/* fddi[1] & 1 != 0 */
8341
return gen_mac_multicast(cstate, 1);
8342
case DLT_IEEE802:
8343
/* tr[2] & 1 != 0 */
8344
return gen_mac_multicast(cstate, 2);
8345
case DLT_IEEE802_11:
8346
case DLT_PRISM_HEADER:
8347
case DLT_IEEE802_11_RADIO_AVS:
8348
case DLT_IEEE802_11_RADIO:
8349
case DLT_PPI:
8350
/*
8351
* Oh, yuk.
8352
*
8353
* For control frames, there is no DA.
8354
*
8355
* For management frames, DA is at an
8356
* offset of 4 from the beginning of
8357
* the packet.
8358
*
8359
* For data frames, DA is at an offset
8360
* of 4 from the beginning of the packet
8361
* if To DS is clear and at an offset of
8362
* 16 from the beginning of the packet
8363
* if To DS is set.
8364
*/
8365
8366
/*
8367
* Generate the tests to be done for data frames.
8368
*
8369
* First, check for To DS set, i.e. "link[1] & 0x01".
8370
*/
8371
s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
8372
b1 = new_block(cstate, JMP(BPF_JSET));
8373
b1->s.k = 0x01; /* To DS */
8374
b1->stmts = s;
8375
8376
/*
8377
* If To DS is set, the DA is at 16.
8378
*/
8379
b0 = gen_mac_multicast(cstate, 16);
8380
gen_and(b1, b0);
8381
8382
/*
8383
* Now, check for To DS not set, i.e. check
8384
* "!(link[1] & 0x01)".
8385
*/
8386
s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
8387
b2 = new_block(cstate, JMP(BPF_JSET));
8388
b2->s.k = 0x01; /* To DS */
8389
b2->stmts = s;
8390
gen_not(b2);
8391
8392
/*
8393
* If To DS is not set, the DA is at 4.
8394
*/
8395
b1 = gen_mac_multicast(cstate, 4);
8396
gen_and(b2, b1);
8397
8398
/*
8399
* Now OR together the last two checks. That gives
8400
* the complete set of checks for data frames.
8401
*/
8402
gen_or(b1, b0);
8403
8404
/*
8405
* Now check for a data frame.
8406
* I.e, check "link[0] & 0x08".
8407
*/
8408
s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8409
b1 = new_block(cstate, JMP(BPF_JSET));
8410
b1->s.k = 0x08;
8411
b1->stmts = s;
8412
8413
/*
8414
* AND that with the checks done for data frames.
8415
*/
8416
gen_and(b1, b0);
8417
8418
/*
8419
* If the high-order bit of the type value is 0, this
8420
* is a management frame.
8421
* I.e, check "!(link[0] & 0x08)".
8422
*/
8423
s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8424
b2 = new_block(cstate, JMP(BPF_JSET));
8425
b2->s.k = 0x08;
8426
b2->stmts = s;
8427
gen_not(b2);
8428
8429
/*
8430
* For management frames, the DA is at 4.
8431
*/
8432
b1 = gen_mac_multicast(cstate, 4);
8433
gen_and(b2, b1);
8434
8435
/*
8436
* OR that with the checks done for data frames.
8437
* That gives the checks done for management and
8438
* data frames.
8439
*/
8440
gen_or(b1, b0);
8441
8442
/*
8443
* If the low-order bit of the type value is 1,
8444
* this is either a control frame or a frame
8445
* with a reserved type, and thus not a
8446
* frame with an SA.
8447
*
8448
* I.e., check "!(link[0] & 0x04)".
8449
*/
8450
s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8451
b1 = new_block(cstate, JMP(BPF_JSET));
8452
b1->s.k = 0x04;
8453
b1->stmts = s;
8454
gen_not(b1);
8455
8456
/*
8457
* AND that with the checks for data and management
8458
* frames.
8459
*/
8460
gen_and(b1, b0);
8461
return b0;
8462
case DLT_IP_OVER_FC:
8463
b0 = gen_mac_multicast(cstate, 2);
8464
return b0;
8465
default:
8466
break;
8467
}
8468
/* Link not known to support multicasts */
8469
break;
8470
8471
case Q_IP:
8472
b0 = gen_linktype(cstate, ETHERTYPE_IP);
8473
b1 = gen_cmp_ge(cstate, OR_LINKPL, 16, BPF_B, 224);
8474
gen_and(b0, b1);
8475
return b1;
8476
8477
case Q_IPV6:
8478
b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
8479
b1 = gen_cmp(cstate, OR_LINKPL, 24, BPF_B, 255);
8480
gen_and(b0, b1);
8481
return b1;
8482
}
8483
bpf_error(cstate, "link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
8484
/*NOTREACHED*/
8485
}
8486
8487
struct block *
8488
gen_ifindex(compiler_state_t *cstate, int ifindex)
8489
{
8490
register struct block *b0;
8491
8492
/*
8493
* Catch errors reported by us and routines below us, and return NULL
8494
* on an error.
8495
*/
8496
if (setjmp(cstate->top_ctx))
8497
return (NULL);
8498
8499
/*
8500
* Only some data link types support ifindex qualifiers.
8501
*/
8502
switch (cstate->linktype) {
8503
case DLT_LINUX_SLL2:
8504
/* match packets on this interface */
8505
b0 = gen_cmp(cstate, OR_LINKHDR, 4, BPF_W, ifindex);
8506
break;
8507
default:
8508
#if defined(__linux__)
8509
/*
8510
* This is Linux; we require PF_PACKET support.
8511
* If this is a *live* capture, we can look at
8512
* special meta-data in the filter expression;
8513
* if it's a savefile, we can't.
8514
*/
8515
if (cstate->bpf_pcap->rfile != NULL) {
8516
/* We have a FILE *, so this is a savefile */
8517
bpf_error(cstate, "ifindex not supported on %s when reading savefiles",
8518
pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8519
/*NOTREACHED*/
8520
}
8521
/* match ifindex */
8522
b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_IFINDEX, BPF_W,
8523
ifindex);
8524
#else /* defined(__linux__) */
8525
bpf_error(cstate, "ifindex not supported on %s",
8526
pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8527
/*NOTREACHED*/
8528
#endif /* defined(__linux__) */
8529
}
8530
return (b0);
8531
}
8532
8533
/*
8534
* Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
8535
* Outbound traffic is sent by this machine, while inbound traffic is
8536
* sent by a remote machine (and may include packets destined for a
8537
* unicast or multicast link-layer address we are not subscribing to).
8538
* These are the same definitions implemented by pcap_setdirection().
8539
* Capturing only unicast traffic destined for this host is probably
8540
* better accomplished using a higher-layer filter.
8541
*/
8542
struct block *
8543
gen_inbound(compiler_state_t *cstate, int dir)
8544
{
8545
register struct block *b0;
8546
8547
/*
8548
* Catch errors reported by us and routines below us, and return NULL
8549
* on an error.
8550
*/
8551
if (setjmp(cstate->top_ctx))
8552
return (NULL);
8553
8554
/*
8555
* Only some data link types support inbound/outbound qualifiers.
8556
*/
8557
switch (cstate->linktype) {
8558
case DLT_SLIP:
8559
b0 = gen_relation_internal(cstate, BPF_JEQ,
8560
gen_load_internal(cstate, Q_LINK, gen_loadi_internal(cstate, 0), 1),
8561
gen_loadi_internal(cstate, 0),
8562
dir);
8563
break;
8564
8565
case DLT_IPNET:
8566
if (dir) {
8567
/* match outgoing packets */
8568
b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_OUTBOUND);
8569
} else {
8570
/* match incoming packets */
8571
b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_INBOUND);
8572
}
8573
break;
8574
8575
case DLT_LINUX_SLL:
8576
/* match outgoing packets */
8577
b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_H, LINUX_SLL_OUTGOING);
8578
if (!dir) {
8579
/* to filter on inbound traffic, invert the match */
8580
gen_not(b0);
8581
}
8582
break;
8583
8584
case DLT_LINUX_SLL2:
8585
/* match outgoing packets */
8586
b0 = gen_cmp(cstate, OR_LINKHDR, 10, BPF_B, LINUX_SLL_OUTGOING);
8587
if (!dir) {
8588
/* to filter on inbound traffic, invert the match */
8589
gen_not(b0);
8590
}
8591
break;
8592
8593
case DLT_PFLOG:
8594
b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, dir), BPF_B,
8595
((dir == 0) ? PF_IN : PF_OUT));
8596
break;
8597
8598
case DLT_PPP_PPPD:
8599
if (dir) {
8600
/* match outgoing packets */
8601
b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_OUT);
8602
} else {
8603
/* match incoming packets */
8604
b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_IN);
8605
}
8606
break;
8607
8608
case DLT_JUNIPER_MFR:
8609
case DLT_JUNIPER_MLFR:
8610
case DLT_JUNIPER_MLPPP:
8611
case DLT_JUNIPER_ATM1:
8612
case DLT_JUNIPER_ATM2:
8613
case DLT_JUNIPER_PPPOE:
8614
case DLT_JUNIPER_PPPOE_ATM:
8615
case DLT_JUNIPER_GGSN:
8616
case DLT_JUNIPER_ES:
8617
case DLT_JUNIPER_MONITOR:
8618
case DLT_JUNIPER_SERVICES:
8619
case DLT_JUNIPER_ETHER:
8620
case DLT_JUNIPER_PPP:
8621
case DLT_JUNIPER_FRELAY:
8622
case DLT_JUNIPER_CHDLC:
8623
case DLT_JUNIPER_VP:
8624
case DLT_JUNIPER_ST:
8625
case DLT_JUNIPER_ISM:
8626
case DLT_JUNIPER_VS:
8627
case DLT_JUNIPER_SRX_E2E:
8628
case DLT_JUNIPER_FIBRECHANNEL:
8629
case DLT_JUNIPER_ATM_CEMIC:
8630
8631
/* juniper flags (including direction) are stored
8632
* the byte after the 3-byte magic number */
8633
if (dir) {
8634
/* match outgoing packets */
8635
b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 0, 0x01);
8636
} else {
8637
/* match incoming packets */
8638
b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 1, 0x01);
8639
}
8640
break;
8641
8642
default:
8643
/*
8644
* If we have packet meta-data indicating a direction,
8645
* and that metadata can be checked by BPF code, check
8646
* it. Otherwise, give up, as this link-layer type has
8647
* nothing in the packet data.
8648
*
8649
* Currently, the only platform where a BPF filter can
8650
* check that metadata is Linux with the in-kernel
8651
* BPF interpreter. If other packet capture mechanisms
8652
* and BPF filters also supported this, it would be
8653
* nice. It would be even better if they made that
8654
* metadata available so that we could provide it
8655
* with newer capture APIs, allowing it to be saved
8656
* in pcapng files.
8657
*/
8658
#if defined(__linux__)
8659
/*
8660
* This is Linux; we require PF_PACKET support.
8661
* If this is a *live* capture, we can look at
8662
* special meta-data in the filter expression;
8663
* if it's a savefile, we can't.
8664
*/
8665
if (cstate->bpf_pcap->rfile != NULL) {
8666
/* We have a FILE *, so this is a savefile */
8667
bpf_error(cstate, "inbound/outbound not supported on %s when reading savefiles",
8668
pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8669
/*NOTREACHED*/
8670
}
8671
/* match outgoing packets */
8672
b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
8673
PACKET_OUTGOING);
8674
if (!dir) {
8675
/* to filter on inbound traffic, invert the match */
8676
gen_not(b0);
8677
}
8678
#else /* defined(__linux__) */
8679
bpf_error(cstate, "inbound/outbound not supported on %s",
8680
pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8681
/*NOTREACHED*/
8682
#endif /* defined(__linux__) */
8683
}
8684
return (b0);
8685
}
8686
8687
/* PF firewall log matched interface */
8688
struct block *
8689
gen_pf_ifname(compiler_state_t *cstate, const char *ifname)
8690
{
8691
struct block *b0;
8692
u_int len, off;
8693
8694
/*
8695
* Catch errors reported by us and routines below us, and return NULL
8696
* on an error.
8697
*/
8698
if (setjmp(cstate->top_ctx))
8699
return (NULL);
8700
8701
if (cstate->linktype != DLT_PFLOG) {
8702
bpf_error(cstate, "ifname supported only on PF linktype");
8703
/*NOTREACHED*/
8704
}
8705
len = sizeof(((struct pfloghdr *)0)->ifname);
8706
off = offsetof(struct pfloghdr, ifname);
8707
if (strlen(ifname) >= len) {
8708
bpf_error(cstate, "ifname interface names can only be %d characters",
8709
len-1);
8710
/*NOTREACHED*/
8711
}
8712
b0 = gen_bcmp(cstate, OR_LINKHDR, off, (u_int)strlen(ifname),
8713
(const u_char *)ifname);
8714
return (b0);
8715
}
8716
8717
/* PF firewall log ruleset name */
8718
struct block *
8719
gen_pf_ruleset(compiler_state_t *cstate, char *ruleset)
8720
{
8721
struct block *b0;
8722
8723
/*
8724
* Catch errors reported by us and routines below us, and return NULL
8725
* on an error.
8726
*/
8727
if (setjmp(cstate->top_ctx))
8728
return (NULL);
8729
8730
if (cstate->linktype != DLT_PFLOG) {
8731
bpf_error(cstate, "ruleset supported only on PF linktype");
8732
/*NOTREACHED*/
8733
}
8734
8735
if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
8736
bpf_error(cstate, "ruleset names can only be %ld characters",
8737
(long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
8738
/*NOTREACHED*/
8739
}
8740
8741
b0 = gen_bcmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, ruleset),
8742
(u_int)strlen(ruleset), (const u_char *)ruleset);
8743
return (b0);
8744
}
8745
8746
/* PF firewall log rule number */
8747
struct block *
8748
gen_pf_rnr(compiler_state_t *cstate, int rnr)
8749
{
8750
struct block *b0;
8751
8752
/*
8753
* Catch errors reported by us and routines below us, and return NULL
8754
* on an error.
8755
*/
8756
if (setjmp(cstate->top_ctx))
8757
return (NULL);
8758
8759
if (cstate->linktype != DLT_PFLOG) {
8760
bpf_error(cstate, "rnr supported only on PF linktype");
8761
/*NOTREACHED*/
8762
}
8763
8764
b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, rulenr), BPF_W,
8765
(bpf_u_int32)rnr);
8766
return (b0);
8767
}
8768
8769
/* PF firewall log sub-rule number */
8770
struct block *
8771
gen_pf_srnr(compiler_state_t *cstate, int srnr)
8772
{
8773
struct block *b0;
8774
8775
/*
8776
* Catch errors reported by us and routines below us, and return NULL
8777
* on an error.
8778
*/
8779
if (setjmp(cstate->top_ctx))
8780
return (NULL);
8781
8782
if (cstate->linktype != DLT_PFLOG) {
8783
bpf_error(cstate, "srnr supported only on PF linktype");
8784
/*NOTREACHED*/
8785
}
8786
8787
b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, subrulenr), BPF_W,
8788
(bpf_u_int32)srnr);
8789
return (b0);
8790
}
8791
8792
/* PF firewall log reason code */
8793
struct block *
8794
gen_pf_reason(compiler_state_t *cstate, int reason)
8795
{
8796
struct block *b0;
8797
8798
/*
8799
* Catch errors reported by us and routines below us, and return NULL
8800
* on an error.
8801
*/
8802
if (setjmp(cstate->top_ctx))
8803
return (NULL);
8804
8805
if (cstate->linktype != DLT_PFLOG) {
8806
bpf_error(cstate, "reason supported only on PF linktype");
8807
/*NOTREACHED*/
8808
}
8809
8810
b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, reason), BPF_B,
8811
(bpf_u_int32)reason);
8812
return (b0);
8813
}
8814
8815
/* PF firewall log action */
8816
struct block *
8817
gen_pf_action(compiler_state_t *cstate, int action)
8818
{
8819
struct block *b0;
8820
8821
/*
8822
* Catch errors reported by us and routines below us, and return NULL
8823
* on an error.
8824
*/
8825
if (setjmp(cstate->top_ctx))
8826
return (NULL);
8827
8828
if (cstate->linktype != DLT_PFLOG) {
8829
bpf_error(cstate, "action supported only on PF linktype");
8830
/*NOTREACHED*/
8831
}
8832
8833
b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, action), BPF_B,
8834
(bpf_u_int32)action);
8835
return (b0);
8836
}
8837
8838
/* IEEE 802.11 wireless header */
8839
struct block *
8840
gen_p80211_type(compiler_state_t *cstate, bpf_u_int32 type, bpf_u_int32 mask)
8841
{
8842
struct block *b0;
8843
8844
/*
8845
* Catch errors reported by us and routines below us, and return NULL
8846
* on an error.
8847
*/
8848
if (setjmp(cstate->top_ctx))
8849
return (NULL);
8850
8851
switch (cstate->linktype) {
8852
8853
case DLT_IEEE802_11:
8854
case DLT_PRISM_HEADER:
8855
case DLT_IEEE802_11_RADIO_AVS:
8856
case DLT_IEEE802_11_RADIO:
8857
b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, type, mask);
8858
break;
8859
8860
default:
8861
bpf_error(cstate, "802.11 link-layer types supported only on 802.11");
8862
/*NOTREACHED*/
8863
}
8864
8865
return (b0);
8866
}
8867
8868
struct block *
8869
gen_p80211_fcdir(compiler_state_t *cstate, bpf_u_int32 fcdir)
8870
{
8871
struct block *b0;
8872
8873
/*
8874
* Catch errors reported by us and routines below us, and return NULL
8875
* on an error.
8876
*/
8877
if (setjmp(cstate->top_ctx))
8878
return (NULL);
8879
8880
switch (cstate->linktype) {
8881
8882
case DLT_IEEE802_11:
8883
case DLT_PRISM_HEADER:
8884
case DLT_IEEE802_11_RADIO_AVS:
8885
case DLT_IEEE802_11_RADIO:
8886
break;
8887
8888
default:
8889
bpf_error(cstate, "frame direction supported only with 802.11 headers");
8890
/*NOTREACHED*/
8891
}
8892
8893
b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B, fcdir,
8894
IEEE80211_FC1_DIR_MASK);
8895
8896
return (b0);
8897
}
8898
8899
struct block *
8900
gen_acode(compiler_state_t *cstate, const char *s, struct qual q)
8901
{
8902
struct block *b;
8903
8904
/*
8905
* Catch errors reported by us and routines below us, and return NULL
8906
* on an error.
8907
*/
8908
if (setjmp(cstate->top_ctx))
8909
return (NULL);
8910
8911
switch (cstate->linktype) {
8912
8913
case DLT_ARCNET:
8914
case DLT_ARCNET_LINUX:
8915
if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
8916
q.proto == Q_LINK) {
8917
cstate->e = pcap_ether_aton(s);
8918
if (cstate->e == NULL)
8919
bpf_error(cstate, "malloc");
8920
b = gen_ahostop(cstate, cstate->e, (int)q.dir);
8921
free(cstate->e);
8922
cstate->e = NULL;
8923
return (b);
8924
} else
8925
bpf_error(cstate, "ARCnet address used in non-arc expression");
8926
/*NOTREACHED*/
8927
8928
default:
8929
bpf_error(cstate, "aid supported only on ARCnet");
8930
/*NOTREACHED*/
8931
}
8932
}
8933
8934
static struct block *
8935
gen_ahostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
8936
{
8937
register struct block *b0, *b1;
8938
8939
switch (dir) {
8940
/* src comes first, different from Ethernet */
8941
case Q_SRC:
8942
return gen_bcmp(cstate, OR_LINKHDR, 0, 1, eaddr);
8943
8944
case Q_DST:
8945
return gen_bcmp(cstate, OR_LINKHDR, 1, 1, eaddr);
8946
8947
case Q_AND:
8948
b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8949
b1 = gen_ahostop(cstate, eaddr, Q_DST);
8950
gen_and(b0, b1);
8951
return b1;
8952
8953
case Q_DEFAULT:
8954
case Q_OR:
8955
b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8956
b1 = gen_ahostop(cstate, eaddr, Q_DST);
8957
gen_or(b0, b1);
8958
return b1;
8959
8960
case Q_ADDR1:
8961
bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
8962
/*NOTREACHED*/
8963
8964
case Q_ADDR2:
8965
bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
8966
/*NOTREACHED*/
8967
8968
case Q_ADDR3:
8969
bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
8970
/*NOTREACHED*/
8971
8972
case Q_ADDR4:
8973
bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
8974
/*NOTREACHED*/
8975
8976
case Q_RA:
8977
bpf_error(cstate, "'ra' is only supported on 802.11");
8978
/*NOTREACHED*/
8979
8980
case Q_TA:
8981
bpf_error(cstate, "'ta' is only supported on 802.11");
8982
/*NOTREACHED*/
8983
}
8984
abort();
8985
/*NOTREACHED*/
8986
}
8987
8988
static struct block *
8989
gen_vlan_tpid_test(compiler_state_t *cstate)
8990
{
8991
struct block *b0, *b1;
8992
8993
/* check for VLAN, including 802.1ad and QinQ */
8994
b0 = gen_linktype(cstate, ETHERTYPE_8021Q);
8995
b1 = gen_linktype(cstate, ETHERTYPE_8021AD);
8996
gen_or(b0,b1);
8997
b0 = b1;
8998
b1 = gen_linktype(cstate, ETHERTYPE_8021QINQ);
8999
gen_or(b0,b1);
9000
9001
return b1;
9002
}
9003
9004
static struct block *
9005
gen_vlan_vid_test(compiler_state_t *cstate, bpf_u_int32 vlan_num)
9006
{
9007
if (vlan_num > 0x0fff) {
9008
bpf_error(cstate, "VLAN tag %u greater than maximum %u",
9009
vlan_num, 0x0fff);
9010
}
9011
return gen_mcmp(cstate, OR_LINKPL, 0, BPF_H, vlan_num, 0x0fff);
9012
}
9013
9014
static struct block *
9015
gen_vlan_no_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
9016
int has_vlan_tag)
9017
{
9018
struct block *b0, *b1;
9019
9020
b0 = gen_vlan_tpid_test(cstate);
9021
9022
if (has_vlan_tag) {
9023
b1 = gen_vlan_vid_test(cstate, vlan_num);
9024
gen_and(b0, b1);
9025
b0 = b1;
9026
}
9027
9028
/*
9029
* Both payload and link header type follow the VLAN tags so that
9030
* both need to be updated.
9031
*/
9032
cstate->off_linkpl.constant_part += 4;
9033
cstate->off_linktype.constant_part += 4;
9034
9035
return b0;
9036
}
9037
9038
#if defined(SKF_AD_VLAN_TAG_PRESENT)
9039
/* add v to variable part of off */
9040
static void
9041
gen_vlan_vloffset_add(compiler_state_t *cstate, bpf_abs_offset *off,
9042
bpf_u_int32 v, struct slist *s)
9043
{
9044
struct slist *s2;
9045
9046
if (!off->is_variable)
9047
off->is_variable = 1;
9048
if (off->reg == -1)
9049
off->reg = alloc_reg(cstate);
9050
9051
s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
9052
s2->s.k = off->reg;
9053
sappend(s, s2);
9054
s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
9055
s2->s.k = v;
9056
sappend(s, s2);
9057
s2 = new_stmt(cstate, BPF_ST);
9058
s2->s.k = off->reg;
9059
sappend(s, s2);
9060
}
9061
9062
/*
9063
* patch block b_tpid (VLAN TPID test) to update variable parts of link payload
9064
* and link type offsets first
9065
*/
9066
static void
9067
gen_vlan_patch_tpid_test(compiler_state_t *cstate, struct block *b_tpid)
9068
{
9069
struct slist s;
9070
9071
/* offset determined at run time, shift variable part */
9072
s.next = NULL;
9073
cstate->is_vlan_vloffset = 1;
9074
gen_vlan_vloffset_add(cstate, &cstate->off_linkpl, 4, &s);
9075
gen_vlan_vloffset_add(cstate, &cstate->off_linktype, 4, &s);
9076
9077
/* we get a pointer to a chain of or-ed blocks, patch first of them */
9078
sappend(s.next, b_tpid->head->stmts);
9079
b_tpid->head->stmts = s.next;
9080
}
9081
9082
/*
9083
* patch block b_vid (VLAN id test) to load VID value either from packet
9084
* metadata (using BPF extensions) if SKF_AD_VLAN_TAG_PRESENT is true
9085
*/
9086
static void
9087
gen_vlan_patch_vid_test(compiler_state_t *cstate, struct block *b_vid)
9088
{
9089
struct slist *s, *s2, *sjeq;
9090
unsigned cnt;
9091
9092
s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
9093
s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
9094
9095
/* true -> next instructions, false -> beginning of b_vid */
9096
sjeq = new_stmt(cstate, JMP(BPF_JEQ));
9097
sjeq->s.k = 1;
9098
sjeq->s.jf = b_vid->stmts;
9099
sappend(s, sjeq);
9100
9101
s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
9102
s2->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG;
9103
sappend(s, s2);
9104
sjeq->s.jt = s2;
9105
9106
/* Jump to the test in b_vid. We need to jump one instruction before
9107
* the end of the b_vid block so that we only skip loading the TCI
9108
* from packet data and not the 'and' instruction extracting VID.
9109
*/
9110
cnt = 0;
9111
for (s2 = b_vid->stmts; s2; s2 = s2->next)
9112
cnt++;
9113
s2 = new_stmt(cstate, JMP(BPF_JA));
9114
s2->s.k = cnt - 1;
9115
sappend(s, s2);
9116
9117
/* insert our statements at the beginning of b_vid */
9118
sappend(s, b_vid->stmts);
9119
b_vid->stmts = s;
9120
}
9121
9122
/*
9123
* Generate check for "vlan" or "vlan <id>" on systems with support for BPF
9124
* extensions. Even if kernel supports VLAN BPF extensions, (outermost) VLAN
9125
* tag can be either in metadata or in packet data; therefore if the
9126
* SKF_AD_VLAN_TAG_PRESENT test is negative, we need to check link
9127
* header for VLAN tag. As the decision is done at run time, we need
9128
* update variable part of the offsets
9129
*/
9130
static struct block *
9131
gen_vlan_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
9132
int has_vlan_tag)
9133
{
9134
struct block *b0, *b_tpid, *b_vid = NULL;
9135
struct slist *s;
9136
9137
/* generate new filter code based on extracting packet
9138
* metadata */
9139
s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
9140
s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
9141
9142
b0 = new_block(cstate, JMP(BPF_JEQ));
9143
b0->stmts = s;
9144
b0->s.k = 1;
9145
9146
/*
9147
* This is tricky. We need to insert the statements updating variable
9148
* parts of offsets before the traditional TPID and VID tests so
9149
* that they are called whenever SKF_AD_VLAN_TAG_PRESENT fails but
9150
* we do not want this update to affect those checks. That's why we
9151
* generate both test blocks first and insert the statements updating
9152
* variable parts of both offsets after that. This wouldn't work if
9153
* there already were variable length link header when entering this
9154
* function but gen_vlan_bpf_extensions() isn't called in that case.
9155
*/
9156
b_tpid = gen_vlan_tpid_test(cstate);
9157
if (has_vlan_tag)
9158
b_vid = gen_vlan_vid_test(cstate, vlan_num);
9159
9160
gen_vlan_patch_tpid_test(cstate, b_tpid);
9161
gen_or(b0, b_tpid);
9162
b0 = b_tpid;
9163
9164
if (has_vlan_tag) {
9165
gen_vlan_patch_vid_test(cstate, b_vid);
9166
gen_and(b0, b_vid);
9167
b0 = b_vid;
9168
}
9169
9170
return b0;
9171
}
9172
#endif
9173
9174
/*
9175
* support IEEE 802.1Q VLAN trunk over ethernet
9176
*/
9177
struct block *
9178
gen_vlan(compiler_state_t *cstate, bpf_u_int32 vlan_num, int has_vlan_tag)
9179
{
9180
struct block *b0;
9181
9182
/*
9183
* Catch errors reported by us and routines below us, and return NULL
9184
* on an error.
9185
*/
9186
if (setjmp(cstate->top_ctx))
9187
return (NULL);
9188
9189
/* can't check for VLAN-encapsulated packets inside MPLS */
9190
if (cstate->label_stack_depth > 0)
9191
bpf_error(cstate, "no VLAN match after MPLS");
9192
9193
/*
9194
* Check for a VLAN packet, and then change the offsets to point
9195
* to the type and data fields within the VLAN packet. Just
9196
* increment the offsets, so that we can support a hierarchy, e.g.
9197
* "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
9198
* VLAN 100.
9199
*
9200
* XXX - this is a bit of a kludge. If we were to split the
9201
* compiler into a parser that parses an expression and
9202
* generates an expression tree, and a code generator that
9203
* takes an expression tree (which could come from our
9204
* parser or from some other parser) and generates BPF code,
9205
* we could perhaps make the offsets parameters of routines
9206
* and, in the handler for an "AND" node, pass to subnodes
9207
* other than the VLAN node the adjusted offsets.
9208
*
9209
* This would mean that "vlan" would, instead of changing the
9210
* behavior of *all* tests after it, change only the behavior
9211
* of tests ANDed with it. That would change the documented
9212
* semantics of "vlan", which might break some expressions.
9213
* However, it would mean that "(vlan and ip) or ip" would check
9214
* both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
9215
* checking only for VLAN-encapsulated IP, so that could still
9216
* be considered worth doing; it wouldn't break expressions
9217
* that are of the form "vlan and ..." or "vlan N and ...",
9218
* which I suspect are the most common expressions involving
9219
* "vlan". "vlan or ..." doesn't necessarily do what the user
9220
* would really want, now, as all the "or ..." tests would
9221
* be done assuming a VLAN, even though the "or" could be viewed
9222
* as meaning "or, if this isn't a VLAN packet...".
9223
*/
9224
switch (cstate->linktype) {
9225
9226
case DLT_EN10MB:
9227
case DLT_NETANALYZER:
9228
case DLT_NETANALYZER_TRANSPARENT:
9229
#if defined(SKF_AD_VLAN_TAG_PRESENT)
9230
/* Verify that this is the outer part of the packet and
9231
* not encapsulated somehow. */
9232
if (cstate->vlan_stack_depth == 0 && !cstate->off_linkhdr.is_variable &&
9233
cstate->off_linkhdr.constant_part ==
9234
cstate->off_outermostlinkhdr.constant_part) {
9235
/*
9236
* Do we need special VLAN handling?
9237
*/
9238
if (cstate->bpf_pcap->bpf_codegen_flags & BPF_SPECIAL_VLAN_HANDLING)
9239
b0 = gen_vlan_bpf_extensions(cstate, vlan_num,
9240
has_vlan_tag);
9241
else
9242
b0 = gen_vlan_no_bpf_extensions(cstate,
9243
vlan_num, has_vlan_tag);
9244
} else
9245
#endif
9246
b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num,
9247
has_vlan_tag);
9248
break;
9249
9250
case DLT_IEEE802_11:
9251
case DLT_PRISM_HEADER:
9252
case DLT_IEEE802_11_RADIO_AVS:
9253
case DLT_IEEE802_11_RADIO:
9254
b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num, has_vlan_tag);
9255
break;
9256
9257
default:
9258
bpf_error(cstate, "no VLAN support for %s",
9259
pcap_datalink_val_to_description_or_dlt(cstate->linktype));
9260
/*NOTREACHED*/
9261
}
9262
9263
cstate->vlan_stack_depth++;
9264
9265
return (b0);
9266
}
9267
9268
/*
9269
* support for MPLS
9270
*
9271
* The label_num_arg dance is to avoid annoying whining by compilers that
9272
* label_num might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
9273
* It's not *used* after setjmp returns.
9274
*/
9275
struct block *
9276
gen_mpls(compiler_state_t *cstate, bpf_u_int32 label_num_arg,
9277
int has_label_num)
9278
{
9279
volatile bpf_u_int32 label_num = label_num_arg;
9280
struct block *b0, *b1;
9281
9282
/*
9283
* Catch errors reported by us and routines below us, and return NULL
9284
* on an error.
9285
*/
9286
if (setjmp(cstate->top_ctx))
9287
return (NULL);
9288
9289
if (cstate->label_stack_depth > 0) {
9290
/* just match the bottom-of-stack bit clear */
9291
b0 = gen_mcmp(cstate, OR_PREVMPLSHDR, 2, BPF_B, 0, 0x01);
9292
} else {
9293
/*
9294
* We're not in an MPLS stack yet, so check the link-layer
9295
* type against MPLS.
9296
*/
9297
switch (cstate->linktype) {
9298
9299
case DLT_C_HDLC: /* fall through */
9300
case DLT_HDLC:
9301
case DLT_EN10MB:
9302
case DLT_NETANALYZER:
9303
case DLT_NETANALYZER_TRANSPARENT:
9304
b0 = gen_linktype(cstate, ETHERTYPE_MPLS);
9305
break;
9306
9307
case DLT_PPP:
9308
b0 = gen_linktype(cstate, PPP_MPLS_UCAST);
9309
break;
9310
9311
/* FIXME add other DLT_s ...
9312
* for Frame-Relay/and ATM this may get messy due to SNAP headers
9313
* leave it for now */
9314
9315
default:
9316
bpf_error(cstate, "no MPLS support for %s",
9317
pcap_datalink_val_to_description_or_dlt(cstate->linktype));
9318
/*NOTREACHED*/
9319
}
9320
}
9321
9322
/* If a specific MPLS label is requested, check it */
9323
if (has_label_num) {
9324
if (label_num > 0xFFFFF) {
9325
bpf_error(cstate, "MPLS label %u greater than maximum %u",
9326
label_num, 0xFFFFF);
9327
}
9328
label_num = label_num << 12; /* label is shifted 12 bits on the wire */
9329
b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, label_num,
9330
0xfffff000); /* only compare the first 20 bits */
9331
gen_and(b0, b1);
9332
b0 = b1;
9333
}
9334
9335
/*
9336
* Change the offsets to point to the type and data fields within
9337
* the MPLS packet. Just increment the offsets, so that we
9338
* can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
9339
* capture packets with an outer label of 100000 and an inner
9340
* label of 1024.
9341
*
9342
* Increment the MPLS stack depth as well; this indicates that
9343
* we're checking MPLS-encapsulated headers, to make sure higher
9344
* level code generators don't try to match against IP-related
9345
* protocols such as Q_ARP, Q_RARP etc.
9346
*
9347
* XXX - this is a bit of a kludge. See comments in gen_vlan().
9348
*/
9349
cstate->off_nl_nosnap += 4;
9350
cstate->off_nl += 4;
9351
cstate->label_stack_depth++;
9352
return (b0);
9353
}
9354
9355
/*
9356
* Support PPPOE discovery and session.
9357
*/
9358
struct block *
9359
gen_pppoed(compiler_state_t *cstate)
9360
{
9361
/*
9362
* Catch errors reported by us and routines below us, and return NULL
9363
* on an error.
9364
*/
9365
if (setjmp(cstate->top_ctx))
9366
return (NULL);
9367
9368
/* check for PPPoE discovery */
9369
return gen_linktype(cstate, ETHERTYPE_PPPOED);
9370
}
9371
9372
struct block *
9373
gen_pppoes(compiler_state_t *cstate, bpf_u_int32 sess_num, int has_sess_num)
9374
{
9375
struct block *b0, *b1;
9376
9377
/*
9378
* Catch errors reported by us and routines below us, and return NULL
9379
* on an error.
9380
*/
9381
if (setjmp(cstate->top_ctx))
9382
return (NULL);
9383
9384
/*
9385
* Test against the PPPoE session link-layer type.
9386
*/
9387
b0 = gen_linktype(cstate, ETHERTYPE_PPPOES);
9388
9389
/* If a specific session is requested, check PPPoE session id */
9390
if (has_sess_num) {
9391
if (sess_num > 0x0000ffff) {
9392
bpf_error(cstate, "PPPoE session number %u greater than maximum %u",
9393
sess_num, 0x0000ffff);
9394
}
9395
b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, sess_num, 0x0000ffff);
9396
gen_and(b0, b1);
9397
b0 = b1;
9398
}
9399
9400
/*
9401
* Change the offsets to point to the type and data fields within
9402
* the PPP packet, and note that this is PPPoE rather than
9403
* raw PPP.
9404
*
9405
* XXX - this is a bit of a kludge. See the comments in
9406
* gen_vlan().
9407
*
9408
* The "network-layer" protocol is PPPoE, which has a 6-byte
9409
* PPPoE header, followed by a PPP packet.
9410
*
9411
* There is no HDLC encapsulation for the PPP packet (it's
9412
* encapsulated in PPPoES instead), so the link-layer type
9413
* starts at the first byte of the PPP packet. For PPPoE,
9414
* that offset is relative to the beginning of the total
9415
* link-layer payload, including any 802.2 LLC header, so
9416
* it's 6 bytes past cstate->off_nl.
9417
*/
9418
PUSH_LINKHDR(cstate, DLT_PPP, cstate->off_linkpl.is_variable,
9419
cstate->off_linkpl.constant_part + cstate->off_nl + 6, /* 6 bytes past the PPPoE header */
9420
cstate->off_linkpl.reg);
9421
9422
cstate->off_linktype = cstate->off_linkhdr;
9423
cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 2;
9424
9425
cstate->off_nl = 0;
9426
cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
9427
9428
return b0;
9429
}
9430
9431
/* Check that this is Geneve and the VNI is correct if
9432
* specified. Parameterized to handle both IPv4 and IPv6. */
9433
static struct block *
9434
gen_geneve_check(compiler_state_t *cstate,
9435
struct block *(*gen_portfn)(compiler_state_t *, u_int, int, int),
9436
enum e_offrel offrel, bpf_u_int32 vni, int has_vni)
9437
{
9438
struct block *b0, *b1;
9439
9440
b0 = gen_portfn(cstate, GENEVE_PORT, IPPROTO_UDP, Q_DST);
9441
9442
/* Check that we are operating on version 0. Otherwise, we
9443
* can't decode the rest of the fields. The version is 2 bits
9444
* in the first byte of the Geneve header. */
9445
b1 = gen_mcmp(cstate, offrel, 8, BPF_B, 0, 0xc0);
9446
gen_and(b0, b1);
9447
b0 = b1;
9448
9449
if (has_vni) {
9450
if (vni > 0xffffff) {
9451
bpf_error(cstate, "Geneve VNI %u greater than maximum %u",
9452
vni, 0xffffff);
9453
}
9454
vni <<= 8; /* VNI is in the upper 3 bytes */
9455
b1 = gen_mcmp(cstate, offrel, 12, BPF_W, vni, 0xffffff00);
9456
gen_and(b0, b1);
9457
b0 = b1;
9458
}
9459
9460
return b0;
9461
}
9462
9463
/* The IPv4 and IPv6 Geneve checks need to do two things:
9464
* - Verify that this actually is Geneve with the right VNI.
9465
* - Place the IP header length (plus variable link prefix if
9466
* needed) into register A to be used later to compute
9467
* the inner packet offsets. */
9468
static struct block *
9469
gen_geneve4(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9470
{
9471
struct block *b0, *b1;
9472
struct slist *s, *s1;
9473
9474
b0 = gen_geneve_check(cstate, gen_port, OR_TRAN_IPV4, vni, has_vni);
9475
9476
/* Load the IP header length into A. */
9477
s = gen_loadx_iphdrlen(cstate);
9478
9479
s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9480
sappend(s, s1);
9481
9482
/* Forcibly append these statements to the true condition
9483
* of the protocol check by creating a new block that is
9484
* always true and ANDing them. */
9485
b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9486
b1->stmts = s;
9487
b1->s.k = 0;
9488
9489
gen_and(b0, b1);
9490
9491
return b1;
9492
}
9493
9494
static struct block *
9495
gen_geneve6(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9496
{
9497
struct block *b0, *b1;
9498
struct slist *s, *s1;
9499
9500
b0 = gen_geneve_check(cstate, gen_port6, OR_TRAN_IPV6, vni, has_vni);
9501
9502
/* Load the IP header length. We need to account for a
9503
* variable length link prefix if there is one. */
9504
s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
9505
if (s) {
9506
s1 = new_stmt(cstate, BPF_LD|BPF_IMM);
9507
s1->s.k = 40;
9508
sappend(s, s1);
9509
9510
s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9511
s1->s.k = 0;
9512
sappend(s, s1);
9513
} else {
9514
s = new_stmt(cstate, BPF_LD|BPF_IMM);
9515
s->s.k = 40;
9516
}
9517
9518
/* Forcibly append these statements to the true condition
9519
* of the protocol check by creating a new block that is
9520
* always true and ANDing them. */
9521
s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9522
sappend(s, s1);
9523
9524
b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9525
b1->stmts = s;
9526
b1->s.k = 0;
9527
9528
gen_and(b0, b1);
9529
9530
return b1;
9531
}
9532
9533
/* We need to store three values based on the Geneve header::
9534
* - The offset of the linktype.
9535
* - The offset of the end of the Geneve header.
9536
* - The offset of the end of the encapsulated MAC header. */
9537
static struct slist *
9538
gen_geneve_offsets(compiler_state_t *cstate)
9539
{
9540
struct slist *s, *s1, *s_proto;
9541
9542
/* First we need to calculate the offset of the Geneve header
9543
* itself. This is composed of the IP header previously calculated
9544
* (include any variable link prefix) and stored in A plus the
9545
* fixed sized headers (fixed link prefix, MAC length, and UDP
9546
* header). */
9547
s = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9548
s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 8;
9549
9550
/* Stash this in X since we'll need it later. */
9551
s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9552
sappend(s, s1);
9553
9554
/* The EtherType in Geneve is 2 bytes in. Calculate this and
9555
* store it. */
9556
s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9557
s1->s.k = 2;
9558
sappend(s, s1);
9559
9560
cstate->off_linktype.reg = alloc_reg(cstate);
9561
cstate->off_linktype.is_variable = 1;
9562
cstate->off_linktype.constant_part = 0;
9563
9564
s1 = new_stmt(cstate, BPF_ST);
9565
s1->s.k = cstate->off_linktype.reg;
9566
sappend(s, s1);
9567
9568
/* Load the Geneve option length and mask and shift to get the
9569
* number of bytes. It is stored in the first byte of the Geneve
9570
* header. */
9571
s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
9572
s1->s.k = 0;
9573
sappend(s, s1);
9574
9575
s1 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
9576
s1->s.k = 0x3f;
9577
sappend(s, s1);
9578
9579
s1 = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
9580
s1->s.k = 4;
9581
sappend(s, s1);
9582
9583
/* Add in the rest of the Geneve base header. */
9584
s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9585
s1->s.k = 8;
9586
sappend(s, s1);
9587
9588
/* Add the Geneve header length to its offset and store. */
9589
s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9590
s1->s.k = 0;
9591
sappend(s, s1);
9592
9593
/* Set the encapsulated type as Ethernet. Even though we may
9594
* not actually have Ethernet inside there are two reasons this
9595
* is useful:
9596
* - The linktype field is always in EtherType format regardless
9597
* of whether it is in Geneve or an inner Ethernet frame.
9598
* - The only link layer that we have specific support for is
9599
* Ethernet. We will confirm that the packet actually is
9600
* Ethernet at runtime before executing these checks. */
9601
PUSH_LINKHDR(cstate, DLT_EN10MB, 1, 0, alloc_reg(cstate));
9602
9603
s1 = new_stmt(cstate, BPF_ST);
9604
s1->s.k = cstate->off_linkhdr.reg;
9605
sappend(s, s1);
9606
9607
/* Calculate whether we have an Ethernet header or just raw IP/
9608
* MPLS/etc. If we have Ethernet, advance the end of the MAC offset
9609
* and linktype by 14 bytes so that the network header can be found
9610
* seamlessly. Otherwise, keep what we've calculated already. */
9611
9612
/* We have a bare jmp so we can't use the optimizer. */
9613
cstate->no_optimize = 1;
9614
9615
/* Load the EtherType in the Geneve header, 2 bytes in. */
9616
s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_H);
9617
s1->s.k = 2;
9618
sappend(s, s1);
9619
9620
/* Load X with the end of the Geneve header. */
9621
s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
9622
s1->s.k = cstate->off_linkhdr.reg;
9623
sappend(s, s1);
9624
9625
/* Check if the EtherType is Transparent Ethernet Bridging. At the
9626
* end of this check, we should have the total length in X. In
9627
* the non-Ethernet case, it's already there. */
9628
s_proto = new_stmt(cstate, JMP(BPF_JEQ));
9629
s_proto->s.k = ETHERTYPE_TEB;
9630
sappend(s, s_proto);
9631
9632
s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9633
sappend(s, s1);
9634
s_proto->s.jt = s1;
9635
9636
/* Since this is Ethernet, use the EtherType of the payload
9637
* directly as the linktype. Overwrite what we already have. */
9638
s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9639
s1->s.k = 12;
9640
sappend(s, s1);
9641
9642
s1 = new_stmt(cstate, BPF_ST);
9643
s1->s.k = cstate->off_linktype.reg;
9644
sappend(s, s1);
9645
9646
/* Advance two bytes further to get the end of the Ethernet
9647
* header. */
9648
s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9649
s1->s.k = 2;
9650
sappend(s, s1);
9651
9652
/* Move the result to X. */
9653
s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9654
sappend(s, s1);
9655
9656
/* Store the final result of our linkpl calculation. */
9657
cstate->off_linkpl.reg = alloc_reg(cstate);
9658
cstate->off_linkpl.is_variable = 1;
9659
cstate->off_linkpl.constant_part = 0;
9660
9661
s1 = new_stmt(cstate, BPF_STX);
9662
s1->s.k = cstate->off_linkpl.reg;
9663
sappend(s, s1);
9664
s_proto->s.jf = s1;
9665
9666
cstate->off_nl = 0;
9667
9668
return s;
9669
}
9670
9671
/* Check to see if this is a Geneve packet. */
9672
struct block *
9673
gen_geneve(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9674
{
9675
struct block *b0, *b1;
9676
struct slist *s;
9677
9678
/*
9679
* Catch errors reported by us and routines below us, and return NULL
9680
* on an error.
9681
*/
9682
if (setjmp(cstate->top_ctx))
9683
return (NULL);
9684
9685
b0 = gen_geneve4(cstate, vni, has_vni);
9686
b1 = gen_geneve6(cstate, vni, has_vni);
9687
9688
gen_or(b0, b1);
9689
b0 = b1;
9690
9691
/* Later filters should act on the payload of the Geneve frame,
9692
* update all of the header pointers. Attach this code so that
9693
* it gets executed in the event that the Geneve filter matches. */
9694
s = gen_geneve_offsets(cstate);
9695
9696
b1 = gen_true(cstate);
9697
sappend(s, b1->stmts);
9698
b1->stmts = s;
9699
9700
gen_and(b0, b1);
9701
9702
cstate->is_geneve = 1;
9703
9704
return b1;
9705
}
9706
9707
/* Check that the encapsulated frame has a link layer header
9708
* for Ethernet filters. */
9709
static struct block *
9710
gen_geneve_ll_check(compiler_state_t *cstate)
9711
{
9712
struct block *b0;
9713
struct slist *s, *s1;
9714
9715
/* The easiest way to see if there is a link layer present
9716
* is to check if the link layer header and payload are not
9717
* the same. */
9718
9719
/* Geneve always generates pure variable offsets so we can
9720
* compare only the registers. */
9721
s = new_stmt(cstate, BPF_LD|BPF_MEM);
9722
s->s.k = cstate->off_linkhdr.reg;
9723
9724
s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
9725
s1->s.k = cstate->off_linkpl.reg;
9726
sappend(s, s1);
9727
9728
b0 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9729
b0->stmts = s;
9730
b0->s.k = 0;
9731
gen_not(b0);
9732
9733
return b0;
9734
}
9735
9736
static struct block *
9737
gen_atmfield_code_internal(compiler_state_t *cstate, int atmfield,
9738
bpf_u_int32 jvalue, int jtype, int reverse)
9739
{
9740
struct block *b0;
9741
9742
switch (atmfield) {
9743
9744
case A_VPI:
9745
if (!cstate->is_atm)
9746
bpf_error(cstate, "'vpi' supported only on raw ATM");
9747
if (cstate->off_vpi == OFFSET_NOT_SET)
9748
abort();
9749
b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vpi, BPF_B,
9750
0xffffffffU, jtype, reverse, jvalue);
9751
break;
9752
9753
case A_VCI:
9754
if (!cstate->is_atm)
9755
bpf_error(cstate, "'vci' supported only on raw ATM");
9756
if (cstate->off_vci == OFFSET_NOT_SET)
9757
abort();
9758
b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vci, BPF_H,
9759
0xffffffffU, jtype, reverse, jvalue);
9760
break;
9761
9762
case A_PROTOTYPE:
9763
if (cstate->off_proto == OFFSET_NOT_SET)
9764
abort(); /* XXX - this isn't on FreeBSD */
9765
b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B,
9766
0x0fU, jtype, reverse, jvalue);
9767
break;
9768
9769
case A_MSGTYPE:
9770
if (cstate->off_payload == OFFSET_NOT_SET)
9771
abort();
9772
b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_payload + MSG_TYPE_POS, BPF_B,
9773
0xffffffffU, jtype, reverse, jvalue);
9774
break;
9775
9776
case A_CALLREFTYPE:
9777
if (!cstate->is_atm)
9778
bpf_error(cstate, "'callref' supported only on raw ATM");
9779
if (cstate->off_proto == OFFSET_NOT_SET)
9780
abort();
9781
b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B,
9782
0xffffffffU, jtype, reverse, jvalue);
9783
break;
9784
9785
default:
9786
abort();
9787
}
9788
return b0;
9789
}
9790
9791
static struct block *
9792
gen_atmtype_metac(compiler_state_t *cstate)
9793
{
9794
struct block *b0, *b1;
9795
9796
b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9797
b1 = gen_atmfield_code_internal(cstate, A_VCI, 1, BPF_JEQ, 0);
9798
gen_and(b0, b1);
9799
return b1;
9800
}
9801
9802
static struct block *
9803
gen_atmtype_sc(compiler_state_t *cstate)
9804
{
9805
struct block *b0, *b1;
9806
9807
b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9808
b1 = gen_atmfield_code_internal(cstate, A_VCI, 5, BPF_JEQ, 0);
9809
gen_and(b0, b1);
9810
return b1;
9811
}
9812
9813
static struct block *
9814
gen_atmtype_llc(compiler_state_t *cstate)
9815
{
9816
struct block *b0;
9817
9818
b0 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
9819
cstate->linktype = cstate->prevlinktype;
9820
return b0;
9821
}
9822
9823
struct block *
9824
gen_atmfield_code(compiler_state_t *cstate, int atmfield,
9825
bpf_u_int32 jvalue, int jtype, int reverse)
9826
{
9827
/*
9828
* Catch errors reported by us and routines below us, and return NULL
9829
* on an error.
9830
*/
9831
if (setjmp(cstate->top_ctx))
9832
return (NULL);
9833
9834
return gen_atmfield_code_internal(cstate, atmfield, jvalue, jtype,
9835
reverse);
9836
}
9837
9838
struct block *
9839
gen_atmtype_abbrev(compiler_state_t *cstate, int type)
9840
{
9841
struct block *b0, *b1;
9842
9843
/*
9844
* Catch errors reported by us and routines below us, and return NULL
9845
* on an error.
9846
*/
9847
if (setjmp(cstate->top_ctx))
9848
return (NULL);
9849
9850
switch (type) {
9851
9852
case A_METAC:
9853
/* Get all packets in Meta signalling Circuit */
9854
if (!cstate->is_atm)
9855
bpf_error(cstate, "'metac' supported only on raw ATM");
9856
b1 = gen_atmtype_metac(cstate);
9857
break;
9858
9859
case A_BCC:
9860
/* Get all packets in Broadcast Circuit*/
9861
if (!cstate->is_atm)
9862
bpf_error(cstate, "'bcc' supported only on raw ATM");
9863
b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9864
b1 = gen_atmfield_code_internal(cstate, A_VCI, 2, BPF_JEQ, 0);
9865
gen_and(b0, b1);
9866
break;
9867
9868
case A_OAMF4SC:
9869
/* Get all cells in Segment OAM F4 circuit*/
9870
if (!cstate->is_atm)
9871
bpf_error(cstate, "'oam4sc' supported only on raw ATM");
9872
b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9873
b1 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
9874
gen_and(b0, b1);
9875
break;
9876
9877
case A_OAMF4EC:
9878
/* Get all cells in End-to-End OAM F4 Circuit*/
9879
if (!cstate->is_atm)
9880
bpf_error(cstate, "'oam4ec' supported only on raw ATM");
9881
b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9882
b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
9883
gen_and(b0, b1);
9884
break;
9885
9886
case A_SC:
9887
/* Get all packets in connection Signalling Circuit */
9888
if (!cstate->is_atm)
9889
bpf_error(cstate, "'sc' supported only on raw ATM");
9890
b1 = gen_atmtype_sc(cstate);
9891
break;
9892
9893
case A_ILMIC:
9894
/* Get all packets in ILMI Circuit */
9895
if (!cstate->is_atm)
9896
bpf_error(cstate, "'ilmic' supported only on raw ATM");
9897
b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9898
b1 = gen_atmfield_code_internal(cstate, A_VCI, 16, BPF_JEQ, 0);
9899
gen_and(b0, b1);
9900
break;
9901
9902
case A_LANE:
9903
/* Get all LANE packets */
9904
if (!cstate->is_atm)
9905
bpf_error(cstate, "'lane' supported only on raw ATM");
9906
b1 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
9907
9908
/*
9909
* Arrange that all subsequent tests assume LANE
9910
* rather than LLC-encapsulated packets, and set
9911
* the offsets appropriately for LANE-encapsulated
9912
* Ethernet.
9913
*
9914
* We assume LANE means Ethernet, not Token Ring.
9915
*/
9916
PUSH_LINKHDR(cstate, DLT_EN10MB, 0,
9917
cstate->off_payload + 2, /* Ethernet header */
9918
-1);
9919
cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
9920
cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* Ethernet */
9921
cstate->off_nl = 0; /* Ethernet II */
9922
cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
9923
break;
9924
9925
case A_LLC:
9926
/* Get all LLC-encapsulated packets */
9927
if (!cstate->is_atm)
9928
bpf_error(cstate, "'llc' supported only on raw ATM");
9929
b1 = gen_atmtype_llc(cstate);
9930
break;
9931
9932
default:
9933
abort();
9934
}
9935
return b1;
9936
}
9937
9938
/*
9939
* Filtering for MTP2 messages based on li value
9940
* FISU, length is null
9941
* LSSU, length is 1 or 2
9942
* MSU, length is 3 or more
9943
* For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
9944
*/
9945
struct block *
9946
gen_mtp2type_abbrev(compiler_state_t *cstate, int type)
9947
{
9948
struct block *b0, *b1;
9949
9950
/*
9951
* Catch errors reported by us and routines below us, and return NULL
9952
* on an error.
9953
*/
9954
if (setjmp(cstate->top_ctx))
9955
return (NULL);
9956
9957
switch (type) {
9958
9959
case M_FISU:
9960
if ( (cstate->linktype != DLT_MTP2) &&
9961
(cstate->linktype != DLT_ERF) &&
9962
(cstate->linktype != DLT_MTP2_WITH_PHDR) )
9963
bpf_error(cstate, "'fisu' supported only on MTP2");
9964
/* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
9965
b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9966
0x3fU, BPF_JEQ, 0, 0U);
9967
break;
9968
9969
case M_LSSU:
9970
if ( (cstate->linktype != DLT_MTP2) &&
9971
(cstate->linktype != DLT_ERF) &&
9972
(cstate->linktype != DLT_MTP2_WITH_PHDR) )
9973
bpf_error(cstate, "'lssu' supported only on MTP2");
9974
b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9975
0x3fU, BPF_JGT, 1, 2U);
9976
b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9977
0x3fU, BPF_JGT, 0, 0U);
9978
gen_and(b1, b0);
9979
break;
9980
9981
case M_MSU:
9982
if ( (cstate->linktype != DLT_MTP2) &&
9983
(cstate->linktype != DLT_ERF) &&
9984
(cstate->linktype != DLT_MTP2_WITH_PHDR) )
9985
bpf_error(cstate, "'msu' supported only on MTP2");
9986
b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9987
0x3fU, BPF_JGT, 0, 2U);
9988
break;
9989
9990
case MH_FISU:
9991
if ( (cstate->linktype != DLT_MTP2) &&
9992
(cstate->linktype != DLT_ERF) &&
9993
(cstate->linktype != DLT_MTP2_WITH_PHDR) )
9994
bpf_error(cstate, "'hfisu' supported only on MTP2_HSL");
9995
/* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
9996
b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
9997
0xff80U, BPF_JEQ, 0, 0U);
9998
break;
9999
10000
case MH_LSSU:
10001
if ( (cstate->linktype != DLT_MTP2) &&
10002
(cstate->linktype != DLT_ERF) &&
10003
(cstate->linktype != DLT_MTP2_WITH_PHDR) )
10004
bpf_error(cstate, "'hlssu' supported only on MTP2_HSL");
10005
b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
10006
0xff80U, BPF_JGT, 1, 0x0100U);
10007
b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
10008
0xff80U, BPF_JGT, 0, 0U);
10009
gen_and(b1, b0);
10010
break;
10011
10012
case MH_MSU:
10013
if ( (cstate->linktype != DLT_MTP2) &&
10014
(cstate->linktype != DLT_ERF) &&
10015
(cstate->linktype != DLT_MTP2_WITH_PHDR) )
10016
bpf_error(cstate, "'hmsu' supported only on MTP2_HSL");
10017
b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
10018
0xff80U, BPF_JGT, 0, 0x0100U);
10019
break;
10020
10021
default:
10022
abort();
10023
}
10024
return b0;
10025
}
10026
10027
/*
10028
* The jvalue_arg dance is to avoid annoying whining by compilers that
10029
* jvalue might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
10030
* It's not *used* after setjmp returns.
10031
*/
10032
struct block *
10033
gen_mtp3field_code(compiler_state_t *cstate, int mtp3field,
10034
bpf_u_int32 jvalue_arg, int jtype, int reverse)
10035
{
10036
volatile bpf_u_int32 jvalue = jvalue_arg;
10037
struct block *b0;
10038
bpf_u_int32 val1 , val2 , val3;
10039
u_int newoff_sio;
10040
u_int newoff_opc;
10041
u_int newoff_dpc;
10042
u_int newoff_sls;
10043
10044
/*
10045
* Catch errors reported by us and routines below us, and return NULL
10046
* on an error.
10047
*/
10048
if (setjmp(cstate->top_ctx))
10049
return (NULL);
10050
10051
newoff_sio = cstate->off_sio;
10052
newoff_opc = cstate->off_opc;
10053
newoff_dpc = cstate->off_dpc;
10054
newoff_sls = cstate->off_sls;
10055
switch (mtp3field) {
10056
10057
case MH_SIO:
10058
newoff_sio += 3; /* offset for MTP2_HSL */
10059
/* FALLTHROUGH */
10060
10061
case M_SIO:
10062
if (cstate->off_sio == OFFSET_NOT_SET)
10063
bpf_error(cstate, "'sio' supported only on SS7");
10064
/* sio coded on 1 byte so max value 255 */
10065
if(jvalue > 255)
10066
bpf_error(cstate, "sio value %u too big; max value = 255",
10067
jvalue);
10068
b0 = gen_ncmp(cstate, OR_PACKET, newoff_sio, BPF_B, 0xffffffffU,
10069
jtype, reverse, jvalue);
10070
break;
10071
10072
case MH_OPC:
10073
newoff_opc += 3;
10074
10075
/* FALLTHROUGH */
10076
case M_OPC:
10077
if (cstate->off_opc == OFFSET_NOT_SET)
10078
bpf_error(cstate, "'opc' supported only on SS7");
10079
/* opc coded on 14 bits so max value 16383 */
10080
if (jvalue > 16383)
10081
bpf_error(cstate, "opc value %u too big; max value = 16383",
10082
jvalue);
10083
/* the following instructions are made to convert jvalue
10084
* to the form used to write opc in an ss7 message*/
10085
val1 = jvalue & 0x00003c00;
10086
val1 = val1 >>10;
10087
val2 = jvalue & 0x000003fc;
10088
val2 = val2 <<6;
10089
val3 = jvalue & 0x00000003;
10090
val3 = val3 <<22;
10091
jvalue = val1 + val2 + val3;
10092
b0 = gen_ncmp(cstate, OR_PACKET, newoff_opc, BPF_W, 0x00c0ff0fU,
10093
jtype, reverse, jvalue);
10094
break;
10095
10096
case MH_DPC:
10097
newoff_dpc += 3;
10098
/* FALLTHROUGH */
10099
10100
case M_DPC:
10101
if (cstate->off_dpc == OFFSET_NOT_SET)
10102
bpf_error(cstate, "'dpc' supported only on SS7");
10103
/* dpc coded on 14 bits so max value 16383 */
10104
if (jvalue > 16383)
10105
bpf_error(cstate, "dpc value %u too big; max value = 16383",
10106
jvalue);
10107
/* the following instructions are made to convert jvalue
10108
* to the forme used to write dpc in an ss7 message*/
10109
val1 = jvalue & 0x000000ff;
10110
val1 = val1 << 24;
10111
val2 = jvalue & 0x00003f00;
10112
val2 = val2 << 8;
10113
jvalue = val1 + val2;
10114
b0 = gen_ncmp(cstate, OR_PACKET, newoff_dpc, BPF_W, 0xff3f0000U,
10115
jtype, reverse, jvalue);
10116
break;
10117
10118
case MH_SLS:
10119
newoff_sls += 3;
10120
/* FALLTHROUGH */
10121
10122
case M_SLS:
10123
if (cstate->off_sls == OFFSET_NOT_SET)
10124
bpf_error(cstate, "'sls' supported only on SS7");
10125
/* sls coded on 4 bits so max value 15 */
10126
if (jvalue > 15)
10127
bpf_error(cstate, "sls value %u too big; max value = 15",
10128
jvalue);
10129
/* the following instruction is made to convert jvalue
10130
* to the forme used to write sls in an ss7 message*/
10131
jvalue = jvalue << 4;
10132
b0 = gen_ncmp(cstate, OR_PACKET, newoff_sls, BPF_B, 0xf0U,
10133
jtype, reverse, jvalue);
10134
break;
10135
10136
default:
10137
abort();
10138
}
10139
return b0;
10140
}
10141
10142
static struct block *
10143
gen_msg_abbrev(compiler_state_t *cstate, int type)
10144
{
10145
struct block *b1;
10146
10147
/*
10148
* Q.2931 signalling protocol messages for handling virtual circuits
10149
* establishment and teardown
10150
*/
10151
switch (type) {
10152
10153
case A_SETUP:
10154
b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, SETUP, BPF_JEQ, 0);
10155
break;
10156
10157
case A_CALLPROCEED:
10158
b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
10159
break;
10160
10161
case A_CONNECT:
10162
b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CONNECT, BPF_JEQ, 0);
10163
break;
10164
10165
case A_CONNECTACK:
10166
b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
10167
break;
10168
10169
case A_RELEASE:
10170
b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, RELEASE, BPF_JEQ, 0);
10171
break;
10172
10173
case A_RELEASE_DONE:
10174
b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
10175
break;
10176
10177
default:
10178
abort();
10179
}
10180
return b1;
10181
}
10182
10183
struct block *
10184
gen_atmmulti_abbrev(compiler_state_t *cstate, int type)
10185
{
10186
struct block *b0, *b1;
10187
10188
/*
10189
* Catch errors reported by us and routines below us, and return NULL
10190
* on an error.
10191
*/
10192
if (setjmp(cstate->top_ctx))
10193
return (NULL);
10194
10195
switch (type) {
10196
10197
case A_OAM:
10198
if (!cstate->is_atm)
10199
bpf_error(cstate, "'oam' supported only on raw ATM");
10200
/* OAM F4 type */
10201
b0 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
10202
b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
10203
gen_or(b0, b1);
10204
b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
10205
gen_and(b0, b1);
10206
break;
10207
10208
case A_OAMF4:
10209
if (!cstate->is_atm)
10210
bpf_error(cstate, "'oamf4' supported only on raw ATM");
10211
/* OAM F4 type */
10212
b0 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
10213
b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
10214
gen_or(b0, b1);
10215
b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
10216
gen_and(b0, b1);
10217
break;
10218
10219
case A_CONNECTMSG:
10220
/*
10221
* Get Q.2931 signalling messages for switched
10222
* virtual connection
10223
*/
10224
if (!cstate->is_atm)
10225
bpf_error(cstate, "'connectmsg' supported only on raw ATM");
10226
b0 = gen_msg_abbrev(cstate, A_SETUP);
10227
b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
10228
gen_or(b0, b1);
10229
b0 = gen_msg_abbrev(cstate, A_CONNECT);
10230
gen_or(b0, b1);
10231
b0 = gen_msg_abbrev(cstate, A_CONNECTACK);
10232
gen_or(b0, b1);
10233
b0 = gen_msg_abbrev(cstate, A_RELEASE);
10234
gen_or(b0, b1);
10235
b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
10236
gen_or(b0, b1);
10237
b0 = gen_atmtype_sc(cstate);
10238
gen_and(b0, b1);
10239
break;
10240
10241
case A_METACONNECT:
10242
if (!cstate->is_atm)
10243
bpf_error(cstate, "'metaconnect' supported only on raw ATM");
10244
b0 = gen_msg_abbrev(cstate, A_SETUP);
10245
b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
10246
gen_or(b0, b1);
10247
b0 = gen_msg_abbrev(cstate, A_CONNECT);
10248
gen_or(b0, b1);
10249
b0 = gen_msg_abbrev(cstate, A_RELEASE);
10250
gen_or(b0, b1);
10251
b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
10252
gen_or(b0, b1);
10253
b0 = gen_atmtype_metac(cstate);
10254
gen_and(b0, b1);
10255
break;
10256
10257
default:
10258
abort();
10259
}
10260
return b1;
10261
}
10262
10263