Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/clang/lib/AST/ASTStructuralEquivalence.cpp
35259 views
1
//===- ASTStructuralEquivalence.cpp ---------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implement StructuralEquivalenceContext class and helper functions
10
// for layout matching.
11
//
12
// The structural equivalence check could have been implemented as a parallel
13
// BFS on a pair of graphs. That must have been the original approach at the
14
// beginning.
15
// Let's consider this simple BFS algorithm from the `s` source:
16
// ```
17
// void bfs(Graph G, int s)
18
// {
19
// Queue<Integer> queue = new Queue<Integer>();
20
// marked[s] = true; // Mark the source
21
// queue.enqueue(s); // and put it on the queue.
22
// while (!q.isEmpty()) {
23
// int v = queue.dequeue(); // Remove next vertex from the queue.
24
// for (int w : G.adj(v))
25
// if (!marked[w]) // For every unmarked adjacent vertex,
26
// {
27
// marked[w] = true;
28
// queue.enqueue(w);
29
// }
30
// }
31
// }
32
// ```
33
// Indeed, it has it's queue, which holds pairs of nodes, one from each graph,
34
// this is the `DeclsToCheck` member. `VisitedDecls` plays the role of the
35
// marking (`marked`) functionality above, we use it to check whether we've
36
// already seen a pair of nodes.
37
//
38
// We put in the elements into the queue only in the toplevel decl check
39
// function:
40
// ```
41
// static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
42
// Decl *D1, Decl *D2);
43
// ```
44
// The `while` loop where we iterate over the children is implemented in
45
// `Finish()`. And `Finish` is called only from the two **member** functions
46
// which check the equivalency of two Decls or two Types. ASTImporter (and
47
// other clients) call only these functions.
48
//
49
// The `static` implementation functions are called from `Finish`, these push
50
// the children nodes to the queue via `static bool
51
// IsStructurallyEquivalent(StructuralEquivalenceContext &Context, Decl *D1,
52
// Decl *D2)`. So far so good, this is almost like the BFS. However, if we
53
// let a static implementation function to call `Finish` via another **member**
54
// function that means we end up with two nested while loops each of them
55
// working on the same queue. This is wrong and nobody can reason about it's
56
// doing. Thus, static implementation functions must not call the **member**
57
// functions.
58
//
59
//===----------------------------------------------------------------------===//
60
61
#include "clang/AST/ASTStructuralEquivalence.h"
62
#include "clang/AST/ASTContext.h"
63
#include "clang/AST/ASTDiagnostic.h"
64
#include "clang/AST/Decl.h"
65
#include "clang/AST/DeclBase.h"
66
#include "clang/AST/DeclCXX.h"
67
#include "clang/AST/DeclFriend.h"
68
#include "clang/AST/DeclObjC.h"
69
#include "clang/AST/DeclOpenMP.h"
70
#include "clang/AST/DeclTemplate.h"
71
#include "clang/AST/ExprCXX.h"
72
#include "clang/AST/ExprConcepts.h"
73
#include "clang/AST/ExprObjC.h"
74
#include "clang/AST/ExprOpenMP.h"
75
#include "clang/AST/NestedNameSpecifier.h"
76
#include "clang/AST/StmtObjC.h"
77
#include "clang/AST/StmtOpenACC.h"
78
#include "clang/AST/StmtOpenMP.h"
79
#include "clang/AST/TemplateBase.h"
80
#include "clang/AST/TemplateName.h"
81
#include "clang/AST/Type.h"
82
#include "clang/Basic/ExceptionSpecificationType.h"
83
#include "clang/Basic/IdentifierTable.h"
84
#include "clang/Basic/LLVM.h"
85
#include "clang/Basic/SourceLocation.h"
86
#include "llvm/ADT/APInt.h"
87
#include "llvm/ADT/APSInt.h"
88
#include "llvm/ADT/StringExtras.h"
89
#include "llvm/Support/Casting.h"
90
#include "llvm/Support/Compiler.h"
91
#include "llvm/Support/ErrorHandling.h"
92
#include <cassert>
93
#include <optional>
94
#include <utility>
95
96
using namespace clang;
97
98
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
99
QualType T1, QualType T2);
100
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
101
Decl *D1, Decl *D2);
102
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
103
const Stmt *S1, const Stmt *S2);
104
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
105
const TemplateArgument &Arg1,
106
const TemplateArgument &Arg2);
107
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
108
const TemplateArgumentLoc &Arg1,
109
const TemplateArgumentLoc &Arg2);
110
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
111
NestedNameSpecifier *NNS1,
112
NestedNameSpecifier *NNS2);
113
static bool IsStructurallyEquivalent(const IdentifierInfo *Name1,
114
const IdentifierInfo *Name2);
115
116
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
117
const DeclarationName Name1,
118
const DeclarationName Name2) {
119
if (Name1.getNameKind() != Name2.getNameKind())
120
return false;
121
122
switch (Name1.getNameKind()) {
123
124
case DeclarationName::Identifier:
125
return IsStructurallyEquivalent(Name1.getAsIdentifierInfo(),
126
Name2.getAsIdentifierInfo());
127
128
case DeclarationName::CXXConstructorName:
129
case DeclarationName::CXXDestructorName:
130
case DeclarationName::CXXConversionFunctionName:
131
return IsStructurallyEquivalent(Context, Name1.getCXXNameType(),
132
Name2.getCXXNameType());
133
134
case DeclarationName::CXXDeductionGuideName: {
135
if (!IsStructurallyEquivalent(
136
Context, Name1.getCXXDeductionGuideTemplate()->getDeclName(),
137
Name2.getCXXDeductionGuideTemplate()->getDeclName()))
138
return false;
139
return IsStructurallyEquivalent(Context,
140
Name1.getCXXDeductionGuideTemplate(),
141
Name2.getCXXDeductionGuideTemplate());
142
}
143
144
case DeclarationName::CXXOperatorName:
145
return Name1.getCXXOverloadedOperator() == Name2.getCXXOverloadedOperator();
146
147
case DeclarationName::CXXLiteralOperatorName:
148
return IsStructurallyEquivalent(Name1.getCXXLiteralIdentifier(),
149
Name2.getCXXLiteralIdentifier());
150
151
case DeclarationName::CXXUsingDirective:
152
return true; // FIXME When do we consider two using directives equal?
153
154
case DeclarationName::ObjCZeroArgSelector:
155
case DeclarationName::ObjCOneArgSelector:
156
case DeclarationName::ObjCMultiArgSelector:
157
return true; // FIXME
158
}
159
160
llvm_unreachable("Unhandled kind of DeclarationName");
161
return true;
162
}
163
164
namespace {
165
/// Encapsulates Stmt comparison logic.
166
class StmtComparer {
167
StructuralEquivalenceContext &Context;
168
169
// IsStmtEquivalent overloads. Each overload compares a specific statement
170
// and only has to compare the data that is specific to the specific statement
171
// class. Should only be called from TraverseStmt.
172
173
bool IsStmtEquivalent(const AddrLabelExpr *E1, const AddrLabelExpr *E2) {
174
return IsStructurallyEquivalent(Context, E1->getLabel(), E2->getLabel());
175
}
176
177
bool IsStmtEquivalent(const AtomicExpr *E1, const AtomicExpr *E2) {
178
return E1->getOp() == E2->getOp();
179
}
180
181
bool IsStmtEquivalent(const BinaryOperator *E1, const BinaryOperator *E2) {
182
return E1->getOpcode() == E2->getOpcode();
183
}
184
185
bool IsStmtEquivalent(const CallExpr *E1, const CallExpr *E2) {
186
// FIXME: IsStructurallyEquivalent requires non-const Decls.
187
Decl *Callee1 = const_cast<Decl *>(E1->getCalleeDecl());
188
Decl *Callee2 = const_cast<Decl *>(E2->getCalleeDecl());
189
190
// Compare whether both calls know their callee.
191
if (static_cast<bool>(Callee1) != static_cast<bool>(Callee2))
192
return false;
193
194
// Both calls have no callee, so nothing to do.
195
if (!static_cast<bool>(Callee1))
196
return true;
197
198
assert(Callee2);
199
return IsStructurallyEquivalent(Context, Callee1, Callee2);
200
}
201
202
bool IsStmtEquivalent(const CharacterLiteral *E1,
203
const CharacterLiteral *E2) {
204
return E1->getValue() == E2->getValue() && E1->getKind() == E2->getKind();
205
}
206
207
bool IsStmtEquivalent(const ChooseExpr *E1, const ChooseExpr *E2) {
208
return true; // Semantics only depend on children.
209
}
210
211
bool IsStmtEquivalent(const CompoundStmt *E1, const CompoundStmt *E2) {
212
// Number of children is actually checked by the generic children comparison
213
// code, but a CompoundStmt is one of the few statements where the number of
214
// children frequently differs and the number of statements is also always
215
// precomputed. Directly comparing the number of children here is thus
216
// just an optimization.
217
return E1->size() == E2->size();
218
}
219
220
bool IsStmtEquivalent(const DeclRefExpr *DRE1, const DeclRefExpr *DRE2) {
221
const ValueDecl *Decl1 = DRE1->getDecl();
222
const ValueDecl *Decl2 = DRE2->getDecl();
223
if (!Decl1 || !Decl2)
224
return false;
225
return IsStructurallyEquivalent(Context, const_cast<ValueDecl *>(Decl1),
226
const_cast<ValueDecl *>(Decl2));
227
}
228
229
bool IsStmtEquivalent(const DependentScopeDeclRefExpr *DE1,
230
const DependentScopeDeclRefExpr *DE2) {
231
if (!IsStructurallyEquivalent(Context, DE1->getDeclName(),
232
DE2->getDeclName()))
233
return false;
234
return IsStructurallyEquivalent(Context, DE1->getQualifier(),
235
DE2->getQualifier());
236
}
237
238
bool IsStmtEquivalent(const Expr *E1, const Expr *E2) {
239
return IsStructurallyEquivalent(Context, E1->getType(), E2->getType());
240
}
241
242
bool IsStmtEquivalent(const ExpressionTraitExpr *E1,
243
const ExpressionTraitExpr *E2) {
244
return E1->getTrait() == E2->getTrait() && E1->getValue() == E2->getValue();
245
}
246
247
bool IsStmtEquivalent(const FloatingLiteral *E1, const FloatingLiteral *E2) {
248
return E1->isExact() == E2->isExact() && E1->getValue() == E2->getValue();
249
}
250
251
bool IsStmtEquivalent(const GenericSelectionExpr *E1,
252
const GenericSelectionExpr *E2) {
253
for (auto Pair : zip_longest(E1->getAssocTypeSourceInfos(),
254
E2->getAssocTypeSourceInfos())) {
255
std::optional<TypeSourceInfo *> Child1 = std::get<0>(Pair);
256
std::optional<TypeSourceInfo *> Child2 = std::get<1>(Pair);
257
// Skip this case if there are a different number of associated types.
258
if (!Child1 || !Child2)
259
return false;
260
261
if (!IsStructurallyEquivalent(Context, (*Child1)->getType(),
262
(*Child2)->getType()))
263
return false;
264
}
265
266
return true;
267
}
268
269
bool IsStmtEquivalent(const ImplicitCastExpr *CastE1,
270
const ImplicitCastExpr *CastE2) {
271
return IsStructurallyEquivalent(Context, CastE1->getType(),
272
CastE2->getType());
273
}
274
275
bool IsStmtEquivalent(const IntegerLiteral *E1, const IntegerLiteral *E2) {
276
return E1->getValue() == E2->getValue();
277
}
278
279
bool IsStmtEquivalent(const MemberExpr *E1, const MemberExpr *E2) {
280
return IsStructurallyEquivalent(Context, E1->getFoundDecl(),
281
E2->getFoundDecl());
282
}
283
284
bool IsStmtEquivalent(const ObjCStringLiteral *E1,
285
const ObjCStringLiteral *E2) {
286
// Just wraps a StringLiteral child.
287
return true;
288
}
289
290
bool IsStmtEquivalent(const Stmt *S1, const Stmt *S2) { return true; }
291
292
bool IsStmtEquivalent(const GotoStmt *S1, const GotoStmt *S2) {
293
LabelDecl *L1 = S1->getLabel();
294
LabelDecl *L2 = S2->getLabel();
295
if (!L1 || !L2)
296
return L1 == L2;
297
298
IdentifierInfo *Name1 = L1->getIdentifier();
299
IdentifierInfo *Name2 = L2->getIdentifier();
300
return ::IsStructurallyEquivalent(Name1, Name2);
301
}
302
303
bool IsStmtEquivalent(const SourceLocExpr *E1, const SourceLocExpr *E2) {
304
return E1->getIdentKind() == E2->getIdentKind();
305
}
306
307
bool IsStmtEquivalent(const StmtExpr *E1, const StmtExpr *E2) {
308
return E1->getTemplateDepth() == E2->getTemplateDepth();
309
}
310
311
bool IsStmtEquivalent(const StringLiteral *E1, const StringLiteral *E2) {
312
return E1->getBytes() == E2->getBytes();
313
}
314
315
bool IsStmtEquivalent(const SubstNonTypeTemplateParmExpr *E1,
316
const SubstNonTypeTemplateParmExpr *E2) {
317
if (!IsStructurallyEquivalent(Context, E1->getAssociatedDecl(),
318
E2->getAssociatedDecl()))
319
return false;
320
if (E1->getIndex() != E2->getIndex())
321
return false;
322
if (E1->getPackIndex() != E2->getPackIndex())
323
return false;
324
return true;
325
}
326
327
bool IsStmtEquivalent(const SubstNonTypeTemplateParmPackExpr *E1,
328
const SubstNonTypeTemplateParmPackExpr *E2) {
329
return IsStructurallyEquivalent(Context, E1->getArgumentPack(),
330
E2->getArgumentPack());
331
}
332
333
bool IsStmtEquivalent(const TypeTraitExpr *E1, const TypeTraitExpr *E2) {
334
if (E1->getTrait() != E2->getTrait())
335
return false;
336
337
for (auto Pair : zip_longest(E1->getArgs(), E2->getArgs())) {
338
std::optional<TypeSourceInfo *> Child1 = std::get<0>(Pair);
339
std::optional<TypeSourceInfo *> Child2 = std::get<1>(Pair);
340
// Different number of args.
341
if (!Child1 || !Child2)
342
return false;
343
344
if (!IsStructurallyEquivalent(Context, (*Child1)->getType(),
345
(*Child2)->getType()))
346
return false;
347
}
348
return true;
349
}
350
351
bool IsStmtEquivalent(const CXXDependentScopeMemberExpr *E1,
352
const CXXDependentScopeMemberExpr *E2) {
353
if (!IsStructurallyEquivalent(Context, E1->getMember(), E2->getMember())) {
354
return false;
355
}
356
return IsStructurallyEquivalent(Context, E1->getBaseType(),
357
E2->getBaseType());
358
}
359
360
bool IsStmtEquivalent(const UnaryExprOrTypeTraitExpr *E1,
361
const UnaryExprOrTypeTraitExpr *E2) {
362
if (E1->getKind() != E2->getKind())
363
return false;
364
return IsStructurallyEquivalent(Context, E1->getTypeOfArgument(),
365
E2->getTypeOfArgument());
366
}
367
368
bool IsStmtEquivalent(const UnaryOperator *E1, const UnaryOperator *E2) {
369
return E1->getOpcode() == E2->getOpcode();
370
}
371
372
bool IsStmtEquivalent(const VAArgExpr *E1, const VAArgExpr *E2) {
373
// Semantics only depend on children.
374
return true;
375
}
376
377
bool IsStmtEquivalent(const OverloadExpr *E1, const OverloadExpr *E2) {
378
if (!IsStructurallyEquivalent(Context, E1->getName(), E2->getName()))
379
return false;
380
381
if (static_cast<bool>(E1->getQualifier()) !=
382
static_cast<bool>(E2->getQualifier()))
383
return false;
384
if (E1->getQualifier() &&
385
!IsStructurallyEquivalent(Context, E1->getQualifier(),
386
E2->getQualifier()))
387
return false;
388
389
if (E1->getNumTemplateArgs() != E2->getNumTemplateArgs())
390
return false;
391
const TemplateArgumentLoc *Args1 = E1->getTemplateArgs();
392
const TemplateArgumentLoc *Args2 = E2->getTemplateArgs();
393
for (unsigned int ArgI = 0, ArgN = E1->getNumTemplateArgs(); ArgI < ArgN;
394
++ArgI)
395
if (!IsStructurallyEquivalent(Context, Args1[ArgI], Args2[ArgI]))
396
return false;
397
398
return true;
399
}
400
401
bool IsStmtEquivalent(const CXXBoolLiteralExpr *E1, const CXXBoolLiteralExpr *E2) {
402
return E1->getValue() == E2->getValue();
403
}
404
405
/// End point of the traversal chain.
406
bool TraverseStmt(const Stmt *S1, const Stmt *S2) { return true; }
407
408
// Create traversal methods that traverse the class hierarchy and return
409
// the accumulated result of the comparison. Each TraverseStmt overload
410
// calls the TraverseStmt overload of the parent class. For example,
411
// the TraverseStmt overload for 'BinaryOperator' calls the TraverseStmt
412
// overload of 'Expr' which then calls the overload for 'Stmt'.
413
#define STMT(CLASS, PARENT) \
414
bool TraverseStmt(const CLASS *S1, const CLASS *S2) { \
415
if (!TraverseStmt(static_cast<const PARENT *>(S1), \
416
static_cast<const PARENT *>(S2))) \
417
return false; \
418
return IsStmtEquivalent(S1, S2); \
419
}
420
#include "clang/AST/StmtNodes.inc"
421
422
public:
423
StmtComparer(StructuralEquivalenceContext &C) : Context(C) {}
424
425
/// Determine whether two statements are equivalent. The statements have to
426
/// be of the same kind. The children of the statements and their properties
427
/// are not compared by this function.
428
bool IsEquivalent(const Stmt *S1, const Stmt *S2) {
429
if (S1->getStmtClass() != S2->getStmtClass())
430
return false;
431
432
// Each TraverseStmt walks the class hierarchy from the leaf class to
433
// the root class 'Stmt' (e.g. 'BinaryOperator' -> 'Expr' -> 'Stmt'). Cast
434
// the Stmt we have here to its specific subclass so that we call the
435
// overload that walks the whole class hierarchy from leaf to root (e.g.,
436
// cast to 'BinaryOperator' so that 'Expr' and 'Stmt' is traversed).
437
switch (S1->getStmtClass()) {
438
case Stmt::NoStmtClass:
439
llvm_unreachable("Can't traverse NoStmtClass");
440
#define STMT(CLASS, PARENT) \
441
case Stmt::StmtClass::CLASS##Class: \
442
return TraverseStmt(static_cast<const CLASS *>(S1), \
443
static_cast<const CLASS *>(S2));
444
#define ABSTRACT_STMT(S)
445
#include "clang/AST/StmtNodes.inc"
446
}
447
llvm_unreachable("Invalid statement kind");
448
}
449
};
450
} // namespace
451
452
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
453
const UnaryOperator *E1,
454
const CXXOperatorCallExpr *E2) {
455
return UnaryOperator::getOverloadedOperator(E1->getOpcode()) ==
456
E2->getOperator() &&
457
IsStructurallyEquivalent(Context, E1->getSubExpr(), E2->getArg(0));
458
}
459
460
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
461
const CXXOperatorCallExpr *E1,
462
const UnaryOperator *E2) {
463
return E1->getOperator() ==
464
UnaryOperator::getOverloadedOperator(E2->getOpcode()) &&
465
IsStructurallyEquivalent(Context, E1->getArg(0), E2->getSubExpr());
466
}
467
468
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
469
const BinaryOperator *E1,
470
const CXXOperatorCallExpr *E2) {
471
return BinaryOperator::getOverloadedOperator(E1->getOpcode()) ==
472
E2->getOperator() &&
473
IsStructurallyEquivalent(Context, E1->getLHS(), E2->getArg(0)) &&
474
IsStructurallyEquivalent(Context, E1->getRHS(), E2->getArg(1));
475
}
476
477
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
478
const CXXOperatorCallExpr *E1,
479
const BinaryOperator *E2) {
480
return E1->getOperator() ==
481
BinaryOperator::getOverloadedOperator(E2->getOpcode()) &&
482
IsStructurallyEquivalent(Context, E1->getArg(0), E2->getLHS()) &&
483
IsStructurallyEquivalent(Context, E1->getArg(1), E2->getRHS());
484
}
485
486
/// Determine structural equivalence of two statements.
487
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
488
const Stmt *S1, const Stmt *S2) {
489
if (!S1 || !S2)
490
return S1 == S2;
491
492
// Check for statements with similar syntax but different AST.
493
// A UnaryOperator node is more lightweight than a CXXOperatorCallExpr node.
494
// The more heavyweight node is only created if the definition-time name
495
// lookup had any results. The lookup results are stored CXXOperatorCallExpr
496
// only. The lookup results can be different in a "From" and "To" AST even if
497
// the compared structure is otherwise equivalent. For this reason we must
498
// treat a similar unary/binary operator node and CXXOperatorCall node as
499
// equivalent.
500
if (const auto *E2CXXOperatorCall = dyn_cast<CXXOperatorCallExpr>(S2)) {
501
if (const auto *E1Unary = dyn_cast<UnaryOperator>(S1))
502
return IsStructurallyEquivalent(Context, E1Unary, E2CXXOperatorCall);
503
if (const auto *E1Binary = dyn_cast<BinaryOperator>(S1))
504
return IsStructurallyEquivalent(Context, E1Binary, E2CXXOperatorCall);
505
}
506
if (const auto *E1CXXOperatorCall = dyn_cast<CXXOperatorCallExpr>(S1)) {
507
if (const auto *E2Unary = dyn_cast<UnaryOperator>(S2))
508
return IsStructurallyEquivalent(Context, E1CXXOperatorCall, E2Unary);
509
if (const auto *E2Binary = dyn_cast<BinaryOperator>(S2))
510
return IsStructurallyEquivalent(Context, E1CXXOperatorCall, E2Binary);
511
}
512
513
// Compare the statements itself.
514
StmtComparer Comparer(Context);
515
if (!Comparer.IsEquivalent(S1, S2))
516
return false;
517
518
// Iterate over the children of both statements and also compare them.
519
for (auto Pair : zip_longest(S1->children(), S2->children())) {
520
std::optional<const Stmt *> Child1 = std::get<0>(Pair);
521
std::optional<const Stmt *> Child2 = std::get<1>(Pair);
522
// One of the statements has a different amount of children than the other,
523
// so the statements can't be equivalent.
524
if (!Child1 || !Child2)
525
return false;
526
if (!IsStructurallyEquivalent(Context, *Child1, *Child2))
527
return false;
528
}
529
return true;
530
}
531
532
/// Determine whether two identifiers are equivalent.
533
static bool IsStructurallyEquivalent(const IdentifierInfo *Name1,
534
const IdentifierInfo *Name2) {
535
if (!Name1 || !Name2)
536
return Name1 == Name2;
537
538
return Name1->getName() == Name2->getName();
539
}
540
541
/// Determine whether two nested-name-specifiers are equivalent.
542
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
543
NestedNameSpecifier *NNS1,
544
NestedNameSpecifier *NNS2) {
545
if (NNS1->getKind() != NNS2->getKind())
546
return false;
547
548
NestedNameSpecifier *Prefix1 = NNS1->getPrefix(),
549
*Prefix2 = NNS2->getPrefix();
550
if ((bool)Prefix1 != (bool)Prefix2)
551
return false;
552
553
if (Prefix1)
554
if (!IsStructurallyEquivalent(Context, Prefix1, Prefix2))
555
return false;
556
557
switch (NNS1->getKind()) {
558
case NestedNameSpecifier::Identifier:
559
return IsStructurallyEquivalent(NNS1->getAsIdentifier(),
560
NNS2->getAsIdentifier());
561
case NestedNameSpecifier::Namespace:
562
return IsStructurallyEquivalent(Context, NNS1->getAsNamespace(),
563
NNS2->getAsNamespace());
564
case NestedNameSpecifier::NamespaceAlias:
565
return IsStructurallyEquivalent(Context, NNS1->getAsNamespaceAlias(),
566
NNS2->getAsNamespaceAlias());
567
case NestedNameSpecifier::TypeSpec:
568
case NestedNameSpecifier::TypeSpecWithTemplate:
569
return IsStructurallyEquivalent(Context, QualType(NNS1->getAsType(), 0),
570
QualType(NNS2->getAsType(), 0));
571
case NestedNameSpecifier::Global:
572
return true;
573
case NestedNameSpecifier::Super:
574
return IsStructurallyEquivalent(Context, NNS1->getAsRecordDecl(),
575
NNS2->getAsRecordDecl());
576
}
577
return false;
578
}
579
580
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
581
const TemplateName &N1,
582
const TemplateName &N2) {
583
TemplateDecl *TemplateDeclN1 = N1.getAsTemplateDecl();
584
TemplateDecl *TemplateDeclN2 = N2.getAsTemplateDecl();
585
if (TemplateDeclN1 && TemplateDeclN2) {
586
if (!IsStructurallyEquivalent(Context, TemplateDeclN1, TemplateDeclN2))
587
return false;
588
// If the kind is different we compare only the template decl.
589
if (N1.getKind() != N2.getKind())
590
return true;
591
} else if (TemplateDeclN1 || TemplateDeclN2)
592
return false;
593
else if (N1.getKind() != N2.getKind())
594
return false;
595
596
// Check for special case incompatibilities.
597
switch (N1.getKind()) {
598
599
case TemplateName::OverloadedTemplate: {
600
OverloadedTemplateStorage *OS1 = N1.getAsOverloadedTemplate(),
601
*OS2 = N2.getAsOverloadedTemplate();
602
OverloadedTemplateStorage::iterator I1 = OS1->begin(), I2 = OS2->begin(),
603
E1 = OS1->end(), E2 = OS2->end();
604
for (; I1 != E1 && I2 != E2; ++I1, ++I2)
605
if (!IsStructurallyEquivalent(Context, *I1, *I2))
606
return false;
607
return I1 == E1 && I2 == E2;
608
}
609
610
case TemplateName::AssumedTemplate: {
611
AssumedTemplateStorage *TN1 = N1.getAsAssumedTemplateName(),
612
*TN2 = N1.getAsAssumedTemplateName();
613
return TN1->getDeclName() == TN2->getDeclName();
614
}
615
616
case TemplateName::DependentTemplate: {
617
DependentTemplateName *DN1 = N1.getAsDependentTemplateName(),
618
*DN2 = N2.getAsDependentTemplateName();
619
if (!IsStructurallyEquivalent(Context, DN1->getQualifier(),
620
DN2->getQualifier()))
621
return false;
622
if (DN1->isIdentifier() && DN2->isIdentifier())
623
return IsStructurallyEquivalent(DN1->getIdentifier(),
624
DN2->getIdentifier());
625
else if (DN1->isOverloadedOperator() && DN2->isOverloadedOperator())
626
return DN1->getOperator() == DN2->getOperator();
627
return false;
628
}
629
630
case TemplateName::SubstTemplateTemplateParmPack: {
631
SubstTemplateTemplateParmPackStorage
632
*P1 = N1.getAsSubstTemplateTemplateParmPack(),
633
*P2 = N2.getAsSubstTemplateTemplateParmPack();
634
return IsStructurallyEquivalent(Context, P1->getArgumentPack(),
635
P2->getArgumentPack()) &&
636
IsStructurallyEquivalent(Context, P1->getAssociatedDecl(),
637
P2->getAssociatedDecl()) &&
638
P1->getIndex() == P2->getIndex();
639
}
640
641
case TemplateName::Template:
642
case TemplateName::QualifiedTemplate:
643
case TemplateName::SubstTemplateTemplateParm:
644
case TemplateName::UsingTemplate:
645
// It is sufficient to check value of getAsTemplateDecl.
646
break;
647
648
}
649
650
return true;
651
}
652
653
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
654
ArrayRef<TemplateArgument> Args1,
655
ArrayRef<TemplateArgument> Args2);
656
657
/// Determine whether two template arguments are equivalent.
658
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
659
const TemplateArgument &Arg1,
660
const TemplateArgument &Arg2) {
661
if (Arg1.getKind() != Arg2.getKind())
662
return false;
663
664
switch (Arg1.getKind()) {
665
case TemplateArgument::Null:
666
return true;
667
668
case TemplateArgument::Type:
669
return IsStructurallyEquivalent(Context, Arg1.getAsType(), Arg2.getAsType());
670
671
case TemplateArgument::Integral:
672
if (!IsStructurallyEquivalent(Context, Arg1.getIntegralType(),
673
Arg2.getIntegralType()))
674
return false;
675
676
return llvm::APSInt::isSameValue(Arg1.getAsIntegral(),
677
Arg2.getAsIntegral());
678
679
case TemplateArgument::Declaration:
680
return IsStructurallyEquivalent(Context, Arg1.getAsDecl(), Arg2.getAsDecl());
681
682
case TemplateArgument::NullPtr:
683
return true; // FIXME: Is this correct?
684
685
case TemplateArgument::Template:
686
return IsStructurallyEquivalent(Context, Arg1.getAsTemplate(),
687
Arg2.getAsTemplate());
688
689
case TemplateArgument::TemplateExpansion:
690
return IsStructurallyEquivalent(Context,
691
Arg1.getAsTemplateOrTemplatePattern(),
692
Arg2.getAsTemplateOrTemplatePattern());
693
694
case TemplateArgument::Expression:
695
return IsStructurallyEquivalent(Context, Arg1.getAsExpr(),
696
Arg2.getAsExpr());
697
698
case TemplateArgument::StructuralValue:
699
return Arg1.structurallyEquals(Arg2);
700
701
case TemplateArgument::Pack:
702
return IsStructurallyEquivalent(Context, Arg1.pack_elements(),
703
Arg2.pack_elements());
704
}
705
706
llvm_unreachable("Invalid template argument kind");
707
}
708
709
/// Determine structural equivalence of two template argument lists.
710
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
711
ArrayRef<TemplateArgument> Args1,
712
ArrayRef<TemplateArgument> Args2) {
713
if (Args1.size() != Args2.size())
714
return false;
715
for (unsigned I = 0, N = Args1.size(); I != N; ++I) {
716
if (!IsStructurallyEquivalent(Context, Args1[I], Args2[I]))
717
return false;
718
}
719
return true;
720
}
721
722
/// Determine whether two template argument locations are equivalent.
723
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
724
const TemplateArgumentLoc &Arg1,
725
const TemplateArgumentLoc &Arg2) {
726
return IsStructurallyEquivalent(Context, Arg1.getArgument(),
727
Arg2.getArgument());
728
}
729
730
/// Determine structural equivalence for the common part of array
731
/// types.
732
static bool IsArrayStructurallyEquivalent(StructuralEquivalenceContext &Context,
733
const ArrayType *Array1,
734
const ArrayType *Array2) {
735
if (!IsStructurallyEquivalent(Context, Array1->getElementType(),
736
Array2->getElementType()))
737
return false;
738
if (Array1->getSizeModifier() != Array2->getSizeModifier())
739
return false;
740
if (Array1->getIndexTypeQualifiers() != Array2->getIndexTypeQualifiers())
741
return false;
742
743
return true;
744
}
745
746
/// Determine structural equivalence based on the ExtInfo of functions. This
747
/// is inspired by ASTContext::mergeFunctionTypes(), we compare calling
748
/// conventions bits but must not compare some other bits.
749
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
750
FunctionType::ExtInfo EI1,
751
FunctionType::ExtInfo EI2) {
752
// Compatible functions must have compatible calling conventions.
753
if (EI1.getCC() != EI2.getCC())
754
return false;
755
756
// Regparm is part of the calling convention.
757
if (EI1.getHasRegParm() != EI2.getHasRegParm())
758
return false;
759
if (EI1.getRegParm() != EI2.getRegParm())
760
return false;
761
762
if (EI1.getProducesResult() != EI2.getProducesResult())
763
return false;
764
if (EI1.getNoCallerSavedRegs() != EI2.getNoCallerSavedRegs())
765
return false;
766
if (EI1.getNoCfCheck() != EI2.getNoCfCheck())
767
return false;
768
769
return true;
770
}
771
772
/// Check the equivalence of exception specifications.
773
static bool IsEquivalentExceptionSpec(StructuralEquivalenceContext &Context,
774
const FunctionProtoType *Proto1,
775
const FunctionProtoType *Proto2) {
776
777
auto Spec1 = Proto1->getExceptionSpecType();
778
auto Spec2 = Proto2->getExceptionSpecType();
779
780
if (isUnresolvedExceptionSpec(Spec1) || isUnresolvedExceptionSpec(Spec2))
781
return true;
782
783
if (Spec1 != Spec2)
784
return false;
785
if (Spec1 == EST_Dynamic) {
786
if (Proto1->getNumExceptions() != Proto2->getNumExceptions())
787
return false;
788
for (unsigned I = 0, N = Proto1->getNumExceptions(); I != N; ++I) {
789
if (!IsStructurallyEquivalent(Context, Proto1->getExceptionType(I),
790
Proto2->getExceptionType(I)))
791
return false;
792
}
793
} else if (isComputedNoexcept(Spec1)) {
794
if (!IsStructurallyEquivalent(Context, Proto1->getNoexceptExpr(),
795
Proto2->getNoexceptExpr()))
796
return false;
797
}
798
799
return true;
800
}
801
802
/// Determine structural equivalence of two types.
803
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
804
QualType T1, QualType T2) {
805
if (T1.isNull() || T2.isNull())
806
return T1.isNull() && T2.isNull();
807
808
QualType OrigT1 = T1;
809
QualType OrigT2 = T2;
810
811
if (!Context.StrictTypeSpelling) {
812
// We aren't being strict about token-to-token equivalence of types,
813
// so map down to the canonical type.
814
T1 = Context.FromCtx.getCanonicalType(T1);
815
T2 = Context.ToCtx.getCanonicalType(T2);
816
}
817
818
if (T1.getQualifiers() != T2.getQualifiers())
819
return false;
820
821
Type::TypeClass TC = T1->getTypeClass();
822
823
if (T1->getTypeClass() != T2->getTypeClass()) {
824
// Compare function types with prototypes vs. without prototypes as if
825
// both did not have prototypes.
826
if (T1->getTypeClass() == Type::FunctionProto &&
827
T2->getTypeClass() == Type::FunctionNoProto)
828
TC = Type::FunctionNoProto;
829
else if (T1->getTypeClass() == Type::FunctionNoProto &&
830
T2->getTypeClass() == Type::FunctionProto)
831
TC = Type::FunctionNoProto;
832
else
833
return false;
834
}
835
836
switch (TC) {
837
case Type::Builtin:
838
// FIXME: Deal with Char_S/Char_U.
839
if (cast<BuiltinType>(T1)->getKind() != cast<BuiltinType>(T2)->getKind())
840
return false;
841
break;
842
843
case Type::Complex:
844
if (!IsStructurallyEquivalent(Context,
845
cast<ComplexType>(T1)->getElementType(),
846
cast<ComplexType>(T2)->getElementType()))
847
return false;
848
break;
849
850
case Type::Adjusted:
851
case Type::Decayed:
852
case Type::ArrayParameter:
853
if (!IsStructurallyEquivalent(Context,
854
cast<AdjustedType>(T1)->getOriginalType(),
855
cast<AdjustedType>(T2)->getOriginalType()))
856
return false;
857
break;
858
859
case Type::Pointer:
860
if (!IsStructurallyEquivalent(Context,
861
cast<PointerType>(T1)->getPointeeType(),
862
cast<PointerType>(T2)->getPointeeType()))
863
return false;
864
break;
865
866
case Type::BlockPointer:
867
if (!IsStructurallyEquivalent(Context,
868
cast<BlockPointerType>(T1)->getPointeeType(),
869
cast<BlockPointerType>(T2)->getPointeeType()))
870
return false;
871
break;
872
873
case Type::LValueReference:
874
case Type::RValueReference: {
875
const auto *Ref1 = cast<ReferenceType>(T1);
876
const auto *Ref2 = cast<ReferenceType>(T2);
877
if (Ref1->isSpelledAsLValue() != Ref2->isSpelledAsLValue())
878
return false;
879
if (Ref1->isInnerRef() != Ref2->isInnerRef())
880
return false;
881
if (!IsStructurallyEquivalent(Context, Ref1->getPointeeTypeAsWritten(),
882
Ref2->getPointeeTypeAsWritten()))
883
return false;
884
break;
885
}
886
887
case Type::MemberPointer: {
888
const auto *MemPtr1 = cast<MemberPointerType>(T1);
889
const auto *MemPtr2 = cast<MemberPointerType>(T2);
890
if (!IsStructurallyEquivalent(Context, MemPtr1->getPointeeType(),
891
MemPtr2->getPointeeType()))
892
return false;
893
if (!IsStructurallyEquivalent(Context, QualType(MemPtr1->getClass(), 0),
894
QualType(MemPtr2->getClass(), 0)))
895
return false;
896
break;
897
}
898
899
case Type::ConstantArray: {
900
const auto *Array1 = cast<ConstantArrayType>(T1);
901
const auto *Array2 = cast<ConstantArrayType>(T2);
902
if (!llvm::APInt::isSameValue(Array1->getSize(), Array2->getSize()))
903
return false;
904
905
if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
906
return false;
907
break;
908
}
909
910
case Type::IncompleteArray:
911
if (!IsArrayStructurallyEquivalent(Context, cast<ArrayType>(T1),
912
cast<ArrayType>(T2)))
913
return false;
914
break;
915
916
case Type::VariableArray: {
917
const auto *Array1 = cast<VariableArrayType>(T1);
918
const auto *Array2 = cast<VariableArrayType>(T2);
919
if (!IsStructurallyEquivalent(Context, Array1->getSizeExpr(),
920
Array2->getSizeExpr()))
921
return false;
922
923
if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
924
return false;
925
926
break;
927
}
928
929
case Type::DependentSizedArray: {
930
const auto *Array1 = cast<DependentSizedArrayType>(T1);
931
const auto *Array2 = cast<DependentSizedArrayType>(T2);
932
if (!IsStructurallyEquivalent(Context, Array1->getSizeExpr(),
933
Array2->getSizeExpr()))
934
return false;
935
936
if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
937
return false;
938
939
break;
940
}
941
942
case Type::DependentAddressSpace: {
943
const auto *DepAddressSpace1 = cast<DependentAddressSpaceType>(T1);
944
const auto *DepAddressSpace2 = cast<DependentAddressSpaceType>(T2);
945
if (!IsStructurallyEquivalent(Context, DepAddressSpace1->getAddrSpaceExpr(),
946
DepAddressSpace2->getAddrSpaceExpr()))
947
return false;
948
if (!IsStructurallyEquivalent(Context, DepAddressSpace1->getPointeeType(),
949
DepAddressSpace2->getPointeeType()))
950
return false;
951
952
break;
953
}
954
955
case Type::DependentSizedExtVector: {
956
const auto *Vec1 = cast<DependentSizedExtVectorType>(T1);
957
const auto *Vec2 = cast<DependentSizedExtVectorType>(T2);
958
if (!IsStructurallyEquivalent(Context, Vec1->getSizeExpr(),
959
Vec2->getSizeExpr()))
960
return false;
961
if (!IsStructurallyEquivalent(Context, Vec1->getElementType(),
962
Vec2->getElementType()))
963
return false;
964
break;
965
}
966
967
case Type::DependentVector: {
968
const auto *Vec1 = cast<DependentVectorType>(T1);
969
const auto *Vec2 = cast<DependentVectorType>(T2);
970
if (Vec1->getVectorKind() != Vec2->getVectorKind())
971
return false;
972
if (!IsStructurallyEquivalent(Context, Vec1->getSizeExpr(),
973
Vec2->getSizeExpr()))
974
return false;
975
if (!IsStructurallyEquivalent(Context, Vec1->getElementType(),
976
Vec2->getElementType()))
977
return false;
978
break;
979
}
980
981
case Type::Vector:
982
case Type::ExtVector: {
983
const auto *Vec1 = cast<VectorType>(T1);
984
const auto *Vec2 = cast<VectorType>(T2);
985
if (!IsStructurallyEquivalent(Context, Vec1->getElementType(),
986
Vec2->getElementType()))
987
return false;
988
if (Vec1->getNumElements() != Vec2->getNumElements())
989
return false;
990
if (Vec1->getVectorKind() != Vec2->getVectorKind())
991
return false;
992
break;
993
}
994
995
case Type::DependentSizedMatrix: {
996
const DependentSizedMatrixType *Mat1 = cast<DependentSizedMatrixType>(T1);
997
const DependentSizedMatrixType *Mat2 = cast<DependentSizedMatrixType>(T2);
998
// The element types, row and column expressions must be structurally
999
// equivalent.
1000
if (!IsStructurallyEquivalent(Context, Mat1->getRowExpr(),
1001
Mat2->getRowExpr()) ||
1002
!IsStructurallyEquivalent(Context, Mat1->getColumnExpr(),
1003
Mat2->getColumnExpr()) ||
1004
!IsStructurallyEquivalent(Context, Mat1->getElementType(),
1005
Mat2->getElementType()))
1006
return false;
1007
break;
1008
}
1009
1010
case Type::ConstantMatrix: {
1011
const ConstantMatrixType *Mat1 = cast<ConstantMatrixType>(T1);
1012
const ConstantMatrixType *Mat2 = cast<ConstantMatrixType>(T2);
1013
// The element types must be structurally equivalent and the number of rows
1014
// and columns must match.
1015
if (!IsStructurallyEquivalent(Context, Mat1->getElementType(),
1016
Mat2->getElementType()) ||
1017
Mat1->getNumRows() != Mat2->getNumRows() ||
1018
Mat1->getNumColumns() != Mat2->getNumColumns())
1019
return false;
1020
break;
1021
}
1022
1023
case Type::FunctionProto: {
1024
const auto *Proto1 = cast<FunctionProtoType>(T1);
1025
const auto *Proto2 = cast<FunctionProtoType>(T2);
1026
1027
if (Proto1->getNumParams() != Proto2->getNumParams())
1028
return false;
1029
for (unsigned I = 0, N = Proto1->getNumParams(); I != N; ++I) {
1030
if (!IsStructurallyEquivalent(Context, Proto1->getParamType(I),
1031
Proto2->getParamType(I)))
1032
return false;
1033
}
1034
if (Proto1->isVariadic() != Proto2->isVariadic())
1035
return false;
1036
1037
if (Proto1->getMethodQuals() != Proto2->getMethodQuals())
1038
return false;
1039
1040
// Check exceptions, this information is lost in canonical type.
1041
const auto *OrigProto1 =
1042
cast<FunctionProtoType>(OrigT1.getDesugaredType(Context.FromCtx));
1043
const auto *OrigProto2 =
1044
cast<FunctionProtoType>(OrigT2.getDesugaredType(Context.ToCtx));
1045
if (!IsEquivalentExceptionSpec(Context, OrigProto1, OrigProto2))
1046
return false;
1047
1048
// Fall through to check the bits common with FunctionNoProtoType.
1049
[[fallthrough]];
1050
}
1051
1052
case Type::FunctionNoProto: {
1053
const auto *Function1 = cast<FunctionType>(T1);
1054
const auto *Function2 = cast<FunctionType>(T2);
1055
if (!IsStructurallyEquivalent(Context, Function1->getReturnType(),
1056
Function2->getReturnType()))
1057
return false;
1058
if (!IsStructurallyEquivalent(Context, Function1->getExtInfo(),
1059
Function2->getExtInfo()))
1060
return false;
1061
break;
1062
}
1063
1064
case Type::UnresolvedUsing:
1065
if (!IsStructurallyEquivalent(Context,
1066
cast<UnresolvedUsingType>(T1)->getDecl(),
1067
cast<UnresolvedUsingType>(T2)->getDecl()))
1068
return false;
1069
break;
1070
1071
case Type::Attributed:
1072
if (!IsStructurallyEquivalent(Context,
1073
cast<AttributedType>(T1)->getModifiedType(),
1074
cast<AttributedType>(T2)->getModifiedType()))
1075
return false;
1076
if (!IsStructurallyEquivalent(
1077
Context, cast<AttributedType>(T1)->getEquivalentType(),
1078
cast<AttributedType>(T2)->getEquivalentType()))
1079
return false;
1080
break;
1081
1082
case Type::CountAttributed:
1083
if (!IsStructurallyEquivalent(Context,
1084
cast<CountAttributedType>(T1)->desugar(),
1085
cast<CountAttributedType>(T2)->desugar()))
1086
return false;
1087
break;
1088
1089
case Type::BTFTagAttributed:
1090
if (!IsStructurallyEquivalent(
1091
Context, cast<BTFTagAttributedType>(T1)->getWrappedType(),
1092
cast<BTFTagAttributedType>(T2)->getWrappedType()))
1093
return false;
1094
break;
1095
1096
case Type::Paren:
1097
if (!IsStructurallyEquivalent(Context, cast<ParenType>(T1)->getInnerType(),
1098
cast<ParenType>(T2)->getInnerType()))
1099
return false;
1100
break;
1101
1102
case Type::MacroQualified:
1103
if (!IsStructurallyEquivalent(
1104
Context, cast<MacroQualifiedType>(T1)->getUnderlyingType(),
1105
cast<MacroQualifiedType>(T2)->getUnderlyingType()))
1106
return false;
1107
break;
1108
1109
case Type::Using:
1110
if (!IsStructurallyEquivalent(Context, cast<UsingType>(T1)->getFoundDecl(),
1111
cast<UsingType>(T2)->getFoundDecl()))
1112
return false;
1113
if (!IsStructurallyEquivalent(Context,
1114
cast<UsingType>(T1)->getUnderlyingType(),
1115
cast<UsingType>(T2)->getUnderlyingType()))
1116
return false;
1117
break;
1118
1119
case Type::Typedef:
1120
if (!IsStructurallyEquivalent(Context, cast<TypedefType>(T1)->getDecl(),
1121
cast<TypedefType>(T2)->getDecl()) ||
1122
!IsStructurallyEquivalent(Context, cast<TypedefType>(T1)->desugar(),
1123
cast<TypedefType>(T2)->desugar()))
1124
return false;
1125
break;
1126
1127
case Type::TypeOfExpr:
1128
if (!IsStructurallyEquivalent(
1129
Context, cast<TypeOfExprType>(T1)->getUnderlyingExpr(),
1130
cast<TypeOfExprType>(T2)->getUnderlyingExpr()))
1131
return false;
1132
break;
1133
1134
case Type::TypeOf:
1135
if (!IsStructurallyEquivalent(Context,
1136
cast<TypeOfType>(T1)->getUnmodifiedType(),
1137
cast<TypeOfType>(T2)->getUnmodifiedType()))
1138
return false;
1139
break;
1140
1141
case Type::UnaryTransform:
1142
if (!IsStructurallyEquivalent(
1143
Context, cast<UnaryTransformType>(T1)->getUnderlyingType(),
1144
cast<UnaryTransformType>(T2)->getUnderlyingType()))
1145
return false;
1146
break;
1147
1148
case Type::Decltype:
1149
if (!IsStructurallyEquivalent(Context,
1150
cast<DecltypeType>(T1)->getUnderlyingExpr(),
1151
cast<DecltypeType>(T2)->getUnderlyingExpr()))
1152
return false;
1153
break;
1154
1155
case Type::Auto: {
1156
auto *Auto1 = cast<AutoType>(T1);
1157
auto *Auto2 = cast<AutoType>(T2);
1158
if (!IsStructurallyEquivalent(Context, Auto1->getDeducedType(),
1159
Auto2->getDeducedType()))
1160
return false;
1161
if (Auto1->isConstrained() != Auto2->isConstrained())
1162
return false;
1163
if (Auto1->isConstrained()) {
1164
if (Auto1->getTypeConstraintConcept() !=
1165
Auto2->getTypeConstraintConcept())
1166
return false;
1167
if (!IsStructurallyEquivalent(Context,
1168
Auto1->getTypeConstraintArguments(),
1169
Auto2->getTypeConstraintArguments()))
1170
return false;
1171
}
1172
break;
1173
}
1174
1175
case Type::DeducedTemplateSpecialization: {
1176
const auto *DT1 = cast<DeducedTemplateSpecializationType>(T1);
1177
const auto *DT2 = cast<DeducedTemplateSpecializationType>(T2);
1178
if (!IsStructurallyEquivalent(Context, DT1->getTemplateName(),
1179
DT2->getTemplateName()))
1180
return false;
1181
if (!IsStructurallyEquivalent(Context, DT1->getDeducedType(),
1182
DT2->getDeducedType()))
1183
return false;
1184
break;
1185
}
1186
1187
case Type::Record:
1188
case Type::Enum:
1189
if (!IsStructurallyEquivalent(Context, cast<TagType>(T1)->getDecl(),
1190
cast<TagType>(T2)->getDecl()))
1191
return false;
1192
break;
1193
1194
case Type::TemplateTypeParm: {
1195
const auto *Parm1 = cast<TemplateTypeParmType>(T1);
1196
const auto *Parm2 = cast<TemplateTypeParmType>(T2);
1197
if (!Context.IgnoreTemplateParmDepth &&
1198
Parm1->getDepth() != Parm2->getDepth())
1199
return false;
1200
if (Parm1->getIndex() != Parm2->getIndex())
1201
return false;
1202
if (Parm1->isParameterPack() != Parm2->isParameterPack())
1203
return false;
1204
1205
// Names of template type parameters are never significant.
1206
break;
1207
}
1208
1209
case Type::SubstTemplateTypeParm: {
1210
const auto *Subst1 = cast<SubstTemplateTypeParmType>(T1);
1211
const auto *Subst2 = cast<SubstTemplateTypeParmType>(T2);
1212
if (!IsStructurallyEquivalent(Context, Subst1->getReplacementType(),
1213
Subst2->getReplacementType()))
1214
return false;
1215
if (!IsStructurallyEquivalent(Context, Subst1->getAssociatedDecl(),
1216
Subst2->getAssociatedDecl()))
1217
return false;
1218
if (Subst1->getIndex() != Subst2->getIndex())
1219
return false;
1220
if (Subst1->getPackIndex() != Subst2->getPackIndex())
1221
return false;
1222
break;
1223
}
1224
1225
case Type::SubstTemplateTypeParmPack: {
1226
const auto *Subst1 = cast<SubstTemplateTypeParmPackType>(T1);
1227
const auto *Subst2 = cast<SubstTemplateTypeParmPackType>(T2);
1228
if (!IsStructurallyEquivalent(Context, Subst1->getAssociatedDecl(),
1229
Subst2->getAssociatedDecl()))
1230
return false;
1231
if (Subst1->getIndex() != Subst2->getIndex())
1232
return false;
1233
if (!IsStructurallyEquivalent(Context, Subst1->getArgumentPack(),
1234
Subst2->getArgumentPack()))
1235
return false;
1236
break;
1237
}
1238
1239
case Type::TemplateSpecialization: {
1240
const auto *Spec1 = cast<TemplateSpecializationType>(T1);
1241
const auto *Spec2 = cast<TemplateSpecializationType>(T2);
1242
if (!IsStructurallyEquivalent(Context, Spec1->getTemplateName(),
1243
Spec2->getTemplateName()))
1244
return false;
1245
if (!IsStructurallyEquivalent(Context, Spec1->template_arguments(),
1246
Spec2->template_arguments()))
1247
return false;
1248
break;
1249
}
1250
1251
case Type::Elaborated: {
1252
const auto *Elab1 = cast<ElaboratedType>(T1);
1253
const auto *Elab2 = cast<ElaboratedType>(T2);
1254
// CHECKME: what if a keyword is ElaboratedTypeKeyword::None or
1255
// ElaboratedTypeKeyword::Typename
1256
// ?
1257
if (Elab1->getKeyword() != Elab2->getKeyword())
1258
return false;
1259
if (!IsStructurallyEquivalent(Context, Elab1->getQualifier(),
1260
Elab2->getQualifier()))
1261
return false;
1262
if (!IsStructurallyEquivalent(Context, Elab1->getNamedType(),
1263
Elab2->getNamedType()))
1264
return false;
1265
break;
1266
}
1267
1268
case Type::InjectedClassName: {
1269
const auto *Inj1 = cast<InjectedClassNameType>(T1);
1270
const auto *Inj2 = cast<InjectedClassNameType>(T2);
1271
if (!IsStructurallyEquivalent(Context,
1272
Inj1->getInjectedSpecializationType(),
1273
Inj2->getInjectedSpecializationType()))
1274
return false;
1275
break;
1276
}
1277
1278
case Type::DependentName: {
1279
const auto *Typename1 = cast<DependentNameType>(T1);
1280
const auto *Typename2 = cast<DependentNameType>(T2);
1281
if (!IsStructurallyEquivalent(Context, Typename1->getQualifier(),
1282
Typename2->getQualifier()))
1283
return false;
1284
if (!IsStructurallyEquivalent(Typename1->getIdentifier(),
1285
Typename2->getIdentifier()))
1286
return false;
1287
1288
break;
1289
}
1290
1291
case Type::DependentTemplateSpecialization: {
1292
const auto *Spec1 = cast<DependentTemplateSpecializationType>(T1);
1293
const auto *Spec2 = cast<DependentTemplateSpecializationType>(T2);
1294
if (!IsStructurallyEquivalent(Context, Spec1->getQualifier(),
1295
Spec2->getQualifier()))
1296
return false;
1297
if (!IsStructurallyEquivalent(Spec1->getIdentifier(),
1298
Spec2->getIdentifier()))
1299
return false;
1300
if (!IsStructurallyEquivalent(Context, Spec1->template_arguments(),
1301
Spec2->template_arguments()))
1302
return false;
1303
break;
1304
}
1305
1306
case Type::PackExpansion:
1307
if (!IsStructurallyEquivalent(Context,
1308
cast<PackExpansionType>(T1)->getPattern(),
1309
cast<PackExpansionType>(T2)->getPattern()))
1310
return false;
1311
break;
1312
1313
case Type::PackIndexing:
1314
if (!IsStructurallyEquivalent(Context,
1315
cast<PackIndexingType>(T1)->getPattern(),
1316
cast<PackIndexingType>(T2)->getPattern()))
1317
if (!IsStructurallyEquivalent(Context,
1318
cast<PackIndexingType>(T1)->getIndexExpr(),
1319
cast<PackIndexingType>(T2)->getIndexExpr()))
1320
return false;
1321
break;
1322
1323
case Type::ObjCInterface: {
1324
const auto *Iface1 = cast<ObjCInterfaceType>(T1);
1325
const auto *Iface2 = cast<ObjCInterfaceType>(T2);
1326
if (!IsStructurallyEquivalent(Context, Iface1->getDecl(),
1327
Iface2->getDecl()))
1328
return false;
1329
break;
1330
}
1331
1332
case Type::ObjCTypeParam: {
1333
const auto *Obj1 = cast<ObjCTypeParamType>(T1);
1334
const auto *Obj2 = cast<ObjCTypeParamType>(T2);
1335
if (!IsStructurallyEquivalent(Context, Obj1->getDecl(), Obj2->getDecl()))
1336
return false;
1337
1338
if (Obj1->getNumProtocols() != Obj2->getNumProtocols())
1339
return false;
1340
for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) {
1341
if (!IsStructurallyEquivalent(Context, Obj1->getProtocol(I),
1342
Obj2->getProtocol(I)))
1343
return false;
1344
}
1345
break;
1346
}
1347
1348
case Type::ObjCObject: {
1349
const auto *Obj1 = cast<ObjCObjectType>(T1);
1350
const auto *Obj2 = cast<ObjCObjectType>(T2);
1351
if (!IsStructurallyEquivalent(Context, Obj1->getBaseType(),
1352
Obj2->getBaseType()))
1353
return false;
1354
if (Obj1->getNumProtocols() != Obj2->getNumProtocols())
1355
return false;
1356
for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) {
1357
if (!IsStructurallyEquivalent(Context, Obj1->getProtocol(I),
1358
Obj2->getProtocol(I)))
1359
return false;
1360
}
1361
break;
1362
}
1363
1364
case Type::ObjCObjectPointer: {
1365
const auto *Ptr1 = cast<ObjCObjectPointerType>(T1);
1366
const auto *Ptr2 = cast<ObjCObjectPointerType>(T2);
1367
if (!IsStructurallyEquivalent(Context, Ptr1->getPointeeType(),
1368
Ptr2->getPointeeType()))
1369
return false;
1370
break;
1371
}
1372
1373
case Type::Atomic:
1374
if (!IsStructurallyEquivalent(Context, cast<AtomicType>(T1)->getValueType(),
1375
cast<AtomicType>(T2)->getValueType()))
1376
return false;
1377
break;
1378
1379
case Type::Pipe:
1380
if (!IsStructurallyEquivalent(Context, cast<PipeType>(T1)->getElementType(),
1381
cast<PipeType>(T2)->getElementType()))
1382
return false;
1383
break;
1384
case Type::BitInt: {
1385
const auto *Int1 = cast<BitIntType>(T1);
1386
const auto *Int2 = cast<BitIntType>(T2);
1387
1388
if (Int1->isUnsigned() != Int2->isUnsigned() ||
1389
Int1->getNumBits() != Int2->getNumBits())
1390
return false;
1391
break;
1392
}
1393
case Type::DependentBitInt: {
1394
const auto *Int1 = cast<DependentBitIntType>(T1);
1395
const auto *Int2 = cast<DependentBitIntType>(T2);
1396
1397
if (Int1->isUnsigned() != Int2->isUnsigned() ||
1398
!IsStructurallyEquivalent(Context, Int1->getNumBitsExpr(),
1399
Int2->getNumBitsExpr()))
1400
return false;
1401
break;
1402
}
1403
} // end switch
1404
1405
return true;
1406
}
1407
1408
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1409
VarDecl *D1, VarDecl *D2) {
1410
IdentifierInfo *Name1 = D1->getIdentifier();
1411
IdentifierInfo *Name2 = D2->getIdentifier();
1412
if (!::IsStructurallyEquivalent(Name1, Name2))
1413
return false;
1414
1415
if (!IsStructurallyEquivalent(Context, D1->getType(), D2->getType()))
1416
return false;
1417
1418
// Compare storage class and initializer only if none or both are a
1419
// definition. Like a forward-declaration matches a class definition, variable
1420
// declarations that are not definitions should match with the definitions.
1421
if (D1->isThisDeclarationADefinition() != D2->isThisDeclarationADefinition())
1422
return true;
1423
1424
if (D1->getStorageClass() != D2->getStorageClass())
1425
return false;
1426
1427
return IsStructurallyEquivalent(Context, D1->getInit(), D2->getInit());
1428
}
1429
1430
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1431
FieldDecl *Field1, FieldDecl *Field2,
1432
QualType Owner2Type) {
1433
const auto *Owner2 = cast<Decl>(Field2->getDeclContext());
1434
1435
// For anonymous structs/unions, match up the anonymous struct/union type
1436
// declarations directly, so that we don't go off searching for anonymous
1437
// types
1438
if (Field1->isAnonymousStructOrUnion() &&
1439
Field2->isAnonymousStructOrUnion()) {
1440
RecordDecl *D1 = Field1->getType()->castAs<RecordType>()->getDecl();
1441
RecordDecl *D2 = Field2->getType()->castAs<RecordType>()->getDecl();
1442
return IsStructurallyEquivalent(Context, D1, D2);
1443
}
1444
1445
// Check for equivalent field names.
1446
IdentifierInfo *Name1 = Field1->getIdentifier();
1447
IdentifierInfo *Name2 = Field2->getIdentifier();
1448
if (!::IsStructurallyEquivalent(Name1, Name2)) {
1449
if (Context.Complain) {
1450
Context.Diag2(
1451
Owner2->getLocation(),
1452
Context.getApplicableDiagnostic(diag::err_odr_tag_type_inconsistent))
1453
<< Owner2Type;
1454
Context.Diag2(Field2->getLocation(), diag::note_odr_field_name)
1455
<< Field2->getDeclName();
1456
Context.Diag1(Field1->getLocation(), diag::note_odr_field_name)
1457
<< Field1->getDeclName();
1458
}
1459
return false;
1460
}
1461
1462
if (!IsStructurallyEquivalent(Context, Field1->getType(),
1463
Field2->getType())) {
1464
if (Context.Complain) {
1465
Context.Diag2(
1466
Owner2->getLocation(),
1467
Context.getApplicableDiagnostic(diag::err_odr_tag_type_inconsistent))
1468
<< Owner2Type;
1469
Context.Diag2(Field2->getLocation(), diag::note_odr_field)
1470
<< Field2->getDeclName() << Field2->getType();
1471
Context.Diag1(Field1->getLocation(), diag::note_odr_field)
1472
<< Field1->getDeclName() << Field1->getType();
1473
}
1474
return false;
1475
}
1476
1477
if (Field1->isBitField())
1478
return IsStructurallyEquivalent(Context, Field1->getBitWidth(),
1479
Field2->getBitWidth());
1480
1481
return true;
1482
}
1483
1484
/// Determine structural equivalence of two fields.
1485
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1486
FieldDecl *Field1, FieldDecl *Field2) {
1487
const auto *Owner2 = cast<RecordDecl>(Field2->getDeclContext());
1488
return IsStructurallyEquivalent(Context, Field1, Field2,
1489
Context.ToCtx.getTypeDeclType(Owner2));
1490
}
1491
1492
/// Determine structural equivalence of two methods.
1493
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1494
CXXMethodDecl *Method1,
1495
CXXMethodDecl *Method2) {
1496
bool PropertiesEqual =
1497
Method1->getDeclKind() == Method2->getDeclKind() &&
1498
Method1->getRefQualifier() == Method2->getRefQualifier() &&
1499
Method1->getAccess() == Method2->getAccess() &&
1500
Method1->getOverloadedOperator() == Method2->getOverloadedOperator() &&
1501
Method1->isStatic() == Method2->isStatic() &&
1502
Method1->isImplicitObjectMemberFunction() ==
1503
Method2->isImplicitObjectMemberFunction() &&
1504
Method1->isConst() == Method2->isConst() &&
1505
Method1->isVolatile() == Method2->isVolatile() &&
1506
Method1->isVirtual() == Method2->isVirtual() &&
1507
Method1->isPureVirtual() == Method2->isPureVirtual() &&
1508
Method1->isDefaulted() == Method2->isDefaulted() &&
1509
Method1->isDeleted() == Method2->isDeleted();
1510
if (!PropertiesEqual)
1511
return false;
1512
// FIXME: Check for 'final'.
1513
1514
if (auto *Constructor1 = dyn_cast<CXXConstructorDecl>(Method1)) {
1515
auto *Constructor2 = cast<CXXConstructorDecl>(Method2);
1516
if (!Constructor1->getExplicitSpecifier().isEquivalent(
1517
Constructor2->getExplicitSpecifier()))
1518
return false;
1519
}
1520
1521
if (auto *Conversion1 = dyn_cast<CXXConversionDecl>(Method1)) {
1522
auto *Conversion2 = cast<CXXConversionDecl>(Method2);
1523
if (!Conversion1->getExplicitSpecifier().isEquivalent(
1524
Conversion2->getExplicitSpecifier()))
1525
return false;
1526
if (!IsStructurallyEquivalent(Context, Conversion1->getConversionType(),
1527
Conversion2->getConversionType()))
1528
return false;
1529
}
1530
1531
const IdentifierInfo *Name1 = Method1->getIdentifier();
1532
const IdentifierInfo *Name2 = Method2->getIdentifier();
1533
if (!::IsStructurallyEquivalent(Name1, Name2)) {
1534
return false;
1535
// TODO: Names do not match, add warning like at check for FieldDecl.
1536
}
1537
1538
// Check the prototypes.
1539
if (!::IsStructurallyEquivalent(Context,
1540
Method1->getType(), Method2->getType()))
1541
return false;
1542
1543
return true;
1544
}
1545
1546
/// Determine structural equivalence of two lambda classes.
1547
static bool
1548
IsStructurallyEquivalentLambdas(StructuralEquivalenceContext &Context,
1549
CXXRecordDecl *D1, CXXRecordDecl *D2) {
1550
assert(D1->isLambda() && D2->isLambda() &&
1551
"Must be called on lambda classes");
1552
if (!IsStructurallyEquivalent(Context, D1->getLambdaCallOperator(),
1553
D2->getLambdaCallOperator()))
1554
return false;
1555
1556
return true;
1557
}
1558
1559
/// Determine if context of a class is equivalent.
1560
static bool
1561
IsRecordContextStructurallyEquivalent(StructuralEquivalenceContext &Context,
1562
RecordDecl *D1, RecordDecl *D2) {
1563
// The context should be completely equal, including anonymous and inline
1564
// namespaces.
1565
// We compare objects as part of full translation units, not subtrees of
1566
// translation units.
1567
DeclContext *DC1 = D1->getDeclContext()->getNonTransparentContext();
1568
DeclContext *DC2 = D2->getDeclContext()->getNonTransparentContext();
1569
while (true) {
1570
// Special case: We allow a struct defined in a function to be equivalent
1571
// with a similar struct defined outside of a function.
1572
if ((DC1->isFunctionOrMethod() && DC2->isTranslationUnit()) ||
1573
(DC2->isFunctionOrMethod() && DC1->isTranslationUnit()))
1574
return true;
1575
1576
if (DC1->getDeclKind() != DC2->getDeclKind())
1577
return false;
1578
if (DC1->isTranslationUnit())
1579
break;
1580
if (DC1->isInlineNamespace() != DC2->isInlineNamespace())
1581
return false;
1582
if (const auto *ND1 = dyn_cast<NamedDecl>(DC1)) {
1583
const auto *ND2 = cast<NamedDecl>(DC2);
1584
if (!DC1->isInlineNamespace() &&
1585
!IsStructurallyEquivalent(ND1->getIdentifier(), ND2->getIdentifier()))
1586
return false;
1587
}
1588
1589
if (auto *D1Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC1)) {
1590
auto *D2Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC2);
1591
if (!IsStructurallyEquivalent(Context, D1Spec, D2Spec))
1592
return false;
1593
}
1594
1595
DC1 = DC1->getParent()->getNonTransparentContext();
1596
DC2 = DC2->getParent()->getNonTransparentContext();
1597
}
1598
1599
return true;
1600
}
1601
1602
static bool NameIsStructurallyEquivalent(const TagDecl &D1, const TagDecl &D2) {
1603
auto GetName = [](const TagDecl &D) -> const IdentifierInfo * {
1604
if (const IdentifierInfo *Name = D.getIdentifier())
1605
return Name;
1606
if (const TypedefNameDecl *TypedefName = D.getTypedefNameForAnonDecl())
1607
return TypedefName->getIdentifier();
1608
return nullptr;
1609
};
1610
return IsStructurallyEquivalent(GetName(D1), GetName(D2));
1611
}
1612
1613
/// Determine structural equivalence of two records.
1614
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1615
RecordDecl *D1, RecordDecl *D2) {
1616
if (!NameIsStructurallyEquivalent(*D1, *D2)) {
1617
return false;
1618
}
1619
1620
if (D1->isUnion() != D2->isUnion()) {
1621
if (Context.Complain) {
1622
Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic(
1623
diag::err_odr_tag_type_inconsistent))
1624
<< Context.ToCtx.getTypeDeclType(D2);
1625
Context.Diag1(D1->getLocation(), diag::note_odr_tag_kind_here)
1626
<< D1->getDeclName() << (unsigned)D1->getTagKind();
1627
}
1628
return false;
1629
}
1630
1631
if (!D1->getDeclName() && !D2->getDeclName()) {
1632
// If both anonymous structs/unions are in a record context, make sure
1633
// they occur in the same location in the context records.
1634
if (std::optional<unsigned> Index1 =
1635
StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(D1)) {
1636
if (std::optional<unsigned> Index2 =
1637
StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(
1638
D2)) {
1639
if (*Index1 != *Index2)
1640
return false;
1641
}
1642
}
1643
}
1644
1645
// If the records occur in different context (namespace), these should be
1646
// different. This is specially important if the definition of one or both
1647
// records is missing.
1648
if (!IsRecordContextStructurallyEquivalent(Context, D1, D2))
1649
return false;
1650
1651
// If both declarations are class template specializations, we know
1652
// the ODR applies, so check the template and template arguments.
1653
const auto *Spec1 = dyn_cast<ClassTemplateSpecializationDecl>(D1);
1654
const auto *Spec2 = dyn_cast<ClassTemplateSpecializationDecl>(D2);
1655
if (Spec1 && Spec2) {
1656
// Check that the specialized templates are the same.
1657
if (!IsStructurallyEquivalent(Context, Spec1->getSpecializedTemplate(),
1658
Spec2->getSpecializedTemplate()))
1659
return false;
1660
1661
// Check that the template arguments are the same.
1662
if (Spec1->getTemplateArgs().size() != Spec2->getTemplateArgs().size())
1663
return false;
1664
1665
for (unsigned I = 0, N = Spec1->getTemplateArgs().size(); I != N; ++I)
1666
if (!IsStructurallyEquivalent(Context, Spec1->getTemplateArgs().get(I),
1667
Spec2->getTemplateArgs().get(I)))
1668
return false;
1669
}
1670
// If one is a class template specialization and the other is not, these
1671
// structures are different.
1672
else if (Spec1 || Spec2)
1673
return false;
1674
1675
// Compare the definitions of these two records. If either or both are
1676
// incomplete (i.e. it is a forward decl), we assume that they are
1677
// equivalent.
1678
D1 = D1->getDefinition();
1679
D2 = D2->getDefinition();
1680
if (!D1 || !D2)
1681
return true;
1682
1683
// If any of the records has external storage and we do a minimal check (or
1684
// AST import) we assume they are equivalent. (If we didn't have this
1685
// assumption then `RecordDecl::LoadFieldsFromExternalStorage` could trigger
1686
// another AST import which in turn would call the structural equivalency
1687
// check again and finally we'd have an improper result.)
1688
if (Context.EqKind == StructuralEquivalenceKind::Minimal)
1689
if (D1->hasExternalLexicalStorage() || D2->hasExternalLexicalStorage())
1690
return true;
1691
1692
// If one definition is currently being defined, we do not compare for
1693
// equality and we assume that the decls are equal.
1694
if (D1->isBeingDefined() || D2->isBeingDefined())
1695
return true;
1696
1697
if (auto *D1CXX = dyn_cast<CXXRecordDecl>(D1)) {
1698
if (auto *D2CXX = dyn_cast<CXXRecordDecl>(D2)) {
1699
if (D1CXX->hasExternalLexicalStorage() &&
1700
!D1CXX->isCompleteDefinition()) {
1701
D1CXX->getASTContext().getExternalSource()->CompleteType(D1CXX);
1702
}
1703
1704
if (D1CXX->isLambda() != D2CXX->isLambda())
1705
return false;
1706
if (D1CXX->isLambda()) {
1707
if (!IsStructurallyEquivalentLambdas(Context, D1CXX, D2CXX))
1708
return false;
1709
}
1710
1711
if (D1CXX->getNumBases() != D2CXX->getNumBases()) {
1712
if (Context.Complain) {
1713
Context.Diag2(D2->getLocation(),
1714
Context.getApplicableDiagnostic(
1715
diag::err_odr_tag_type_inconsistent))
1716
<< Context.ToCtx.getTypeDeclType(D2);
1717
Context.Diag2(D2->getLocation(), diag::note_odr_number_of_bases)
1718
<< D2CXX->getNumBases();
1719
Context.Diag1(D1->getLocation(), diag::note_odr_number_of_bases)
1720
<< D1CXX->getNumBases();
1721
}
1722
return false;
1723
}
1724
1725
// Check the base classes.
1726
for (CXXRecordDecl::base_class_iterator Base1 = D1CXX->bases_begin(),
1727
BaseEnd1 = D1CXX->bases_end(),
1728
Base2 = D2CXX->bases_begin();
1729
Base1 != BaseEnd1; ++Base1, ++Base2) {
1730
if (!IsStructurallyEquivalent(Context, Base1->getType(),
1731
Base2->getType())) {
1732
if (Context.Complain) {
1733
Context.Diag2(D2->getLocation(),
1734
Context.getApplicableDiagnostic(
1735
diag::err_odr_tag_type_inconsistent))
1736
<< Context.ToCtx.getTypeDeclType(D2);
1737
Context.Diag2(Base2->getBeginLoc(), diag::note_odr_base)
1738
<< Base2->getType() << Base2->getSourceRange();
1739
Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base)
1740
<< Base1->getType() << Base1->getSourceRange();
1741
}
1742
return false;
1743
}
1744
1745
// Check virtual vs. non-virtual inheritance mismatch.
1746
if (Base1->isVirtual() != Base2->isVirtual()) {
1747
if (Context.Complain) {
1748
Context.Diag2(D2->getLocation(),
1749
Context.getApplicableDiagnostic(
1750
diag::err_odr_tag_type_inconsistent))
1751
<< Context.ToCtx.getTypeDeclType(D2);
1752
Context.Diag2(Base2->getBeginLoc(), diag::note_odr_virtual_base)
1753
<< Base2->isVirtual() << Base2->getSourceRange();
1754
Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base)
1755
<< Base1->isVirtual() << Base1->getSourceRange();
1756
}
1757
return false;
1758
}
1759
}
1760
1761
// Check the friends for consistency.
1762
CXXRecordDecl::friend_iterator Friend2 = D2CXX->friend_begin(),
1763
Friend2End = D2CXX->friend_end();
1764
for (CXXRecordDecl::friend_iterator Friend1 = D1CXX->friend_begin(),
1765
Friend1End = D1CXX->friend_end();
1766
Friend1 != Friend1End; ++Friend1, ++Friend2) {
1767
if (Friend2 == Friend2End) {
1768
if (Context.Complain) {
1769
Context.Diag2(D2->getLocation(),
1770
Context.getApplicableDiagnostic(
1771
diag::err_odr_tag_type_inconsistent))
1772
<< Context.ToCtx.getTypeDeclType(D2CXX);
1773
Context.Diag1((*Friend1)->getFriendLoc(), diag::note_odr_friend);
1774
Context.Diag2(D2->getLocation(), diag::note_odr_missing_friend);
1775
}
1776
return false;
1777
}
1778
1779
if (!IsStructurallyEquivalent(Context, *Friend1, *Friend2)) {
1780
if (Context.Complain) {
1781
Context.Diag2(D2->getLocation(),
1782
Context.getApplicableDiagnostic(
1783
diag::err_odr_tag_type_inconsistent))
1784
<< Context.ToCtx.getTypeDeclType(D2CXX);
1785
Context.Diag1((*Friend1)->getFriendLoc(), diag::note_odr_friend);
1786
Context.Diag2((*Friend2)->getFriendLoc(), diag::note_odr_friend);
1787
}
1788
return false;
1789
}
1790
}
1791
1792
if (Friend2 != Friend2End) {
1793
if (Context.Complain) {
1794
Context.Diag2(D2->getLocation(),
1795
Context.getApplicableDiagnostic(
1796
diag::err_odr_tag_type_inconsistent))
1797
<< Context.ToCtx.getTypeDeclType(D2);
1798
Context.Diag2((*Friend2)->getFriendLoc(), diag::note_odr_friend);
1799
Context.Diag1(D1->getLocation(), diag::note_odr_missing_friend);
1800
}
1801
return false;
1802
}
1803
} else if (D1CXX->getNumBases() > 0) {
1804
if (Context.Complain) {
1805
Context.Diag2(D2->getLocation(),
1806
Context.getApplicableDiagnostic(
1807
diag::err_odr_tag_type_inconsistent))
1808
<< Context.ToCtx.getTypeDeclType(D2);
1809
const CXXBaseSpecifier *Base1 = D1CXX->bases_begin();
1810
Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base)
1811
<< Base1->getType() << Base1->getSourceRange();
1812
Context.Diag2(D2->getLocation(), diag::note_odr_missing_base);
1813
}
1814
return false;
1815
}
1816
}
1817
1818
// Check the fields for consistency.
1819
QualType D2Type = Context.ToCtx.getTypeDeclType(D2);
1820
RecordDecl::field_iterator Field2 = D2->field_begin(),
1821
Field2End = D2->field_end();
1822
for (RecordDecl::field_iterator Field1 = D1->field_begin(),
1823
Field1End = D1->field_end();
1824
Field1 != Field1End; ++Field1, ++Field2) {
1825
if (Field2 == Field2End) {
1826
if (Context.Complain) {
1827
Context.Diag2(D2->getLocation(),
1828
Context.getApplicableDiagnostic(
1829
diag::err_odr_tag_type_inconsistent))
1830
<< Context.ToCtx.getTypeDeclType(D2);
1831
Context.Diag1(Field1->getLocation(), diag::note_odr_field)
1832
<< Field1->getDeclName() << Field1->getType();
1833
Context.Diag2(D2->getLocation(), diag::note_odr_missing_field);
1834
}
1835
return false;
1836
}
1837
1838
if (!IsStructurallyEquivalent(Context, *Field1, *Field2, D2Type))
1839
return false;
1840
}
1841
1842
if (Field2 != Field2End) {
1843
if (Context.Complain) {
1844
Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic(
1845
diag::err_odr_tag_type_inconsistent))
1846
<< Context.ToCtx.getTypeDeclType(D2);
1847
Context.Diag2(Field2->getLocation(), diag::note_odr_field)
1848
<< Field2->getDeclName() << Field2->getType();
1849
Context.Diag1(D1->getLocation(), diag::note_odr_missing_field);
1850
}
1851
return false;
1852
}
1853
1854
return true;
1855
}
1856
1857
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1858
EnumConstantDecl *D1,
1859
EnumConstantDecl *D2) {
1860
const llvm::APSInt &FromVal = D1->getInitVal();
1861
const llvm::APSInt &ToVal = D2->getInitVal();
1862
if (FromVal.isSigned() != ToVal.isSigned())
1863
return false;
1864
if (FromVal.getBitWidth() != ToVal.getBitWidth())
1865
return false;
1866
if (FromVal != ToVal)
1867
return false;
1868
1869
if (!IsStructurallyEquivalent(D1->getIdentifier(), D2->getIdentifier()))
1870
return false;
1871
1872
// Init expressions are the most expensive check, so do them last.
1873
return IsStructurallyEquivalent(Context, D1->getInitExpr(),
1874
D2->getInitExpr());
1875
}
1876
1877
/// Determine structural equivalence of two enums.
1878
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1879
EnumDecl *D1, EnumDecl *D2) {
1880
if (!NameIsStructurallyEquivalent(*D1, *D2)) {
1881
return false;
1882
}
1883
1884
// Compare the definitions of these two enums. If either or both are
1885
// incomplete (i.e. forward declared), we assume that they are equivalent.
1886
D1 = D1->getDefinition();
1887
D2 = D2->getDefinition();
1888
if (!D1 || !D2)
1889
return true;
1890
1891
EnumDecl::enumerator_iterator EC2 = D2->enumerator_begin(),
1892
EC2End = D2->enumerator_end();
1893
for (EnumDecl::enumerator_iterator EC1 = D1->enumerator_begin(),
1894
EC1End = D1->enumerator_end();
1895
EC1 != EC1End; ++EC1, ++EC2) {
1896
if (EC2 == EC2End) {
1897
if (Context.Complain) {
1898
Context.Diag2(D2->getLocation(),
1899
Context.getApplicableDiagnostic(
1900
diag::err_odr_tag_type_inconsistent))
1901
<< Context.ToCtx.getTypeDeclType(D2);
1902
Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator)
1903
<< EC1->getDeclName() << toString(EC1->getInitVal(), 10);
1904
Context.Diag2(D2->getLocation(), diag::note_odr_missing_enumerator);
1905
}
1906
return false;
1907
}
1908
1909
llvm::APSInt Val1 = EC1->getInitVal();
1910
llvm::APSInt Val2 = EC2->getInitVal();
1911
if (!llvm::APSInt::isSameValue(Val1, Val2) ||
1912
!IsStructurallyEquivalent(EC1->getIdentifier(), EC2->getIdentifier())) {
1913
if (Context.Complain) {
1914
Context.Diag2(D2->getLocation(),
1915
Context.getApplicableDiagnostic(
1916
diag::err_odr_tag_type_inconsistent))
1917
<< Context.ToCtx.getTypeDeclType(D2);
1918
Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator)
1919
<< EC2->getDeclName() << toString(EC2->getInitVal(), 10);
1920
Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator)
1921
<< EC1->getDeclName() << toString(EC1->getInitVal(), 10);
1922
}
1923
return false;
1924
}
1925
}
1926
1927
if (EC2 != EC2End) {
1928
if (Context.Complain) {
1929
Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic(
1930
diag::err_odr_tag_type_inconsistent))
1931
<< Context.ToCtx.getTypeDeclType(D2);
1932
Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator)
1933
<< EC2->getDeclName() << toString(EC2->getInitVal(), 10);
1934
Context.Diag1(D1->getLocation(), diag::note_odr_missing_enumerator);
1935
}
1936
return false;
1937
}
1938
1939
return true;
1940
}
1941
1942
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1943
TemplateParameterList *Params1,
1944
TemplateParameterList *Params2) {
1945
if (Params1->size() != Params2->size()) {
1946
if (Context.Complain) {
1947
Context.Diag2(Params2->getTemplateLoc(),
1948
Context.getApplicableDiagnostic(
1949
diag::err_odr_different_num_template_parameters))
1950
<< Params1->size() << Params2->size();
1951
Context.Diag1(Params1->getTemplateLoc(),
1952
diag::note_odr_template_parameter_list);
1953
}
1954
return false;
1955
}
1956
1957
for (unsigned I = 0, N = Params1->size(); I != N; ++I) {
1958
if (Params1->getParam(I)->getKind() != Params2->getParam(I)->getKind()) {
1959
if (Context.Complain) {
1960
Context.Diag2(Params2->getParam(I)->getLocation(),
1961
Context.getApplicableDiagnostic(
1962
diag::err_odr_different_template_parameter_kind));
1963
Context.Diag1(Params1->getParam(I)->getLocation(),
1964
diag::note_odr_template_parameter_here);
1965
}
1966
return false;
1967
}
1968
1969
if (!IsStructurallyEquivalent(Context, Params1->getParam(I),
1970
Params2->getParam(I)))
1971
return false;
1972
}
1973
1974
return true;
1975
}
1976
1977
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1978
TemplateTypeParmDecl *D1,
1979
TemplateTypeParmDecl *D2) {
1980
if (D1->isParameterPack() != D2->isParameterPack()) {
1981
if (Context.Complain) {
1982
Context.Diag2(D2->getLocation(),
1983
Context.getApplicableDiagnostic(
1984
diag::err_odr_parameter_pack_non_pack))
1985
<< D2->isParameterPack();
1986
Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
1987
<< D1->isParameterPack();
1988
}
1989
return false;
1990
}
1991
1992
return true;
1993
}
1994
1995
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
1996
NonTypeTemplateParmDecl *D1,
1997
NonTypeTemplateParmDecl *D2) {
1998
if (D1->isParameterPack() != D2->isParameterPack()) {
1999
if (Context.Complain) {
2000
Context.Diag2(D2->getLocation(),
2001
Context.getApplicableDiagnostic(
2002
diag::err_odr_parameter_pack_non_pack))
2003
<< D2->isParameterPack();
2004
Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
2005
<< D1->isParameterPack();
2006
}
2007
return false;
2008
}
2009
if (!Context.IgnoreTemplateParmDepth && D1->getDepth() != D2->getDepth())
2010
return false;
2011
if (D1->getIndex() != D2->getIndex())
2012
return false;
2013
// Check types.
2014
if (!IsStructurallyEquivalent(Context, D1->getType(), D2->getType())) {
2015
if (Context.Complain) {
2016
Context.Diag2(D2->getLocation(),
2017
Context.getApplicableDiagnostic(
2018
diag::err_odr_non_type_parameter_type_inconsistent))
2019
<< D2->getType() << D1->getType();
2020
Context.Diag1(D1->getLocation(), diag::note_odr_value_here)
2021
<< D1->getType();
2022
}
2023
return false;
2024
}
2025
2026
return true;
2027
}
2028
2029
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
2030
TemplateTemplateParmDecl *D1,
2031
TemplateTemplateParmDecl *D2) {
2032
if (D1->isParameterPack() != D2->isParameterPack()) {
2033
if (Context.Complain) {
2034
Context.Diag2(D2->getLocation(),
2035
Context.getApplicableDiagnostic(
2036
diag::err_odr_parameter_pack_non_pack))
2037
<< D2->isParameterPack();
2038
Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
2039
<< D1->isParameterPack();
2040
}
2041
return false;
2042
}
2043
2044
// Check template parameter lists.
2045
return IsStructurallyEquivalent(Context, D1->getTemplateParameters(),
2046
D2->getTemplateParameters());
2047
}
2048
2049
static bool IsTemplateDeclCommonStructurallyEquivalent(
2050
StructuralEquivalenceContext &Ctx, TemplateDecl *D1, TemplateDecl *D2) {
2051
if (!IsStructurallyEquivalent(D1->getIdentifier(), D2->getIdentifier()))
2052
return false;
2053
if (!D1->getIdentifier()) // Special name
2054
if (D1->getNameAsString() != D2->getNameAsString())
2055
return false;
2056
return IsStructurallyEquivalent(Ctx, D1->getTemplateParameters(),
2057
D2->getTemplateParameters());
2058
}
2059
2060
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
2061
ClassTemplateDecl *D1,
2062
ClassTemplateDecl *D2) {
2063
// Check template parameters.
2064
if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2))
2065
return false;
2066
2067
// Check the templated declaration.
2068
return IsStructurallyEquivalent(Context, D1->getTemplatedDecl(),
2069
D2->getTemplatedDecl());
2070
}
2071
2072
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
2073
FunctionTemplateDecl *D1,
2074
FunctionTemplateDecl *D2) {
2075
// Check template parameters.
2076
if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2))
2077
return false;
2078
2079
// Check the templated declaration.
2080
return IsStructurallyEquivalent(Context, D1->getTemplatedDecl()->getType(),
2081
D2->getTemplatedDecl()->getType());
2082
}
2083
2084
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
2085
TypeAliasTemplateDecl *D1,
2086
TypeAliasTemplateDecl *D2) {
2087
// Check template parameters.
2088
if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2))
2089
return false;
2090
2091
// Check the templated declaration.
2092
return IsStructurallyEquivalent(Context, D1->getTemplatedDecl(),
2093
D2->getTemplatedDecl());
2094
}
2095
2096
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
2097
ConceptDecl *D1,
2098
ConceptDecl *D2) {
2099
// Check template parameters.
2100
if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2))
2101
return false;
2102
2103
// Check the constraint expression.
2104
return IsStructurallyEquivalent(Context, D1->getConstraintExpr(),
2105
D2->getConstraintExpr());
2106
}
2107
2108
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
2109
FriendDecl *D1, FriendDecl *D2) {
2110
if ((D1->getFriendType() && D2->getFriendDecl()) ||
2111
(D1->getFriendDecl() && D2->getFriendType())) {
2112
return false;
2113
}
2114
if (D1->getFriendType() && D2->getFriendType())
2115
return IsStructurallyEquivalent(Context,
2116
D1->getFriendType()->getType(),
2117
D2->getFriendType()->getType());
2118
if (D1->getFriendDecl() && D2->getFriendDecl())
2119
return IsStructurallyEquivalent(Context, D1->getFriendDecl(),
2120
D2->getFriendDecl());
2121
return false;
2122
}
2123
2124
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
2125
TypedefNameDecl *D1, TypedefNameDecl *D2) {
2126
if (!IsStructurallyEquivalent(D1->getIdentifier(), D2->getIdentifier()))
2127
return false;
2128
2129
return IsStructurallyEquivalent(Context, D1->getUnderlyingType(),
2130
D2->getUnderlyingType());
2131
}
2132
2133
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
2134
FunctionDecl *D1, FunctionDecl *D2) {
2135
if (!IsStructurallyEquivalent(D1->getIdentifier(), D2->getIdentifier()))
2136
return false;
2137
2138
if (D1->isOverloadedOperator()) {
2139
if (!D2->isOverloadedOperator())
2140
return false;
2141
if (D1->getOverloadedOperator() != D2->getOverloadedOperator())
2142
return false;
2143
}
2144
2145
// FIXME: Consider checking for function attributes as well.
2146
if (!IsStructurallyEquivalent(Context, D1->getType(), D2->getType()))
2147
return false;
2148
2149
return true;
2150
}
2151
2152
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
2153
ObjCIvarDecl *D1, ObjCIvarDecl *D2,
2154
QualType Owner2Type) {
2155
if (D1->getAccessControl() != D2->getAccessControl())
2156
return false;
2157
2158
return IsStructurallyEquivalent(Context, cast<FieldDecl>(D1),
2159
cast<FieldDecl>(D2), Owner2Type);
2160
}
2161
2162
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
2163
ObjCIvarDecl *D1, ObjCIvarDecl *D2) {
2164
QualType Owner2Type =
2165
Context.ToCtx.getObjCInterfaceType(D2->getContainingInterface());
2166
return IsStructurallyEquivalent(Context, D1, D2, Owner2Type);
2167
}
2168
2169
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
2170
ObjCMethodDecl *Method1,
2171
ObjCMethodDecl *Method2) {
2172
bool PropertiesEqual =
2173
Method1->isInstanceMethod() == Method2->isInstanceMethod() &&
2174
Method1->isVariadic() == Method2->isVariadic() &&
2175
Method1->isDirectMethod() == Method2->isDirectMethod();
2176
if (!PropertiesEqual)
2177
return false;
2178
2179
// Compare selector slot names.
2180
Selector Selector1 = Method1->getSelector(),
2181
Selector2 = Method2->getSelector();
2182
unsigned NumArgs = Selector1.getNumArgs();
2183
if (NumArgs != Selector2.getNumArgs())
2184
return false;
2185
// Compare all selector slots. For selectors with arguments it means all arg
2186
// slots. And if there are no arguments, compare the first-and-only slot.
2187
unsigned SlotsToCheck = NumArgs > 0 ? NumArgs : 1;
2188
for (unsigned I = 0; I < SlotsToCheck; ++I) {
2189
if (!IsStructurallyEquivalent(Selector1.getIdentifierInfoForSlot(I),
2190
Selector2.getIdentifierInfoForSlot(I)))
2191
return false;
2192
}
2193
2194
// Compare types.
2195
if (!IsStructurallyEquivalent(Context, Method1->getReturnType(),
2196
Method2->getReturnType()))
2197
return false;
2198
assert(
2199
Method1->param_size() == Method2->param_size() &&
2200
"Same number of arguments should be already enforced in Selector checks");
2201
for (ObjCMethodDecl::param_type_iterator
2202
ParamT1 = Method1->param_type_begin(),
2203
ParamT1End = Method1->param_type_end(),
2204
ParamT2 = Method2->param_type_begin(),
2205
ParamT2End = Method2->param_type_end();
2206
(ParamT1 != ParamT1End) && (ParamT2 != ParamT2End);
2207
++ParamT1, ++ParamT2) {
2208
if (!IsStructurallyEquivalent(Context, *ParamT1, *ParamT2))
2209
return false;
2210
}
2211
2212
return true;
2213
}
2214
2215
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
2216
ObjCCategoryDecl *D1,
2217
ObjCCategoryDecl *D2) {
2218
if (!IsStructurallyEquivalent(D1->getIdentifier(), D2->getIdentifier()))
2219
return false;
2220
2221
const ObjCInterfaceDecl *Intf1 = D1->getClassInterface(),
2222
*Intf2 = D2->getClassInterface();
2223
if ((!Intf1 || !Intf2) && (Intf1 != Intf2))
2224
return false;
2225
2226
if (Intf1 &&
2227
!IsStructurallyEquivalent(Intf1->getIdentifier(), Intf2->getIdentifier()))
2228
return false;
2229
2230
// Compare protocols.
2231
ObjCCategoryDecl::protocol_iterator Protocol2 = D2->protocol_begin(),
2232
Protocol2End = D2->protocol_end();
2233
for (ObjCCategoryDecl::protocol_iterator Protocol1 = D1->protocol_begin(),
2234
Protocol1End = D1->protocol_end();
2235
Protocol1 != Protocol1End; ++Protocol1, ++Protocol2) {
2236
if (Protocol2 == Protocol2End)
2237
return false;
2238
if (!IsStructurallyEquivalent((*Protocol1)->getIdentifier(),
2239
(*Protocol2)->getIdentifier()))
2240
return false;
2241
}
2242
if (Protocol2 != Protocol2End)
2243
return false;
2244
2245
// Compare ivars.
2246
QualType D2Type =
2247
Intf2 ? Context.ToCtx.getObjCInterfaceType(Intf2) : QualType();
2248
ObjCCategoryDecl::ivar_iterator Ivar2 = D2->ivar_begin(),
2249
Ivar2End = D2->ivar_end();
2250
for (ObjCCategoryDecl::ivar_iterator Ivar1 = D1->ivar_begin(),
2251
Ivar1End = D1->ivar_end();
2252
Ivar1 != Ivar1End; ++Ivar1, ++Ivar2) {
2253
if (Ivar2 == Ivar2End)
2254
return false;
2255
if (!IsStructurallyEquivalent(Context, *Ivar1, *Ivar2, D2Type))
2256
return false;
2257
}
2258
if (Ivar2 != Ivar2End)
2259
return false;
2260
2261
// Compare methods.
2262
ObjCCategoryDecl::method_iterator Method2 = D2->meth_begin(),
2263
Method2End = D2->meth_end();
2264
for (ObjCCategoryDecl::method_iterator Method1 = D1->meth_begin(),
2265
Method1End = D1->meth_end();
2266
Method1 != Method1End; ++Method1, ++Method2) {
2267
if (Method2 == Method2End)
2268
return false;
2269
if (!IsStructurallyEquivalent(Context, *Method1, *Method2))
2270
return false;
2271
}
2272
if (Method2 != Method2End)
2273
return false;
2274
2275
return true;
2276
}
2277
2278
/// Determine structural equivalence of two declarations.
2279
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
2280
Decl *D1, Decl *D2) {
2281
// FIXME: Check for known structural equivalences via a callback of some sort.
2282
2283
D1 = D1->getCanonicalDecl();
2284
D2 = D2->getCanonicalDecl();
2285
std::pair<Decl *, Decl *> P{D1, D2};
2286
2287
// Check whether we already know that these two declarations are not
2288
// structurally equivalent.
2289
if (Context.NonEquivalentDecls.count(P))
2290
return false;
2291
2292
// Check if a check for these declarations is already pending.
2293
// If yes D1 and D2 will be checked later (from DeclsToCheck),
2294
// or these are already checked (and equivalent).
2295
bool Inserted = Context.VisitedDecls.insert(P).second;
2296
if (!Inserted)
2297
return true;
2298
2299
Context.DeclsToCheck.push(P);
2300
2301
return true;
2302
}
2303
2304
DiagnosticBuilder StructuralEquivalenceContext::Diag1(SourceLocation Loc,
2305
unsigned DiagID) {
2306
assert(Complain && "Not allowed to complain");
2307
if (LastDiagFromC2)
2308
FromCtx.getDiagnostics().notePriorDiagnosticFrom(ToCtx.getDiagnostics());
2309
LastDiagFromC2 = false;
2310
return FromCtx.getDiagnostics().Report(Loc, DiagID);
2311
}
2312
2313
DiagnosticBuilder StructuralEquivalenceContext::Diag2(SourceLocation Loc,
2314
unsigned DiagID) {
2315
assert(Complain && "Not allowed to complain");
2316
if (!LastDiagFromC2)
2317
ToCtx.getDiagnostics().notePriorDiagnosticFrom(FromCtx.getDiagnostics());
2318
LastDiagFromC2 = true;
2319
return ToCtx.getDiagnostics().Report(Loc, DiagID);
2320
}
2321
2322
std::optional<unsigned>
2323
StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(RecordDecl *Anon) {
2324
ASTContext &Context = Anon->getASTContext();
2325
QualType AnonTy = Context.getRecordType(Anon);
2326
2327
const auto *Owner = dyn_cast<RecordDecl>(Anon->getDeclContext());
2328
if (!Owner)
2329
return std::nullopt;
2330
2331
unsigned Index = 0;
2332
for (const auto *D : Owner->noload_decls()) {
2333
const auto *F = dyn_cast<FieldDecl>(D);
2334
if (!F)
2335
continue;
2336
2337
if (F->isAnonymousStructOrUnion()) {
2338
if (Context.hasSameType(F->getType(), AnonTy))
2339
break;
2340
++Index;
2341
continue;
2342
}
2343
2344
// If the field looks like this:
2345
// struct { ... } A;
2346
QualType FieldType = F->getType();
2347
// In case of nested structs.
2348
while (const auto *ElabType = dyn_cast<ElaboratedType>(FieldType))
2349
FieldType = ElabType->getNamedType();
2350
2351
if (const auto *RecType = dyn_cast<RecordType>(FieldType)) {
2352
const RecordDecl *RecDecl = RecType->getDecl();
2353
if (RecDecl->getDeclContext() == Owner && !RecDecl->getIdentifier()) {
2354
if (Context.hasSameType(FieldType, AnonTy))
2355
break;
2356
++Index;
2357
continue;
2358
}
2359
}
2360
}
2361
2362
return Index;
2363
}
2364
2365
unsigned StructuralEquivalenceContext::getApplicableDiagnostic(
2366
unsigned ErrorDiagnostic) {
2367
if (ErrorOnTagTypeMismatch)
2368
return ErrorDiagnostic;
2369
2370
switch (ErrorDiagnostic) {
2371
case diag::err_odr_variable_type_inconsistent:
2372
return diag::warn_odr_variable_type_inconsistent;
2373
case diag::err_odr_variable_multiple_def:
2374
return diag::warn_odr_variable_multiple_def;
2375
case diag::err_odr_function_type_inconsistent:
2376
return diag::warn_odr_function_type_inconsistent;
2377
case diag::err_odr_tag_type_inconsistent:
2378
return diag::warn_odr_tag_type_inconsistent;
2379
case diag::err_odr_field_type_inconsistent:
2380
return diag::warn_odr_field_type_inconsistent;
2381
case diag::err_odr_ivar_type_inconsistent:
2382
return diag::warn_odr_ivar_type_inconsistent;
2383
case diag::err_odr_objc_superclass_inconsistent:
2384
return diag::warn_odr_objc_superclass_inconsistent;
2385
case diag::err_odr_objc_method_result_type_inconsistent:
2386
return diag::warn_odr_objc_method_result_type_inconsistent;
2387
case diag::err_odr_objc_method_num_params_inconsistent:
2388
return diag::warn_odr_objc_method_num_params_inconsistent;
2389
case diag::err_odr_objc_method_param_type_inconsistent:
2390
return diag::warn_odr_objc_method_param_type_inconsistent;
2391
case diag::err_odr_objc_method_variadic_inconsistent:
2392
return diag::warn_odr_objc_method_variadic_inconsistent;
2393
case diag::err_odr_objc_property_type_inconsistent:
2394
return diag::warn_odr_objc_property_type_inconsistent;
2395
case diag::err_odr_objc_property_impl_kind_inconsistent:
2396
return diag::warn_odr_objc_property_impl_kind_inconsistent;
2397
case diag::err_odr_objc_synthesize_ivar_inconsistent:
2398
return diag::warn_odr_objc_synthesize_ivar_inconsistent;
2399
case diag::err_odr_different_num_template_parameters:
2400
return diag::warn_odr_different_num_template_parameters;
2401
case diag::err_odr_different_template_parameter_kind:
2402
return diag::warn_odr_different_template_parameter_kind;
2403
case diag::err_odr_parameter_pack_non_pack:
2404
return diag::warn_odr_parameter_pack_non_pack;
2405
case diag::err_odr_non_type_parameter_type_inconsistent:
2406
return diag::warn_odr_non_type_parameter_type_inconsistent;
2407
}
2408
llvm_unreachable("Diagnostic kind not handled in preceding switch");
2409
}
2410
2411
bool StructuralEquivalenceContext::IsEquivalent(Decl *D1, Decl *D2) {
2412
2413
// Ensure that the implementation functions (all static functions in this TU)
2414
// never call the public ASTStructuralEquivalence::IsEquivalent() functions,
2415
// because that will wreak havoc the internal state (DeclsToCheck and
2416
// VisitedDecls members) and can cause faulty behaviour.
2417
// In other words: Do not start a graph search from a new node with the
2418
// internal data of another search in progress.
2419
// FIXME: Better encapsulation and separation of internal and public
2420
// functionality.
2421
assert(DeclsToCheck.empty());
2422
assert(VisitedDecls.empty());
2423
2424
if (!::IsStructurallyEquivalent(*this, D1, D2))
2425
return false;
2426
2427
return !Finish();
2428
}
2429
2430
bool StructuralEquivalenceContext::IsEquivalent(QualType T1, QualType T2) {
2431
assert(DeclsToCheck.empty());
2432
assert(VisitedDecls.empty());
2433
if (!::IsStructurallyEquivalent(*this, T1, T2))
2434
return false;
2435
2436
return !Finish();
2437
}
2438
2439
bool StructuralEquivalenceContext::IsEquivalent(Stmt *S1, Stmt *S2) {
2440
assert(DeclsToCheck.empty());
2441
assert(VisitedDecls.empty());
2442
if (!::IsStructurallyEquivalent(*this, S1, S2))
2443
return false;
2444
2445
return !Finish();
2446
}
2447
2448
bool StructuralEquivalenceContext::CheckCommonEquivalence(Decl *D1, Decl *D2) {
2449
// Check for equivalent described template.
2450
TemplateDecl *Template1 = D1->getDescribedTemplate();
2451
TemplateDecl *Template2 = D2->getDescribedTemplate();
2452
if ((Template1 != nullptr) != (Template2 != nullptr))
2453
return false;
2454
if (Template1 && !IsStructurallyEquivalent(*this, Template1, Template2))
2455
return false;
2456
2457
// FIXME: Move check for identifier names into this function.
2458
2459
return true;
2460
}
2461
2462
bool StructuralEquivalenceContext::CheckKindSpecificEquivalence(
2463
Decl *D1, Decl *D2) {
2464
2465
// Kind mismatch.
2466
if (D1->getKind() != D2->getKind())
2467
return false;
2468
2469
// Cast the Decls to their actual subclass so that the right overload of
2470
// IsStructurallyEquivalent is called.
2471
switch (D1->getKind()) {
2472
#define ABSTRACT_DECL(DECL)
2473
#define DECL(DERIVED, BASE) \
2474
case Decl::Kind::DERIVED: \
2475
return ::IsStructurallyEquivalent(*this, static_cast<DERIVED##Decl *>(D1), \
2476
static_cast<DERIVED##Decl *>(D2));
2477
#include "clang/AST/DeclNodes.inc"
2478
}
2479
return true;
2480
}
2481
2482
bool StructuralEquivalenceContext::Finish() {
2483
while (!DeclsToCheck.empty()) {
2484
// Check the next declaration.
2485
std::pair<Decl *, Decl *> P = DeclsToCheck.front();
2486
DeclsToCheck.pop();
2487
2488
Decl *D1 = P.first;
2489
Decl *D2 = P.second;
2490
2491
bool Equivalent =
2492
CheckCommonEquivalence(D1, D2) && CheckKindSpecificEquivalence(D1, D2);
2493
2494
if (!Equivalent) {
2495
// Note that these two declarations are not equivalent (and we already
2496
// know about it).
2497
NonEquivalentDecls.insert(P);
2498
2499
return true;
2500
}
2501
}
2502
2503
return false;
2504
}
2505
2506