Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/clang/lib/AST/ExprConstant.cpp
35260 views
1
//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the Expr constant evaluator.
10
//
11
// Constant expression evaluation produces four main results:
12
//
13
// * A success/failure flag indicating whether constant folding was successful.
14
// This is the 'bool' return value used by most of the code in this file. A
15
// 'false' return value indicates that constant folding has failed, and any
16
// appropriate diagnostic has already been produced.
17
//
18
// * An evaluated result, valid only if constant folding has not failed.
19
//
20
// * A flag indicating if evaluation encountered (unevaluated) side-effects.
21
// These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
22
// where it is possible to determine the evaluated result regardless.
23
//
24
// * A set of notes indicating why the evaluation was not a constant expression
25
// (under the C++11 / C++1y rules only, at the moment), or, if folding failed
26
// too, why the expression could not be folded.
27
//
28
// If we are checking for a potential constant expression, failure to constant
29
// fold a potential constant sub-expression will be indicated by a 'false'
30
// return value (the expression could not be folded) and no diagnostic (the
31
// expression is not necessarily non-constant).
32
//
33
//===----------------------------------------------------------------------===//
34
35
#include "ExprConstShared.h"
36
#include "Interp/Context.h"
37
#include "Interp/Frame.h"
38
#include "Interp/State.h"
39
#include "clang/AST/APValue.h"
40
#include "clang/AST/ASTContext.h"
41
#include "clang/AST/ASTDiagnostic.h"
42
#include "clang/AST/ASTLambda.h"
43
#include "clang/AST/Attr.h"
44
#include "clang/AST/CXXInheritance.h"
45
#include "clang/AST/CharUnits.h"
46
#include "clang/AST/CurrentSourceLocExprScope.h"
47
#include "clang/AST/Expr.h"
48
#include "clang/AST/OSLog.h"
49
#include "clang/AST/OptionalDiagnostic.h"
50
#include "clang/AST/RecordLayout.h"
51
#include "clang/AST/StmtVisitor.h"
52
#include "clang/AST/TypeLoc.h"
53
#include "clang/Basic/Builtins.h"
54
#include "clang/Basic/DiagnosticSema.h"
55
#include "clang/Basic/TargetInfo.h"
56
#include "llvm/ADT/APFixedPoint.h"
57
#include "llvm/ADT/SmallBitVector.h"
58
#include "llvm/ADT/StringExtras.h"
59
#include "llvm/Support/Debug.h"
60
#include "llvm/Support/SaveAndRestore.h"
61
#include "llvm/Support/SipHash.h"
62
#include "llvm/Support/TimeProfiler.h"
63
#include "llvm/Support/raw_ostream.h"
64
#include <cstring>
65
#include <functional>
66
#include <optional>
67
68
#define DEBUG_TYPE "exprconstant"
69
70
using namespace clang;
71
using llvm::APFixedPoint;
72
using llvm::APInt;
73
using llvm::APSInt;
74
using llvm::APFloat;
75
using llvm::FixedPointSemantics;
76
77
namespace {
78
struct LValue;
79
class CallStackFrame;
80
class EvalInfo;
81
82
using SourceLocExprScopeGuard =
83
CurrentSourceLocExprScope::SourceLocExprScopeGuard;
84
85
static QualType getType(APValue::LValueBase B) {
86
return B.getType();
87
}
88
89
/// Get an LValue path entry, which is known to not be an array index, as a
90
/// field declaration.
91
static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
92
return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer());
93
}
94
/// Get an LValue path entry, which is known to not be an array index, as a
95
/// base class declaration.
96
static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
97
return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer());
98
}
99
/// Determine whether this LValue path entry for a base class names a virtual
100
/// base class.
101
static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
102
return E.getAsBaseOrMember().getInt();
103
}
104
105
/// Given an expression, determine the type used to store the result of
106
/// evaluating that expression.
107
static QualType getStorageType(const ASTContext &Ctx, const Expr *E) {
108
if (E->isPRValue())
109
return E->getType();
110
return Ctx.getLValueReferenceType(E->getType());
111
}
112
113
/// Given a CallExpr, try to get the alloc_size attribute. May return null.
114
static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) {
115
if (const FunctionDecl *DirectCallee = CE->getDirectCallee())
116
return DirectCallee->getAttr<AllocSizeAttr>();
117
if (const Decl *IndirectCallee = CE->getCalleeDecl())
118
return IndirectCallee->getAttr<AllocSizeAttr>();
119
return nullptr;
120
}
121
122
/// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr.
123
/// This will look through a single cast.
124
///
125
/// Returns null if we couldn't unwrap a function with alloc_size.
126
static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) {
127
if (!E->getType()->isPointerType())
128
return nullptr;
129
130
E = E->IgnoreParens();
131
// If we're doing a variable assignment from e.g. malloc(N), there will
132
// probably be a cast of some kind. In exotic cases, we might also see a
133
// top-level ExprWithCleanups. Ignore them either way.
134
if (const auto *FE = dyn_cast<FullExpr>(E))
135
E = FE->getSubExpr()->IgnoreParens();
136
137
if (const auto *Cast = dyn_cast<CastExpr>(E))
138
E = Cast->getSubExpr()->IgnoreParens();
139
140
if (const auto *CE = dyn_cast<CallExpr>(E))
141
return getAllocSizeAttr(CE) ? CE : nullptr;
142
return nullptr;
143
}
144
145
/// Determines whether or not the given Base contains a call to a function
146
/// with the alloc_size attribute.
147
static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) {
148
const auto *E = Base.dyn_cast<const Expr *>();
149
return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E);
150
}
151
152
/// Determines whether the given kind of constant expression is only ever
153
/// used for name mangling. If so, it's permitted to reference things that we
154
/// can't generate code for (in particular, dllimported functions).
155
static bool isForManglingOnly(ConstantExprKind Kind) {
156
switch (Kind) {
157
case ConstantExprKind::Normal:
158
case ConstantExprKind::ClassTemplateArgument:
159
case ConstantExprKind::ImmediateInvocation:
160
// Note that non-type template arguments of class type are emitted as
161
// template parameter objects.
162
return false;
163
164
case ConstantExprKind::NonClassTemplateArgument:
165
return true;
166
}
167
llvm_unreachable("unknown ConstantExprKind");
168
}
169
170
static bool isTemplateArgument(ConstantExprKind Kind) {
171
switch (Kind) {
172
case ConstantExprKind::Normal:
173
case ConstantExprKind::ImmediateInvocation:
174
return false;
175
176
case ConstantExprKind::ClassTemplateArgument:
177
case ConstantExprKind::NonClassTemplateArgument:
178
return true;
179
}
180
llvm_unreachable("unknown ConstantExprKind");
181
}
182
183
/// The bound to claim that an array of unknown bound has.
184
/// The value in MostDerivedArraySize is undefined in this case. So, set it
185
/// to an arbitrary value that's likely to loudly break things if it's used.
186
static const uint64_t AssumedSizeForUnsizedArray =
187
std::numeric_limits<uint64_t>::max() / 2;
188
189
/// Determines if an LValue with the given LValueBase will have an unsized
190
/// array in its designator.
191
/// Find the path length and type of the most-derived subobject in the given
192
/// path, and find the size of the containing array, if any.
193
static unsigned
194
findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base,
195
ArrayRef<APValue::LValuePathEntry> Path,
196
uint64_t &ArraySize, QualType &Type, bool &IsArray,
197
bool &FirstEntryIsUnsizedArray) {
198
// This only accepts LValueBases from APValues, and APValues don't support
199
// arrays that lack size info.
200
assert(!isBaseAnAllocSizeCall(Base) &&
201
"Unsized arrays shouldn't appear here");
202
unsigned MostDerivedLength = 0;
203
Type = getType(Base);
204
205
for (unsigned I = 0, N = Path.size(); I != N; ++I) {
206
if (Type->isArrayType()) {
207
const ArrayType *AT = Ctx.getAsArrayType(Type);
208
Type = AT->getElementType();
209
MostDerivedLength = I + 1;
210
IsArray = true;
211
212
if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
213
ArraySize = CAT->getZExtSize();
214
} else {
215
assert(I == 0 && "unexpected unsized array designator");
216
FirstEntryIsUnsizedArray = true;
217
ArraySize = AssumedSizeForUnsizedArray;
218
}
219
} else if (Type->isAnyComplexType()) {
220
const ComplexType *CT = Type->castAs<ComplexType>();
221
Type = CT->getElementType();
222
ArraySize = 2;
223
MostDerivedLength = I + 1;
224
IsArray = true;
225
} else if (const FieldDecl *FD = getAsField(Path[I])) {
226
Type = FD->getType();
227
ArraySize = 0;
228
MostDerivedLength = I + 1;
229
IsArray = false;
230
} else {
231
// Path[I] describes a base class.
232
ArraySize = 0;
233
IsArray = false;
234
}
235
}
236
return MostDerivedLength;
237
}
238
239
/// A path from a glvalue to a subobject of that glvalue.
240
struct SubobjectDesignator {
241
/// True if the subobject was named in a manner not supported by C++11. Such
242
/// lvalues can still be folded, but they are not core constant expressions
243
/// and we cannot perform lvalue-to-rvalue conversions on them.
244
LLVM_PREFERRED_TYPE(bool)
245
unsigned Invalid : 1;
246
247
/// Is this a pointer one past the end of an object?
248
LLVM_PREFERRED_TYPE(bool)
249
unsigned IsOnePastTheEnd : 1;
250
251
/// Indicator of whether the first entry is an unsized array.
252
LLVM_PREFERRED_TYPE(bool)
253
unsigned FirstEntryIsAnUnsizedArray : 1;
254
255
/// Indicator of whether the most-derived object is an array element.
256
LLVM_PREFERRED_TYPE(bool)
257
unsigned MostDerivedIsArrayElement : 1;
258
259
/// The length of the path to the most-derived object of which this is a
260
/// subobject.
261
unsigned MostDerivedPathLength : 28;
262
263
/// The size of the array of which the most-derived object is an element.
264
/// This will always be 0 if the most-derived object is not an array
265
/// element. 0 is not an indicator of whether or not the most-derived object
266
/// is an array, however, because 0-length arrays are allowed.
267
///
268
/// If the current array is an unsized array, the value of this is
269
/// undefined.
270
uint64_t MostDerivedArraySize;
271
272
/// The type of the most derived object referred to by this address.
273
QualType MostDerivedType;
274
275
typedef APValue::LValuePathEntry PathEntry;
276
277
/// The entries on the path from the glvalue to the designated subobject.
278
SmallVector<PathEntry, 8> Entries;
279
280
SubobjectDesignator() : Invalid(true) {}
281
282
explicit SubobjectDesignator(QualType T)
283
: Invalid(false), IsOnePastTheEnd(false),
284
FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
285
MostDerivedPathLength(0), MostDerivedArraySize(0),
286
MostDerivedType(T) {}
287
288
SubobjectDesignator(ASTContext &Ctx, const APValue &V)
289
: Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
290
FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
291
MostDerivedPathLength(0), MostDerivedArraySize(0) {
292
assert(V.isLValue() && "Non-LValue used to make an LValue designator?");
293
if (!Invalid) {
294
IsOnePastTheEnd = V.isLValueOnePastTheEnd();
295
ArrayRef<PathEntry> VEntries = V.getLValuePath();
296
Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
297
if (V.getLValueBase()) {
298
bool IsArray = false;
299
bool FirstIsUnsizedArray = false;
300
MostDerivedPathLength = findMostDerivedSubobject(
301
Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize,
302
MostDerivedType, IsArray, FirstIsUnsizedArray);
303
MostDerivedIsArrayElement = IsArray;
304
FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
305
}
306
}
307
}
308
309
void truncate(ASTContext &Ctx, APValue::LValueBase Base,
310
unsigned NewLength) {
311
if (Invalid)
312
return;
313
314
assert(Base && "cannot truncate path for null pointer");
315
assert(NewLength <= Entries.size() && "not a truncation");
316
317
if (NewLength == Entries.size())
318
return;
319
Entries.resize(NewLength);
320
321
bool IsArray = false;
322
bool FirstIsUnsizedArray = false;
323
MostDerivedPathLength = findMostDerivedSubobject(
324
Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray,
325
FirstIsUnsizedArray);
326
MostDerivedIsArrayElement = IsArray;
327
FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
328
}
329
330
void setInvalid() {
331
Invalid = true;
332
Entries.clear();
333
}
334
335
/// Determine whether the most derived subobject is an array without a
336
/// known bound.
337
bool isMostDerivedAnUnsizedArray() const {
338
assert(!Invalid && "Calling this makes no sense on invalid designators");
339
return Entries.size() == 1 && FirstEntryIsAnUnsizedArray;
340
}
341
342
/// Determine what the most derived array's size is. Results in an assertion
343
/// failure if the most derived array lacks a size.
344
uint64_t getMostDerivedArraySize() const {
345
assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size");
346
return MostDerivedArraySize;
347
}
348
349
/// Determine whether this is a one-past-the-end pointer.
350
bool isOnePastTheEnd() const {
351
assert(!Invalid);
352
if (IsOnePastTheEnd)
353
return true;
354
if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement &&
355
Entries[MostDerivedPathLength - 1].getAsArrayIndex() ==
356
MostDerivedArraySize)
357
return true;
358
return false;
359
}
360
361
/// Get the range of valid index adjustments in the form
362
/// {maximum value that can be subtracted from this pointer,
363
/// maximum value that can be added to this pointer}
364
std::pair<uint64_t, uint64_t> validIndexAdjustments() {
365
if (Invalid || isMostDerivedAnUnsizedArray())
366
return {0, 0};
367
368
// [expr.add]p4: For the purposes of these operators, a pointer to a
369
// nonarray object behaves the same as a pointer to the first element of
370
// an array of length one with the type of the object as its element type.
371
bool IsArray = MostDerivedPathLength == Entries.size() &&
372
MostDerivedIsArrayElement;
373
uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
374
: (uint64_t)IsOnePastTheEnd;
375
uint64_t ArraySize =
376
IsArray ? getMostDerivedArraySize() : (uint64_t)1;
377
return {ArrayIndex, ArraySize - ArrayIndex};
378
}
379
380
/// Check that this refers to a valid subobject.
381
bool isValidSubobject() const {
382
if (Invalid)
383
return false;
384
return !isOnePastTheEnd();
385
}
386
/// Check that this refers to a valid subobject, and if not, produce a
387
/// relevant diagnostic and set the designator as invalid.
388
bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
389
390
/// Get the type of the designated object.
391
QualType getType(ASTContext &Ctx) const {
392
assert(!Invalid && "invalid designator has no subobject type");
393
return MostDerivedPathLength == Entries.size()
394
? MostDerivedType
395
: Ctx.getRecordType(getAsBaseClass(Entries.back()));
396
}
397
398
/// Update this designator to refer to the first element within this array.
399
void addArrayUnchecked(const ConstantArrayType *CAT) {
400
Entries.push_back(PathEntry::ArrayIndex(0));
401
402
// This is a most-derived object.
403
MostDerivedType = CAT->getElementType();
404
MostDerivedIsArrayElement = true;
405
MostDerivedArraySize = CAT->getZExtSize();
406
MostDerivedPathLength = Entries.size();
407
}
408
/// Update this designator to refer to the first element within the array of
409
/// elements of type T. This is an array of unknown size.
410
void addUnsizedArrayUnchecked(QualType ElemTy) {
411
Entries.push_back(PathEntry::ArrayIndex(0));
412
413
MostDerivedType = ElemTy;
414
MostDerivedIsArrayElement = true;
415
// The value in MostDerivedArraySize is undefined in this case. So, set it
416
// to an arbitrary value that's likely to loudly break things if it's
417
// used.
418
MostDerivedArraySize = AssumedSizeForUnsizedArray;
419
MostDerivedPathLength = Entries.size();
420
}
421
/// Update this designator to refer to the given base or member of this
422
/// object.
423
void addDeclUnchecked(const Decl *D, bool Virtual = false) {
424
Entries.push_back(APValue::BaseOrMemberType(D, Virtual));
425
426
// If this isn't a base class, it's a new most-derived object.
427
if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
428
MostDerivedType = FD->getType();
429
MostDerivedIsArrayElement = false;
430
MostDerivedArraySize = 0;
431
MostDerivedPathLength = Entries.size();
432
}
433
}
434
/// Update this designator to refer to the given complex component.
435
void addComplexUnchecked(QualType EltTy, bool Imag) {
436
Entries.push_back(PathEntry::ArrayIndex(Imag));
437
438
// This is technically a most-derived object, though in practice this
439
// is unlikely to matter.
440
MostDerivedType = EltTy;
441
MostDerivedIsArrayElement = true;
442
MostDerivedArraySize = 2;
443
MostDerivedPathLength = Entries.size();
444
}
445
void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E);
446
void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E,
447
const APSInt &N);
448
/// Add N to the address of this subobject.
449
void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) {
450
if (Invalid || !N) return;
451
uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue();
452
if (isMostDerivedAnUnsizedArray()) {
453
diagnoseUnsizedArrayPointerArithmetic(Info, E);
454
// Can't verify -- trust that the user is doing the right thing (or if
455
// not, trust that the caller will catch the bad behavior).
456
// FIXME: Should we reject if this overflows, at least?
457
Entries.back() = PathEntry::ArrayIndex(
458
Entries.back().getAsArrayIndex() + TruncatedN);
459
return;
460
}
461
462
// [expr.add]p4: For the purposes of these operators, a pointer to a
463
// nonarray object behaves the same as a pointer to the first element of
464
// an array of length one with the type of the object as its element type.
465
bool IsArray = MostDerivedPathLength == Entries.size() &&
466
MostDerivedIsArrayElement;
467
uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
468
: (uint64_t)IsOnePastTheEnd;
469
uint64_t ArraySize =
470
IsArray ? getMostDerivedArraySize() : (uint64_t)1;
471
472
if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) {
473
// Calculate the actual index in a wide enough type, so we can include
474
// it in the note.
475
N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65));
476
(llvm::APInt&)N += ArrayIndex;
477
assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index");
478
diagnosePointerArithmetic(Info, E, N);
479
setInvalid();
480
return;
481
}
482
483
ArrayIndex += TruncatedN;
484
assert(ArrayIndex <= ArraySize &&
485
"bounds check succeeded for out-of-bounds index");
486
487
if (IsArray)
488
Entries.back() = PathEntry::ArrayIndex(ArrayIndex);
489
else
490
IsOnePastTheEnd = (ArrayIndex != 0);
491
}
492
};
493
494
/// A scope at the end of which an object can need to be destroyed.
495
enum class ScopeKind {
496
Block,
497
FullExpression,
498
Call
499
};
500
501
/// A reference to a particular call and its arguments.
502
struct CallRef {
503
CallRef() : OrigCallee(), CallIndex(0), Version() {}
504
CallRef(const FunctionDecl *Callee, unsigned CallIndex, unsigned Version)
505
: OrigCallee(Callee), CallIndex(CallIndex), Version(Version) {}
506
507
explicit operator bool() const { return OrigCallee; }
508
509
/// Get the parameter that the caller initialized, corresponding to the
510
/// given parameter in the callee.
511
const ParmVarDecl *getOrigParam(const ParmVarDecl *PVD) const {
512
return OrigCallee ? OrigCallee->getParamDecl(PVD->getFunctionScopeIndex())
513
: PVD;
514
}
515
516
/// The callee at the point where the arguments were evaluated. This might
517
/// be different from the actual callee (a different redeclaration, or a
518
/// virtual override), but this function's parameters are the ones that
519
/// appear in the parameter map.
520
const FunctionDecl *OrigCallee;
521
/// The call index of the frame that holds the argument values.
522
unsigned CallIndex;
523
/// The version of the parameters corresponding to this call.
524
unsigned Version;
525
};
526
527
/// A stack frame in the constexpr call stack.
528
class CallStackFrame : public interp::Frame {
529
public:
530
EvalInfo &Info;
531
532
/// Parent - The caller of this stack frame.
533
CallStackFrame *Caller;
534
535
/// Callee - The function which was called.
536
const FunctionDecl *Callee;
537
538
/// This - The binding for the this pointer in this call, if any.
539
const LValue *This;
540
541
/// CallExpr - The syntactical structure of member function calls
542
const Expr *CallExpr;
543
544
/// Information on how to find the arguments to this call. Our arguments
545
/// are stored in our parent's CallStackFrame, using the ParmVarDecl* as a
546
/// key and this value as the version.
547
CallRef Arguments;
548
549
/// Source location information about the default argument or default
550
/// initializer expression we're evaluating, if any.
551
CurrentSourceLocExprScope CurSourceLocExprScope;
552
553
// Note that we intentionally use std::map here so that references to
554
// values are stable.
555
typedef std::pair<const void *, unsigned> MapKeyTy;
556
typedef std::map<MapKeyTy, APValue> MapTy;
557
/// Temporaries - Temporary lvalues materialized within this stack frame.
558
MapTy Temporaries;
559
560
/// CallRange - The source range of the call expression for this call.
561
SourceRange CallRange;
562
563
/// Index - The call index of this call.
564
unsigned Index;
565
566
/// The stack of integers for tracking version numbers for temporaries.
567
SmallVector<unsigned, 2> TempVersionStack = {1};
568
unsigned CurTempVersion = TempVersionStack.back();
569
570
unsigned getTempVersion() const { return TempVersionStack.back(); }
571
572
void pushTempVersion() {
573
TempVersionStack.push_back(++CurTempVersion);
574
}
575
576
void popTempVersion() {
577
TempVersionStack.pop_back();
578
}
579
580
CallRef createCall(const FunctionDecl *Callee) {
581
return {Callee, Index, ++CurTempVersion};
582
}
583
584
// FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact
585
// on the overall stack usage of deeply-recursing constexpr evaluations.
586
// (We should cache this map rather than recomputing it repeatedly.)
587
// But let's try this and see how it goes; we can look into caching the map
588
// as a later change.
589
590
/// LambdaCaptureFields - Mapping from captured variables/this to
591
/// corresponding data members in the closure class.
592
llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields;
593
FieldDecl *LambdaThisCaptureField = nullptr;
594
595
CallStackFrame(EvalInfo &Info, SourceRange CallRange,
596
const FunctionDecl *Callee, const LValue *This,
597
const Expr *CallExpr, CallRef Arguments);
598
~CallStackFrame();
599
600
// Return the temporary for Key whose version number is Version.
601
APValue *getTemporary(const void *Key, unsigned Version) {
602
MapKeyTy KV(Key, Version);
603
auto LB = Temporaries.lower_bound(KV);
604
if (LB != Temporaries.end() && LB->first == KV)
605
return &LB->second;
606
return nullptr;
607
}
608
609
// Return the current temporary for Key in the map.
610
APValue *getCurrentTemporary(const void *Key) {
611
auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
612
if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
613
return &std::prev(UB)->second;
614
return nullptr;
615
}
616
617
// Return the version number of the current temporary for Key.
618
unsigned getCurrentTemporaryVersion(const void *Key) const {
619
auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
620
if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
621
return std::prev(UB)->first.second;
622
return 0;
623
}
624
625
/// Allocate storage for an object of type T in this stack frame.
626
/// Populates LV with a handle to the created object. Key identifies
627
/// the temporary within the stack frame, and must not be reused without
628
/// bumping the temporary version number.
629
template<typename KeyT>
630
APValue &createTemporary(const KeyT *Key, QualType T,
631
ScopeKind Scope, LValue &LV);
632
633
/// Allocate storage for a parameter of a function call made in this frame.
634
APValue &createParam(CallRef Args, const ParmVarDecl *PVD, LValue &LV);
635
636
void describe(llvm::raw_ostream &OS) const override;
637
638
Frame *getCaller() const override { return Caller; }
639
SourceRange getCallRange() const override { return CallRange; }
640
const FunctionDecl *getCallee() const override { return Callee; }
641
642
bool isStdFunction() const {
643
for (const DeclContext *DC = Callee; DC; DC = DC->getParent())
644
if (DC->isStdNamespace())
645
return true;
646
return false;
647
}
648
649
/// Whether we're in a context where [[msvc::constexpr]] evaluation is
650
/// permitted. See MSConstexprDocs for description of permitted contexts.
651
bool CanEvalMSConstexpr = false;
652
653
private:
654
APValue &createLocal(APValue::LValueBase Base, const void *Key, QualType T,
655
ScopeKind Scope);
656
};
657
658
/// Temporarily override 'this'.
659
class ThisOverrideRAII {
660
public:
661
ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
662
: Frame(Frame), OldThis(Frame.This) {
663
if (Enable)
664
Frame.This = NewThis;
665
}
666
~ThisOverrideRAII() {
667
Frame.This = OldThis;
668
}
669
private:
670
CallStackFrame &Frame;
671
const LValue *OldThis;
672
};
673
674
// A shorthand time trace scope struct, prints source range, for example
675
// {"name":"EvaluateAsRValue","args":{"detail":"<test.cc:8:21, col:25>"}}}
676
class ExprTimeTraceScope {
677
public:
678
ExprTimeTraceScope(const Expr *E, const ASTContext &Ctx, StringRef Name)
679
: TimeScope(Name, [E, &Ctx] {
680
return E->getSourceRange().printToString(Ctx.getSourceManager());
681
}) {}
682
683
private:
684
llvm::TimeTraceScope TimeScope;
685
};
686
687
/// RAII object used to change the current ability of
688
/// [[msvc::constexpr]] evaulation.
689
struct MSConstexprContextRAII {
690
CallStackFrame &Frame;
691
bool OldValue;
692
explicit MSConstexprContextRAII(CallStackFrame &Frame, bool Value)
693
: Frame(Frame), OldValue(Frame.CanEvalMSConstexpr) {
694
Frame.CanEvalMSConstexpr = Value;
695
}
696
697
~MSConstexprContextRAII() { Frame.CanEvalMSConstexpr = OldValue; }
698
};
699
}
700
701
static bool HandleDestruction(EvalInfo &Info, const Expr *E,
702
const LValue &This, QualType ThisType);
703
static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
704
APValue::LValueBase LVBase, APValue &Value,
705
QualType T);
706
707
namespace {
708
/// A cleanup, and a flag indicating whether it is lifetime-extended.
709
class Cleanup {
710
llvm::PointerIntPair<APValue*, 2, ScopeKind> Value;
711
APValue::LValueBase Base;
712
QualType T;
713
714
public:
715
Cleanup(APValue *Val, APValue::LValueBase Base, QualType T,
716
ScopeKind Scope)
717
: Value(Val, Scope), Base(Base), T(T) {}
718
719
/// Determine whether this cleanup should be performed at the end of the
720
/// given kind of scope.
721
bool isDestroyedAtEndOf(ScopeKind K) const {
722
return (int)Value.getInt() >= (int)K;
723
}
724
bool endLifetime(EvalInfo &Info, bool RunDestructors) {
725
if (RunDestructors) {
726
SourceLocation Loc;
727
if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>())
728
Loc = VD->getLocation();
729
else if (const Expr *E = Base.dyn_cast<const Expr*>())
730
Loc = E->getExprLoc();
731
return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T);
732
}
733
*Value.getPointer() = APValue();
734
return true;
735
}
736
737
bool hasSideEffect() {
738
return T.isDestructedType();
739
}
740
};
741
742
/// A reference to an object whose construction we are currently evaluating.
743
struct ObjectUnderConstruction {
744
APValue::LValueBase Base;
745
ArrayRef<APValue::LValuePathEntry> Path;
746
friend bool operator==(const ObjectUnderConstruction &LHS,
747
const ObjectUnderConstruction &RHS) {
748
return LHS.Base == RHS.Base && LHS.Path == RHS.Path;
749
}
750
friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) {
751
return llvm::hash_combine(Obj.Base, Obj.Path);
752
}
753
};
754
enum class ConstructionPhase {
755
None,
756
Bases,
757
AfterBases,
758
AfterFields,
759
Destroying,
760
DestroyingBases
761
};
762
}
763
764
namespace llvm {
765
template<> struct DenseMapInfo<ObjectUnderConstruction> {
766
using Base = DenseMapInfo<APValue::LValueBase>;
767
static ObjectUnderConstruction getEmptyKey() {
768
return {Base::getEmptyKey(), {}}; }
769
static ObjectUnderConstruction getTombstoneKey() {
770
return {Base::getTombstoneKey(), {}};
771
}
772
static unsigned getHashValue(const ObjectUnderConstruction &Object) {
773
return hash_value(Object);
774
}
775
static bool isEqual(const ObjectUnderConstruction &LHS,
776
const ObjectUnderConstruction &RHS) {
777
return LHS == RHS;
778
}
779
};
780
}
781
782
namespace {
783
/// A dynamically-allocated heap object.
784
struct DynAlloc {
785
/// The value of this heap-allocated object.
786
APValue Value;
787
/// The allocating expression; used for diagnostics. Either a CXXNewExpr
788
/// or a CallExpr (the latter is for direct calls to operator new inside
789
/// std::allocator<T>::allocate).
790
const Expr *AllocExpr = nullptr;
791
792
enum Kind {
793
New,
794
ArrayNew,
795
StdAllocator
796
};
797
798
/// Get the kind of the allocation. This must match between allocation
799
/// and deallocation.
800
Kind getKind() const {
801
if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr))
802
return NE->isArray() ? ArrayNew : New;
803
assert(isa<CallExpr>(AllocExpr));
804
return StdAllocator;
805
}
806
};
807
808
struct DynAllocOrder {
809
bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const {
810
return L.getIndex() < R.getIndex();
811
}
812
};
813
814
/// EvalInfo - This is a private struct used by the evaluator to capture
815
/// information about a subexpression as it is folded. It retains information
816
/// about the AST context, but also maintains information about the folded
817
/// expression.
818
///
819
/// If an expression could be evaluated, it is still possible it is not a C
820
/// "integer constant expression" or constant expression. If not, this struct
821
/// captures information about how and why not.
822
///
823
/// One bit of information passed *into* the request for constant folding
824
/// indicates whether the subexpression is "evaluated" or not according to C
825
/// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
826
/// evaluate the expression regardless of what the RHS is, but C only allows
827
/// certain things in certain situations.
828
class EvalInfo : public interp::State {
829
public:
830
ASTContext &Ctx;
831
832
/// EvalStatus - Contains information about the evaluation.
833
Expr::EvalStatus &EvalStatus;
834
835
/// CurrentCall - The top of the constexpr call stack.
836
CallStackFrame *CurrentCall;
837
838
/// CallStackDepth - The number of calls in the call stack right now.
839
unsigned CallStackDepth;
840
841
/// NextCallIndex - The next call index to assign.
842
unsigned NextCallIndex;
843
844
/// StepsLeft - The remaining number of evaluation steps we're permitted
845
/// to perform. This is essentially a limit for the number of statements
846
/// we will evaluate.
847
unsigned StepsLeft;
848
849
/// Enable the experimental new constant interpreter. If an expression is
850
/// not supported by the interpreter, an error is triggered.
851
bool EnableNewConstInterp;
852
853
/// BottomFrame - The frame in which evaluation started. This must be
854
/// initialized after CurrentCall and CallStackDepth.
855
CallStackFrame BottomFrame;
856
857
/// A stack of values whose lifetimes end at the end of some surrounding
858
/// evaluation frame.
859
llvm::SmallVector<Cleanup, 16> CleanupStack;
860
861
/// EvaluatingDecl - This is the declaration whose initializer is being
862
/// evaluated, if any.
863
APValue::LValueBase EvaluatingDecl;
864
865
enum class EvaluatingDeclKind {
866
None,
867
/// We're evaluating the construction of EvaluatingDecl.
868
Ctor,
869
/// We're evaluating the destruction of EvaluatingDecl.
870
Dtor,
871
};
872
EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None;
873
874
/// EvaluatingDeclValue - This is the value being constructed for the
875
/// declaration whose initializer is being evaluated, if any.
876
APValue *EvaluatingDeclValue;
877
878
/// Set of objects that are currently being constructed.
879
llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase>
880
ObjectsUnderConstruction;
881
882
/// Current heap allocations, along with the location where each was
883
/// allocated. We use std::map here because we need stable addresses
884
/// for the stored APValues.
885
std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs;
886
887
/// The number of heap allocations performed so far in this evaluation.
888
unsigned NumHeapAllocs = 0;
889
890
struct EvaluatingConstructorRAII {
891
EvalInfo &EI;
892
ObjectUnderConstruction Object;
893
bool DidInsert;
894
EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object,
895
bool HasBases)
896
: EI(EI), Object(Object) {
897
DidInsert =
898
EI.ObjectsUnderConstruction
899
.insert({Object, HasBases ? ConstructionPhase::Bases
900
: ConstructionPhase::AfterBases})
901
.second;
902
}
903
void finishedConstructingBases() {
904
EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases;
905
}
906
void finishedConstructingFields() {
907
EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterFields;
908
}
909
~EvaluatingConstructorRAII() {
910
if (DidInsert) EI.ObjectsUnderConstruction.erase(Object);
911
}
912
};
913
914
struct EvaluatingDestructorRAII {
915
EvalInfo &EI;
916
ObjectUnderConstruction Object;
917
bool DidInsert;
918
EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object)
919
: EI(EI), Object(Object) {
920
DidInsert = EI.ObjectsUnderConstruction
921
.insert({Object, ConstructionPhase::Destroying})
922
.second;
923
}
924
void startedDestroyingBases() {
925
EI.ObjectsUnderConstruction[Object] =
926
ConstructionPhase::DestroyingBases;
927
}
928
~EvaluatingDestructorRAII() {
929
if (DidInsert)
930
EI.ObjectsUnderConstruction.erase(Object);
931
}
932
};
933
934
ConstructionPhase
935
isEvaluatingCtorDtor(APValue::LValueBase Base,
936
ArrayRef<APValue::LValuePathEntry> Path) {
937
return ObjectsUnderConstruction.lookup({Base, Path});
938
}
939
940
/// If we're currently speculatively evaluating, the outermost call stack
941
/// depth at which we can mutate state, otherwise 0.
942
unsigned SpeculativeEvaluationDepth = 0;
943
944
/// The current array initialization index, if we're performing array
945
/// initialization.
946
uint64_t ArrayInitIndex = -1;
947
948
/// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
949
/// notes attached to it will also be stored, otherwise they will not be.
950
bool HasActiveDiagnostic;
951
952
/// Have we emitted a diagnostic explaining why we couldn't constant
953
/// fold (not just why it's not strictly a constant expression)?
954
bool HasFoldFailureDiagnostic;
955
956
/// Whether we're checking that an expression is a potential constant
957
/// expression. If so, do not fail on constructs that could become constant
958
/// later on (such as a use of an undefined global).
959
bool CheckingPotentialConstantExpression = false;
960
961
/// Whether we're checking for an expression that has undefined behavior.
962
/// If so, we will produce warnings if we encounter an operation that is
963
/// always undefined.
964
///
965
/// Note that we still need to evaluate the expression normally when this
966
/// is set; this is used when evaluating ICEs in C.
967
bool CheckingForUndefinedBehavior = false;
968
969
enum EvaluationMode {
970
/// Evaluate as a constant expression. Stop if we find that the expression
971
/// is not a constant expression.
972
EM_ConstantExpression,
973
974
/// Evaluate as a constant expression. Stop if we find that the expression
975
/// is not a constant expression. Some expressions can be retried in the
976
/// optimizer if we don't constant fold them here, but in an unevaluated
977
/// context we try to fold them immediately since the optimizer never
978
/// gets a chance to look at it.
979
EM_ConstantExpressionUnevaluated,
980
981
/// Fold the expression to a constant. Stop if we hit a side-effect that
982
/// we can't model.
983
EM_ConstantFold,
984
985
/// Evaluate in any way we know how. Don't worry about side-effects that
986
/// can't be modeled.
987
EM_IgnoreSideEffects,
988
} EvalMode;
989
990
/// Are we checking whether the expression is a potential constant
991
/// expression?
992
bool checkingPotentialConstantExpression() const override {
993
return CheckingPotentialConstantExpression;
994
}
995
996
/// Are we checking an expression for overflow?
997
// FIXME: We should check for any kind of undefined or suspicious behavior
998
// in such constructs, not just overflow.
999
bool checkingForUndefinedBehavior() const override {
1000
return CheckingForUndefinedBehavior;
1001
}
1002
1003
EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
1004
: Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
1005
CallStackDepth(0), NextCallIndex(1),
1006
StepsLeft(C.getLangOpts().ConstexprStepLimit),
1007
EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp),
1008
BottomFrame(*this, SourceLocation(), /*Callee=*/nullptr,
1009
/*This=*/nullptr,
1010
/*CallExpr=*/nullptr, CallRef()),
1011
EvaluatingDecl((const ValueDecl *)nullptr),
1012
EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
1013
HasFoldFailureDiagnostic(false), EvalMode(Mode) {}
1014
1015
~EvalInfo() {
1016
discardCleanups();
1017
}
1018
1019
ASTContext &getCtx() const override { return Ctx; }
1020
1021
void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value,
1022
EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) {
1023
EvaluatingDecl = Base;
1024
IsEvaluatingDecl = EDK;
1025
EvaluatingDeclValue = &Value;
1026
}
1027
1028
bool CheckCallLimit(SourceLocation Loc) {
1029
// Don't perform any constexpr calls (other than the call we're checking)
1030
// when checking a potential constant expression.
1031
if (checkingPotentialConstantExpression() && CallStackDepth > 1)
1032
return false;
1033
if (NextCallIndex == 0) {
1034
// NextCallIndex has wrapped around.
1035
FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
1036
return false;
1037
}
1038
if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
1039
return true;
1040
FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
1041
<< getLangOpts().ConstexprCallDepth;
1042
return false;
1043
}
1044
1045
bool CheckArraySize(SourceLocation Loc, unsigned BitWidth,
1046
uint64_t ElemCount, bool Diag) {
1047
// FIXME: GH63562
1048
// APValue stores array extents as unsigned,
1049
// so anything that is greater that unsigned would overflow when
1050
// constructing the array, we catch this here.
1051
if (BitWidth > ConstantArrayType::getMaxSizeBits(Ctx) ||
1052
ElemCount > uint64_t(std::numeric_limits<unsigned>::max())) {
1053
if (Diag)
1054
FFDiag(Loc, diag::note_constexpr_new_too_large) << ElemCount;
1055
return false;
1056
}
1057
1058
// FIXME: GH63562
1059
// Arrays allocate an APValue per element.
1060
// We use the number of constexpr steps as a proxy for the maximum size
1061
// of arrays to avoid exhausting the system resources, as initialization
1062
// of each element is likely to take some number of steps anyway.
1063
uint64_t Limit = Ctx.getLangOpts().ConstexprStepLimit;
1064
if (ElemCount > Limit) {
1065
if (Diag)
1066
FFDiag(Loc, diag::note_constexpr_new_exceeds_limits)
1067
<< ElemCount << Limit;
1068
return false;
1069
}
1070
return true;
1071
}
1072
1073
std::pair<CallStackFrame *, unsigned>
1074
getCallFrameAndDepth(unsigned CallIndex) {
1075
assert(CallIndex && "no call index in getCallFrameAndDepth");
1076
// We will eventually hit BottomFrame, which has Index 1, so Frame can't
1077
// be null in this loop.
1078
unsigned Depth = CallStackDepth;
1079
CallStackFrame *Frame = CurrentCall;
1080
while (Frame->Index > CallIndex) {
1081
Frame = Frame->Caller;
1082
--Depth;
1083
}
1084
if (Frame->Index == CallIndex)
1085
return {Frame, Depth};
1086
return {nullptr, 0};
1087
}
1088
1089
bool nextStep(const Stmt *S) {
1090
if (!StepsLeft) {
1091
FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded);
1092
return false;
1093
}
1094
--StepsLeft;
1095
return true;
1096
}
1097
1098
APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV);
1099
1100
std::optional<DynAlloc *> lookupDynamicAlloc(DynamicAllocLValue DA) {
1101
std::optional<DynAlloc *> Result;
1102
auto It = HeapAllocs.find(DA);
1103
if (It != HeapAllocs.end())
1104
Result = &It->second;
1105
return Result;
1106
}
1107
1108
/// Get the allocated storage for the given parameter of the given call.
1109
APValue *getParamSlot(CallRef Call, const ParmVarDecl *PVD) {
1110
CallStackFrame *Frame = getCallFrameAndDepth(Call.CallIndex).first;
1111
return Frame ? Frame->getTemporary(Call.getOrigParam(PVD), Call.Version)
1112
: nullptr;
1113
}
1114
1115
/// Information about a stack frame for std::allocator<T>::[de]allocate.
1116
struct StdAllocatorCaller {
1117
unsigned FrameIndex;
1118
QualType ElemType;
1119
explicit operator bool() const { return FrameIndex != 0; };
1120
};
1121
1122
StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const {
1123
for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame;
1124
Call = Call->Caller) {
1125
const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee);
1126
if (!MD)
1127
continue;
1128
const IdentifierInfo *FnII = MD->getIdentifier();
1129
if (!FnII || !FnII->isStr(FnName))
1130
continue;
1131
1132
const auto *CTSD =
1133
dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent());
1134
if (!CTSD)
1135
continue;
1136
1137
const IdentifierInfo *ClassII = CTSD->getIdentifier();
1138
const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
1139
if (CTSD->isInStdNamespace() && ClassII &&
1140
ClassII->isStr("allocator") && TAL.size() >= 1 &&
1141
TAL[0].getKind() == TemplateArgument::Type)
1142
return {Call->Index, TAL[0].getAsType()};
1143
}
1144
1145
return {};
1146
}
1147
1148
void performLifetimeExtension() {
1149
// Disable the cleanups for lifetime-extended temporaries.
1150
llvm::erase_if(CleanupStack, [](Cleanup &C) {
1151
return !C.isDestroyedAtEndOf(ScopeKind::FullExpression);
1152
});
1153
}
1154
1155
/// Throw away any remaining cleanups at the end of evaluation. If any
1156
/// cleanups would have had a side-effect, note that as an unmodeled
1157
/// side-effect and return false. Otherwise, return true.
1158
bool discardCleanups() {
1159
for (Cleanup &C : CleanupStack) {
1160
if (C.hasSideEffect() && !noteSideEffect()) {
1161
CleanupStack.clear();
1162
return false;
1163
}
1164
}
1165
CleanupStack.clear();
1166
return true;
1167
}
1168
1169
private:
1170
interp::Frame *getCurrentFrame() override { return CurrentCall; }
1171
const interp::Frame *getBottomFrame() const override { return &BottomFrame; }
1172
1173
bool hasActiveDiagnostic() override { return HasActiveDiagnostic; }
1174
void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; }
1175
1176
void setFoldFailureDiagnostic(bool Flag) override {
1177
HasFoldFailureDiagnostic = Flag;
1178
}
1179
1180
Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; }
1181
1182
// If we have a prior diagnostic, it will be noting that the expression
1183
// isn't a constant expression. This diagnostic is more important,
1184
// unless we require this evaluation to produce a constant expression.
1185
//
1186
// FIXME: We might want to show both diagnostics to the user in
1187
// EM_ConstantFold mode.
1188
bool hasPriorDiagnostic() override {
1189
if (!EvalStatus.Diag->empty()) {
1190
switch (EvalMode) {
1191
case EM_ConstantFold:
1192
case EM_IgnoreSideEffects:
1193
if (!HasFoldFailureDiagnostic)
1194
break;
1195
// We've already failed to fold something. Keep that diagnostic.
1196
[[fallthrough]];
1197
case EM_ConstantExpression:
1198
case EM_ConstantExpressionUnevaluated:
1199
setActiveDiagnostic(false);
1200
return true;
1201
}
1202
}
1203
return false;
1204
}
1205
1206
unsigned getCallStackDepth() override { return CallStackDepth; }
1207
1208
public:
1209
/// Should we continue evaluation after encountering a side-effect that we
1210
/// couldn't model?
1211
bool keepEvaluatingAfterSideEffect() {
1212
switch (EvalMode) {
1213
case EM_IgnoreSideEffects:
1214
return true;
1215
1216
case EM_ConstantExpression:
1217
case EM_ConstantExpressionUnevaluated:
1218
case EM_ConstantFold:
1219
// By default, assume any side effect might be valid in some other
1220
// evaluation of this expression from a different context.
1221
return checkingPotentialConstantExpression() ||
1222
checkingForUndefinedBehavior();
1223
}
1224
llvm_unreachable("Missed EvalMode case");
1225
}
1226
1227
/// Note that we have had a side-effect, and determine whether we should
1228
/// keep evaluating.
1229
bool noteSideEffect() {
1230
EvalStatus.HasSideEffects = true;
1231
return keepEvaluatingAfterSideEffect();
1232
}
1233
1234
/// Should we continue evaluation after encountering undefined behavior?
1235
bool keepEvaluatingAfterUndefinedBehavior() {
1236
switch (EvalMode) {
1237
case EM_IgnoreSideEffects:
1238
case EM_ConstantFold:
1239
return true;
1240
1241
case EM_ConstantExpression:
1242
case EM_ConstantExpressionUnevaluated:
1243
return checkingForUndefinedBehavior();
1244
}
1245
llvm_unreachable("Missed EvalMode case");
1246
}
1247
1248
/// Note that we hit something that was technically undefined behavior, but
1249
/// that we can evaluate past it (such as signed overflow or floating-point
1250
/// division by zero.)
1251
bool noteUndefinedBehavior() override {
1252
EvalStatus.HasUndefinedBehavior = true;
1253
return keepEvaluatingAfterUndefinedBehavior();
1254
}
1255
1256
/// Should we continue evaluation as much as possible after encountering a
1257
/// construct which can't be reduced to a value?
1258
bool keepEvaluatingAfterFailure() const override {
1259
if (!StepsLeft)
1260
return false;
1261
1262
switch (EvalMode) {
1263
case EM_ConstantExpression:
1264
case EM_ConstantExpressionUnevaluated:
1265
case EM_ConstantFold:
1266
case EM_IgnoreSideEffects:
1267
return checkingPotentialConstantExpression() ||
1268
checkingForUndefinedBehavior();
1269
}
1270
llvm_unreachable("Missed EvalMode case");
1271
}
1272
1273
/// Notes that we failed to evaluate an expression that other expressions
1274
/// directly depend on, and determine if we should keep evaluating. This
1275
/// should only be called if we actually intend to keep evaluating.
1276
///
1277
/// Call noteSideEffect() instead if we may be able to ignore the value that
1278
/// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
1279
///
1280
/// (Foo(), 1) // use noteSideEffect
1281
/// (Foo() || true) // use noteSideEffect
1282
/// Foo() + 1 // use noteFailure
1283
[[nodiscard]] bool noteFailure() {
1284
// Failure when evaluating some expression often means there is some
1285
// subexpression whose evaluation was skipped. Therefore, (because we
1286
// don't track whether we skipped an expression when unwinding after an
1287
// evaluation failure) every evaluation failure that bubbles up from a
1288
// subexpression implies that a side-effect has potentially happened. We
1289
// skip setting the HasSideEffects flag to true until we decide to
1290
// continue evaluating after that point, which happens here.
1291
bool KeepGoing = keepEvaluatingAfterFailure();
1292
EvalStatus.HasSideEffects |= KeepGoing;
1293
return KeepGoing;
1294
}
1295
1296
class ArrayInitLoopIndex {
1297
EvalInfo &Info;
1298
uint64_t OuterIndex;
1299
1300
public:
1301
ArrayInitLoopIndex(EvalInfo &Info)
1302
: Info(Info), OuterIndex(Info.ArrayInitIndex) {
1303
Info.ArrayInitIndex = 0;
1304
}
1305
~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; }
1306
1307
operator uint64_t&() { return Info.ArrayInitIndex; }
1308
};
1309
};
1310
1311
/// Object used to treat all foldable expressions as constant expressions.
1312
struct FoldConstant {
1313
EvalInfo &Info;
1314
bool Enabled;
1315
bool HadNoPriorDiags;
1316
EvalInfo::EvaluationMode OldMode;
1317
1318
explicit FoldConstant(EvalInfo &Info, bool Enabled)
1319
: Info(Info),
1320
Enabled(Enabled),
1321
HadNoPriorDiags(Info.EvalStatus.Diag &&
1322
Info.EvalStatus.Diag->empty() &&
1323
!Info.EvalStatus.HasSideEffects),
1324
OldMode(Info.EvalMode) {
1325
if (Enabled)
1326
Info.EvalMode = EvalInfo::EM_ConstantFold;
1327
}
1328
void keepDiagnostics() { Enabled = false; }
1329
~FoldConstant() {
1330
if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
1331
!Info.EvalStatus.HasSideEffects)
1332
Info.EvalStatus.Diag->clear();
1333
Info.EvalMode = OldMode;
1334
}
1335
};
1336
1337
/// RAII object used to set the current evaluation mode to ignore
1338
/// side-effects.
1339
struct IgnoreSideEffectsRAII {
1340
EvalInfo &Info;
1341
EvalInfo::EvaluationMode OldMode;
1342
explicit IgnoreSideEffectsRAII(EvalInfo &Info)
1343
: Info(Info), OldMode(Info.EvalMode) {
1344
Info.EvalMode = EvalInfo::EM_IgnoreSideEffects;
1345
}
1346
1347
~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; }
1348
};
1349
1350
/// RAII object used to optionally suppress diagnostics and side-effects from
1351
/// a speculative evaluation.
1352
class SpeculativeEvaluationRAII {
1353
EvalInfo *Info = nullptr;
1354
Expr::EvalStatus OldStatus;
1355
unsigned OldSpeculativeEvaluationDepth = 0;
1356
1357
void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
1358
Info = Other.Info;
1359
OldStatus = Other.OldStatus;
1360
OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth;
1361
Other.Info = nullptr;
1362
}
1363
1364
void maybeRestoreState() {
1365
if (!Info)
1366
return;
1367
1368
Info->EvalStatus = OldStatus;
1369
Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth;
1370
}
1371
1372
public:
1373
SpeculativeEvaluationRAII() = default;
1374
1375
SpeculativeEvaluationRAII(
1376
EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
1377
: Info(&Info), OldStatus(Info.EvalStatus),
1378
OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) {
1379
Info.EvalStatus.Diag = NewDiag;
1380
Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1;
1381
}
1382
1383
SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
1384
SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
1385
moveFromAndCancel(std::move(Other));
1386
}
1387
1388
SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
1389
maybeRestoreState();
1390
moveFromAndCancel(std::move(Other));
1391
return *this;
1392
}
1393
1394
~SpeculativeEvaluationRAII() { maybeRestoreState(); }
1395
};
1396
1397
/// RAII object wrapping a full-expression or block scope, and handling
1398
/// the ending of the lifetime of temporaries created within it.
1399
template<ScopeKind Kind>
1400
class ScopeRAII {
1401
EvalInfo &Info;
1402
unsigned OldStackSize;
1403
public:
1404
ScopeRAII(EvalInfo &Info)
1405
: Info(Info), OldStackSize(Info.CleanupStack.size()) {
1406
// Push a new temporary version. This is needed to distinguish between
1407
// temporaries created in different iterations of a loop.
1408
Info.CurrentCall->pushTempVersion();
1409
}
1410
bool destroy(bool RunDestructors = true) {
1411
bool OK = cleanup(Info, RunDestructors, OldStackSize);
1412
OldStackSize = -1U;
1413
return OK;
1414
}
1415
~ScopeRAII() {
1416
if (OldStackSize != -1U)
1417
destroy(false);
1418
// Body moved to a static method to encourage the compiler to inline away
1419
// instances of this class.
1420
Info.CurrentCall->popTempVersion();
1421
}
1422
private:
1423
static bool cleanup(EvalInfo &Info, bool RunDestructors,
1424
unsigned OldStackSize) {
1425
assert(OldStackSize <= Info.CleanupStack.size() &&
1426
"running cleanups out of order?");
1427
1428
// Run all cleanups for a block scope, and non-lifetime-extended cleanups
1429
// for a full-expression scope.
1430
bool Success = true;
1431
for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) {
1432
if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(Kind)) {
1433
if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) {
1434
Success = false;
1435
break;
1436
}
1437
}
1438
}
1439
1440
// Compact any retained cleanups.
1441
auto NewEnd = Info.CleanupStack.begin() + OldStackSize;
1442
if (Kind != ScopeKind::Block)
1443
NewEnd =
1444
std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) {
1445
return C.isDestroyedAtEndOf(Kind);
1446
});
1447
Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end());
1448
return Success;
1449
}
1450
};
1451
typedef ScopeRAII<ScopeKind::Block> BlockScopeRAII;
1452
typedef ScopeRAII<ScopeKind::FullExpression> FullExpressionRAII;
1453
typedef ScopeRAII<ScopeKind::Call> CallScopeRAII;
1454
}
1455
1456
bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
1457
CheckSubobjectKind CSK) {
1458
if (Invalid)
1459
return false;
1460
if (isOnePastTheEnd()) {
1461
Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
1462
<< CSK;
1463
setInvalid();
1464
return false;
1465
}
1466
// Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there
1467
// must actually be at least one array element; even a VLA cannot have a
1468
// bound of zero. And if our index is nonzero, we already had a CCEDiag.
1469
return true;
1470
}
1471
1472
void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info,
1473
const Expr *E) {
1474
Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed);
1475
// Do not set the designator as invalid: we can represent this situation,
1476
// and correct handling of __builtin_object_size requires us to do so.
1477
}
1478
1479
void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
1480
const Expr *E,
1481
const APSInt &N) {
1482
// If we're complaining, we must be able to statically determine the size of
1483
// the most derived array.
1484
if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
1485
Info.CCEDiag(E, diag::note_constexpr_array_index)
1486
<< N << /*array*/ 0
1487
<< static_cast<unsigned>(getMostDerivedArraySize());
1488
else
1489
Info.CCEDiag(E, diag::note_constexpr_array_index)
1490
<< N << /*non-array*/ 1;
1491
setInvalid();
1492
}
1493
1494
CallStackFrame::CallStackFrame(EvalInfo &Info, SourceRange CallRange,
1495
const FunctionDecl *Callee, const LValue *This,
1496
const Expr *CallExpr, CallRef Call)
1497
: Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This),
1498
CallExpr(CallExpr), Arguments(Call), CallRange(CallRange),
1499
Index(Info.NextCallIndex++) {
1500
Info.CurrentCall = this;
1501
++Info.CallStackDepth;
1502
}
1503
1504
CallStackFrame::~CallStackFrame() {
1505
assert(Info.CurrentCall == this && "calls retired out of order");
1506
--Info.CallStackDepth;
1507
Info.CurrentCall = Caller;
1508
}
1509
1510
static bool isRead(AccessKinds AK) {
1511
return AK == AK_Read || AK == AK_ReadObjectRepresentation;
1512
}
1513
1514
static bool isModification(AccessKinds AK) {
1515
switch (AK) {
1516
case AK_Read:
1517
case AK_ReadObjectRepresentation:
1518
case AK_MemberCall:
1519
case AK_DynamicCast:
1520
case AK_TypeId:
1521
return false;
1522
case AK_Assign:
1523
case AK_Increment:
1524
case AK_Decrement:
1525
case AK_Construct:
1526
case AK_Destroy:
1527
return true;
1528
}
1529
llvm_unreachable("unknown access kind");
1530
}
1531
1532
static bool isAnyAccess(AccessKinds AK) {
1533
return isRead(AK) || isModification(AK);
1534
}
1535
1536
/// Is this an access per the C++ definition?
1537
static bool isFormalAccess(AccessKinds AK) {
1538
return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy;
1539
}
1540
1541
/// Is this kind of axcess valid on an indeterminate object value?
1542
static bool isValidIndeterminateAccess(AccessKinds AK) {
1543
switch (AK) {
1544
case AK_Read:
1545
case AK_Increment:
1546
case AK_Decrement:
1547
// These need the object's value.
1548
return false;
1549
1550
case AK_ReadObjectRepresentation:
1551
case AK_Assign:
1552
case AK_Construct:
1553
case AK_Destroy:
1554
// Construction and destruction don't need the value.
1555
return true;
1556
1557
case AK_MemberCall:
1558
case AK_DynamicCast:
1559
case AK_TypeId:
1560
// These aren't really meaningful on scalars.
1561
return true;
1562
}
1563
llvm_unreachable("unknown access kind");
1564
}
1565
1566
namespace {
1567
struct ComplexValue {
1568
private:
1569
bool IsInt;
1570
1571
public:
1572
APSInt IntReal, IntImag;
1573
APFloat FloatReal, FloatImag;
1574
1575
ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {}
1576
1577
void makeComplexFloat() { IsInt = false; }
1578
bool isComplexFloat() const { return !IsInt; }
1579
APFloat &getComplexFloatReal() { return FloatReal; }
1580
APFloat &getComplexFloatImag() { return FloatImag; }
1581
1582
void makeComplexInt() { IsInt = true; }
1583
bool isComplexInt() const { return IsInt; }
1584
APSInt &getComplexIntReal() { return IntReal; }
1585
APSInt &getComplexIntImag() { return IntImag; }
1586
1587
void moveInto(APValue &v) const {
1588
if (isComplexFloat())
1589
v = APValue(FloatReal, FloatImag);
1590
else
1591
v = APValue(IntReal, IntImag);
1592
}
1593
void setFrom(const APValue &v) {
1594
assert(v.isComplexFloat() || v.isComplexInt());
1595
if (v.isComplexFloat()) {
1596
makeComplexFloat();
1597
FloatReal = v.getComplexFloatReal();
1598
FloatImag = v.getComplexFloatImag();
1599
} else {
1600
makeComplexInt();
1601
IntReal = v.getComplexIntReal();
1602
IntImag = v.getComplexIntImag();
1603
}
1604
}
1605
};
1606
1607
struct LValue {
1608
APValue::LValueBase Base;
1609
CharUnits Offset;
1610
SubobjectDesignator Designator;
1611
bool IsNullPtr : 1;
1612
bool InvalidBase : 1;
1613
1614
const APValue::LValueBase getLValueBase() const { return Base; }
1615
CharUnits &getLValueOffset() { return Offset; }
1616
const CharUnits &getLValueOffset() const { return Offset; }
1617
SubobjectDesignator &getLValueDesignator() { return Designator; }
1618
const SubobjectDesignator &getLValueDesignator() const { return Designator;}
1619
bool isNullPointer() const { return IsNullPtr;}
1620
1621
unsigned getLValueCallIndex() const { return Base.getCallIndex(); }
1622
unsigned getLValueVersion() const { return Base.getVersion(); }
1623
1624
void moveInto(APValue &V) const {
1625
if (Designator.Invalid)
1626
V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr);
1627
else {
1628
assert(!InvalidBase && "APValues can't handle invalid LValue bases");
1629
V = APValue(Base, Offset, Designator.Entries,
1630
Designator.IsOnePastTheEnd, IsNullPtr);
1631
}
1632
}
1633
void setFrom(ASTContext &Ctx, const APValue &V) {
1634
assert(V.isLValue() && "Setting LValue from a non-LValue?");
1635
Base = V.getLValueBase();
1636
Offset = V.getLValueOffset();
1637
InvalidBase = false;
1638
Designator = SubobjectDesignator(Ctx, V);
1639
IsNullPtr = V.isNullPointer();
1640
}
1641
1642
void set(APValue::LValueBase B, bool BInvalid = false) {
1643
#ifndef NDEBUG
1644
// We only allow a few types of invalid bases. Enforce that here.
1645
if (BInvalid) {
1646
const auto *E = B.get<const Expr *>();
1647
assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&
1648
"Unexpected type of invalid base");
1649
}
1650
#endif
1651
1652
Base = B;
1653
Offset = CharUnits::fromQuantity(0);
1654
InvalidBase = BInvalid;
1655
Designator = SubobjectDesignator(getType(B));
1656
IsNullPtr = false;
1657
}
1658
1659
void setNull(ASTContext &Ctx, QualType PointerTy) {
1660
Base = (const ValueDecl *)nullptr;
1661
Offset =
1662
CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy));
1663
InvalidBase = false;
1664
Designator = SubobjectDesignator(PointerTy->getPointeeType());
1665
IsNullPtr = true;
1666
}
1667
1668
void setInvalid(APValue::LValueBase B, unsigned I = 0) {
1669
set(B, true);
1670
}
1671
1672
std::string toString(ASTContext &Ctx, QualType T) const {
1673
APValue Printable;
1674
moveInto(Printable);
1675
return Printable.getAsString(Ctx, T);
1676
}
1677
1678
private:
1679
// Check that this LValue is not based on a null pointer. If it is, produce
1680
// a diagnostic and mark the designator as invalid.
1681
template <typename GenDiagType>
1682
bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) {
1683
if (Designator.Invalid)
1684
return false;
1685
if (IsNullPtr) {
1686
GenDiag();
1687
Designator.setInvalid();
1688
return false;
1689
}
1690
return true;
1691
}
1692
1693
public:
1694
bool checkNullPointer(EvalInfo &Info, const Expr *E,
1695
CheckSubobjectKind CSK) {
1696
return checkNullPointerDiagnosingWith([&Info, E, CSK] {
1697
Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK;
1698
});
1699
}
1700
1701
bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E,
1702
AccessKinds AK) {
1703
return checkNullPointerDiagnosingWith([&Info, E, AK] {
1704
Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
1705
});
1706
}
1707
1708
// Check this LValue refers to an object. If not, set the designator to be
1709
// invalid and emit a diagnostic.
1710
bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
1711
return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
1712
Designator.checkSubobject(Info, E, CSK);
1713
}
1714
1715
void addDecl(EvalInfo &Info, const Expr *E,
1716
const Decl *D, bool Virtual = false) {
1717
if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
1718
Designator.addDeclUnchecked(D, Virtual);
1719
}
1720
void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) {
1721
if (!Designator.Entries.empty()) {
1722
Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array);
1723
Designator.setInvalid();
1724
return;
1725
}
1726
if (checkSubobject(Info, E, CSK_ArrayToPointer)) {
1727
assert(getType(Base)->isPointerType() || getType(Base)->isArrayType());
1728
Designator.FirstEntryIsAnUnsizedArray = true;
1729
Designator.addUnsizedArrayUnchecked(ElemTy);
1730
}
1731
}
1732
void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
1733
if (checkSubobject(Info, E, CSK_ArrayToPointer))
1734
Designator.addArrayUnchecked(CAT);
1735
}
1736
void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
1737
if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
1738
Designator.addComplexUnchecked(EltTy, Imag);
1739
}
1740
void clearIsNullPointer() {
1741
IsNullPtr = false;
1742
}
1743
void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E,
1744
const APSInt &Index, CharUnits ElementSize) {
1745
// An index of 0 has no effect. (In C, adding 0 to a null pointer is UB,
1746
// but we're not required to diagnose it and it's valid in C++.)
1747
if (!Index)
1748
return;
1749
1750
// Compute the new offset in the appropriate width, wrapping at 64 bits.
1751
// FIXME: When compiling for a 32-bit target, we should use 32-bit
1752
// offsets.
1753
uint64_t Offset64 = Offset.getQuantity();
1754
uint64_t ElemSize64 = ElementSize.getQuantity();
1755
uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
1756
Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64);
1757
1758
if (checkNullPointer(Info, E, CSK_ArrayIndex))
1759
Designator.adjustIndex(Info, E, Index);
1760
clearIsNullPointer();
1761
}
1762
void adjustOffset(CharUnits N) {
1763
Offset += N;
1764
if (N.getQuantity())
1765
clearIsNullPointer();
1766
}
1767
};
1768
1769
struct MemberPtr {
1770
MemberPtr() {}
1771
explicit MemberPtr(const ValueDecl *Decl)
1772
: DeclAndIsDerivedMember(Decl, false) {}
1773
1774
/// The member or (direct or indirect) field referred to by this member
1775
/// pointer, or 0 if this is a null member pointer.
1776
const ValueDecl *getDecl() const {
1777
return DeclAndIsDerivedMember.getPointer();
1778
}
1779
/// Is this actually a member of some type derived from the relevant class?
1780
bool isDerivedMember() const {
1781
return DeclAndIsDerivedMember.getInt();
1782
}
1783
/// Get the class which the declaration actually lives in.
1784
const CXXRecordDecl *getContainingRecord() const {
1785
return cast<CXXRecordDecl>(
1786
DeclAndIsDerivedMember.getPointer()->getDeclContext());
1787
}
1788
1789
void moveInto(APValue &V) const {
1790
V = APValue(getDecl(), isDerivedMember(), Path);
1791
}
1792
void setFrom(const APValue &V) {
1793
assert(V.isMemberPointer());
1794
DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1795
DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1796
Path.clear();
1797
ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1798
Path.insert(Path.end(), P.begin(), P.end());
1799
}
1800
1801
/// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1802
/// whether the member is a member of some class derived from the class type
1803
/// of the member pointer.
1804
llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1805
/// Path - The path of base/derived classes from the member declaration's
1806
/// class (exclusive) to the class type of the member pointer (inclusive).
1807
SmallVector<const CXXRecordDecl*, 4> Path;
1808
1809
/// Perform a cast towards the class of the Decl (either up or down the
1810
/// hierarchy).
1811
bool castBack(const CXXRecordDecl *Class) {
1812
assert(!Path.empty());
1813
const CXXRecordDecl *Expected;
1814
if (Path.size() >= 2)
1815
Expected = Path[Path.size() - 2];
1816
else
1817
Expected = getContainingRecord();
1818
if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1819
// C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1820
// if B does not contain the original member and is not a base or
1821
// derived class of the class containing the original member, the result
1822
// of the cast is undefined.
1823
// C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1824
// (D::*). We consider that to be a language defect.
1825
return false;
1826
}
1827
Path.pop_back();
1828
return true;
1829
}
1830
/// Perform a base-to-derived member pointer cast.
1831
bool castToDerived(const CXXRecordDecl *Derived) {
1832
if (!getDecl())
1833
return true;
1834
if (!isDerivedMember()) {
1835
Path.push_back(Derived);
1836
return true;
1837
}
1838
if (!castBack(Derived))
1839
return false;
1840
if (Path.empty())
1841
DeclAndIsDerivedMember.setInt(false);
1842
return true;
1843
}
1844
/// Perform a derived-to-base member pointer cast.
1845
bool castToBase(const CXXRecordDecl *Base) {
1846
if (!getDecl())
1847
return true;
1848
if (Path.empty())
1849
DeclAndIsDerivedMember.setInt(true);
1850
if (isDerivedMember()) {
1851
Path.push_back(Base);
1852
return true;
1853
}
1854
return castBack(Base);
1855
}
1856
};
1857
1858
/// Compare two member pointers, which are assumed to be of the same type.
1859
static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1860
if (!LHS.getDecl() || !RHS.getDecl())
1861
return !LHS.getDecl() && !RHS.getDecl();
1862
if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1863
return false;
1864
return LHS.Path == RHS.Path;
1865
}
1866
}
1867
1868
static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1869
static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1870
const LValue &This, const Expr *E,
1871
bool AllowNonLiteralTypes = false);
1872
static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
1873
bool InvalidBaseOK = false);
1874
static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info,
1875
bool InvalidBaseOK = false);
1876
static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1877
EvalInfo &Info);
1878
static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1879
static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
1880
static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1881
EvalInfo &Info);
1882
static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1883
static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1884
static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
1885
EvalInfo &Info);
1886
static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
1887
static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result,
1888
EvalInfo &Info,
1889
std::string *StringResult = nullptr);
1890
1891
/// Evaluate an integer or fixed point expression into an APResult.
1892
static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
1893
EvalInfo &Info);
1894
1895
/// Evaluate only a fixed point expression into an APResult.
1896
static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
1897
EvalInfo &Info);
1898
1899
//===----------------------------------------------------------------------===//
1900
// Misc utilities
1901
//===----------------------------------------------------------------------===//
1902
1903
/// Negate an APSInt in place, converting it to a signed form if necessary, and
1904
/// preserving its value (by extending by up to one bit as needed).
1905
static void negateAsSigned(APSInt &Int) {
1906
if (Int.isUnsigned() || Int.isMinSignedValue()) {
1907
Int = Int.extend(Int.getBitWidth() + 1);
1908
Int.setIsSigned(true);
1909
}
1910
Int = -Int;
1911
}
1912
1913
template<typename KeyT>
1914
APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T,
1915
ScopeKind Scope, LValue &LV) {
1916
unsigned Version = getTempVersion();
1917
APValue::LValueBase Base(Key, Index, Version);
1918
LV.set(Base);
1919
return createLocal(Base, Key, T, Scope);
1920
}
1921
1922
/// Allocate storage for a parameter of a function call made in this frame.
1923
APValue &CallStackFrame::createParam(CallRef Args, const ParmVarDecl *PVD,
1924
LValue &LV) {
1925
assert(Args.CallIndex == Index && "creating parameter in wrong frame");
1926
APValue::LValueBase Base(PVD, Index, Args.Version);
1927
LV.set(Base);
1928
// We always destroy parameters at the end of the call, even if we'd allow
1929
// them to live to the end of the full-expression at runtime, in order to
1930
// give portable results and match other compilers.
1931
return createLocal(Base, PVD, PVD->getType(), ScopeKind::Call);
1932
}
1933
1934
APValue &CallStackFrame::createLocal(APValue::LValueBase Base, const void *Key,
1935
QualType T, ScopeKind Scope) {
1936
assert(Base.getCallIndex() == Index && "lvalue for wrong frame");
1937
unsigned Version = Base.getVersion();
1938
APValue &Result = Temporaries[MapKeyTy(Key, Version)];
1939
assert(Result.isAbsent() && "local created multiple times");
1940
1941
// If we're creating a local immediately in the operand of a speculative
1942
// evaluation, don't register a cleanup to be run outside the speculative
1943
// evaluation context, since we won't actually be able to initialize this
1944
// object.
1945
if (Index <= Info.SpeculativeEvaluationDepth) {
1946
if (T.isDestructedType())
1947
Info.noteSideEffect();
1948
} else {
1949
Info.CleanupStack.push_back(Cleanup(&Result, Base, T, Scope));
1950
}
1951
return Result;
1952
}
1953
1954
APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) {
1955
if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) {
1956
FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded);
1957
return nullptr;
1958
}
1959
1960
DynamicAllocLValue DA(NumHeapAllocs++);
1961
LV.set(APValue::LValueBase::getDynamicAlloc(DA, T));
1962
auto Result = HeapAllocs.emplace(std::piecewise_construct,
1963
std::forward_as_tuple(DA), std::tuple<>());
1964
assert(Result.second && "reused a heap alloc index?");
1965
Result.first->second.AllocExpr = E;
1966
return &Result.first->second.Value;
1967
}
1968
1969
/// Produce a string describing the given constexpr call.
1970
void CallStackFrame::describe(raw_ostream &Out) const {
1971
unsigned ArgIndex = 0;
1972
bool IsMemberCall =
1973
isa<CXXMethodDecl>(Callee) && !isa<CXXConstructorDecl>(Callee) &&
1974
cast<CXXMethodDecl>(Callee)->isImplicitObjectMemberFunction();
1975
1976
if (!IsMemberCall)
1977
Callee->getNameForDiagnostic(Out, Info.Ctx.getPrintingPolicy(),
1978
/*Qualified=*/false);
1979
1980
if (This && IsMemberCall) {
1981
if (const auto *MCE = dyn_cast_if_present<CXXMemberCallExpr>(CallExpr)) {
1982
const Expr *Object = MCE->getImplicitObjectArgument();
1983
Object->printPretty(Out, /*Helper=*/nullptr, Info.Ctx.getPrintingPolicy(),
1984
/*Indentation=*/0);
1985
if (Object->getType()->isPointerType())
1986
Out << "->";
1987
else
1988
Out << ".";
1989
} else if (const auto *OCE =
1990
dyn_cast_if_present<CXXOperatorCallExpr>(CallExpr)) {
1991
OCE->getArg(0)->printPretty(Out, /*Helper=*/nullptr,
1992
Info.Ctx.getPrintingPolicy(),
1993
/*Indentation=*/0);
1994
Out << ".";
1995
} else {
1996
APValue Val;
1997
This->moveInto(Val);
1998
Val.printPretty(
1999
Out, Info.Ctx,
2000
Info.Ctx.getLValueReferenceType(This->Designator.MostDerivedType));
2001
Out << ".";
2002
}
2003
Callee->getNameForDiagnostic(Out, Info.Ctx.getPrintingPolicy(),
2004
/*Qualified=*/false);
2005
IsMemberCall = false;
2006
}
2007
2008
Out << '(';
2009
2010
for (FunctionDecl::param_const_iterator I = Callee->param_begin(),
2011
E = Callee->param_end(); I != E; ++I, ++ArgIndex) {
2012
if (ArgIndex > (unsigned)IsMemberCall)
2013
Out << ", ";
2014
2015
const ParmVarDecl *Param = *I;
2016
APValue *V = Info.getParamSlot(Arguments, Param);
2017
if (V)
2018
V->printPretty(Out, Info.Ctx, Param->getType());
2019
else
2020
Out << "<...>";
2021
2022
if (ArgIndex == 0 && IsMemberCall)
2023
Out << "->" << *Callee << '(';
2024
}
2025
2026
Out << ')';
2027
}
2028
2029
/// Evaluate an expression to see if it had side-effects, and discard its
2030
/// result.
2031
/// \return \c true if the caller should keep evaluating.
2032
static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
2033
assert(!E->isValueDependent());
2034
APValue Scratch;
2035
if (!Evaluate(Scratch, Info, E))
2036
// We don't need the value, but we might have skipped a side effect here.
2037
return Info.noteSideEffect();
2038
return true;
2039
}
2040
2041
/// Should this call expression be treated as a no-op?
2042
static bool IsNoOpCall(const CallExpr *E) {
2043
unsigned Builtin = E->getBuiltinCallee();
2044
return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
2045
Builtin == Builtin::BI__builtin___NSStringMakeConstantString ||
2046
Builtin == Builtin::BI__builtin_ptrauth_sign_constant ||
2047
Builtin == Builtin::BI__builtin_function_start);
2048
}
2049
2050
static bool IsGlobalLValue(APValue::LValueBase B) {
2051
// C++11 [expr.const]p3 An address constant expression is a prvalue core
2052
// constant expression of pointer type that evaluates to...
2053
2054
// ... a null pointer value, or a prvalue core constant expression of type
2055
// std::nullptr_t.
2056
if (!B)
2057
return true;
2058
2059
if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
2060
// ... the address of an object with static storage duration,
2061
if (const VarDecl *VD = dyn_cast<VarDecl>(D))
2062
return VD->hasGlobalStorage();
2063
if (isa<TemplateParamObjectDecl>(D))
2064
return true;
2065
// ... the address of a function,
2066
// ... the address of a GUID [MS extension],
2067
// ... the address of an unnamed global constant
2068
return isa<FunctionDecl, MSGuidDecl, UnnamedGlobalConstantDecl>(D);
2069
}
2070
2071
if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>())
2072
return true;
2073
2074
const Expr *E = B.get<const Expr*>();
2075
switch (E->getStmtClass()) {
2076
default:
2077
return false;
2078
case Expr::CompoundLiteralExprClass: {
2079
const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
2080
return CLE->isFileScope() && CLE->isLValue();
2081
}
2082
case Expr::MaterializeTemporaryExprClass:
2083
// A materialized temporary might have been lifetime-extended to static
2084
// storage duration.
2085
return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
2086
// A string literal has static storage duration.
2087
case Expr::StringLiteralClass:
2088
case Expr::PredefinedExprClass:
2089
case Expr::ObjCStringLiteralClass:
2090
case Expr::ObjCEncodeExprClass:
2091
return true;
2092
case Expr::ObjCBoxedExprClass:
2093
return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer();
2094
case Expr::CallExprClass:
2095
return IsNoOpCall(cast<CallExpr>(E));
2096
// For GCC compatibility, &&label has static storage duration.
2097
case Expr::AddrLabelExprClass:
2098
return true;
2099
// A Block literal expression may be used as the initialization value for
2100
// Block variables at global or local static scope.
2101
case Expr::BlockExprClass:
2102
return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
2103
// The APValue generated from a __builtin_source_location will be emitted as a
2104
// literal.
2105
case Expr::SourceLocExprClass:
2106
return true;
2107
case Expr::ImplicitValueInitExprClass:
2108
// FIXME:
2109
// We can never form an lvalue with an implicit value initialization as its
2110
// base through expression evaluation, so these only appear in one case: the
2111
// implicit variable declaration we invent when checking whether a constexpr
2112
// constructor can produce a constant expression. We must assume that such
2113
// an expression might be a global lvalue.
2114
return true;
2115
}
2116
}
2117
2118
static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
2119
return LVal.Base.dyn_cast<const ValueDecl*>();
2120
}
2121
2122
static bool IsLiteralLValue(const LValue &Value) {
2123
if (Value.getLValueCallIndex())
2124
return false;
2125
const Expr *E = Value.Base.dyn_cast<const Expr*>();
2126
return E && !isa<MaterializeTemporaryExpr>(E);
2127
}
2128
2129
static bool IsWeakLValue(const LValue &Value) {
2130
const ValueDecl *Decl = GetLValueBaseDecl(Value);
2131
return Decl && Decl->isWeak();
2132
}
2133
2134
static bool isZeroSized(const LValue &Value) {
2135
const ValueDecl *Decl = GetLValueBaseDecl(Value);
2136
if (isa_and_nonnull<VarDecl>(Decl)) {
2137
QualType Ty = Decl->getType();
2138
if (Ty->isArrayType())
2139
return Ty->isIncompleteType() ||
2140
Decl->getASTContext().getTypeSize(Ty) == 0;
2141
}
2142
return false;
2143
}
2144
2145
static bool HasSameBase(const LValue &A, const LValue &B) {
2146
if (!A.getLValueBase())
2147
return !B.getLValueBase();
2148
if (!B.getLValueBase())
2149
return false;
2150
2151
if (A.getLValueBase().getOpaqueValue() !=
2152
B.getLValueBase().getOpaqueValue())
2153
return false;
2154
2155
return A.getLValueCallIndex() == B.getLValueCallIndex() &&
2156
A.getLValueVersion() == B.getLValueVersion();
2157
}
2158
2159
static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
2160
assert(Base && "no location for a null lvalue");
2161
const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2162
2163
// For a parameter, find the corresponding call stack frame (if it still
2164
// exists), and point at the parameter of the function definition we actually
2165
// invoked.
2166
if (auto *PVD = dyn_cast_or_null<ParmVarDecl>(VD)) {
2167
unsigned Idx = PVD->getFunctionScopeIndex();
2168
for (CallStackFrame *F = Info.CurrentCall; F; F = F->Caller) {
2169
if (F->Arguments.CallIndex == Base.getCallIndex() &&
2170
F->Arguments.Version == Base.getVersion() && F->Callee &&
2171
Idx < F->Callee->getNumParams()) {
2172
VD = F->Callee->getParamDecl(Idx);
2173
break;
2174
}
2175
}
2176
}
2177
2178
if (VD)
2179
Info.Note(VD->getLocation(), diag::note_declared_at);
2180
else if (const Expr *E = Base.dyn_cast<const Expr*>())
2181
Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here);
2182
else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) {
2183
// FIXME: Produce a note for dangling pointers too.
2184
if (std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA))
2185
Info.Note((*Alloc)->AllocExpr->getExprLoc(),
2186
diag::note_constexpr_dynamic_alloc_here);
2187
}
2188
2189
// We have no information to show for a typeid(T) object.
2190
}
2191
2192
enum class CheckEvaluationResultKind {
2193
ConstantExpression,
2194
FullyInitialized,
2195
};
2196
2197
/// Materialized temporaries that we've already checked to determine if they're
2198
/// initializsed by a constant expression.
2199
using CheckedTemporaries =
2200
llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>;
2201
2202
static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2203
EvalInfo &Info, SourceLocation DiagLoc,
2204
QualType Type, const APValue &Value,
2205
ConstantExprKind Kind,
2206
const FieldDecl *SubobjectDecl,
2207
CheckedTemporaries &CheckedTemps);
2208
2209
/// Check that this reference or pointer core constant expression is a valid
2210
/// value for an address or reference constant expression. Return true if we
2211
/// can fold this expression, whether or not it's a constant expression.
2212
static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
2213
QualType Type, const LValue &LVal,
2214
ConstantExprKind Kind,
2215
CheckedTemporaries &CheckedTemps) {
2216
bool IsReferenceType = Type->isReferenceType();
2217
2218
APValue::LValueBase Base = LVal.getLValueBase();
2219
const SubobjectDesignator &Designator = LVal.getLValueDesignator();
2220
2221
const Expr *BaseE = Base.dyn_cast<const Expr *>();
2222
const ValueDecl *BaseVD = Base.dyn_cast<const ValueDecl*>();
2223
2224
// Additional restrictions apply in a template argument. We only enforce the
2225
// C++20 restrictions here; additional syntactic and semantic restrictions
2226
// are applied elsewhere.
2227
if (isTemplateArgument(Kind)) {
2228
int InvalidBaseKind = -1;
2229
StringRef Ident;
2230
if (Base.is<TypeInfoLValue>())
2231
InvalidBaseKind = 0;
2232
else if (isa_and_nonnull<StringLiteral>(BaseE))
2233
InvalidBaseKind = 1;
2234
else if (isa_and_nonnull<MaterializeTemporaryExpr>(BaseE) ||
2235
isa_and_nonnull<LifetimeExtendedTemporaryDecl>(BaseVD))
2236
InvalidBaseKind = 2;
2237
else if (auto *PE = dyn_cast_or_null<PredefinedExpr>(BaseE)) {
2238
InvalidBaseKind = 3;
2239
Ident = PE->getIdentKindName();
2240
}
2241
2242
if (InvalidBaseKind != -1) {
2243
Info.FFDiag(Loc, diag::note_constexpr_invalid_template_arg)
2244
<< IsReferenceType << !Designator.Entries.empty() << InvalidBaseKind
2245
<< Ident;
2246
return false;
2247
}
2248
}
2249
2250
if (auto *FD = dyn_cast_or_null<FunctionDecl>(BaseVD);
2251
FD && FD->isImmediateFunction()) {
2252
Info.FFDiag(Loc, diag::note_consteval_address_accessible)
2253
<< !Type->isAnyPointerType();
2254
Info.Note(FD->getLocation(), diag::note_declared_at);
2255
return false;
2256
}
2257
2258
// Check that the object is a global. Note that the fake 'this' object we
2259
// manufacture when checking potential constant expressions is conservatively
2260
// assumed to be global here.
2261
if (!IsGlobalLValue(Base)) {
2262
if (Info.getLangOpts().CPlusPlus11) {
2263
Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
2264
<< IsReferenceType << !Designator.Entries.empty() << !!BaseVD
2265
<< BaseVD;
2266
auto *VarD = dyn_cast_or_null<VarDecl>(BaseVD);
2267
if (VarD && VarD->isConstexpr()) {
2268
// Non-static local constexpr variables have unintuitive semantics:
2269
// constexpr int a = 1;
2270
// constexpr const int *p = &a;
2271
// ... is invalid because the address of 'a' is not constant. Suggest
2272
// adding a 'static' in this case.
2273
Info.Note(VarD->getLocation(), diag::note_constexpr_not_static)
2274
<< VarD
2275
<< FixItHint::CreateInsertion(VarD->getBeginLoc(), "static ");
2276
} else {
2277
NoteLValueLocation(Info, Base);
2278
}
2279
} else {
2280
Info.FFDiag(Loc);
2281
}
2282
// Don't allow references to temporaries to escape.
2283
return false;
2284
}
2285
assert((Info.checkingPotentialConstantExpression() ||
2286
LVal.getLValueCallIndex() == 0) &&
2287
"have call index for global lvalue");
2288
2289
if (Base.is<DynamicAllocLValue>()) {
2290
Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc)
2291
<< IsReferenceType << !Designator.Entries.empty();
2292
NoteLValueLocation(Info, Base);
2293
return false;
2294
}
2295
2296
if (BaseVD) {
2297
if (const VarDecl *Var = dyn_cast<const VarDecl>(BaseVD)) {
2298
// Check if this is a thread-local variable.
2299
if (Var->getTLSKind())
2300
// FIXME: Diagnostic!
2301
return false;
2302
2303
// A dllimport variable never acts like a constant, unless we're
2304
// evaluating a value for use only in name mangling.
2305
if (!isForManglingOnly(Kind) && Var->hasAttr<DLLImportAttr>())
2306
// FIXME: Diagnostic!
2307
return false;
2308
2309
// In CUDA/HIP device compilation, only device side variables have
2310
// constant addresses.
2311
if (Info.getCtx().getLangOpts().CUDA &&
2312
Info.getCtx().getLangOpts().CUDAIsDevice &&
2313
Info.getCtx().CUDAConstantEvalCtx.NoWrongSidedVars) {
2314
if ((!Var->hasAttr<CUDADeviceAttr>() &&
2315
!Var->hasAttr<CUDAConstantAttr>() &&
2316
!Var->getType()->isCUDADeviceBuiltinSurfaceType() &&
2317
!Var->getType()->isCUDADeviceBuiltinTextureType()) ||
2318
Var->hasAttr<HIPManagedAttr>())
2319
return false;
2320
}
2321
}
2322
if (const auto *FD = dyn_cast<const FunctionDecl>(BaseVD)) {
2323
// __declspec(dllimport) must be handled very carefully:
2324
// We must never initialize an expression with the thunk in C++.
2325
// Doing otherwise would allow the same id-expression to yield
2326
// different addresses for the same function in different translation
2327
// units. However, this means that we must dynamically initialize the
2328
// expression with the contents of the import address table at runtime.
2329
//
2330
// The C language has no notion of ODR; furthermore, it has no notion of
2331
// dynamic initialization. This means that we are permitted to
2332
// perform initialization with the address of the thunk.
2333
if (Info.getLangOpts().CPlusPlus && !isForManglingOnly(Kind) &&
2334
FD->hasAttr<DLLImportAttr>())
2335
// FIXME: Diagnostic!
2336
return false;
2337
}
2338
} else if (const auto *MTE =
2339
dyn_cast_or_null<MaterializeTemporaryExpr>(BaseE)) {
2340
if (CheckedTemps.insert(MTE).second) {
2341
QualType TempType = getType(Base);
2342
if (TempType.isDestructedType()) {
2343
Info.FFDiag(MTE->getExprLoc(),
2344
diag::note_constexpr_unsupported_temporary_nontrivial_dtor)
2345
<< TempType;
2346
return false;
2347
}
2348
2349
APValue *V = MTE->getOrCreateValue(false);
2350
assert(V && "evasluation result refers to uninitialised temporary");
2351
if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2352
Info, MTE->getExprLoc(), TempType, *V, Kind,
2353
/*SubobjectDecl=*/nullptr, CheckedTemps))
2354
return false;
2355
}
2356
}
2357
2358
// Allow address constant expressions to be past-the-end pointers. This is
2359
// an extension: the standard requires them to point to an object.
2360
if (!IsReferenceType)
2361
return true;
2362
2363
// A reference constant expression must refer to an object.
2364
if (!Base) {
2365
// FIXME: diagnostic
2366
Info.CCEDiag(Loc);
2367
return true;
2368
}
2369
2370
// Does this refer one past the end of some object?
2371
if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
2372
Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
2373
<< !Designator.Entries.empty() << !!BaseVD << BaseVD;
2374
NoteLValueLocation(Info, Base);
2375
}
2376
2377
return true;
2378
}
2379
2380
/// Member pointers are constant expressions unless they point to a
2381
/// non-virtual dllimport member function.
2382
static bool CheckMemberPointerConstantExpression(EvalInfo &Info,
2383
SourceLocation Loc,
2384
QualType Type,
2385
const APValue &Value,
2386
ConstantExprKind Kind) {
2387
const ValueDecl *Member = Value.getMemberPointerDecl();
2388
const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member);
2389
if (!FD)
2390
return true;
2391
if (FD->isImmediateFunction()) {
2392
Info.FFDiag(Loc, diag::note_consteval_address_accessible) << /*pointer*/ 0;
2393
Info.Note(FD->getLocation(), diag::note_declared_at);
2394
return false;
2395
}
2396
return isForManglingOnly(Kind) || FD->isVirtual() ||
2397
!FD->hasAttr<DLLImportAttr>();
2398
}
2399
2400
/// Check that this core constant expression is of literal type, and if not,
2401
/// produce an appropriate diagnostic.
2402
static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
2403
const LValue *This = nullptr) {
2404
if (!E->isPRValue() || E->getType()->isLiteralType(Info.Ctx))
2405
return true;
2406
2407
// C++1y: A constant initializer for an object o [...] may also invoke
2408
// constexpr constructors for o and its subobjects even if those objects
2409
// are of non-literal class types.
2410
//
2411
// C++11 missed this detail for aggregates, so classes like this:
2412
// struct foo_t { union { int i; volatile int j; } u; };
2413
// are not (obviously) initializable like so:
2414
// __attribute__((__require_constant_initialization__))
2415
// static const foo_t x = {{0}};
2416
// because "i" is a subobject with non-literal initialization (due to the
2417
// volatile member of the union). See:
2418
// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677
2419
// Therefore, we use the C++1y behavior.
2420
if (This && Info.EvaluatingDecl == This->getLValueBase())
2421
return true;
2422
2423
// Prvalue constant expressions must be of literal types.
2424
if (Info.getLangOpts().CPlusPlus11)
2425
Info.FFDiag(E, diag::note_constexpr_nonliteral)
2426
<< E->getType();
2427
else
2428
Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2429
return false;
2430
}
2431
2432
static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2433
EvalInfo &Info, SourceLocation DiagLoc,
2434
QualType Type, const APValue &Value,
2435
ConstantExprKind Kind,
2436
const FieldDecl *SubobjectDecl,
2437
CheckedTemporaries &CheckedTemps) {
2438
if (!Value.hasValue()) {
2439
if (SubobjectDecl) {
2440
Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
2441
<< /*(name)*/ 1 << SubobjectDecl;
2442
Info.Note(SubobjectDecl->getLocation(),
2443
diag::note_constexpr_subobject_declared_here);
2444
} else {
2445
Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
2446
<< /*of type*/ 0 << Type;
2447
}
2448
return false;
2449
}
2450
2451
// We allow _Atomic(T) to be initialized from anything that T can be
2452
// initialized from.
2453
if (const AtomicType *AT = Type->getAs<AtomicType>())
2454
Type = AT->getValueType();
2455
2456
// Core issue 1454: For a literal constant expression of array or class type,
2457
// each subobject of its value shall have been initialized by a constant
2458
// expression.
2459
if (Value.isArray()) {
2460
QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
2461
for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
2462
if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2463
Value.getArrayInitializedElt(I), Kind,
2464
SubobjectDecl, CheckedTemps))
2465
return false;
2466
}
2467
if (!Value.hasArrayFiller())
2468
return true;
2469
return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2470
Value.getArrayFiller(), Kind, SubobjectDecl,
2471
CheckedTemps);
2472
}
2473
if (Value.isUnion() && Value.getUnionField()) {
2474
return CheckEvaluationResult(
2475
CERK, Info, DiagLoc, Value.getUnionField()->getType(),
2476
Value.getUnionValue(), Kind, Value.getUnionField(), CheckedTemps);
2477
}
2478
if (Value.isStruct()) {
2479
RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
2480
if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
2481
unsigned BaseIndex = 0;
2482
for (const CXXBaseSpecifier &BS : CD->bases()) {
2483
const APValue &BaseValue = Value.getStructBase(BaseIndex);
2484
if (!BaseValue.hasValue()) {
2485
SourceLocation TypeBeginLoc = BS.getBaseTypeLoc();
2486
Info.FFDiag(TypeBeginLoc, diag::note_constexpr_uninitialized_base)
2487
<< BS.getType() << SourceRange(TypeBeginLoc, BS.getEndLoc());
2488
return false;
2489
}
2490
if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(), BaseValue,
2491
Kind, /*SubobjectDecl=*/nullptr,
2492
CheckedTemps))
2493
return false;
2494
++BaseIndex;
2495
}
2496
}
2497
for (const auto *I : RD->fields()) {
2498
if (I->isUnnamedBitField())
2499
continue;
2500
2501
if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(),
2502
Value.getStructField(I->getFieldIndex()), Kind,
2503
I, CheckedTemps))
2504
return false;
2505
}
2506
}
2507
2508
if (Value.isLValue() &&
2509
CERK == CheckEvaluationResultKind::ConstantExpression) {
2510
LValue LVal;
2511
LVal.setFrom(Info.Ctx, Value);
2512
return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Kind,
2513
CheckedTemps);
2514
}
2515
2516
if (Value.isMemberPointer() &&
2517
CERK == CheckEvaluationResultKind::ConstantExpression)
2518
return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Kind);
2519
2520
// Everything else is fine.
2521
return true;
2522
}
2523
2524
/// Check that this core constant expression value is a valid value for a
2525
/// constant expression. If not, report an appropriate diagnostic. Does not
2526
/// check that the expression is of literal type.
2527
static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
2528
QualType Type, const APValue &Value,
2529
ConstantExprKind Kind) {
2530
// Nothing to check for a constant expression of type 'cv void'.
2531
if (Type->isVoidType())
2532
return true;
2533
2534
CheckedTemporaries CheckedTemps;
2535
return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2536
Info, DiagLoc, Type, Value, Kind,
2537
/*SubobjectDecl=*/nullptr, CheckedTemps);
2538
}
2539
2540
/// Check that this evaluated value is fully-initialized and can be loaded by
2541
/// an lvalue-to-rvalue conversion.
2542
static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc,
2543
QualType Type, const APValue &Value) {
2544
CheckedTemporaries CheckedTemps;
2545
return CheckEvaluationResult(
2546
CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value,
2547
ConstantExprKind::Normal, /*SubobjectDecl=*/nullptr, CheckedTemps);
2548
}
2549
2550
/// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless
2551
/// "the allocated storage is deallocated within the evaluation".
2552
static bool CheckMemoryLeaks(EvalInfo &Info) {
2553
if (!Info.HeapAllocs.empty()) {
2554
// We can still fold to a constant despite a compile-time memory leak,
2555
// so long as the heap allocation isn't referenced in the result (we check
2556
// that in CheckConstantExpression).
2557
Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr,
2558
diag::note_constexpr_memory_leak)
2559
<< unsigned(Info.HeapAllocs.size() - 1);
2560
}
2561
return true;
2562
}
2563
2564
static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
2565
// A null base expression indicates a null pointer. These are always
2566
// evaluatable, and they are false unless the offset is zero.
2567
if (!Value.getLValueBase()) {
2568
// TODO: Should a non-null pointer with an offset of zero evaluate to true?
2569
Result = !Value.getLValueOffset().isZero();
2570
return true;
2571
}
2572
2573
// We have a non-null base. These are generally known to be true, but if it's
2574
// a weak declaration it can be null at runtime.
2575
Result = true;
2576
const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
2577
return !Decl || !Decl->isWeak();
2578
}
2579
2580
static bool HandleConversionToBool(const APValue &Val, bool &Result) {
2581
// TODO: This function should produce notes if it fails.
2582
switch (Val.getKind()) {
2583
case APValue::None:
2584
case APValue::Indeterminate:
2585
return false;
2586
case APValue::Int:
2587
Result = Val.getInt().getBoolValue();
2588
return true;
2589
case APValue::FixedPoint:
2590
Result = Val.getFixedPoint().getBoolValue();
2591
return true;
2592
case APValue::Float:
2593
Result = !Val.getFloat().isZero();
2594
return true;
2595
case APValue::ComplexInt:
2596
Result = Val.getComplexIntReal().getBoolValue() ||
2597
Val.getComplexIntImag().getBoolValue();
2598
return true;
2599
case APValue::ComplexFloat:
2600
Result = !Val.getComplexFloatReal().isZero() ||
2601
!Val.getComplexFloatImag().isZero();
2602
return true;
2603
case APValue::LValue:
2604
return EvalPointerValueAsBool(Val, Result);
2605
case APValue::MemberPointer:
2606
if (Val.getMemberPointerDecl() && Val.getMemberPointerDecl()->isWeak()) {
2607
return false;
2608
}
2609
Result = Val.getMemberPointerDecl();
2610
return true;
2611
case APValue::Vector:
2612
case APValue::Array:
2613
case APValue::Struct:
2614
case APValue::Union:
2615
case APValue::AddrLabelDiff:
2616
return false;
2617
}
2618
2619
llvm_unreachable("unknown APValue kind");
2620
}
2621
2622
static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
2623
EvalInfo &Info) {
2624
assert(!E->isValueDependent());
2625
assert(E->isPRValue() && "missing lvalue-to-rvalue conv in bool condition");
2626
APValue Val;
2627
if (!Evaluate(Val, Info, E))
2628
return false;
2629
return HandleConversionToBool(Val, Result);
2630
}
2631
2632
template<typename T>
2633
static bool HandleOverflow(EvalInfo &Info, const Expr *E,
2634
const T &SrcValue, QualType DestType) {
2635
Info.CCEDiag(E, diag::note_constexpr_overflow)
2636
<< SrcValue << DestType;
2637
return Info.noteUndefinedBehavior();
2638
}
2639
2640
static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
2641
QualType SrcType, const APFloat &Value,
2642
QualType DestType, APSInt &Result) {
2643
unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2644
// Determine whether we are converting to unsigned or signed.
2645
bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
2646
2647
Result = APSInt(DestWidth, !DestSigned);
2648
bool ignored;
2649
if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
2650
& APFloat::opInvalidOp)
2651
return HandleOverflow(Info, E, Value, DestType);
2652
return true;
2653
}
2654
2655
/// Get rounding mode to use in evaluation of the specified expression.
2656
///
2657
/// If rounding mode is unknown at compile time, still try to evaluate the
2658
/// expression. If the result is exact, it does not depend on rounding mode.
2659
/// So return "tonearest" mode instead of "dynamic".
2660
static llvm::RoundingMode getActiveRoundingMode(EvalInfo &Info, const Expr *E) {
2661
llvm::RoundingMode RM =
2662
E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).getRoundingMode();
2663
if (RM == llvm::RoundingMode::Dynamic)
2664
RM = llvm::RoundingMode::NearestTiesToEven;
2665
return RM;
2666
}
2667
2668
/// Check if the given evaluation result is allowed for constant evaluation.
2669
static bool checkFloatingPointResult(EvalInfo &Info, const Expr *E,
2670
APFloat::opStatus St) {
2671
// In a constant context, assume that any dynamic rounding mode or FP
2672
// exception state matches the default floating-point environment.
2673
if (Info.InConstantContext)
2674
return true;
2675
2676
FPOptions FPO = E->getFPFeaturesInEffect(Info.Ctx.getLangOpts());
2677
if ((St & APFloat::opInexact) &&
2678
FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) {
2679
// Inexact result means that it depends on rounding mode. If the requested
2680
// mode is dynamic, the evaluation cannot be made in compile time.
2681
Info.FFDiag(E, diag::note_constexpr_dynamic_rounding);
2682
return false;
2683
}
2684
2685
if ((St != APFloat::opOK) &&
2686
(FPO.getRoundingMode() == llvm::RoundingMode::Dynamic ||
2687
FPO.getExceptionMode() != LangOptions::FPE_Ignore ||
2688
FPO.getAllowFEnvAccess())) {
2689
Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
2690
return false;
2691
}
2692
2693
if ((St & APFloat::opStatus::opInvalidOp) &&
2694
FPO.getExceptionMode() != LangOptions::FPE_Ignore) {
2695
// There is no usefully definable result.
2696
Info.FFDiag(E);
2697
return false;
2698
}
2699
2700
// FIXME: if:
2701
// - evaluation triggered other FP exception, and
2702
// - exception mode is not "ignore", and
2703
// - the expression being evaluated is not a part of global variable
2704
// initializer,
2705
// the evaluation probably need to be rejected.
2706
return true;
2707
}
2708
2709
static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
2710
QualType SrcType, QualType DestType,
2711
APFloat &Result) {
2712
assert((isa<CastExpr>(E) || isa<CompoundAssignOperator>(E) ||
2713
isa<ConvertVectorExpr>(E)) &&
2714
"HandleFloatToFloatCast has been checked with only CastExpr, "
2715
"CompoundAssignOperator and ConvertVectorExpr. Please either validate "
2716
"the new expression or address the root cause of this usage.");
2717
llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
2718
APFloat::opStatus St;
2719
APFloat Value = Result;
2720
bool ignored;
2721
St = Result.convert(Info.Ctx.getFloatTypeSemantics(DestType), RM, &ignored);
2722
return checkFloatingPointResult(Info, E, St);
2723
}
2724
2725
static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
2726
QualType DestType, QualType SrcType,
2727
const APSInt &Value) {
2728
unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2729
// Figure out if this is a truncate, extend or noop cast.
2730
// If the input is signed, do a sign extend, noop, or truncate.
2731
APSInt Result = Value.extOrTrunc(DestWidth);
2732
Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
2733
if (DestType->isBooleanType())
2734
Result = Value.getBoolValue();
2735
return Result;
2736
}
2737
2738
static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
2739
const FPOptions FPO,
2740
QualType SrcType, const APSInt &Value,
2741
QualType DestType, APFloat &Result) {
2742
Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
2743
llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
2744
APFloat::opStatus St = Result.convertFromAPInt(Value, Value.isSigned(), RM);
2745
return checkFloatingPointResult(Info, E, St);
2746
}
2747
2748
static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
2749
APValue &Value, const FieldDecl *FD) {
2750
assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
2751
2752
if (!Value.isInt()) {
2753
// Trying to store a pointer-cast-to-integer into a bitfield.
2754
// FIXME: In this case, we should provide the diagnostic for casting
2755
// a pointer to an integer.
2756
assert(Value.isLValue() && "integral value neither int nor lvalue?");
2757
Info.FFDiag(E);
2758
return false;
2759
}
2760
2761
APSInt &Int = Value.getInt();
2762
unsigned OldBitWidth = Int.getBitWidth();
2763
unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
2764
if (NewBitWidth < OldBitWidth)
2765
Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
2766
return true;
2767
}
2768
2769
/// Perform the given integer operation, which is known to need at most BitWidth
2770
/// bits, and check for overflow in the original type (if that type was not an
2771
/// unsigned type).
2772
template<typename Operation>
2773
static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
2774
const APSInt &LHS, const APSInt &RHS,
2775
unsigned BitWidth, Operation Op,
2776
APSInt &Result) {
2777
if (LHS.isUnsigned()) {
2778
Result = Op(LHS, RHS);
2779
return true;
2780
}
2781
2782
APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
2783
Result = Value.trunc(LHS.getBitWidth());
2784
if (Result.extend(BitWidth) != Value) {
2785
if (Info.checkingForUndefinedBehavior())
2786
Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
2787
diag::warn_integer_constant_overflow)
2788
<< toString(Result, 10, Result.isSigned(), /*formatAsCLiteral=*/false,
2789
/*UpperCase=*/true, /*InsertSeparators=*/true)
2790
<< E->getType() << E->getSourceRange();
2791
return HandleOverflow(Info, E, Value, E->getType());
2792
}
2793
return true;
2794
}
2795
2796
/// Perform the given binary integer operation.
2797
static bool handleIntIntBinOp(EvalInfo &Info, const BinaryOperator *E,
2798
const APSInt &LHS, BinaryOperatorKind Opcode,
2799
APSInt RHS, APSInt &Result) {
2800
bool HandleOverflowResult = true;
2801
switch (Opcode) {
2802
default:
2803
Info.FFDiag(E);
2804
return false;
2805
case BO_Mul:
2806
return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
2807
std::multiplies<APSInt>(), Result);
2808
case BO_Add:
2809
return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2810
std::plus<APSInt>(), Result);
2811
case BO_Sub:
2812
return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2813
std::minus<APSInt>(), Result);
2814
case BO_And: Result = LHS & RHS; return true;
2815
case BO_Xor: Result = LHS ^ RHS; return true;
2816
case BO_Or: Result = LHS | RHS; return true;
2817
case BO_Div:
2818
case BO_Rem:
2819
if (RHS == 0) {
2820
Info.FFDiag(E, diag::note_expr_divide_by_zero)
2821
<< E->getRHS()->getSourceRange();
2822
return false;
2823
}
2824
// Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
2825
// this operation and gives the two's complement result.
2826
if (RHS.isNegative() && RHS.isAllOnes() && LHS.isSigned() &&
2827
LHS.isMinSignedValue())
2828
HandleOverflowResult = HandleOverflow(
2829
Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
2830
Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
2831
return HandleOverflowResult;
2832
case BO_Shl: {
2833
if (Info.getLangOpts().OpenCL)
2834
// OpenCL 6.3j: shift values are effectively % word size of LHS.
2835
RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2836
static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2837
RHS.isUnsigned());
2838
else if (RHS.isSigned() && RHS.isNegative()) {
2839
// During constant-folding, a negative shift is an opposite shift. Such
2840
// a shift is not a constant expression.
2841
Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2842
if (!Info.noteUndefinedBehavior())
2843
return false;
2844
RHS = -RHS;
2845
goto shift_right;
2846
}
2847
shift_left:
2848
// C++11 [expr.shift]p1: Shift width must be less than the bit width of
2849
// the shifted type.
2850
unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2851
if (SA != RHS) {
2852
Info.CCEDiag(E, diag::note_constexpr_large_shift)
2853
<< RHS << E->getType() << LHS.getBitWidth();
2854
if (!Info.noteUndefinedBehavior())
2855
return false;
2856
} else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus20) {
2857
// C++11 [expr.shift]p2: A signed left shift must have a non-negative
2858
// operand, and must not overflow the corresponding unsigned type.
2859
// C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to
2860
// E1 x 2^E2 module 2^N.
2861
if (LHS.isNegative()) {
2862
Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
2863
if (!Info.noteUndefinedBehavior())
2864
return false;
2865
} else if (LHS.countl_zero() < SA) {
2866
Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
2867
if (!Info.noteUndefinedBehavior())
2868
return false;
2869
}
2870
}
2871
Result = LHS << SA;
2872
return true;
2873
}
2874
case BO_Shr: {
2875
if (Info.getLangOpts().OpenCL)
2876
// OpenCL 6.3j: shift values are effectively % word size of LHS.
2877
RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2878
static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2879
RHS.isUnsigned());
2880
else if (RHS.isSigned() && RHS.isNegative()) {
2881
// During constant-folding, a negative shift is an opposite shift. Such a
2882
// shift is not a constant expression.
2883
Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2884
if (!Info.noteUndefinedBehavior())
2885
return false;
2886
RHS = -RHS;
2887
goto shift_left;
2888
}
2889
shift_right:
2890
// C++11 [expr.shift]p1: Shift width must be less than the bit width of the
2891
// shifted type.
2892
unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2893
if (SA != RHS) {
2894
Info.CCEDiag(E, diag::note_constexpr_large_shift)
2895
<< RHS << E->getType() << LHS.getBitWidth();
2896
if (!Info.noteUndefinedBehavior())
2897
return false;
2898
}
2899
2900
Result = LHS >> SA;
2901
return true;
2902
}
2903
2904
case BO_LT: Result = LHS < RHS; return true;
2905
case BO_GT: Result = LHS > RHS; return true;
2906
case BO_LE: Result = LHS <= RHS; return true;
2907
case BO_GE: Result = LHS >= RHS; return true;
2908
case BO_EQ: Result = LHS == RHS; return true;
2909
case BO_NE: Result = LHS != RHS; return true;
2910
case BO_Cmp:
2911
llvm_unreachable("BO_Cmp should be handled elsewhere");
2912
}
2913
}
2914
2915
/// Perform the given binary floating-point operation, in-place, on LHS.
2916
static bool handleFloatFloatBinOp(EvalInfo &Info, const BinaryOperator *E,
2917
APFloat &LHS, BinaryOperatorKind Opcode,
2918
const APFloat &RHS) {
2919
llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
2920
APFloat::opStatus St;
2921
switch (Opcode) {
2922
default:
2923
Info.FFDiag(E);
2924
return false;
2925
case BO_Mul:
2926
St = LHS.multiply(RHS, RM);
2927
break;
2928
case BO_Add:
2929
St = LHS.add(RHS, RM);
2930
break;
2931
case BO_Sub:
2932
St = LHS.subtract(RHS, RM);
2933
break;
2934
case BO_Div:
2935
// [expr.mul]p4:
2936
// If the second operand of / or % is zero the behavior is undefined.
2937
if (RHS.isZero())
2938
Info.CCEDiag(E, diag::note_expr_divide_by_zero);
2939
St = LHS.divide(RHS, RM);
2940
break;
2941
}
2942
2943
// [expr.pre]p4:
2944
// If during the evaluation of an expression, the result is not
2945
// mathematically defined [...], the behavior is undefined.
2946
// FIXME: C++ rules require us to not conform to IEEE 754 here.
2947
if (LHS.isNaN()) {
2948
Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
2949
return Info.noteUndefinedBehavior();
2950
}
2951
2952
return checkFloatingPointResult(Info, E, St);
2953
}
2954
2955
static bool handleLogicalOpForVector(const APInt &LHSValue,
2956
BinaryOperatorKind Opcode,
2957
const APInt &RHSValue, APInt &Result) {
2958
bool LHS = (LHSValue != 0);
2959
bool RHS = (RHSValue != 0);
2960
2961
if (Opcode == BO_LAnd)
2962
Result = LHS && RHS;
2963
else
2964
Result = LHS || RHS;
2965
return true;
2966
}
2967
static bool handleLogicalOpForVector(const APFloat &LHSValue,
2968
BinaryOperatorKind Opcode,
2969
const APFloat &RHSValue, APInt &Result) {
2970
bool LHS = !LHSValue.isZero();
2971
bool RHS = !RHSValue.isZero();
2972
2973
if (Opcode == BO_LAnd)
2974
Result = LHS && RHS;
2975
else
2976
Result = LHS || RHS;
2977
return true;
2978
}
2979
2980
static bool handleLogicalOpForVector(const APValue &LHSValue,
2981
BinaryOperatorKind Opcode,
2982
const APValue &RHSValue, APInt &Result) {
2983
// The result is always an int type, however operands match the first.
2984
if (LHSValue.getKind() == APValue::Int)
2985
return handleLogicalOpForVector(LHSValue.getInt(), Opcode,
2986
RHSValue.getInt(), Result);
2987
assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
2988
return handleLogicalOpForVector(LHSValue.getFloat(), Opcode,
2989
RHSValue.getFloat(), Result);
2990
}
2991
2992
template <typename APTy>
2993
static bool
2994
handleCompareOpForVectorHelper(const APTy &LHSValue, BinaryOperatorKind Opcode,
2995
const APTy &RHSValue, APInt &Result) {
2996
switch (Opcode) {
2997
default:
2998
llvm_unreachable("unsupported binary operator");
2999
case BO_EQ:
3000
Result = (LHSValue == RHSValue);
3001
break;
3002
case BO_NE:
3003
Result = (LHSValue != RHSValue);
3004
break;
3005
case BO_LT:
3006
Result = (LHSValue < RHSValue);
3007
break;
3008
case BO_GT:
3009
Result = (LHSValue > RHSValue);
3010
break;
3011
case BO_LE:
3012
Result = (LHSValue <= RHSValue);
3013
break;
3014
case BO_GE:
3015
Result = (LHSValue >= RHSValue);
3016
break;
3017
}
3018
3019
// The boolean operations on these vector types use an instruction that
3020
// results in a mask of '-1' for the 'truth' value. Ensure that we negate 1
3021
// to -1 to make sure that we produce the correct value.
3022
Result.negate();
3023
3024
return true;
3025
}
3026
3027
static bool handleCompareOpForVector(const APValue &LHSValue,
3028
BinaryOperatorKind Opcode,
3029
const APValue &RHSValue, APInt &Result) {
3030
// The result is always an int type, however operands match the first.
3031
if (LHSValue.getKind() == APValue::Int)
3032
return handleCompareOpForVectorHelper(LHSValue.getInt(), Opcode,
3033
RHSValue.getInt(), Result);
3034
assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
3035
return handleCompareOpForVectorHelper(LHSValue.getFloat(), Opcode,
3036
RHSValue.getFloat(), Result);
3037
}
3038
3039
// Perform binary operations for vector types, in place on the LHS.
3040
static bool handleVectorVectorBinOp(EvalInfo &Info, const BinaryOperator *E,
3041
BinaryOperatorKind Opcode,
3042
APValue &LHSValue,
3043
const APValue &RHSValue) {
3044
assert(Opcode != BO_PtrMemD && Opcode != BO_PtrMemI &&
3045
"Operation not supported on vector types");
3046
3047
const auto *VT = E->getType()->castAs<VectorType>();
3048
unsigned NumElements = VT->getNumElements();
3049
QualType EltTy = VT->getElementType();
3050
3051
// In the cases (typically C as I've observed) where we aren't evaluating
3052
// constexpr but are checking for cases where the LHS isn't yet evaluatable,
3053
// just give up.
3054
if (!LHSValue.isVector()) {
3055
assert(LHSValue.isLValue() &&
3056
"A vector result that isn't a vector OR uncalculated LValue");
3057
Info.FFDiag(E);
3058
return false;
3059
}
3060
3061
assert(LHSValue.getVectorLength() == NumElements &&
3062
RHSValue.getVectorLength() == NumElements && "Different vector sizes");
3063
3064
SmallVector<APValue, 4> ResultElements;
3065
3066
for (unsigned EltNum = 0; EltNum < NumElements; ++EltNum) {
3067
APValue LHSElt = LHSValue.getVectorElt(EltNum);
3068
APValue RHSElt = RHSValue.getVectorElt(EltNum);
3069
3070
if (EltTy->isIntegerType()) {
3071
APSInt EltResult{Info.Ctx.getIntWidth(EltTy),
3072
EltTy->isUnsignedIntegerType()};
3073
bool Success = true;
3074
3075
if (BinaryOperator::isLogicalOp(Opcode))
3076
Success = handleLogicalOpForVector(LHSElt, Opcode, RHSElt, EltResult);
3077
else if (BinaryOperator::isComparisonOp(Opcode))
3078
Success = handleCompareOpForVector(LHSElt, Opcode, RHSElt, EltResult);
3079
else
3080
Success = handleIntIntBinOp(Info, E, LHSElt.getInt(), Opcode,
3081
RHSElt.getInt(), EltResult);
3082
3083
if (!Success) {
3084
Info.FFDiag(E);
3085
return false;
3086
}
3087
ResultElements.emplace_back(EltResult);
3088
3089
} else if (EltTy->isFloatingType()) {
3090
assert(LHSElt.getKind() == APValue::Float &&
3091
RHSElt.getKind() == APValue::Float &&
3092
"Mismatched LHS/RHS/Result Type");
3093
APFloat LHSFloat = LHSElt.getFloat();
3094
3095
if (!handleFloatFloatBinOp(Info, E, LHSFloat, Opcode,
3096
RHSElt.getFloat())) {
3097
Info.FFDiag(E);
3098
return false;
3099
}
3100
3101
ResultElements.emplace_back(LHSFloat);
3102
}
3103
}
3104
3105
LHSValue = APValue(ResultElements.data(), ResultElements.size());
3106
return true;
3107
}
3108
3109
/// Cast an lvalue referring to a base subobject to a derived class, by
3110
/// truncating the lvalue's path to the given length.
3111
static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
3112
const RecordDecl *TruncatedType,
3113
unsigned TruncatedElements) {
3114
SubobjectDesignator &D = Result.Designator;
3115
3116
// Check we actually point to a derived class object.
3117
if (TruncatedElements == D.Entries.size())
3118
return true;
3119
assert(TruncatedElements >= D.MostDerivedPathLength &&
3120
"not casting to a derived class");
3121
if (!Result.checkSubobject(Info, E, CSK_Derived))
3122
return false;
3123
3124
// Truncate the path to the subobject, and remove any derived-to-base offsets.
3125
const RecordDecl *RD = TruncatedType;
3126
for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
3127
if (RD->isInvalidDecl()) return false;
3128
const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3129
const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
3130
if (isVirtualBaseClass(D.Entries[I]))
3131
Result.Offset -= Layout.getVBaseClassOffset(Base);
3132
else
3133
Result.Offset -= Layout.getBaseClassOffset(Base);
3134
RD = Base;
3135
}
3136
D.Entries.resize(TruncatedElements);
3137
return true;
3138
}
3139
3140
static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3141
const CXXRecordDecl *Derived,
3142
const CXXRecordDecl *Base,
3143
const ASTRecordLayout *RL = nullptr) {
3144
if (!RL) {
3145
if (Derived->isInvalidDecl()) return false;
3146
RL = &Info.Ctx.getASTRecordLayout(Derived);
3147
}
3148
3149
Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
3150
Obj.addDecl(Info, E, Base, /*Virtual*/ false);
3151
return true;
3152
}
3153
3154
static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3155
const CXXRecordDecl *DerivedDecl,
3156
const CXXBaseSpecifier *Base) {
3157
const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
3158
3159
if (!Base->isVirtual())
3160
return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
3161
3162
SubobjectDesignator &D = Obj.Designator;
3163
if (D.Invalid)
3164
return false;
3165
3166
// Extract most-derived object and corresponding type.
3167
DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
3168
if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
3169
return false;
3170
3171
// Find the virtual base class.
3172
if (DerivedDecl->isInvalidDecl()) return false;
3173
const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
3174
Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
3175
Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
3176
return true;
3177
}
3178
3179
static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
3180
QualType Type, LValue &Result) {
3181
for (CastExpr::path_const_iterator PathI = E->path_begin(),
3182
PathE = E->path_end();
3183
PathI != PathE; ++PathI) {
3184
if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
3185
*PathI))
3186
return false;
3187
Type = (*PathI)->getType();
3188
}
3189
return true;
3190
}
3191
3192
/// Cast an lvalue referring to a derived class to a known base subobject.
3193
static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result,
3194
const CXXRecordDecl *DerivedRD,
3195
const CXXRecordDecl *BaseRD) {
3196
CXXBasePaths Paths(/*FindAmbiguities=*/false,
3197
/*RecordPaths=*/true, /*DetectVirtual=*/false);
3198
if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
3199
llvm_unreachable("Class must be derived from the passed in base class!");
3200
3201
for (CXXBasePathElement &Elem : Paths.front())
3202
if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base))
3203
return false;
3204
return true;
3205
}
3206
3207
/// Update LVal to refer to the given field, which must be a member of the type
3208
/// currently described by LVal.
3209
static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
3210
const FieldDecl *FD,
3211
const ASTRecordLayout *RL = nullptr) {
3212
if (!RL) {
3213
if (FD->getParent()->isInvalidDecl()) return false;
3214
RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
3215
}
3216
3217
unsigned I = FD->getFieldIndex();
3218
LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I)));
3219
LVal.addDecl(Info, E, FD);
3220
return true;
3221
}
3222
3223
/// Update LVal to refer to the given indirect field.
3224
static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
3225
LValue &LVal,
3226
const IndirectFieldDecl *IFD) {
3227
for (const auto *C : IFD->chain())
3228
if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
3229
return false;
3230
return true;
3231
}
3232
3233
enum class SizeOfType {
3234
SizeOf,
3235
DataSizeOf,
3236
};
3237
3238
/// Get the size of the given type in char units.
3239
static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc, QualType Type,
3240
CharUnits &Size, SizeOfType SOT = SizeOfType::SizeOf) {
3241
// sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
3242
// extension.
3243
if (Type->isVoidType() || Type->isFunctionType()) {
3244
Size = CharUnits::One();
3245
return true;
3246
}
3247
3248
if (Type->isDependentType()) {
3249
Info.FFDiag(Loc);
3250
return false;
3251
}
3252
3253
if (!Type->isConstantSizeType()) {
3254
// sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
3255
// FIXME: Better diagnostic.
3256
Info.FFDiag(Loc);
3257
return false;
3258
}
3259
3260
if (SOT == SizeOfType::SizeOf)
3261
Size = Info.Ctx.getTypeSizeInChars(Type);
3262
else
3263
Size = Info.Ctx.getTypeInfoDataSizeInChars(Type).Width;
3264
return true;
3265
}
3266
3267
/// Update a pointer value to model pointer arithmetic.
3268
/// \param Info - Information about the ongoing evaluation.
3269
/// \param E - The expression being evaluated, for diagnostic purposes.
3270
/// \param LVal - The pointer value to be updated.
3271
/// \param EltTy - The pointee type represented by LVal.
3272
/// \param Adjustment - The adjustment, in objects of type EltTy, to add.
3273
static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3274
LValue &LVal, QualType EltTy,
3275
APSInt Adjustment) {
3276
CharUnits SizeOfPointee;
3277
if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
3278
return false;
3279
3280
LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee);
3281
return true;
3282
}
3283
3284
static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3285
LValue &LVal, QualType EltTy,
3286
int64_t Adjustment) {
3287
return HandleLValueArrayAdjustment(Info, E, LVal, EltTy,
3288
APSInt::get(Adjustment));
3289
}
3290
3291
/// Update an lvalue to refer to a component of a complex number.
3292
/// \param Info - Information about the ongoing evaluation.
3293
/// \param LVal - The lvalue to be updated.
3294
/// \param EltTy - The complex number's component type.
3295
/// \param Imag - False for the real component, true for the imaginary.
3296
static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
3297
LValue &LVal, QualType EltTy,
3298
bool Imag) {
3299
if (Imag) {
3300
CharUnits SizeOfComponent;
3301
if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
3302
return false;
3303
LVal.Offset += SizeOfComponent;
3304
}
3305
LVal.addComplex(Info, E, EltTy, Imag);
3306
return true;
3307
}
3308
3309
/// Try to evaluate the initializer for a variable declaration.
3310
///
3311
/// \param Info Information about the ongoing evaluation.
3312
/// \param E An expression to be used when printing diagnostics.
3313
/// \param VD The variable whose initializer should be obtained.
3314
/// \param Version The version of the variable within the frame.
3315
/// \param Frame The frame in which the variable was created. Must be null
3316
/// if this variable is not local to the evaluation.
3317
/// \param Result Filled in with a pointer to the value of the variable.
3318
static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
3319
const VarDecl *VD, CallStackFrame *Frame,
3320
unsigned Version, APValue *&Result) {
3321
APValue::LValueBase Base(VD, Frame ? Frame->Index : 0, Version);
3322
3323
// If this is a local variable, dig out its value.
3324
if (Frame) {
3325
Result = Frame->getTemporary(VD, Version);
3326
if (Result)
3327
return true;
3328
3329
if (!isa<ParmVarDecl>(VD)) {
3330
// Assume variables referenced within a lambda's call operator that were
3331
// not declared within the call operator are captures and during checking
3332
// of a potential constant expression, assume they are unknown constant
3333
// expressions.
3334
assert(isLambdaCallOperator(Frame->Callee) &&
3335
(VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&
3336
"missing value for local variable");
3337
if (Info.checkingPotentialConstantExpression())
3338
return false;
3339
// FIXME: This diagnostic is bogus; we do support captures. Is this code
3340
// still reachable at all?
3341
Info.FFDiag(E->getBeginLoc(),
3342
diag::note_unimplemented_constexpr_lambda_feature_ast)
3343
<< "captures not currently allowed";
3344
return false;
3345
}
3346
}
3347
3348
// If we're currently evaluating the initializer of this declaration, use that
3349
// in-flight value.
3350
if (Info.EvaluatingDecl == Base) {
3351
Result = Info.EvaluatingDeclValue;
3352
return true;
3353
}
3354
3355
if (isa<ParmVarDecl>(VD)) {
3356
// Assume parameters of a potential constant expression are usable in
3357
// constant expressions.
3358
if (!Info.checkingPotentialConstantExpression() ||
3359
!Info.CurrentCall->Callee ||
3360
!Info.CurrentCall->Callee->Equals(VD->getDeclContext())) {
3361
if (Info.getLangOpts().CPlusPlus11) {
3362
Info.FFDiag(E, diag::note_constexpr_function_param_value_unknown)
3363
<< VD;
3364
NoteLValueLocation(Info, Base);
3365
} else {
3366
Info.FFDiag(E);
3367
}
3368
}
3369
return false;
3370
}
3371
3372
if (E->isValueDependent())
3373
return false;
3374
3375
// Dig out the initializer, and use the declaration which it's attached to.
3376
// FIXME: We should eventually check whether the variable has a reachable
3377
// initializing declaration.
3378
const Expr *Init = VD->getAnyInitializer(VD);
3379
if (!Init) {
3380
// Don't diagnose during potential constant expression checking; an
3381
// initializer might be added later.
3382
if (!Info.checkingPotentialConstantExpression()) {
3383
Info.FFDiag(E, diag::note_constexpr_var_init_unknown, 1)
3384
<< VD;
3385
NoteLValueLocation(Info, Base);
3386
}
3387
return false;
3388
}
3389
3390
if (Init->isValueDependent()) {
3391
// The DeclRefExpr is not value-dependent, but the variable it refers to
3392
// has a value-dependent initializer. This should only happen in
3393
// constant-folding cases, where the variable is not actually of a suitable
3394
// type for use in a constant expression (otherwise the DeclRefExpr would
3395
// have been value-dependent too), so diagnose that.
3396
assert(!VD->mightBeUsableInConstantExpressions(Info.Ctx));
3397
if (!Info.checkingPotentialConstantExpression()) {
3398
Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
3399
? diag::note_constexpr_ltor_non_constexpr
3400
: diag::note_constexpr_ltor_non_integral, 1)
3401
<< VD << VD->getType();
3402
NoteLValueLocation(Info, Base);
3403
}
3404
return false;
3405
}
3406
3407
// Check that we can fold the initializer. In C++, we will have already done
3408
// this in the cases where it matters for conformance.
3409
if (!VD->evaluateValue()) {
3410
Info.FFDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3411
NoteLValueLocation(Info, Base);
3412
return false;
3413
}
3414
3415
// Check that the variable is actually usable in constant expressions. For a
3416
// const integral variable or a reference, we might have a non-constant
3417
// initializer that we can nonetheless evaluate the initializer for. Such
3418
// variables are not usable in constant expressions. In C++98, the
3419
// initializer also syntactically needs to be an ICE.
3420
//
3421
// FIXME: We don't diagnose cases that aren't potentially usable in constant
3422
// expressions here; doing so would regress diagnostics for things like
3423
// reading from a volatile constexpr variable.
3424
if ((Info.getLangOpts().CPlusPlus && !VD->hasConstantInitialization() &&
3425
VD->mightBeUsableInConstantExpressions(Info.Ctx)) ||
3426
((Info.getLangOpts().CPlusPlus || Info.getLangOpts().OpenCL) &&
3427
!Info.getLangOpts().CPlusPlus11 && !VD->hasICEInitializer(Info.Ctx))) {
3428
Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3429
NoteLValueLocation(Info, Base);
3430
}
3431
3432
// Never use the initializer of a weak variable, not even for constant
3433
// folding. We can't be sure that this is the definition that will be used.
3434
if (VD->isWeak()) {
3435
Info.FFDiag(E, diag::note_constexpr_var_init_weak) << VD;
3436
NoteLValueLocation(Info, Base);
3437
return false;
3438
}
3439
3440
Result = VD->getEvaluatedValue();
3441
return true;
3442
}
3443
3444
/// Get the base index of the given base class within an APValue representing
3445
/// the given derived class.
3446
static unsigned getBaseIndex(const CXXRecordDecl *Derived,
3447
const CXXRecordDecl *Base) {
3448
Base = Base->getCanonicalDecl();
3449
unsigned Index = 0;
3450
for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
3451
E = Derived->bases_end(); I != E; ++I, ++Index) {
3452
if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
3453
return Index;
3454
}
3455
3456
llvm_unreachable("base class missing from derived class's bases list");
3457
}
3458
3459
/// Extract the value of a character from a string literal.
3460
static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
3461
uint64_t Index) {
3462
assert(!isa<SourceLocExpr>(Lit) &&
3463
"SourceLocExpr should have already been converted to a StringLiteral");
3464
3465
// FIXME: Support MakeStringConstant
3466
if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) {
3467
std::string Str;
3468
Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str);
3469
assert(Index <= Str.size() && "Index too large");
3470
return APSInt::getUnsigned(Str.c_str()[Index]);
3471
}
3472
3473
if (auto PE = dyn_cast<PredefinedExpr>(Lit))
3474
Lit = PE->getFunctionName();
3475
const StringLiteral *S = cast<StringLiteral>(Lit);
3476
const ConstantArrayType *CAT =
3477
Info.Ctx.getAsConstantArrayType(S->getType());
3478
assert(CAT && "string literal isn't an array");
3479
QualType CharType = CAT->getElementType();
3480
assert(CharType->isIntegerType() && "unexpected character type");
3481
APSInt Value(Info.Ctx.getTypeSize(CharType),
3482
CharType->isUnsignedIntegerType());
3483
if (Index < S->getLength())
3484
Value = S->getCodeUnit(Index);
3485
return Value;
3486
}
3487
3488
// Expand a string literal into an array of characters.
3489
//
3490
// FIXME: This is inefficient; we should probably introduce something similar
3491
// to the LLVM ConstantDataArray to make this cheaper.
3492
static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S,
3493
APValue &Result,
3494
QualType AllocType = QualType()) {
3495
const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
3496
AllocType.isNull() ? S->getType() : AllocType);
3497
assert(CAT && "string literal isn't an array");
3498
QualType CharType = CAT->getElementType();
3499
assert(CharType->isIntegerType() && "unexpected character type");
3500
3501
unsigned Elts = CAT->getZExtSize();
3502
Result = APValue(APValue::UninitArray(),
3503
std::min(S->getLength(), Elts), Elts);
3504
APSInt Value(Info.Ctx.getTypeSize(CharType),
3505
CharType->isUnsignedIntegerType());
3506
if (Result.hasArrayFiller())
3507
Result.getArrayFiller() = APValue(Value);
3508
for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
3509
Value = S->getCodeUnit(I);
3510
Result.getArrayInitializedElt(I) = APValue(Value);
3511
}
3512
}
3513
3514
// Expand an array so that it has more than Index filled elements.
3515
static void expandArray(APValue &Array, unsigned Index) {
3516
unsigned Size = Array.getArraySize();
3517
assert(Index < Size);
3518
3519
// Always at least double the number of elements for which we store a value.
3520
unsigned OldElts = Array.getArrayInitializedElts();
3521
unsigned NewElts = std::max(Index+1, OldElts * 2);
3522
NewElts = std::min(Size, std::max(NewElts, 8u));
3523
3524
// Copy the data across.
3525
APValue NewValue(APValue::UninitArray(), NewElts, Size);
3526
for (unsigned I = 0; I != OldElts; ++I)
3527
NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
3528
for (unsigned I = OldElts; I != NewElts; ++I)
3529
NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
3530
if (NewValue.hasArrayFiller())
3531
NewValue.getArrayFiller() = Array.getArrayFiller();
3532
Array.swap(NewValue);
3533
}
3534
3535
/// Determine whether a type would actually be read by an lvalue-to-rvalue
3536
/// conversion. If it's of class type, we may assume that the copy operation
3537
/// is trivial. Note that this is never true for a union type with fields
3538
/// (because the copy always "reads" the active member) and always true for
3539
/// a non-class type.
3540
static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD);
3541
static bool isReadByLvalueToRvalueConversion(QualType T) {
3542
CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3543
return !RD || isReadByLvalueToRvalueConversion(RD);
3544
}
3545
static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD) {
3546
// FIXME: A trivial copy of a union copies the object representation, even if
3547
// the union is empty.
3548
if (RD->isUnion())
3549
return !RD->field_empty();
3550
if (RD->isEmpty())
3551
return false;
3552
3553
for (auto *Field : RD->fields())
3554
if (!Field->isUnnamedBitField() &&
3555
isReadByLvalueToRvalueConversion(Field->getType()))
3556
return true;
3557
3558
for (auto &BaseSpec : RD->bases())
3559
if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
3560
return true;
3561
3562
return false;
3563
}
3564
3565
/// Diagnose an attempt to read from any unreadable field within the specified
3566
/// type, which might be a class type.
3567
static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK,
3568
QualType T) {
3569
CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3570
if (!RD)
3571
return false;
3572
3573
if (!RD->hasMutableFields())
3574
return false;
3575
3576
for (auto *Field : RD->fields()) {
3577
// If we're actually going to read this field in some way, then it can't
3578
// be mutable. If we're in a union, then assigning to a mutable field
3579
// (even an empty one) can change the active member, so that's not OK.
3580
// FIXME: Add core issue number for the union case.
3581
if (Field->isMutable() &&
3582
(RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
3583
Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field;
3584
Info.Note(Field->getLocation(), diag::note_declared_at);
3585
return true;
3586
}
3587
3588
if (diagnoseMutableFields(Info, E, AK, Field->getType()))
3589
return true;
3590
}
3591
3592
for (auto &BaseSpec : RD->bases())
3593
if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType()))
3594
return true;
3595
3596
// All mutable fields were empty, and thus not actually read.
3597
return false;
3598
}
3599
3600
static bool lifetimeStartedInEvaluation(EvalInfo &Info,
3601
APValue::LValueBase Base,
3602
bool MutableSubobject = false) {
3603
// A temporary or transient heap allocation we created.
3604
if (Base.getCallIndex() || Base.is<DynamicAllocLValue>())
3605
return true;
3606
3607
switch (Info.IsEvaluatingDecl) {
3608
case EvalInfo::EvaluatingDeclKind::None:
3609
return false;
3610
3611
case EvalInfo::EvaluatingDeclKind::Ctor:
3612
// The variable whose initializer we're evaluating.
3613
if (Info.EvaluatingDecl == Base)
3614
return true;
3615
3616
// A temporary lifetime-extended by the variable whose initializer we're
3617
// evaluating.
3618
if (auto *BaseE = Base.dyn_cast<const Expr *>())
3619
if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE))
3620
return Info.EvaluatingDecl == BaseMTE->getExtendingDecl();
3621
return false;
3622
3623
case EvalInfo::EvaluatingDeclKind::Dtor:
3624
// C++2a [expr.const]p6:
3625
// [during constant destruction] the lifetime of a and its non-mutable
3626
// subobjects (but not its mutable subobjects) [are] considered to start
3627
// within e.
3628
if (MutableSubobject || Base != Info.EvaluatingDecl)
3629
return false;
3630
// FIXME: We can meaningfully extend this to cover non-const objects, but
3631
// we will need special handling: we should be able to access only
3632
// subobjects of such objects that are themselves declared const.
3633
QualType T = getType(Base);
3634
return T.isConstQualified() || T->isReferenceType();
3635
}
3636
3637
llvm_unreachable("unknown evaluating decl kind");
3638
}
3639
3640
static bool CheckArraySize(EvalInfo &Info, const ConstantArrayType *CAT,
3641
SourceLocation CallLoc = {}) {
3642
return Info.CheckArraySize(
3643
CAT->getSizeExpr() ? CAT->getSizeExpr()->getBeginLoc() : CallLoc,
3644
CAT->getNumAddressingBits(Info.Ctx), CAT->getZExtSize(),
3645
/*Diag=*/true);
3646
}
3647
3648
namespace {
3649
/// A handle to a complete object (an object that is not a subobject of
3650
/// another object).
3651
struct CompleteObject {
3652
/// The identity of the object.
3653
APValue::LValueBase Base;
3654
/// The value of the complete object.
3655
APValue *Value;
3656
/// The type of the complete object.
3657
QualType Type;
3658
3659
CompleteObject() : Value(nullptr) {}
3660
CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type)
3661
: Base(Base), Value(Value), Type(Type) {}
3662
3663
bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const {
3664
// If this isn't a "real" access (eg, if it's just accessing the type
3665
// info), allow it. We assume the type doesn't change dynamically for
3666
// subobjects of constexpr objects (even though we'd hit UB here if it
3667
// did). FIXME: Is this right?
3668
if (!isAnyAccess(AK))
3669
return true;
3670
3671
// In C++14 onwards, it is permitted to read a mutable member whose
3672
// lifetime began within the evaluation.
3673
// FIXME: Should we also allow this in C++11?
3674
if (!Info.getLangOpts().CPlusPlus14)
3675
return false;
3676
return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true);
3677
}
3678
3679
explicit operator bool() const { return !Type.isNull(); }
3680
};
3681
} // end anonymous namespace
3682
3683
static QualType getSubobjectType(QualType ObjType, QualType SubobjType,
3684
bool IsMutable = false) {
3685
// C++ [basic.type.qualifier]p1:
3686
// - A const object is an object of type const T or a non-mutable subobject
3687
// of a const object.
3688
if (ObjType.isConstQualified() && !IsMutable)
3689
SubobjType.addConst();
3690
// - A volatile object is an object of type const T or a subobject of a
3691
// volatile object.
3692
if (ObjType.isVolatileQualified())
3693
SubobjType.addVolatile();
3694
return SubobjType;
3695
}
3696
3697
/// Find the designated sub-object of an rvalue.
3698
template<typename SubobjectHandler>
3699
typename SubobjectHandler::result_type
3700
findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
3701
const SubobjectDesignator &Sub, SubobjectHandler &handler) {
3702
if (Sub.Invalid)
3703
// A diagnostic will have already been produced.
3704
return handler.failed();
3705
if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) {
3706
if (Info.getLangOpts().CPlusPlus11)
3707
Info.FFDiag(E, Sub.isOnePastTheEnd()
3708
? diag::note_constexpr_access_past_end
3709
: diag::note_constexpr_access_unsized_array)
3710
<< handler.AccessKind;
3711
else
3712
Info.FFDiag(E);
3713
return handler.failed();
3714
}
3715
3716
APValue *O = Obj.Value;
3717
QualType ObjType = Obj.Type;
3718
const FieldDecl *LastField = nullptr;
3719
const FieldDecl *VolatileField = nullptr;
3720
3721
// Walk the designator's path to find the subobject.
3722
for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
3723
// Reading an indeterminate value is undefined, but assigning over one is OK.
3724
if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) ||
3725
(O->isIndeterminate() &&
3726
!isValidIndeterminateAccess(handler.AccessKind))) {
3727
if (!Info.checkingPotentialConstantExpression())
3728
Info.FFDiag(E, diag::note_constexpr_access_uninit)
3729
<< handler.AccessKind << O->isIndeterminate()
3730
<< E->getSourceRange();
3731
return handler.failed();
3732
}
3733
3734
// C++ [class.ctor]p5, C++ [class.dtor]p5:
3735
// const and volatile semantics are not applied on an object under
3736
// {con,de}struction.
3737
if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) &&
3738
ObjType->isRecordType() &&
3739
Info.isEvaluatingCtorDtor(
3740
Obj.Base,
3741
llvm::ArrayRef(Sub.Entries.begin(), Sub.Entries.begin() + I)) !=
3742
ConstructionPhase::None) {
3743
ObjType = Info.Ctx.getCanonicalType(ObjType);
3744
ObjType.removeLocalConst();
3745
ObjType.removeLocalVolatile();
3746
}
3747
3748
// If this is our last pass, check that the final object type is OK.
3749
if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) {
3750
// Accesses to volatile objects are prohibited.
3751
if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) {
3752
if (Info.getLangOpts().CPlusPlus) {
3753
int DiagKind;
3754
SourceLocation Loc;
3755
const NamedDecl *Decl = nullptr;
3756
if (VolatileField) {
3757
DiagKind = 2;
3758
Loc = VolatileField->getLocation();
3759
Decl = VolatileField;
3760
} else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) {
3761
DiagKind = 1;
3762
Loc = VD->getLocation();
3763
Decl = VD;
3764
} else {
3765
DiagKind = 0;
3766
if (auto *E = Obj.Base.dyn_cast<const Expr *>())
3767
Loc = E->getExprLoc();
3768
}
3769
Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
3770
<< handler.AccessKind << DiagKind << Decl;
3771
Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind;
3772
} else {
3773
Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
3774
}
3775
return handler.failed();
3776
}
3777
3778
// If we are reading an object of class type, there may still be more
3779
// things we need to check: if there are any mutable subobjects, we
3780
// cannot perform this read. (This only happens when performing a trivial
3781
// copy or assignment.)
3782
if (ObjType->isRecordType() &&
3783
!Obj.mayAccessMutableMembers(Info, handler.AccessKind) &&
3784
diagnoseMutableFields(Info, E, handler.AccessKind, ObjType))
3785
return handler.failed();
3786
}
3787
3788
if (I == N) {
3789
if (!handler.found(*O, ObjType))
3790
return false;
3791
3792
// If we modified a bit-field, truncate it to the right width.
3793
if (isModification(handler.AccessKind) &&
3794
LastField && LastField->isBitField() &&
3795
!truncateBitfieldValue(Info, E, *O, LastField))
3796
return false;
3797
3798
return true;
3799
}
3800
3801
LastField = nullptr;
3802
if (ObjType->isArrayType()) {
3803
// Next subobject is an array element.
3804
const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
3805
assert(CAT && "vla in literal type?");
3806
uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3807
if (CAT->getSize().ule(Index)) {
3808
// Note, it should not be possible to form a pointer with a valid
3809
// designator which points more than one past the end of the array.
3810
if (Info.getLangOpts().CPlusPlus11)
3811
Info.FFDiag(E, diag::note_constexpr_access_past_end)
3812
<< handler.AccessKind;
3813
else
3814
Info.FFDiag(E);
3815
return handler.failed();
3816
}
3817
3818
ObjType = CAT->getElementType();
3819
3820
if (O->getArrayInitializedElts() > Index)
3821
O = &O->getArrayInitializedElt(Index);
3822
else if (!isRead(handler.AccessKind)) {
3823
if (!CheckArraySize(Info, CAT, E->getExprLoc()))
3824
return handler.failed();
3825
3826
expandArray(*O, Index);
3827
O = &O->getArrayInitializedElt(Index);
3828
} else
3829
O = &O->getArrayFiller();
3830
} else if (ObjType->isAnyComplexType()) {
3831
// Next subobject is a complex number.
3832
uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3833
if (Index > 1) {
3834
if (Info.getLangOpts().CPlusPlus11)
3835
Info.FFDiag(E, diag::note_constexpr_access_past_end)
3836
<< handler.AccessKind;
3837
else
3838
Info.FFDiag(E);
3839
return handler.failed();
3840
}
3841
3842
ObjType = getSubobjectType(
3843
ObjType, ObjType->castAs<ComplexType>()->getElementType());
3844
3845
assert(I == N - 1 && "extracting subobject of scalar?");
3846
if (O->isComplexInt()) {
3847
return handler.found(Index ? O->getComplexIntImag()
3848
: O->getComplexIntReal(), ObjType);
3849
} else {
3850
assert(O->isComplexFloat());
3851
return handler.found(Index ? O->getComplexFloatImag()
3852
: O->getComplexFloatReal(), ObjType);
3853
}
3854
} else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
3855
if (Field->isMutable() &&
3856
!Obj.mayAccessMutableMembers(Info, handler.AccessKind)) {
3857
Info.FFDiag(E, diag::note_constexpr_access_mutable, 1)
3858
<< handler.AccessKind << Field;
3859
Info.Note(Field->getLocation(), diag::note_declared_at);
3860
return handler.failed();
3861
}
3862
3863
// Next subobject is a class, struct or union field.
3864
RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
3865
if (RD->isUnion()) {
3866
const FieldDecl *UnionField = O->getUnionField();
3867
if (!UnionField ||
3868
UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
3869
if (I == N - 1 && handler.AccessKind == AK_Construct) {
3870
// Placement new onto an inactive union member makes it active.
3871
O->setUnion(Field, APValue());
3872
} else {
3873
// FIXME: If O->getUnionValue() is absent, report that there's no
3874
// active union member rather than reporting the prior active union
3875
// member. We'll need to fix nullptr_t to not use APValue() as its
3876
// representation first.
3877
Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
3878
<< handler.AccessKind << Field << !UnionField << UnionField;
3879
return handler.failed();
3880
}
3881
}
3882
O = &O->getUnionValue();
3883
} else
3884
O = &O->getStructField(Field->getFieldIndex());
3885
3886
ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable());
3887
LastField = Field;
3888
if (Field->getType().isVolatileQualified())
3889
VolatileField = Field;
3890
} else {
3891
// Next subobject is a base class.
3892
const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
3893
const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
3894
O = &O->getStructBase(getBaseIndex(Derived, Base));
3895
3896
ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base));
3897
}
3898
}
3899
}
3900
3901
namespace {
3902
struct ExtractSubobjectHandler {
3903
EvalInfo &Info;
3904
const Expr *E;
3905
APValue &Result;
3906
const AccessKinds AccessKind;
3907
3908
typedef bool result_type;
3909
bool failed() { return false; }
3910
bool found(APValue &Subobj, QualType SubobjType) {
3911
Result = Subobj;
3912
if (AccessKind == AK_ReadObjectRepresentation)
3913
return true;
3914
return CheckFullyInitialized(Info, E->getExprLoc(), SubobjType, Result);
3915
}
3916
bool found(APSInt &Value, QualType SubobjType) {
3917
Result = APValue(Value);
3918
return true;
3919
}
3920
bool found(APFloat &Value, QualType SubobjType) {
3921
Result = APValue(Value);
3922
return true;
3923
}
3924
};
3925
} // end anonymous namespace
3926
3927
/// Extract the designated sub-object of an rvalue.
3928
static bool extractSubobject(EvalInfo &Info, const Expr *E,
3929
const CompleteObject &Obj,
3930
const SubobjectDesignator &Sub, APValue &Result,
3931
AccessKinds AK = AK_Read) {
3932
assert(AK == AK_Read || AK == AK_ReadObjectRepresentation);
3933
ExtractSubobjectHandler Handler = {Info, E, Result, AK};
3934
return findSubobject(Info, E, Obj, Sub, Handler);
3935
}
3936
3937
namespace {
3938
struct ModifySubobjectHandler {
3939
EvalInfo &Info;
3940
APValue &NewVal;
3941
const Expr *E;
3942
3943
typedef bool result_type;
3944
static const AccessKinds AccessKind = AK_Assign;
3945
3946
bool checkConst(QualType QT) {
3947
// Assigning to a const object has undefined behavior.
3948
if (QT.isConstQualified()) {
3949
Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3950
return false;
3951
}
3952
return true;
3953
}
3954
3955
bool failed() { return false; }
3956
bool found(APValue &Subobj, QualType SubobjType) {
3957
if (!checkConst(SubobjType))
3958
return false;
3959
// We've been given ownership of NewVal, so just swap it in.
3960
Subobj.swap(NewVal);
3961
return true;
3962
}
3963
bool found(APSInt &Value, QualType SubobjType) {
3964
if (!checkConst(SubobjType))
3965
return false;
3966
if (!NewVal.isInt()) {
3967
// Maybe trying to write a cast pointer value into a complex?
3968
Info.FFDiag(E);
3969
return false;
3970
}
3971
Value = NewVal.getInt();
3972
return true;
3973
}
3974
bool found(APFloat &Value, QualType SubobjType) {
3975
if (!checkConst(SubobjType))
3976
return false;
3977
Value = NewVal.getFloat();
3978
return true;
3979
}
3980
};
3981
} // end anonymous namespace
3982
3983
const AccessKinds ModifySubobjectHandler::AccessKind;
3984
3985
/// Update the designated sub-object of an rvalue to the given value.
3986
static bool modifySubobject(EvalInfo &Info, const Expr *E,
3987
const CompleteObject &Obj,
3988
const SubobjectDesignator &Sub,
3989
APValue &NewVal) {
3990
ModifySubobjectHandler Handler = { Info, NewVal, E };
3991
return findSubobject(Info, E, Obj, Sub, Handler);
3992
}
3993
3994
/// Find the position where two subobject designators diverge, or equivalently
3995
/// the length of the common initial subsequence.
3996
static unsigned FindDesignatorMismatch(QualType ObjType,
3997
const SubobjectDesignator &A,
3998
const SubobjectDesignator &B,
3999
bool &WasArrayIndex) {
4000
unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
4001
for (/**/; I != N; ++I) {
4002
if (!ObjType.isNull() &&
4003
(ObjType->isArrayType() || ObjType->isAnyComplexType())) {
4004
// Next subobject is an array element.
4005
if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) {
4006
WasArrayIndex = true;
4007
return I;
4008
}
4009
if (ObjType->isAnyComplexType())
4010
ObjType = ObjType->castAs<ComplexType>()->getElementType();
4011
else
4012
ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
4013
} else {
4014
if (A.Entries[I].getAsBaseOrMember() !=
4015
B.Entries[I].getAsBaseOrMember()) {
4016
WasArrayIndex = false;
4017
return I;
4018
}
4019
if (const FieldDecl *FD = getAsField(A.Entries[I]))
4020
// Next subobject is a field.
4021
ObjType = FD->getType();
4022
else
4023
// Next subobject is a base class.
4024
ObjType = QualType();
4025
}
4026
}
4027
WasArrayIndex = false;
4028
return I;
4029
}
4030
4031
/// Determine whether the given subobject designators refer to elements of the
4032
/// same array object.
4033
static bool AreElementsOfSameArray(QualType ObjType,
4034
const SubobjectDesignator &A,
4035
const SubobjectDesignator &B) {
4036
if (A.Entries.size() != B.Entries.size())
4037
return false;
4038
4039
bool IsArray = A.MostDerivedIsArrayElement;
4040
if (IsArray && A.MostDerivedPathLength != A.Entries.size())
4041
// A is a subobject of the array element.
4042
return false;
4043
4044
// If A (and B) designates an array element, the last entry will be the array
4045
// index. That doesn't have to match. Otherwise, we're in the 'implicit array
4046
// of length 1' case, and the entire path must match.
4047
bool WasArrayIndex;
4048
unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
4049
return CommonLength >= A.Entries.size() - IsArray;
4050
}
4051
4052
/// Find the complete object to which an LValue refers.
4053
static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
4054
AccessKinds AK, const LValue &LVal,
4055
QualType LValType) {
4056
if (LVal.InvalidBase) {
4057
Info.FFDiag(E);
4058
return CompleteObject();
4059
}
4060
4061
if (!LVal.Base) {
4062
Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
4063
return CompleteObject();
4064
}
4065
4066
CallStackFrame *Frame = nullptr;
4067
unsigned Depth = 0;
4068
if (LVal.getLValueCallIndex()) {
4069
std::tie(Frame, Depth) =
4070
Info.getCallFrameAndDepth(LVal.getLValueCallIndex());
4071
if (!Frame) {
4072
Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
4073
<< AK << LVal.Base.is<const ValueDecl*>();
4074
NoteLValueLocation(Info, LVal.Base);
4075
return CompleteObject();
4076
}
4077
}
4078
4079
bool IsAccess = isAnyAccess(AK);
4080
4081
// C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
4082
// is not a constant expression (even if the object is non-volatile). We also
4083
// apply this rule to C++98, in order to conform to the expected 'volatile'
4084
// semantics.
4085
if (isFormalAccess(AK) && LValType.isVolatileQualified()) {
4086
if (Info.getLangOpts().CPlusPlus)
4087
Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
4088
<< AK << LValType;
4089
else
4090
Info.FFDiag(E);
4091
return CompleteObject();
4092
}
4093
4094
// Compute value storage location and type of base object.
4095
APValue *BaseVal = nullptr;
4096
QualType BaseType = getType(LVal.Base);
4097
4098
if (Info.getLangOpts().CPlusPlus14 && LVal.Base == Info.EvaluatingDecl &&
4099
lifetimeStartedInEvaluation(Info, LVal.Base)) {
4100
// This is the object whose initializer we're evaluating, so its lifetime
4101
// started in the current evaluation.
4102
BaseVal = Info.EvaluatingDeclValue;
4103
} else if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl *>()) {
4104
// Allow reading from a GUID declaration.
4105
if (auto *GD = dyn_cast<MSGuidDecl>(D)) {
4106
if (isModification(AK)) {
4107
// All the remaining cases do not permit modification of the object.
4108
Info.FFDiag(E, diag::note_constexpr_modify_global);
4109
return CompleteObject();
4110
}
4111
APValue &V = GD->getAsAPValue();
4112
if (V.isAbsent()) {
4113
Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
4114
<< GD->getType();
4115
return CompleteObject();
4116
}
4117
return CompleteObject(LVal.Base, &V, GD->getType());
4118
}
4119
4120
// Allow reading the APValue from an UnnamedGlobalConstantDecl.
4121
if (auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(D)) {
4122
if (isModification(AK)) {
4123
Info.FFDiag(E, diag::note_constexpr_modify_global);
4124
return CompleteObject();
4125
}
4126
return CompleteObject(LVal.Base, const_cast<APValue *>(&GCD->getValue()),
4127
GCD->getType());
4128
}
4129
4130
// Allow reading from template parameter objects.
4131
if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) {
4132
if (isModification(AK)) {
4133
Info.FFDiag(E, diag::note_constexpr_modify_global);
4134
return CompleteObject();
4135
}
4136
return CompleteObject(LVal.Base, const_cast<APValue *>(&TPO->getValue()),
4137
TPO->getType());
4138
}
4139
4140
// In C++98, const, non-volatile integers initialized with ICEs are ICEs.
4141
// In C++11, constexpr, non-volatile variables initialized with constant
4142
// expressions are constant expressions too. Inside constexpr functions,
4143
// parameters are constant expressions even if they're non-const.
4144
// In C++1y, objects local to a constant expression (those with a Frame) are
4145
// both readable and writable inside constant expressions.
4146
// In C, such things can also be folded, although they are not ICEs.
4147
const VarDecl *VD = dyn_cast<VarDecl>(D);
4148
if (VD) {
4149
if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
4150
VD = VDef;
4151
}
4152
if (!VD || VD->isInvalidDecl()) {
4153
Info.FFDiag(E);
4154
return CompleteObject();
4155
}
4156
4157
bool IsConstant = BaseType.isConstant(Info.Ctx);
4158
bool ConstexprVar = false;
4159
if (const auto *VD = dyn_cast_if_present<VarDecl>(
4160
Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()))
4161
ConstexprVar = VD->isConstexpr();
4162
4163
// Unless we're looking at a local variable or argument in a constexpr call,
4164
// the variable we're reading must be const.
4165
if (!Frame) {
4166
if (IsAccess && isa<ParmVarDecl>(VD)) {
4167
// Access of a parameter that's not associated with a frame isn't going
4168
// to work out, but we can leave it to evaluateVarDeclInit to provide a
4169
// suitable diagnostic.
4170
} else if (Info.getLangOpts().CPlusPlus14 &&
4171
lifetimeStartedInEvaluation(Info, LVal.Base)) {
4172
// OK, we can read and modify an object if we're in the process of
4173
// evaluating its initializer, because its lifetime began in this
4174
// evaluation.
4175
} else if (isModification(AK)) {
4176
// All the remaining cases do not permit modification of the object.
4177
Info.FFDiag(E, diag::note_constexpr_modify_global);
4178
return CompleteObject();
4179
} else if (VD->isConstexpr()) {
4180
// OK, we can read this variable.
4181
} else if (Info.getLangOpts().C23 && ConstexprVar) {
4182
Info.FFDiag(E);
4183
return CompleteObject();
4184
} else if (BaseType->isIntegralOrEnumerationType()) {
4185
if (!IsConstant) {
4186
if (!IsAccess)
4187
return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4188
if (Info.getLangOpts().CPlusPlus) {
4189
Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
4190
Info.Note(VD->getLocation(), diag::note_declared_at);
4191
} else {
4192
Info.FFDiag(E);
4193
}
4194
return CompleteObject();
4195
}
4196
} else if (!IsAccess) {
4197
return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4198
} else if (IsConstant && Info.checkingPotentialConstantExpression() &&
4199
BaseType->isLiteralType(Info.Ctx) && !VD->hasDefinition()) {
4200
// This variable might end up being constexpr. Don't diagnose it yet.
4201
} else if (IsConstant) {
4202
// Keep evaluating to see what we can do. In particular, we support
4203
// folding of const floating-point types, in order to make static const
4204
// data members of such types (supported as an extension) more useful.
4205
if (Info.getLangOpts().CPlusPlus) {
4206
Info.CCEDiag(E, Info.getLangOpts().CPlusPlus11
4207
? diag::note_constexpr_ltor_non_constexpr
4208
: diag::note_constexpr_ltor_non_integral, 1)
4209
<< VD << BaseType;
4210
Info.Note(VD->getLocation(), diag::note_declared_at);
4211
} else {
4212
Info.CCEDiag(E);
4213
}
4214
} else {
4215
// Never allow reading a non-const value.
4216
if (Info.getLangOpts().CPlusPlus) {
4217
Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
4218
? diag::note_constexpr_ltor_non_constexpr
4219
: diag::note_constexpr_ltor_non_integral, 1)
4220
<< VD << BaseType;
4221
Info.Note(VD->getLocation(), diag::note_declared_at);
4222
} else {
4223
Info.FFDiag(E);
4224
}
4225
return CompleteObject();
4226
}
4227
}
4228
4229
if (!evaluateVarDeclInit(Info, E, VD, Frame, LVal.getLValueVersion(), BaseVal))
4230
return CompleteObject();
4231
} else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) {
4232
std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
4233
if (!Alloc) {
4234
Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK;
4235
return CompleteObject();
4236
}
4237
return CompleteObject(LVal.Base, &(*Alloc)->Value,
4238
LVal.Base.getDynamicAllocType());
4239
} else {
4240
const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4241
4242
if (!Frame) {
4243
if (const MaterializeTemporaryExpr *MTE =
4244
dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) {
4245
assert(MTE->getStorageDuration() == SD_Static &&
4246
"should have a frame for a non-global materialized temporary");
4247
4248
// C++20 [expr.const]p4: [DR2126]
4249
// An object or reference is usable in constant expressions if it is
4250
// - a temporary object of non-volatile const-qualified literal type
4251
// whose lifetime is extended to that of a variable that is usable
4252
// in constant expressions
4253
//
4254
// C++20 [expr.const]p5:
4255
// an lvalue-to-rvalue conversion [is not allowed unless it applies to]
4256
// - a non-volatile glvalue that refers to an object that is usable
4257
// in constant expressions, or
4258
// - a non-volatile glvalue of literal type that refers to a
4259
// non-volatile object whose lifetime began within the evaluation
4260
// of E;
4261
//
4262
// C++11 misses the 'began within the evaluation of e' check and
4263
// instead allows all temporaries, including things like:
4264
// int &&r = 1;
4265
// int x = ++r;
4266
// constexpr int k = r;
4267
// Therefore we use the C++14-onwards rules in C++11 too.
4268
//
4269
// Note that temporaries whose lifetimes began while evaluating a
4270
// variable's constructor are not usable while evaluating the
4271
// corresponding destructor, not even if they're of const-qualified
4272
// types.
4273
if (!MTE->isUsableInConstantExpressions(Info.Ctx) &&
4274
!lifetimeStartedInEvaluation(Info, LVal.Base)) {
4275
if (!IsAccess)
4276
return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4277
Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
4278
Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
4279
return CompleteObject();
4280
}
4281
4282
BaseVal = MTE->getOrCreateValue(false);
4283
assert(BaseVal && "got reference to unevaluated temporary");
4284
} else {
4285
if (!IsAccess)
4286
return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4287
APValue Val;
4288
LVal.moveInto(Val);
4289
Info.FFDiag(E, diag::note_constexpr_access_unreadable_object)
4290
<< AK
4291
<< Val.getAsString(Info.Ctx,
4292
Info.Ctx.getLValueReferenceType(LValType));
4293
NoteLValueLocation(Info, LVal.Base);
4294
return CompleteObject();
4295
}
4296
} else {
4297
BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion());
4298
assert(BaseVal && "missing value for temporary");
4299
}
4300
}
4301
4302
// In C++14, we can't safely access any mutable state when we might be
4303
// evaluating after an unmodeled side effect. Parameters are modeled as state
4304
// in the caller, but aren't visible once the call returns, so they can be
4305
// modified in a speculatively-evaluated call.
4306
//
4307
// FIXME: Not all local state is mutable. Allow local constant subobjects
4308
// to be read here (but take care with 'mutable' fields).
4309
unsigned VisibleDepth = Depth;
4310
if (llvm::isa_and_nonnull<ParmVarDecl>(
4311
LVal.Base.dyn_cast<const ValueDecl *>()))
4312
++VisibleDepth;
4313
if ((Frame && Info.getLangOpts().CPlusPlus14 &&
4314
Info.EvalStatus.HasSideEffects) ||
4315
(isModification(AK) && VisibleDepth < Info.SpeculativeEvaluationDepth))
4316
return CompleteObject();
4317
4318
return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType);
4319
}
4320
4321
/// Perform an lvalue-to-rvalue conversion on the given glvalue. This
4322
/// can also be used for 'lvalue-to-lvalue' conversions for looking up the
4323
/// glvalue referred to by an entity of reference type.
4324
///
4325
/// \param Info - Information about the ongoing evaluation.
4326
/// \param Conv - The expression for which we are performing the conversion.
4327
/// Used for diagnostics.
4328
/// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
4329
/// case of a non-class type).
4330
/// \param LVal - The glvalue on which we are attempting to perform this action.
4331
/// \param RVal - The produced value will be placed here.
4332
/// \param WantObjectRepresentation - If true, we're looking for the object
4333
/// representation rather than the value, and in particular,
4334
/// there is no requirement that the result be fully initialized.
4335
static bool
4336
handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type,
4337
const LValue &LVal, APValue &RVal,
4338
bool WantObjectRepresentation = false) {
4339
if (LVal.Designator.Invalid)
4340
return false;
4341
4342
// Check for special cases where there is no existing APValue to look at.
4343
const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4344
4345
AccessKinds AK =
4346
WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read;
4347
4348
if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) {
4349
if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
4350
// In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
4351
// initializer until now for such expressions. Such an expression can't be
4352
// an ICE in C, so this only matters for fold.
4353
if (Type.isVolatileQualified()) {
4354
Info.FFDiag(Conv);
4355
return false;
4356
}
4357
4358
APValue Lit;
4359
if (!Evaluate(Lit, Info, CLE->getInitializer()))
4360
return false;
4361
4362
// According to GCC info page:
4363
//
4364
// 6.28 Compound Literals
4365
//
4366
// As an optimization, G++ sometimes gives array compound literals longer
4367
// lifetimes: when the array either appears outside a function or has a
4368
// const-qualified type. If foo and its initializer had elements of type
4369
// char *const rather than char *, or if foo were a global variable, the
4370
// array would have static storage duration. But it is probably safest
4371
// just to avoid the use of array compound literals in C++ code.
4372
//
4373
// Obey that rule by checking constness for converted array types.
4374
4375
QualType CLETy = CLE->getType();
4376
if (CLETy->isArrayType() && !Type->isArrayType()) {
4377
if (!CLETy.isConstant(Info.Ctx)) {
4378
Info.FFDiag(Conv);
4379
Info.Note(CLE->getExprLoc(), diag::note_declared_at);
4380
return false;
4381
}
4382
}
4383
4384
CompleteObject LitObj(LVal.Base, &Lit, Base->getType());
4385
return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK);
4386
} else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
4387
// Special-case character extraction so we don't have to construct an
4388
// APValue for the whole string.
4389
assert(LVal.Designator.Entries.size() <= 1 &&
4390
"Can only read characters from string literals");
4391
if (LVal.Designator.Entries.empty()) {
4392
// Fail for now for LValue to RValue conversion of an array.
4393
// (This shouldn't show up in C/C++, but it could be triggered by a
4394
// weird EvaluateAsRValue call from a tool.)
4395
Info.FFDiag(Conv);
4396
return false;
4397
}
4398
if (LVal.Designator.isOnePastTheEnd()) {
4399
if (Info.getLangOpts().CPlusPlus11)
4400
Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK;
4401
else
4402
Info.FFDiag(Conv);
4403
return false;
4404
}
4405
uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex();
4406
RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex));
4407
return true;
4408
}
4409
}
4410
4411
CompleteObject Obj = findCompleteObject(Info, Conv, AK, LVal, Type);
4412
return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK);
4413
}
4414
4415
/// Perform an assignment of Val to LVal. Takes ownership of Val.
4416
static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
4417
QualType LValType, APValue &Val) {
4418
if (LVal.Designator.Invalid)
4419
return false;
4420
4421
if (!Info.getLangOpts().CPlusPlus14) {
4422
Info.FFDiag(E);
4423
return false;
4424
}
4425
4426
CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4427
return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
4428
}
4429
4430
namespace {
4431
struct CompoundAssignSubobjectHandler {
4432
EvalInfo &Info;
4433
const CompoundAssignOperator *E;
4434
QualType PromotedLHSType;
4435
BinaryOperatorKind Opcode;
4436
const APValue &RHS;
4437
4438
static const AccessKinds AccessKind = AK_Assign;
4439
4440
typedef bool result_type;
4441
4442
bool checkConst(QualType QT) {
4443
// Assigning to a const object has undefined behavior.
4444
if (QT.isConstQualified()) {
4445
Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4446
return false;
4447
}
4448
return true;
4449
}
4450
4451
bool failed() { return false; }
4452
bool found(APValue &Subobj, QualType SubobjType) {
4453
switch (Subobj.getKind()) {
4454
case APValue::Int:
4455
return found(Subobj.getInt(), SubobjType);
4456
case APValue::Float:
4457
return found(Subobj.getFloat(), SubobjType);
4458
case APValue::ComplexInt:
4459
case APValue::ComplexFloat:
4460
// FIXME: Implement complex compound assignment.
4461
Info.FFDiag(E);
4462
return false;
4463
case APValue::LValue:
4464
return foundPointer(Subobj, SubobjType);
4465
case APValue::Vector:
4466
return foundVector(Subobj, SubobjType);
4467
case APValue::Indeterminate:
4468
Info.FFDiag(E, diag::note_constexpr_access_uninit)
4469
<< /*read of=*/0 << /*uninitialized object=*/1
4470
<< E->getLHS()->getSourceRange();
4471
return false;
4472
default:
4473
// FIXME: can this happen?
4474
Info.FFDiag(E);
4475
return false;
4476
}
4477
}
4478
4479
bool foundVector(APValue &Value, QualType SubobjType) {
4480
if (!checkConst(SubobjType))
4481
return false;
4482
4483
if (!SubobjType->isVectorType()) {
4484
Info.FFDiag(E);
4485
return false;
4486
}
4487
return handleVectorVectorBinOp(Info, E, Opcode, Value, RHS);
4488
}
4489
4490
bool found(APSInt &Value, QualType SubobjType) {
4491
if (!checkConst(SubobjType))
4492
return false;
4493
4494
if (!SubobjType->isIntegerType()) {
4495
// We don't support compound assignment on integer-cast-to-pointer
4496
// values.
4497
Info.FFDiag(E);
4498
return false;
4499
}
4500
4501
if (RHS.isInt()) {
4502
APSInt LHS =
4503
HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value);
4504
if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
4505
return false;
4506
Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
4507
return true;
4508
} else if (RHS.isFloat()) {
4509
const FPOptions FPO = E->getFPFeaturesInEffect(
4510
Info.Ctx.getLangOpts());
4511
APFloat FValue(0.0);
4512
return HandleIntToFloatCast(Info, E, FPO, SubobjType, Value,
4513
PromotedLHSType, FValue) &&
4514
handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) &&
4515
HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType,
4516
Value);
4517
}
4518
4519
Info.FFDiag(E);
4520
return false;
4521
}
4522
bool found(APFloat &Value, QualType SubobjType) {
4523
return checkConst(SubobjType) &&
4524
HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
4525
Value) &&
4526
handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
4527
HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
4528
}
4529
bool foundPointer(APValue &Subobj, QualType SubobjType) {
4530
if (!checkConst(SubobjType))
4531
return false;
4532
4533
QualType PointeeType;
4534
if (const PointerType *PT = SubobjType->getAs<PointerType>())
4535
PointeeType = PT->getPointeeType();
4536
4537
if (PointeeType.isNull() || !RHS.isInt() ||
4538
(Opcode != BO_Add && Opcode != BO_Sub)) {
4539
Info.FFDiag(E);
4540
return false;
4541
}
4542
4543
APSInt Offset = RHS.getInt();
4544
if (Opcode == BO_Sub)
4545
negateAsSigned(Offset);
4546
4547
LValue LVal;
4548
LVal.setFrom(Info.Ctx, Subobj);
4549
if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
4550
return false;
4551
LVal.moveInto(Subobj);
4552
return true;
4553
}
4554
};
4555
} // end anonymous namespace
4556
4557
const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
4558
4559
/// Perform a compound assignment of LVal <op>= RVal.
4560
static bool handleCompoundAssignment(EvalInfo &Info,
4561
const CompoundAssignOperator *E,
4562
const LValue &LVal, QualType LValType,
4563
QualType PromotedLValType,
4564
BinaryOperatorKind Opcode,
4565
const APValue &RVal) {
4566
if (LVal.Designator.Invalid)
4567
return false;
4568
4569
if (!Info.getLangOpts().CPlusPlus14) {
4570
Info.FFDiag(E);
4571
return false;
4572
}
4573
4574
CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4575
CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
4576
RVal };
4577
return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4578
}
4579
4580
namespace {
4581
struct IncDecSubobjectHandler {
4582
EvalInfo &Info;
4583
const UnaryOperator *E;
4584
AccessKinds AccessKind;
4585
APValue *Old;
4586
4587
typedef bool result_type;
4588
4589
bool checkConst(QualType QT) {
4590
// Assigning to a const object has undefined behavior.
4591
if (QT.isConstQualified()) {
4592
Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4593
return false;
4594
}
4595
return true;
4596
}
4597
4598
bool failed() { return false; }
4599
bool found(APValue &Subobj, QualType SubobjType) {
4600
// Stash the old value. Also clear Old, so we don't clobber it later
4601
// if we're post-incrementing a complex.
4602
if (Old) {
4603
*Old = Subobj;
4604
Old = nullptr;
4605
}
4606
4607
switch (Subobj.getKind()) {
4608
case APValue::Int:
4609
return found(Subobj.getInt(), SubobjType);
4610
case APValue::Float:
4611
return found(Subobj.getFloat(), SubobjType);
4612
case APValue::ComplexInt:
4613
return found(Subobj.getComplexIntReal(),
4614
SubobjType->castAs<ComplexType>()->getElementType()
4615
.withCVRQualifiers(SubobjType.getCVRQualifiers()));
4616
case APValue::ComplexFloat:
4617
return found(Subobj.getComplexFloatReal(),
4618
SubobjType->castAs<ComplexType>()->getElementType()
4619
.withCVRQualifiers(SubobjType.getCVRQualifiers()));
4620
case APValue::LValue:
4621
return foundPointer(Subobj, SubobjType);
4622
default:
4623
// FIXME: can this happen?
4624
Info.FFDiag(E);
4625
return false;
4626
}
4627
}
4628
bool found(APSInt &Value, QualType SubobjType) {
4629
if (!checkConst(SubobjType))
4630
return false;
4631
4632
if (!SubobjType->isIntegerType()) {
4633
// We don't support increment / decrement on integer-cast-to-pointer
4634
// values.
4635
Info.FFDiag(E);
4636
return false;
4637
}
4638
4639
if (Old) *Old = APValue(Value);
4640
4641
// bool arithmetic promotes to int, and the conversion back to bool
4642
// doesn't reduce mod 2^n, so special-case it.
4643
if (SubobjType->isBooleanType()) {
4644
if (AccessKind == AK_Increment)
4645
Value = 1;
4646
else
4647
Value = !Value;
4648
return true;
4649
}
4650
4651
bool WasNegative = Value.isNegative();
4652
if (AccessKind == AK_Increment) {
4653
++Value;
4654
4655
if (!WasNegative && Value.isNegative() && E->canOverflow()) {
4656
APSInt ActualValue(Value, /*IsUnsigned*/true);
4657
return HandleOverflow(Info, E, ActualValue, SubobjType);
4658
}
4659
} else {
4660
--Value;
4661
4662
if (WasNegative && !Value.isNegative() && E->canOverflow()) {
4663
unsigned BitWidth = Value.getBitWidth();
4664
APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
4665
ActualValue.setBit(BitWidth);
4666
return HandleOverflow(Info, E, ActualValue, SubobjType);
4667
}
4668
}
4669
return true;
4670
}
4671
bool found(APFloat &Value, QualType SubobjType) {
4672
if (!checkConst(SubobjType))
4673
return false;
4674
4675
if (Old) *Old = APValue(Value);
4676
4677
APFloat One(Value.getSemantics(), 1);
4678
llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
4679
APFloat::opStatus St;
4680
if (AccessKind == AK_Increment)
4681
St = Value.add(One, RM);
4682
else
4683
St = Value.subtract(One, RM);
4684
return checkFloatingPointResult(Info, E, St);
4685
}
4686
bool foundPointer(APValue &Subobj, QualType SubobjType) {
4687
if (!checkConst(SubobjType))
4688
return false;
4689
4690
QualType PointeeType;
4691
if (const PointerType *PT = SubobjType->getAs<PointerType>())
4692
PointeeType = PT->getPointeeType();
4693
else {
4694
Info.FFDiag(E);
4695
return false;
4696
}
4697
4698
LValue LVal;
4699
LVal.setFrom(Info.Ctx, Subobj);
4700
if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
4701
AccessKind == AK_Increment ? 1 : -1))
4702
return false;
4703
LVal.moveInto(Subobj);
4704
return true;
4705
}
4706
};
4707
} // end anonymous namespace
4708
4709
/// Perform an increment or decrement on LVal.
4710
static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
4711
QualType LValType, bool IsIncrement, APValue *Old) {
4712
if (LVal.Designator.Invalid)
4713
return false;
4714
4715
if (!Info.getLangOpts().CPlusPlus14) {
4716
Info.FFDiag(E);
4717
return false;
4718
}
4719
4720
AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
4721
CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
4722
IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old};
4723
return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4724
}
4725
4726
/// Build an lvalue for the object argument of a member function call.
4727
static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
4728
LValue &This) {
4729
if (Object->getType()->isPointerType() && Object->isPRValue())
4730
return EvaluatePointer(Object, This, Info);
4731
4732
if (Object->isGLValue())
4733
return EvaluateLValue(Object, This, Info);
4734
4735
if (Object->getType()->isLiteralType(Info.Ctx))
4736
return EvaluateTemporary(Object, This, Info);
4737
4738
if (Object->getType()->isRecordType() && Object->isPRValue())
4739
return EvaluateTemporary(Object, This, Info);
4740
4741
Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
4742
return false;
4743
}
4744
4745
/// HandleMemberPointerAccess - Evaluate a member access operation and build an
4746
/// lvalue referring to the result.
4747
///
4748
/// \param Info - Information about the ongoing evaluation.
4749
/// \param LV - An lvalue referring to the base of the member pointer.
4750
/// \param RHS - The member pointer expression.
4751
/// \param IncludeMember - Specifies whether the member itself is included in
4752
/// the resulting LValue subobject designator. This is not possible when
4753
/// creating a bound member function.
4754
/// \return The field or method declaration to which the member pointer refers,
4755
/// or 0 if evaluation fails.
4756
static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4757
QualType LVType,
4758
LValue &LV,
4759
const Expr *RHS,
4760
bool IncludeMember = true) {
4761
MemberPtr MemPtr;
4762
if (!EvaluateMemberPointer(RHS, MemPtr, Info))
4763
return nullptr;
4764
4765
// C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
4766
// member value, the behavior is undefined.
4767
if (!MemPtr.getDecl()) {
4768
// FIXME: Specific diagnostic.
4769
Info.FFDiag(RHS);
4770
return nullptr;
4771
}
4772
4773
if (MemPtr.isDerivedMember()) {
4774
// This is a member of some derived class. Truncate LV appropriately.
4775
// The end of the derived-to-base path for the base object must match the
4776
// derived-to-base path for the member pointer.
4777
if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
4778
LV.Designator.Entries.size()) {
4779
Info.FFDiag(RHS);
4780
return nullptr;
4781
}
4782
unsigned PathLengthToMember =
4783
LV.Designator.Entries.size() - MemPtr.Path.size();
4784
for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
4785
const CXXRecordDecl *LVDecl = getAsBaseClass(
4786
LV.Designator.Entries[PathLengthToMember + I]);
4787
const CXXRecordDecl *MPDecl = MemPtr.Path[I];
4788
if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
4789
Info.FFDiag(RHS);
4790
return nullptr;
4791
}
4792
}
4793
4794
// Truncate the lvalue to the appropriate derived class.
4795
if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
4796
PathLengthToMember))
4797
return nullptr;
4798
} else if (!MemPtr.Path.empty()) {
4799
// Extend the LValue path with the member pointer's path.
4800
LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
4801
MemPtr.Path.size() + IncludeMember);
4802
4803
// Walk down to the appropriate base class.
4804
if (const PointerType *PT = LVType->getAs<PointerType>())
4805
LVType = PT->getPointeeType();
4806
const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
4807
assert(RD && "member pointer access on non-class-type expression");
4808
// The first class in the path is that of the lvalue.
4809
for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
4810
const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
4811
if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
4812
return nullptr;
4813
RD = Base;
4814
}
4815
// Finally cast to the class containing the member.
4816
if (!HandleLValueDirectBase(Info, RHS, LV, RD,
4817
MemPtr.getContainingRecord()))
4818
return nullptr;
4819
}
4820
4821
// Add the member. Note that we cannot build bound member functions here.
4822
if (IncludeMember) {
4823
if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
4824
if (!HandleLValueMember(Info, RHS, LV, FD))
4825
return nullptr;
4826
} else if (const IndirectFieldDecl *IFD =
4827
dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
4828
if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
4829
return nullptr;
4830
} else {
4831
llvm_unreachable("can't construct reference to bound member function");
4832
}
4833
}
4834
4835
return MemPtr.getDecl();
4836
}
4837
4838
static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4839
const BinaryOperator *BO,
4840
LValue &LV,
4841
bool IncludeMember = true) {
4842
assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
4843
4844
if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
4845
if (Info.noteFailure()) {
4846
MemberPtr MemPtr;
4847
EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
4848
}
4849
return nullptr;
4850
}
4851
4852
return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
4853
BO->getRHS(), IncludeMember);
4854
}
4855
4856
/// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
4857
/// the provided lvalue, which currently refers to the base object.
4858
static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
4859
LValue &Result) {
4860
SubobjectDesignator &D = Result.Designator;
4861
if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
4862
return false;
4863
4864
QualType TargetQT = E->getType();
4865
if (const PointerType *PT = TargetQT->getAs<PointerType>())
4866
TargetQT = PT->getPointeeType();
4867
4868
// Check this cast lands within the final derived-to-base subobject path.
4869
if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
4870
Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4871
<< D.MostDerivedType << TargetQT;
4872
return false;
4873
}
4874
4875
// Check the type of the final cast. We don't need to check the path,
4876
// since a cast can only be formed if the path is unique.
4877
unsigned NewEntriesSize = D.Entries.size() - E->path_size();
4878
const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
4879
const CXXRecordDecl *FinalType;
4880
if (NewEntriesSize == D.MostDerivedPathLength)
4881
FinalType = D.MostDerivedType->getAsCXXRecordDecl();
4882
else
4883
FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
4884
if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
4885
Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4886
<< D.MostDerivedType << TargetQT;
4887
return false;
4888
}
4889
4890
// Truncate the lvalue to the appropriate derived class.
4891
return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
4892
}
4893
4894
/// Get the value to use for a default-initialized object of type T.
4895
/// Return false if it encounters something invalid.
4896
static bool handleDefaultInitValue(QualType T, APValue &Result) {
4897
bool Success = true;
4898
4899
// If there is already a value present don't overwrite it.
4900
if (!Result.isAbsent())
4901
return true;
4902
4903
if (auto *RD = T->getAsCXXRecordDecl()) {
4904
if (RD->isInvalidDecl()) {
4905
Result = APValue();
4906
return false;
4907
}
4908
if (RD->isUnion()) {
4909
Result = APValue((const FieldDecl *)nullptr);
4910
return true;
4911
}
4912
Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
4913
std::distance(RD->field_begin(), RD->field_end()));
4914
4915
unsigned Index = 0;
4916
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4917
End = RD->bases_end();
4918
I != End; ++I, ++Index)
4919
Success &=
4920
handleDefaultInitValue(I->getType(), Result.getStructBase(Index));
4921
4922
for (const auto *I : RD->fields()) {
4923
if (I->isUnnamedBitField())
4924
continue;
4925
Success &= handleDefaultInitValue(
4926
I->getType(), Result.getStructField(I->getFieldIndex()));
4927
}
4928
return Success;
4929
}
4930
4931
if (auto *AT =
4932
dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) {
4933
Result = APValue(APValue::UninitArray(), 0, AT->getZExtSize());
4934
if (Result.hasArrayFiller())
4935
Success &=
4936
handleDefaultInitValue(AT->getElementType(), Result.getArrayFiller());
4937
4938
return Success;
4939
}
4940
4941
Result = APValue::IndeterminateValue();
4942
return true;
4943
}
4944
4945
namespace {
4946
enum EvalStmtResult {
4947
/// Evaluation failed.
4948
ESR_Failed,
4949
/// Hit a 'return' statement.
4950
ESR_Returned,
4951
/// Evaluation succeeded.
4952
ESR_Succeeded,
4953
/// Hit a 'continue' statement.
4954
ESR_Continue,
4955
/// Hit a 'break' statement.
4956
ESR_Break,
4957
/// Still scanning for 'case' or 'default' statement.
4958
ESR_CaseNotFound
4959
};
4960
}
4961
4962
static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) {
4963
if (VD->isInvalidDecl())
4964
return false;
4965
// We don't need to evaluate the initializer for a static local.
4966
if (!VD->hasLocalStorage())
4967
return true;
4968
4969
LValue Result;
4970
APValue &Val = Info.CurrentCall->createTemporary(VD, VD->getType(),
4971
ScopeKind::Block, Result);
4972
4973
const Expr *InitE = VD->getInit();
4974
if (!InitE) {
4975
if (VD->getType()->isDependentType())
4976
return Info.noteSideEffect();
4977
return handleDefaultInitValue(VD->getType(), Val);
4978
}
4979
if (InitE->isValueDependent())
4980
return false;
4981
4982
if (!EvaluateInPlace(Val, Info, Result, InitE)) {
4983
// Wipe out any partially-computed value, to allow tracking that this
4984
// evaluation failed.
4985
Val = APValue();
4986
return false;
4987
}
4988
4989
return true;
4990
}
4991
4992
static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
4993
bool OK = true;
4994
4995
if (const VarDecl *VD = dyn_cast<VarDecl>(D))
4996
OK &= EvaluateVarDecl(Info, VD);
4997
4998
if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D))
4999
for (auto *BD : DD->bindings())
5000
if (auto *VD = BD->getHoldingVar())
5001
OK &= EvaluateDecl(Info, VD);
5002
5003
return OK;
5004
}
5005
5006
static bool EvaluateDependentExpr(const Expr *E, EvalInfo &Info) {
5007
assert(E->isValueDependent());
5008
if (Info.noteSideEffect())
5009
return true;
5010
assert(E->containsErrors() && "valid value-dependent expression should never "
5011
"reach invalid code path.");
5012
return false;
5013
}
5014
5015
/// Evaluate a condition (either a variable declaration or an expression).
5016
static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
5017
const Expr *Cond, bool &Result) {
5018
if (Cond->isValueDependent())
5019
return false;
5020
FullExpressionRAII Scope(Info);
5021
if (CondDecl && !EvaluateDecl(Info, CondDecl))
5022
return false;
5023
if (!EvaluateAsBooleanCondition(Cond, Result, Info))
5024
return false;
5025
return Scope.destroy();
5026
}
5027
5028
namespace {
5029
/// A location where the result (returned value) of evaluating a
5030
/// statement should be stored.
5031
struct StmtResult {
5032
/// The APValue that should be filled in with the returned value.
5033
APValue &Value;
5034
/// The location containing the result, if any (used to support RVO).
5035
const LValue *Slot;
5036
};
5037
5038
struct TempVersionRAII {
5039
CallStackFrame &Frame;
5040
5041
TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) {
5042
Frame.pushTempVersion();
5043
}
5044
5045
~TempVersionRAII() {
5046
Frame.popTempVersion();
5047
}
5048
};
5049
5050
}
5051
5052
static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
5053
const Stmt *S,
5054
const SwitchCase *SC = nullptr);
5055
5056
/// Evaluate the body of a loop, and translate the result as appropriate.
5057
static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
5058
const Stmt *Body,
5059
const SwitchCase *Case = nullptr) {
5060
BlockScopeRAII Scope(Info);
5061
5062
EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case);
5063
if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
5064
ESR = ESR_Failed;
5065
5066
switch (ESR) {
5067
case ESR_Break:
5068
return ESR_Succeeded;
5069
case ESR_Succeeded:
5070
case ESR_Continue:
5071
return ESR_Continue;
5072
case ESR_Failed:
5073
case ESR_Returned:
5074
case ESR_CaseNotFound:
5075
return ESR;
5076
}
5077
llvm_unreachable("Invalid EvalStmtResult!");
5078
}
5079
5080
/// Evaluate a switch statement.
5081
static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
5082
const SwitchStmt *SS) {
5083
BlockScopeRAII Scope(Info);
5084
5085
// Evaluate the switch condition.
5086
APSInt Value;
5087
{
5088
if (const Stmt *Init = SS->getInit()) {
5089
EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
5090
if (ESR != ESR_Succeeded) {
5091
if (ESR != ESR_Failed && !Scope.destroy())
5092
ESR = ESR_Failed;
5093
return ESR;
5094
}
5095
}
5096
5097
FullExpressionRAII CondScope(Info);
5098
if (SS->getConditionVariable() &&
5099
!EvaluateDecl(Info, SS->getConditionVariable()))
5100
return ESR_Failed;
5101
if (SS->getCond()->isValueDependent()) {
5102
// We don't know what the value is, and which branch should jump to.
5103
EvaluateDependentExpr(SS->getCond(), Info);
5104
return ESR_Failed;
5105
}
5106
if (!EvaluateInteger(SS->getCond(), Value, Info))
5107
return ESR_Failed;
5108
5109
if (!CondScope.destroy())
5110
return ESR_Failed;
5111
}
5112
5113
// Find the switch case corresponding to the value of the condition.
5114
// FIXME: Cache this lookup.
5115
const SwitchCase *Found = nullptr;
5116
for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
5117
SC = SC->getNextSwitchCase()) {
5118
if (isa<DefaultStmt>(SC)) {
5119
Found = SC;
5120
continue;
5121
}
5122
5123
const CaseStmt *CS = cast<CaseStmt>(SC);
5124
APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
5125
APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
5126
: LHS;
5127
if (LHS <= Value && Value <= RHS) {
5128
Found = SC;
5129
break;
5130
}
5131
}
5132
5133
if (!Found)
5134
return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5135
5136
// Search the switch body for the switch case and evaluate it from there.
5137
EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found);
5138
if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
5139
return ESR_Failed;
5140
5141
switch (ESR) {
5142
case ESR_Break:
5143
return ESR_Succeeded;
5144
case ESR_Succeeded:
5145
case ESR_Continue:
5146
case ESR_Failed:
5147
case ESR_Returned:
5148
return ESR;
5149
case ESR_CaseNotFound:
5150
// This can only happen if the switch case is nested within a statement
5151
// expression. We have no intention of supporting that.
5152
Info.FFDiag(Found->getBeginLoc(),
5153
diag::note_constexpr_stmt_expr_unsupported);
5154
return ESR_Failed;
5155
}
5156
llvm_unreachable("Invalid EvalStmtResult!");
5157
}
5158
5159
static bool CheckLocalVariableDeclaration(EvalInfo &Info, const VarDecl *VD) {
5160
// An expression E is a core constant expression unless the evaluation of E
5161
// would evaluate one of the following: [C++23] - a control flow that passes
5162
// through a declaration of a variable with static or thread storage duration
5163
// unless that variable is usable in constant expressions.
5164
if (VD->isLocalVarDecl() && VD->isStaticLocal() &&
5165
!VD->isUsableInConstantExpressions(Info.Ctx)) {
5166
Info.CCEDiag(VD->getLocation(), diag::note_constexpr_static_local)
5167
<< (VD->getTSCSpec() == TSCS_unspecified ? 0 : 1) << VD;
5168
return false;
5169
}
5170
return true;
5171
}
5172
5173
// Evaluate a statement.
5174
static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
5175
const Stmt *S, const SwitchCase *Case) {
5176
if (!Info.nextStep(S))
5177
return ESR_Failed;
5178
5179
// If we're hunting down a 'case' or 'default' label, recurse through
5180
// substatements until we hit the label.
5181
if (Case) {
5182
switch (S->getStmtClass()) {
5183
case Stmt::CompoundStmtClass:
5184
// FIXME: Precompute which substatement of a compound statement we
5185
// would jump to, and go straight there rather than performing a
5186
// linear scan each time.
5187
case Stmt::LabelStmtClass:
5188
case Stmt::AttributedStmtClass:
5189
case Stmt::DoStmtClass:
5190
break;
5191
5192
case Stmt::CaseStmtClass:
5193
case Stmt::DefaultStmtClass:
5194
if (Case == S)
5195
Case = nullptr;
5196
break;
5197
5198
case Stmt::IfStmtClass: {
5199
// FIXME: Precompute which side of an 'if' we would jump to, and go
5200
// straight there rather than scanning both sides.
5201
const IfStmt *IS = cast<IfStmt>(S);
5202
5203
// Wrap the evaluation in a block scope, in case it's a DeclStmt
5204
// preceded by our switch label.
5205
BlockScopeRAII Scope(Info);
5206
5207
// Step into the init statement in case it brings an (uninitialized)
5208
// variable into scope.
5209
if (const Stmt *Init = IS->getInit()) {
5210
EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
5211
if (ESR != ESR_CaseNotFound) {
5212
assert(ESR != ESR_Succeeded);
5213
return ESR;
5214
}
5215
}
5216
5217
// Condition variable must be initialized if it exists.
5218
// FIXME: We can skip evaluating the body if there's a condition
5219
// variable, as there can't be any case labels within it.
5220
// (The same is true for 'for' statements.)
5221
5222
EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
5223
if (ESR == ESR_Failed)
5224
return ESR;
5225
if (ESR != ESR_CaseNotFound)
5226
return Scope.destroy() ? ESR : ESR_Failed;
5227
if (!IS->getElse())
5228
return ESR_CaseNotFound;
5229
5230
ESR = EvaluateStmt(Result, Info, IS->getElse(), Case);
5231
if (ESR == ESR_Failed)
5232
return ESR;
5233
if (ESR != ESR_CaseNotFound)
5234
return Scope.destroy() ? ESR : ESR_Failed;
5235
return ESR_CaseNotFound;
5236
}
5237
5238
case Stmt::WhileStmtClass: {
5239
EvalStmtResult ESR =
5240
EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
5241
if (ESR != ESR_Continue)
5242
return ESR;
5243
break;
5244
}
5245
5246
case Stmt::ForStmtClass: {
5247
const ForStmt *FS = cast<ForStmt>(S);
5248
BlockScopeRAII Scope(Info);
5249
5250
// Step into the init statement in case it brings an (uninitialized)
5251
// variable into scope.
5252
if (const Stmt *Init = FS->getInit()) {
5253
EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
5254
if (ESR != ESR_CaseNotFound) {
5255
assert(ESR != ESR_Succeeded);
5256
return ESR;
5257
}
5258
}
5259
5260
EvalStmtResult ESR =
5261
EvaluateLoopBody(Result, Info, FS->getBody(), Case);
5262
if (ESR != ESR_Continue)
5263
return ESR;
5264
if (const auto *Inc = FS->getInc()) {
5265
if (Inc->isValueDependent()) {
5266
if (!EvaluateDependentExpr(Inc, Info))
5267
return ESR_Failed;
5268
} else {
5269
FullExpressionRAII IncScope(Info);
5270
if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy())
5271
return ESR_Failed;
5272
}
5273
}
5274
break;
5275
}
5276
5277
case Stmt::DeclStmtClass: {
5278
// Start the lifetime of any uninitialized variables we encounter. They
5279
// might be used by the selected branch of the switch.
5280
const DeclStmt *DS = cast<DeclStmt>(S);
5281
for (const auto *D : DS->decls()) {
5282
if (const auto *VD = dyn_cast<VarDecl>(D)) {
5283
if (!CheckLocalVariableDeclaration(Info, VD))
5284
return ESR_Failed;
5285
if (VD->hasLocalStorage() && !VD->getInit())
5286
if (!EvaluateVarDecl(Info, VD))
5287
return ESR_Failed;
5288
// FIXME: If the variable has initialization that can't be jumped
5289
// over, bail out of any immediately-surrounding compound-statement
5290
// too. There can't be any case labels here.
5291
}
5292
}
5293
return ESR_CaseNotFound;
5294
}
5295
5296
default:
5297
return ESR_CaseNotFound;
5298
}
5299
}
5300
5301
switch (S->getStmtClass()) {
5302
default:
5303
if (const Expr *E = dyn_cast<Expr>(S)) {
5304
if (E->isValueDependent()) {
5305
if (!EvaluateDependentExpr(E, Info))
5306
return ESR_Failed;
5307
} else {
5308
// Don't bother evaluating beyond an expression-statement which couldn't
5309
// be evaluated.
5310
// FIXME: Do we need the FullExpressionRAII object here?
5311
// VisitExprWithCleanups should create one when necessary.
5312
FullExpressionRAII Scope(Info);
5313
if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy())
5314
return ESR_Failed;
5315
}
5316
return ESR_Succeeded;
5317
}
5318
5319
Info.FFDiag(S->getBeginLoc()) << S->getSourceRange();
5320
return ESR_Failed;
5321
5322
case Stmt::NullStmtClass:
5323
return ESR_Succeeded;
5324
5325
case Stmt::DeclStmtClass: {
5326
const DeclStmt *DS = cast<DeclStmt>(S);
5327
for (const auto *D : DS->decls()) {
5328
const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
5329
if (VD && !CheckLocalVariableDeclaration(Info, VD))
5330
return ESR_Failed;
5331
// Each declaration initialization is its own full-expression.
5332
FullExpressionRAII Scope(Info);
5333
if (!EvaluateDecl(Info, D) && !Info.noteFailure())
5334
return ESR_Failed;
5335
if (!Scope.destroy())
5336
return ESR_Failed;
5337
}
5338
return ESR_Succeeded;
5339
}
5340
5341
case Stmt::ReturnStmtClass: {
5342
const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
5343
FullExpressionRAII Scope(Info);
5344
if (RetExpr && RetExpr->isValueDependent()) {
5345
EvaluateDependentExpr(RetExpr, Info);
5346
// We know we returned, but we don't know what the value is.
5347
return ESR_Failed;
5348
}
5349
if (RetExpr &&
5350
!(Result.Slot
5351
? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
5352
: Evaluate(Result.Value, Info, RetExpr)))
5353
return ESR_Failed;
5354
return Scope.destroy() ? ESR_Returned : ESR_Failed;
5355
}
5356
5357
case Stmt::CompoundStmtClass: {
5358
BlockScopeRAII Scope(Info);
5359
5360
const CompoundStmt *CS = cast<CompoundStmt>(S);
5361
for (const auto *BI : CS->body()) {
5362
EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
5363
if (ESR == ESR_Succeeded)
5364
Case = nullptr;
5365
else if (ESR != ESR_CaseNotFound) {
5366
if (ESR != ESR_Failed && !Scope.destroy())
5367
return ESR_Failed;
5368
return ESR;
5369
}
5370
}
5371
if (Case)
5372
return ESR_CaseNotFound;
5373
return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5374
}
5375
5376
case Stmt::IfStmtClass: {
5377
const IfStmt *IS = cast<IfStmt>(S);
5378
5379
// Evaluate the condition, as either a var decl or as an expression.
5380
BlockScopeRAII Scope(Info);
5381
if (const Stmt *Init = IS->getInit()) {
5382
EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
5383
if (ESR != ESR_Succeeded) {
5384
if (ESR != ESR_Failed && !Scope.destroy())
5385
return ESR_Failed;
5386
return ESR;
5387
}
5388
}
5389
bool Cond;
5390
if (IS->isConsteval()) {
5391
Cond = IS->isNonNegatedConsteval();
5392
// If we are not in a constant context, if consteval should not evaluate
5393
// to true.
5394
if (!Info.InConstantContext)
5395
Cond = !Cond;
5396
} else if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(),
5397
Cond))
5398
return ESR_Failed;
5399
5400
if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
5401
EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
5402
if (ESR != ESR_Succeeded) {
5403
if (ESR != ESR_Failed && !Scope.destroy())
5404
return ESR_Failed;
5405
return ESR;
5406
}
5407
}
5408
return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5409
}
5410
5411
case Stmt::WhileStmtClass: {
5412
const WhileStmt *WS = cast<WhileStmt>(S);
5413
while (true) {
5414
BlockScopeRAII Scope(Info);
5415
bool Continue;
5416
if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
5417
Continue))
5418
return ESR_Failed;
5419
if (!Continue)
5420
break;
5421
5422
EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
5423
if (ESR != ESR_Continue) {
5424
if (ESR != ESR_Failed && !Scope.destroy())
5425
return ESR_Failed;
5426
return ESR;
5427
}
5428
if (!Scope.destroy())
5429
return ESR_Failed;
5430
}
5431
return ESR_Succeeded;
5432
}
5433
5434
case Stmt::DoStmtClass: {
5435
const DoStmt *DS = cast<DoStmt>(S);
5436
bool Continue;
5437
do {
5438
EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
5439
if (ESR != ESR_Continue)
5440
return ESR;
5441
Case = nullptr;
5442
5443
if (DS->getCond()->isValueDependent()) {
5444
EvaluateDependentExpr(DS->getCond(), Info);
5445
// Bailout as we don't know whether to keep going or terminate the loop.
5446
return ESR_Failed;
5447
}
5448
FullExpressionRAII CondScope(Info);
5449
if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info) ||
5450
!CondScope.destroy())
5451
return ESR_Failed;
5452
} while (Continue);
5453
return ESR_Succeeded;
5454
}
5455
5456
case Stmt::ForStmtClass: {
5457
const ForStmt *FS = cast<ForStmt>(S);
5458
BlockScopeRAII ForScope(Info);
5459
if (FS->getInit()) {
5460
EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
5461
if (ESR != ESR_Succeeded) {
5462
if (ESR != ESR_Failed && !ForScope.destroy())
5463
return ESR_Failed;
5464
return ESR;
5465
}
5466
}
5467
while (true) {
5468
BlockScopeRAII IterScope(Info);
5469
bool Continue = true;
5470
if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
5471
FS->getCond(), Continue))
5472
return ESR_Failed;
5473
if (!Continue)
5474
break;
5475
5476
EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
5477
if (ESR != ESR_Continue) {
5478
if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy()))
5479
return ESR_Failed;
5480
return ESR;
5481
}
5482
5483
if (const auto *Inc = FS->getInc()) {
5484
if (Inc->isValueDependent()) {
5485
if (!EvaluateDependentExpr(Inc, Info))
5486
return ESR_Failed;
5487
} else {
5488
FullExpressionRAII IncScope(Info);
5489
if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy())
5490
return ESR_Failed;
5491
}
5492
}
5493
5494
if (!IterScope.destroy())
5495
return ESR_Failed;
5496
}
5497
return ForScope.destroy() ? ESR_Succeeded : ESR_Failed;
5498
}
5499
5500
case Stmt::CXXForRangeStmtClass: {
5501
const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
5502
BlockScopeRAII Scope(Info);
5503
5504
// Evaluate the init-statement if present.
5505
if (FS->getInit()) {
5506
EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
5507
if (ESR != ESR_Succeeded) {
5508
if (ESR != ESR_Failed && !Scope.destroy())
5509
return ESR_Failed;
5510
return ESR;
5511
}
5512
}
5513
5514
// Initialize the __range variable.
5515
EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
5516
if (ESR != ESR_Succeeded) {
5517
if (ESR != ESR_Failed && !Scope.destroy())
5518
return ESR_Failed;
5519
return ESR;
5520
}
5521
5522
// In error-recovery cases it's possible to get here even if we failed to
5523
// synthesize the __begin and __end variables.
5524
if (!FS->getBeginStmt() || !FS->getEndStmt() || !FS->getCond())
5525
return ESR_Failed;
5526
5527
// Create the __begin and __end iterators.
5528
ESR = EvaluateStmt(Result, Info, FS->getBeginStmt());
5529
if (ESR != ESR_Succeeded) {
5530
if (ESR != ESR_Failed && !Scope.destroy())
5531
return ESR_Failed;
5532
return ESR;
5533
}
5534
ESR = EvaluateStmt(Result, Info, FS->getEndStmt());
5535
if (ESR != ESR_Succeeded) {
5536
if (ESR != ESR_Failed && !Scope.destroy())
5537
return ESR_Failed;
5538
return ESR;
5539
}
5540
5541
while (true) {
5542
// Condition: __begin != __end.
5543
{
5544
if (FS->getCond()->isValueDependent()) {
5545
EvaluateDependentExpr(FS->getCond(), Info);
5546
// We don't know whether to keep going or terminate the loop.
5547
return ESR_Failed;
5548
}
5549
bool Continue = true;
5550
FullExpressionRAII CondExpr(Info);
5551
if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
5552
return ESR_Failed;
5553
if (!Continue)
5554
break;
5555
}
5556
5557
// User's variable declaration, initialized by *__begin.
5558
BlockScopeRAII InnerScope(Info);
5559
ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
5560
if (ESR != ESR_Succeeded) {
5561
if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5562
return ESR_Failed;
5563
return ESR;
5564
}
5565
5566
// Loop body.
5567
ESR = EvaluateLoopBody(Result, Info, FS->getBody());
5568
if (ESR != ESR_Continue) {
5569
if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5570
return ESR_Failed;
5571
return ESR;
5572
}
5573
if (FS->getInc()->isValueDependent()) {
5574
if (!EvaluateDependentExpr(FS->getInc(), Info))
5575
return ESR_Failed;
5576
} else {
5577
// Increment: ++__begin
5578
if (!EvaluateIgnoredValue(Info, FS->getInc()))
5579
return ESR_Failed;
5580
}
5581
5582
if (!InnerScope.destroy())
5583
return ESR_Failed;
5584
}
5585
5586
return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5587
}
5588
5589
case Stmt::SwitchStmtClass:
5590
return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
5591
5592
case Stmt::ContinueStmtClass:
5593
return ESR_Continue;
5594
5595
case Stmt::BreakStmtClass:
5596
return ESR_Break;
5597
5598
case Stmt::LabelStmtClass:
5599
return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
5600
5601
case Stmt::AttributedStmtClass: {
5602
const auto *AS = cast<AttributedStmt>(S);
5603
const auto *SS = AS->getSubStmt();
5604
MSConstexprContextRAII ConstexprContext(
5605
*Info.CurrentCall, hasSpecificAttr<MSConstexprAttr>(AS->getAttrs()) &&
5606
isa<ReturnStmt>(SS));
5607
5608
auto LO = Info.getCtx().getLangOpts();
5609
if (LO.CXXAssumptions && !LO.MSVCCompat) {
5610
for (auto *Attr : AS->getAttrs()) {
5611
auto *AA = dyn_cast<CXXAssumeAttr>(Attr);
5612
if (!AA)
5613
continue;
5614
5615
auto *Assumption = AA->getAssumption();
5616
if (Assumption->isValueDependent())
5617
return ESR_Failed;
5618
5619
if (Assumption->HasSideEffects(Info.getCtx()))
5620
continue;
5621
5622
bool Value;
5623
if (!EvaluateAsBooleanCondition(Assumption, Value, Info))
5624
return ESR_Failed;
5625
if (!Value) {
5626
Info.CCEDiag(Assumption->getExprLoc(),
5627
diag::note_constexpr_assumption_failed);
5628
return ESR_Failed;
5629
}
5630
}
5631
}
5632
5633
return EvaluateStmt(Result, Info, SS, Case);
5634
}
5635
5636
case Stmt::CaseStmtClass:
5637
case Stmt::DefaultStmtClass:
5638
return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
5639
case Stmt::CXXTryStmtClass:
5640
// Evaluate try blocks by evaluating all sub statements.
5641
return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case);
5642
}
5643
}
5644
5645
/// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
5646
/// default constructor. If so, we'll fold it whether or not it's marked as
5647
/// constexpr. If it is marked as constexpr, we will never implicitly define it,
5648
/// so we need special handling.
5649
static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
5650
const CXXConstructorDecl *CD,
5651
bool IsValueInitialization) {
5652
if (!CD->isTrivial() || !CD->isDefaultConstructor())
5653
return false;
5654
5655
// Value-initialization does not call a trivial default constructor, so such a
5656
// call is a core constant expression whether or not the constructor is
5657
// constexpr.
5658
if (!CD->isConstexpr() && !IsValueInitialization) {
5659
if (Info.getLangOpts().CPlusPlus11) {
5660
// FIXME: If DiagDecl is an implicitly-declared special member function,
5661
// we should be much more explicit about why it's not constexpr.
5662
Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
5663
<< /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
5664
Info.Note(CD->getLocation(), diag::note_declared_at);
5665
} else {
5666
Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
5667
}
5668
}
5669
return true;
5670
}
5671
5672
/// CheckConstexprFunction - Check that a function can be called in a constant
5673
/// expression.
5674
static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
5675
const FunctionDecl *Declaration,
5676
const FunctionDecl *Definition,
5677
const Stmt *Body) {
5678
// Potential constant expressions can contain calls to declared, but not yet
5679
// defined, constexpr functions.
5680
if (Info.checkingPotentialConstantExpression() && !Definition &&
5681
Declaration->isConstexpr())
5682
return false;
5683
5684
// Bail out if the function declaration itself is invalid. We will
5685
// have produced a relevant diagnostic while parsing it, so just
5686
// note the problematic sub-expression.
5687
if (Declaration->isInvalidDecl()) {
5688
Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5689
return false;
5690
}
5691
5692
// DR1872: An instantiated virtual constexpr function can't be called in a
5693
// constant expression (prior to C++20). We can still constant-fold such a
5694
// call.
5695
if (!Info.Ctx.getLangOpts().CPlusPlus20 && isa<CXXMethodDecl>(Declaration) &&
5696
cast<CXXMethodDecl>(Declaration)->isVirtual())
5697
Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call);
5698
5699
if (Definition && Definition->isInvalidDecl()) {
5700
Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5701
return false;
5702
}
5703
5704
// Can we evaluate this function call?
5705
if (Definition && Body &&
5706
(Definition->isConstexpr() || (Info.CurrentCall->CanEvalMSConstexpr &&
5707
Definition->hasAttr<MSConstexprAttr>())))
5708
return true;
5709
5710
if (Info.getLangOpts().CPlusPlus11) {
5711
const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
5712
5713
// If this function is not constexpr because it is an inherited
5714
// non-constexpr constructor, diagnose that directly.
5715
auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
5716
if (CD && CD->isInheritingConstructor()) {
5717
auto *Inherited = CD->getInheritedConstructor().getConstructor();
5718
if (!Inherited->isConstexpr())
5719
DiagDecl = CD = Inherited;
5720
}
5721
5722
// FIXME: If DiagDecl is an implicitly-declared special member function
5723
// or an inheriting constructor, we should be much more explicit about why
5724
// it's not constexpr.
5725
if (CD && CD->isInheritingConstructor())
5726
Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
5727
<< CD->getInheritedConstructor().getConstructor()->getParent();
5728
else
5729
Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
5730
<< DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
5731
Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
5732
} else {
5733
Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5734
}
5735
return false;
5736
}
5737
5738
namespace {
5739
struct CheckDynamicTypeHandler {
5740
AccessKinds AccessKind;
5741
typedef bool result_type;
5742
bool failed() { return false; }
5743
bool found(APValue &Subobj, QualType SubobjType) { return true; }
5744
bool found(APSInt &Value, QualType SubobjType) { return true; }
5745
bool found(APFloat &Value, QualType SubobjType) { return true; }
5746
};
5747
} // end anonymous namespace
5748
5749
/// Check that we can access the notional vptr of an object / determine its
5750
/// dynamic type.
5751
static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This,
5752
AccessKinds AK, bool Polymorphic) {
5753
if (This.Designator.Invalid)
5754
return false;
5755
5756
CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType());
5757
5758
if (!Obj)
5759
return false;
5760
5761
if (!Obj.Value) {
5762
// The object is not usable in constant expressions, so we can't inspect
5763
// its value to see if it's in-lifetime or what the active union members
5764
// are. We can still check for a one-past-the-end lvalue.
5765
if (This.Designator.isOnePastTheEnd() ||
5766
This.Designator.isMostDerivedAnUnsizedArray()) {
5767
Info.FFDiag(E, This.Designator.isOnePastTheEnd()
5768
? diag::note_constexpr_access_past_end
5769
: diag::note_constexpr_access_unsized_array)
5770
<< AK;
5771
return false;
5772
} else if (Polymorphic) {
5773
// Conservatively refuse to perform a polymorphic operation if we would
5774
// not be able to read a notional 'vptr' value.
5775
APValue Val;
5776
This.moveInto(Val);
5777
QualType StarThisType =
5778
Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx));
5779
Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type)
5780
<< AK << Val.getAsString(Info.Ctx, StarThisType);
5781
return false;
5782
}
5783
return true;
5784
}
5785
5786
CheckDynamicTypeHandler Handler{AK};
5787
return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
5788
}
5789
5790
/// Check that the pointee of the 'this' pointer in a member function call is
5791
/// either within its lifetime or in its period of construction or destruction.
5792
static bool
5793
checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E,
5794
const LValue &This,
5795
const CXXMethodDecl *NamedMember) {
5796
return checkDynamicType(
5797
Info, E, This,
5798
isa<CXXDestructorDecl>(NamedMember) ? AK_Destroy : AK_MemberCall, false);
5799
}
5800
5801
struct DynamicType {
5802
/// The dynamic class type of the object.
5803
const CXXRecordDecl *Type;
5804
/// The corresponding path length in the lvalue.
5805
unsigned PathLength;
5806
};
5807
5808
static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator,
5809
unsigned PathLength) {
5810
assert(PathLength >= Designator.MostDerivedPathLength && PathLength <=
5811
Designator.Entries.size() && "invalid path length");
5812
return (PathLength == Designator.MostDerivedPathLength)
5813
? Designator.MostDerivedType->getAsCXXRecordDecl()
5814
: getAsBaseClass(Designator.Entries[PathLength - 1]);
5815
}
5816
5817
/// Determine the dynamic type of an object.
5818
static std::optional<DynamicType> ComputeDynamicType(EvalInfo &Info,
5819
const Expr *E,
5820
LValue &This,
5821
AccessKinds AK) {
5822
// If we don't have an lvalue denoting an object of class type, there is no
5823
// meaningful dynamic type. (We consider objects of non-class type to have no
5824
// dynamic type.)
5825
if (!checkDynamicType(Info, E, This, AK, true))
5826
return std::nullopt;
5827
5828
// Refuse to compute a dynamic type in the presence of virtual bases. This
5829
// shouldn't happen other than in constant-folding situations, since literal
5830
// types can't have virtual bases.
5831
//
5832
// Note that consumers of DynamicType assume that the type has no virtual
5833
// bases, and will need modifications if this restriction is relaxed.
5834
const CXXRecordDecl *Class =
5835
This.Designator.MostDerivedType->getAsCXXRecordDecl();
5836
if (!Class || Class->getNumVBases()) {
5837
Info.FFDiag(E);
5838
return std::nullopt;
5839
}
5840
5841
// FIXME: For very deep class hierarchies, it might be beneficial to use a
5842
// binary search here instead. But the overwhelmingly common case is that
5843
// we're not in the middle of a constructor, so it probably doesn't matter
5844
// in practice.
5845
ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries;
5846
for (unsigned PathLength = This.Designator.MostDerivedPathLength;
5847
PathLength <= Path.size(); ++PathLength) {
5848
switch (Info.isEvaluatingCtorDtor(This.getLValueBase(),
5849
Path.slice(0, PathLength))) {
5850
case ConstructionPhase::Bases:
5851
case ConstructionPhase::DestroyingBases:
5852
// We're constructing or destroying a base class. This is not the dynamic
5853
// type.
5854
break;
5855
5856
case ConstructionPhase::None:
5857
case ConstructionPhase::AfterBases:
5858
case ConstructionPhase::AfterFields:
5859
case ConstructionPhase::Destroying:
5860
// We've finished constructing the base classes and not yet started
5861
// destroying them again, so this is the dynamic type.
5862
return DynamicType{getBaseClassType(This.Designator, PathLength),
5863
PathLength};
5864
}
5865
}
5866
5867
// CWG issue 1517: we're constructing a base class of the object described by
5868
// 'This', so that object has not yet begun its period of construction and
5869
// any polymorphic operation on it results in undefined behavior.
5870
Info.FFDiag(E);
5871
return std::nullopt;
5872
}
5873
5874
/// Perform virtual dispatch.
5875
static const CXXMethodDecl *HandleVirtualDispatch(
5876
EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found,
5877
llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) {
5878
std::optional<DynamicType> DynType = ComputeDynamicType(
5879
Info, E, This,
5880
isa<CXXDestructorDecl>(Found) ? AK_Destroy : AK_MemberCall);
5881
if (!DynType)
5882
return nullptr;
5883
5884
// Find the final overrider. It must be declared in one of the classes on the
5885
// path from the dynamic type to the static type.
5886
// FIXME: If we ever allow literal types to have virtual base classes, that
5887
// won't be true.
5888
const CXXMethodDecl *Callee = Found;
5889
unsigned PathLength = DynType->PathLength;
5890
for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) {
5891
const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength);
5892
const CXXMethodDecl *Overrider =
5893
Found->getCorrespondingMethodDeclaredInClass(Class, false);
5894
if (Overrider) {
5895
Callee = Overrider;
5896
break;
5897
}
5898
}
5899
5900
// C++2a [class.abstract]p6:
5901
// the effect of making a virtual call to a pure virtual function [...] is
5902
// undefined
5903
if (Callee->isPureVirtual()) {
5904
Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee;
5905
Info.Note(Callee->getLocation(), diag::note_declared_at);
5906
return nullptr;
5907
}
5908
5909
// If necessary, walk the rest of the path to determine the sequence of
5910
// covariant adjustment steps to apply.
5911
if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(),
5912
Found->getReturnType())) {
5913
CovariantAdjustmentPath.push_back(Callee->getReturnType());
5914
for (unsigned CovariantPathLength = PathLength + 1;
5915
CovariantPathLength != This.Designator.Entries.size();
5916
++CovariantPathLength) {
5917
const CXXRecordDecl *NextClass =
5918
getBaseClassType(This.Designator, CovariantPathLength);
5919
const CXXMethodDecl *Next =
5920
Found->getCorrespondingMethodDeclaredInClass(NextClass, false);
5921
if (Next && !Info.Ctx.hasSameUnqualifiedType(
5922
Next->getReturnType(), CovariantAdjustmentPath.back()))
5923
CovariantAdjustmentPath.push_back(Next->getReturnType());
5924
}
5925
if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(),
5926
CovariantAdjustmentPath.back()))
5927
CovariantAdjustmentPath.push_back(Found->getReturnType());
5928
}
5929
5930
// Perform 'this' adjustment.
5931
if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength))
5932
return nullptr;
5933
5934
return Callee;
5935
}
5936
5937
/// Perform the adjustment from a value returned by a virtual function to
5938
/// a value of the statically expected type, which may be a pointer or
5939
/// reference to a base class of the returned type.
5940
static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E,
5941
APValue &Result,
5942
ArrayRef<QualType> Path) {
5943
assert(Result.isLValue() &&
5944
"unexpected kind of APValue for covariant return");
5945
if (Result.isNullPointer())
5946
return true;
5947
5948
LValue LVal;
5949
LVal.setFrom(Info.Ctx, Result);
5950
5951
const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl();
5952
for (unsigned I = 1; I != Path.size(); ++I) {
5953
const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl();
5954
assert(OldClass && NewClass && "unexpected kind of covariant return");
5955
if (OldClass != NewClass &&
5956
!CastToBaseClass(Info, E, LVal, OldClass, NewClass))
5957
return false;
5958
OldClass = NewClass;
5959
}
5960
5961
LVal.moveInto(Result);
5962
return true;
5963
}
5964
5965
/// Determine whether \p Base, which is known to be a direct base class of
5966
/// \p Derived, is a public base class.
5967
static bool isBaseClassPublic(const CXXRecordDecl *Derived,
5968
const CXXRecordDecl *Base) {
5969
for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) {
5970
auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl();
5971
if (BaseClass && declaresSameEntity(BaseClass, Base))
5972
return BaseSpec.getAccessSpecifier() == AS_public;
5973
}
5974
llvm_unreachable("Base is not a direct base of Derived");
5975
}
5976
5977
/// Apply the given dynamic cast operation on the provided lvalue.
5978
///
5979
/// This implements the hard case of dynamic_cast, requiring a "runtime check"
5980
/// to find a suitable target subobject.
5981
static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E,
5982
LValue &Ptr) {
5983
// We can't do anything with a non-symbolic pointer value.
5984
SubobjectDesignator &D = Ptr.Designator;
5985
if (D.Invalid)
5986
return false;
5987
5988
// C++ [expr.dynamic.cast]p6:
5989
// If v is a null pointer value, the result is a null pointer value.
5990
if (Ptr.isNullPointer() && !E->isGLValue())
5991
return true;
5992
5993
// For all the other cases, we need the pointer to point to an object within
5994
// its lifetime / period of construction / destruction, and we need to know
5995
// its dynamic type.
5996
std::optional<DynamicType> DynType =
5997
ComputeDynamicType(Info, E, Ptr, AK_DynamicCast);
5998
if (!DynType)
5999
return false;
6000
6001
// C++ [expr.dynamic.cast]p7:
6002
// If T is "pointer to cv void", then the result is a pointer to the most
6003
// derived object
6004
if (E->getType()->isVoidPointerType())
6005
return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength);
6006
6007
const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl();
6008
assert(C && "dynamic_cast target is not void pointer nor class");
6009
CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C));
6010
6011
auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) {
6012
// C++ [expr.dynamic.cast]p9:
6013
if (!E->isGLValue()) {
6014
// The value of a failed cast to pointer type is the null pointer value
6015
// of the required result type.
6016
Ptr.setNull(Info.Ctx, E->getType());
6017
return true;
6018
}
6019
6020
// A failed cast to reference type throws [...] std::bad_cast.
6021
unsigned DiagKind;
6022
if (!Paths && (declaresSameEntity(DynType->Type, C) ||
6023
DynType->Type->isDerivedFrom(C)))
6024
DiagKind = 0;
6025
else if (!Paths || Paths->begin() == Paths->end())
6026
DiagKind = 1;
6027
else if (Paths->isAmbiguous(CQT))
6028
DiagKind = 2;
6029
else {
6030
assert(Paths->front().Access != AS_public && "why did the cast fail?");
6031
DiagKind = 3;
6032
}
6033
Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed)
6034
<< DiagKind << Ptr.Designator.getType(Info.Ctx)
6035
<< Info.Ctx.getRecordType(DynType->Type)
6036
<< E->getType().getUnqualifiedType();
6037
return false;
6038
};
6039
6040
// Runtime check, phase 1:
6041
// Walk from the base subobject towards the derived object looking for the
6042
// target type.
6043
for (int PathLength = Ptr.Designator.Entries.size();
6044
PathLength >= (int)DynType->PathLength; --PathLength) {
6045
const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength);
6046
if (declaresSameEntity(Class, C))
6047
return CastToDerivedClass(Info, E, Ptr, Class, PathLength);
6048
// We can only walk across public inheritance edges.
6049
if (PathLength > (int)DynType->PathLength &&
6050
!isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1),
6051
Class))
6052
return RuntimeCheckFailed(nullptr);
6053
}
6054
6055
// Runtime check, phase 2:
6056
// Search the dynamic type for an unambiguous public base of type C.
6057
CXXBasePaths Paths(/*FindAmbiguities=*/true,
6058
/*RecordPaths=*/true, /*DetectVirtual=*/false);
6059
if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) &&
6060
Paths.front().Access == AS_public) {
6061
// Downcast to the dynamic type...
6062
if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength))
6063
return false;
6064
// ... then upcast to the chosen base class subobject.
6065
for (CXXBasePathElement &Elem : Paths.front())
6066
if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base))
6067
return false;
6068
return true;
6069
}
6070
6071
// Otherwise, the runtime check fails.
6072
return RuntimeCheckFailed(&Paths);
6073
}
6074
6075
namespace {
6076
struct StartLifetimeOfUnionMemberHandler {
6077
EvalInfo &Info;
6078
const Expr *LHSExpr;
6079
const FieldDecl *Field;
6080
bool DuringInit;
6081
bool Failed = false;
6082
static const AccessKinds AccessKind = AK_Assign;
6083
6084
typedef bool result_type;
6085
bool failed() { return Failed; }
6086
bool found(APValue &Subobj, QualType SubobjType) {
6087
// We are supposed to perform no initialization but begin the lifetime of
6088
// the object. We interpret that as meaning to do what default
6089
// initialization of the object would do if all constructors involved were
6090
// trivial:
6091
// * All base, non-variant member, and array element subobjects' lifetimes
6092
// begin
6093
// * No variant members' lifetimes begin
6094
// * All scalar subobjects whose lifetimes begin have indeterminate values
6095
assert(SubobjType->isUnionType());
6096
if (declaresSameEntity(Subobj.getUnionField(), Field)) {
6097
// This union member is already active. If it's also in-lifetime, there's
6098
// nothing to do.
6099
if (Subobj.getUnionValue().hasValue())
6100
return true;
6101
} else if (DuringInit) {
6102
// We're currently in the process of initializing a different union
6103
// member. If we carried on, that initialization would attempt to
6104
// store to an inactive union member, resulting in undefined behavior.
6105
Info.FFDiag(LHSExpr,
6106
diag::note_constexpr_union_member_change_during_init);
6107
return false;
6108
}
6109
APValue Result;
6110
Failed = !handleDefaultInitValue(Field->getType(), Result);
6111
Subobj.setUnion(Field, Result);
6112
return true;
6113
}
6114
bool found(APSInt &Value, QualType SubobjType) {
6115
llvm_unreachable("wrong value kind for union object");
6116
}
6117
bool found(APFloat &Value, QualType SubobjType) {
6118
llvm_unreachable("wrong value kind for union object");
6119
}
6120
};
6121
} // end anonymous namespace
6122
6123
const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind;
6124
6125
/// Handle a builtin simple-assignment or a call to a trivial assignment
6126
/// operator whose left-hand side might involve a union member access. If it
6127
/// does, implicitly start the lifetime of any accessed union elements per
6128
/// C++20 [class.union]5.
6129
static bool MaybeHandleUnionActiveMemberChange(EvalInfo &Info,
6130
const Expr *LHSExpr,
6131
const LValue &LHS) {
6132
if (LHS.InvalidBase || LHS.Designator.Invalid)
6133
return false;
6134
6135
llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths;
6136
// C++ [class.union]p5:
6137
// define the set S(E) of subexpressions of E as follows:
6138
unsigned PathLength = LHS.Designator.Entries.size();
6139
for (const Expr *E = LHSExpr; E != nullptr;) {
6140
// -- If E is of the form A.B, S(E) contains the elements of S(A)...
6141
if (auto *ME = dyn_cast<MemberExpr>(E)) {
6142
auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
6143
// Note that we can't implicitly start the lifetime of a reference,
6144
// so we don't need to proceed any further if we reach one.
6145
if (!FD || FD->getType()->isReferenceType())
6146
break;
6147
6148
// ... and also contains A.B if B names a union member ...
6149
if (FD->getParent()->isUnion()) {
6150
// ... of a non-class, non-array type, or of a class type with a
6151
// trivial default constructor that is not deleted, or an array of
6152
// such types.
6153
auto *RD =
6154
FD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6155
if (!RD || RD->hasTrivialDefaultConstructor())
6156
UnionPathLengths.push_back({PathLength - 1, FD});
6157
}
6158
6159
E = ME->getBase();
6160
--PathLength;
6161
assert(declaresSameEntity(FD,
6162
LHS.Designator.Entries[PathLength]
6163
.getAsBaseOrMember().getPointer()));
6164
6165
// -- If E is of the form A[B] and is interpreted as a built-in array
6166
// subscripting operator, S(E) is [S(the array operand, if any)].
6167
} else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
6168
// Step over an ArrayToPointerDecay implicit cast.
6169
auto *Base = ASE->getBase()->IgnoreImplicit();
6170
if (!Base->getType()->isArrayType())
6171
break;
6172
6173
E = Base;
6174
--PathLength;
6175
6176
} else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) {
6177
// Step over a derived-to-base conversion.
6178
E = ICE->getSubExpr();
6179
if (ICE->getCastKind() == CK_NoOp)
6180
continue;
6181
if (ICE->getCastKind() != CK_DerivedToBase &&
6182
ICE->getCastKind() != CK_UncheckedDerivedToBase)
6183
break;
6184
// Walk path backwards as we walk up from the base to the derived class.
6185
for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) {
6186
if (Elt->isVirtual()) {
6187
// A class with virtual base classes never has a trivial default
6188
// constructor, so S(E) is empty in this case.
6189
E = nullptr;
6190
break;
6191
}
6192
6193
--PathLength;
6194
assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(),
6195
LHS.Designator.Entries[PathLength]
6196
.getAsBaseOrMember().getPointer()));
6197
}
6198
6199
// -- Otherwise, S(E) is empty.
6200
} else {
6201
break;
6202
}
6203
}
6204
6205
// Common case: no unions' lifetimes are started.
6206
if (UnionPathLengths.empty())
6207
return true;
6208
6209
// if modification of X [would access an inactive union member], an object
6210
// of the type of X is implicitly created
6211
CompleteObject Obj =
6212
findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType());
6213
if (!Obj)
6214
return false;
6215
for (std::pair<unsigned, const FieldDecl *> LengthAndField :
6216
llvm::reverse(UnionPathLengths)) {
6217
// Form a designator for the union object.
6218
SubobjectDesignator D = LHS.Designator;
6219
D.truncate(Info.Ctx, LHS.Base, LengthAndField.first);
6220
6221
bool DuringInit = Info.isEvaluatingCtorDtor(LHS.Base, D.Entries) ==
6222
ConstructionPhase::AfterBases;
6223
StartLifetimeOfUnionMemberHandler StartLifetime{
6224
Info, LHSExpr, LengthAndField.second, DuringInit};
6225
if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime))
6226
return false;
6227
}
6228
6229
return true;
6230
}
6231
6232
static bool EvaluateCallArg(const ParmVarDecl *PVD, const Expr *Arg,
6233
CallRef Call, EvalInfo &Info,
6234
bool NonNull = false) {
6235
LValue LV;
6236
// Create the parameter slot and register its destruction. For a vararg
6237
// argument, create a temporary.
6238
// FIXME: For calling conventions that destroy parameters in the callee,
6239
// should we consider performing destruction when the function returns
6240
// instead?
6241
APValue &V = PVD ? Info.CurrentCall->createParam(Call, PVD, LV)
6242
: Info.CurrentCall->createTemporary(Arg, Arg->getType(),
6243
ScopeKind::Call, LV);
6244
if (!EvaluateInPlace(V, Info, LV, Arg))
6245
return false;
6246
6247
// Passing a null pointer to an __attribute__((nonnull)) parameter results in
6248
// undefined behavior, so is non-constant.
6249
if (NonNull && V.isLValue() && V.isNullPointer()) {
6250
Info.CCEDiag(Arg, diag::note_non_null_attribute_failed);
6251
return false;
6252
}
6253
6254
return true;
6255
}
6256
6257
/// Evaluate the arguments to a function call.
6258
static bool EvaluateArgs(ArrayRef<const Expr *> Args, CallRef Call,
6259
EvalInfo &Info, const FunctionDecl *Callee,
6260
bool RightToLeft = false) {
6261
bool Success = true;
6262
llvm::SmallBitVector ForbiddenNullArgs;
6263
if (Callee->hasAttr<NonNullAttr>()) {
6264
ForbiddenNullArgs.resize(Args.size());
6265
for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) {
6266
if (!Attr->args_size()) {
6267
ForbiddenNullArgs.set();
6268
break;
6269
} else
6270
for (auto Idx : Attr->args()) {
6271
unsigned ASTIdx = Idx.getASTIndex();
6272
if (ASTIdx >= Args.size())
6273
continue;
6274
ForbiddenNullArgs[ASTIdx] = true;
6275
}
6276
}
6277
}
6278
for (unsigned I = 0; I < Args.size(); I++) {
6279
unsigned Idx = RightToLeft ? Args.size() - I - 1 : I;
6280
const ParmVarDecl *PVD =
6281
Idx < Callee->getNumParams() ? Callee->getParamDecl(Idx) : nullptr;
6282
bool NonNull = !ForbiddenNullArgs.empty() && ForbiddenNullArgs[Idx];
6283
if (!EvaluateCallArg(PVD, Args[Idx], Call, Info, NonNull)) {
6284
// If we're checking for a potential constant expression, evaluate all
6285
// initializers even if some of them fail.
6286
if (!Info.noteFailure())
6287
return false;
6288
Success = false;
6289
}
6290
}
6291
return Success;
6292
}
6293
6294
/// Perform a trivial copy from Param, which is the parameter of a copy or move
6295
/// constructor or assignment operator.
6296
static bool handleTrivialCopy(EvalInfo &Info, const ParmVarDecl *Param,
6297
const Expr *E, APValue &Result,
6298
bool CopyObjectRepresentation) {
6299
// Find the reference argument.
6300
CallStackFrame *Frame = Info.CurrentCall;
6301
APValue *RefValue = Info.getParamSlot(Frame->Arguments, Param);
6302
if (!RefValue) {
6303
Info.FFDiag(E);
6304
return false;
6305
}
6306
6307
// Copy out the contents of the RHS object.
6308
LValue RefLValue;
6309
RefLValue.setFrom(Info.Ctx, *RefValue);
6310
return handleLValueToRValueConversion(
6311
Info, E, Param->getType().getNonReferenceType(), RefLValue, Result,
6312
CopyObjectRepresentation);
6313
}
6314
6315
/// Evaluate a function call.
6316
static bool HandleFunctionCall(SourceLocation CallLoc,
6317
const FunctionDecl *Callee, const LValue *This,
6318
const Expr *E, ArrayRef<const Expr *> Args,
6319
CallRef Call, const Stmt *Body, EvalInfo &Info,
6320
APValue &Result, const LValue *ResultSlot) {
6321
if (!Info.CheckCallLimit(CallLoc))
6322
return false;
6323
6324
CallStackFrame Frame(Info, E->getSourceRange(), Callee, This, E, Call);
6325
6326
// For a trivial copy or move assignment, perform an APValue copy. This is
6327
// essential for unions, where the operations performed by the assignment
6328
// operator cannot be represented as statements.
6329
//
6330
// Skip this for non-union classes with no fields; in that case, the defaulted
6331
// copy/move does not actually read the object.
6332
const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
6333
if (MD && MD->isDefaulted() &&
6334
(MD->getParent()->isUnion() ||
6335
(MD->isTrivial() &&
6336
isReadByLvalueToRvalueConversion(MD->getParent())))) {
6337
assert(This &&
6338
(MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
6339
APValue RHSValue;
6340
if (!handleTrivialCopy(Info, MD->getParamDecl(0), Args[0], RHSValue,
6341
MD->getParent()->isUnion()))
6342
return false;
6343
if (!handleAssignment(Info, Args[0], *This, MD->getThisType(),
6344
RHSValue))
6345
return false;
6346
This->moveInto(Result);
6347
return true;
6348
} else if (MD && isLambdaCallOperator(MD)) {
6349
// We're in a lambda; determine the lambda capture field maps unless we're
6350
// just constexpr checking a lambda's call operator. constexpr checking is
6351
// done before the captures have been added to the closure object (unless
6352
// we're inferring constexpr-ness), so we don't have access to them in this
6353
// case. But since we don't need the captures to constexpr check, we can
6354
// just ignore them.
6355
if (!Info.checkingPotentialConstantExpression())
6356
MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields,
6357
Frame.LambdaThisCaptureField);
6358
}
6359
6360
StmtResult Ret = {Result, ResultSlot};
6361
EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
6362
if (ESR == ESR_Succeeded) {
6363
if (Callee->getReturnType()->isVoidType())
6364
return true;
6365
Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return);
6366
}
6367
return ESR == ESR_Returned;
6368
}
6369
6370
/// Evaluate a constructor call.
6371
static bool HandleConstructorCall(const Expr *E, const LValue &This,
6372
CallRef Call,
6373
const CXXConstructorDecl *Definition,
6374
EvalInfo &Info, APValue &Result) {
6375
SourceLocation CallLoc = E->getExprLoc();
6376
if (!Info.CheckCallLimit(CallLoc))
6377
return false;
6378
6379
const CXXRecordDecl *RD = Definition->getParent();
6380
if (RD->getNumVBases()) {
6381
Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
6382
return false;
6383
}
6384
6385
EvalInfo::EvaluatingConstructorRAII EvalObj(
6386
Info,
6387
ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
6388
RD->getNumBases());
6389
CallStackFrame Frame(Info, E->getSourceRange(), Definition, &This, E, Call);
6390
6391
// FIXME: Creating an APValue just to hold a nonexistent return value is
6392
// wasteful.
6393
APValue RetVal;
6394
StmtResult Ret = {RetVal, nullptr};
6395
6396
// If it's a delegating constructor, delegate.
6397
if (Definition->isDelegatingConstructor()) {
6398
CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
6399
if ((*I)->getInit()->isValueDependent()) {
6400
if (!EvaluateDependentExpr((*I)->getInit(), Info))
6401
return false;
6402
} else {
6403
FullExpressionRAII InitScope(Info);
6404
if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()) ||
6405
!InitScope.destroy())
6406
return false;
6407
}
6408
return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
6409
}
6410
6411
// For a trivial copy or move constructor, perform an APValue copy. This is
6412
// essential for unions (or classes with anonymous union members), where the
6413
// operations performed by the constructor cannot be represented by
6414
// ctor-initializers.
6415
//
6416
// Skip this for empty non-union classes; we should not perform an
6417
// lvalue-to-rvalue conversion on them because their copy constructor does not
6418
// actually read them.
6419
if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
6420
(Definition->getParent()->isUnion() ||
6421
(Definition->isTrivial() &&
6422
isReadByLvalueToRvalueConversion(Definition->getParent())))) {
6423
return handleTrivialCopy(Info, Definition->getParamDecl(0), E, Result,
6424
Definition->getParent()->isUnion());
6425
}
6426
6427
// Reserve space for the struct members.
6428
if (!Result.hasValue()) {
6429
if (!RD->isUnion())
6430
Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
6431
std::distance(RD->field_begin(), RD->field_end()));
6432
else
6433
// A union starts with no active member.
6434
Result = APValue((const FieldDecl*)nullptr);
6435
}
6436
6437
if (RD->isInvalidDecl()) return false;
6438
const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6439
6440
// A scope for temporaries lifetime-extended by reference members.
6441
BlockScopeRAII LifetimeExtendedScope(Info);
6442
6443
bool Success = true;
6444
unsigned BasesSeen = 0;
6445
#ifndef NDEBUG
6446
CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
6447
#endif
6448
CXXRecordDecl::field_iterator FieldIt = RD->field_begin();
6449
auto SkipToField = [&](FieldDecl *FD, bool Indirect) {
6450
// We might be initializing the same field again if this is an indirect
6451
// field initialization.
6452
if (FieldIt == RD->field_end() ||
6453
FieldIt->getFieldIndex() > FD->getFieldIndex()) {
6454
assert(Indirect && "fields out of order?");
6455
return;
6456
}
6457
6458
// Default-initialize any fields with no explicit initializer.
6459
for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) {
6460
assert(FieldIt != RD->field_end() && "missing field?");
6461
if (!FieldIt->isUnnamedBitField())
6462
Success &= handleDefaultInitValue(
6463
FieldIt->getType(),
6464
Result.getStructField(FieldIt->getFieldIndex()));
6465
}
6466
++FieldIt;
6467
};
6468
for (const auto *I : Definition->inits()) {
6469
LValue Subobject = This;
6470
LValue SubobjectParent = This;
6471
APValue *Value = &Result;
6472
6473
// Determine the subobject to initialize.
6474
FieldDecl *FD = nullptr;
6475
if (I->isBaseInitializer()) {
6476
QualType BaseType(I->getBaseClass(), 0);
6477
#ifndef NDEBUG
6478
// Non-virtual base classes are initialized in the order in the class
6479
// definition. We have already checked for virtual base classes.
6480
assert(!BaseIt->isVirtual() && "virtual base for literal type");
6481
assert(Info.Ctx.hasSameUnqualifiedType(BaseIt->getType(), BaseType) &&
6482
"base class initializers not in expected order");
6483
++BaseIt;
6484
#endif
6485
if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
6486
BaseType->getAsCXXRecordDecl(), &Layout))
6487
return false;
6488
Value = &Result.getStructBase(BasesSeen++);
6489
} else if ((FD = I->getMember())) {
6490
if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
6491
return false;
6492
if (RD->isUnion()) {
6493
Result = APValue(FD);
6494
Value = &Result.getUnionValue();
6495
} else {
6496
SkipToField(FD, false);
6497
Value = &Result.getStructField(FD->getFieldIndex());
6498
}
6499
} else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
6500
// Walk the indirect field decl's chain to find the object to initialize,
6501
// and make sure we've initialized every step along it.
6502
auto IndirectFieldChain = IFD->chain();
6503
for (auto *C : IndirectFieldChain) {
6504
FD = cast<FieldDecl>(C);
6505
CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
6506
// Switch the union field if it differs. This happens if we had
6507
// preceding zero-initialization, and we're now initializing a union
6508
// subobject other than the first.
6509
// FIXME: In this case, the values of the other subobjects are
6510
// specified, since zero-initialization sets all padding bits to zero.
6511
if (!Value->hasValue() ||
6512
(Value->isUnion() && Value->getUnionField() != FD)) {
6513
if (CD->isUnion())
6514
*Value = APValue(FD);
6515
else
6516
// FIXME: This immediately starts the lifetime of all members of
6517
// an anonymous struct. It would be preferable to strictly start
6518
// member lifetime in initialization order.
6519
Success &=
6520
handleDefaultInitValue(Info.Ctx.getRecordType(CD), *Value);
6521
}
6522
// Store Subobject as its parent before updating it for the last element
6523
// in the chain.
6524
if (C == IndirectFieldChain.back())
6525
SubobjectParent = Subobject;
6526
if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
6527
return false;
6528
if (CD->isUnion())
6529
Value = &Value->getUnionValue();
6530
else {
6531
if (C == IndirectFieldChain.front() && !RD->isUnion())
6532
SkipToField(FD, true);
6533
Value = &Value->getStructField(FD->getFieldIndex());
6534
}
6535
}
6536
} else {
6537
llvm_unreachable("unknown base initializer kind");
6538
}
6539
6540
// Need to override This for implicit field initializers as in this case
6541
// This refers to innermost anonymous struct/union containing initializer,
6542
// not to currently constructed class.
6543
const Expr *Init = I->getInit();
6544
if (Init->isValueDependent()) {
6545
if (!EvaluateDependentExpr(Init, Info))
6546
return false;
6547
} else {
6548
ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent,
6549
isa<CXXDefaultInitExpr>(Init));
6550
FullExpressionRAII InitScope(Info);
6551
if (!EvaluateInPlace(*Value, Info, Subobject, Init) ||
6552
(FD && FD->isBitField() &&
6553
!truncateBitfieldValue(Info, Init, *Value, FD))) {
6554
// If we're checking for a potential constant expression, evaluate all
6555
// initializers even if some of them fail.
6556
if (!Info.noteFailure())
6557
return false;
6558
Success = false;
6559
}
6560
}
6561
6562
// This is the point at which the dynamic type of the object becomes this
6563
// class type.
6564
if (I->isBaseInitializer() && BasesSeen == RD->getNumBases())
6565
EvalObj.finishedConstructingBases();
6566
}
6567
6568
// Default-initialize any remaining fields.
6569
if (!RD->isUnion()) {
6570
for (; FieldIt != RD->field_end(); ++FieldIt) {
6571
if (!FieldIt->isUnnamedBitField())
6572
Success &= handleDefaultInitValue(
6573
FieldIt->getType(),
6574
Result.getStructField(FieldIt->getFieldIndex()));
6575
}
6576
}
6577
6578
EvalObj.finishedConstructingFields();
6579
6580
return Success &&
6581
EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed &&
6582
LifetimeExtendedScope.destroy();
6583
}
6584
6585
static bool HandleConstructorCall(const Expr *E, const LValue &This,
6586
ArrayRef<const Expr*> Args,
6587
const CXXConstructorDecl *Definition,
6588
EvalInfo &Info, APValue &Result) {
6589
CallScopeRAII CallScope(Info);
6590
CallRef Call = Info.CurrentCall->createCall(Definition);
6591
if (!EvaluateArgs(Args, Call, Info, Definition))
6592
return false;
6593
6594
return HandleConstructorCall(E, This, Call, Definition, Info, Result) &&
6595
CallScope.destroy();
6596
}
6597
6598
static bool HandleDestructionImpl(EvalInfo &Info, SourceRange CallRange,
6599
const LValue &This, APValue &Value,
6600
QualType T) {
6601
// Objects can only be destroyed while they're within their lifetimes.
6602
// FIXME: We have no representation for whether an object of type nullptr_t
6603
// is in its lifetime; it usually doesn't matter. Perhaps we should model it
6604
// as indeterminate instead?
6605
if (Value.isAbsent() && !T->isNullPtrType()) {
6606
APValue Printable;
6607
This.moveInto(Printable);
6608
Info.FFDiag(CallRange.getBegin(),
6609
diag::note_constexpr_destroy_out_of_lifetime)
6610
<< Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T));
6611
return false;
6612
}
6613
6614
// Invent an expression for location purposes.
6615
// FIXME: We shouldn't need to do this.
6616
OpaqueValueExpr LocE(CallRange.getBegin(), Info.Ctx.IntTy, VK_PRValue);
6617
6618
// For arrays, destroy elements right-to-left.
6619
if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) {
6620
uint64_t Size = CAT->getZExtSize();
6621
QualType ElemT = CAT->getElementType();
6622
6623
if (!CheckArraySize(Info, CAT, CallRange.getBegin()))
6624
return false;
6625
6626
LValue ElemLV = This;
6627
ElemLV.addArray(Info, &LocE, CAT);
6628
if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size))
6629
return false;
6630
6631
// Ensure that we have actual array elements available to destroy; the
6632
// destructors might mutate the value, so we can't run them on the array
6633
// filler.
6634
if (Size && Size > Value.getArrayInitializedElts())
6635
expandArray(Value, Value.getArraySize() - 1);
6636
6637
for (; Size != 0; --Size) {
6638
APValue &Elem = Value.getArrayInitializedElt(Size - 1);
6639
if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) ||
6640
!HandleDestructionImpl(Info, CallRange, ElemLV, Elem, ElemT))
6641
return false;
6642
}
6643
6644
// End the lifetime of this array now.
6645
Value = APValue();
6646
return true;
6647
}
6648
6649
const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
6650
if (!RD) {
6651
if (T.isDestructedType()) {
6652
Info.FFDiag(CallRange.getBegin(),
6653
diag::note_constexpr_unsupported_destruction)
6654
<< T;
6655
return false;
6656
}
6657
6658
Value = APValue();
6659
return true;
6660
}
6661
6662
if (RD->getNumVBases()) {
6663
Info.FFDiag(CallRange.getBegin(), diag::note_constexpr_virtual_base) << RD;
6664
return false;
6665
}
6666
6667
const CXXDestructorDecl *DD = RD->getDestructor();
6668
if (!DD && !RD->hasTrivialDestructor()) {
6669
Info.FFDiag(CallRange.getBegin());
6670
return false;
6671
}
6672
6673
if (!DD || DD->isTrivial() ||
6674
(RD->isAnonymousStructOrUnion() && RD->isUnion())) {
6675
// A trivial destructor just ends the lifetime of the object. Check for
6676
// this case before checking for a body, because we might not bother
6677
// building a body for a trivial destructor. Note that it doesn't matter
6678
// whether the destructor is constexpr in this case; all trivial
6679
// destructors are constexpr.
6680
//
6681
// If an anonymous union would be destroyed, some enclosing destructor must
6682
// have been explicitly defined, and the anonymous union destruction should
6683
// have no effect.
6684
Value = APValue();
6685
return true;
6686
}
6687
6688
if (!Info.CheckCallLimit(CallRange.getBegin()))
6689
return false;
6690
6691
const FunctionDecl *Definition = nullptr;
6692
const Stmt *Body = DD->getBody(Definition);
6693
6694
if (!CheckConstexprFunction(Info, CallRange.getBegin(), DD, Definition, Body))
6695
return false;
6696
6697
CallStackFrame Frame(Info, CallRange, Definition, &This, /*CallExpr=*/nullptr,
6698
CallRef());
6699
6700
// We're now in the period of destruction of this object.
6701
unsigned BasesLeft = RD->getNumBases();
6702
EvalInfo::EvaluatingDestructorRAII EvalObj(
6703
Info,
6704
ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries});
6705
if (!EvalObj.DidInsert) {
6706
// C++2a [class.dtor]p19:
6707
// the behavior is undefined if the destructor is invoked for an object
6708
// whose lifetime has ended
6709
// (Note that formally the lifetime ends when the period of destruction
6710
// begins, even though certain uses of the object remain valid until the
6711
// period of destruction ends.)
6712
Info.FFDiag(CallRange.getBegin(), diag::note_constexpr_double_destroy);
6713
return false;
6714
}
6715
6716
// FIXME: Creating an APValue just to hold a nonexistent return value is
6717
// wasteful.
6718
APValue RetVal;
6719
StmtResult Ret = {RetVal, nullptr};
6720
if (EvaluateStmt(Ret, Info, Definition->getBody()) == ESR_Failed)
6721
return false;
6722
6723
// A union destructor does not implicitly destroy its members.
6724
if (RD->isUnion())
6725
return true;
6726
6727
const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6728
6729
// We don't have a good way to iterate fields in reverse, so collect all the
6730
// fields first and then walk them backwards.
6731
SmallVector<FieldDecl*, 16> Fields(RD->fields());
6732
for (const FieldDecl *FD : llvm::reverse(Fields)) {
6733
if (FD->isUnnamedBitField())
6734
continue;
6735
6736
LValue Subobject = This;
6737
if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout))
6738
return false;
6739
6740
APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex());
6741
if (!HandleDestructionImpl(Info, CallRange, Subobject, *SubobjectValue,
6742
FD->getType()))
6743
return false;
6744
}
6745
6746
if (BasesLeft != 0)
6747
EvalObj.startedDestroyingBases();
6748
6749
// Destroy base classes in reverse order.
6750
for (const CXXBaseSpecifier &Base : llvm::reverse(RD->bases())) {
6751
--BasesLeft;
6752
6753
QualType BaseType = Base.getType();
6754
LValue Subobject = This;
6755
if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD,
6756
BaseType->getAsCXXRecordDecl(), &Layout))
6757
return false;
6758
6759
APValue *SubobjectValue = &Value.getStructBase(BasesLeft);
6760
if (!HandleDestructionImpl(Info, CallRange, Subobject, *SubobjectValue,
6761
BaseType))
6762
return false;
6763
}
6764
assert(BasesLeft == 0 && "NumBases was wrong?");
6765
6766
// The period of destruction ends now. The object is gone.
6767
Value = APValue();
6768
return true;
6769
}
6770
6771
namespace {
6772
struct DestroyObjectHandler {
6773
EvalInfo &Info;
6774
const Expr *E;
6775
const LValue &This;
6776
const AccessKinds AccessKind;
6777
6778
typedef bool result_type;
6779
bool failed() { return false; }
6780
bool found(APValue &Subobj, QualType SubobjType) {
6781
return HandleDestructionImpl(Info, E->getSourceRange(), This, Subobj,
6782
SubobjType);
6783
}
6784
bool found(APSInt &Value, QualType SubobjType) {
6785
Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6786
return false;
6787
}
6788
bool found(APFloat &Value, QualType SubobjType) {
6789
Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6790
return false;
6791
}
6792
};
6793
}
6794
6795
/// Perform a destructor or pseudo-destructor call on the given object, which
6796
/// might in general not be a complete object.
6797
static bool HandleDestruction(EvalInfo &Info, const Expr *E,
6798
const LValue &This, QualType ThisType) {
6799
CompleteObject Obj = findCompleteObject(Info, E, AK_Destroy, This, ThisType);
6800
DestroyObjectHandler Handler = {Info, E, This, AK_Destroy};
6801
return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
6802
}
6803
6804
/// Destroy and end the lifetime of the given complete object.
6805
static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
6806
APValue::LValueBase LVBase, APValue &Value,
6807
QualType T) {
6808
// If we've had an unmodeled side-effect, we can't rely on mutable state
6809
// (such as the object we're about to destroy) being correct.
6810
if (Info.EvalStatus.HasSideEffects)
6811
return false;
6812
6813
LValue LV;
6814
LV.set({LVBase});
6815
return HandleDestructionImpl(Info, Loc, LV, Value, T);
6816
}
6817
6818
/// Perform a call to 'operator new' or to `__builtin_operator_new'.
6819
static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E,
6820
LValue &Result) {
6821
if (Info.checkingPotentialConstantExpression() ||
6822
Info.SpeculativeEvaluationDepth)
6823
return false;
6824
6825
// This is permitted only within a call to std::allocator<T>::allocate.
6826
auto Caller = Info.getStdAllocatorCaller("allocate");
6827
if (!Caller) {
6828
Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus20
6829
? diag::note_constexpr_new_untyped
6830
: diag::note_constexpr_new);
6831
return false;
6832
}
6833
6834
QualType ElemType = Caller.ElemType;
6835
if (ElemType->isIncompleteType() || ElemType->isFunctionType()) {
6836
Info.FFDiag(E->getExprLoc(),
6837
diag::note_constexpr_new_not_complete_object_type)
6838
<< (ElemType->isIncompleteType() ? 0 : 1) << ElemType;
6839
return false;
6840
}
6841
6842
APSInt ByteSize;
6843
if (!EvaluateInteger(E->getArg(0), ByteSize, Info))
6844
return false;
6845
bool IsNothrow = false;
6846
for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) {
6847
EvaluateIgnoredValue(Info, E->getArg(I));
6848
IsNothrow |= E->getType()->isNothrowT();
6849
}
6850
6851
CharUnits ElemSize;
6852
if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize))
6853
return false;
6854
APInt Size, Remainder;
6855
APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity());
6856
APInt::udivrem(ByteSize, ElemSizeAP, Size, Remainder);
6857
if (Remainder != 0) {
6858
// This likely indicates a bug in the implementation of 'std::allocator'.
6859
Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size)
6860
<< ByteSize << APSInt(ElemSizeAP, true) << ElemType;
6861
return false;
6862
}
6863
6864
if (!Info.CheckArraySize(E->getBeginLoc(), ByteSize.getActiveBits(),
6865
Size.getZExtValue(), /*Diag=*/!IsNothrow)) {
6866
if (IsNothrow) {
6867
Result.setNull(Info.Ctx, E->getType());
6868
return true;
6869
}
6870
return false;
6871
}
6872
6873
QualType AllocType = Info.Ctx.getConstantArrayType(
6874
ElemType, Size, nullptr, ArraySizeModifier::Normal, 0);
6875
APValue *Val = Info.createHeapAlloc(E, AllocType, Result);
6876
*Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue());
6877
Result.addArray(Info, E, cast<ConstantArrayType>(AllocType));
6878
return true;
6879
}
6880
6881
static bool hasVirtualDestructor(QualType T) {
6882
if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6883
if (CXXDestructorDecl *DD = RD->getDestructor())
6884
return DD->isVirtual();
6885
return false;
6886
}
6887
6888
static const FunctionDecl *getVirtualOperatorDelete(QualType T) {
6889
if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6890
if (CXXDestructorDecl *DD = RD->getDestructor())
6891
return DD->isVirtual() ? DD->getOperatorDelete() : nullptr;
6892
return nullptr;
6893
}
6894
6895
/// Check that the given object is a suitable pointer to a heap allocation that
6896
/// still exists and is of the right kind for the purpose of a deletion.
6897
///
6898
/// On success, returns the heap allocation to deallocate. On failure, produces
6899
/// a diagnostic and returns std::nullopt.
6900
static std::optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E,
6901
const LValue &Pointer,
6902
DynAlloc::Kind DeallocKind) {
6903
auto PointerAsString = [&] {
6904
return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy);
6905
};
6906
6907
DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>();
6908
if (!DA) {
6909
Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc)
6910
<< PointerAsString();
6911
if (Pointer.Base)
6912
NoteLValueLocation(Info, Pointer.Base);
6913
return std::nullopt;
6914
}
6915
6916
std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
6917
if (!Alloc) {
6918
Info.FFDiag(E, diag::note_constexpr_double_delete);
6919
return std::nullopt;
6920
}
6921
6922
if (DeallocKind != (*Alloc)->getKind()) {
6923
QualType AllocType = Pointer.Base.getDynamicAllocType();
6924
Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch)
6925
<< DeallocKind << (*Alloc)->getKind() << AllocType;
6926
NoteLValueLocation(Info, Pointer.Base);
6927
return std::nullopt;
6928
}
6929
6930
bool Subobject = false;
6931
if (DeallocKind == DynAlloc::New) {
6932
Subobject = Pointer.Designator.MostDerivedPathLength != 0 ||
6933
Pointer.Designator.isOnePastTheEnd();
6934
} else {
6935
Subobject = Pointer.Designator.Entries.size() != 1 ||
6936
Pointer.Designator.Entries[0].getAsArrayIndex() != 0;
6937
}
6938
if (Subobject) {
6939
Info.FFDiag(E, diag::note_constexpr_delete_subobject)
6940
<< PointerAsString() << Pointer.Designator.isOnePastTheEnd();
6941
return std::nullopt;
6942
}
6943
6944
return Alloc;
6945
}
6946
6947
// Perform a call to 'operator delete' or '__builtin_operator_delete'.
6948
bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) {
6949
if (Info.checkingPotentialConstantExpression() ||
6950
Info.SpeculativeEvaluationDepth)
6951
return false;
6952
6953
// This is permitted only within a call to std::allocator<T>::deallocate.
6954
if (!Info.getStdAllocatorCaller("deallocate")) {
6955
Info.FFDiag(E->getExprLoc());
6956
return true;
6957
}
6958
6959
LValue Pointer;
6960
if (!EvaluatePointer(E->getArg(0), Pointer, Info))
6961
return false;
6962
for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I)
6963
EvaluateIgnoredValue(Info, E->getArg(I));
6964
6965
if (Pointer.Designator.Invalid)
6966
return false;
6967
6968
// Deleting a null pointer would have no effect, but it's not permitted by
6969
// std::allocator<T>::deallocate's contract.
6970
if (Pointer.isNullPointer()) {
6971
Info.CCEDiag(E->getExprLoc(), diag::note_constexpr_deallocate_null);
6972
return true;
6973
}
6974
6975
if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator))
6976
return false;
6977
6978
Info.HeapAllocs.erase(Pointer.Base.get<DynamicAllocLValue>());
6979
return true;
6980
}
6981
6982
//===----------------------------------------------------------------------===//
6983
// Generic Evaluation
6984
//===----------------------------------------------------------------------===//
6985
namespace {
6986
6987
class BitCastBuffer {
6988
// FIXME: We're going to need bit-level granularity when we support
6989
// bit-fields.
6990
// FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but
6991
// we don't support a host or target where that is the case. Still, we should
6992
// use a more generic type in case we ever do.
6993
SmallVector<std::optional<unsigned char>, 32> Bytes;
6994
6995
static_assert(std::numeric_limits<unsigned char>::digits >= 8,
6996
"Need at least 8 bit unsigned char");
6997
6998
bool TargetIsLittleEndian;
6999
7000
public:
7001
BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian)
7002
: Bytes(Width.getQuantity()),
7003
TargetIsLittleEndian(TargetIsLittleEndian) {}
7004
7005
[[nodiscard]] bool readObject(CharUnits Offset, CharUnits Width,
7006
SmallVectorImpl<unsigned char> &Output) const {
7007
for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) {
7008
// If a byte of an integer is uninitialized, then the whole integer is
7009
// uninitialized.
7010
if (!Bytes[I.getQuantity()])
7011
return false;
7012
Output.push_back(*Bytes[I.getQuantity()]);
7013
}
7014
if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
7015
std::reverse(Output.begin(), Output.end());
7016
return true;
7017
}
7018
7019
void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) {
7020
if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
7021
std::reverse(Input.begin(), Input.end());
7022
7023
size_t Index = 0;
7024
for (unsigned char Byte : Input) {
7025
assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?");
7026
Bytes[Offset.getQuantity() + Index] = Byte;
7027
++Index;
7028
}
7029
}
7030
7031
size_t size() { return Bytes.size(); }
7032
};
7033
7034
/// Traverse an APValue to produce an BitCastBuffer, emulating how the current
7035
/// target would represent the value at runtime.
7036
class APValueToBufferConverter {
7037
EvalInfo &Info;
7038
BitCastBuffer Buffer;
7039
const CastExpr *BCE;
7040
7041
APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth,
7042
const CastExpr *BCE)
7043
: Info(Info),
7044
Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()),
7045
BCE(BCE) {}
7046
7047
bool visit(const APValue &Val, QualType Ty) {
7048
return visit(Val, Ty, CharUnits::fromQuantity(0));
7049
}
7050
7051
// Write out Val with type Ty into Buffer starting at Offset.
7052
bool visit(const APValue &Val, QualType Ty, CharUnits Offset) {
7053
assert((size_t)Offset.getQuantity() <= Buffer.size());
7054
7055
// As a special case, nullptr_t has an indeterminate value.
7056
if (Ty->isNullPtrType())
7057
return true;
7058
7059
// Dig through Src to find the byte at SrcOffset.
7060
switch (Val.getKind()) {
7061
case APValue::Indeterminate:
7062
case APValue::None:
7063
return true;
7064
7065
case APValue::Int:
7066
return visitInt(Val.getInt(), Ty, Offset);
7067
case APValue::Float:
7068
return visitFloat(Val.getFloat(), Ty, Offset);
7069
case APValue::Array:
7070
return visitArray(Val, Ty, Offset);
7071
case APValue::Struct:
7072
return visitRecord(Val, Ty, Offset);
7073
case APValue::Vector:
7074
return visitVector(Val, Ty, Offset);
7075
7076
case APValue::ComplexInt:
7077
case APValue::ComplexFloat:
7078
case APValue::FixedPoint:
7079
// FIXME: We should support these.
7080
7081
case APValue::Union:
7082
case APValue::MemberPointer:
7083
case APValue::AddrLabelDiff: {
7084
Info.FFDiag(BCE->getBeginLoc(),
7085
diag::note_constexpr_bit_cast_unsupported_type)
7086
<< Ty;
7087
return false;
7088
}
7089
7090
case APValue::LValue:
7091
llvm_unreachable("LValue subobject in bit_cast?");
7092
}
7093
llvm_unreachable("Unhandled APValue::ValueKind");
7094
}
7095
7096
bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) {
7097
const RecordDecl *RD = Ty->getAsRecordDecl();
7098
const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
7099
7100
// Visit the base classes.
7101
if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
7102
for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
7103
const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
7104
CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
7105
7106
if (!visitRecord(Val.getStructBase(I), BS.getType(),
7107
Layout.getBaseClassOffset(BaseDecl) + Offset))
7108
return false;
7109
}
7110
}
7111
7112
// Visit the fields.
7113
unsigned FieldIdx = 0;
7114
for (FieldDecl *FD : RD->fields()) {
7115
if (FD->isBitField()) {
7116
Info.FFDiag(BCE->getBeginLoc(),
7117
diag::note_constexpr_bit_cast_unsupported_bitfield);
7118
return false;
7119
}
7120
7121
uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
7122
7123
assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 &&
7124
"only bit-fields can have sub-char alignment");
7125
CharUnits FieldOffset =
7126
Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset;
7127
QualType FieldTy = FD->getType();
7128
if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset))
7129
return false;
7130
++FieldIdx;
7131
}
7132
7133
return true;
7134
}
7135
7136
bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) {
7137
const auto *CAT =
7138
dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe());
7139
if (!CAT)
7140
return false;
7141
7142
CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType());
7143
unsigned NumInitializedElts = Val.getArrayInitializedElts();
7144
unsigned ArraySize = Val.getArraySize();
7145
// First, initialize the initialized elements.
7146
for (unsigned I = 0; I != NumInitializedElts; ++I) {
7147
const APValue &SubObj = Val.getArrayInitializedElt(I);
7148
if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth))
7149
return false;
7150
}
7151
7152
// Next, initialize the rest of the array using the filler.
7153
if (Val.hasArrayFiller()) {
7154
const APValue &Filler = Val.getArrayFiller();
7155
for (unsigned I = NumInitializedElts; I != ArraySize; ++I) {
7156
if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth))
7157
return false;
7158
}
7159
}
7160
7161
return true;
7162
}
7163
7164
bool visitVector(const APValue &Val, QualType Ty, CharUnits Offset) {
7165
const VectorType *VTy = Ty->castAs<VectorType>();
7166
QualType EltTy = VTy->getElementType();
7167
unsigned NElts = VTy->getNumElements();
7168
unsigned EltSize =
7169
VTy->isExtVectorBoolType() ? 1 : Info.Ctx.getTypeSize(EltTy);
7170
7171
if ((NElts * EltSize) % Info.Ctx.getCharWidth() != 0) {
7172
// The vector's size in bits is not a multiple of the target's byte size,
7173
// so its layout is unspecified. For now, we'll simply treat these cases
7174
// as unsupported (this should only be possible with OpenCL bool vectors
7175
// whose element count isn't a multiple of the byte size).
7176
Info.FFDiag(BCE->getBeginLoc(),
7177
diag::note_constexpr_bit_cast_invalid_vector)
7178
<< Ty.getCanonicalType() << EltSize << NElts
7179
<< Info.Ctx.getCharWidth();
7180
return false;
7181
}
7182
7183
if (EltTy->isRealFloatingType() && &Info.Ctx.getFloatTypeSemantics(EltTy) ==
7184
&APFloat::x87DoubleExtended()) {
7185
// The layout for x86_fp80 vectors seems to be handled very inconsistently
7186
// by both clang and LLVM, so for now we won't allow bit_casts involving
7187
// it in a constexpr context.
7188
Info.FFDiag(BCE->getBeginLoc(),
7189
diag::note_constexpr_bit_cast_unsupported_type)
7190
<< EltTy;
7191
return false;
7192
}
7193
7194
if (VTy->isExtVectorBoolType()) {
7195
// Special handling for OpenCL bool vectors:
7196
// Since these vectors are stored as packed bits, but we can't write
7197
// individual bits to the BitCastBuffer, we'll buffer all of the elements
7198
// together into an appropriately sized APInt and write them all out at
7199
// once. Because we don't accept vectors where NElts * EltSize isn't a
7200
// multiple of the char size, there will be no padding space, so we don't
7201
// have to worry about writing data which should have been left
7202
// uninitialized.
7203
bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
7204
7205
llvm::APInt Res = llvm::APInt::getZero(NElts);
7206
for (unsigned I = 0; I < NElts; ++I) {
7207
const llvm::APSInt &EltAsInt = Val.getVectorElt(I).getInt();
7208
assert(EltAsInt.isUnsigned() && EltAsInt.getBitWidth() == 1 &&
7209
"bool vector element must be 1-bit unsigned integer!");
7210
7211
Res.insertBits(EltAsInt, BigEndian ? (NElts - I - 1) : I);
7212
}
7213
7214
SmallVector<uint8_t, 8> Bytes(NElts / 8);
7215
llvm::StoreIntToMemory(Res, &*Bytes.begin(), NElts / 8);
7216
Buffer.writeObject(Offset, Bytes);
7217
} else {
7218
// Iterate over each of the elements and write them out to the buffer at
7219
// the appropriate offset.
7220
CharUnits EltSizeChars = Info.Ctx.getTypeSizeInChars(EltTy);
7221
for (unsigned I = 0; I < NElts; ++I) {
7222
if (!visit(Val.getVectorElt(I), EltTy, Offset + I * EltSizeChars))
7223
return false;
7224
}
7225
}
7226
7227
return true;
7228
}
7229
7230
bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) {
7231
APSInt AdjustedVal = Val;
7232
unsigned Width = AdjustedVal.getBitWidth();
7233
if (Ty->isBooleanType()) {
7234
Width = Info.Ctx.getTypeSize(Ty);
7235
AdjustedVal = AdjustedVal.extend(Width);
7236
}
7237
7238
SmallVector<uint8_t, 8> Bytes(Width / 8);
7239
llvm::StoreIntToMemory(AdjustedVal, &*Bytes.begin(), Width / 8);
7240
Buffer.writeObject(Offset, Bytes);
7241
return true;
7242
}
7243
7244
bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) {
7245
APSInt AsInt(Val.bitcastToAPInt());
7246
return visitInt(AsInt, Ty, Offset);
7247
}
7248
7249
public:
7250
static std::optional<BitCastBuffer>
7251
convert(EvalInfo &Info, const APValue &Src, const CastExpr *BCE) {
7252
CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType());
7253
APValueToBufferConverter Converter(Info, DstSize, BCE);
7254
if (!Converter.visit(Src, BCE->getSubExpr()->getType()))
7255
return std::nullopt;
7256
return Converter.Buffer;
7257
}
7258
};
7259
7260
/// Write an BitCastBuffer into an APValue.
7261
class BufferToAPValueConverter {
7262
EvalInfo &Info;
7263
const BitCastBuffer &Buffer;
7264
const CastExpr *BCE;
7265
7266
BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer,
7267
const CastExpr *BCE)
7268
: Info(Info), Buffer(Buffer), BCE(BCE) {}
7269
7270
// Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast
7271
// with an invalid type, so anything left is a deficiency on our part (FIXME).
7272
// Ideally this will be unreachable.
7273
std::nullopt_t unsupportedType(QualType Ty) {
7274
Info.FFDiag(BCE->getBeginLoc(),
7275
diag::note_constexpr_bit_cast_unsupported_type)
7276
<< Ty;
7277
return std::nullopt;
7278
}
7279
7280
std::nullopt_t unrepresentableValue(QualType Ty, const APSInt &Val) {
7281
Info.FFDiag(BCE->getBeginLoc(),
7282
diag::note_constexpr_bit_cast_unrepresentable_value)
7283
<< Ty << toString(Val, /*Radix=*/10);
7284
return std::nullopt;
7285
}
7286
7287
std::optional<APValue> visit(const BuiltinType *T, CharUnits Offset,
7288
const EnumType *EnumSugar = nullptr) {
7289
if (T->isNullPtrType()) {
7290
uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0));
7291
return APValue((Expr *)nullptr,
7292
/*Offset=*/CharUnits::fromQuantity(NullValue),
7293
APValue::NoLValuePath{}, /*IsNullPtr=*/true);
7294
}
7295
7296
CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T);
7297
7298
// Work around floating point types that contain unused padding bytes. This
7299
// is really just `long double` on x86, which is the only fundamental type
7300
// with padding bytes.
7301
if (T->isRealFloatingType()) {
7302
const llvm::fltSemantics &Semantics =
7303
Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
7304
unsigned NumBits = llvm::APFloatBase::getSizeInBits(Semantics);
7305
assert(NumBits % 8 == 0);
7306
CharUnits NumBytes = CharUnits::fromQuantity(NumBits / 8);
7307
if (NumBytes != SizeOf)
7308
SizeOf = NumBytes;
7309
}
7310
7311
SmallVector<uint8_t, 8> Bytes;
7312
if (!Buffer.readObject(Offset, SizeOf, Bytes)) {
7313
// If this is std::byte or unsigned char, then its okay to store an
7314
// indeterminate value.
7315
bool IsStdByte = EnumSugar && EnumSugar->isStdByteType();
7316
bool IsUChar =
7317
!EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) ||
7318
T->isSpecificBuiltinType(BuiltinType::Char_U));
7319
if (!IsStdByte && !IsUChar) {
7320
QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0);
7321
Info.FFDiag(BCE->getExprLoc(),
7322
diag::note_constexpr_bit_cast_indet_dest)
7323
<< DisplayType << Info.Ctx.getLangOpts().CharIsSigned;
7324
return std::nullopt;
7325
}
7326
7327
return APValue::IndeterminateValue();
7328
}
7329
7330
APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true);
7331
llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size());
7332
7333
if (T->isIntegralOrEnumerationType()) {
7334
Val.setIsSigned(T->isSignedIntegerOrEnumerationType());
7335
7336
unsigned IntWidth = Info.Ctx.getIntWidth(QualType(T, 0));
7337
if (IntWidth != Val.getBitWidth()) {
7338
APSInt Truncated = Val.trunc(IntWidth);
7339
if (Truncated.extend(Val.getBitWidth()) != Val)
7340
return unrepresentableValue(QualType(T, 0), Val);
7341
Val = Truncated;
7342
}
7343
7344
return APValue(Val);
7345
}
7346
7347
if (T->isRealFloatingType()) {
7348
const llvm::fltSemantics &Semantics =
7349
Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
7350
return APValue(APFloat(Semantics, Val));
7351
}
7352
7353
return unsupportedType(QualType(T, 0));
7354
}
7355
7356
std::optional<APValue> visit(const RecordType *RTy, CharUnits Offset) {
7357
const RecordDecl *RD = RTy->getAsRecordDecl();
7358
const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
7359
7360
unsigned NumBases = 0;
7361
if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7362
NumBases = CXXRD->getNumBases();
7363
7364
APValue ResultVal(APValue::UninitStruct(), NumBases,
7365
std::distance(RD->field_begin(), RD->field_end()));
7366
7367
// Visit the base classes.
7368
if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
7369
for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
7370
const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
7371
CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
7372
7373
std::optional<APValue> SubObj = visitType(
7374
BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset);
7375
if (!SubObj)
7376
return std::nullopt;
7377
ResultVal.getStructBase(I) = *SubObj;
7378
}
7379
}
7380
7381
// Visit the fields.
7382
unsigned FieldIdx = 0;
7383
for (FieldDecl *FD : RD->fields()) {
7384
// FIXME: We don't currently support bit-fields. A lot of the logic for
7385
// this is in CodeGen, so we need to factor it around.
7386
if (FD->isBitField()) {
7387
Info.FFDiag(BCE->getBeginLoc(),
7388
diag::note_constexpr_bit_cast_unsupported_bitfield);
7389
return std::nullopt;
7390
}
7391
7392
uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
7393
assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0);
7394
7395
CharUnits FieldOffset =
7396
CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) +
7397
Offset;
7398
QualType FieldTy = FD->getType();
7399
std::optional<APValue> SubObj = visitType(FieldTy, FieldOffset);
7400
if (!SubObj)
7401
return std::nullopt;
7402
ResultVal.getStructField(FieldIdx) = *SubObj;
7403
++FieldIdx;
7404
}
7405
7406
return ResultVal;
7407
}
7408
7409
std::optional<APValue> visit(const EnumType *Ty, CharUnits Offset) {
7410
QualType RepresentationType = Ty->getDecl()->getIntegerType();
7411
assert(!RepresentationType.isNull() &&
7412
"enum forward decl should be caught by Sema");
7413
const auto *AsBuiltin =
7414
RepresentationType.getCanonicalType()->castAs<BuiltinType>();
7415
// Recurse into the underlying type. Treat std::byte transparently as
7416
// unsigned char.
7417
return visit(AsBuiltin, Offset, /*EnumTy=*/Ty);
7418
}
7419
7420
std::optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) {
7421
size_t Size = Ty->getLimitedSize();
7422
CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType());
7423
7424
APValue ArrayValue(APValue::UninitArray(), Size, Size);
7425
for (size_t I = 0; I != Size; ++I) {
7426
std::optional<APValue> ElementValue =
7427
visitType(Ty->getElementType(), Offset + I * ElementWidth);
7428
if (!ElementValue)
7429
return std::nullopt;
7430
ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue);
7431
}
7432
7433
return ArrayValue;
7434
}
7435
7436
std::optional<APValue> visit(const VectorType *VTy, CharUnits Offset) {
7437
QualType EltTy = VTy->getElementType();
7438
unsigned NElts = VTy->getNumElements();
7439
unsigned EltSize =
7440
VTy->isExtVectorBoolType() ? 1 : Info.Ctx.getTypeSize(EltTy);
7441
7442
if ((NElts * EltSize) % Info.Ctx.getCharWidth() != 0) {
7443
// The vector's size in bits is not a multiple of the target's byte size,
7444
// so its layout is unspecified. For now, we'll simply treat these cases
7445
// as unsupported (this should only be possible with OpenCL bool vectors
7446
// whose element count isn't a multiple of the byte size).
7447
Info.FFDiag(BCE->getBeginLoc(),
7448
diag::note_constexpr_bit_cast_invalid_vector)
7449
<< QualType(VTy, 0) << EltSize << NElts << Info.Ctx.getCharWidth();
7450
return std::nullopt;
7451
}
7452
7453
if (EltTy->isRealFloatingType() && &Info.Ctx.getFloatTypeSemantics(EltTy) ==
7454
&APFloat::x87DoubleExtended()) {
7455
// The layout for x86_fp80 vectors seems to be handled very inconsistently
7456
// by both clang and LLVM, so for now we won't allow bit_casts involving
7457
// it in a constexpr context.
7458
Info.FFDiag(BCE->getBeginLoc(),
7459
diag::note_constexpr_bit_cast_unsupported_type)
7460
<< EltTy;
7461
return std::nullopt;
7462
}
7463
7464
SmallVector<APValue, 4> Elts;
7465
Elts.reserve(NElts);
7466
if (VTy->isExtVectorBoolType()) {
7467
// Special handling for OpenCL bool vectors:
7468
// Since these vectors are stored as packed bits, but we can't read
7469
// individual bits from the BitCastBuffer, we'll buffer all of the
7470
// elements together into an appropriately sized APInt and write them all
7471
// out at once. Because we don't accept vectors where NElts * EltSize
7472
// isn't a multiple of the char size, there will be no padding space, so
7473
// we don't have to worry about reading any padding data which didn't
7474
// actually need to be accessed.
7475
bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
7476
7477
SmallVector<uint8_t, 8> Bytes;
7478
Bytes.reserve(NElts / 8);
7479
if (!Buffer.readObject(Offset, CharUnits::fromQuantity(NElts / 8), Bytes))
7480
return std::nullopt;
7481
7482
APSInt SValInt(NElts, true);
7483
llvm::LoadIntFromMemory(SValInt, &*Bytes.begin(), Bytes.size());
7484
7485
for (unsigned I = 0; I < NElts; ++I) {
7486
llvm::APInt Elt =
7487
SValInt.extractBits(1, (BigEndian ? NElts - I - 1 : I) * EltSize);
7488
Elts.emplace_back(
7489
APSInt(std::move(Elt), !EltTy->isSignedIntegerType()));
7490
}
7491
} else {
7492
// Iterate over each of the elements and read them from the buffer at
7493
// the appropriate offset.
7494
CharUnits EltSizeChars = Info.Ctx.getTypeSizeInChars(EltTy);
7495
for (unsigned I = 0; I < NElts; ++I) {
7496
std::optional<APValue> EltValue =
7497
visitType(EltTy, Offset + I * EltSizeChars);
7498
if (!EltValue)
7499
return std::nullopt;
7500
Elts.push_back(std::move(*EltValue));
7501
}
7502
}
7503
7504
return APValue(Elts.data(), Elts.size());
7505
}
7506
7507
std::optional<APValue> visit(const Type *Ty, CharUnits Offset) {
7508
return unsupportedType(QualType(Ty, 0));
7509
}
7510
7511
std::optional<APValue> visitType(QualType Ty, CharUnits Offset) {
7512
QualType Can = Ty.getCanonicalType();
7513
7514
switch (Can->getTypeClass()) {
7515
#define TYPE(Class, Base) \
7516
case Type::Class: \
7517
return visit(cast<Class##Type>(Can.getTypePtr()), Offset);
7518
#define ABSTRACT_TYPE(Class, Base)
7519
#define NON_CANONICAL_TYPE(Class, Base) \
7520
case Type::Class: \
7521
llvm_unreachable("non-canonical type should be impossible!");
7522
#define DEPENDENT_TYPE(Class, Base) \
7523
case Type::Class: \
7524
llvm_unreachable( \
7525
"dependent types aren't supported in the constant evaluator!");
7526
#define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base) \
7527
case Type::Class: \
7528
llvm_unreachable("either dependent or not canonical!");
7529
#include "clang/AST/TypeNodes.inc"
7530
}
7531
llvm_unreachable("Unhandled Type::TypeClass");
7532
}
7533
7534
public:
7535
// Pull out a full value of type DstType.
7536
static std::optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer,
7537
const CastExpr *BCE) {
7538
BufferToAPValueConverter Converter(Info, Buffer, BCE);
7539
return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0));
7540
}
7541
};
7542
7543
static bool checkBitCastConstexprEligibilityType(SourceLocation Loc,
7544
QualType Ty, EvalInfo *Info,
7545
const ASTContext &Ctx,
7546
bool CheckingDest) {
7547
Ty = Ty.getCanonicalType();
7548
7549
auto diag = [&](int Reason) {
7550
if (Info)
7551
Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type)
7552
<< CheckingDest << (Reason == 4) << Reason;
7553
return false;
7554
};
7555
auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) {
7556
if (Info)
7557
Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype)
7558
<< NoteTy << Construct << Ty;
7559
return false;
7560
};
7561
7562
if (Ty->isUnionType())
7563
return diag(0);
7564
if (Ty->isPointerType())
7565
return diag(1);
7566
if (Ty->isMemberPointerType())
7567
return diag(2);
7568
if (Ty.isVolatileQualified())
7569
return diag(3);
7570
7571
if (RecordDecl *Record = Ty->getAsRecordDecl()) {
7572
if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) {
7573
for (CXXBaseSpecifier &BS : CXXRD->bases())
7574
if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx,
7575
CheckingDest))
7576
return note(1, BS.getType(), BS.getBeginLoc());
7577
}
7578
for (FieldDecl *FD : Record->fields()) {
7579
if (FD->getType()->isReferenceType())
7580
return diag(4);
7581
if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx,
7582
CheckingDest))
7583
return note(0, FD->getType(), FD->getBeginLoc());
7584
}
7585
}
7586
7587
if (Ty->isArrayType() &&
7588
!checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty),
7589
Info, Ctx, CheckingDest))
7590
return false;
7591
7592
return true;
7593
}
7594
7595
static bool checkBitCastConstexprEligibility(EvalInfo *Info,
7596
const ASTContext &Ctx,
7597
const CastExpr *BCE) {
7598
bool DestOK = checkBitCastConstexprEligibilityType(
7599
BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true);
7600
bool SourceOK = DestOK && checkBitCastConstexprEligibilityType(
7601
BCE->getBeginLoc(),
7602
BCE->getSubExpr()->getType(), Info, Ctx, false);
7603
return SourceOK;
7604
}
7605
7606
static bool handleRValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
7607
const APValue &SourceRValue,
7608
const CastExpr *BCE) {
7609
assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&
7610
"no host or target supports non 8-bit chars");
7611
7612
if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE))
7613
return false;
7614
7615
// Read out SourceValue into a char buffer.
7616
std::optional<BitCastBuffer> Buffer =
7617
APValueToBufferConverter::convert(Info, SourceRValue, BCE);
7618
if (!Buffer)
7619
return false;
7620
7621
// Write out the buffer into a new APValue.
7622
std::optional<APValue> MaybeDestValue =
7623
BufferToAPValueConverter::convert(Info, *Buffer, BCE);
7624
if (!MaybeDestValue)
7625
return false;
7626
7627
DestValue = std::move(*MaybeDestValue);
7628
return true;
7629
}
7630
7631
static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
7632
APValue &SourceValue,
7633
const CastExpr *BCE) {
7634
assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&
7635
"no host or target supports non 8-bit chars");
7636
assert(SourceValue.isLValue() &&
7637
"LValueToRValueBitcast requires an lvalue operand!");
7638
7639
LValue SourceLValue;
7640
APValue SourceRValue;
7641
SourceLValue.setFrom(Info.Ctx, SourceValue);
7642
if (!handleLValueToRValueConversion(
7643
Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue,
7644
SourceRValue, /*WantObjectRepresentation=*/true))
7645
return false;
7646
7647
return handleRValueToRValueBitCast(Info, DestValue, SourceRValue, BCE);
7648
}
7649
7650
template <class Derived>
7651
class ExprEvaluatorBase
7652
: public ConstStmtVisitor<Derived, bool> {
7653
private:
7654
Derived &getDerived() { return static_cast<Derived&>(*this); }
7655
bool DerivedSuccess(const APValue &V, const Expr *E) {
7656
return getDerived().Success(V, E);
7657
}
7658
bool DerivedZeroInitialization(const Expr *E) {
7659
return getDerived().ZeroInitialization(E);
7660
}
7661
7662
// Check whether a conditional operator with a non-constant condition is a
7663
// potential constant expression. If neither arm is a potential constant
7664
// expression, then the conditional operator is not either.
7665
template<typename ConditionalOperator>
7666
void CheckPotentialConstantConditional(const ConditionalOperator *E) {
7667
assert(Info.checkingPotentialConstantExpression());
7668
7669
// Speculatively evaluate both arms.
7670
SmallVector<PartialDiagnosticAt, 8> Diag;
7671
{
7672
SpeculativeEvaluationRAII Speculate(Info, &Diag);
7673
StmtVisitorTy::Visit(E->getFalseExpr());
7674
if (Diag.empty())
7675
return;
7676
}
7677
7678
{
7679
SpeculativeEvaluationRAII Speculate(Info, &Diag);
7680
Diag.clear();
7681
StmtVisitorTy::Visit(E->getTrueExpr());
7682
if (Diag.empty())
7683
return;
7684
}
7685
7686
Error(E, diag::note_constexpr_conditional_never_const);
7687
}
7688
7689
7690
template<typename ConditionalOperator>
7691
bool HandleConditionalOperator(const ConditionalOperator *E) {
7692
bool BoolResult;
7693
if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
7694
if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) {
7695
CheckPotentialConstantConditional(E);
7696
return false;
7697
}
7698
if (Info.noteFailure()) {
7699
StmtVisitorTy::Visit(E->getTrueExpr());
7700
StmtVisitorTy::Visit(E->getFalseExpr());
7701
}
7702
return false;
7703
}
7704
7705
Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
7706
return StmtVisitorTy::Visit(EvalExpr);
7707
}
7708
7709
protected:
7710
EvalInfo &Info;
7711
typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
7712
typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
7713
7714
OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
7715
return Info.CCEDiag(E, D);
7716
}
7717
7718
bool ZeroInitialization(const Expr *E) { return Error(E); }
7719
7720
bool IsConstantEvaluatedBuiltinCall(const CallExpr *E) {
7721
unsigned BuiltinOp = E->getBuiltinCallee();
7722
return BuiltinOp != 0 &&
7723
Info.Ctx.BuiltinInfo.isConstantEvaluated(BuiltinOp);
7724
}
7725
7726
public:
7727
ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
7728
7729
EvalInfo &getEvalInfo() { return Info; }
7730
7731
/// Report an evaluation error. This should only be called when an error is
7732
/// first discovered. When propagating an error, just return false.
7733
bool Error(const Expr *E, diag::kind D) {
7734
Info.FFDiag(E, D) << E->getSourceRange();
7735
return false;
7736
}
7737
bool Error(const Expr *E) {
7738
return Error(E, diag::note_invalid_subexpr_in_const_expr);
7739
}
7740
7741
bool VisitStmt(const Stmt *) {
7742
llvm_unreachable("Expression evaluator should not be called on stmts");
7743
}
7744
bool VisitExpr(const Expr *E) {
7745
return Error(E);
7746
}
7747
7748
bool VisitEmbedExpr(const EmbedExpr *E) {
7749
const auto It = E->begin();
7750
return StmtVisitorTy::Visit(*It);
7751
}
7752
7753
bool VisitPredefinedExpr(const PredefinedExpr *E) {
7754
return StmtVisitorTy::Visit(E->getFunctionName());
7755
}
7756
bool VisitConstantExpr(const ConstantExpr *E) {
7757
if (E->hasAPValueResult())
7758
return DerivedSuccess(E->getAPValueResult(), E);
7759
7760
return StmtVisitorTy::Visit(E->getSubExpr());
7761
}
7762
7763
bool VisitParenExpr(const ParenExpr *E)
7764
{ return StmtVisitorTy::Visit(E->getSubExpr()); }
7765
bool VisitUnaryExtension(const UnaryOperator *E)
7766
{ return StmtVisitorTy::Visit(E->getSubExpr()); }
7767
bool VisitUnaryPlus(const UnaryOperator *E)
7768
{ return StmtVisitorTy::Visit(E->getSubExpr()); }
7769
bool VisitChooseExpr(const ChooseExpr *E)
7770
{ return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
7771
bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
7772
{ return StmtVisitorTy::Visit(E->getResultExpr()); }
7773
bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
7774
{ return StmtVisitorTy::Visit(E->getReplacement()); }
7775
bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
7776
TempVersionRAII RAII(*Info.CurrentCall);
7777
SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7778
return StmtVisitorTy::Visit(E->getExpr());
7779
}
7780
bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
7781
TempVersionRAII RAII(*Info.CurrentCall);
7782
// The initializer may not have been parsed yet, or might be erroneous.
7783
if (!E->getExpr())
7784
return Error(E);
7785
SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7786
return StmtVisitorTy::Visit(E->getExpr());
7787
}
7788
7789
bool VisitExprWithCleanups(const ExprWithCleanups *E) {
7790
FullExpressionRAII Scope(Info);
7791
return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy();
7792
}
7793
7794
// Temporaries are registered when created, so we don't care about
7795
// CXXBindTemporaryExpr.
7796
bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
7797
return StmtVisitorTy::Visit(E->getSubExpr());
7798
}
7799
7800
bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
7801
CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
7802
return static_cast<Derived*>(this)->VisitCastExpr(E);
7803
}
7804
bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
7805
if (!Info.Ctx.getLangOpts().CPlusPlus20)
7806
CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
7807
return static_cast<Derived*>(this)->VisitCastExpr(E);
7808
}
7809
bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) {
7810
return static_cast<Derived*>(this)->VisitCastExpr(E);
7811
}
7812
7813
bool VisitBinaryOperator(const BinaryOperator *E) {
7814
switch (E->getOpcode()) {
7815
default:
7816
return Error(E);
7817
7818
case BO_Comma:
7819
VisitIgnoredValue(E->getLHS());
7820
return StmtVisitorTy::Visit(E->getRHS());
7821
7822
case BO_PtrMemD:
7823
case BO_PtrMemI: {
7824
LValue Obj;
7825
if (!HandleMemberPointerAccess(Info, E, Obj))
7826
return false;
7827
APValue Result;
7828
if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
7829
return false;
7830
return DerivedSuccess(Result, E);
7831
}
7832
}
7833
}
7834
7835
bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) {
7836
return StmtVisitorTy::Visit(E->getSemanticForm());
7837
}
7838
7839
bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
7840
// Evaluate and cache the common expression. We treat it as a temporary,
7841
// even though it's not quite the same thing.
7842
LValue CommonLV;
7843
if (!Evaluate(Info.CurrentCall->createTemporary(
7844
E->getOpaqueValue(),
7845
getStorageType(Info.Ctx, E->getOpaqueValue()),
7846
ScopeKind::FullExpression, CommonLV),
7847
Info, E->getCommon()))
7848
return false;
7849
7850
return HandleConditionalOperator(E);
7851
}
7852
7853
bool VisitConditionalOperator(const ConditionalOperator *E) {
7854
bool IsBcpCall = false;
7855
// If the condition (ignoring parens) is a __builtin_constant_p call,
7856
// the result is a constant expression if it can be folded without
7857
// side-effects. This is an important GNU extension. See GCC PR38377
7858
// for discussion.
7859
if (const CallExpr *CallCE =
7860
dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
7861
if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
7862
IsBcpCall = true;
7863
7864
// Always assume __builtin_constant_p(...) ? ... : ... is a potential
7865
// constant expression; we can't check whether it's potentially foldable.
7866
// FIXME: We should instead treat __builtin_constant_p as non-constant if
7867
// it would return 'false' in this mode.
7868
if (Info.checkingPotentialConstantExpression() && IsBcpCall)
7869
return false;
7870
7871
FoldConstant Fold(Info, IsBcpCall);
7872
if (!HandleConditionalOperator(E)) {
7873
Fold.keepDiagnostics();
7874
return false;
7875
}
7876
7877
return true;
7878
}
7879
7880
bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
7881
if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E);
7882
Value && !Value->isAbsent())
7883
return DerivedSuccess(*Value, E);
7884
7885
const Expr *Source = E->getSourceExpr();
7886
if (!Source)
7887
return Error(E);
7888
if (Source == E) {
7889
assert(0 && "OpaqueValueExpr recursively refers to itself");
7890
return Error(E);
7891
}
7892
return StmtVisitorTy::Visit(Source);
7893
}
7894
7895
bool VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
7896
for (const Expr *SemE : E->semantics()) {
7897
if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
7898
// FIXME: We can't handle the case where an OpaqueValueExpr is also the
7899
// result expression: there could be two different LValues that would
7900
// refer to the same object in that case, and we can't model that.
7901
if (SemE == E->getResultExpr())
7902
return Error(E);
7903
7904
// Unique OVEs get evaluated if and when we encounter them when
7905
// emitting the rest of the semantic form, rather than eagerly.
7906
if (OVE->isUnique())
7907
continue;
7908
7909
LValue LV;
7910
if (!Evaluate(Info.CurrentCall->createTemporary(
7911
OVE, getStorageType(Info.Ctx, OVE),
7912
ScopeKind::FullExpression, LV),
7913
Info, OVE->getSourceExpr()))
7914
return false;
7915
} else if (SemE == E->getResultExpr()) {
7916
if (!StmtVisitorTy::Visit(SemE))
7917
return false;
7918
} else {
7919
if (!EvaluateIgnoredValue(Info, SemE))
7920
return false;
7921
}
7922
}
7923
return true;
7924
}
7925
7926
bool VisitCallExpr(const CallExpr *E) {
7927
APValue Result;
7928
if (!handleCallExpr(E, Result, nullptr))
7929
return false;
7930
return DerivedSuccess(Result, E);
7931
}
7932
7933
bool handleCallExpr(const CallExpr *E, APValue &Result,
7934
const LValue *ResultSlot) {
7935
CallScopeRAII CallScope(Info);
7936
7937
const Expr *Callee = E->getCallee()->IgnoreParens();
7938
QualType CalleeType = Callee->getType();
7939
7940
const FunctionDecl *FD = nullptr;
7941
LValue *This = nullptr, ThisVal;
7942
auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs());
7943
bool HasQualifier = false;
7944
7945
CallRef Call;
7946
7947
// Extract function decl and 'this' pointer from the callee.
7948
if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
7949
const CXXMethodDecl *Member = nullptr;
7950
if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
7951
// Explicit bound member calls, such as x.f() or p->g();
7952
if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
7953
return false;
7954
Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
7955
if (!Member)
7956
return Error(Callee);
7957
This = &ThisVal;
7958
HasQualifier = ME->hasQualifier();
7959
} else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
7960
// Indirect bound member calls ('.*' or '->*').
7961
const ValueDecl *D =
7962
HandleMemberPointerAccess(Info, BE, ThisVal, false);
7963
if (!D)
7964
return false;
7965
Member = dyn_cast<CXXMethodDecl>(D);
7966
if (!Member)
7967
return Error(Callee);
7968
This = &ThisVal;
7969
} else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) {
7970
if (!Info.getLangOpts().CPlusPlus20)
7971
Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor);
7972
return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal) &&
7973
HandleDestruction(Info, PDE, ThisVal, PDE->getDestroyedType());
7974
} else
7975
return Error(Callee);
7976
FD = Member;
7977
} else if (CalleeType->isFunctionPointerType()) {
7978
LValue CalleeLV;
7979
if (!EvaluatePointer(Callee, CalleeLV, Info))
7980
return false;
7981
7982
if (!CalleeLV.getLValueOffset().isZero())
7983
return Error(Callee);
7984
if (CalleeLV.isNullPointer()) {
7985
Info.FFDiag(Callee, diag::note_constexpr_null_callee)
7986
<< const_cast<Expr *>(Callee);
7987
return false;
7988
}
7989
FD = dyn_cast_or_null<FunctionDecl>(
7990
CalleeLV.getLValueBase().dyn_cast<const ValueDecl *>());
7991
if (!FD)
7992
return Error(Callee);
7993
// Don't call function pointers which have been cast to some other type.
7994
// Per DR (no number yet), the caller and callee can differ in noexcept.
7995
if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec(
7996
CalleeType->getPointeeType(), FD->getType())) {
7997
return Error(E);
7998
}
7999
8000
// For an (overloaded) assignment expression, evaluate the RHS before the
8001
// LHS.
8002
auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
8003
if (OCE && OCE->isAssignmentOp()) {
8004
assert(Args.size() == 2 && "wrong number of arguments in assignment");
8005
Call = Info.CurrentCall->createCall(FD);
8006
bool HasThis = false;
8007
if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
8008
HasThis = MD->isImplicitObjectMemberFunction();
8009
if (!EvaluateArgs(HasThis ? Args.slice(1) : Args, Call, Info, FD,
8010
/*RightToLeft=*/true))
8011
return false;
8012
}
8013
8014
// Overloaded operator calls to member functions are represented as normal
8015
// calls with '*this' as the first argument.
8016
const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
8017
if (MD &&
8018
(MD->isImplicitObjectMemberFunction() || (OCE && MD->isStatic()))) {
8019
// FIXME: When selecting an implicit conversion for an overloaded
8020
// operator delete, we sometimes try to evaluate calls to conversion
8021
// operators without a 'this' parameter!
8022
if (Args.empty())
8023
return Error(E);
8024
8025
if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
8026
return false;
8027
8028
// If we are calling a static operator, the 'this' argument needs to be
8029
// ignored after being evaluated.
8030
if (MD->isInstance())
8031
This = &ThisVal;
8032
8033
// If this is syntactically a simple assignment using a trivial
8034
// assignment operator, start the lifetimes of union members as needed,
8035
// per C++20 [class.union]5.
8036
if (Info.getLangOpts().CPlusPlus20 && OCE &&
8037
OCE->getOperator() == OO_Equal && MD->isTrivial() &&
8038
!MaybeHandleUnionActiveMemberChange(Info, Args[0], ThisVal))
8039
return false;
8040
8041
Args = Args.slice(1);
8042
} else if (MD && MD->isLambdaStaticInvoker()) {
8043
// Map the static invoker for the lambda back to the call operator.
8044
// Conveniently, we don't have to slice out the 'this' argument (as is
8045
// being done for the non-static case), since a static member function
8046
// doesn't have an implicit argument passed in.
8047
const CXXRecordDecl *ClosureClass = MD->getParent();
8048
assert(
8049
ClosureClass->captures_begin() == ClosureClass->captures_end() &&
8050
"Number of captures must be zero for conversion to function-ptr");
8051
8052
const CXXMethodDecl *LambdaCallOp =
8053
ClosureClass->getLambdaCallOperator();
8054
8055
// Set 'FD', the function that will be called below, to the call
8056
// operator. If the closure object represents a generic lambda, find
8057
// the corresponding specialization of the call operator.
8058
8059
if (ClosureClass->isGenericLambda()) {
8060
assert(MD->isFunctionTemplateSpecialization() &&
8061
"A generic lambda's static-invoker function must be a "
8062
"template specialization");
8063
const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
8064
FunctionTemplateDecl *CallOpTemplate =
8065
LambdaCallOp->getDescribedFunctionTemplate();
8066
void *InsertPos = nullptr;
8067
FunctionDecl *CorrespondingCallOpSpecialization =
8068
CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
8069
assert(CorrespondingCallOpSpecialization &&
8070
"We must always have a function call operator specialization "
8071
"that corresponds to our static invoker specialization");
8072
assert(isa<CXXMethodDecl>(CorrespondingCallOpSpecialization));
8073
FD = CorrespondingCallOpSpecialization;
8074
} else
8075
FD = LambdaCallOp;
8076
} else if (FD->isReplaceableGlobalAllocationFunction()) {
8077
if (FD->getDeclName().getCXXOverloadedOperator() == OO_New ||
8078
FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
8079
LValue Ptr;
8080
if (!HandleOperatorNewCall(Info, E, Ptr))
8081
return false;
8082
Ptr.moveInto(Result);
8083
return CallScope.destroy();
8084
} else {
8085
return HandleOperatorDeleteCall(Info, E) && CallScope.destroy();
8086
}
8087
}
8088
} else
8089
return Error(E);
8090
8091
// Evaluate the arguments now if we've not already done so.
8092
if (!Call) {
8093
Call = Info.CurrentCall->createCall(FD);
8094
if (!EvaluateArgs(Args, Call, Info, FD))
8095
return false;
8096
}
8097
8098
SmallVector<QualType, 4> CovariantAdjustmentPath;
8099
if (This) {
8100
auto *NamedMember = dyn_cast<CXXMethodDecl>(FD);
8101
if (NamedMember && NamedMember->isVirtual() && !HasQualifier) {
8102
// Perform virtual dispatch, if necessary.
8103
FD = HandleVirtualDispatch(Info, E, *This, NamedMember,
8104
CovariantAdjustmentPath);
8105
if (!FD)
8106
return false;
8107
} else if (NamedMember && NamedMember->isImplicitObjectMemberFunction()) {
8108
// Check that the 'this' pointer points to an object of the right type.
8109
// FIXME: If this is an assignment operator call, we may need to change
8110
// the active union member before we check this.
8111
if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember))
8112
return false;
8113
}
8114
}
8115
8116
// Destructor calls are different enough that they have their own codepath.
8117
if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) {
8118
assert(This && "no 'this' pointer for destructor call");
8119
return HandleDestruction(Info, E, *This,
8120
Info.Ctx.getRecordType(DD->getParent())) &&
8121
CallScope.destroy();
8122
}
8123
8124
const FunctionDecl *Definition = nullptr;
8125
Stmt *Body = FD->getBody(Definition);
8126
8127
if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
8128
!HandleFunctionCall(E->getExprLoc(), Definition, This, E, Args, Call,
8129
Body, Info, Result, ResultSlot))
8130
return false;
8131
8132
if (!CovariantAdjustmentPath.empty() &&
8133
!HandleCovariantReturnAdjustment(Info, E, Result,
8134
CovariantAdjustmentPath))
8135
return false;
8136
8137
return CallScope.destroy();
8138
}
8139
8140
bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
8141
return StmtVisitorTy::Visit(E->getInitializer());
8142
}
8143
bool VisitInitListExpr(const InitListExpr *E) {
8144
if (E->getNumInits() == 0)
8145
return DerivedZeroInitialization(E);
8146
if (E->getNumInits() == 1)
8147
return StmtVisitorTy::Visit(E->getInit(0));
8148
return Error(E);
8149
}
8150
bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
8151
return DerivedZeroInitialization(E);
8152
}
8153
bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
8154
return DerivedZeroInitialization(E);
8155
}
8156
bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
8157
return DerivedZeroInitialization(E);
8158
}
8159
8160
/// A member expression where the object is a prvalue is itself a prvalue.
8161
bool VisitMemberExpr(const MemberExpr *E) {
8162
assert(!Info.Ctx.getLangOpts().CPlusPlus11 &&
8163
"missing temporary materialization conversion");
8164
assert(!E->isArrow() && "missing call to bound member function?");
8165
8166
APValue Val;
8167
if (!Evaluate(Val, Info, E->getBase()))
8168
return false;
8169
8170
QualType BaseTy = E->getBase()->getType();
8171
8172
const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
8173
if (!FD) return Error(E);
8174
assert(!FD->getType()->isReferenceType() && "prvalue reference?");
8175
assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
8176
FD->getParent()->getCanonicalDecl() && "record / field mismatch");
8177
8178
// Note: there is no lvalue base here. But this case should only ever
8179
// happen in C or in C++98, where we cannot be evaluating a constexpr
8180
// constructor, which is the only case the base matters.
8181
CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy);
8182
SubobjectDesignator Designator(BaseTy);
8183
Designator.addDeclUnchecked(FD);
8184
8185
APValue Result;
8186
return extractSubobject(Info, E, Obj, Designator, Result) &&
8187
DerivedSuccess(Result, E);
8188
}
8189
8190
bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E) {
8191
APValue Val;
8192
if (!Evaluate(Val, Info, E->getBase()))
8193
return false;
8194
8195
if (Val.isVector()) {
8196
SmallVector<uint32_t, 4> Indices;
8197
E->getEncodedElementAccess(Indices);
8198
if (Indices.size() == 1) {
8199
// Return scalar.
8200
return DerivedSuccess(Val.getVectorElt(Indices[0]), E);
8201
} else {
8202
// Construct new APValue vector.
8203
SmallVector<APValue, 4> Elts;
8204
for (unsigned I = 0; I < Indices.size(); ++I) {
8205
Elts.push_back(Val.getVectorElt(Indices[I]));
8206
}
8207
APValue VecResult(Elts.data(), Indices.size());
8208
return DerivedSuccess(VecResult, E);
8209
}
8210
}
8211
8212
return false;
8213
}
8214
8215
bool VisitCastExpr(const CastExpr *E) {
8216
switch (E->getCastKind()) {
8217
default:
8218
break;
8219
8220
case CK_AtomicToNonAtomic: {
8221
APValue AtomicVal;
8222
// This does not need to be done in place even for class/array types:
8223
// atomic-to-non-atomic conversion implies copying the object
8224
// representation.
8225
if (!Evaluate(AtomicVal, Info, E->getSubExpr()))
8226
return false;
8227
return DerivedSuccess(AtomicVal, E);
8228
}
8229
8230
case CK_NoOp:
8231
case CK_UserDefinedConversion:
8232
return StmtVisitorTy::Visit(E->getSubExpr());
8233
8234
case CK_LValueToRValue: {
8235
LValue LVal;
8236
if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
8237
return false;
8238
APValue RVal;
8239
// Note, we use the subexpression's type in order to retain cv-qualifiers.
8240
if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
8241
LVal, RVal))
8242
return false;
8243
return DerivedSuccess(RVal, E);
8244
}
8245
case CK_LValueToRValueBitCast: {
8246
APValue DestValue, SourceValue;
8247
if (!Evaluate(SourceValue, Info, E->getSubExpr()))
8248
return false;
8249
if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E))
8250
return false;
8251
return DerivedSuccess(DestValue, E);
8252
}
8253
8254
case CK_AddressSpaceConversion: {
8255
APValue Value;
8256
if (!Evaluate(Value, Info, E->getSubExpr()))
8257
return false;
8258
return DerivedSuccess(Value, E);
8259
}
8260
}
8261
8262
return Error(E);
8263
}
8264
8265
bool VisitUnaryPostInc(const UnaryOperator *UO) {
8266
return VisitUnaryPostIncDec(UO);
8267
}
8268
bool VisitUnaryPostDec(const UnaryOperator *UO) {
8269
return VisitUnaryPostIncDec(UO);
8270
}
8271
bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
8272
if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8273
return Error(UO);
8274
8275
LValue LVal;
8276
if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
8277
return false;
8278
APValue RVal;
8279
if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
8280
UO->isIncrementOp(), &RVal))
8281
return false;
8282
return DerivedSuccess(RVal, UO);
8283
}
8284
8285
bool VisitStmtExpr(const StmtExpr *E) {
8286
// We will have checked the full-expressions inside the statement expression
8287
// when they were completed, and don't need to check them again now.
8288
llvm::SaveAndRestore NotCheckingForUB(Info.CheckingForUndefinedBehavior,
8289
false);
8290
8291
const CompoundStmt *CS = E->getSubStmt();
8292
if (CS->body_empty())
8293
return true;
8294
8295
BlockScopeRAII Scope(Info);
8296
for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
8297
BE = CS->body_end();
8298
/**/; ++BI) {
8299
if (BI + 1 == BE) {
8300
const Expr *FinalExpr = dyn_cast<Expr>(*BI);
8301
if (!FinalExpr) {
8302
Info.FFDiag((*BI)->getBeginLoc(),
8303
diag::note_constexpr_stmt_expr_unsupported);
8304
return false;
8305
}
8306
return this->Visit(FinalExpr) && Scope.destroy();
8307
}
8308
8309
APValue ReturnValue;
8310
StmtResult Result = { ReturnValue, nullptr };
8311
EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
8312
if (ESR != ESR_Succeeded) {
8313
// FIXME: If the statement-expression terminated due to 'return',
8314
// 'break', or 'continue', it would be nice to propagate that to
8315
// the outer statement evaluation rather than bailing out.
8316
if (ESR != ESR_Failed)
8317
Info.FFDiag((*BI)->getBeginLoc(),
8318
diag::note_constexpr_stmt_expr_unsupported);
8319
return false;
8320
}
8321
}
8322
8323
llvm_unreachable("Return from function from the loop above.");
8324
}
8325
8326
bool VisitPackIndexingExpr(const PackIndexingExpr *E) {
8327
return StmtVisitorTy::Visit(E->getSelectedExpr());
8328
}
8329
8330
/// Visit a value which is evaluated, but whose value is ignored.
8331
void VisitIgnoredValue(const Expr *E) {
8332
EvaluateIgnoredValue(Info, E);
8333
}
8334
8335
/// Potentially visit a MemberExpr's base expression.
8336
void VisitIgnoredBaseExpression(const Expr *E) {
8337
// While MSVC doesn't evaluate the base expression, it does diagnose the
8338
// presence of side-effecting behavior.
8339
if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx))
8340
return;
8341
VisitIgnoredValue(E);
8342
}
8343
};
8344
8345
} // namespace
8346
8347
//===----------------------------------------------------------------------===//
8348
// Common base class for lvalue and temporary evaluation.
8349
//===----------------------------------------------------------------------===//
8350
namespace {
8351
template<class Derived>
8352
class LValueExprEvaluatorBase
8353
: public ExprEvaluatorBase<Derived> {
8354
protected:
8355
LValue &Result;
8356
bool InvalidBaseOK;
8357
typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
8358
typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
8359
8360
bool Success(APValue::LValueBase B) {
8361
Result.set(B);
8362
return true;
8363
}
8364
8365
bool evaluatePointer(const Expr *E, LValue &Result) {
8366
return EvaluatePointer(E, Result, this->Info, InvalidBaseOK);
8367
}
8368
8369
public:
8370
LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK)
8371
: ExprEvaluatorBaseTy(Info), Result(Result),
8372
InvalidBaseOK(InvalidBaseOK) {}
8373
8374
bool Success(const APValue &V, const Expr *E) {
8375
Result.setFrom(this->Info.Ctx, V);
8376
return true;
8377
}
8378
8379
bool VisitMemberExpr(const MemberExpr *E) {
8380
// Handle non-static data members.
8381
QualType BaseTy;
8382
bool EvalOK;
8383
if (E->isArrow()) {
8384
EvalOK = evaluatePointer(E->getBase(), Result);
8385
BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
8386
} else if (E->getBase()->isPRValue()) {
8387
assert(E->getBase()->getType()->isRecordType());
8388
EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
8389
BaseTy = E->getBase()->getType();
8390
} else {
8391
EvalOK = this->Visit(E->getBase());
8392
BaseTy = E->getBase()->getType();
8393
}
8394
if (!EvalOK) {
8395
if (!InvalidBaseOK)
8396
return false;
8397
Result.setInvalid(E);
8398
return true;
8399
}
8400
8401
const ValueDecl *MD = E->getMemberDecl();
8402
if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
8403
assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
8404
FD->getParent()->getCanonicalDecl() && "record / field mismatch");
8405
(void)BaseTy;
8406
if (!HandleLValueMember(this->Info, E, Result, FD))
8407
return false;
8408
} else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
8409
if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
8410
return false;
8411
} else
8412
return this->Error(E);
8413
8414
if (MD->getType()->isReferenceType()) {
8415
APValue RefValue;
8416
if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
8417
RefValue))
8418
return false;
8419
return Success(RefValue, E);
8420
}
8421
return true;
8422
}
8423
8424
bool VisitBinaryOperator(const BinaryOperator *E) {
8425
switch (E->getOpcode()) {
8426
default:
8427
return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8428
8429
case BO_PtrMemD:
8430
case BO_PtrMemI:
8431
return HandleMemberPointerAccess(this->Info, E, Result);
8432
}
8433
}
8434
8435
bool VisitCastExpr(const CastExpr *E) {
8436
switch (E->getCastKind()) {
8437
default:
8438
return ExprEvaluatorBaseTy::VisitCastExpr(E);
8439
8440
case CK_DerivedToBase:
8441
case CK_UncheckedDerivedToBase:
8442
if (!this->Visit(E->getSubExpr()))
8443
return false;
8444
8445
// Now figure out the necessary offset to add to the base LV to get from
8446
// the derived class to the base class.
8447
return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
8448
Result);
8449
}
8450
}
8451
};
8452
}
8453
8454
//===----------------------------------------------------------------------===//
8455
// LValue Evaluation
8456
//
8457
// This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
8458
// function designators (in C), decl references to void objects (in C), and
8459
// temporaries (if building with -Wno-address-of-temporary).
8460
//
8461
// LValue evaluation produces values comprising a base expression of one of the
8462
// following types:
8463
// - Declarations
8464
// * VarDecl
8465
// * FunctionDecl
8466
// - Literals
8467
// * CompoundLiteralExpr in C (and in global scope in C++)
8468
// * StringLiteral
8469
// * PredefinedExpr
8470
// * ObjCStringLiteralExpr
8471
// * ObjCEncodeExpr
8472
// * AddrLabelExpr
8473
// * BlockExpr
8474
// * CallExpr for a MakeStringConstant builtin
8475
// - typeid(T) expressions, as TypeInfoLValues
8476
// - Locals and temporaries
8477
// * MaterializeTemporaryExpr
8478
// * Any Expr, with a CallIndex indicating the function in which the temporary
8479
// was evaluated, for cases where the MaterializeTemporaryExpr is missing
8480
// from the AST (FIXME).
8481
// * A MaterializeTemporaryExpr that has static storage duration, with no
8482
// CallIndex, for a lifetime-extended temporary.
8483
// * The ConstantExpr that is currently being evaluated during evaluation of an
8484
// immediate invocation.
8485
// plus an offset in bytes.
8486
//===----------------------------------------------------------------------===//
8487
namespace {
8488
class LValueExprEvaluator
8489
: public LValueExprEvaluatorBase<LValueExprEvaluator> {
8490
public:
8491
LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) :
8492
LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {}
8493
8494
bool VisitVarDecl(const Expr *E, const VarDecl *VD);
8495
bool VisitUnaryPreIncDec(const UnaryOperator *UO);
8496
8497
bool VisitCallExpr(const CallExpr *E);
8498
bool VisitDeclRefExpr(const DeclRefExpr *E);
8499
bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
8500
bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
8501
bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
8502
bool VisitMemberExpr(const MemberExpr *E);
8503
bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
8504
bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
8505
bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
8506
bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
8507
bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
8508
bool VisitUnaryDeref(const UnaryOperator *E);
8509
bool VisitUnaryReal(const UnaryOperator *E);
8510
bool VisitUnaryImag(const UnaryOperator *E);
8511
bool VisitUnaryPreInc(const UnaryOperator *UO) {
8512
return VisitUnaryPreIncDec(UO);
8513
}
8514
bool VisitUnaryPreDec(const UnaryOperator *UO) {
8515
return VisitUnaryPreIncDec(UO);
8516
}
8517
bool VisitBinAssign(const BinaryOperator *BO);
8518
bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
8519
8520
bool VisitCastExpr(const CastExpr *E) {
8521
switch (E->getCastKind()) {
8522
default:
8523
return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
8524
8525
case CK_LValueBitCast:
8526
this->CCEDiag(E, diag::note_constexpr_invalid_cast)
8527
<< 2 << Info.Ctx.getLangOpts().CPlusPlus;
8528
if (!Visit(E->getSubExpr()))
8529
return false;
8530
Result.Designator.setInvalid();
8531
return true;
8532
8533
case CK_BaseToDerived:
8534
if (!Visit(E->getSubExpr()))
8535
return false;
8536
return HandleBaseToDerivedCast(Info, E, Result);
8537
8538
case CK_Dynamic:
8539
if (!Visit(E->getSubExpr()))
8540
return false;
8541
return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
8542
}
8543
}
8544
};
8545
} // end anonymous namespace
8546
8547
/// Get an lvalue to a field of a lambda's closure type.
8548
static bool HandleLambdaCapture(EvalInfo &Info, const Expr *E, LValue &Result,
8549
const CXXMethodDecl *MD, const FieldDecl *FD,
8550
bool LValueToRValueConversion) {
8551
// Static lambda function call operators can't have captures. We already
8552
// diagnosed this, so bail out here.
8553
if (MD->isStatic()) {
8554
assert(Info.CurrentCall->This == nullptr &&
8555
"This should not be set for a static call operator");
8556
return false;
8557
}
8558
8559
// Start with 'Result' referring to the complete closure object...
8560
if (MD->isExplicitObjectMemberFunction()) {
8561
// Self may be passed by reference or by value.
8562
const ParmVarDecl *Self = MD->getParamDecl(0);
8563
if (Self->getType()->isReferenceType()) {
8564
APValue *RefValue = Info.getParamSlot(Info.CurrentCall->Arguments, Self);
8565
Result.setFrom(Info.Ctx, *RefValue);
8566
} else {
8567
const ParmVarDecl *VD = Info.CurrentCall->Arguments.getOrigParam(Self);
8568
CallStackFrame *Frame =
8569
Info.getCallFrameAndDepth(Info.CurrentCall->Arguments.CallIndex)
8570
.first;
8571
unsigned Version = Info.CurrentCall->Arguments.Version;
8572
Result.set({VD, Frame->Index, Version});
8573
}
8574
} else
8575
Result = *Info.CurrentCall->This;
8576
8577
// ... then update it to refer to the field of the closure object
8578
// that represents the capture.
8579
if (!HandleLValueMember(Info, E, Result, FD))
8580
return false;
8581
8582
// And if the field is of reference type (or if we captured '*this' by
8583
// reference), update 'Result' to refer to what
8584
// the field refers to.
8585
if (LValueToRValueConversion) {
8586
APValue RVal;
8587
if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result, RVal))
8588
return false;
8589
Result.setFrom(Info.Ctx, RVal);
8590
}
8591
return true;
8592
}
8593
8594
/// Evaluate an expression as an lvalue. This can be legitimately called on
8595
/// expressions which are not glvalues, in three cases:
8596
/// * function designators in C, and
8597
/// * "extern void" objects
8598
/// * @selector() expressions in Objective-C
8599
static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
8600
bool InvalidBaseOK) {
8601
assert(!E->isValueDependent());
8602
assert(E->isGLValue() || E->getType()->isFunctionType() ||
8603
E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E->IgnoreParens()));
8604
return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
8605
}
8606
8607
bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
8608
const NamedDecl *D = E->getDecl();
8609
if (isa<FunctionDecl, MSGuidDecl, TemplateParamObjectDecl,
8610
UnnamedGlobalConstantDecl>(D))
8611
return Success(cast<ValueDecl>(D));
8612
if (const VarDecl *VD = dyn_cast<VarDecl>(D))
8613
return VisitVarDecl(E, VD);
8614
if (const BindingDecl *BD = dyn_cast<BindingDecl>(D))
8615
return Visit(BD->getBinding());
8616
return Error(E);
8617
}
8618
8619
8620
bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
8621
8622
// If we are within a lambda's call operator, check whether the 'VD' referred
8623
// to within 'E' actually represents a lambda-capture that maps to a
8624
// data-member/field within the closure object, and if so, evaluate to the
8625
// field or what the field refers to.
8626
if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) &&
8627
isa<DeclRefExpr>(E) &&
8628
cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) {
8629
// We don't always have a complete capture-map when checking or inferring if
8630
// the function call operator meets the requirements of a constexpr function
8631
// - but we don't need to evaluate the captures to determine constexprness
8632
// (dcl.constexpr C++17).
8633
if (Info.checkingPotentialConstantExpression())
8634
return false;
8635
8636
if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) {
8637
const auto *MD = cast<CXXMethodDecl>(Info.CurrentCall->Callee);
8638
return HandleLambdaCapture(Info, E, Result, MD, FD,
8639
FD->getType()->isReferenceType());
8640
}
8641
}
8642
8643
CallStackFrame *Frame = nullptr;
8644
unsigned Version = 0;
8645
if (VD->hasLocalStorage()) {
8646
// Only if a local variable was declared in the function currently being
8647
// evaluated, do we expect to be able to find its value in the current
8648
// frame. (Otherwise it was likely declared in an enclosing context and
8649
// could either have a valid evaluatable value (for e.g. a constexpr
8650
// variable) or be ill-formed (and trigger an appropriate evaluation
8651
// diagnostic)).
8652
CallStackFrame *CurrFrame = Info.CurrentCall;
8653
if (CurrFrame->Callee && CurrFrame->Callee->Equals(VD->getDeclContext())) {
8654
// Function parameters are stored in some caller's frame. (Usually the
8655
// immediate caller, but for an inherited constructor they may be more
8656
// distant.)
8657
if (auto *PVD = dyn_cast<ParmVarDecl>(VD)) {
8658
if (CurrFrame->Arguments) {
8659
VD = CurrFrame->Arguments.getOrigParam(PVD);
8660
Frame =
8661
Info.getCallFrameAndDepth(CurrFrame->Arguments.CallIndex).first;
8662
Version = CurrFrame->Arguments.Version;
8663
}
8664
} else {
8665
Frame = CurrFrame;
8666
Version = CurrFrame->getCurrentTemporaryVersion(VD);
8667
}
8668
}
8669
}
8670
8671
if (!VD->getType()->isReferenceType()) {
8672
if (Frame) {
8673
Result.set({VD, Frame->Index, Version});
8674
return true;
8675
}
8676
return Success(VD);
8677
}
8678
8679
if (!Info.getLangOpts().CPlusPlus11) {
8680
Info.CCEDiag(E, diag::note_constexpr_ltor_non_integral, 1)
8681
<< VD << VD->getType();
8682
Info.Note(VD->getLocation(), diag::note_declared_at);
8683
}
8684
8685
APValue *V;
8686
if (!evaluateVarDeclInit(Info, E, VD, Frame, Version, V))
8687
return false;
8688
if (!V->hasValue()) {
8689
// FIXME: Is it possible for V to be indeterminate here? If so, we should
8690
// adjust the diagnostic to say that.
8691
if (!Info.checkingPotentialConstantExpression())
8692
Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
8693
return false;
8694
}
8695
return Success(*V, E);
8696
}
8697
8698
bool LValueExprEvaluator::VisitCallExpr(const CallExpr *E) {
8699
if (!IsConstantEvaluatedBuiltinCall(E))
8700
return ExprEvaluatorBaseTy::VisitCallExpr(E);
8701
8702
switch (E->getBuiltinCallee()) {
8703
default:
8704
return false;
8705
case Builtin::BIas_const:
8706
case Builtin::BIforward:
8707
case Builtin::BIforward_like:
8708
case Builtin::BImove:
8709
case Builtin::BImove_if_noexcept:
8710
if (cast<FunctionDecl>(E->getCalleeDecl())->isConstexpr())
8711
return Visit(E->getArg(0));
8712
break;
8713
}
8714
8715
return ExprEvaluatorBaseTy::VisitCallExpr(E);
8716
}
8717
8718
bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
8719
const MaterializeTemporaryExpr *E) {
8720
// Walk through the expression to find the materialized temporary itself.
8721
SmallVector<const Expr *, 2> CommaLHSs;
8722
SmallVector<SubobjectAdjustment, 2> Adjustments;
8723
const Expr *Inner =
8724
E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
8725
8726
// If we passed any comma operators, evaluate their LHSs.
8727
for (const Expr *E : CommaLHSs)
8728
if (!EvaluateIgnoredValue(Info, E))
8729
return false;
8730
8731
// A materialized temporary with static storage duration can appear within the
8732
// result of a constant expression evaluation, so we need to preserve its
8733
// value for use outside this evaluation.
8734
APValue *Value;
8735
if (E->getStorageDuration() == SD_Static) {
8736
if (Info.EvalMode == EvalInfo::EM_ConstantFold)
8737
return false;
8738
// FIXME: What about SD_Thread?
8739
Value = E->getOrCreateValue(true);
8740
*Value = APValue();
8741
Result.set(E);
8742
} else {
8743
Value = &Info.CurrentCall->createTemporary(
8744
E, Inner->getType(),
8745
E->getStorageDuration() == SD_FullExpression ? ScopeKind::FullExpression
8746
: ScopeKind::Block,
8747
Result);
8748
}
8749
8750
QualType Type = Inner->getType();
8751
8752
// Materialize the temporary itself.
8753
if (!EvaluateInPlace(*Value, Info, Result, Inner)) {
8754
*Value = APValue();
8755
return false;
8756
}
8757
8758
// Adjust our lvalue to refer to the desired subobject.
8759
for (unsigned I = Adjustments.size(); I != 0; /**/) {
8760
--I;
8761
switch (Adjustments[I].Kind) {
8762
case SubobjectAdjustment::DerivedToBaseAdjustment:
8763
if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
8764
Type, Result))
8765
return false;
8766
Type = Adjustments[I].DerivedToBase.BasePath->getType();
8767
break;
8768
8769
case SubobjectAdjustment::FieldAdjustment:
8770
if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
8771
return false;
8772
Type = Adjustments[I].Field->getType();
8773
break;
8774
8775
case SubobjectAdjustment::MemberPointerAdjustment:
8776
if (!HandleMemberPointerAccess(this->Info, Type, Result,
8777
Adjustments[I].Ptr.RHS))
8778
return false;
8779
Type = Adjustments[I].Ptr.MPT->getPointeeType();
8780
break;
8781
}
8782
}
8783
8784
return true;
8785
}
8786
8787
bool
8788
LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
8789
assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) &&
8790
"lvalue compound literal in c++?");
8791
// Defer visiting the literal until the lvalue-to-rvalue conversion. We can
8792
// only see this when folding in C, so there's no standard to follow here.
8793
return Success(E);
8794
}
8795
8796
bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
8797
TypeInfoLValue TypeInfo;
8798
8799
if (!E->isPotentiallyEvaluated()) {
8800
if (E->isTypeOperand())
8801
TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr());
8802
else
8803
TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr());
8804
} else {
8805
if (!Info.Ctx.getLangOpts().CPlusPlus20) {
8806
Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic)
8807
<< E->getExprOperand()->getType()
8808
<< E->getExprOperand()->getSourceRange();
8809
}
8810
8811
if (!Visit(E->getExprOperand()))
8812
return false;
8813
8814
std::optional<DynamicType> DynType =
8815
ComputeDynamicType(Info, E, Result, AK_TypeId);
8816
if (!DynType)
8817
return false;
8818
8819
TypeInfo =
8820
TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr());
8821
}
8822
8823
return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType()));
8824
}
8825
8826
bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
8827
return Success(E->getGuidDecl());
8828
}
8829
8830
bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
8831
// Handle static data members.
8832
if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
8833
VisitIgnoredBaseExpression(E->getBase());
8834
return VisitVarDecl(E, VD);
8835
}
8836
8837
// Handle static member functions.
8838
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
8839
if (MD->isStatic()) {
8840
VisitIgnoredBaseExpression(E->getBase());
8841
return Success(MD);
8842
}
8843
}
8844
8845
// Handle non-static data members.
8846
return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
8847
}
8848
8849
bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
8850
// FIXME: Deal with vectors as array subscript bases.
8851
if (E->getBase()->getType()->isVectorType() ||
8852
E->getBase()->getType()->isSveVLSBuiltinType())
8853
return Error(E);
8854
8855
APSInt Index;
8856
bool Success = true;
8857
8858
// C++17's rules require us to evaluate the LHS first, regardless of which
8859
// side is the base.
8860
for (const Expr *SubExpr : {E->getLHS(), E->getRHS()}) {
8861
if (SubExpr == E->getBase() ? !evaluatePointer(SubExpr, Result)
8862
: !EvaluateInteger(SubExpr, Index, Info)) {
8863
if (!Info.noteFailure())
8864
return false;
8865
Success = false;
8866
}
8867
}
8868
8869
return Success &&
8870
HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index);
8871
}
8872
8873
bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
8874
return evaluatePointer(E->getSubExpr(), Result);
8875
}
8876
8877
bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
8878
if (!Visit(E->getSubExpr()))
8879
return false;
8880
// __real is a no-op on scalar lvalues.
8881
if (E->getSubExpr()->getType()->isAnyComplexType())
8882
HandleLValueComplexElement(Info, E, Result, E->getType(), false);
8883
return true;
8884
}
8885
8886
bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
8887
assert(E->getSubExpr()->getType()->isAnyComplexType() &&
8888
"lvalue __imag__ on scalar?");
8889
if (!Visit(E->getSubExpr()))
8890
return false;
8891
HandleLValueComplexElement(Info, E, Result, E->getType(), true);
8892
return true;
8893
}
8894
8895
bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
8896
if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8897
return Error(UO);
8898
8899
if (!this->Visit(UO->getSubExpr()))
8900
return false;
8901
8902
return handleIncDec(
8903
this->Info, UO, Result, UO->getSubExpr()->getType(),
8904
UO->isIncrementOp(), nullptr);
8905
}
8906
8907
bool LValueExprEvaluator::VisitCompoundAssignOperator(
8908
const CompoundAssignOperator *CAO) {
8909
if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8910
return Error(CAO);
8911
8912
bool Success = true;
8913
8914
// C++17 onwards require that we evaluate the RHS first.
8915
APValue RHS;
8916
if (!Evaluate(RHS, this->Info, CAO->getRHS())) {
8917
if (!Info.noteFailure())
8918
return false;
8919
Success = false;
8920
}
8921
8922
// The overall lvalue result is the result of evaluating the LHS.
8923
if (!this->Visit(CAO->getLHS()) || !Success)
8924
return false;
8925
8926
return handleCompoundAssignment(
8927
this->Info, CAO,
8928
Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
8929
CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
8930
}
8931
8932
bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
8933
if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8934
return Error(E);
8935
8936
bool Success = true;
8937
8938
// C++17 onwards require that we evaluate the RHS first.
8939
APValue NewVal;
8940
if (!Evaluate(NewVal, this->Info, E->getRHS())) {
8941
if (!Info.noteFailure())
8942
return false;
8943
Success = false;
8944
}
8945
8946
if (!this->Visit(E->getLHS()) || !Success)
8947
return false;
8948
8949
if (Info.getLangOpts().CPlusPlus20 &&
8950
!MaybeHandleUnionActiveMemberChange(Info, E->getLHS(), Result))
8951
return false;
8952
8953
return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
8954
NewVal);
8955
}
8956
8957
//===----------------------------------------------------------------------===//
8958
// Pointer Evaluation
8959
//===----------------------------------------------------------------------===//
8960
8961
/// Attempts to compute the number of bytes available at the pointer
8962
/// returned by a function with the alloc_size attribute. Returns true if we
8963
/// were successful. Places an unsigned number into `Result`.
8964
///
8965
/// This expects the given CallExpr to be a call to a function with an
8966
/// alloc_size attribute.
8967
static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8968
const CallExpr *Call,
8969
llvm::APInt &Result) {
8970
const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call);
8971
8972
assert(AllocSize && AllocSize->getElemSizeParam().isValid());
8973
unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex();
8974
unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType());
8975
if (Call->getNumArgs() <= SizeArgNo)
8976
return false;
8977
8978
auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) {
8979
Expr::EvalResult ExprResult;
8980
if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects))
8981
return false;
8982
Into = ExprResult.Val.getInt();
8983
if (Into.isNegative() || !Into.isIntN(BitsInSizeT))
8984
return false;
8985
Into = Into.zext(BitsInSizeT);
8986
return true;
8987
};
8988
8989
APSInt SizeOfElem;
8990
if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem))
8991
return false;
8992
8993
if (!AllocSize->getNumElemsParam().isValid()) {
8994
Result = std::move(SizeOfElem);
8995
return true;
8996
}
8997
8998
APSInt NumberOfElems;
8999
unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex();
9000
if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems))
9001
return false;
9002
9003
bool Overflow;
9004
llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow);
9005
if (Overflow)
9006
return false;
9007
9008
Result = std::move(BytesAvailable);
9009
return true;
9010
}
9011
9012
/// Convenience function. LVal's base must be a call to an alloc_size
9013
/// function.
9014
static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
9015
const LValue &LVal,
9016
llvm::APInt &Result) {
9017
assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
9018
"Can't get the size of a non alloc_size function");
9019
const auto *Base = LVal.getLValueBase().get<const Expr *>();
9020
const CallExpr *CE = tryUnwrapAllocSizeCall(Base);
9021
return getBytesReturnedByAllocSizeCall(Ctx, CE, Result);
9022
}
9023
9024
/// Attempts to evaluate the given LValueBase as the result of a call to
9025
/// a function with the alloc_size attribute. If it was possible to do so, this
9026
/// function will return true, make Result's Base point to said function call,
9027
/// and mark Result's Base as invalid.
9028
static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base,
9029
LValue &Result) {
9030
if (Base.isNull())
9031
return false;
9032
9033
// Because we do no form of static analysis, we only support const variables.
9034
//
9035
// Additionally, we can't support parameters, nor can we support static
9036
// variables (in the latter case, use-before-assign isn't UB; in the former,
9037
// we have no clue what they'll be assigned to).
9038
const auto *VD =
9039
dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>());
9040
if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified())
9041
return false;
9042
9043
const Expr *Init = VD->getAnyInitializer();
9044
if (!Init || Init->getType().isNull())
9045
return false;
9046
9047
const Expr *E = Init->IgnoreParens();
9048
if (!tryUnwrapAllocSizeCall(E))
9049
return false;
9050
9051
// Store E instead of E unwrapped so that the type of the LValue's base is
9052
// what the user wanted.
9053
Result.setInvalid(E);
9054
9055
QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType();
9056
Result.addUnsizedArray(Info, E, Pointee);
9057
return true;
9058
}
9059
9060
namespace {
9061
class PointerExprEvaluator
9062
: public ExprEvaluatorBase<PointerExprEvaluator> {
9063
LValue &Result;
9064
bool InvalidBaseOK;
9065
9066
bool Success(const Expr *E) {
9067
Result.set(E);
9068
return true;
9069
}
9070
9071
bool evaluateLValue(const Expr *E, LValue &Result) {
9072
return EvaluateLValue(E, Result, Info, InvalidBaseOK);
9073
}
9074
9075
bool evaluatePointer(const Expr *E, LValue &Result) {
9076
return EvaluatePointer(E, Result, Info, InvalidBaseOK);
9077
}
9078
9079
bool visitNonBuiltinCallExpr(const CallExpr *E);
9080
public:
9081
9082
PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK)
9083
: ExprEvaluatorBaseTy(info), Result(Result),
9084
InvalidBaseOK(InvalidBaseOK) {}
9085
9086
bool Success(const APValue &V, const Expr *E) {
9087
Result.setFrom(Info.Ctx, V);
9088
return true;
9089
}
9090
bool ZeroInitialization(const Expr *E) {
9091
Result.setNull(Info.Ctx, E->getType());
9092
return true;
9093
}
9094
9095
bool VisitBinaryOperator(const BinaryOperator *E);
9096
bool VisitCastExpr(const CastExpr* E);
9097
bool VisitUnaryAddrOf(const UnaryOperator *E);
9098
bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
9099
{ return Success(E); }
9100
bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
9101
if (E->isExpressibleAsConstantInitializer())
9102
return Success(E);
9103
if (Info.noteFailure())
9104
EvaluateIgnoredValue(Info, E->getSubExpr());
9105
return Error(E);
9106
}
9107
bool VisitAddrLabelExpr(const AddrLabelExpr *E)
9108
{ return Success(E); }
9109
bool VisitCallExpr(const CallExpr *E);
9110
bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
9111
bool VisitBlockExpr(const BlockExpr *E) {
9112
if (!E->getBlockDecl()->hasCaptures())
9113
return Success(E);
9114
return Error(E);
9115
}
9116
bool VisitCXXThisExpr(const CXXThisExpr *E) {
9117
auto DiagnoseInvalidUseOfThis = [&] {
9118
if (Info.getLangOpts().CPlusPlus11)
9119
Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
9120
else
9121
Info.FFDiag(E);
9122
};
9123
9124
// Can't look at 'this' when checking a potential constant expression.
9125
if (Info.checkingPotentialConstantExpression())
9126
return false;
9127
9128
bool IsExplicitLambda =
9129
isLambdaCallWithExplicitObjectParameter(Info.CurrentCall->Callee);
9130
if (!IsExplicitLambda) {
9131
if (!Info.CurrentCall->This) {
9132
DiagnoseInvalidUseOfThis();
9133
return false;
9134
}
9135
9136
Result = *Info.CurrentCall->This;
9137
}
9138
9139
if (isLambdaCallOperator(Info.CurrentCall->Callee)) {
9140
// Ensure we actually have captured 'this'. If something was wrong with
9141
// 'this' capture, the error would have been previously reported.
9142
// Otherwise we can be inside of a default initialization of an object
9143
// declared by lambda's body, so no need to return false.
9144
if (!Info.CurrentCall->LambdaThisCaptureField) {
9145
if (IsExplicitLambda && !Info.CurrentCall->This) {
9146
DiagnoseInvalidUseOfThis();
9147
return false;
9148
}
9149
9150
return true;
9151
}
9152
9153
const auto *MD = cast<CXXMethodDecl>(Info.CurrentCall->Callee);
9154
return HandleLambdaCapture(
9155
Info, E, Result, MD, Info.CurrentCall->LambdaThisCaptureField,
9156
Info.CurrentCall->LambdaThisCaptureField->getType()->isPointerType());
9157
}
9158
return true;
9159
}
9160
9161
bool VisitCXXNewExpr(const CXXNewExpr *E);
9162
9163
bool VisitSourceLocExpr(const SourceLocExpr *E) {
9164
assert(!E->isIntType() && "SourceLocExpr isn't a pointer type?");
9165
APValue LValResult = E->EvaluateInContext(
9166
Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
9167
Result.setFrom(Info.Ctx, LValResult);
9168
return true;
9169
}
9170
9171
bool VisitEmbedExpr(const EmbedExpr *E) {
9172
llvm::report_fatal_error("Not yet implemented for ExprConstant.cpp");
9173
return true;
9174
}
9175
9176
bool VisitSYCLUniqueStableNameExpr(const SYCLUniqueStableNameExpr *E) {
9177
std::string ResultStr = E->ComputeName(Info.Ctx);
9178
9179
QualType CharTy = Info.Ctx.CharTy.withConst();
9180
APInt Size(Info.Ctx.getTypeSize(Info.Ctx.getSizeType()),
9181
ResultStr.size() + 1);
9182
QualType ArrayTy = Info.Ctx.getConstantArrayType(
9183
CharTy, Size, nullptr, ArraySizeModifier::Normal, 0);
9184
9185
StringLiteral *SL =
9186
StringLiteral::Create(Info.Ctx, ResultStr, StringLiteralKind::Ordinary,
9187
/*Pascal*/ false, ArrayTy, E->getLocation());
9188
9189
evaluateLValue(SL, Result);
9190
Result.addArray(Info, E, cast<ConstantArrayType>(ArrayTy));
9191
return true;
9192
}
9193
9194
// FIXME: Missing: @protocol, @selector
9195
};
9196
} // end anonymous namespace
9197
9198
static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info,
9199
bool InvalidBaseOK) {
9200
assert(!E->isValueDependent());
9201
assert(E->isPRValue() && E->getType()->hasPointerRepresentation());
9202
return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
9203
}
9204
9205
bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
9206
if (E->getOpcode() != BO_Add &&
9207
E->getOpcode() != BO_Sub)
9208
return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
9209
9210
const Expr *PExp = E->getLHS();
9211
const Expr *IExp = E->getRHS();
9212
if (IExp->getType()->isPointerType())
9213
std::swap(PExp, IExp);
9214
9215
bool EvalPtrOK = evaluatePointer(PExp, Result);
9216
if (!EvalPtrOK && !Info.noteFailure())
9217
return false;
9218
9219
llvm::APSInt Offset;
9220
if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
9221
return false;
9222
9223
if (E->getOpcode() == BO_Sub)
9224
negateAsSigned(Offset);
9225
9226
QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
9227
return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset);
9228
}
9229
9230
bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
9231
return evaluateLValue(E->getSubExpr(), Result);
9232
}
9233
9234
// Is the provided decl 'std::source_location::current'?
9235
static bool IsDeclSourceLocationCurrent(const FunctionDecl *FD) {
9236
if (!FD)
9237
return false;
9238
const IdentifierInfo *FnII = FD->getIdentifier();
9239
if (!FnII || !FnII->isStr("current"))
9240
return false;
9241
9242
const auto *RD = dyn_cast<RecordDecl>(FD->getParent());
9243
if (!RD)
9244
return false;
9245
9246
const IdentifierInfo *ClassII = RD->getIdentifier();
9247
return RD->isInStdNamespace() && ClassII && ClassII->isStr("source_location");
9248
}
9249
9250
bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
9251
const Expr *SubExpr = E->getSubExpr();
9252
9253
switch (E->getCastKind()) {
9254
default:
9255
break;
9256
case CK_BitCast:
9257
case CK_CPointerToObjCPointerCast:
9258
case CK_BlockPointerToObjCPointerCast:
9259
case CK_AnyPointerToBlockPointerCast:
9260
case CK_AddressSpaceConversion:
9261
if (!Visit(SubExpr))
9262
return false;
9263
// Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
9264
// permitted in constant expressions in C++11. Bitcasts from cv void* are
9265
// also static_casts, but we disallow them as a resolution to DR1312.
9266
if (!E->getType()->isVoidPointerType()) {
9267
// In some circumstances, we permit casting from void* to cv1 T*, when the
9268
// actual pointee object is actually a cv2 T.
9269
bool HasValidResult = !Result.InvalidBase && !Result.Designator.Invalid &&
9270
!Result.IsNullPtr;
9271
bool VoidPtrCastMaybeOK =
9272
Result.IsNullPtr ||
9273
(HasValidResult &&
9274
Info.Ctx.hasSimilarType(Result.Designator.getType(Info.Ctx),
9275
E->getType()->getPointeeType()));
9276
// 1. We'll allow it in std::allocator::allocate, and anything which that
9277
// calls.
9278
// 2. HACK 2022-03-28: Work around an issue with libstdc++'s
9279
// <source_location> header. Fixed in GCC 12 and later (2022-04-??).
9280
// We'll allow it in the body of std::source_location::current. GCC's
9281
// implementation had a parameter of type `void*`, and casts from
9282
// that back to `const __impl*` in its body.
9283
if (VoidPtrCastMaybeOK &&
9284
(Info.getStdAllocatorCaller("allocate") ||
9285
IsDeclSourceLocationCurrent(Info.CurrentCall->Callee) ||
9286
Info.getLangOpts().CPlusPlus26)) {
9287
// Permitted.
9288
} else {
9289
if (SubExpr->getType()->isVoidPointerType() &&
9290
Info.getLangOpts().CPlusPlus) {
9291
if (HasValidResult)
9292
CCEDiag(E, diag::note_constexpr_invalid_void_star_cast)
9293
<< SubExpr->getType() << Info.getLangOpts().CPlusPlus26
9294
<< Result.Designator.getType(Info.Ctx).getCanonicalType()
9295
<< E->getType()->getPointeeType();
9296
else
9297
CCEDiag(E, diag::note_constexpr_invalid_cast)
9298
<< 3 << SubExpr->getType();
9299
} else
9300
CCEDiag(E, diag::note_constexpr_invalid_cast)
9301
<< 2 << Info.Ctx.getLangOpts().CPlusPlus;
9302
Result.Designator.setInvalid();
9303
}
9304
}
9305
if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr)
9306
ZeroInitialization(E);
9307
return true;
9308
9309
case CK_DerivedToBase:
9310
case CK_UncheckedDerivedToBase:
9311
if (!evaluatePointer(E->getSubExpr(), Result))
9312
return false;
9313
if (!Result.Base && Result.Offset.isZero())
9314
return true;
9315
9316
// Now figure out the necessary offset to add to the base LV to get from
9317
// the derived class to the base class.
9318
return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
9319
castAs<PointerType>()->getPointeeType(),
9320
Result);
9321
9322
case CK_BaseToDerived:
9323
if (!Visit(E->getSubExpr()))
9324
return false;
9325
if (!Result.Base && Result.Offset.isZero())
9326
return true;
9327
return HandleBaseToDerivedCast(Info, E, Result);
9328
9329
case CK_Dynamic:
9330
if (!Visit(E->getSubExpr()))
9331
return false;
9332
return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
9333
9334
case CK_NullToPointer:
9335
VisitIgnoredValue(E->getSubExpr());
9336
return ZeroInitialization(E);
9337
9338
case CK_IntegralToPointer: {
9339
CCEDiag(E, diag::note_constexpr_invalid_cast)
9340
<< 2 << Info.Ctx.getLangOpts().CPlusPlus;
9341
9342
APValue Value;
9343
if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
9344
break;
9345
9346
if (Value.isInt()) {
9347
unsigned Size = Info.Ctx.getTypeSize(E->getType());
9348
uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
9349
Result.Base = (Expr*)nullptr;
9350
Result.InvalidBase = false;
9351
Result.Offset = CharUnits::fromQuantity(N);
9352
Result.Designator.setInvalid();
9353
Result.IsNullPtr = false;
9354
return true;
9355
} else {
9356
// In rare instances, the value isn't an lvalue.
9357
// For example, when the value is the difference between the addresses of
9358
// two labels. We reject that as a constant expression because we can't
9359
// compute a valid offset to convert into a pointer.
9360
if (!Value.isLValue())
9361
return false;
9362
9363
// Cast is of an lvalue, no need to change value.
9364
Result.setFrom(Info.Ctx, Value);
9365
return true;
9366
}
9367
}
9368
9369
case CK_ArrayToPointerDecay: {
9370
if (SubExpr->isGLValue()) {
9371
if (!evaluateLValue(SubExpr, Result))
9372
return false;
9373
} else {
9374
APValue &Value = Info.CurrentCall->createTemporary(
9375
SubExpr, SubExpr->getType(), ScopeKind::FullExpression, Result);
9376
if (!EvaluateInPlace(Value, Info, Result, SubExpr))
9377
return false;
9378
}
9379
// The result is a pointer to the first element of the array.
9380
auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType());
9381
if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
9382
Result.addArray(Info, E, CAT);
9383
else
9384
Result.addUnsizedArray(Info, E, AT->getElementType());
9385
return true;
9386
}
9387
9388
case CK_FunctionToPointerDecay:
9389
return evaluateLValue(SubExpr, Result);
9390
9391
case CK_LValueToRValue: {
9392
LValue LVal;
9393
if (!evaluateLValue(E->getSubExpr(), LVal))
9394
return false;
9395
9396
APValue RVal;
9397
// Note, we use the subexpression's type in order to retain cv-qualifiers.
9398
if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
9399
LVal, RVal))
9400
return InvalidBaseOK &&
9401
evaluateLValueAsAllocSize(Info, LVal.Base, Result);
9402
return Success(RVal, E);
9403
}
9404
}
9405
9406
return ExprEvaluatorBaseTy::VisitCastExpr(E);
9407
}
9408
9409
static CharUnits GetAlignOfType(EvalInfo &Info, QualType T,
9410
UnaryExprOrTypeTrait ExprKind) {
9411
// C++ [expr.alignof]p3:
9412
// When alignof is applied to a reference type, the result is the
9413
// alignment of the referenced type.
9414
T = T.getNonReferenceType();
9415
9416
if (T.getQualifiers().hasUnaligned())
9417
return CharUnits::One();
9418
9419
const bool AlignOfReturnsPreferred =
9420
Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
9421
9422
// __alignof is defined to return the preferred alignment.
9423
// Before 8, clang returned the preferred alignment for alignof and _Alignof
9424
// as well.
9425
if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
9426
return Info.Ctx.toCharUnitsFromBits(
9427
Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
9428
// alignof and _Alignof are defined to return the ABI alignment.
9429
else if (ExprKind == UETT_AlignOf)
9430
return Info.Ctx.getTypeAlignInChars(T.getTypePtr());
9431
else
9432
llvm_unreachable("GetAlignOfType on a non-alignment ExprKind");
9433
}
9434
9435
static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E,
9436
UnaryExprOrTypeTrait ExprKind) {
9437
E = E->IgnoreParens();
9438
9439
// The kinds of expressions that we have special-case logic here for
9440
// should be kept up to date with the special checks for those
9441
// expressions in Sema.
9442
9443
// alignof decl is always accepted, even if it doesn't make sense: we default
9444
// to 1 in those cases.
9445
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
9446
return Info.Ctx.getDeclAlign(DRE->getDecl(),
9447
/*RefAsPointee*/true);
9448
9449
if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
9450
return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
9451
/*RefAsPointee*/true);
9452
9453
return GetAlignOfType(Info, E->getType(), ExprKind);
9454
}
9455
9456
static CharUnits getBaseAlignment(EvalInfo &Info, const LValue &Value) {
9457
if (const auto *VD = Value.Base.dyn_cast<const ValueDecl *>())
9458
return Info.Ctx.getDeclAlign(VD);
9459
if (const auto *E = Value.Base.dyn_cast<const Expr *>())
9460
return GetAlignOfExpr(Info, E, UETT_AlignOf);
9461
return GetAlignOfType(Info, Value.Base.getTypeInfoType(), UETT_AlignOf);
9462
}
9463
9464
/// Evaluate the value of the alignment argument to __builtin_align_{up,down},
9465
/// __builtin_is_aligned and __builtin_assume_aligned.
9466
static bool getAlignmentArgument(const Expr *E, QualType ForType,
9467
EvalInfo &Info, APSInt &Alignment) {
9468
if (!EvaluateInteger(E, Alignment, Info))
9469
return false;
9470
if (Alignment < 0 || !Alignment.isPowerOf2()) {
9471
Info.FFDiag(E, diag::note_constexpr_invalid_alignment) << Alignment;
9472
return false;
9473
}
9474
unsigned SrcWidth = Info.Ctx.getIntWidth(ForType);
9475
APSInt MaxValue(APInt::getOneBitSet(SrcWidth, SrcWidth - 1));
9476
if (APSInt::compareValues(Alignment, MaxValue) > 0) {
9477
Info.FFDiag(E, diag::note_constexpr_alignment_too_big)
9478
<< MaxValue << ForType << Alignment;
9479
return false;
9480
}
9481
// Ensure both alignment and source value have the same bit width so that we
9482
// don't assert when computing the resulting value.
9483
APSInt ExtAlignment =
9484
APSInt(Alignment.zextOrTrunc(SrcWidth), /*isUnsigned=*/true);
9485
assert(APSInt::compareValues(Alignment, ExtAlignment) == 0 &&
9486
"Alignment should not be changed by ext/trunc");
9487
Alignment = ExtAlignment;
9488
assert(Alignment.getBitWidth() == SrcWidth);
9489
return true;
9490
}
9491
9492
// To be clear: this happily visits unsupported builtins. Better name welcomed.
9493
bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) {
9494
if (ExprEvaluatorBaseTy::VisitCallExpr(E))
9495
return true;
9496
9497
if (!(InvalidBaseOK && getAllocSizeAttr(E)))
9498
return false;
9499
9500
Result.setInvalid(E);
9501
QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType();
9502
Result.addUnsizedArray(Info, E, PointeeTy);
9503
return true;
9504
}
9505
9506
bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
9507
if (!IsConstantEvaluatedBuiltinCall(E))
9508
return visitNonBuiltinCallExpr(E);
9509
return VisitBuiltinCallExpr(E, E->getBuiltinCallee());
9510
}
9511
9512
// Determine if T is a character type for which we guarantee that
9513
// sizeof(T) == 1.
9514
static bool isOneByteCharacterType(QualType T) {
9515
return T->isCharType() || T->isChar8Type();
9516
}
9517
9518
bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
9519
unsigned BuiltinOp) {
9520
if (IsNoOpCall(E))
9521
return Success(E);
9522
9523
switch (BuiltinOp) {
9524
case Builtin::BIaddressof:
9525
case Builtin::BI__addressof:
9526
case Builtin::BI__builtin_addressof:
9527
return evaluateLValue(E->getArg(0), Result);
9528
case Builtin::BI__builtin_assume_aligned: {
9529
// We need to be very careful here because: if the pointer does not have the
9530
// asserted alignment, then the behavior is undefined, and undefined
9531
// behavior is non-constant.
9532
if (!evaluatePointer(E->getArg(0), Result))
9533
return false;
9534
9535
LValue OffsetResult(Result);
9536
APSInt Alignment;
9537
if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
9538
Alignment))
9539
return false;
9540
CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue());
9541
9542
if (E->getNumArgs() > 2) {
9543
APSInt Offset;
9544
if (!EvaluateInteger(E->getArg(2), Offset, Info))
9545
return false;
9546
9547
int64_t AdditionalOffset = -Offset.getZExtValue();
9548
OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
9549
}
9550
9551
// If there is a base object, then it must have the correct alignment.
9552
if (OffsetResult.Base) {
9553
CharUnits BaseAlignment = getBaseAlignment(Info, OffsetResult);
9554
9555
if (BaseAlignment < Align) {
9556
Result.Designator.setInvalid();
9557
// FIXME: Add support to Diagnostic for long / long long.
9558
CCEDiag(E->getArg(0),
9559
diag::note_constexpr_baa_insufficient_alignment) << 0
9560
<< (unsigned)BaseAlignment.getQuantity()
9561
<< (unsigned)Align.getQuantity();
9562
return false;
9563
}
9564
}
9565
9566
// The offset must also have the correct alignment.
9567
if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
9568
Result.Designator.setInvalid();
9569
9570
(OffsetResult.Base
9571
? CCEDiag(E->getArg(0),
9572
diag::note_constexpr_baa_insufficient_alignment) << 1
9573
: CCEDiag(E->getArg(0),
9574
diag::note_constexpr_baa_value_insufficient_alignment))
9575
<< (int)OffsetResult.Offset.getQuantity()
9576
<< (unsigned)Align.getQuantity();
9577
return false;
9578
}
9579
9580
return true;
9581
}
9582
case Builtin::BI__builtin_align_up:
9583
case Builtin::BI__builtin_align_down: {
9584
if (!evaluatePointer(E->getArg(0), Result))
9585
return false;
9586
APSInt Alignment;
9587
if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
9588
Alignment))
9589
return false;
9590
CharUnits BaseAlignment = getBaseAlignment(Info, Result);
9591
CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Result.Offset);
9592
// For align_up/align_down, we can return the same value if the alignment
9593
// is known to be greater or equal to the requested value.
9594
if (PtrAlign.getQuantity() >= Alignment)
9595
return true;
9596
9597
// The alignment could be greater than the minimum at run-time, so we cannot
9598
// infer much about the resulting pointer value. One case is possible:
9599
// For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we
9600
// can infer the correct index if the requested alignment is smaller than
9601
// the base alignment so we can perform the computation on the offset.
9602
if (BaseAlignment.getQuantity() >= Alignment) {
9603
assert(Alignment.getBitWidth() <= 64 &&
9604
"Cannot handle > 64-bit address-space");
9605
uint64_t Alignment64 = Alignment.getZExtValue();
9606
CharUnits NewOffset = CharUnits::fromQuantity(
9607
BuiltinOp == Builtin::BI__builtin_align_down
9608
? llvm::alignDown(Result.Offset.getQuantity(), Alignment64)
9609
: llvm::alignTo(Result.Offset.getQuantity(), Alignment64));
9610
Result.adjustOffset(NewOffset - Result.Offset);
9611
// TODO: diagnose out-of-bounds values/only allow for arrays?
9612
return true;
9613
}
9614
// Otherwise, we cannot constant-evaluate the result.
9615
Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_adjust)
9616
<< Alignment;
9617
return false;
9618
}
9619
case Builtin::BI__builtin_operator_new:
9620
return HandleOperatorNewCall(Info, E, Result);
9621
case Builtin::BI__builtin_launder:
9622
return evaluatePointer(E->getArg(0), Result);
9623
case Builtin::BIstrchr:
9624
case Builtin::BIwcschr:
9625
case Builtin::BImemchr:
9626
case Builtin::BIwmemchr:
9627
if (Info.getLangOpts().CPlusPlus11)
9628
Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9629
<< /*isConstexpr*/ 0 << /*isConstructor*/ 0
9630
<< ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
9631
else
9632
Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9633
[[fallthrough]];
9634
case Builtin::BI__builtin_strchr:
9635
case Builtin::BI__builtin_wcschr:
9636
case Builtin::BI__builtin_memchr:
9637
case Builtin::BI__builtin_char_memchr:
9638
case Builtin::BI__builtin_wmemchr: {
9639
if (!Visit(E->getArg(0)))
9640
return false;
9641
APSInt Desired;
9642
if (!EvaluateInteger(E->getArg(1), Desired, Info))
9643
return false;
9644
uint64_t MaxLength = uint64_t(-1);
9645
if (BuiltinOp != Builtin::BIstrchr &&
9646
BuiltinOp != Builtin::BIwcschr &&
9647
BuiltinOp != Builtin::BI__builtin_strchr &&
9648
BuiltinOp != Builtin::BI__builtin_wcschr) {
9649
APSInt N;
9650
if (!EvaluateInteger(E->getArg(2), N, Info))
9651
return false;
9652
MaxLength = N.getZExtValue();
9653
}
9654
// We cannot find the value if there are no candidates to match against.
9655
if (MaxLength == 0u)
9656
return ZeroInitialization(E);
9657
if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
9658
Result.Designator.Invalid)
9659
return false;
9660
QualType CharTy = Result.Designator.getType(Info.Ctx);
9661
bool IsRawByte = BuiltinOp == Builtin::BImemchr ||
9662
BuiltinOp == Builtin::BI__builtin_memchr;
9663
assert(IsRawByte ||
9664
Info.Ctx.hasSameUnqualifiedType(
9665
CharTy, E->getArg(0)->getType()->getPointeeType()));
9666
// Pointers to const void may point to objects of incomplete type.
9667
if (IsRawByte && CharTy->isIncompleteType()) {
9668
Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy;
9669
return false;
9670
}
9671
// Give up on byte-oriented matching against multibyte elements.
9672
// FIXME: We can compare the bytes in the correct order.
9673
if (IsRawByte && !isOneByteCharacterType(CharTy)) {
9674
Info.FFDiag(E, diag::note_constexpr_memchr_unsupported)
9675
<< ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str()
9676
<< CharTy;
9677
return false;
9678
}
9679
// Figure out what value we're actually looking for (after converting to
9680
// the corresponding unsigned type if necessary).
9681
uint64_t DesiredVal;
9682
bool StopAtNull = false;
9683
switch (BuiltinOp) {
9684
case Builtin::BIstrchr:
9685
case Builtin::BI__builtin_strchr:
9686
// strchr compares directly to the passed integer, and therefore
9687
// always fails if given an int that is not a char.
9688
if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy,
9689
E->getArg(1)->getType(),
9690
Desired),
9691
Desired))
9692
return ZeroInitialization(E);
9693
StopAtNull = true;
9694
[[fallthrough]];
9695
case Builtin::BImemchr:
9696
case Builtin::BI__builtin_memchr:
9697
case Builtin::BI__builtin_char_memchr:
9698
// memchr compares by converting both sides to unsigned char. That's also
9699
// correct for strchr if we get this far (to cope with plain char being
9700
// unsigned in the strchr case).
9701
DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue();
9702
break;
9703
9704
case Builtin::BIwcschr:
9705
case Builtin::BI__builtin_wcschr:
9706
StopAtNull = true;
9707
[[fallthrough]];
9708
case Builtin::BIwmemchr:
9709
case Builtin::BI__builtin_wmemchr:
9710
// wcschr and wmemchr are given a wchar_t to look for. Just use it.
9711
DesiredVal = Desired.getZExtValue();
9712
break;
9713
}
9714
9715
for (; MaxLength; --MaxLength) {
9716
APValue Char;
9717
if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) ||
9718
!Char.isInt())
9719
return false;
9720
if (Char.getInt().getZExtValue() == DesiredVal)
9721
return true;
9722
if (StopAtNull && !Char.getInt())
9723
break;
9724
if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1))
9725
return false;
9726
}
9727
// Not found: return nullptr.
9728
return ZeroInitialization(E);
9729
}
9730
9731
case Builtin::BImemcpy:
9732
case Builtin::BImemmove:
9733
case Builtin::BIwmemcpy:
9734
case Builtin::BIwmemmove:
9735
if (Info.getLangOpts().CPlusPlus11)
9736
Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9737
<< /*isConstexpr*/ 0 << /*isConstructor*/ 0
9738
<< ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
9739
else
9740
Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9741
[[fallthrough]];
9742
case Builtin::BI__builtin_memcpy:
9743
case Builtin::BI__builtin_memmove:
9744
case Builtin::BI__builtin_wmemcpy:
9745
case Builtin::BI__builtin_wmemmove: {
9746
bool WChar = BuiltinOp == Builtin::BIwmemcpy ||
9747
BuiltinOp == Builtin::BIwmemmove ||
9748
BuiltinOp == Builtin::BI__builtin_wmemcpy ||
9749
BuiltinOp == Builtin::BI__builtin_wmemmove;
9750
bool Move = BuiltinOp == Builtin::BImemmove ||
9751
BuiltinOp == Builtin::BIwmemmove ||
9752
BuiltinOp == Builtin::BI__builtin_memmove ||
9753
BuiltinOp == Builtin::BI__builtin_wmemmove;
9754
9755
// The result of mem* is the first argument.
9756
if (!Visit(E->getArg(0)))
9757
return false;
9758
LValue Dest = Result;
9759
9760
LValue Src;
9761
if (!EvaluatePointer(E->getArg(1), Src, Info))
9762
return false;
9763
9764
APSInt N;
9765
if (!EvaluateInteger(E->getArg(2), N, Info))
9766
return false;
9767
assert(!N.isSigned() && "memcpy and friends take an unsigned size");
9768
9769
// If the size is zero, we treat this as always being a valid no-op.
9770
// (Even if one of the src and dest pointers is null.)
9771
if (!N)
9772
return true;
9773
9774
// Otherwise, if either of the operands is null, we can't proceed. Don't
9775
// try to determine the type of the copied objects, because there aren't
9776
// any.
9777
if (!Src.Base || !Dest.Base) {
9778
APValue Val;
9779
(!Src.Base ? Src : Dest).moveInto(Val);
9780
Info.FFDiag(E, diag::note_constexpr_memcpy_null)
9781
<< Move << WChar << !!Src.Base
9782
<< Val.getAsString(Info.Ctx, E->getArg(0)->getType());
9783
return false;
9784
}
9785
if (Src.Designator.Invalid || Dest.Designator.Invalid)
9786
return false;
9787
9788
// We require that Src and Dest are both pointers to arrays of
9789
// trivially-copyable type. (For the wide version, the designator will be
9790
// invalid if the designated object is not a wchar_t.)
9791
QualType T = Dest.Designator.getType(Info.Ctx);
9792
QualType SrcT = Src.Designator.getType(Info.Ctx);
9793
if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) {
9794
// FIXME: Consider using our bit_cast implementation to support this.
9795
Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T;
9796
return false;
9797
}
9798
if (T->isIncompleteType()) {
9799
Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T;
9800
return false;
9801
}
9802
if (!T.isTriviallyCopyableType(Info.Ctx)) {
9803
Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T;
9804
return false;
9805
}
9806
9807
// Figure out how many T's we're copying.
9808
uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity();
9809
if (TSize == 0)
9810
return false;
9811
if (!WChar) {
9812
uint64_t Remainder;
9813
llvm::APInt OrigN = N;
9814
llvm::APInt::udivrem(OrigN, TSize, N, Remainder);
9815
if (Remainder) {
9816
Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9817
<< Move << WChar << 0 << T << toString(OrigN, 10, /*Signed*/false)
9818
<< (unsigned)TSize;
9819
return false;
9820
}
9821
}
9822
9823
// Check that the copying will remain within the arrays, just so that we
9824
// can give a more meaningful diagnostic. This implicitly also checks that
9825
// N fits into 64 bits.
9826
uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second;
9827
uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second;
9828
if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) {
9829
Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9830
<< Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T
9831
<< toString(N, 10, /*Signed*/false);
9832
return false;
9833
}
9834
uint64_t NElems = N.getZExtValue();
9835
uint64_t NBytes = NElems * TSize;
9836
9837
// Check for overlap.
9838
int Direction = 1;
9839
if (HasSameBase(Src, Dest)) {
9840
uint64_t SrcOffset = Src.getLValueOffset().getQuantity();
9841
uint64_t DestOffset = Dest.getLValueOffset().getQuantity();
9842
if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) {
9843
// Dest is inside the source region.
9844
if (!Move) {
9845
Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9846
return false;
9847
}
9848
// For memmove and friends, copy backwards.
9849
if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) ||
9850
!HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1))
9851
return false;
9852
Direction = -1;
9853
} else if (!Move && SrcOffset >= DestOffset &&
9854
SrcOffset - DestOffset < NBytes) {
9855
// Src is inside the destination region for memcpy: invalid.
9856
Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9857
return false;
9858
}
9859
}
9860
9861
while (true) {
9862
APValue Val;
9863
// FIXME: Set WantObjectRepresentation to true if we're copying a
9864
// char-like type?
9865
if (!handleLValueToRValueConversion(Info, E, T, Src, Val) ||
9866
!handleAssignment(Info, E, Dest, T, Val))
9867
return false;
9868
// Do not iterate past the last element; if we're copying backwards, that
9869
// might take us off the start of the array.
9870
if (--NElems == 0)
9871
return true;
9872
if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) ||
9873
!HandleLValueArrayAdjustment(Info, E, Dest, T, Direction))
9874
return false;
9875
}
9876
}
9877
9878
default:
9879
return false;
9880
}
9881
}
9882
9883
static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
9884
APValue &Result, const InitListExpr *ILE,
9885
QualType AllocType);
9886
static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
9887
APValue &Result,
9888
const CXXConstructExpr *CCE,
9889
QualType AllocType);
9890
9891
bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) {
9892
if (!Info.getLangOpts().CPlusPlus20)
9893
Info.CCEDiag(E, diag::note_constexpr_new);
9894
9895
// We cannot speculatively evaluate a delete expression.
9896
if (Info.SpeculativeEvaluationDepth)
9897
return false;
9898
9899
FunctionDecl *OperatorNew = E->getOperatorNew();
9900
9901
bool IsNothrow = false;
9902
bool IsPlacement = false;
9903
if (OperatorNew->isReservedGlobalPlacementOperator() &&
9904
Info.CurrentCall->isStdFunction() && !E->isArray()) {
9905
// FIXME Support array placement new.
9906
assert(E->getNumPlacementArgs() == 1);
9907
if (!EvaluatePointer(E->getPlacementArg(0), Result, Info))
9908
return false;
9909
if (Result.Designator.Invalid)
9910
return false;
9911
IsPlacement = true;
9912
} else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) {
9913
Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
9914
<< isa<CXXMethodDecl>(OperatorNew) << OperatorNew;
9915
return false;
9916
} else if (E->getNumPlacementArgs()) {
9917
// The only new-placement list we support is of the form (std::nothrow).
9918
//
9919
// FIXME: There is no restriction on this, but it's not clear that any
9920
// other form makes any sense. We get here for cases such as:
9921
//
9922
// new (std::align_val_t{N}) X(int)
9923
//
9924
// (which should presumably be valid only if N is a multiple of
9925
// alignof(int), and in any case can't be deallocated unless N is
9926
// alignof(X) and X has new-extended alignment).
9927
if (E->getNumPlacementArgs() != 1 ||
9928
!E->getPlacementArg(0)->getType()->isNothrowT())
9929
return Error(E, diag::note_constexpr_new_placement);
9930
9931
LValue Nothrow;
9932
if (!EvaluateLValue(E->getPlacementArg(0), Nothrow, Info))
9933
return false;
9934
IsNothrow = true;
9935
}
9936
9937
const Expr *Init = E->getInitializer();
9938
const InitListExpr *ResizedArrayILE = nullptr;
9939
const CXXConstructExpr *ResizedArrayCCE = nullptr;
9940
bool ValueInit = false;
9941
9942
QualType AllocType = E->getAllocatedType();
9943
if (std::optional<const Expr *> ArraySize = E->getArraySize()) {
9944
const Expr *Stripped = *ArraySize;
9945
for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
9946
Stripped = ICE->getSubExpr())
9947
if (ICE->getCastKind() != CK_NoOp &&
9948
ICE->getCastKind() != CK_IntegralCast)
9949
break;
9950
9951
llvm::APSInt ArrayBound;
9952
if (!EvaluateInteger(Stripped, ArrayBound, Info))
9953
return false;
9954
9955
// C++ [expr.new]p9:
9956
// The expression is erroneous if:
9957
// -- [...] its value before converting to size_t [or] applying the
9958
// second standard conversion sequence is less than zero
9959
if (ArrayBound.isSigned() && ArrayBound.isNegative()) {
9960
if (IsNothrow)
9961
return ZeroInitialization(E);
9962
9963
Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative)
9964
<< ArrayBound << (*ArraySize)->getSourceRange();
9965
return false;
9966
}
9967
9968
// -- its value is such that the size of the allocated object would
9969
// exceed the implementation-defined limit
9970
if (!Info.CheckArraySize(ArraySize.value()->getExprLoc(),
9971
ConstantArrayType::getNumAddressingBits(
9972
Info.Ctx, AllocType, ArrayBound),
9973
ArrayBound.getZExtValue(), /*Diag=*/!IsNothrow)) {
9974
if (IsNothrow)
9975
return ZeroInitialization(E);
9976
return false;
9977
}
9978
9979
// -- the new-initializer is a braced-init-list and the number of
9980
// array elements for which initializers are provided [...]
9981
// exceeds the number of elements to initialize
9982
if (!Init) {
9983
// No initialization is performed.
9984
} else if (isa<CXXScalarValueInitExpr>(Init) ||
9985
isa<ImplicitValueInitExpr>(Init)) {
9986
ValueInit = true;
9987
} else if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) {
9988
ResizedArrayCCE = CCE;
9989
} else {
9990
auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType());
9991
assert(CAT && "unexpected type for array initializer");
9992
9993
unsigned Bits =
9994
std::max(CAT->getSizeBitWidth(), ArrayBound.getBitWidth());
9995
llvm::APInt InitBound = CAT->getSize().zext(Bits);
9996
llvm::APInt AllocBound = ArrayBound.zext(Bits);
9997
if (InitBound.ugt(AllocBound)) {
9998
if (IsNothrow)
9999
return ZeroInitialization(E);
10000
10001
Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small)
10002
<< toString(AllocBound, 10, /*Signed=*/false)
10003
<< toString(InitBound, 10, /*Signed=*/false)
10004
<< (*ArraySize)->getSourceRange();
10005
return false;
10006
}
10007
10008
// If the sizes differ, we must have an initializer list, and we need
10009
// special handling for this case when we initialize.
10010
if (InitBound != AllocBound)
10011
ResizedArrayILE = cast<InitListExpr>(Init);
10012
}
10013
10014
AllocType = Info.Ctx.getConstantArrayType(AllocType, ArrayBound, nullptr,
10015
ArraySizeModifier::Normal, 0);
10016
} else {
10017
assert(!AllocType->isArrayType() &&
10018
"array allocation with non-array new");
10019
}
10020
10021
APValue *Val;
10022
if (IsPlacement) {
10023
AccessKinds AK = AK_Construct;
10024
struct FindObjectHandler {
10025
EvalInfo &Info;
10026
const Expr *E;
10027
QualType AllocType;
10028
const AccessKinds AccessKind;
10029
APValue *Value;
10030
10031
typedef bool result_type;
10032
bool failed() { return false; }
10033
bool found(APValue &Subobj, QualType SubobjType) {
10034
// FIXME: Reject the cases where [basic.life]p8 would not permit the
10035
// old name of the object to be used to name the new object.
10036
if (!Info.Ctx.hasSameUnqualifiedType(SubobjType, AllocType)) {
10037
Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) <<
10038
SubobjType << AllocType;
10039
return false;
10040
}
10041
Value = &Subobj;
10042
return true;
10043
}
10044
bool found(APSInt &Value, QualType SubobjType) {
10045
Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
10046
return false;
10047
}
10048
bool found(APFloat &Value, QualType SubobjType) {
10049
Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
10050
return false;
10051
}
10052
} Handler = {Info, E, AllocType, AK, nullptr};
10053
10054
CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType);
10055
if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler))
10056
return false;
10057
10058
Val = Handler.Value;
10059
10060
// [basic.life]p1:
10061
// The lifetime of an object o of type T ends when [...] the storage
10062
// which the object occupies is [...] reused by an object that is not
10063
// nested within o (6.6.2).
10064
*Val = APValue();
10065
} else {
10066
// Perform the allocation and obtain a pointer to the resulting object.
10067
Val = Info.createHeapAlloc(E, AllocType, Result);
10068
if (!Val)
10069
return false;
10070
}
10071
10072
if (ValueInit) {
10073
ImplicitValueInitExpr VIE(AllocType);
10074
if (!EvaluateInPlace(*Val, Info, Result, &VIE))
10075
return false;
10076
} else if (ResizedArrayILE) {
10077
if (!EvaluateArrayNewInitList(Info, Result, *Val, ResizedArrayILE,
10078
AllocType))
10079
return false;
10080
} else if (ResizedArrayCCE) {
10081
if (!EvaluateArrayNewConstructExpr(Info, Result, *Val, ResizedArrayCCE,
10082
AllocType))
10083
return false;
10084
} else if (Init) {
10085
if (!EvaluateInPlace(*Val, Info, Result, Init))
10086
return false;
10087
} else if (!handleDefaultInitValue(AllocType, *Val)) {
10088
return false;
10089
}
10090
10091
// Array new returns a pointer to the first element, not a pointer to the
10092
// array.
10093
if (auto *AT = AllocType->getAsArrayTypeUnsafe())
10094
Result.addArray(Info, E, cast<ConstantArrayType>(AT));
10095
10096
return true;
10097
}
10098
//===----------------------------------------------------------------------===//
10099
// Member Pointer Evaluation
10100
//===----------------------------------------------------------------------===//
10101
10102
namespace {
10103
class MemberPointerExprEvaluator
10104
: public ExprEvaluatorBase<MemberPointerExprEvaluator> {
10105
MemberPtr &Result;
10106
10107
bool Success(const ValueDecl *D) {
10108
Result = MemberPtr(D);
10109
return true;
10110
}
10111
public:
10112
10113
MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
10114
: ExprEvaluatorBaseTy(Info), Result(Result) {}
10115
10116
bool Success(const APValue &V, const Expr *E) {
10117
Result.setFrom(V);
10118
return true;
10119
}
10120
bool ZeroInitialization(const Expr *E) {
10121
return Success((const ValueDecl*)nullptr);
10122
}
10123
10124
bool VisitCastExpr(const CastExpr *E);
10125
bool VisitUnaryAddrOf(const UnaryOperator *E);
10126
};
10127
} // end anonymous namespace
10128
10129
static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
10130
EvalInfo &Info) {
10131
assert(!E->isValueDependent());
10132
assert(E->isPRValue() && E->getType()->isMemberPointerType());
10133
return MemberPointerExprEvaluator(Info, Result).Visit(E);
10134
}
10135
10136
bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
10137
switch (E->getCastKind()) {
10138
default:
10139
return ExprEvaluatorBaseTy::VisitCastExpr(E);
10140
10141
case CK_NullToMemberPointer:
10142
VisitIgnoredValue(E->getSubExpr());
10143
return ZeroInitialization(E);
10144
10145
case CK_BaseToDerivedMemberPointer: {
10146
if (!Visit(E->getSubExpr()))
10147
return false;
10148
if (E->path_empty())
10149
return true;
10150
// Base-to-derived member pointer casts store the path in derived-to-base
10151
// order, so iterate backwards. The CXXBaseSpecifier also provides us with
10152
// the wrong end of the derived->base arc, so stagger the path by one class.
10153
typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
10154
for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
10155
PathI != PathE; ++PathI) {
10156
assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
10157
const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
10158
if (!Result.castToDerived(Derived))
10159
return Error(E);
10160
}
10161
const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
10162
if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
10163
return Error(E);
10164
return true;
10165
}
10166
10167
case CK_DerivedToBaseMemberPointer:
10168
if (!Visit(E->getSubExpr()))
10169
return false;
10170
for (CastExpr::path_const_iterator PathI = E->path_begin(),
10171
PathE = E->path_end(); PathI != PathE; ++PathI) {
10172
assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
10173
const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
10174
if (!Result.castToBase(Base))
10175
return Error(E);
10176
}
10177
return true;
10178
}
10179
}
10180
10181
bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
10182
// C++11 [expr.unary.op]p3 has very strict rules on how the address of a
10183
// member can be formed.
10184
return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
10185
}
10186
10187
//===----------------------------------------------------------------------===//
10188
// Record Evaluation
10189
//===----------------------------------------------------------------------===//
10190
10191
namespace {
10192
class RecordExprEvaluator
10193
: public ExprEvaluatorBase<RecordExprEvaluator> {
10194
const LValue &This;
10195
APValue &Result;
10196
public:
10197
10198
RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
10199
: ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
10200
10201
bool Success(const APValue &V, const Expr *E) {
10202
Result = V;
10203
return true;
10204
}
10205
bool ZeroInitialization(const Expr *E) {
10206
return ZeroInitialization(E, E->getType());
10207
}
10208
bool ZeroInitialization(const Expr *E, QualType T);
10209
10210
bool VisitCallExpr(const CallExpr *E) {
10211
return handleCallExpr(E, Result, &This);
10212
}
10213
bool VisitCastExpr(const CastExpr *E);
10214
bool VisitInitListExpr(const InitListExpr *E);
10215
bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
10216
return VisitCXXConstructExpr(E, E->getType());
10217
}
10218
bool VisitLambdaExpr(const LambdaExpr *E);
10219
bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
10220
bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
10221
bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
10222
bool VisitBinCmp(const BinaryOperator *E);
10223
bool VisitCXXParenListInitExpr(const CXXParenListInitExpr *E);
10224
bool VisitCXXParenListOrInitListExpr(const Expr *ExprToVisit,
10225
ArrayRef<Expr *> Args);
10226
};
10227
}
10228
10229
/// Perform zero-initialization on an object of non-union class type.
10230
/// C++11 [dcl.init]p5:
10231
/// To zero-initialize an object or reference of type T means:
10232
/// [...]
10233
/// -- if T is a (possibly cv-qualified) non-union class type,
10234
/// each non-static data member and each base-class subobject is
10235
/// zero-initialized
10236
static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
10237
const RecordDecl *RD,
10238
const LValue &This, APValue &Result) {
10239
assert(!RD->isUnion() && "Expected non-union class type");
10240
const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
10241
Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
10242
std::distance(RD->field_begin(), RD->field_end()));
10243
10244
if (RD->isInvalidDecl()) return false;
10245
const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
10246
10247
if (CD) {
10248
unsigned Index = 0;
10249
for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
10250
End = CD->bases_end(); I != End; ++I, ++Index) {
10251
const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
10252
LValue Subobject = This;
10253
if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
10254
return false;
10255
if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
10256
Result.getStructBase(Index)))
10257
return false;
10258
}
10259
}
10260
10261
for (const auto *I : RD->fields()) {
10262
// -- if T is a reference type, no initialization is performed.
10263
if (I->isUnnamedBitField() || I->getType()->isReferenceType())
10264
continue;
10265
10266
LValue Subobject = This;
10267
if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
10268
return false;
10269
10270
ImplicitValueInitExpr VIE(I->getType());
10271
if (!EvaluateInPlace(
10272
Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
10273
return false;
10274
}
10275
10276
return true;
10277
}
10278
10279
bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
10280
const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
10281
if (RD->isInvalidDecl()) return false;
10282
if (RD->isUnion()) {
10283
// C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
10284
// object's first non-static named data member is zero-initialized
10285
RecordDecl::field_iterator I = RD->field_begin();
10286
while (I != RD->field_end() && (*I)->isUnnamedBitField())
10287
++I;
10288
if (I == RD->field_end()) {
10289
Result = APValue((const FieldDecl*)nullptr);
10290
return true;
10291
}
10292
10293
LValue Subobject = This;
10294
if (!HandleLValueMember(Info, E, Subobject, *I))
10295
return false;
10296
Result = APValue(*I);
10297
ImplicitValueInitExpr VIE(I->getType());
10298
return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
10299
}
10300
10301
if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
10302
Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
10303
return false;
10304
}
10305
10306
return HandleClassZeroInitialization(Info, E, RD, This, Result);
10307
}
10308
10309
bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
10310
switch (E->getCastKind()) {
10311
default:
10312
return ExprEvaluatorBaseTy::VisitCastExpr(E);
10313
10314
case CK_ConstructorConversion:
10315
return Visit(E->getSubExpr());
10316
10317
case CK_DerivedToBase:
10318
case CK_UncheckedDerivedToBase: {
10319
APValue DerivedObject;
10320
if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
10321
return false;
10322
if (!DerivedObject.isStruct())
10323
return Error(E->getSubExpr());
10324
10325
// Derived-to-base rvalue conversion: just slice off the derived part.
10326
APValue *Value = &DerivedObject;
10327
const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
10328
for (CastExpr::path_const_iterator PathI = E->path_begin(),
10329
PathE = E->path_end(); PathI != PathE; ++PathI) {
10330
assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
10331
const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
10332
Value = &Value->getStructBase(getBaseIndex(RD, Base));
10333
RD = Base;
10334
}
10335
Result = *Value;
10336
return true;
10337
}
10338
}
10339
}
10340
10341
bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
10342
if (E->isTransparent())
10343
return Visit(E->getInit(0));
10344
return VisitCXXParenListOrInitListExpr(E, E->inits());
10345
}
10346
10347
bool RecordExprEvaluator::VisitCXXParenListOrInitListExpr(
10348
const Expr *ExprToVisit, ArrayRef<Expr *> Args) {
10349
const RecordDecl *RD =
10350
ExprToVisit->getType()->castAs<RecordType>()->getDecl();
10351
if (RD->isInvalidDecl()) return false;
10352
const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
10353
auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
10354
10355
EvalInfo::EvaluatingConstructorRAII EvalObj(
10356
Info,
10357
ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
10358
CXXRD && CXXRD->getNumBases());
10359
10360
if (RD->isUnion()) {
10361
const FieldDecl *Field;
10362
if (auto *ILE = dyn_cast<InitListExpr>(ExprToVisit)) {
10363
Field = ILE->getInitializedFieldInUnion();
10364
} else if (auto *PLIE = dyn_cast<CXXParenListInitExpr>(ExprToVisit)) {
10365
Field = PLIE->getInitializedFieldInUnion();
10366
} else {
10367
llvm_unreachable(
10368
"Expression is neither an init list nor a C++ paren list");
10369
}
10370
10371
Result = APValue(Field);
10372
if (!Field)
10373
return true;
10374
10375
// If the initializer list for a union does not contain any elements, the
10376
// first element of the union is value-initialized.
10377
// FIXME: The element should be initialized from an initializer list.
10378
// Is this difference ever observable for initializer lists which
10379
// we don't build?
10380
ImplicitValueInitExpr VIE(Field->getType());
10381
const Expr *InitExpr = Args.empty() ? &VIE : Args[0];
10382
10383
LValue Subobject = This;
10384
if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
10385
return false;
10386
10387
// Temporarily override This, in case there's a CXXDefaultInitExpr in here.
10388
ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
10389
isa<CXXDefaultInitExpr>(InitExpr));
10390
10391
if (EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr)) {
10392
if (Field->isBitField())
10393
return truncateBitfieldValue(Info, InitExpr, Result.getUnionValue(),
10394
Field);
10395
return true;
10396
}
10397
10398
return false;
10399
}
10400
10401
if (!Result.hasValue())
10402
Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
10403
std::distance(RD->field_begin(), RD->field_end()));
10404
unsigned ElementNo = 0;
10405
bool Success = true;
10406
10407
// Initialize base classes.
10408
if (CXXRD && CXXRD->getNumBases()) {
10409
for (const auto &Base : CXXRD->bases()) {
10410
assert(ElementNo < Args.size() && "missing init for base class");
10411
const Expr *Init = Args[ElementNo];
10412
10413
LValue Subobject = This;
10414
if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base))
10415
return false;
10416
10417
APValue &FieldVal = Result.getStructBase(ElementNo);
10418
if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) {
10419
if (!Info.noteFailure())
10420
return false;
10421
Success = false;
10422
}
10423
++ElementNo;
10424
}
10425
10426
EvalObj.finishedConstructingBases();
10427
}
10428
10429
// Initialize members.
10430
for (const auto *Field : RD->fields()) {
10431
// Anonymous bit-fields are not considered members of the class for
10432
// purposes of aggregate initialization.
10433
if (Field->isUnnamedBitField())
10434
continue;
10435
10436
LValue Subobject = This;
10437
10438
bool HaveInit = ElementNo < Args.size();
10439
10440
// FIXME: Diagnostics here should point to the end of the initializer
10441
// list, not the start.
10442
if (!HandleLValueMember(Info, HaveInit ? Args[ElementNo] : ExprToVisit,
10443
Subobject, Field, &Layout))
10444
return false;
10445
10446
// Perform an implicit value-initialization for members beyond the end of
10447
// the initializer list.
10448
ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
10449
const Expr *Init = HaveInit ? Args[ElementNo++] : &VIE;
10450
10451
if (Field->getType()->isIncompleteArrayType()) {
10452
if (auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType())) {
10453
if (!CAT->isZeroSize()) {
10454
// Bail out for now. This might sort of "work", but the rest of the
10455
// code isn't really prepared to handle it.
10456
Info.FFDiag(Init, diag::note_constexpr_unsupported_flexible_array);
10457
return false;
10458
}
10459
}
10460
}
10461
10462
// Temporarily override This, in case there's a CXXDefaultInitExpr in here.
10463
ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
10464
isa<CXXDefaultInitExpr>(Init));
10465
10466
APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
10467
if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
10468
(Field->isBitField() && !truncateBitfieldValue(Info, Init,
10469
FieldVal, Field))) {
10470
if (!Info.noteFailure())
10471
return false;
10472
Success = false;
10473
}
10474
}
10475
10476
EvalObj.finishedConstructingFields();
10477
10478
return Success;
10479
}
10480
10481
bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
10482
QualType T) {
10483
// Note that E's type is not necessarily the type of our class here; we might
10484
// be initializing an array element instead.
10485
const CXXConstructorDecl *FD = E->getConstructor();
10486
if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
10487
10488
bool ZeroInit = E->requiresZeroInitialization();
10489
if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
10490
// If we've already performed zero-initialization, we're already done.
10491
if (Result.hasValue())
10492
return true;
10493
10494
if (ZeroInit)
10495
return ZeroInitialization(E, T);
10496
10497
return handleDefaultInitValue(T, Result);
10498
}
10499
10500
const FunctionDecl *Definition = nullptr;
10501
auto Body = FD->getBody(Definition);
10502
10503
if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
10504
return false;
10505
10506
// Avoid materializing a temporary for an elidable copy/move constructor.
10507
if (E->isElidable() && !ZeroInit) {
10508
// FIXME: This only handles the simplest case, where the source object
10509
// is passed directly as the first argument to the constructor.
10510
// This should also handle stepping though implicit casts and
10511
// and conversion sequences which involve two steps, with a
10512
// conversion operator followed by a converting constructor.
10513
const Expr *SrcObj = E->getArg(0);
10514
assert(SrcObj->isTemporaryObject(Info.Ctx, FD->getParent()));
10515
assert(Info.Ctx.hasSameUnqualifiedType(E->getType(), SrcObj->getType()));
10516
if (const MaterializeTemporaryExpr *ME =
10517
dyn_cast<MaterializeTemporaryExpr>(SrcObj))
10518
return Visit(ME->getSubExpr());
10519
}
10520
10521
if (ZeroInit && !ZeroInitialization(E, T))
10522
return false;
10523
10524
auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs());
10525
return HandleConstructorCall(E, This, Args,
10526
cast<CXXConstructorDecl>(Definition), Info,
10527
Result);
10528
}
10529
10530
bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
10531
const CXXInheritedCtorInitExpr *E) {
10532
if (!Info.CurrentCall) {
10533
assert(Info.checkingPotentialConstantExpression());
10534
return false;
10535
}
10536
10537
const CXXConstructorDecl *FD = E->getConstructor();
10538
if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
10539
return false;
10540
10541
const FunctionDecl *Definition = nullptr;
10542
auto Body = FD->getBody(Definition);
10543
10544
if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
10545
return false;
10546
10547
return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
10548
cast<CXXConstructorDecl>(Definition), Info,
10549
Result);
10550
}
10551
10552
bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
10553
const CXXStdInitializerListExpr *E) {
10554
const ConstantArrayType *ArrayType =
10555
Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
10556
10557
LValue Array;
10558
if (!EvaluateLValue(E->getSubExpr(), Array, Info))
10559
return false;
10560
10561
assert(ArrayType && "unexpected type for array initializer");
10562
10563
// Get a pointer to the first element of the array.
10564
Array.addArray(Info, E, ArrayType);
10565
10566
// FIXME: What if the initializer_list type has base classes, etc?
10567
Result = APValue(APValue::UninitStruct(), 0, 2);
10568
Array.moveInto(Result.getStructField(0));
10569
10570
RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
10571
RecordDecl::field_iterator Field = Record->field_begin();
10572
assert(Field != Record->field_end() &&
10573
Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
10574
ArrayType->getElementType()) &&
10575
"Expected std::initializer_list first field to be const E *");
10576
++Field;
10577
assert(Field != Record->field_end() &&
10578
"Expected std::initializer_list to have two fields");
10579
10580
if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType())) {
10581
// Length.
10582
Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
10583
} else {
10584
// End pointer.
10585
assert(Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
10586
ArrayType->getElementType()) &&
10587
"Expected std::initializer_list second field to be const E *");
10588
if (!HandleLValueArrayAdjustment(Info, E, Array,
10589
ArrayType->getElementType(),
10590
ArrayType->getZExtSize()))
10591
return false;
10592
Array.moveInto(Result.getStructField(1));
10593
}
10594
10595
assert(++Field == Record->field_end() &&
10596
"Expected std::initializer_list to only have two fields");
10597
10598
return true;
10599
}
10600
10601
bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) {
10602
const CXXRecordDecl *ClosureClass = E->getLambdaClass();
10603
if (ClosureClass->isInvalidDecl())
10604
return false;
10605
10606
const size_t NumFields =
10607
std::distance(ClosureClass->field_begin(), ClosureClass->field_end());
10608
10609
assert(NumFields == (size_t)std::distance(E->capture_init_begin(),
10610
E->capture_init_end()) &&
10611
"The number of lambda capture initializers should equal the number of "
10612
"fields within the closure type");
10613
10614
Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields);
10615
// Iterate through all the lambda's closure object's fields and initialize
10616
// them.
10617
auto *CaptureInitIt = E->capture_init_begin();
10618
bool Success = true;
10619
const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(ClosureClass);
10620
for (const auto *Field : ClosureClass->fields()) {
10621
assert(CaptureInitIt != E->capture_init_end());
10622
// Get the initializer for this field
10623
Expr *const CurFieldInit = *CaptureInitIt++;
10624
10625
// If there is no initializer, either this is a VLA or an error has
10626
// occurred.
10627
if (!CurFieldInit)
10628
return Error(E);
10629
10630
LValue Subobject = This;
10631
10632
if (!HandleLValueMember(Info, E, Subobject, Field, &Layout))
10633
return false;
10634
10635
APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
10636
if (!EvaluateInPlace(FieldVal, Info, Subobject, CurFieldInit)) {
10637
if (!Info.keepEvaluatingAfterFailure())
10638
return false;
10639
Success = false;
10640
}
10641
}
10642
return Success;
10643
}
10644
10645
static bool EvaluateRecord(const Expr *E, const LValue &This,
10646
APValue &Result, EvalInfo &Info) {
10647
assert(!E->isValueDependent());
10648
assert(E->isPRValue() && E->getType()->isRecordType() &&
10649
"can't evaluate expression as a record rvalue");
10650
return RecordExprEvaluator(Info, This, Result).Visit(E);
10651
}
10652
10653
//===----------------------------------------------------------------------===//
10654
// Temporary Evaluation
10655
//
10656
// Temporaries are represented in the AST as rvalues, but generally behave like
10657
// lvalues. The full-object of which the temporary is a subobject is implicitly
10658
// materialized so that a reference can bind to it.
10659
//===----------------------------------------------------------------------===//
10660
namespace {
10661
class TemporaryExprEvaluator
10662
: public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
10663
public:
10664
TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
10665
LValueExprEvaluatorBaseTy(Info, Result, false) {}
10666
10667
/// Visit an expression which constructs the value of this temporary.
10668
bool VisitConstructExpr(const Expr *E) {
10669
APValue &Value = Info.CurrentCall->createTemporary(
10670
E, E->getType(), ScopeKind::FullExpression, Result);
10671
return EvaluateInPlace(Value, Info, Result, E);
10672
}
10673
10674
bool VisitCastExpr(const CastExpr *E) {
10675
switch (E->getCastKind()) {
10676
default:
10677
return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
10678
10679
case CK_ConstructorConversion:
10680
return VisitConstructExpr(E->getSubExpr());
10681
}
10682
}
10683
bool VisitInitListExpr(const InitListExpr *E) {
10684
return VisitConstructExpr(E);
10685
}
10686
bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
10687
return VisitConstructExpr(E);
10688
}
10689
bool VisitCallExpr(const CallExpr *E) {
10690
return VisitConstructExpr(E);
10691
}
10692
bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
10693
return VisitConstructExpr(E);
10694
}
10695
bool VisitLambdaExpr(const LambdaExpr *E) {
10696
return VisitConstructExpr(E);
10697
}
10698
};
10699
} // end anonymous namespace
10700
10701
/// Evaluate an expression of record type as a temporary.
10702
static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
10703
assert(!E->isValueDependent());
10704
assert(E->isPRValue() && E->getType()->isRecordType());
10705
return TemporaryExprEvaluator(Info, Result).Visit(E);
10706
}
10707
10708
//===----------------------------------------------------------------------===//
10709
// Vector Evaluation
10710
//===----------------------------------------------------------------------===//
10711
10712
namespace {
10713
class VectorExprEvaluator
10714
: public ExprEvaluatorBase<VectorExprEvaluator> {
10715
APValue &Result;
10716
public:
10717
10718
VectorExprEvaluator(EvalInfo &info, APValue &Result)
10719
: ExprEvaluatorBaseTy(info), Result(Result) {}
10720
10721
bool Success(ArrayRef<APValue> V, const Expr *E) {
10722
assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
10723
// FIXME: remove this APValue copy.
10724
Result = APValue(V.data(), V.size());
10725
return true;
10726
}
10727
bool Success(const APValue &V, const Expr *E) {
10728
assert(V.isVector());
10729
Result = V;
10730
return true;
10731
}
10732
bool ZeroInitialization(const Expr *E);
10733
10734
bool VisitUnaryReal(const UnaryOperator *E)
10735
{ return Visit(E->getSubExpr()); }
10736
bool VisitCastExpr(const CastExpr* E);
10737
bool VisitInitListExpr(const InitListExpr *E);
10738
bool VisitUnaryImag(const UnaryOperator *E);
10739
bool VisitBinaryOperator(const BinaryOperator *E);
10740
bool VisitUnaryOperator(const UnaryOperator *E);
10741
bool VisitConvertVectorExpr(const ConvertVectorExpr *E);
10742
bool VisitShuffleVectorExpr(const ShuffleVectorExpr *E);
10743
10744
// FIXME: Missing: conditional operator (for GNU
10745
// conditional select), ExtVectorElementExpr
10746
};
10747
} // end anonymous namespace
10748
10749
static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
10750
assert(E->isPRValue() && E->getType()->isVectorType() &&
10751
"not a vector prvalue");
10752
return VectorExprEvaluator(Info, Result).Visit(E);
10753
}
10754
10755
bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
10756
const VectorType *VTy = E->getType()->castAs<VectorType>();
10757
unsigned NElts = VTy->getNumElements();
10758
10759
const Expr *SE = E->getSubExpr();
10760
QualType SETy = SE->getType();
10761
10762
switch (E->getCastKind()) {
10763
case CK_VectorSplat: {
10764
APValue Val = APValue();
10765
if (SETy->isIntegerType()) {
10766
APSInt IntResult;
10767
if (!EvaluateInteger(SE, IntResult, Info))
10768
return false;
10769
Val = APValue(std::move(IntResult));
10770
} else if (SETy->isRealFloatingType()) {
10771
APFloat FloatResult(0.0);
10772
if (!EvaluateFloat(SE, FloatResult, Info))
10773
return false;
10774
Val = APValue(std::move(FloatResult));
10775
} else {
10776
return Error(E);
10777
}
10778
10779
// Splat and create vector APValue.
10780
SmallVector<APValue, 4> Elts(NElts, Val);
10781
return Success(Elts, E);
10782
}
10783
case CK_BitCast: {
10784
APValue SVal;
10785
if (!Evaluate(SVal, Info, SE))
10786
return false;
10787
10788
if (!SVal.isInt() && !SVal.isFloat() && !SVal.isVector()) {
10789
// Give up if the input isn't an int, float, or vector. For example, we
10790
// reject "(v4i16)(intptr_t)&a".
10791
Info.FFDiag(E, diag::note_constexpr_invalid_cast)
10792
<< 2 << Info.Ctx.getLangOpts().CPlusPlus;
10793
return false;
10794
}
10795
10796
if (!handleRValueToRValueBitCast(Info, Result, SVal, E))
10797
return false;
10798
10799
return true;
10800
}
10801
default:
10802
return ExprEvaluatorBaseTy::VisitCastExpr(E);
10803
}
10804
}
10805
10806
bool
10807
VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
10808
const VectorType *VT = E->getType()->castAs<VectorType>();
10809
unsigned NumInits = E->getNumInits();
10810
unsigned NumElements = VT->getNumElements();
10811
10812
QualType EltTy = VT->getElementType();
10813
SmallVector<APValue, 4> Elements;
10814
10815
// The number of initializers can be less than the number of
10816
// vector elements. For OpenCL, this can be due to nested vector
10817
// initialization. For GCC compatibility, missing trailing elements
10818
// should be initialized with zeroes.
10819
unsigned CountInits = 0, CountElts = 0;
10820
while (CountElts < NumElements) {
10821
// Handle nested vector initialization.
10822
if (CountInits < NumInits
10823
&& E->getInit(CountInits)->getType()->isVectorType()) {
10824
APValue v;
10825
if (!EvaluateVector(E->getInit(CountInits), v, Info))
10826
return Error(E);
10827
unsigned vlen = v.getVectorLength();
10828
for (unsigned j = 0; j < vlen; j++)
10829
Elements.push_back(v.getVectorElt(j));
10830
CountElts += vlen;
10831
} else if (EltTy->isIntegerType()) {
10832
llvm::APSInt sInt(32);
10833
if (CountInits < NumInits) {
10834
if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
10835
return false;
10836
} else // trailing integer zero.
10837
sInt = Info.Ctx.MakeIntValue(0, EltTy);
10838
Elements.push_back(APValue(sInt));
10839
CountElts++;
10840
} else {
10841
llvm::APFloat f(0.0);
10842
if (CountInits < NumInits) {
10843
if (!EvaluateFloat(E->getInit(CountInits), f, Info))
10844
return false;
10845
} else // trailing float zero.
10846
f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
10847
Elements.push_back(APValue(f));
10848
CountElts++;
10849
}
10850
CountInits++;
10851
}
10852
return Success(Elements, E);
10853
}
10854
10855
bool
10856
VectorExprEvaluator::ZeroInitialization(const Expr *E) {
10857
const auto *VT = E->getType()->castAs<VectorType>();
10858
QualType EltTy = VT->getElementType();
10859
APValue ZeroElement;
10860
if (EltTy->isIntegerType())
10861
ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
10862
else
10863
ZeroElement =
10864
APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
10865
10866
SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
10867
return Success(Elements, E);
10868
}
10869
10870
bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
10871
VisitIgnoredValue(E->getSubExpr());
10872
return ZeroInitialization(E);
10873
}
10874
10875
bool VectorExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
10876
BinaryOperatorKind Op = E->getOpcode();
10877
assert(Op != BO_PtrMemD && Op != BO_PtrMemI && Op != BO_Cmp &&
10878
"Operation not supported on vector types");
10879
10880
if (Op == BO_Comma)
10881
return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
10882
10883
Expr *LHS = E->getLHS();
10884
Expr *RHS = E->getRHS();
10885
10886
assert(LHS->getType()->isVectorType() && RHS->getType()->isVectorType() &&
10887
"Must both be vector types");
10888
// Checking JUST the types are the same would be fine, except shifts don't
10889
// need to have their types be the same (since you always shift by an int).
10890
assert(LHS->getType()->castAs<VectorType>()->getNumElements() ==
10891
E->getType()->castAs<VectorType>()->getNumElements() &&
10892
RHS->getType()->castAs<VectorType>()->getNumElements() ==
10893
E->getType()->castAs<VectorType>()->getNumElements() &&
10894
"All operands must be the same size.");
10895
10896
APValue LHSValue;
10897
APValue RHSValue;
10898
bool LHSOK = Evaluate(LHSValue, Info, LHS);
10899
if (!LHSOK && !Info.noteFailure())
10900
return false;
10901
if (!Evaluate(RHSValue, Info, RHS) || !LHSOK)
10902
return false;
10903
10904
if (!handleVectorVectorBinOp(Info, E, Op, LHSValue, RHSValue))
10905
return false;
10906
10907
return Success(LHSValue, E);
10908
}
10909
10910
static std::optional<APValue> handleVectorUnaryOperator(ASTContext &Ctx,
10911
QualType ResultTy,
10912
UnaryOperatorKind Op,
10913
APValue Elt) {
10914
switch (Op) {
10915
case UO_Plus:
10916
// Nothing to do here.
10917
return Elt;
10918
case UO_Minus:
10919
if (Elt.getKind() == APValue::Int) {
10920
Elt.getInt().negate();
10921
} else {
10922
assert(Elt.getKind() == APValue::Float &&
10923
"Vector can only be int or float type");
10924
Elt.getFloat().changeSign();
10925
}
10926
return Elt;
10927
case UO_Not:
10928
// This is only valid for integral types anyway, so we don't have to handle
10929
// float here.
10930
assert(Elt.getKind() == APValue::Int &&
10931
"Vector operator ~ can only be int");
10932
Elt.getInt().flipAllBits();
10933
return Elt;
10934
case UO_LNot: {
10935
if (Elt.getKind() == APValue::Int) {
10936
Elt.getInt() = !Elt.getInt();
10937
// operator ! on vectors returns -1 for 'truth', so negate it.
10938
Elt.getInt().negate();
10939
return Elt;
10940
}
10941
assert(Elt.getKind() == APValue::Float &&
10942
"Vector can only be int or float type");
10943
// Float types result in an int of the same size, but -1 for true, or 0 for
10944
// false.
10945
APSInt EltResult{Ctx.getIntWidth(ResultTy),
10946
ResultTy->isUnsignedIntegerType()};
10947
if (Elt.getFloat().isZero())
10948
EltResult.setAllBits();
10949
else
10950
EltResult.clearAllBits();
10951
10952
return APValue{EltResult};
10953
}
10954
default:
10955
// FIXME: Implement the rest of the unary operators.
10956
return std::nullopt;
10957
}
10958
}
10959
10960
bool VectorExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
10961
Expr *SubExpr = E->getSubExpr();
10962
const auto *VD = SubExpr->getType()->castAs<VectorType>();
10963
// This result element type differs in the case of negating a floating point
10964
// vector, since the result type is the a vector of the equivilant sized
10965
// integer.
10966
const QualType ResultEltTy = VD->getElementType();
10967
UnaryOperatorKind Op = E->getOpcode();
10968
10969
APValue SubExprValue;
10970
if (!Evaluate(SubExprValue, Info, SubExpr))
10971
return false;
10972
10973
// FIXME: This vector evaluator someday needs to be changed to be LValue
10974
// aware/keep LValue information around, rather than dealing with just vector
10975
// types directly. Until then, we cannot handle cases where the operand to
10976
// these unary operators is an LValue. The only case I've been able to see
10977
// cause this is operator++ assigning to a member expression (only valid in
10978
// altivec compilations) in C mode, so this shouldn't limit us too much.
10979
if (SubExprValue.isLValue())
10980
return false;
10981
10982
assert(SubExprValue.getVectorLength() == VD->getNumElements() &&
10983
"Vector length doesn't match type?");
10984
10985
SmallVector<APValue, 4> ResultElements;
10986
for (unsigned EltNum = 0; EltNum < VD->getNumElements(); ++EltNum) {
10987
std::optional<APValue> Elt = handleVectorUnaryOperator(
10988
Info.Ctx, ResultEltTy, Op, SubExprValue.getVectorElt(EltNum));
10989
if (!Elt)
10990
return false;
10991
ResultElements.push_back(*Elt);
10992
}
10993
return Success(APValue(ResultElements.data(), ResultElements.size()), E);
10994
}
10995
10996
static bool handleVectorElementCast(EvalInfo &Info, const FPOptions FPO,
10997
const Expr *E, QualType SourceTy,
10998
QualType DestTy, APValue const &Original,
10999
APValue &Result) {
11000
if (SourceTy->isIntegerType()) {
11001
if (DestTy->isRealFloatingType()) {
11002
Result = APValue(APFloat(0.0));
11003
return HandleIntToFloatCast(Info, E, FPO, SourceTy, Original.getInt(),
11004
DestTy, Result.getFloat());
11005
}
11006
if (DestTy->isIntegerType()) {
11007
Result = APValue(
11008
HandleIntToIntCast(Info, E, DestTy, SourceTy, Original.getInt()));
11009
return true;
11010
}
11011
} else if (SourceTy->isRealFloatingType()) {
11012
if (DestTy->isRealFloatingType()) {
11013
Result = Original;
11014
return HandleFloatToFloatCast(Info, E, SourceTy, DestTy,
11015
Result.getFloat());
11016
}
11017
if (DestTy->isIntegerType()) {
11018
Result = APValue(APSInt());
11019
return HandleFloatToIntCast(Info, E, SourceTy, Original.getFloat(),
11020
DestTy, Result.getInt());
11021
}
11022
}
11023
11024
Info.FFDiag(E, diag::err_convertvector_constexpr_unsupported_vector_cast)
11025
<< SourceTy << DestTy;
11026
return false;
11027
}
11028
11029
bool VectorExprEvaluator::VisitConvertVectorExpr(const ConvertVectorExpr *E) {
11030
APValue Source;
11031
QualType SourceVecType = E->getSrcExpr()->getType();
11032
if (!EvaluateAsRValue(Info, E->getSrcExpr(), Source))
11033
return false;
11034
11035
QualType DestTy = E->getType()->castAs<VectorType>()->getElementType();
11036
QualType SourceTy = SourceVecType->castAs<VectorType>()->getElementType();
11037
11038
const FPOptions FPO = E->getFPFeaturesInEffect(Info.Ctx.getLangOpts());
11039
11040
auto SourceLen = Source.getVectorLength();
11041
SmallVector<APValue, 4> ResultElements;
11042
ResultElements.reserve(SourceLen);
11043
for (unsigned EltNum = 0; EltNum < SourceLen; ++EltNum) {
11044
APValue Elt;
11045
if (!handleVectorElementCast(Info, FPO, E, SourceTy, DestTy,
11046
Source.getVectorElt(EltNum), Elt))
11047
return false;
11048
ResultElements.push_back(std::move(Elt));
11049
}
11050
11051
return Success(APValue(ResultElements.data(), ResultElements.size()), E);
11052
}
11053
11054
static bool handleVectorShuffle(EvalInfo &Info, const ShuffleVectorExpr *E,
11055
QualType ElemType, APValue const &VecVal1,
11056
APValue const &VecVal2, unsigned EltNum,
11057
APValue &Result) {
11058
unsigned const TotalElementsInInputVector1 = VecVal1.getVectorLength();
11059
unsigned const TotalElementsInInputVector2 = VecVal2.getVectorLength();
11060
11061
APSInt IndexVal = E->getShuffleMaskIdx(Info.Ctx, EltNum);
11062
int64_t index = IndexVal.getExtValue();
11063
// The spec says that -1 should be treated as undef for optimizations,
11064
// but in constexpr we'd have to produce an APValue::Indeterminate,
11065
// which is prohibited from being a top-level constant value. Emit a
11066
// diagnostic instead.
11067
if (index == -1) {
11068
Info.FFDiag(
11069
E, diag::err_shufflevector_minus_one_is_undefined_behavior_constexpr)
11070
<< EltNum;
11071
return false;
11072
}
11073
11074
if (index < 0 ||
11075
index >= TotalElementsInInputVector1 + TotalElementsInInputVector2)
11076
llvm_unreachable("Out of bounds shuffle index");
11077
11078
if (index >= TotalElementsInInputVector1)
11079
Result = VecVal2.getVectorElt(index - TotalElementsInInputVector1);
11080
else
11081
Result = VecVal1.getVectorElt(index);
11082
return true;
11083
}
11084
11085
bool VectorExprEvaluator::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) {
11086
APValue VecVal1;
11087
const Expr *Vec1 = E->getExpr(0);
11088
if (!EvaluateAsRValue(Info, Vec1, VecVal1))
11089
return false;
11090
APValue VecVal2;
11091
const Expr *Vec2 = E->getExpr(1);
11092
if (!EvaluateAsRValue(Info, Vec2, VecVal2))
11093
return false;
11094
11095
VectorType const *DestVecTy = E->getType()->castAs<VectorType>();
11096
QualType DestElTy = DestVecTy->getElementType();
11097
11098
auto TotalElementsInOutputVector = DestVecTy->getNumElements();
11099
11100
SmallVector<APValue, 4> ResultElements;
11101
ResultElements.reserve(TotalElementsInOutputVector);
11102
for (unsigned EltNum = 0; EltNum < TotalElementsInOutputVector; ++EltNum) {
11103
APValue Elt;
11104
if (!handleVectorShuffle(Info, E, DestElTy, VecVal1, VecVal2, EltNum, Elt))
11105
return false;
11106
ResultElements.push_back(std::move(Elt));
11107
}
11108
11109
return Success(APValue(ResultElements.data(), ResultElements.size()), E);
11110
}
11111
11112
//===----------------------------------------------------------------------===//
11113
// Array Evaluation
11114
//===----------------------------------------------------------------------===//
11115
11116
namespace {
11117
class ArrayExprEvaluator
11118
: public ExprEvaluatorBase<ArrayExprEvaluator> {
11119
const LValue &This;
11120
APValue &Result;
11121
public:
11122
11123
ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
11124
: ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
11125
11126
bool Success(const APValue &V, const Expr *E) {
11127
assert(V.isArray() && "expected array");
11128
Result = V;
11129
return true;
11130
}
11131
11132
bool ZeroInitialization(const Expr *E) {
11133
const ConstantArrayType *CAT =
11134
Info.Ctx.getAsConstantArrayType(E->getType());
11135
if (!CAT) {
11136
if (E->getType()->isIncompleteArrayType()) {
11137
// We can be asked to zero-initialize a flexible array member; this
11138
// is represented as an ImplicitValueInitExpr of incomplete array
11139
// type. In this case, the array has zero elements.
11140
Result = APValue(APValue::UninitArray(), 0, 0);
11141
return true;
11142
}
11143
// FIXME: We could handle VLAs here.
11144
return Error(E);
11145
}
11146
11147
Result = APValue(APValue::UninitArray(), 0, CAT->getZExtSize());
11148
if (!Result.hasArrayFiller())
11149
return true;
11150
11151
// Zero-initialize all elements.
11152
LValue Subobject = This;
11153
Subobject.addArray(Info, E, CAT);
11154
ImplicitValueInitExpr VIE(CAT->getElementType());
11155
return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
11156
}
11157
11158
bool VisitCallExpr(const CallExpr *E) {
11159
return handleCallExpr(E, Result, &This);
11160
}
11161
bool VisitInitListExpr(const InitListExpr *E,
11162
QualType AllocType = QualType());
11163
bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E);
11164
bool VisitCXXConstructExpr(const CXXConstructExpr *E);
11165
bool VisitCXXConstructExpr(const CXXConstructExpr *E,
11166
const LValue &Subobject,
11167
APValue *Value, QualType Type);
11168
bool VisitStringLiteral(const StringLiteral *E,
11169
QualType AllocType = QualType()) {
11170
expandStringLiteral(Info, E, Result, AllocType);
11171
return true;
11172
}
11173
bool VisitCXXParenListInitExpr(const CXXParenListInitExpr *E);
11174
bool VisitCXXParenListOrInitListExpr(const Expr *ExprToVisit,
11175
ArrayRef<Expr *> Args,
11176
const Expr *ArrayFiller,
11177
QualType AllocType = QualType());
11178
};
11179
} // end anonymous namespace
11180
11181
static bool EvaluateArray(const Expr *E, const LValue &This,
11182
APValue &Result, EvalInfo &Info) {
11183
assert(!E->isValueDependent());
11184
assert(E->isPRValue() && E->getType()->isArrayType() &&
11185
"not an array prvalue");
11186
return ArrayExprEvaluator(Info, This, Result).Visit(E);
11187
}
11188
11189
static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
11190
APValue &Result, const InitListExpr *ILE,
11191
QualType AllocType) {
11192
assert(!ILE->isValueDependent());
11193
assert(ILE->isPRValue() && ILE->getType()->isArrayType() &&
11194
"not an array prvalue");
11195
return ArrayExprEvaluator(Info, This, Result)
11196
.VisitInitListExpr(ILE, AllocType);
11197
}
11198
11199
static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
11200
APValue &Result,
11201
const CXXConstructExpr *CCE,
11202
QualType AllocType) {
11203
assert(!CCE->isValueDependent());
11204
assert(CCE->isPRValue() && CCE->getType()->isArrayType() &&
11205
"not an array prvalue");
11206
return ArrayExprEvaluator(Info, This, Result)
11207
.VisitCXXConstructExpr(CCE, This, &Result, AllocType);
11208
}
11209
11210
// Return true iff the given array filler may depend on the element index.
11211
static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) {
11212
// For now, just allow non-class value-initialization and initialization
11213
// lists comprised of them.
11214
if (isa<ImplicitValueInitExpr>(FillerExpr))
11215
return false;
11216
if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) {
11217
for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) {
11218
if (MaybeElementDependentArrayFiller(ILE->getInit(I)))
11219
return true;
11220
}
11221
11222
if (ILE->hasArrayFiller() &&
11223
MaybeElementDependentArrayFiller(ILE->getArrayFiller()))
11224
return true;
11225
11226
return false;
11227
}
11228
return true;
11229
}
11230
11231
bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E,
11232
QualType AllocType) {
11233
const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
11234
AllocType.isNull() ? E->getType() : AllocType);
11235
if (!CAT)
11236
return Error(E);
11237
11238
// C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
11239
// an appropriately-typed string literal enclosed in braces.
11240
if (E->isStringLiteralInit()) {
11241
auto *SL = dyn_cast<StringLiteral>(E->getInit(0)->IgnoreParenImpCasts());
11242
// FIXME: Support ObjCEncodeExpr here once we support it in
11243
// ArrayExprEvaluator generally.
11244
if (!SL)
11245
return Error(E);
11246
return VisitStringLiteral(SL, AllocType);
11247
}
11248
// Any other transparent list init will need proper handling of the
11249
// AllocType; we can't just recurse to the inner initializer.
11250
assert(!E->isTransparent() &&
11251
"transparent array list initialization is not string literal init?");
11252
11253
return VisitCXXParenListOrInitListExpr(E, E->inits(), E->getArrayFiller(),
11254
AllocType);
11255
}
11256
11257
bool ArrayExprEvaluator::VisitCXXParenListOrInitListExpr(
11258
const Expr *ExprToVisit, ArrayRef<Expr *> Args, const Expr *ArrayFiller,
11259
QualType AllocType) {
11260
const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
11261
AllocType.isNull() ? ExprToVisit->getType() : AllocType);
11262
11263
bool Success = true;
11264
11265
assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
11266
"zero-initialized array shouldn't have any initialized elts");
11267
APValue Filler;
11268
if (Result.isArray() && Result.hasArrayFiller())
11269
Filler = Result.getArrayFiller();
11270
11271
unsigned NumEltsToInit = Args.size();
11272
unsigned NumElts = CAT->getZExtSize();
11273
11274
// If the initializer might depend on the array index, run it for each
11275
// array element.
11276
if (NumEltsToInit != NumElts &&
11277
MaybeElementDependentArrayFiller(ArrayFiller)) {
11278
NumEltsToInit = NumElts;
11279
} else {
11280
for (auto *Init : Args) {
11281
if (auto *EmbedS = dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts()))
11282
NumEltsToInit += EmbedS->getDataElementCount() - 1;
11283
}
11284
if (NumEltsToInit > NumElts)
11285
NumEltsToInit = NumElts;
11286
}
11287
11288
LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: "
11289
<< NumEltsToInit << ".\n");
11290
11291
Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
11292
11293
// If the array was previously zero-initialized, preserve the
11294
// zero-initialized values.
11295
if (Filler.hasValue()) {
11296
for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
11297
Result.getArrayInitializedElt(I) = Filler;
11298
if (Result.hasArrayFiller())
11299
Result.getArrayFiller() = Filler;
11300
}
11301
11302
LValue Subobject = This;
11303
Subobject.addArray(Info, ExprToVisit, CAT);
11304
auto Eval = [&](const Expr *Init, unsigned ArrayIndex) {
11305
if (!EvaluateInPlace(Result.getArrayInitializedElt(ArrayIndex), Info,
11306
Subobject, Init) ||
11307
!HandleLValueArrayAdjustment(Info, Init, Subobject,
11308
CAT->getElementType(), 1)) {
11309
if (!Info.noteFailure())
11310
return false;
11311
Success = false;
11312
}
11313
return true;
11314
};
11315
unsigned ArrayIndex = 0;
11316
QualType DestTy = CAT->getElementType();
11317
APSInt Value(Info.Ctx.getTypeSize(DestTy), DestTy->isUnsignedIntegerType());
11318
for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
11319
const Expr *Init = Index < Args.size() ? Args[Index] : ArrayFiller;
11320
if (ArrayIndex >= NumEltsToInit)
11321
break;
11322
if (auto *EmbedS = dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
11323
StringLiteral *SL = EmbedS->getDataStringLiteral();
11324
for (unsigned I = EmbedS->getStartingElementPos(),
11325
N = EmbedS->getDataElementCount();
11326
I != EmbedS->getStartingElementPos() + N; ++I) {
11327
Value = SL->getCodeUnit(I);
11328
if (DestTy->isIntegerType()) {
11329
Result.getArrayInitializedElt(ArrayIndex) = APValue(Value);
11330
} else {
11331
assert(DestTy->isFloatingType() && "unexpected type");
11332
const FPOptions FPO =
11333
Init->getFPFeaturesInEffect(Info.Ctx.getLangOpts());
11334
APFloat FValue(0.0);
11335
if (!HandleIntToFloatCast(Info, Init, FPO, EmbedS->getType(), Value,
11336
DestTy, FValue))
11337
return false;
11338
Result.getArrayInitializedElt(ArrayIndex) = APValue(FValue);
11339
}
11340
ArrayIndex++;
11341
}
11342
} else {
11343
if (!Eval(Init, ArrayIndex))
11344
return false;
11345
++ArrayIndex;
11346
}
11347
}
11348
11349
if (!Result.hasArrayFiller())
11350
return Success;
11351
11352
// If we get here, we have a trivial filler, which we can just evaluate
11353
// once and splat over the rest of the array elements.
11354
assert(ArrayFiller && "no array filler for incomplete init list");
11355
return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
11356
ArrayFiller) &&
11357
Success;
11358
}
11359
11360
bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
11361
LValue CommonLV;
11362
if (E->getCommonExpr() &&
11363
!Evaluate(Info.CurrentCall->createTemporary(
11364
E->getCommonExpr(),
11365
getStorageType(Info.Ctx, E->getCommonExpr()),
11366
ScopeKind::FullExpression, CommonLV),
11367
Info, E->getCommonExpr()->getSourceExpr()))
11368
return false;
11369
11370
auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe());
11371
11372
uint64_t Elements = CAT->getZExtSize();
11373
Result = APValue(APValue::UninitArray(), Elements, Elements);
11374
11375
LValue Subobject = This;
11376
Subobject.addArray(Info, E, CAT);
11377
11378
bool Success = true;
11379
for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) {
11380
// C++ [class.temporary]/5
11381
// There are four contexts in which temporaries are destroyed at a different
11382
// point than the end of the full-expression. [...] The second context is
11383
// when a copy constructor is called to copy an element of an array while
11384
// the entire array is copied [...]. In either case, if the constructor has
11385
// one or more default arguments, the destruction of every temporary created
11386
// in a default argument is sequenced before the construction of the next
11387
// array element, if any.
11388
FullExpressionRAII Scope(Info);
11389
11390
if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
11391
Info, Subobject, E->getSubExpr()) ||
11392
!HandleLValueArrayAdjustment(Info, E, Subobject,
11393
CAT->getElementType(), 1)) {
11394
if (!Info.noteFailure())
11395
return false;
11396
Success = false;
11397
}
11398
11399
// Make sure we run the destructors too.
11400
Scope.destroy();
11401
}
11402
11403
return Success;
11404
}
11405
11406
bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
11407
return VisitCXXConstructExpr(E, This, &Result, E->getType());
11408
}
11409
11410
bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
11411
const LValue &Subobject,
11412
APValue *Value,
11413
QualType Type) {
11414
bool HadZeroInit = Value->hasValue();
11415
11416
if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
11417
unsigned FinalSize = CAT->getZExtSize();
11418
11419
// Preserve the array filler if we had prior zero-initialization.
11420
APValue Filler =
11421
HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
11422
: APValue();
11423
11424
*Value = APValue(APValue::UninitArray(), 0, FinalSize);
11425
if (FinalSize == 0)
11426
return true;
11427
11428
bool HasTrivialConstructor = CheckTrivialDefaultConstructor(
11429
Info, E->getExprLoc(), E->getConstructor(),
11430
E->requiresZeroInitialization());
11431
LValue ArrayElt = Subobject;
11432
ArrayElt.addArray(Info, E, CAT);
11433
// We do the whole initialization in two passes, first for just one element,
11434
// then for the whole array. It's possible we may find out we can't do const
11435
// init in the first pass, in which case we avoid allocating a potentially
11436
// large array. We don't do more passes because expanding array requires
11437
// copying the data, which is wasteful.
11438
for (const unsigned N : {1u, FinalSize}) {
11439
unsigned OldElts = Value->getArrayInitializedElts();
11440
if (OldElts == N)
11441
break;
11442
11443
// Expand the array to appropriate size.
11444
APValue NewValue(APValue::UninitArray(), N, FinalSize);
11445
for (unsigned I = 0; I < OldElts; ++I)
11446
NewValue.getArrayInitializedElt(I).swap(
11447
Value->getArrayInitializedElt(I));
11448
Value->swap(NewValue);
11449
11450
if (HadZeroInit)
11451
for (unsigned I = OldElts; I < N; ++I)
11452
Value->getArrayInitializedElt(I) = Filler;
11453
11454
if (HasTrivialConstructor && N == FinalSize && FinalSize != 1) {
11455
// If we have a trivial constructor, only evaluate it once and copy
11456
// the result into all the array elements.
11457
APValue &FirstResult = Value->getArrayInitializedElt(0);
11458
for (unsigned I = OldElts; I < FinalSize; ++I)
11459
Value->getArrayInitializedElt(I) = FirstResult;
11460
} else {
11461
for (unsigned I = OldElts; I < N; ++I) {
11462
if (!VisitCXXConstructExpr(E, ArrayElt,
11463
&Value->getArrayInitializedElt(I),
11464
CAT->getElementType()) ||
11465
!HandleLValueArrayAdjustment(Info, E, ArrayElt,
11466
CAT->getElementType(), 1))
11467
return false;
11468
// When checking for const initilization any diagnostic is considered
11469
// an error.
11470
if (Info.EvalStatus.Diag && !Info.EvalStatus.Diag->empty() &&
11471
!Info.keepEvaluatingAfterFailure())
11472
return false;
11473
}
11474
}
11475
}
11476
11477
return true;
11478
}
11479
11480
if (!Type->isRecordType())
11481
return Error(E);
11482
11483
return RecordExprEvaluator(Info, Subobject, *Value)
11484
.VisitCXXConstructExpr(E, Type);
11485
}
11486
11487
bool ArrayExprEvaluator::VisitCXXParenListInitExpr(
11488
const CXXParenListInitExpr *E) {
11489
assert(E->getType()->isConstantArrayType() &&
11490
"Expression result is not a constant array type");
11491
11492
return VisitCXXParenListOrInitListExpr(E, E->getInitExprs(),
11493
E->getArrayFiller());
11494
}
11495
11496
//===----------------------------------------------------------------------===//
11497
// Integer Evaluation
11498
//
11499
// As a GNU extension, we support casting pointers to sufficiently-wide integer
11500
// types and back in constant folding. Integer values are thus represented
11501
// either as an integer-valued APValue, or as an lvalue-valued APValue.
11502
//===----------------------------------------------------------------------===//
11503
11504
namespace {
11505
class IntExprEvaluator
11506
: public ExprEvaluatorBase<IntExprEvaluator> {
11507
APValue &Result;
11508
public:
11509
IntExprEvaluator(EvalInfo &info, APValue &result)
11510
: ExprEvaluatorBaseTy(info), Result(result) {}
11511
11512
bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
11513
assert(E->getType()->isIntegralOrEnumerationType() &&
11514
"Invalid evaluation result.");
11515
assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
11516
"Invalid evaluation result.");
11517
assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
11518
"Invalid evaluation result.");
11519
Result = APValue(SI);
11520
return true;
11521
}
11522
bool Success(const llvm::APSInt &SI, const Expr *E) {
11523
return Success(SI, E, Result);
11524
}
11525
11526
bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
11527
assert(E->getType()->isIntegralOrEnumerationType() &&
11528
"Invalid evaluation result.");
11529
assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
11530
"Invalid evaluation result.");
11531
Result = APValue(APSInt(I));
11532
Result.getInt().setIsUnsigned(
11533
E->getType()->isUnsignedIntegerOrEnumerationType());
11534
return true;
11535
}
11536
bool Success(const llvm::APInt &I, const Expr *E) {
11537
return Success(I, E, Result);
11538
}
11539
11540
bool Success(uint64_t Value, const Expr *E, APValue &Result) {
11541
assert(E->getType()->isIntegralOrEnumerationType() &&
11542
"Invalid evaluation result.");
11543
Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
11544
return true;
11545
}
11546
bool Success(uint64_t Value, const Expr *E) {
11547
return Success(Value, E, Result);
11548
}
11549
11550
bool Success(CharUnits Size, const Expr *E) {
11551
return Success(Size.getQuantity(), E);
11552
}
11553
11554
bool Success(const APValue &V, const Expr *E) {
11555
if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) {
11556
Result = V;
11557
return true;
11558
}
11559
return Success(V.getInt(), E);
11560
}
11561
11562
bool ZeroInitialization(const Expr *E) { return Success(0, E); }
11563
11564
//===--------------------------------------------------------------------===//
11565
// Visitor Methods
11566
//===--------------------------------------------------------------------===//
11567
11568
bool VisitIntegerLiteral(const IntegerLiteral *E) {
11569
return Success(E->getValue(), E);
11570
}
11571
bool VisitCharacterLiteral(const CharacterLiteral *E) {
11572
return Success(E->getValue(), E);
11573
}
11574
11575
bool CheckReferencedDecl(const Expr *E, const Decl *D);
11576
bool VisitDeclRefExpr(const DeclRefExpr *E) {
11577
if (CheckReferencedDecl(E, E->getDecl()))
11578
return true;
11579
11580
return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
11581
}
11582
bool VisitMemberExpr(const MemberExpr *E) {
11583
if (CheckReferencedDecl(E, E->getMemberDecl())) {
11584
VisitIgnoredBaseExpression(E->getBase());
11585
return true;
11586
}
11587
11588
return ExprEvaluatorBaseTy::VisitMemberExpr(E);
11589
}
11590
11591
bool VisitCallExpr(const CallExpr *E);
11592
bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
11593
bool VisitBinaryOperator(const BinaryOperator *E);
11594
bool VisitOffsetOfExpr(const OffsetOfExpr *E);
11595
bool VisitUnaryOperator(const UnaryOperator *E);
11596
11597
bool VisitCastExpr(const CastExpr* E);
11598
bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
11599
11600
bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
11601
return Success(E->getValue(), E);
11602
}
11603
11604
bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
11605
return Success(E->getValue(), E);
11606
}
11607
11608
bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
11609
if (Info.ArrayInitIndex == uint64_t(-1)) {
11610
// We were asked to evaluate this subexpression independent of the
11611
// enclosing ArrayInitLoopExpr. We can't do that.
11612
Info.FFDiag(E);
11613
return false;
11614
}
11615
return Success(Info.ArrayInitIndex, E);
11616
}
11617
11618
// Note, GNU defines __null as an integer, not a pointer.
11619
bool VisitGNUNullExpr(const GNUNullExpr *E) {
11620
return ZeroInitialization(E);
11621
}
11622
11623
bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
11624
return Success(E->getValue(), E);
11625
}
11626
11627
bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
11628
return Success(E->getValue(), E);
11629
}
11630
11631
bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
11632
return Success(E->getValue(), E);
11633
}
11634
11635
bool VisitUnaryReal(const UnaryOperator *E);
11636
bool VisitUnaryImag(const UnaryOperator *E);
11637
11638
bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
11639
bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
11640
bool VisitSourceLocExpr(const SourceLocExpr *E);
11641
bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E);
11642
bool VisitRequiresExpr(const RequiresExpr *E);
11643
// FIXME: Missing: array subscript of vector, member of vector
11644
};
11645
11646
class FixedPointExprEvaluator
11647
: public ExprEvaluatorBase<FixedPointExprEvaluator> {
11648
APValue &Result;
11649
11650
public:
11651
FixedPointExprEvaluator(EvalInfo &info, APValue &result)
11652
: ExprEvaluatorBaseTy(info), Result(result) {}
11653
11654
bool Success(const llvm::APInt &I, const Expr *E) {
11655
return Success(
11656
APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E);
11657
}
11658
11659
bool Success(uint64_t Value, const Expr *E) {
11660
return Success(
11661
APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E);
11662
}
11663
11664
bool Success(const APValue &V, const Expr *E) {
11665
return Success(V.getFixedPoint(), E);
11666
}
11667
11668
bool Success(const APFixedPoint &V, const Expr *E) {
11669
assert(E->getType()->isFixedPointType() && "Invalid evaluation result.");
11670
assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) &&
11671
"Invalid evaluation result.");
11672
Result = APValue(V);
11673
return true;
11674
}
11675
11676
bool ZeroInitialization(const Expr *E) {
11677
return Success(0, E);
11678
}
11679
11680
//===--------------------------------------------------------------------===//
11681
// Visitor Methods
11682
//===--------------------------------------------------------------------===//
11683
11684
bool VisitFixedPointLiteral(const FixedPointLiteral *E) {
11685
return Success(E->getValue(), E);
11686
}
11687
11688
bool VisitCastExpr(const CastExpr *E);
11689
bool VisitUnaryOperator(const UnaryOperator *E);
11690
bool VisitBinaryOperator(const BinaryOperator *E);
11691
};
11692
} // end anonymous namespace
11693
11694
/// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
11695
/// produce either the integer value or a pointer.
11696
///
11697
/// GCC has a heinous extension which folds casts between pointer types and
11698
/// pointer-sized integral types. We support this by allowing the evaluation of
11699
/// an integer rvalue to produce a pointer (represented as an lvalue) instead.
11700
/// Some simple arithmetic on such values is supported (they are treated much
11701
/// like char*).
11702
static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
11703
EvalInfo &Info) {
11704
assert(!E->isValueDependent());
11705
assert(E->isPRValue() && E->getType()->isIntegralOrEnumerationType());
11706
return IntExprEvaluator(Info, Result).Visit(E);
11707
}
11708
11709
static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
11710
assert(!E->isValueDependent());
11711
APValue Val;
11712
if (!EvaluateIntegerOrLValue(E, Val, Info))
11713
return false;
11714
if (!Val.isInt()) {
11715
// FIXME: It would be better to produce the diagnostic for casting
11716
// a pointer to an integer.
11717
Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
11718
return false;
11719
}
11720
Result = Val.getInt();
11721
return true;
11722
}
11723
11724
bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) {
11725
APValue Evaluated = E->EvaluateInContext(
11726
Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
11727
return Success(Evaluated, E);
11728
}
11729
11730
static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
11731
EvalInfo &Info) {
11732
assert(!E->isValueDependent());
11733
if (E->getType()->isFixedPointType()) {
11734
APValue Val;
11735
if (!FixedPointExprEvaluator(Info, Val).Visit(E))
11736
return false;
11737
if (!Val.isFixedPoint())
11738
return false;
11739
11740
Result = Val.getFixedPoint();
11741
return true;
11742
}
11743
return false;
11744
}
11745
11746
static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
11747
EvalInfo &Info) {
11748
assert(!E->isValueDependent());
11749
if (E->getType()->isIntegerType()) {
11750
auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType());
11751
APSInt Val;
11752
if (!EvaluateInteger(E, Val, Info))
11753
return false;
11754
Result = APFixedPoint(Val, FXSema);
11755
return true;
11756
} else if (E->getType()->isFixedPointType()) {
11757
return EvaluateFixedPoint(E, Result, Info);
11758
}
11759
return false;
11760
}
11761
11762
/// Check whether the given declaration can be directly converted to an integral
11763
/// rvalue. If not, no diagnostic is produced; there are other things we can
11764
/// try.
11765
bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
11766
// Enums are integer constant exprs.
11767
if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
11768
// Check for signedness/width mismatches between E type and ECD value.
11769
bool SameSign = (ECD->getInitVal().isSigned()
11770
== E->getType()->isSignedIntegerOrEnumerationType());
11771
bool SameWidth = (ECD->getInitVal().getBitWidth()
11772
== Info.Ctx.getIntWidth(E->getType()));
11773
if (SameSign && SameWidth)
11774
return Success(ECD->getInitVal(), E);
11775
else {
11776
// Get rid of mismatch (otherwise Success assertions will fail)
11777
// by computing a new value matching the type of E.
11778
llvm::APSInt Val = ECD->getInitVal();
11779
if (!SameSign)
11780
Val.setIsSigned(!ECD->getInitVal().isSigned());
11781
if (!SameWidth)
11782
Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
11783
return Success(Val, E);
11784
}
11785
}
11786
return false;
11787
}
11788
11789
/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
11790
/// as GCC.
11791
GCCTypeClass EvaluateBuiltinClassifyType(QualType T,
11792
const LangOptions &LangOpts) {
11793
assert(!T->isDependentType() && "unexpected dependent type");
11794
11795
QualType CanTy = T.getCanonicalType();
11796
11797
switch (CanTy->getTypeClass()) {
11798
#define TYPE(ID, BASE)
11799
#define DEPENDENT_TYPE(ID, BASE) case Type::ID:
11800
#define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
11801
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
11802
#include "clang/AST/TypeNodes.inc"
11803
case Type::Auto:
11804
case Type::DeducedTemplateSpecialization:
11805
llvm_unreachable("unexpected non-canonical or dependent type");
11806
11807
case Type::Builtin:
11808
switch (cast<BuiltinType>(CanTy)->getKind()) {
11809
#define BUILTIN_TYPE(ID, SINGLETON_ID)
11810
#define SIGNED_TYPE(ID, SINGLETON_ID) \
11811
case BuiltinType::ID: return GCCTypeClass::Integer;
11812
#define FLOATING_TYPE(ID, SINGLETON_ID) \
11813
case BuiltinType::ID: return GCCTypeClass::RealFloat;
11814
#define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \
11815
case BuiltinType::ID: break;
11816
#include "clang/AST/BuiltinTypes.def"
11817
case BuiltinType::Void:
11818
return GCCTypeClass::Void;
11819
11820
case BuiltinType::Bool:
11821
return GCCTypeClass::Bool;
11822
11823
case BuiltinType::Char_U:
11824
case BuiltinType::UChar:
11825
case BuiltinType::WChar_U:
11826
case BuiltinType::Char8:
11827
case BuiltinType::Char16:
11828
case BuiltinType::Char32:
11829
case BuiltinType::UShort:
11830
case BuiltinType::UInt:
11831
case BuiltinType::ULong:
11832
case BuiltinType::ULongLong:
11833
case BuiltinType::UInt128:
11834
return GCCTypeClass::Integer;
11835
11836
case BuiltinType::UShortAccum:
11837
case BuiltinType::UAccum:
11838
case BuiltinType::ULongAccum:
11839
case BuiltinType::UShortFract:
11840
case BuiltinType::UFract:
11841
case BuiltinType::ULongFract:
11842
case BuiltinType::SatUShortAccum:
11843
case BuiltinType::SatUAccum:
11844
case BuiltinType::SatULongAccum:
11845
case BuiltinType::SatUShortFract:
11846
case BuiltinType::SatUFract:
11847
case BuiltinType::SatULongFract:
11848
return GCCTypeClass::None;
11849
11850
case BuiltinType::NullPtr:
11851
11852
case BuiltinType::ObjCId:
11853
case BuiltinType::ObjCClass:
11854
case BuiltinType::ObjCSel:
11855
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
11856
case BuiltinType::Id:
11857
#include "clang/Basic/OpenCLImageTypes.def"
11858
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
11859
case BuiltinType::Id:
11860
#include "clang/Basic/OpenCLExtensionTypes.def"
11861
case BuiltinType::OCLSampler:
11862
case BuiltinType::OCLEvent:
11863
case BuiltinType::OCLClkEvent:
11864
case BuiltinType::OCLQueue:
11865
case BuiltinType::OCLReserveID:
11866
#define SVE_TYPE(Name, Id, SingletonId) \
11867
case BuiltinType::Id:
11868
#include "clang/Basic/AArch64SVEACLETypes.def"
11869
#define PPC_VECTOR_TYPE(Name, Id, Size) \
11870
case BuiltinType::Id:
11871
#include "clang/Basic/PPCTypes.def"
11872
#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
11873
#include "clang/Basic/RISCVVTypes.def"
11874
#define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
11875
#include "clang/Basic/WebAssemblyReferenceTypes.def"
11876
#define AMDGPU_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
11877
#include "clang/Basic/AMDGPUTypes.def"
11878
return GCCTypeClass::None;
11879
11880
case BuiltinType::Dependent:
11881
llvm_unreachable("unexpected dependent type");
11882
};
11883
llvm_unreachable("unexpected placeholder type");
11884
11885
case Type::Enum:
11886
return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer;
11887
11888
case Type::Pointer:
11889
case Type::ConstantArray:
11890
case Type::VariableArray:
11891
case Type::IncompleteArray:
11892
case Type::FunctionNoProto:
11893
case Type::FunctionProto:
11894
case Type::ArrayParameter:
11895
return GCCTypeClass::Pointer;
11896
11897
case Type::MemberPointer:
11898
return CanTy->isMemberDataPointerType()
11899
? GCCTypeClass::PointerToDataMember
11900
: GCCTypeClass::PointerToMemberFunction;
11901
11902
case Type::Complex:
11903
return GCCTypeClass::Complex;
11904
11905
case Type::Record:
11906
return CanTy->isUnionType() ? GCCTypeClass::Union
11907
: GCCTypeClass::ClassOrStruct;
11908
11909
case Type::Atomic:
11910
// GCC classifies _Atomic T the same as T.
11911
return EvaluateBuiltinClassifyType(
11912
CanTy->castAs<AtomicType>()->getValueType(), LangOpts);
11913
11914
case Type::Vector:
11915
case Type::ExtVector:
11916
return GCCTypeClass::Vector;
11917
11918
case Type::BlockPointer:
11919
case Type::ConstantMatrix:
11920
case Type::ObjCObject:
11921
case Type::ObjCInterface:
11922
case Type::ObjCObjectPointer:
11923
case Type::Pipe:
11924
// Classify all other types that don't fit into the regular
11925
// classification the same way.
11926
return GCCTypeClass::None;
11927
11928
case Type::BitInt:
11929
return GCCTypeClass::BitInt;
11930
11931
case Type::LValueReference:
11932
case Type::RValueReference:
11933
llvm_unreachable("invalid type for expression");
11934
}
11935
11936
llvm_unreachable("unexpected type class");
11937
}
11938
11939
/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
11940
/// as GCC.
11941
static GCCTypeClass
11942
EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) {
11943
// If no argument was supplied, default to None. This isn't
11944
// ideal, however it is what gcc does.
11945
if (E->getNumArgs() == 0)
11946
return GCCTypeClass::None;
11947
11948
// FIXME: Bizarrely, GCC treats a call with more than one argument as not
11949
// being an ICE, but still folds it to a constant using the type of the first
11950
// argument.
11951
return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts);
11952
}
11953
11954
/// EvaluateBuiltinConstantPForLValue - Determine the result of
11955
/// __builtin_constant_p when applied to the given pointer.
11956
///
11957
/// A pointer is only "constant" if it is null (or a pointer cast to integer)
11958
/// or it points to the first character of a string literal.
11959
static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) {
11960
APValue::LValueBase Base = LV.getLValueBase();
11961
if (Base.isNull()) {
11962
// A null base is acceptable.
11963
return true;
11964
} else if (const Expr *E = Base.dyn_cast<const Expr *>()) {
11965
if (!isa<StringLiteral>(E))
11966
return false;
11967
return LV.getLValueOffset().isZero();
11968
} else if (Base.is<TypeInfoLValue>()) {
11969
// Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to
11970
// evaluate to true.
11971
return true;
11972
} else {
11973
// Any other base is not constant enough for GCC.
11974
return false;
11975
}
11976
}
11977
11978
/// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
11979
/// GCC as we can manage.
11980
static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) {
11981
// This evaluation is not permitted to have side-effects, so evaluate it in
11982
// a speculative evaluation context.
11983
SpeculativeEvaluationRAII SpeculativeEval(Info);
11984
11985
// Constant-folding is always enabled for the operand of __builtin_constant_p
11986
// (even when the enclosing evaluation context otherwise requires a strict
11987
// language-specific constant expression).
11988
FoldConstant Fold(Info, true);
11989
11990
QualType ArgType = Arg->getType();
11991
11992
// __builtin_constant_p always has one operand. The rules which gcc follows
11993
// are not precisely documented, but are as follows:
11994
//
11995
// - If the operand is of integral, floating, complex or enumeration type,
11996
// and can be folded to a known value of that type, it returns 1.
11997
// - If the operand can be folded to a pointer to the first character
11998
// of a string literal (or such a pointer cast to an integral type)
11999
// or to a null pointer or an integer cast to a pointer, it returns 1.
12000
//
12001
// Otherwise, it returns 0.
12002
//
12003
// FIXME: GCC also intends to return 1 for literals of aggregate types, but
12004
// its support for this did not work prior to GCC 9 and is not yet well
12005
// understood.
12006
if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() ||
12007
ArgType->isAnyComplexType() || ArgType->isPointerType() ||
12008
ArgType->isNullPtrType()) {
12009
APValue V;
12010
if (!::EvaluateAsRValue(Info, Arg, V) || Info.EvalStatus.HasSideEffects) {
12011
Fold.keepDiagnostics();
12012
return false;
12013
}
12014
12015
// For a pointer (possibly cast to integer), there are special rules.
12016
if (V.getKind() == APValue::LValue)
12017
return EvaluateBuiltinConstantPForLValue(V);
12018
12019
// Otherwise, any constant value is good enough.
12020
return V.hasValue();
12021
}
12022
12023
// Anything else isn't considered to be sufficiently constant.
12024
return false;
12025
}
12026
12027
/// Retrieves the "underlying object type" of the given expression,
12028
/// as used by __builtin_object_size.
12029
static QualType getObjectType(APValue::LValueBase B) {
12030
if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
12031
if (const VarDecl *VD = dyn_cast<VarDecl>(D))
12032
return VD->getType();
12033
} else if (const Expr *E = B.dyn_cast<const Expr*>()) {
12034
if (isa<CompoundLiteralExpr>(E))
12035
return E->getType();
12036
} else if (B.is<TypeInfoLValue>()) {
12037
return B.getTypeInfoType();
12038
} else if (B.is<DynamicAllocLValue>()) {
12039
return B.getDynamicAllocType();
12040
}
12041
12042
return QualType();
12043
}
12044
12045
/// A more selective version of E->IgnoreParenCasts for
12046
/// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
12047
/// to change the type of E.
12048
/// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
12049
///
12050
/// Always returns an RValue with a pointer representation.
12051
static const Expr *ignorePointerCastsAndParens(const Expr *E) {
12052
assert(E->isPRValue() && E->getType()->hasPointerRepresentation());
12053
12054
const Expr *NoParens = E->IgnoreParens();
12055
const auto *Cast = dyn_cast<CastExpr>(NoParens);
12056
if (Cast == nullptr)
12057
return NoParens;
12058
12059
// We only conservatively allow a few kinds of casts, because this code is
12060
// inherently a simple solution that seeks to support the common case.
12061
auto CastKind = Cast->getCastKind();
12062
if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
12063
CastKind != CK_AddressSpaceConversion)
12064
return NoParens;
12065
12066
const auto *SubExpr = Cast->getSubExpr();
12067
if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isPRValue())
12068
return NoParens;
12069
return ignorePointerCastsAndParens(SubExpr);
12070
}
12071
12072
/// Checks to see if the given LValue's Designator is at the end of the LValue's
12073
/// record layout. e.g.
12074
/// struct { struct { int a, b; } fst, snd; } obj;
12075
/// obj.fst // no
12076
/// obj.snd // yes
12077
/// obj.fst.a // no
12078
/// obj.fst.b // no
12079
/// obj.snd.a // no
12080
/// obj.snd.b // yes
12081
///
12082
/// Please note: this function is specialized for how __builtin_object_size
12083
/// views "objects".
12084
///
12085
/// If this encounters an invalid RecordDecl or otherwise cannot determine the
12086
/// correct result, it will always return true.
12087
static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
12088
assert(!LVal.Designator.Invalid);
12089
12090
auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) {
12091
const RecordDecl *Parent = FD->getParent();
12092
Invalid = Parent->isInvalidDecl();
12093
if (Invalid || Parent->isUnion())
12094
return true;
12095
const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent);
12096
return FD->getFieldIndex() + 1 == Layout.getFieldCount();
12097
};
12098
12099
auto &Base = LVal.getLValueBase();
12100
if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
12101
if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
12102
bool Invalid;
12103
if (!IsLastOrInvalidFieldDecl(FD, Invalid))
12104
return Invalid;
12105
} else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
12106
for (auto *FD : IFD->chain()) {
12107
bool Invalid;
12108
if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid))
12109
return Invalid;
12110
}
12111
}
12112
}
12113
12114
unsigned I = 0;
12115
QualType BaseType = getType(Base);
12116
if (LVal.Designator.FirstEntryIsAnUnsizedArray) {
12117
// If we don't know the array bound, conservatively assume we're looking at
12118
// the final array element.
12119
++I;
12120
if (BaseType->isIncompleteArrayType())
12121
BaseType = Ctx.getAsArrayType(BaseType)->getElementType();
12122
else
12123
BaseType = BaseType->castAs<PointerType>()->getPointeeType();
12124
}
12125
12126
for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) {
12127
const auto &Entry = LVal.Designator.Entries[I];
12128
if (BaseType->isArrayType()) {
12129
// Because __builtin_object_size treats arrays as objects, we can ignore
12130
// the index iff this is the last array in the Designator.
12131
if (I + 1 == E)
12132
return true;
12133
const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
12134
uint64_t Index = Entry.getAsArrayIndex();
12135
if (Index + 1 != CAT->getZExtSize())
12136
return false;
12137
BaseType = CAT->getElementType();
12138
} else if (BaseType->isAnyComplexType()) {
12139
const auto *CT = BaseType->castAs<ComplexType>();
12140
uint64_t Index = Entry.getAsArrayIndex();
12141
if (Index != 1)
12142
return false;
12143
BaseType = CT->getElementType();
12144
} else if (auto *FD = getAsField(Entry)) {
12145
bool Invalid;
12146
if (!IsLastOrInvalidFieldDecl(FD, Invalid))
12147
return Invalid;
12148
BaseType = FD->getType();
12149
} else {
12150
assert(getAsBaseClass(Entry) && "Expecting cast to a base class");
12151
return false;
12152
}
12153
}
12154
return true;
12155
}
12156
12157
/// Tests to see if the LValue has a user-specified designator (that isn't
12158
/// necessarily valid). Note that this always returns 'true' if the LValue has
12159
/// an unsized array as its first designator entry, because there's currently no
12160
/// way to tell if the user typed *foo or foo[0].
12161
static bool refersToCompleteObject(const LValue &LVal) {
12162
if (LVal.Designator.Invalid)
12163
return false;
12164
12165
if (!LVal.Designator.Entries.empty())
12166
return LVal.Designator.isMostDerivedAnUnsizedArray();
12167
12168
if (!LVal.InvalidBase)
12169
return true;
12170
12171
// If `E` is a MemberExpr, then the first part of the designator is hiding in
12172
// the LValueBase.
12173
const auto *E = LVal.Base.dyn_cast<const Expr *>();
12174
return !E || !isa<MemberExpr>(E);
12175
}
12176
12177
/// Attempts to detect a user writing into a piece of memory that's impossible
12178
/// to figure out the size of by just using types.
12179
static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) {
12180
const SubobjectDesignator &Designator = LVal.Designator;
12181
// Notes:
12182
// - Users can only write off of the end when we have an invalid base. Invalid
12183
// bases imply we don't know where the memory came from.
12184
// - We used to be a bit more aggressive here; we'd only be conservative if
12185
// the array at the end was flexible, or if it had 0 or 1 elements. This
12186
// broke some common standard library extensions (PR30346), but was
12187
// otherwise seemingly fine. It may be useful to reintroduce this behavior
12188
// with some sort of list. OTOH, it seems that GCC is always
12189
// conservative with the last element in structs (if it's an array), so our
12190
// current behavior is more compatible than an explicit list approach would
12191
// be.
12192
auto isFlexibleArrayMember = [&] {
12193
using FAMKind = LangOptions::StrictFlexArraysLevelKind;
12194
FAMKind StrictFlexArraysLevel =
12195
Ctx.getLangOpts().getStrictFlexArraysLevel();
12196
12197
if (Designator.isMostDerivedAnUnsizedArray())
12198
return true;
12199
12200
if (StrictFlexArraysLevel == FAMKind::Default)
12201
return true;
12202
12203
if (Designator.getMostDerivedArraySize() == 0 &&
12204
StrictFlexArraysLevel != FAMKind::IncompleteOnly)
12205
return true;
12206
12207
if (Designator.getMostDerivedArraySize() == 1 &&
12208
StrictFlexArraysLevel == FAMKind::OneZeroOrIncomplete)
12209
return true;
12210
12211
return false;
12212
};
12213
12214
return LVal.InvalidBase &&
12215
Designator.Entries.size() == Designator.MostDerivedPathLength &&
12216
Designator.MostDerivedIsArrayElement && isFlexibleArrayMember() &&
12217
isDesignatorAtObjectEnd(Ctx, LVal);
12218
}
12219
12220
/// Converts the given APInt to CharUnits, assuming the APInt is unsigned.
12221
/// Fails if the conversion would cause loss of precision.
12222
static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int,
12223
CharUnits &Result) {
12224
auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max();
12225
if (Int.ugt(CharUnitsMax))
12226
return false;
12227
Result = CharUnits::fromQuantity(Int.getZExtValue());
12228
return true;
12229
}
12230
12231
/// If we're evaluating the object size of an instance of a struct that
12232
/// contains a flexible array member, add the size of the initializer.
12233
static void addFlexibleArrayMemberInitSize(EvalInfo &Info, const QualType &T,
12234
const LValue &LV, CharUnits &Size) {
12235
if (!T.isNull() && T->isStructureType() &&
12236
T->getAsStructureType()->getDecl()->hasFlexibleArrayMember())
12237
if (const auto *V = LV.getLValueBase().dyn_cast<const ValueDecl *>())
12238
if (const auto *VD = dyn_cast<VarDecl>(V))
12239
if (VD->hasInit())
12240
Size += VD->getFlexibleArrayInitChars(Info.Ctx);
12241
}
12242
12243
/// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will
12244
/// determine how many bytes exist from the beginning of the object to either
12245
/// the end of the current subobject, or the end of the object itself, depending
12246
/// on what the LValue looks like + the value of Type.
12247
///
12248
/// If this returns false, the value of Result is undefined.
12249
static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc,
12250
unsigned Type, const LValue &LVal,
12251
CharUnits &EndOffset) {
12252
bool DetermineForCompleteObject = refersToCompleteObject(LVal);
12253
12254
auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) {
12255
if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType())
12256
return false;
12257
return HandleSizeof(Info, ExprLoc, Ty, Result);
12258
};
12259
12260
// We want to evaluate the size of the entire object. This is a valid fallback
12261
// for when Type=1 and the designator is invalid, because we're asked for an
12262
// upper-bound.
12263
if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) {
12264
// Type=3 wants a lower bound, so we can't fall back to this.
12265
if (Type == 3 && !DetermineForCompleteObject)
12266
return false;
12267
12268
llvm::APInt APEndOffset;
12269
if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
12270
getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
12271
return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
12272
12273
if (LVal.InvalidBase)
12274
return false;
12275
12276
QualType BaseTy = getObjectType(LVal.getLValueBase());
12277
const bool Ret = CheckedHandleSizeof(BaseTy, EndOffset);
12278
addFlexibleArrayMemberInitSize(Info, BaseTy, LVal, EndOffset);
12279
return Ret;
12280
}
12281
12282
// We want to evaluate the size of a subobject.
12283
const SubobjectDesignator &Designator = LVal.Designator;
12284
12285
// The following is a moderately common idiom in C:
12286
//
12287
// struct Foo { int a; char c[1]; };
12288
// struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
12289
// strcpy(&F->c[0], Bar);
12290
//
12291
// In order to not break too much legacy code, we need to support it.
12292
if (isUserWritingOffTheEnd(Info.Ctx, LVal)) {
12293
// If we can resolve this to an alloc_size call, we can hand that back,
12294
// because we know for certain how many bytes there are to write to.
12295
llvm::APInt APEndOffset;
12296
if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
12297
getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
12298
return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
12299
12300
// If we cannot determine the size of the initial allocation, then we can't
12301
// given an accurate upper-bound. However, we are still able to give
12302
// conservative lower-bounds for Type=3.
12303
if (Type == 1)
12304
return false;
12305
}
12306
12307
CharUnits BytesPerElem;
12308
if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem))
12309
return false;
12310
12311
// According to the GCC documentation, we want the size of the subobject
12312
// denoted by the pointer. But that's not quite right -- what we actually
12313
// want is the size of the immediately-enclosing array, if there is one.
12314
int64_t ElemsRemaining;
12315
if (Designator.MostDerivedIsArrayElement &&
12316
Designator.Entries.size() == Designator.MostDerivedPathLength) {
12317
uint64_t ArraySize = Designator.getMostDerivedArraySize();
12318
uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex();
12319
ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex;
12320
} else {
12321
ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1;
12322
}
12323
12324
EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining;
12325
return true;
12326
}
12327
12328
/// Tries to evaluate the __builtin_object_size for @p E. If successful,
12329
/// returns true and stores the result in @p Size.
12330
///
12331
/// If @p WasError is non-null, this will report whether the failure to evaluate
12332
/// is to be treated as an Error in IntExprEvaluator.
12333
static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
12334
EvalInfo &Info, uint64_t &Size) {
12335
// Determine the denoted object.
12336
LValue LVal;
12337
{
12338
// The operand of __builtin_object_size is never evaluated for side-effects.
12339
// If there are any, but we can determine the pointed-to object anyway, then
12340
// ignore the side-effects.
12341
SpeculativeEvaluationRAII SpeculativeEval(Info);
12342
IgnoreSideEffectsRAII Fold(Info);
12343
12344
if (E->isGLValue()) {
12345
// It's possible for us to be given GLValues if we're called via
12346
// Expr::tryEvaluateObjectSize.
12347
APValue RVal;
12348
if (!EvaluateAsRValue(Info, E, RVal))
12349
return false;
12350
LVal.setFrom(Info.Ctx, RVal);
12351
} else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info,
12352
/*InvalidBaseOK=*/true))
12353
return false;
12354
}
12355
12356
// If we point to before the start of the object, there are no accessible
12357
// bytes.
12358
if (LVal.getLValueOffset().isNegative()) {
12359
Size = 0;
12360
return true;
12361
}
12362
12363
CharUnits EndOffset;
12364
if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset))
12365
return false;
12366
12367
// If we've fallen outside of the end offset, just pretend there's nothing to
12368
// write to/read from.
12369
if (EndOffset <= LVal.getLValueOffset())
12370
Size = 0;
12371
else
12372
Size = (EndOffset - LVal.getLValueOffset()).getQuantity();
12373
return true;
12374
}
12375
12376
bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
12377
if (!IsConstantEvaluatedBuiltinCall(E))
12378
return ExprEvaluatorBaseTy::VisitCallExpr(E);
12379
return VisitBuiltinCallExpr(E, E->getBuiltinCallee());
12380
}
12381
12382
static bool getBuiltinAlignArguments(const CallExpr *E, EvalInfo &Info,
12383
APValue &Val, APSInt &Alignment) {
12384
QualType SrcTy = E->getArg(0)->getType();
12385
if (!getAlignmentArgument(E->getArg(1), SrcTy, Info, Alignment))
12386
return false;
12387
// Even though we are evaluating integer expressions we could get a pointer
12388
// argument for the __builtin_is_aligned() case.
12389
if (SrcTy->isPointerType()) {
12390
LValue Ptr;
12391
if (!EvaluatePointer(E->getArg(0), Ptr, Info))
12392
return false;
12393
Ptr.moveInto(Val);
12394
} else if (!SrcTy->isIntegralOrEnumerationType()) {
12395
Info.FFDiag(E->getArg(0));
12396
return false;
12397
} else {
12398
APSInt SrcInt;
12399
if (!EvaluateInteger(E->getArg(0), SrcInt, Info))
12400
return false;
12401
assert(SrcInt.getBitWidth() >= Alignment.getBitWidth() &&
12402
"Bit widths must be the same");
12403
Val = APValue(SrcInt);
12404
}
12405
assert(Val.hasValue());
12406
return true;
12407
}
12408
12409
bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
12410
unsigned BuiltinOp) {
12411
switch (BuiltinOp) {
12412
default:
12413
return false;
12414
12415
case Builtin::BI__builtin_dynamic_object_size:
12416
case Builtin::BI__builtin_object_size: {
12417
// The type was checked when we built the expression.
12418
unsigned Type =
12419
E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
12420
assert(Type <= 3 && "unexpected type");
12421
12422
uint64_t Size;
12423
if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size))
12424
return Success(Size, E);
12425
12426
if (E->getArg(0)->HasSideEffects(Info.Ctx))
12427
return Success((Type & 2) ? 0 : -1, E);
12428
12429
// Expression had no side effects, but we couldn't statically determine the
12430
// size of the referenced object.
12431
switch (Info.EvalMode) {
12432
case EvalInfo::EM_ConstantExpression:
12433
case EvalInfo::EM_ConstantFold:
12434
case EvalInfo::EM_IgnoreSideEffects:
12435
// Leave it to IR generation.
12436
return Error(E);
12437
case EvalInfo::EM_ConstantExpressionUnevaluated:
12438
// Reduce it to a constant now.
12439
return Success((Type & 2) ? 0 : -1, E);
12440
}
12441
12442
llvm_unreachable("unexpected EvalMode");
12443
}
12444
12445
case Builtin::BI__builtin_os_log_format_buffer_size: {
12446
analyze_os_log::OSLogBufferLayout Layout;
12447
analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout);
12448
return Success(Layout.size().getQuantity(), E);
12449
}
12450
12451
case Builtin::BI__builtin_is_aligned: {
12452
APValue Src;
12453
APSInt Alignment;
12454
if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
12455
return false;
12456
if (Src.isLValue()) {
12457
// If we evaluated a pointer, check the minimum known alignment.
12458
LValue Ptr;
12459
Ptr.setFrom(Info.Ctx, Src);
12460
CharUnits BaseAlignment = getBaseAlignment(Info, Ptr);
12461
CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Ptr.Offset);
12462
// We can return true if the known alignment at the computed offset is
12463
// greater than the requested alignment.
12464
assert(PtrAlign.isPowerOfTwo());
12465
assert(Alignment.isPowerOf2());
12466
if (PtrAlign.getQuantity() >= Alignment)
12467
return Success(1, E);
12468
// If the alignment is not known to be sufficient, some cases could still
12469
// be aligned at run time. However, if the requested alignment is less or
12470
// equal to the base alignment and the offset is not aligned, we know that
12471
// the run-time value can never be aligned.
12472
if (BaseAlignment.getQuantity() >= Alignment &&
12473
PtrAlign.getQuantity() < Alignment)
12474
return Success(0, E);
12475
// Otherwise we can't infer whether the value is sufficiently aligned.
12476
// TODO: __builtin_is_aligned(__builtin_align_{down,up{(expr, N), N)
12477
// in cases where we can't fully evaluate the pointer.
12478
Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_compute)
12479
<< Alignment;
12480
return false;
12481
}
12482
assert(Src.isInt());
12483
return Success((Src.getInt() & (Alignment - 1)) == 0 ? 1 : 0, E);
12484
}
12485
case Builtin::BI__builtin_align_up: {
12486
APValue Src;
12487
APSInt Alignment;
12488
if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
12489
return false;
12490
if (!Src.isInt())
12491
return Error(E);
12492
APSInt AlignedVal =
12493
APSInt((Src.getInt() + (Alignment - 1)) & ~(Alignment - 1),
12494
Src.getInt().isUnsigned());
12495
assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
12496
return Success(AlignedVal, E);
12497
}
12498
case Builtin::BI__builtin_align_down: {
12499
APValue Src;
12500
APSInt Alignment;
12501
if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
12502
return false;
12503
if (!Src.isInt())
12504
return Error(E);
12505
APSInt AlignedVal =
12506
APSInt(Src.getInt() & ~(Alignment - 1), Src.getInt().isUnsigned());
12507
assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
12508
return Success(AlignedVal, E);
12509
}
12510
12511
case Builtin::BI__builtin_bitreverse8:
12512
case Builtin::BI__builtin_bitreverse16:
12513
case Builtin::BI__builtin_bitreverse32:
12514
case Builtin::BI__builtin_bitreverse64: {
12515
APSInt Val;
12516
if (!EvaluateInteger(E->getArg(0), Val, Info))
12517
return false;
12518
12519
return Success(Val.reverseBits(), E);
12520
}
12521
12522
case Builtin::BI__builtin_bswap16:
12523
case Builtin::BI__builtin_bswap32:
12524
case Builtin::BI__builtin_bswap64: {
12525
APSInt Val;
12526
if (!EvaluateInteger(E->getArg(0), Val, Info))
12527
return false;
12528
12529
return Success(Val.byteSwap(), E);
12530
}
12531
12532
case Builtin::BI__builtin_classify_type:
12533
return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E);
12534
12535
case Builtin::BI__builtin_clrsb:
12536
case Builtin::BI__builtin_clrsbl:
12537
case Builtin::BI__builtin_clrsbll: {
12538
APSInt Val;
12539
if (!EvaluateInteger(E->getArg(0), Val, Info))
12540
return false;
12541
12542
return Success(Val.getBitWidth() - Val.getSignificantBits(), E);
12543
}
12544
12545
case Builtin::BI__builtin_clz:
12546
case Builtin::BI__builtin_clzl:
12547
case Builtin::BI__builtin_clzll:
12548
case Builtin::BI__builtin_clzs:
12549
case Builtin::BI__builtin_clzg:
12550
case Builtin::BI__lzcnt16: // Microsoft variants of count leading-zeroes
12551
case Builtin::BI__lzcnt:
12552
case Builtin::BI__lzcnt64: {
12553
APSInt Val;
12554
if (!EvaluateInteger(E->getArg(0), Val, Info))
12555
return false;
12556
12557
std::optional<APSInt> Fallback;
12558
if (BuiltinOp == Builtin::BI__builtin_clzg && E->getNumArgs() > 1) {
12559
APSInt FallbackTemp;
12560
if (!EvaluateInteger(E->getArg(1), FallbackTemp, Info))
12561
return false;
12562
Fallback = FallbackTemp;
12563
}
12564
12565
if (!Val) {
12566
if (Fallback)
12567
return Success(*Fallback, E);
12568
12569
// When the argument is 0, the result of GCC builtins is undefined,
12570
// whereas for Microsoft intrinsics, the result is the bit-width of the
12571
// argument.
12572
bool ZeroIsUndefined = BuiltinOp != Builtin::BI__lzcnt16 &&
12573
BuiltinOp != Builtin::BI__lzcnt &&
12574
BuiltinOp != Builtin::BI__lzcnt64;
12575
12576
if (ZeroIsUndefined)
12577
return Error(E);
12578
}
12579
12580
return Success(Val.countl_zero(), E);
12581
}
12582
12583
case Builtin::BI__builtin_constant_p: {
12584
const Expr *Arg = E->getArg(0);
12585
if (EvaluateBuiltinConstantP(Info, Arg))
12586
return Success(true, E);
12587
if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) {
12588
// Outside a constant context, eagerly evaluate to false in the presence
12589
// of side-effects in order to avoid -Wunsequenced false-positives in
12590
// a branch on __builtin_constant_p(expr).
12591
return Success(false, E);
12592
}
12593
Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
12594
return false;
12595
}
12596
12597
case Builtin::BI__builtin_is_constant_evaluated: {
12598
const auto *Callee = Info.CurrentCall->getCallee();
12599
if (Info.InConstantContext && !Info.CheckingPotentialConstantExpression &&
12600
(Info.CallStackDepth == 1 ||
12601
(Info.CallStackDepth == 2 && Callee->isInStdNamespace() &&
12602
Callee->getIdentifier() &&
12603
Callee->getIdentifier()->isStr("is_constant_evaluated")))) {
12604
// FIXME: Find a better way to avoid duplicated diagnostics.
12605
if (Info.EvalStatus.Diag)
12606
Info.report((Info.CallStackDepth == 1)
12607
? E->getExprLoc()
12608
: Info.CurrentCall->getCallRange().getBegin(),
12609
diag::warn_is_constant_evaluated_always_true_constexpr)
12610
<< (Info.CallStackDepth == 1 ? "__builtin_is_constant_evaluated"
12611
: "std::is_constant_evaluated");
12612
}
12613
12614
return Success(Info.InConstantContext, E);
12615
}
12616
12617
case Builtin::BI__builtin_ctz:
12618
case Builtin::BI__builtin_ctzl:
12619
case Builtin::BI__builtin_ctzll:
12620
case Builtin::BI__builtin_ctzs:
12621
case Builtin::BI__builtin_ctzg: {
12622
APSInt Val;
12623
if (!EvaluateInteger(E->getArg(0), Val, Info))
12624
return false;
12625
12626
std::optional<APSInt> Fallback;
12627
if (BuiltinOp == Builtin::BI__builtin_ctzg && E->getNumArgs() > 1) {
12628
APSInt FallbackTemp;
12629
if (!EvaluateInteger(E->getArg(1), FallbackTemp, Info))
12630
return false;
12631
Fallback = FallbackTemp;
12632
}
12633
12634
if (!Val) {
12635
if (Fallback)
12636
return Success(*Fallback, E);
12637
12638
return Error(E);
12639
}
12640
12641
return Success(Val.countr_zero(), E);
12642
}
12643
12644
case Builtin::BI__builtin_eh_return_data_regno: {
12645
int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
12646
Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
12647
return Success(Operand, E);
12648
}
12649
12650
case Builtin::BI__builtin_expect:
12651
case Builtin::BI__builtin_expect_with_probability:
12652
return Visit(E->getArg(0));
12653
12654
case Builtin::BI__builtin_ptrauth_string_discriminator: {
12655
const auto *Literal =
12656
cast<StringLiteral>(E->getArg(0)->IgnoreParenImpCasts());
12657
uint64_t Result = getPointerAuthStableSipHash(Literal->getString());
12658
return Success(Result, E);
12659
}
12660
12661
case Builtin::BI__builtin_ffs:
12662
case Builtin::BI__builtin_ffsl:
12663
case Builtin::BI__builtin_ffsll: {
12664
APSInt Val;
12665
if (!EvaluateInteger(E->getArg(0), Val, Info))
12666
return false;
12667
12668
unsigned N = Val.countr_zero();
12669
return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
12670
}
12671
12672
case Builtin::BI__builtin_fpclassify: {
12673
APFloat Val(0.0);
12674
if (!EvaluateFloat(E->getArg(5), Val, Info))
12675
return false;
12676
unsigned Arg;
12677
switch (Val.getCategory()) {
12678
case APFloat::fcNaN: Arg = 0; break;
12679
case APFloat::fcInfinity: Arg = 1; break;
12680
case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
12681
case APFloat::fcZero: Arg = 4; break;
12682
}
12683
return Visit(E->getArg(Arg));
12684
}
12685
12686
case Builtin::BI__builtin_isinf_sign: {
12687
APFloat Val(0.0);
12688
return EvaluateFloat(E->getArg(0), Val, Info) &&
12689
Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
12690
}
12691
12692
case Builtin::BI__builtin_isinf: {
12693
APFloat Val(0.0);
12694
return EvaluateFloat(E->getArg(0), Val, Info) &&
12695
Success(Val.isInfinity() ? 1 : 0, E);
12696
}
12697
12698
case Builtin::BI__builtin_isfinite: {
12699
APFloat Val(0.0);
12700
return EvaluateFloat(E->getArg(0), Val, Info) &&
12701
Success(Val.isFinite() ? 1 : 0, E);
12702
}
12703
12704
case Builtin::BI__builtin_isnan: {
12705
APFloat Val(0.0);
12706
return EvaluateFloat(E->getArg(0), Val, Info) &&
12707
Success(Val.isNaN() ? 1 : 0, E);
12708
}
12709
12710
case Builtin::BI__builtin_isnormal: {
12711
APFloat Val(0.0);
12712
return EvaluateFloat(E->getArg(0), Val, Info) &&
12713
Success(Val.isNormal() ? 1 : 0, E);
12714
}
12715
12716
case Builtin::BI__builtin_issubnormal: {
12717
APFloat Val(0.0);
12718
return EvaluateFloat(E->getArg(0), Val, Info) &&
12719
Success(Val.isDenormal() ? 1 : 0, E);
12720
}
12721
12722
case Builtin::BI__builtin_iszero: {
12723
APFloat Val(0.0);
12724
return EvaluateFloat(E->getArg(0), Val, Info) &&
12725
Success(Val.isZero() ? 1 : 0, E);
12726
}
12727
12728
case Builtin::BI__builtin_issignaling: {
12729
APFloat Val(0.0);
12730
return EvaluateFloat(E->getArg(0), Val, Info) &&
12731
Success(Val.isSignaling() ? 1 : 0, E);
12732
}
12733
12734
case Builtin::BI__builtin_isfpclass: {
12735
APSInt MaskVal;
12736
if (!EvaluateInteger(E->getArg(1), MaskVal, Info))
12737
return false;
12738
unsigned Test = static_cast<llvm::FPClassTest>(MaskVal.getZExtValue());
12739
APFloat Val(0.0);
12740
return EvaluateFloat(E->getArg(0), Val, Info) &&
12741
Success((Val.classify() & Test) ? 1 : 0, E);
12742
}
12743
12744
case Builtin::BI__builtin_parity:
12745
case Builtin::BI__builtin_parityl:
12746
case Builtin::BI__builtin_parityll: {
12747
APSInt Val;
12748
if (!EvaluateInteger(E->getArg(0), Val, Info))
12749
return false;
12750
12751
return Success(Val.popcount() % 2, E);
12752
}
12753
12754
case Builtin::BI__builtin_popcount:
12755
case Builtin::BI__builtin_popcountl:
12756
case Builtin::BI__builtin_popcountll:
12757
case Builtin::BI__builtin_popcountg:
12758
case Builtin::BI__popcnt16: // Microsoft variants of popcount
12759
case Builtin::BI__popcnt:
12760
case Builtin::BI__popcnt64: {
12761
APSInt Val;
12762
if (!EvaluateInteger(E->getArg(0), Val, Info))
12763
return false;
12764
12765
return Success(Val.popcount(), E);
12766
}
12767
12768
case Builtin::BI__builtin_rotateleft8:
12769
case Builtin::BI__builtin_rotateleft16:
12770
case Builtin::BI__builtin_rotateleft32:
12771
case Builtin::BI__builtin_rotateleft64:
12772
case Builtin::BI_rotl8: // Microsoft variants of rotate right
12773
case Builtin::BI_rotl16:
12774
case Builtin::BI_rotl:
12775
case Builtin::BI_lrotl:
12776
case Builtin::BI_rotl64: {
12777
APSInt Val, Amt;
12778
if (!EvaluateInteger(E->getArg(0), Val, Info) ||
12779
!EvaluateInteger(E->getArg(1), Amt, Info))
12780
return false;
12781
12782
return Success(Val.rotl(Amt.urem(Val.getBitWidth())), E);
12783
}
12784
12785
case Builtin::BI__builtin_rotateright8:
12786
case Builtin::BI__builtin_rotateright16:
12787
case Builtin::BI__builtin_rotateright32:
12788
case Builtin::BI__builtin_rotateright64:
12789
case Builtin::BI_rotr8: // Microsoft variants of rotate right
12790
case Builtin::BI_rotr16:
12791
case Builtin::BI_rotr:
12792
case Builtin::BI_lrotr:
12793
case Builtin::BI_rotr64: {
12794
APSInt Val, Amt;
12795
if (!EvaluateInteger(E->getArg(0), Val, Info) ||
12796
!EvaluateInteger(E->getArg(1), Amt, Info))
12797
return false;
12798
12799
return Success(Val.rotr(Amt.urem(Val.getBitWidth())), E);
12800
}
12801
12802
case Builtin::BIstrlen:
12803
case Builtin::BIwcslen:
12804
// A call to strlen is not a constant expression.
12805
if (Info.getLangOpts().CPlusPlus11)
12806
Info.CCEDiag(E, diag::note_constexpr_invalid_function)
12807
<< /*isConstexpr*/ 0 << /*isConstructor*/ 0
12808
<< ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
12809
else
12810
Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
12811
[[fallthrough]];
12812
case Builtin::BI__builtin_strlen:
12813
case Builtin::BI__builtin_wcslen: {
12814
// As an extension, we support __builtin_strlen() as a constant expression,
12815
// and support folding strlen() to a constant.
12816
uint64_t StrLen;
12817
if (EvaluateBuiltinStrLen(E->getArg(0), StrLen, Info))
12818
return Success(StrLen, E);
12819
return false;
12820
}
12821
12822
case Builtin::BIstrcmp:
12823
case Builtin::BIwcscmp:
12824
case Builtin::BIstrncmp:
12825
case Builtin::BIwcsncmp:
12826
case Builtin::BImemcmp:
12827
case Builtin::BIbcmp:
12828
case Builtin::BIwmemcmp:
12829
// A call to strlen is not a constant expression.
12830
if (Info.getLangOpts().CPlusPlus11)
12831
Info.CCEDiag(E, diag::note_constexpr_invalid_function)
12832
<< /*isConstexpr*/ 0 << /*isConstructor*/ 0
12833
<< ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
12834
else
12835
Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
12836
[[fallthrough]];
12837
case Builtin::BI__builtin_strcmp:
12838
case Builtin::BI__builtin_wcscmp:
12839
case Builtin::BI__builtin_strncmp:
12840
case Builtin::BI__builtin_wcsncmp:
12841
case Builtin::BI__builtin_memcmp:
12842
case Builtin::BI__builtin_bcmp:
12843
case Builtin::BI__builtin_wmemcmp: {
12844
LValue String1, String2;
12845
if (!EvaluatePointer(E->getArg(0), String1, Info) ||
12846
!EvaluatePointer(E->getArg(1), String2, Info))
12847
return false;
12848
12849
uint64_t MaxLength = uint64_t(-1);
12850
if (BuiltinOp != Builtin::BIstrcmp &&
12851
BuiltinOp != Builtin::BIwcscmp &&
12852
BuiltinOp != Builtin::BI__builtin_strcmp &&
12853
BuiltinOp != Builtin::BI__builtin_wcscmp) {
12854
APSInt N;
12855
if (!EvaluateInteger(E->getArg(2), N, Info))
12856
return false;
12857
MaxLength = N.getZExtValue();
12858
}
12859
12860
// Empty substrings compare equal by definition.
12861
if (MaxLength == 0u)
12862
return Success(0, E);
12863
12864
if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
12865
!String2.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
12866
String1.Designator.Invalid || String2.Designator.Invalid)
12867
return false;
12868
12869
QualType CharTy1 = String1.Designator.getType(Info.Ctx);
12870
QualType CharTy2 = String2.Designator.getType(Info.Ctx);
12871
12872
bool IsRawByte = BuiltinOp == Builtin::BImemcmp ||
12873
BuiltinOp == Builtin::BIbcmp ||
12874
BuiltinOp == Builtin::BI__builtin_memcmp ||
12875
BuiltinOp == Builtin::BI__builtin_bcmp;
12876
12877
assert(IsRawByte ||
12878
(Info.Ctx.hasSameUnqualifiedType(
12879
CharTy1, E->getArg(0)->getType()->getPointeeType()) &&
12880
Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2)));
12881
12882
// For memcmp, allow comparing any arrays of '[[un]signed] char' or
12883
// 'char8_t', but no other types.
12884
if (IsRawByte &&
12885
!(isOneByteCharacterType(CharTy1) && isOneByteCharacterType(CharTy2))) {
12886
// FIXME: Consider using our bit_cast implementation to support this.
12887
Info.FFDiag(E, diag::note_constexpr_memcmp_unsupported)
12888
<< ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str()
12889
<< CharTy1 << CharTy2;
12890
return false;
12891
}
12892
12893
const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) {
12894
return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) &&
12895
handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) &&
12896
Char1.isInt() && Char2.isInt();
12897
};
12898
const auto &AdvanceElems = [&] {
12899
return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) &&
12900
HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1);
12901
};
12902
12903
bool StopAtNull =
12904
(BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp &&
12905
BuiltinOp != Builtin::BIwmemcmp &&
12906
BuiltinOp != Builtin::BI__builtin_memcmp &&
12907
BuiltinOp != Builtin::BI__builtin_bcmp &&
12908
BuiltinOp != Builtin::BI__builtin_wmemcmp);
12909
bool IsWide = BuiltinOp == Builtin::BIwcscmp ||
12910
BuiltinOp == Builtin::BIwcsncmp ||
12911
BuiltinOp == Builtin::BIwmemcmp ||
12912
BuiltinOp == Builtin::BI__builtin_wcscmp ||
12913
BuiltinOp == Builtin::BI__builtin_wcsncmp ||
12914
BuiltinOp == Builtin::BI__builtin_wmemcmp;
12915
12916
for (; MaxLength; --MaxLength) {
12917
APValue Char1, Char2;
12918
if (!ReadCurElems(Char1, Char2))
12919
return false;
12920
if (Char1.getInt().ne(Char2.getInt())) {
12921
if (IsWide) // wmemcmp compares with wchar_t signedness.
12922
return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E);
12923
// memcmp always compares unsigned chars.
12924
return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E);
12925
}
12926
if (StopAtNull && !Char1.getInt())
12927
return Success(0, E);
12928
assert(!(StopAtNull && !Char2.getInt()));
12929
if (!AdvanceElems())
12930
return false;
12931
}
12932
// We hit the strncmp / memcmp limit.
12933
return Success(0, E);
12934
}
12935
12936
case Builtin::BI__atomic_always_lock_free:
12937
case Builtin::BI__atomic_is_lock_free:
12938
case Builtin::BI__c11_atomic_is_lock_free: {
12939
APSInt SizeVal;
12940
if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
12941
return false;
12942
12943
// For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
12944
// of two less than or equal to the maximum inline atomic width, we know it
12945
// is lock-free. If the size isn't a power of two, or greater than the
12946
// maximum alignment where we promote atomics, we know it is not lock-free
12947
// (at least not in the sense of atomic_is_lock_free). Otherwise,
12948
// the answer can only be determined at runtime; for example, 16-byte
12949
// atomics have lock-free implementations on some, but not all,
12950
// x86-64 processors.
12951
12952
// Check power-of-two.
12953
CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
12954
if (Size.isPowerOfTwo()) {
12955
// Check against inlining width.
12956
unsigned InlineWidthBits =
12957
Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
12958
if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
12959
if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
12960
Size == CharUnits::One())
12961
return Success(1, E);
12962
12963
// If the pointer argument can be evaluated to a compile-time constant
12964
// integer (or nullptr), check if that value is appropriately aligned.
12965
const Expr *PtrArg = E->getArg(1);
12966
Expr::EvalResult ExprResult;
12967
APSInt IntResult;
12968
if (PtrArg->EvaluateAsRValue(ExprResult, Info.Ctx) &&
12969
ExprResult.Val.toIntegralConstant(IntResult, PtrArg->getType(),
12970
Info.Ctx) &&
12971
IntResult.isAligned(Size.getAsAlign()))
12972
return Success(1, E);
12973
12974
// Otherwise, check if the type's alignment against Size.
12975
if (auto *ICE = dyn_cast<ImplicitCastExpr>(PtrArg)) {
12976
// Drop the potential implicit-cast to 'const volatile void*', getting
12977
// the underlying type.
12978
if (ICE->getCastKind() == CK_BitCast)
12979
PtrArg = ICE->getSubExpr();
12980
}
12981
12982
if (auto PtrTy = PtrArg->getType()->getAs<PointerType>()) {
12983
QualType PointeeType = PtrTy->getPointeeType();
12984
if (!PointeeType->isIncompleteType() &&
12985
Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
12986
// OK, we will inline operations on this object.
12987
return Success(1, E);
12988
}
12989
}
12990
}
12991
}
12992
12993
return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
12994
Success(0, E) : Error(E);
12995
}
12996
case Builtin::BI__builtin_addcb:
12997
case Builtin::BI__builtin_addcs:
12998
case Builtin::BI__builtin_addc:
12999
case Builtin::BI__builtin_addcl:
13000
case Builtin::BI__builtin_addcll:
13001
case Builtin::BI__builtin_subcb:
13002
case Builtin::BI__builtin_subcs:
13003
case Builtin::BI__builtin_subc:
13004
case Builtin::BI__builtin_subcl:
13005
case Builtin::BI__builtin_subcll: {
13006
LValue CarryOutLValue;
13007
APSInt LHS, RHS, CarryIn, CarryOut, Result;
13008
QualType ResultType = E->getArg(0)->getType();
13009
if (!EvaluateInteger(E->getArg(0), LHS, Info) ||
13010
!EvaluateInteger(E->getArg(1), RHS, Info) ||
13011
!EvaluateInteger(E->getArg(2), CarryIn, Info) ||
13012
!EvaluatePointer(E->getArg(3), CarryOutLValue, Info))
13013
return false;
13014
// Copy the number of bits and sign.
13015
Result = LHS;
13016
CarryOut = LHS;
13017
13018
bool FirstOverflowed = false;
13019
bool SecondOverflowed = false;
13020
switch (BuiltinOp) {
13021
default:
13022
llvm_unreachable("Invalid value for BuiltinOp");
13023
case Builtin::BI__builtin_addcb:
13024
case Builtin::BI__builtin_addcs:
13025
case Builtin::BI__builtin_addc:
13026
case Builtin::BI__builtin_addcl:
13027
case Builtin::BI__builtin_addcll:
13028
Result =
13029
LHS.uadd_ov(RHS, FirstOverflowed).uadd_ov(CarryIn, SecondOverflowed);
13030
break;
13031
case Builtin::BI__builtin_subcb:
13032
case Builtin::BI__builtin_subcs:
13033
case Builtin::BI__builtin_subc:
13034
case Builtin::BI__builtin_subcl:
13035
case Builtin::BI__builtin_subcll:
13036
Result =
13037
LHS.usub_ov(RHS, FirstOverflowed).usub_ov(CarryIn, SecondOverflowed);
13038
break;
13039
}
13040
13041
// It is possible for both overflows to happen but CGBuiltin uses an OR so
13042
// this is consistent.
13043
CarryOut = (uint64_t)(FirstOverflowed | SecondOverflowed);
13044
APValue APV{CarryOut};
13045
if (!handleAssignment(Info, E, CarryOutLValue, ResultType, APV))
13046
return false;
13047
return Success(Result, E);
13048
}
13049
case Builtin::BI__builtin_add_overflow:
13050
case Builtin::BI__builtin_sub_overflow:
13051
case Builtin::BI__builtin_mul_overflow:
13052
case Builtin::BI__builtin_sadd_overflow:
13053
case Builtin::BI__builtin_uadd_overflow:
13054
case Builtin::BI__builtin_uaddl_overflow:
13055
case Builtin::BI__builtin_uaddll_overflow:
13056
case Builtin::BI__builtin_usub_overflow:
13057
case Builtin::BI__builtin_usubl_overflow:
13058
case Builtin::BI__builtin_usubll_overflow:
13059
case Builtin::BI__builtin_umul_overflow:
13060
case Builtin::BI__builtin_umull_overflow:
13061
case Builtin::BI__builtin_umulll_overflow:
13062
case Builtin::BI__builtin_saddl_overflow:
13063
case Builtin::BI__builtin_saddll_overflow:
13064
case Builtin::BI__builtin_ssub_overflow:
13065
case Builtin::BI__builtin_ssubl_overflow:
13066
case Builtin::BI__builtin_ssubll_overflow:
13067
case Builtin::BI__builtin_smul_overflow:
13068
case Builtin::BI__builtin_smull_overflow:
13069
case Builtin::BI__builtin_smulll_overflow: {
13070
LValue ResultLValue;
13071
APSInt LHS, RHS;
13072
13073
QualType ResultType = E->getArg(2)->getType()->getPointeeType();
13074
if (!EvaluateInteger(E->getArg(0), LHS, Info) ||
13075
!EvaluateInteger(E->getArg(1), RHS, Info) ||
13076
!EvaluatePointer(E->getArg(2), ResultLValue, Info))
13077
return false;
13078
13079
APSInt Result;
13080
bool DidOverflow = false;
13081
13082
// If the types don't have to match, enlarge all 3 to the largest of them.
13083
if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
13084
BuiltinOp == Builtin::BI__builtin_sub_overflow ||
13085
BuiltinOp == Builtin::BI__builtin_mul_overflow) {
13086
bool IsSigned = LHS.isSigned() || RHS.isSigned() ||
13087
ResultType->isSignedIntegerOrEnumerationType();
13088
bool AllSigned = LHS.isSigned() && RHS.isSigned() &&
13089
ResultType->isSignedIntegerOrEnumerationType();
13090
uint64_t LHSSize = LHS.getBitWidth();
13091
uint64_t RHSSize = RHS.getBitWidth();
13092
uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType);
13093
uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize);
13094
13095
// Add an additional bit if the signedness isn't uniformly agreed to. We
13096
// could do this ONLY if there is a signed and an unsigned that both have
13097
// MaxBits, but the code to check that is pretty nasty. The issue will be
13098
// caught in the shrink-to-result later anyway.
13099
if (IsSigned && !AllSigned)
13100
++MaxBits;
13101
13102
LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned);
13103
RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned);
13104
Result = APSInt(MaxBits, !IsSigned);
13105
}
13106
13107
// Find largest int.
13108
switch (BuiltinOp) {
13109
default:
13110
llvm_unreachable("Invalid value for BuiltinOp");
13111
case Builtin::BI__builtin_add_overflow:
13112
case Builtin::BI__builtin_sadd_overflow:
13113
case Builtin::BI__builtin_saddl_overflow:
13114
case Builtin::BI__builtin_saddll_overflow:
13115
case Builtin::BI__builtin_uadd_overflow:
13116
case Builtin::BI__builtin_uaddl_overflow:
13117
case Builtin::BI__builtin_uaddll_overflow:
13118
Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow)
13119
: LHS.uadd_ov(RHS, DidOverflow);
13120
break;
13121
case Builtin::BI__builtin_sub_overflow:
13122
case Builtin::BI__builtin_ssub_overflow:
13123
case Builtin::BI__builtin_ssubl_overflow:
13124
case Builtin::BI__builtin_ssubll_overflow:
13125
case Builtin::BI__builtin_usub_overflow:
13126
case Builtin::BI__builtin_usubl_overflow:
13127
case Builtin::BI__builtin_usubll_overflow:
13128
Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow)
13129
: LHS.usub_ov(RHS, DidOverflow);
13130
break;
13131
case Builtin::BI__builtin_mul_overflow:
13132
case Builtin::BI__builtin_smul_overflow:
13133
case Builtin::BI__builtin_smull_overflow:
13134
case Builtin::BI__builtin_smulll_overflow:
13135
case Builtin::BI__builtin_umul_overflow:
13136
case Builtin::BI__builtin_umull_overflow:
13137
case Builtin::BI__builtin_umulll_overflow:
13138
Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow)
13139
: LHS.umul_ov(RHS, DidOverflow);
13140
break;
13141
}
13142
13143
// In the case where multiple sizes are allowed, truncate and see if
13144
// the values are the same.
13145
if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
13146
BuiltinOp == Builtin::BI__builtin_sub_overflow ||
13147
BuiltinOp == Builtin::BI__builtin_mul_overflow) {
13148
// APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead,
13149
// since it will give us the behavior of a TruncOrSelf in the case where
13150
// its parameter <= its size. We previously set Result to be at least the
13151
// type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth
13152
// will work exactly like TruncOrSelf.
13153
APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType));
13154
Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType());
13155
13156
if (!APSInt::isSameValue(Temp, Result))
13157
DidOverflow = true;
13158
Result = Temp;
13159
}
13160
13161
APValue APV{Result};
13162
if (!handleAssignment(Info, E, ResultLValue, ResultType, APV))
13163
return false;
13164
return Success(DidOverflow, E);
13165
}
13166
}
13167
}
13168
13169
/// Determine whether this is a pointer past the end of the complete
13170
/// object referred to by the lvalue.
13171
static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
13172
const LValue &LV) {
13173
// A null pointer can be viewed as being "past the end" but we don't
13174
// choose to look at it that way here.
13175
if (!LV.getLValueBase())
13176
return false;
13177
13178
// If the designator is valid and refers to a subobject, we're not pointing
13179
// past the end.
13180
if (!LV.getLValueDesignator().Invalid &&
13181
!LV.getLValueDesignator().isOnePastTheEnd())
13182
return false;
13183
13184
// A pointer to an incomplete type might be past-the-end if the type's size is
13185
// zero. We cannot tell because the type is incomplete.
13186
QualType Ty = getType(LV.getLValueBase());
13187
if (Ty->isIncompleteType())
13188
return true;
13189
13190
// Can't be past the end of an invalid object.
13191
if (LV.getLValueDesignator().Invalid)
13192
return false;
13193
13194
// We're a past-the-end pointer if we point to the byte after the object,
13195
// no matter what our type or path is.
13196
auto Size = Ctx.getTypeSizeInChars(Ty);
13197
return LV.getLValueOffset() == Size;
13198
}
13199
13200
namespace {
13201
13202
/// Data recursive integer evaluator of certain binary operators.
13203
///
13204
/// We use a data recursive algorithm for binary operators so that we are able
13205
/// to handle extreme cases of chained binary operators without causing stack
13206
/// overflow.
13207
class DataRecursiveIntBinOpEvaluator {
13208
struct EvalResult {
13209
APValue Val;
13210
bool Failed = false;
13211
13212
EvalResult() = default;
13213
13214
void swap(EvalResult &RHS) {
13215
Val.swap(RHS.Val);
13216
Failed = RHS.Failed;
13217
RHS.Failed = false;
13218
}
13219
};
13220
13221
struct Job {
13222
const Expr *E;
13223
EvalResult LHSResult; // meaningful only for binary operator expression.
13224
enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
13225
13226
Job() = default;
13227
Job(Job &&) = default;
13228
13229
void startSpeculativeEval(EvalInfo &Info) {
13230
SpecEvalRAII = SpeculativeEvaluationRAII(Info);
13231
}
13232
13233
private:
13234
SpeculativeEvaluationRAII SpecEvalRAII;
13235
};
13236
13237
SmallVector<Job, 16> Queue;
13238
13239
IntExprEvaluator &IntEval;
13240
EvalInfo &Info;
13241
APValue &FinalResult;
13242
13243
public:
13244
DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
13245
: IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
13246
13247
/// True if \param E is a binary operator that we are going to handle
13248
/// data recursively.
13249
/// We handle binary operators that are comma, logical, or that have operands
13250
/// with integral or enumeration type.
13251
static bool shouldEnqueue(const BinaryOperator *E) {
13252
return E->getOpcode() == BO_Comma || E->isLogicalOp() ||
13253
(E->isPRValue() && E->getType()->isIntegralOrEnumerationType() &&
13254
E->getLHS()->getType()->isIntegralOrEnumerationType() &&
13255
E->getRHS()->getType()->isIntegralOrEnumerationType());
13256
}
13257
13258
bool Traverse(const BinaryOperator *E) {
13259
enqueue(E);
13260
EvalResult PrevResult;
13261
while (!Queue.empty())
13262
process(PrevResult);
13263
13264
if (PrevResult.Failed) return false;
13265
13266
FinalResult.swap(PrevResult.Val);
13267
return true;
13268
}
13269
13270
private:
13271
bool Success(uint64_t Value, const Expr *E, APValue &Result) {
13272
return IntEval.Success(Value, E, Result);
13273
}
13274
bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
13275
return IntEval.Success(Value, E, Result);
13276
}
13277
bool Error(const Expr *E) {
13278
return IntEval.Error(E);
13279
}
13280
bool Error(const Expr *E, diag::kind D) {
13281
return IntEval.Error(E, D);
13282
}
13283
13284
OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
13285
return Info.CCEDiag(E, D);
13286
}
13287
13288
// Returns true if visiting the RHS is necessary, false otherwise.
13289
bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
13290
bool &SuppressRHSDiags);
13291
13292
bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
13293
const BinaryOperator *E, APValue &Result);
13294
13295
void EvaluateExpr(const Expr *E, EvalResult &Result) {
13296
Result.Failed = !Evaluate(Result.Val, Info, E);
13297
if (Result.Failed)
13298
Result.Val = APValue();
13299
}
13300
13301
void process(EvalResult &Result);
13302
13303
void enqueue(const Expr *E) {
13304
E = E->IgnoreParens();
13305
Queue.resize(Queue.size()+1);
13306
Queue.back().E = E;
13307
Queue.back().Kind = Job::AnyExprKind;
13308
}
13309
};
13310
13311
}
13312
13313
bool DataRecursiveIntBinOpEvaluator::
13314
VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
13315
bool &SuppressRHSDiags) {
13316
if (E->getOpcode() == BO_Comma) {
13317
// Ignore LHS but note if we could not evaluate it.
13318
if (LHSResult.Failed)
13319
return Info.noteSideEffect();
13320
return true;
13321
}
13322
13323
if (E->isLogicalOp()) {
13324
bool LHSAsBool;
13325
if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
13326
// We were able to evaluate the LHS, see if we can get away with not
13327
// evaluating the RHS: 0 && X -> 0, 1 || X -> 1
13328
if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
13329
Success(LHSAsBool, E, LHSResult.Val);
13330
return false; // Ignore RHS
13331
}
13332
} else {
13333
LHSResult.Failed = true;
13334
13335
// Since we weren't able to evaluate the left hand side, it
13336
// might have had side effects.
13337
if (!Info.noteSideEffect())
13338
return false;
13339
13340
// We can't evaluate the LHS; however, sometimes the result
13341
// is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
13342
// Don't ignore RHS and suppress diagnostics from this arm.
13343
SuppressRHSDiags = true;
13344
}
13345
13346
return true;
13347
}
13348
13349
assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
13350
E->getRHS()->getType()->isIntegralOrEnumerationType());
13351
13352
if (LHSResult.Failed && !Info.noteFailure())
13353
return false; // Ignore RHS;
13354
13355
return true;
13356
}
13357
13358
static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index,
13359
bool IsSub) {
13360
// Compute the new offset in the appropriate width, wrapping at 64 bits.
13361
// FIXME: When compiling for a 32-bit target, we should use 32-bit
13362
// offsets.
13363
assert(!LVal.hasLValuePath() && "have designator for integer lvalue");
13364
CharUnits &Offset = LVal.getLValueOffset();
13365
uint64_t Offset64 = Offset.getQuantity();
13366
uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
13367
Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64
13368
: Offset64 + Index64);
13369
}
13370
13371
bool DataRecursiveIntBinOpEvaluator::
13372
VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
13373
const BinaryOperator *E, APValue &Result) {
13374
if (E->getOpcode() == BO_Comma) {
13375
if (RHSResult.Failed)
13376
return false;
13377
Result = RHSResult.Val;
13378
return true;
13379
}
13380
13381
if (E->isLogicalOp()) {
13382
bool lhsResult, rhsResult;
13383
bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
13384
bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
13385
13386
if (LHSIsOK) {
13387
if (RHSIsOK) {
13388
if (E->getOpcode() == BO_LOr)
13389
return Success(lhsResult || rhsResult, E, Result);
13390
else
13391
return Success(lhsResult && rhsResult, E, Result);
13392
}
13393
} else {
13394
if (RHSIsOK) {
13395
// We can't evaluate the LHS; however, sometimes the result
13396
// is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
13397
if (rhsResult == (E->getOpcode() == BO_LOr))
13398
return Success(rhsResult, E, Result);
13399
}
13400
}
13401
13402
return false;
13403
}
13404
13405
assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
13406
E->getRHS()->getType()->isIntegralOrEnumerationType());
13407
13408
if (LHSResult.Failed || RHSResult.Failed)
13409
return false;
13410
13411
const APValue &LHSVal = LHSResult.Val;
13412
const APValue &RHSVal = RHSResult.Val;
13413
13414
// Handle cases like (unsigned long)&a + 4.
13415
if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
13416
Result = LHSVal;
13417
addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub);
13418
return true;
13419
}
13420
13421
// Handle cases like 4 + (unsigned long)&a
13422
if (E->getOpcode() == BO_Add &&
13423
RHSVal.isLValue() && LHSVal.isInt()) {
13424
Result = RHSVal;
13425
addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false);
13426
return true;
13427
}
13428
13429
if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
13430
// Handle (intptr_t)&&A - (intptr_t)&&B.
13431
if (!LHSVal.getLValueOffset().isZero() ||
13432
!RHSVal.getLValueOffset().isZero())
13433
return false;
13434
const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
13435
const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
13436
if (!LHSExpr || !RHSExpr)
13437
return false;
13438
const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
13439
const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
13440
if (!LHSAddrExpr || !RHSAddrExpr)
13441
return false;
13442
// Make sure both labels come from the same function.
13443
if (LHSAddrExpr->getLabel()->getDeclContext() !=
13444
RHSAddrExpr->getLabel()->getDeclContext())
13445
return false;
13446
Result = APValue(LHSAddrExpr, RHSAddrExpr);
13447
return true;
13448
}
13449
13450
// All the remaining cases expect both operands to be an integer
13451
if (!LHSVal.isInt() || !RHSVal.isInt())
13452
return Error(E);
13453
13454
// Set up the width and signedness manually, in case it can't be deduced
13455
// from the operation we're performing.
13456
// FIXME: Don't do this in the cases where we can deduce it.
13457
APSInt Value(Info.Ctx.getIntWidth(E->getType()),
13458
E->getType()->isUnsignedIntegerOrEnumerationType());
13459
if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
13460
RHSVal.getInt(), Value))
13461
return false;
13462
return Success(Value, E, Result);
13463
}
13464
13465
void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
13466
Job &job = Queue.back();
13467
13468
switch (job.Kind) {
13469
case Job::AnyExprKind: {
13470
if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
13471
if (shouldEnqueue(Bop)) {
13472
job.Kind = Job::BinOpKind;
13473
enqueue(Bop->getLHS());
13474
return;
13475
}
13476
}
13477
13478
EvaluateExpr(job.E, Result);
13479
Queue.pop_back();
13480
return;
13481
}
13482
13483
case Job::BinOpKind: {
13484
const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
13485
bool SuppressRHSDiags = false;
13486
if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
13487
Queue.pop_back();
13488
return;
13489
}
13490
if (SuppressRHSDiags)
13491
job.startSpeculativeEval(Info);
13492
job.LHSResult.swap(Result);
13493
job.Kind = Job::BinOpVisitedLHSKind;
13494
enqueue(Bop->getRHS());
13495
return;
13496
}
13497
13498
case Job::BinOpVisitedLHSKind: {
13499
const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
13500
EvalResult RHS;
13501
RHS.swap(Result);
13502
Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
13503
Queue.pop_back();
13504
return;
13505
}
13506
}
13507
13508
llvm_unreachable("Invalid Job::Kind!");
13509
}
13510
13511
namespace {
13512
enum class CmpResult {
13513
Unequal,
13514
Less,
13515
Equal,
13516
Greater,
13517
Unordered,
13518
};
13519
}
13520
13521
template <class SuccessCB, class AfterCB>
13522
static bool
13523
EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E,
13524
SuccessCB &&Success, AfterCB &&DoAfter) {
13525
assert(!E->isValueDependent());
13526
assert(E->isComparisonOp() && "expected comparison operator");
13527
assert((E->getOpcode() == BO_Cmp ||
13528
E->getType()->isIntegralOrEnumerationType()) &&
13529
"unsupported binary expression evaluation");
13530
auto Error = [&](const Expr *E) {
13531
Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
13532
return false;
13533
};
13534
13535
bool IsRelational = E->isRelationalOp() || E->getOpcode() == BO_Cmp;
13536
bool IsEquality = E->isEqualityOp();
13537
13538
QualType LHSTy = E->getLHS()->getType();
13539
QualType RHSTy = E->getRHS()->getType();
13540
13541
if (LHSTy->isIntegralOrEnumerationType() &&
13542
RHSTy->isIntegralOrEnumerationType()) {
13543
APSInt LHS, RHS;
13544
bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info);
13545
if (!LHSOK && !Info.noteFailure())
13546
return false;
13547
if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK)
13548
return false;
13549
if (LHS < RHS)
13550
return Success(CmpResult::Less, E);
13551
if (LHS > RHS)
13552
return Success(CmpResult::Greater, E);
13553
return Success(CmpResult::Equal, E);
13554
}
13555
13556
if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) {
13557
APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy));
13558
APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy));
13559
13560
bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info);
13561
if (!LHSOK && !Info.noteFailure())
13562
return false;
13563
if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK)
13564
return false;
13565
if (LHSFX < RHSFX)
13566
return Success(CmpResult::Less, E);
13567
if (LHSFX > RHSFX)
13568
return Success(CmpResult::Greater, E);
13569
return Success(CmpResult::Equal, E);
13570
}
13571
13572
if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
13573
ComplexValue LHS, RHS;
13574
bool LHSOK;
13575
if (E->isAssignmentOp()) {
13576
LValue LV;
13577
EvaluateLValue(E->getLHS(), LV, Info);
13578
LHSOK = false;
13579
} else if (LHSTy->isRealFloatingType()) {
13580
LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
13581
if (LHSOK) {
13582
LHS.makeComplexFloat();
13583
LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
13584
}
13585
} else {
13586
LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
13587
}
13588
if (!LHSOK && !Info.noteFailure())
13589
return false;
13590
13591
if (E->getRHS()->getType()->isRealFloatingType()) {
13592
if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
13593
return false;
13594
RHS.makeComplexFloat();
13595
RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
13596
} else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
13597
return false;
13598
13599
if (LHS.isComplexFloat()) {
13600
APFloat::cmpResult CR_r =
13601
LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
13602
APFloat::cmpResult CR_i =
13603
LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
13604
bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual;
13605
return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
13606
} else {
13607
assert(IsEquality && "invalid complex comparison");
13608
bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
13609
LHS.getComplexIntImag() == RHS.getComplexIntImag();
13610
return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
13611
}
13612
}
13613
13614
if (LHSTy->isRealFloatingType() &&
13615
RHSTy->isRealFloatingType()) {
13616
APFloat RHS(0.0), LHS(0.0);
13617
13618
bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
13619
if (!LHSOK && !Info.noteFailure())
13620
return false;
13621
13622
if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
13623
return false;
13624
13625
assert(E->isComparisonOp() && "Invalid binary operator!");
13626
llvm::APFloatBase::cmpResult APFloatCmpResult = LHS.compare(RHS);
13627
if (!Info.InConstantContext &&
13628
APFloatCmpResult == APFloat::cmpUnordered &&
13629
E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).isFPConstrained()) {
13630
// Note: Compares may raise invalid in some cases involving NaN or sNaN.
13631
Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
13632
return false;
13633
}
13634
auto GetCmpRes = [&]() {
13635
switch (APFloatCmpResult) {
13636
case APFloat::cmpEqual:
13637
return CmpResult::Equal;
13638
case APFloat::cmpLessThan:
13639
return CmpResult::Less;
13640
case APFloat::cmpGreaterThan:
13641
return CmpResult::Greater;
13642
case APFloat::cmpUnordered:
13643
return CmpResult::Unordered;
13644
}
13645
llvm_unreachable("Unrecognised APFloat::cmpResult enum");
13646
};
13647
return Success(GetCmpRes(), E);
13648
}
13649
13650
if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
13651
LValue LHSValue, RHSValue;
13652
13653
bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
13654
if (!LHSOK && !Info.noteFailure())
13655
return false;
13656
13657
if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
13658
return false;
13659
13660
// Reject differing bases from the normal codepath; we special-case
13661
// comparisons to null.
13662
if (!HasSameBase(LHSValue, RHSValue)) {
13663
auto DiagComparison = [&] (unsigned DiagID, bool Reversed = false) {
13664
std::string LHS = LHSValue.toString(Info.Ctx, E->getLHS()->getType());
13665
std::string RHS = RHSValue.toString(Info.Ctx, E->getRHS()->getType());
13666
Info.FFDiag(E, DiagID)
13667
<< (Reversed ? RHS : LHS) << (Reversed ? LHS : RHS);
13668
return false;
13669
};
13670
// Inequalities and subtractions between unrelated pointers have
13671
// unspecified or undefined behavior.
13672
if (!IsEquality)
13673
return DiagComparison(
13674
diag::note_constexpr_pointer_comparison_unspecified);
13675
// A constant address may compare equal to the address of a symbol.
13676
// The one exception is that address of an object cannot compare equal
13677
// to a null pointer constant.
13678
// TODO: Should we restrict this to actual null pointers, and exclude the
13679
// case of zero cast to pointer type?
13680
if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
13681
(!RHSValue.Base && !RHSValue.Offset.isZero()))
13682
return DiagComparison(diag::note_constexpr_pointer_constant_comparison,
13683
!RHSValue.Base);
13684
// It's implementation-defined whether distinct literals will have
13685
// distinct addresses. In clang, the result of such a comparison is
13686
// unspecified, so it is not a constant expression. However, we do know
13687
// that the address of a literal will be non-null.
13688
if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
13689
LHSValue.Base && RHSValue.Base)
13690
return DiagComparison(diag::note_constexpr_literal_comparison);
13691
// We can't tell whether weak symbols will end up pointing to the same
13692
// object.
13693
if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
13694
return DiagComparison(diag::note_constexpr_pointer_weak_comparison,
13695
!IsWeakLValue(LHSValue));
13696
// We can't compare the address of the start of one object with the
13697
// past-the-end address of another object, per C++ DR1652.
13698
if (LHSValue.Base && LHSValue.Offset.isZero() &&
13699
isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue))
13700
return DiagComparison(diag::note_constexpr_pointer_comparison_past_end,
13701
true);
13702
if (RHSValue.Base && RHSValue.Offset.isZero() &&
13703
isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue))
13704
return DiagComparison(diag::note_constexpr_pointer_comparison_past_end,
13705
false);
13706
// We can't tell whether an object is at the same address as another
13707
// zero sized object.
13708
if ((RHSValue.Base && isZeroSized(LHSValue)) ||
13709
(LHSValue.Base && isZeroSized(RHSValue)))
13710
return DiagComparison(
13711
diag::note_constexpr_pointer_comparison_zero_sized);
13712
return Success(CmpResult::Unequal, E);
13713
}
13714
13715
const CharUnits &LHSOffset = LHSValue.getLValueOffset();
13716
const CharUnits &RHSOffset = RHSValue.getLValueOffset();
13717
13718
SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
13719
SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
13720
13721
// C++11 [expr.rel]p3:
13722
// Pointers to void (after pointer conversions) can be compared, with a
13723
// result defined as follows: If both pointers represent the same
13724
// address or are both the null pointer value, the result is true if the
13725
// operator is <= or >= and false otherwise; otherwise the result is
13726
// unspecified.
13727
// We interpret this as applying to pointers to *cv* void.
13728
if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational)
13729
Info.CCEDiag(E, diag::note_constexpr_void_comparison);
13730
13731
// C++11 [expr.rel]p2:
13732
// - If two pointers point to non-static data members of the same object,
13733
// or to subobjects or array elements fo such members, recursively, the
13734
// pointer to the later declared member compares greater provided the
13735
// two members have the same access control and provided their class is
13736
// not a union.
13737
// [...]
13738
// - Otherwise pointer comparisons are unspecified.
13739
if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) {
13740
bool WasArrayIndex;
13741
unsigned Mismatch = FindDesignatorMismatch(
13742
getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex);
13743
// At the point where the designators diverge, the comparison has a
13744
// specified value if:
13745
// - we are comparing array indices
13746
// - we are comparing fields of a union, or fields with the same access
13747
// Otherwise, the result is unspecified and thus the comparison is not a
13748
// constant expression.
13749
if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
13750
Mismatch < RHSDesignator.Entries.size()) {
13751
const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
13752
const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
13753
if (!LF && !RF)
13754
Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
13755
else if (!LF)
13756
Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
13757
<< getAsBaseClass(LHSDesignator.Entries[Mismatch])
13758
<< RF->getParent() << RF;
13759
else if (!RF)
13760
Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
13761
<< getAsBaseClass(RHSDesignator.Entries[Mismatch])
13762
<< LF->getParent() << LF;
13763
else if (!LF->getParent()->isUnion() &&
13764
LF->getAccess() != RF->getAccess())
13765
Info.CCEDiag(E,
13766
diag::note_constexpr_pointer_comparison_differing_access)
13767
<< LF << LF->getAccess() << RF << RF->getAccess()
13768
<< LF->getParent();
13769
}
13770
}
13771
13772
// The comparison here must be unsigned, and performed with the same
13773
// width as the pointer.
13774
unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
13775
uint64_t CompareLHS = LHSOffset.getQuantity();
13776
uint64_t CompareRHS = RHSOffset.getQuantity();
13777
assert(PtrSize <= 64 && "Unexpected pointer width");
13778
uint64_t Mask = ~0ULL >> (64 - PtrSize);
13779
CompareLHS &= Mask;
13780
CompareRHS &= Mask;
13781
13782
// If there is a base and this is a relational operator, we can only
13783
// compare pointers within the object in question; otherwise, the result
13784
// depends on where the object is located in memory.
13785
if (!LHSValue.Base.isNull() && IsRelational) {
13786
QualType BaseTy = getType(LHSValue.Base);
13787
if (BaseTy->isIncompleteType())
13788
return Error(E);
13789
CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
13790
uint64_t OffsetLimit = Size.getQuantity();
13791
if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
13792
return Error(E);
13793
}
13794
13795
if (CompareLHS < CompareRHS)
13796
return Success(CmpResult::Less, E);
13797
if (CompareLHS > CompareRHS)
13798
return Success(CmpResult::Greater, E);
13799
return Success(CmpResult::Equal, E);
13800
}
13801
13802
if (LHSTy->isMemberPointerType()) {
13803
assert(IsEquality && "unexpected member pointer operation");
13804
assert(RHSTy->isMemberPointerType() && "invalid comparison");
13805
13806
MemberPtr LHSValue, RHSValue;
13807
13808
bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
13809
if (!LHSOK && !Info.noteFailure())
13810
return false;
13811
13812
if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
13813
return false;
13814
13815
// If either operand is a pointer to a weak function, the comparison is not
13816
// constant.
13817
if (LHSValue.getDecl() && LHSValue.getDecl()->isWeak()) {
13818
Info.FFDiag(E, diag::note_constexpr_mem_pointer_weak_comparison)
13819
<< LHSValue.getDecl();
13820
return false;
13821
}
13822
if (RHSValue.getDecl() && RHSValue.getDecl()->isWeak()) {
13823
Info.FFDiag(E, diag::note_constexpr_mem_pointer_weak_comparison)
13824
<< RHSValue.getDecl();
13825
return false;
13826
}
13827
13828
// C++11 [expr.eq]p2:
13829
// If both operands are null, they compare equal. Otherwise if only one is
13830
// null, they compare unequal.
13831
if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
13832
bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
13833
return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
13834
}
13835
13836
// Otherwise if either is a pointer to a virtual member function, the
13837
// result is unspecified.
13838
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
13839
if (MD->isVirtual())
13840
Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
13841
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
13842
if (MD->isVirtual())
13843
Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
13844
13845
// Otherwise they compare equal if and only if they would refer to the
13846
// same member of the same most derived object or the same subobject if
13847
// they were dereferenced with a hypothetical object of the associated
13848
// class type.
13849
bool Equal = LHSValue == RHSValue;
13850
return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
13851
}
13852
13853
if (LHSTy->isNullPtrType()) {
13854
assert(E->isComparisonOp() && "unexpected nullptr operation");
13855
assert(RHSTy->isNullPtrType() && "missing pointer conversion");
13856
// C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
13857
// are compared, the result is true of the operator is <=, >= or ==, and
13858
// false otherwise.
13859
LValue Res;
13860
if (!EvaluatePointer(E->getLHS(), Res, Info) ||
13861
!EvaluatePointer(E->getRHS(), Res, Info))
13862
return false;
13863
return Success(CmpResult::Equal, E);
13864
}
13865
13866
return DoAfter();
13867
}
13868
13869
bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) {
13870
if (!CheckLiteralType(Info, E))
13871
return false;
13872
13873
auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
13874
ComparisonCategoryResult CCR;
13875
switch (CR) {
13876
case CmpResult::Unequal:
13877
llvm_unreachable("should never produce Unequal for three-way comparison");
13878
case CmpResult::Less:
13879
CCR = ComparisonCategoryResult::Less;
13880
break;
13881
case CmpResult::Equal:
13882
CCR = ComparisonCategoryResult::Equal;
13883
break;
13884
case CmpResult::Greater:
13885
CCR = ComparisonCategoryResult::Greater;
13886
break;
13887
case CmpResult::Unordered:
13888
CCR = ComparisonCategoryResult::Unordered;
13889
break;
13890
}
13891
// Evaluation succeeded. Lookup the information for the comparison category
13892
// type and fetch the VarDecl for the result.
13893
const ComparisonCategoryInfo &CmpInfo =
13894
Info.Ctx.CompCategories.getInfoForType(E->getType());
13895
const VarDecl *VD = CmpInfo.getValueInfo(CmpInfo.makeWeakResult(CCR))->VD;
13896
// Check and evaluate the result as a constant expression.
13897
LValue LV;
13898
LV.set(VD);
13899
if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
13900
return false;
13901
return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
13902
ConstantExprKind::Normal);
13903
};
13904
return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
13905
return ExprEvaluatorBaseTy::VisitBinCmp(E);
13906
});
13907
}
13908
13909
bool RecordExprEvaluator::VisitCXXParenListInitExpr(
13910
const CXXParenListInitExpr *E) {
13911
return VisitCXXParenListOrInitListExpr(E, E->getInitExprs());
13912
}
13913
13914
bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13915
// We don't support assignment in C. C++ assignments don't get here because
13916
// assignment is an lvalue in C++.
13917
if (E->isAssignmentOp()) {
13918
Error(E);
13919
if (!Info.noteFailure())
13920
return false;
13921
}
13922
13923
if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
13924
return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
13925
13926
assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() ||
13927
!E->getRHS()->getType()->isIntegralOrEnumerationType()) &&
13928
"DataRecursiveIntBinOpEvaluator should have handled integral types");
13929
13930
if (E->isComparisonOp()) {
13931
// Evaluate builtin binary comparisons by evaluating them as three-way
13932
// comparisons and then translating the result.
13933
auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
13934
assert((CR != CmpResult::Unequal || E->isEqualityOp()) &&
13935
"should only produce Unequal for equality comparisons");
13936
bool IsEqual = CR == CmpResult::Equal,
13937
IsLess = CR == CmpResult::Less,
13938
IsGreater = CR == CmpResult::Greater;
13939
auto Op = E->getOpcode();
13940
switch (Op) {
13941
default:
13942
llvm_unreachable("unsupported binary operator");
13943
case BO_EQ:
13944
case BO_NE:
13945
return Success(IsEqual == (Op == BO_EQ), E);
13946
case BO_LT:
13947
return Success(IsLess, E);
13948
case BO_GT:
13949
return Success(IsGreater, E);
13950
case BO_LE:
13951
return Success(IsEqual || IsLess, E);
13952
case BO_GE:
13953
return Success(IsEqual || IsGreater, E);
13954
}
13955
};
13956
return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
13957
return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13958
});
13959
}
13960
13961
QualType LHSTy = E->getLHS()->getType();
13962
QualType RHSTy = E->getRHS()->getType();
13963
13964
if (LHSTy->isPointerType() && RHSTy->isPointerType() &&
13965
E->getOpcode() == BO_Sub) {
13966
LValue LHSValue, RHSValue;
13967
13968
bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
13969
if (!LHSOK && !Info.noteFailure())
13970
return false;
13971
13972
if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
13973
return false;
13974
13975
// Reject differing bases from the normal codepath; we special-case
13976
// comparisons to null.
13977
if (!HasSameBase(LHSValue, RHSValue)) {
13978
// Handle &&A - &&B.
13979
if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
13980
return Error(E);
13981
const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>();
13982
const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>();
13983
if (!LHSExpr || !RHSExpr)
13984
return Error(E);
13985
const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
13986
const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
13987
if (!LHSAddrExpr || !RHSAddrExpr)
13988
return Error(E);
13989
// Make sure both labels come from the same function.
13990
if (LHSAddrExpr->getLabel()->getDeclContext() !=
13991
RHSAddrExpr->getLabel()->getDeclContext())
13992
return Error(E);
13993
return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
13994
}
13995
const CharUnits &LHSOffset = LHSValue.getLValueOffset();
13996
const CharUnits &RHSOffset = RHSValue.getLValueOffset();
13997
13998
SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
13999
SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
14000
14001
// C++11 [expr.add]p6:
14002
// Unless both pointers point to elements of the same array object, or
14003
// one past the last element of the array object, the behavior is
14004
// undefined.
14005
if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
14006
!AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator,
14007
RHSDesignator))
14008
Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
14009
14010
QualType Type = E->getLHS()->getType();
14011
QualType ElementType = Type->castAs<PointerType>()->getPointeeType();
14012
14013
CharUnits ElementSize;
14014
if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
14015
return false;
14016
14017
// As an extension, a type may have zero size (empty struct or union in
14018
// C, array of zero length). Pointer subtraction in such cases has
14019
// undefined behavior, so is not constant.
14020
if (ElementSize.isZero()) {
14021
Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
14022
<< ElementType;
14023
return false;
14024
}
14025
14026
// FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
14027
// and produce incorrect results when it overflows. Such behavior
14028
// appears to be non-conforming, but is common, so perhaps we should
14029
// assume the standard intended for such cases to be undefined behavior
14030
// and check for them.
14031
14032
// Compute (LHSOffset - RHSOffset) / Size carefully, checking for
14033
// overflow in the final conversion to ptrdiff_t.
14034
APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
14035
APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
14036
APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true),
14037
false);
14038
APSInt TrueResult = (LHS - RHS) / ElemSize;
14039
APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
14040
14041
if (Result.extend(65) != TrueResult &&
14042
!HandleOverflow(Info, E, TrueResult, E->getType()))
14043
return false;
14044
return Success(Result, E);
14045
}
14046
14047
return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14048
}
14049
14050
/// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
14051
/// a result as the expression's type.
14052
bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
14053
const UnaryExprOrTypeTraitExpr *E) {
14054
switch(E->getKind()) {
14055
case UETT_PreferredAlignOf:
14056
case UETT_AlignOf: {
14057
if (E->isArgumentType())
14058
return Success(GetAlignOfType(Info, E->getArgumentType(), E->getKind()),
14059
E);
14060
else
14061
return Success(GetAlignOfExpr(Info, E->getArgumentExpr(), E->getKind()),
14062
E);
14063
}
14064
14065
case UETT_PtrAuthTypeDiscriminator: {
14066
if (E->getArgumentType()->isDependentType())
14067
return false;
14068
return Success(
14069
Info.Ctx.getPointerAuthTypeDiscriminator(E->getArgumentType()), E);
14070
}
14071
case UETT_VecStep: {
14072
QualType Ty = E->getTypeOfArgument();
14073
14074
if (Ty->isVectorType()) {
14075
unsigned n = Ty->castAs<VectorType>()->getNumElements();
14076
14077
// The vec_step built-in functions that take a 3-component
14078
// vector return 4. (OpenCL 1.1 spec 6.11.12)
14079
if (n == 3)
14080
n = 4;
14081
14082
return Success(n, E);
14083
} else
14084
return Success(1, E);
14085
}
14086
14087
case UETT_DataSizeOf:
14088
case UETT_SizeOf: {
14089
QualType SrcTy = E->getTypeOfArgument();
14090
// C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
14091
// the result is the size of the referenced type."
14092
if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
14093
SrcTy = Ref->getPointeeType();
14094
14095
CharUnits Sizeof;
14096
if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof,
14097
E->getKind() == UETT_DataSizeOf ? SizeOfType::DataSizeOf
14098
: SizeOfType::SizeOf)) {
14099
return false;
14100
}
14101
return Success(Sizeof, E);
14102
}
14103
case UETT_OpenMPRequiredSimdAlign:
14104
assert(E->isArgumentType());
14105
return Success(
14106
Info.Ctx.toCharUnitsFromBits(
14107
Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
14108
.getQuantity(),
14109
E);
14110
case UETT_VectorElements: {
14111
QualType Ty = E->getTypeOfArgument();
14112
// If the vector has a fixed size, we can determine the number of elements
14113
// at compile time.
14114
if (const auto *VT = Ty->getAs<VectorType>())
14115
return Success(VT->getNumElements(), E);
14116
14117
assert(Ty->isSizelessVectorType());
14118
if (Info.InConstantContext)
14119
Info.CCEDiag(E, diag::note_constexpr_non_const_vectorelements)
14120
<< E->getSourceRange();
14121
14122
return false;
14123
}
14124
}
14125
14126
llvm_unreachable("unknown expr/type trait");
14127
}
14128
14129
bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
14130
CharUnits Result;
14131
unsigned n = OOE->getNumComponents();
14132
if (n == 0)
14133
return Error(OOE);
14134
QualType CurrentType = OOE->getTypeSourceInfo()->getType();
14135
for (unsigned i = 0; i != n; ++i) {
14136
OffsetOfNode ON = OOE->getComponent(i);
14137
switch (ON.getKind()) {
14138
case OffsetOfNode::Array: {
14139
const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
14140
APSInt IdxResult;
14141
if (!EvaluateInteger(Idx, IdxResult, Info))
14142
return false;
14143
const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
14144
if (!AT)
14145
return Error(OOE);
14146
CurrentType = AT->getElementType();
14147
CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
14148
Result += IdxResult.getSExtValue() * ElementSize;
14149
break;
14150
}
14151
14152
case OffsetOfNode::Field: {
14153
FieldDecl *MemberDecl = ON.getField();
14154
const RecordType *RT = CurrentType->getAs<RecordType>();
14155
if (!RT)
14156
return Error(OOE);
14157
RecordDecl *RD = RT->getDecl();
14158
if (RD->isInvalidDecl()) return false;
14159
const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
14160
unsigned i = MemberDecl->getFieldIndex();
14161
assert(i < RL.getFieldCount() && "offsetof field in wrong type");
14162
Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
14163
CurrentType = MemberDecl->getType().getNonReferenceType();
14164
break;
14165
}
14166
14167
case OffsetOfNode::Identifier:
14168
llvm_unreachable("dependent __builtin_offsetof");
14169
14170
case OffsetOfNode::Base: {
14171
CXXBaseSpecifier *BaseSpec = ON.getBase();
14172
if (BaseSpec->isVirtual())
14173
return Error(OOE);
14174
14175
// Find the layout of the class whose base we are looking into.
14176
const RecordType *RT = CurrentType->getAs<RecordType>();
14177
if (!RT)
14178
return Error(OOE);
14179
RecordDecl *RD = RT->getDecl();
14180
if (RD->isInvalidDecl()) return false;
14181
const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
14182
14183
// Find the base class itself.
14184
CurrentType = BaseSpec->getType();
14185
const RecordType *BaseRT = CurrentType->getAs<RecordType>();
14186
if (!BaseRT)
14187
return Error(OOE);
14188
14189
// Add the offset to the base.
14190
Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
14191
break;
14192
}
14193
}
14194
}
14195
return Success(Result, OOE);
14196
}
14197
14198
bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
14199
switch (E->getOpcode()) {
14200
default:
14201
// Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
14202
// See C99 6.6p3.
14203
return Error(E);
14204
case UO_Extension:
14205
// FIXME: Should extension allow i-c-e extension expressions in its scope?
14206
// If so, we could clear the diagnostic ID.
14207
return Visit(E->getSubExpr());
14208
case UO_Plus:
14209
// The result is just the value.
14210
return Visit(E->getSubExpr());
14211
case UO_Minus: {
14212
if (!Visit(E->getSubExpr()))
14213
return false;
14214
if (!Result.isInt()) return Error(E);
14215
const APSInt &Value = Result.getInt();
14216
if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow()) {
14217
if (Info.checkingForUndefinedBehavior())
14218
Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
14219
diag::warn_integer_constant_overflow)
14220
<< toString(Value, 10, Value.isSigned(), /*formatAsCLiteral=*/false,
14221
/*UpperCase=*/true, /*InsertSeparators=*/true)
14222
<< E->getType() << E->getSourceRange();
14223
14224
if (!HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
14225
E->getType()))
14226
return false;
14227
}
14228
return Success(-Value, E);
14229
}
14230
case UO_Not: {
14231
if (!Visit(E->getSubExpr()))
14232
return false;
14233
if (!Result.isInt()) return Error(E);
14234
return Success(~Result.getInt(), E);
14235
}
14236
case UO_LNot: {
14237
bool bres;
14238
if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
14239
return false;
14240
return Success(!bres, E);
14241
}
14242
}
14243
}
14244
14245
/// HandleCast - This is used to evaluate implicit or explicit casts where the
14246
/// result type is integer.
14247
bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
14248
const Expr *SubExpr = E->getSubExpr();
14249
QualType DestType = E->getType();
14250
QualType SrcType = SubExpr->getType();
14251
14252
switch (E->getCastKind()) {
14253
case CK_BaseToDerived:
14254
case CK_DerivedToBase:
14255
case CK_UncheckedDerivedToBase:
14256
case CK_Dynamic:
14257
case CK_ToUnion:
14258
case CK_ArrayToPointerDecay:
14259
case CK_FunctionToPointerDecay:
14260
case CK_NullToPointer:
14261
case CK_NullToMemberPointer:
14262
case CK_BaseToDerivedMemberPointer:
14263
case CK_DerivedToBaseMemberPointer:
14264
case CK_ReinterpretMemberPointer:
14265
case CK_ConstructorConversion:
14266
case CK_IntegralToPointer:
14267
case CK_ToVoid:
14268
case CK_VectorSplat:
14269
case CK_IntegralToFloating:
14270
case CK_FloatingCast:
14271
case CK_CPointerToObjCPointerCast:
14272
case CK_BlockPointerToObjCPointerCast:
14273
case CK_AnyPointerToBlockPointerCast:
14274
case CK_ObjCObjectLValueCast:
14275
case CK_FloatingRealToComplex:
14276
case CK_FloatingComplexToReal:
14277
case CK_FloatingComplexCast:
14278
case CK_FloatingComplexToIntegralComplex:
14279
case CK_IntegralRealToComplex:
14280
case CK_IntegralComplexCast:
14281
case CK_IntegralComplexToFloatingComplex:
14282
case CK_BuiltinFnToFnPtr:
14283
case CK_ZeroToOCLOpaqueType:
14284
case CK_NonAtomicToAtomic:
14285
case CK_AddressSpaceConversion:
14286
case CK_IntToOCLSampler:
14287
case CK_FloatingToFixedPoint:
14288
case CK_FixedPointToFloating:
14289
case CK_FixedPointCast:
14290
case CK_IntegralToFixedPoint:
14291
case CK_MatrixCast:
14292
case CK_HLSLVectorTruncation:
14293
llvm_unreachable("invalid cast kind for integral value");
14294
14295
case CK_BitCast:
14296
case CK_Dependent:
14297
case CK_LValueBitCast:
14298
case CK_ARCProduceObject:
14299
case CK_ARCConsumeObject:
14300
case CK_ARCReclaimReturnedObject:
14301
case CK_ARCExtendBlockObject:
14302
case CK_CopyAndAutoreleaseBlockObject:
14303
return Error(E);
14304
14305
case CK_UserDefinedConversion:
14306
case CK_LValueToRValue:
14307
case CK_AtomicToNonAtomic:
14308
case CK_NoOp:
14309
case CK_LValueToRValueBitCast:
14310
case CK_HLSLArrayRValue:
14311
return ExprEvaluatorBaseTy::VisitCastExpr(E);
14312
14313
case CK_MemberPointerToBoolean:
14314
case CK_PointerToBoolean:
14315
case CK_IntegralToBoolean:
14316
case CK_FloatingToBoolean:
14317
case CK_BooleanToSignedIntegral:
14318
case CK_FloatingComplexToBoolean:
14319
case CK_IntegralComplexToBoolean: {
14320
bool BoolResult;
14321
if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
14322
return false;
14323
uint64_t IntResult = BoolResult;
14324
if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
14325
IntResult = (uint64_t)-1;
14326
return Success(IntResult, E);
14327
}
14328
14329
case CK_FixedPointToIntegral: {
14330
APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType));
14331
if (!EvaluateFixedPoint(SubExpr, Src, Info))
14332
return false;
14333
bool Overflowed;
14334
llvm::APSInt Result = Src.convertToInt(
14335
Info.Ctx.getIntWidth(DestType),
14336
DestType->isSignedIntegerOrEnumerationType(), &Overflowed);
14337
if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
14338
return false;
14339
return Success(Result, E);
14340
}
14341
14342
case CK_FixedPointToBoolean: {
14343
// Unsigned padding does not affect this.
14344
APValue Val;
14345
if (!Evaluate(Val, Info, SubExpr))
14346
return false;
14347
return Success(Val.getFixedPoint().getBoolValue(), E);
14348
}
14349
14350
case CK_IntegralCast: {
14351
if (!Visit(SubExpr))
14352
return false;
14353
14354
if (!Result.isInt()) {
14355
// Allow casts of address-of-label differences if they are no-ops
14356
// or narrowing. (The narrowing case isn't actually guaranteed to
14357
// be constant-evaluatable except in some narrow cases which are hard
14358
// to detect here. We let it through on the assumption the user knows
14359
// what they are doing.)
14360
if (Result.isAddrLabelDiff())
14361
return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
14362
// Only allow casts of lvalues if they are lossless.
14363
return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
14364
}
14365
14366
if (Info.Ctx.getLangOpts().CPlusPlus && Info.InConstantContext &&
14367
Info.EvalMode == EvalInfo::EM_ConstantExpression &&
14368
DestType->isEnumeralType()) {
14369
14370
bool ConstexprVar = true;
14371
14372
// We know if we are here that we are in a context that we might require
14373
// a constant expression or a context that requires a constant
14374
// value. But if we are initializing a value we don't know if it is a
14375
// constexpr variable or not. We can check the EvaluatingDecl to determine
14376
// if it constexpr or not. If not then we don't want to emit a diagnostic.
14377
if (const auto *VD = dyn_cast_or_null<VarDecl>(
14378
Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()))
14379
ConstexprVar = VD->isConstexpr();
14380
14381
const EnumType *ET = dyn_cast<EnumType>(DestType.getCanonicalType());
14382
const EnumDecl *ED = ET->getDecl();
14383
// Check that the value is within the range of the enumeration values.
14384
//
14385
// This corressponds to [expr.static.cast]p10 which says:
14386
// A value of integral or enumeration type can be explicitly converted
14387
// to a complete enumeration type ... If the enumeration type does not
14388
// have a fixed underlying type, the value is unchanged if the original
14389
// value is within the range of the enumeration values ([dcl.enum]), and
14390
// otherwise, the behavior is undefined.
14391
//
14392
// This was resolved as part of DR2338 which has CD5 status.
14393
if (!ED->isFixed()) {
14394
llvm::APInt Min;
14395
llvm::APInt Max;
14396
14397
ED->getValueRange(Max, Min);
14398
--Max;
14399
14400
if (ED->getNumNegativeBits() && ConstexprVar &&
14401
(Max.slt(Result.getInt().getSExtValue()) ||
14402
Min.sgt(Result.getInt().getSExtValue())))
14403
Info.Ctx.getDiagnostics().Report(
14404
E->getExprLoc(), diag::warn_constexpr_unscoped_enum_out_of_range)
14405
<< llvm::toString(Result.getInt(), 10) << Min.getSExtValue()
14406
<< Max.getSExtValue() << ED;
14407
else if (!ED->getNumNegativeBits() && ConstexprVar &&
14408
Max.ult(Result.getInt().getZExtValue()))
14409
Info.Ctx.getDiagnostics().Report(
14410
E->getExprLoc(), diag::warn_constexpr_unscoped_enum_out_of_range)
14411
<< llvm::toString(Result.getInt(), 10) << Min.getZExtValue()
14412
<< Max.getZExtValue() << ED;
14413
}
14414
}
14415
14416
return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
14417
Result.getInt()), E);
14418
}
14419
14420
case CK_PointerToIntegral: {
14421
CCEDiag(E, diag::note_constexpr_invalid_cast)
14422
<< 2 << Info.Ctx.getLangOpts().CPlusPlus << E->getSourceRange();
14423
14424
LValue LV;
14425
if (!EvaluatePointer(SubExpr, LV, Info))
14426
return false;
14427
14428
if (LV.getLValueBase()) {
14429
// Only allow based lvalue casts if they are lossless.
14430
// FIXME: Allow a larger integer size than the pointer size, and allow
14431
// narrowing back down to pointer width in subsequent integral casts.
14432
// FIXME: Check integer type's active bits, not its type size.
14433
if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
14434
return Error(E);
14435
14436
LV.Designator.setInvalid();
14437
LV.moveInto(Result);
14438
return true;
14439
}
14440
14441
APSInt AsInt;
14442
APValue V;
14443
LV.moveInto(V);
14444
if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx))
14445
llvm_unreachable("Can't cast this!");
14446
14447
return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
14448
}
14449
14450
case CK_IntegralComplexToReal: {
14451
ComplexValue C;
14452
if (!EvaluateComplex(SubExpr, C, Info))
14453
return false;
14454
return Success(C.getComplexIntReal(), E);
14455
}
14456
14457
case CK_FloatingToIntegral: {
14458
APFloat F(0.0);
14459
if (!EvaluateFloat(SubExpr, F, Info))
14460
return false;
14461
14462
APSInt Value;
14463
if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
14464
return false;
14465
return Success(Value, E);
14466
}
14467
}
14468
14469
llvm_unreachable("unknown cast resulting in integral value");
14470
}
14471
14472
bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
14473
if (E->getSubExpr()->getType()->isAnyComplexType()) {
14474
ComplexValue LV;
14475
if (!EvaluateComplex(E->getSubExpr(), LV, Info))
14476
return false;
14477
if (!LV.isComplexInt())
14478
return Error(E);
14479
return Success(LV.getComplexIntReal(), E);
14480
}
14481
14482
return Visit(E->getSubExpr());
14483
}
14484
14485
bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
14486
if (E->getSubExpr()->getType()->isComplexIntegerType()) {
14487
ComplexValue LV;
14488
if (!EvaluateComplex(E->getSubExpr(), LV, Info))
14489
return false;
14490
if (!LV.isComplexInt())
14491
return Error(E);
14492
return Success(LV.getComplexIntImag(), E);
14493
}
14494
14495
VisitIgnoredValue(E->getSubExpr());
14496
return Success(0, E);
14497
}
14498
14499
bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
14500
return Success(E->getPackLength(), E);
14501
}
14502
14503
bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
14504
return Success(E->getValue(), E);
14505
}
14506
14507
bool IntExprEvaluator::VisitConceptSpecializationExpr(
14508
const ConceptSpecializationExpr *E) {
14509
return Success(E->isSatisfied(), E);
14510
}
14511
14512
bool IntExprEvaluator::VisitRequiresExpr(const RequiresExpr *E) {
14513
return Success(E->isSatisfied(), E);
14514
}
14515
14516
bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
14517
switch (E->getOpcode()) {
14518
default:
14519
// Invalid unary operators
14520
return Error(E);
14521
case UO_Plus:
14522
// The result is just the value.
14523
return Visit(E->getSubExpr());
14524
case UO_Minus: {
14525
if (!Visit(E->getSubExpr())) return false;
14526
if (!Result.isFixedPoint())
14527
return Error(E);
14528
bool Overflowed;
14529
APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed);
14530
if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType()))
14531
return false;
14532
return Success(Negated, E);
14533
}
14534
case UO_LNot: {
14535
bool bres;
14536
if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
14537
return false;
14538
return Success(!bres, E);
14539
}
14540
}
14541
}
14542
14543
bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) {
14544
const Expr *SubExpr = E->getSubExpr();
14545
QualType DestType = E->getType();
14546
assert(DestType->isFixedPointType() &&
14547
"Expected destination type to be a fixed point type");
14548
auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType);
14549
14550
switch (E->getCastKind()) {
14551
case CK_FixedPointCast: {
14552
APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
14553
if (!EvaluateFixedPoint(SubExpr, Src, Info))
14554
return false;
14555
bool Overflowed;
14556
APFixedPoint Result = Src.convert(DestFXSema, &Overflowed);
14557
if (Overflowed) {
14558
if (Info.checkingForUndefinedBehavior())
14559
Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
14560
diag::warn_fixedpoint_constant_overflow)
14561
<< Result.toString() << E->getType();
14562
if (!HandleOverflow(Info, E, Result, E->getType()))
14563
return false;
14564
}
14565
return Success(Result, E);
14566
}
14567
case CK_IntegralToFixedPoint: {
14568
APSInt Src;
14569
if (!EvaluateInteger(SubExpr, Src, Info))
14570
return false;
14571
14572
bool Overflowed;
14573
APFixedPoint IntResult = APFixedPoint::getFromIntValue(
14574
Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
14575
14576
if (Overflowed) {
14577
if (Info.checkingForUndefinedBehavior())
14578
Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
14579
diag::warn_fixedpoint_constant_overflow)
14580
<< IntResult.toString() << E->getType();
14581
if (!HandleOverflow(Info, E, IntResult, E->getType()))
14582
return false;
14583
}
14584
14585
return Success(IntResult, E);
14586
}
14587
case CK_FloatingToFixedPoint: {
14588
APFloat Src(0.0);
14589
if (!EvaluateFloat(SubExpr, Src, Info))
14590
return false;
14591
14592
bool Overflowed;
14593
APFixedPoint Result = APFixedPoint::getFromFloatValue(
14594
Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
14595
14596
if (Overflowed) {
14597
if (Info.checkingForUndefinedBehavior())
14598
Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
14599
diag::warn_fixedpoint_constant_overflow)
14600
<< Result.toString() << E->getType();
14601
if (!HandleOverflow(Info, E, Result, E->getType()))
14602
return false;
14603
}
14604
14605
return Success(Result, E);
14606
}
14607
case CK_NoOp:
14608
case CK_LValueToRValue:
14609
return ExprEvaluatorBaseTy::VisitCastExpr(E);
14610
default:
14611
return Error(E);
14612
}
14613
}
14614
14615
bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
14616
if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
14617
return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14618
14619
const Expr *LHS = E->getLHS();
14620
const Expr *RHS = E->getRHS();
14621
FixedPointSemantics ResultFXSema =
14622
Info.Ctx.getFixedPointSemantics(E->getType());
14623
14624
APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType()));
14625
if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info))
14626
return false;
14627
APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType()));
14628
if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info))
14629
return false;
14630
14631
bool OpOverflow = false, ConversionOverflow = false;
14632
APFixedPoint Result(LHSFX.getSemantics());
14633
switch (E->getOpcode()) {
14634
case BO_Add: {
14635
Result = LHSFX.add(RHSFX, &OpOverflow)
14636
.convert(ResultFXSema, &ConversionOverflow);
14637
break;
14638
}
14639
case BO_Sub: {
14640
Result = LHSFX.sub(RHSFX, &OpOverflow)
14641
.convert(ResultFXSema, &ConversionOverflow);
14642
break;
14643
}
14644
case BO_Mul: {
14645
Result = LHSFX.mul(RHSFX, &OpOverflow)
14646
.convert(ResultFXSema, &ConversionOverflow);
14647
break;
14648
}
14649
case BO_Div: {
14650
if (RHSFX.getValue() == 0) {
14651
Info.FFDiag(E, diag::note_expr_divide_by_zero);
14652
return false;
14653
}
14654
Result = LHSFX.div(RHSFX, &OpOverflow)
14655
.convert(ResultFXSema, &ConversionOverflow);
14656
break;
14657
}
14658
case BO_Shl:
14659
case BO_Shr: {
14660
FixedPointSemantics LHSSema = LHSFX.getSemantics();
14661
llvm::APSInt RHSVal = RHSFX.getValue();
14662
14663
unsigned ShiftBW =
14664
LHSSema.getWidth() - (unsigned)LHSSema.hasUnsignedPadding();
14665
unsigned Amt = RHSVal.getLimitedValue(ShiftBW - 1);
14666
// Embedded-C 4.1.6.2.2:
14667
// The right operand must be nonnegative and less than the total number
14668
// of (nonpadding) bits of the fixed-point operand ...
14669
if (RHSVal.isNegative())
14670
Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHSVal;
14671
else if (Amt != RHSVal)
14672
Info.CCEDiag(E, diag::note_constexpr_large_shift)
14673
<< RHSVal << E->getType() << ShiftBW;
14674
14675
if (E->getOpcode() == BO_Shl)
14676
Result = LHSFX.shl(Amt, &OpOverflow);
14677
else
14678
Result = LHSFX.shr(Amt, &OpOverflow);
14679
break;
14680
}
14681
default:
14682
return false;
14683
}
14684
if (OpOverflow || ConversionOverflow) {
14685
if (Info.checkingForUndefinedBehavior())
14686
Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
14687
diag::warn_fixedpoint_constant_overflow)
14688
<< Result.toString() << E->getType();
14689
if (!HandleOverflow(Info, E, Result, E->getType()))
14690
return false;
14691
}
14692
return Success(Result, E);
14693
}
14694
14695
//===----------------------------------------------------------------------===//
14696
// Float Evaluation
14697
//===----------------------------------------------------------------------===//
14698
14699
namespace {
14700
class FloatExprEvaluator
14701
: public ExprEvaluatorBase<FloatExprEvaluator> {
14702
APFloat &Result;
14703
public:
14704
FloatExprEvaluator(EvalInfo &info, APFloat &result)
14705
: ExprEvaluatorBaseTy(info), Result(result) {}
14706
14707
bool Success(const APValue &V, const Expr *e) {
14708
Result = V.getFloat();
14709
return true;
14710
}
14711
14712
bool ZeroInitialization(const Expr *E) {
14713
Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
14714
return true;
14715
}
14716
14717
bool VisitCallExpr(const CallExpr *E);
14718
14719
bool VisitUnaryOperator(const UnaryOperator *E);
14720
bool VisitBinaryOperator(const BinaryOperator *E);
14721
bool VisitFloatingLiteral(const FloatingLiteral *E);
14722
bool VisitCastExpr(const CastExpr *E);
14723
14724
bool VisitUnaryReal(const UnaryOperator *E);
14725
bool VisitUnaryImag(const UnaryOperator *E);
14726
14727
// FIXME: Missing: array subscript of vector, member of vector
14728
};
14729
} // end anonymous namespace
14730
14731
static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
14732
assert(!E->isValueDependent());
14733
assert(E->isPRValue() && E->getType()->isRealFloatingType());
14734
return FloatExprEvaluator(Info, Result).Visit(E);
14735
}
14736
14737
static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
14738
QualType ResultTy,
14739
const Expr *Arg,
14740
bool SNaN,
14741
llvm::APFloat &Result) {
14742
const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
14743
if (!S) return false;
14744
14745
const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
14746
14747
llvm::APInt fill;
14748
14749
// Treat empty strings as if they were zero.
14750
if (S->getString().empty())
14751
fill = llvm::APInt(32, 0);
14752
else if (S->getString().getAsInteger(0, fill))
14753
return false;
14754
14755
if (Context.getTargetInfo().isNan2008()) {
14756
if (SNaN)
14757
Result = llvm::APFloat::getSNaN(Sem, false, &fill);
14758
else
14759
Result = llvm::APFloat::getQNaN(Sem, false, &fill);
14760
} else {
14761
// Prior to IEEE 754-2008, architectures were allowed to choose whether
14762
// the first bit of their significand was set for qNaN or sNaN. MIPS chose
14763
// a different encoding to what became a standard in 2008, and for pre-
14764
// 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
14765
// sNaN. This is now known as "legacy NaN" encoding.
14766
if (SNaN)
14767
Result = llvm::APFloat::getQNaN(Sem, false, &fill);
14768
else
14769
Result = llvm::APFloat::getSNaN(Sem, false, &fill);
14770
}
14771
14772
return true;
14773
}
14774
14775
bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
14776
if (!IsConstantEvaluatedBuiltinCall(E))
14777
return ExprEvaluatorBaseTy::VisitCallExpr(E);
14778
14779
switch (E->getBuiltinCallee()) {
14780
default:
14781
return false;
14782
14783
case Builtin::BI__builtin_huge_val:
14784
case Builtin::BI__builtin_huge_valf:
14785
case Builtin::BI__builtin_huge_vall:
14786
case Builtin::BI__builtin_huge_valf16:
14787
case Builtin::BI__builtin_huge_valf128:
14788
case Builtin::BI__builtin_inf:
14789
case Builtin::BI__builtin_inff:
14790
case Builtin::BI__builtin_infl:
14791
case Builtin::BI__builtin_inff16:
14792
case Builtin::BI__builtin_inff128: {
14793
const llvm::fltSemantics &Sem =
14794
Info.Ctx.getFloatTypeSemantics(E->getType());
14795
Result = llvm::APFloat::getInf(Sem);
14796
return true;
14797
}
14798
14799
case Builtin::BI__builtin_nans:
14800
case Builtin::BI__builtin_nansf:
14801
case Builtin::BI__builtin_nansl:
14802
case Builtin::BI__builtin_nansf16:
14803
case Builtin::BI__builtin_nansf128:
14804
if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
14805
true, Result))
14806
return Error(E);
14807
return true;
14808
14809
case Builtin::BI__builtin_nan:
14810
case Builtin::BI__builtin_nanf:
14811
case Builtin::BI__builtin_nanl:
14812
case Builtin::BI__builtin_nanf16:
14813
case Builtin::BI__builtin_nanf128:
14814
// If this is __builtin_nan() turn this into a nan, otherwise we
14815
// can't constant fold it.
14816
if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
14817
false, Result))
14818
return Error(E);
14819
return true;
14820
14821
case Builtin::BI__builtin_fabs:
14822
case Builtin::BI__builtin_fabsf:
14823
case Builtin::BI__builtin_fabsl:
14824
case Builtin::BI__builtin_fabsf128:
14825
// The C standard says "fabs raises no floating-point exceptions,
14826
// even if x is a signaling NaN. The returned value is independent of
14827
// the current rounding direction mode." Therefore constant folding can
14828
// proceed without regard to the floating point settings.
14829
// Reference, WG14 N2478 F.10.4.3
14830
if (!EvaluateFloat(E->getArg(0), Result, Info))
14831
return false;
14832
14833
if (Result.isNegative())
14834
Result.changeSign();
14835
return true;
14836
14837
case Builtin::BI__arithmetic_fence:
14838
return EvaluateFloat(E->getArg(0), Result, Info);
14839
14840
// FIXME: Builtin::BI__builtin_powi
14841
// FIXME: Builtin::BI__builtin_powif
14842
// FIXME: Builtin::BI__builtin_powil
14843
14844
case Builtin::BI__builtin_copysign:
14845
case Builtin::BI__builtin_copysignf:
14846
case Builtin::BI__builtin_copysignl:
14847
case Builtin::BI__builtin_copysignf128: {
14848
APFloat RHS(0.);
14849
if (!EvaluateFloat(E->getArg(0), Result, Info) ||
14850
!EvaluateFloat(E->getArg(1), RHS, Info))
14851
return false;
14852
Result.copySign(RHS);
14853
return true;
14854
}
14855
14856
case Builtin::BI__builtin_fmax:
14857
case Builtin::BI__builtin_fmaxf:
14858
case Builtin::BI__builtin_fmaxl:
14859
case Builtin::BI__builtin_fmaxf16:
14860
case Builtin::BI__builtin_fmaxf128: {
14861
// TODO: Handle sNaN.
14862
APFloat RHS(0.);
14863
if (!EvaluateFloat(E->getArg(0), Result, Info) ||
14864
!EvaluateFloat(E->getArg(1), RHS, Info))
14865
return false;
14866
// When comparing zeroes, return +0.0 if one of the zeroes is positive.
14867
if (Result.isZero() && RHS.isZero() && Result.isNegative())
14868
Result = RHS;
14869
else if (Result.isNaN() || RHS > Result)
14870
Result = RHS;
14871
return true;
14872
}
14873
14874
case Builtin::BI__builtin_fmin:
14875
case Builtin::BI__builtin_fminf:
14876
case Builtin::BI__builtin_fminl:
14877
case Builtin::BI__builtin_fminf16:
14878
case Builtin::BI__builtin_fminf128: {
14879
// TODO: Handle sNaN.
14880
APFloat RHS(0.);
14881
if (!EvaluateFloat(E->getArg(0), Result, Info) ||
14882
!EvaluateFloat(E->getArg(1), RHS, Info))
14883
return false;
14884
// When comparing zeroes, return -0.0 if one of the zeroes is negative.
14885
if (Result.isZero() && RHS.isZero() && RHS.isNegative())
14886
Result = RHS;
14887
else if (Result.isNaN() || RHS < Result)
14888
Result = RHS;
14889
return true;
14890
}
14891
}
14892
}
14893
14894
bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
14895
if (E->getSubExpr()->getType()->isAnyComplexType()) {
14896
ComplexValue CV;
14897
if (!EvaluateComplex(E->getSubExpr(), CV, Info))
14898
return false;
14899
Result = CV.FloatReal;
14900
return true;
14901
}
14902
14903
return Visit(E->getSubExpr());
14904
}
14905
14906
bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
14907
if (E->getSubExpr()->getType()->isAnyComplexType()) {
14908
ComplexValue CV;
14909
if (!EvaluateComplex(E->getSubExpr(), CV, Info))
14910
return false;
14911
Result = CV.FloatImag;
14912
return true;
14913
}
14914
14915
VisitIgnoredValue(E->getSubExpr());
14916
const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
14917
Result = llvm::APFloat::getZero(Sem);
14918
return true;
14919
}
14920
14921
bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
14922
switch (E->getOpcode()) {
14923
default: return Error(E);
14924
case UO_Plus:
14925
return EvaluateFloat(E->getSubExpr(), Result, Info);
14926
case UO_Minus:
14927
// In C standard, WG14 N2478 F.3 p4
14928
// "the unary - raises no floating point exceptions,
14929
// even if the operand is signalling."
14930
if (!EvaluateFloat(E->getSubExpr(), Result, Info))
14931
return false;
14932
Result.changeSign();
14933
return true;
14934
}
14935
}
14936
14937
bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
14938
if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
14939
return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14940
14941
APFloat RHS(0.0);
14942
bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
14943
if (!LHSOK && !Info.noteFailure())
14944
return false;
14945
return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
14946
handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
14947
}
14948
14949
bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
14950
Result = E->getValue();
14951
return true;
14952
}
14953
14954
bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
14955
const Expr* SubExpr = E->getSubExpr();
14956
14957
switch (E->getCastKind()) {
14958
default:
14959
return ExprEvaluatorBaseTy::VisitCastExpr(E);
14960
14961
case CK_IntegralToFloating: {
14962
APSInt IntResult;
14963
const FPOptions FPO = E->getFPFeaturesInEffect(
14964
Info.Ctx.getLangOpts());
14965
return EvaluateInteger(SubExpr, IntResult, Info) &&
14966
HandleIntToFloatCast(Info, E, FPO, SubExpr->getType(),
14967
IntResult, E->getType(), Result);
14968
}
14969
14970
case CK_FixedPointToFloating: {
14971
APFixedPoint FixResult(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
14972
if (!EvaluateFixedPoint(SubExpr, FixResult, Info))
14973
return false;
14974
Result =
14975
FixResult.convertToFloat(Info.Ctx.getFloatTypeSemantics(E->getType()));
14976
return true;
14977
}
14978
14979
case CK_FloatingCast: {
14980
if (!Visit(SubExpr))
14981
return false;
14982
return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
14983
Result);
14984
}
14985
14986
case CK_FloatingComplexToReal: {
14987
ComplexValue V;
14988
if (!EvaluateComplex(SubExpr, V, Info))
14989
return false;
14990
Result = V.getComplexFloatReal();
14991
return true;
14992
}
14993
}
14994
}
14995
14996
//===----------------------------------------------------------------------===//
14997
// Complex Evaluation (for float and integer)
14998
//===----------------------------------------------------------------------===//
14999
15000
namespace {
15001
class ComplexExprEvaluator
15002
: public ExprEvaluatorBase<ComplexExprEvaluator> {
15003
ComplexValue &Result;
15004
15005
public:
15006
ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
15007
: ExprEvaluatorBaseTy(info), Result(Result) {}
15008
15009
bool Success(const APValue &V, const Expr *e) {
15010
Result.setFrom(V);
15011
return true;
15012
}
15013
15014
bool ZeroInitialization(const Expr *E);
15015
15016
//===--------------------------------------------------------------------===//
15017
// Visitor Methods
15018
//===--------------------------------------------------------------------===//
15019
15020
bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
15021
bool VisitCastExpr(const CastExpr *E);
15022
bool VisitBinaryOperator(const BinaryOperator *E);
15023
bool VisitUnaryOperator(const UnaryOperator *E);
15024
bool VisitInitListExpr(const InitListExpr *E);
15025
bool VisitCallExpr(const CallExpr *E);
15026
};
15027
} // end anonymous namespace
15028
15029
static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
15030
EvalInfo &Info) {
15031
assert(!E->isValueDependent());
15032
assert(E->isPRValue() && E->getType()->isAnyComplexType());
15033
return ComplexExprEvaluator(Info, Result).Visit(E);
15034
}
15035
15036
bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
15037
QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
15038
if (ElemTy->isRealFloatingType()) {
15039
Result.makeComplexFloat();
15040
APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
15041
Result.FloatReal = Zero;
15042
Result.FloatImag = Zero;
15043
} else {
15044
Result.makeComplexInt();
15045
APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
15046
Result.IntReal = Zero;
15047
Result.IntImag = Zero;
15048
}
15049
return true;
15050
}
15051
15052
bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
15053
const Expr* SubExpr = E->getSubExpr();
15054
15055
if (SubExpr->getType()->isRealFloatingType()) {
15056
Result.makeComplexFloat();
15057
APFloat &Imag = Result.FloatImag;
15058
if (!EvaluateFloat(SubExpr, Imag, Info))
15059
return false;
15060
15061
Result.FloatReal = APFloat(Imag.getSemantics());
15062
return true;
15063
} else {
15064
assert(SubExpr->getType()->isIntegerType() &&
15065
"Unexpected imaginary literal.");
15066
15067
Result.makeComplexInt();
15068
APSInt &Imag = Result.IntImag;
15069
if (!EvaluateInteger(SubExpr, Imag, Info))
15070
return false;
15071
15072
Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
15073
return true;
15074
}
15075
}
15076
15077
bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
15078
15079
switch (E->getCastKind()) {
15080
case CK_BitCast:
15081
case CK_BaseToDerived:
15082
case CK_DerivedToBase:
15083
case CK_UncheckedDerivedToBase:
15084
case CK_Dynamic:
15085
case CK_ToUnion:
15086
case CK_ArrayToPointerDecay:
15087
case CK_FunctionToPointerDecay:
15088
case CK_NullToPointer:
15089
case CK_NullToMemberPointer:
15090
case CK_BaseToDerivedMemberPointer:
15091
case CK_DerivedToBaseMemberPointer:
15092
case CK_MemberPointerToBoolean:
15093
case CK_ReinterpretMemberPointer:
15094
case CK_ConstructorConversion:
15095
case CK_IntegralToPointer:
15096
case CK_PointerToIntegral:
15097
case CK_PointerToBoolean:
15098
case CK_ToVoid:
15099
case CK_VectorSplat:
15100
case CK_IntegralCast:
15101
case CK_BooleanToSignedIntegral:
15102
case CK_IntegralToBoolean:
15103
case CK_IntegralToFloating:
15104
case CK_FloatingToIntegral:
15105
case CK_FloatingToBoolean:
15106
case CK_FloatingCast:
15107
case CK_CPointerToObjCPointerCast:
15108
case CK_BlockPointerToObjCPointerCast:
15109
case CK_AnyPointerToBlockPointerCast:
15110
case CK_ObjCObjectLValueCast:
15111
case CK_FloatingComplexToReal:
15112
case CK_FloatingComplexToBoolean:
15113
case CK_IntegralComplexToReal:
15114
case CK_IntegralComplexToBoolean:
15115
case CK_ARCProduceObject:
15116
case CK_ARCConsumeObject:
15117
case CK_ARCReclaimReturnedObject:
15118
case CK_ARCExtendBlockObject:
15119
case CK_CopyAndAutoreleaseBlockObject:
15120
case CK_BuiltinFnToFnPtr:
15121
case CK_ZeroToOCLOpaqueType:
15122
case CK_NonAtomicToAtomic:
15123
case CK_AddressSpaceConversion:
15124
case CK_IntToOCLSampler:
15125
case CK_FloatingToFixedPoint:
15126
case CK_FixedPointToFloating:
15127
case CK_FixedPointCast:
15128
case CK_FixedPointToBoolean:
15129
case CK_FixedPointToIntegral:
15130
case CK_IntegralToFixedPoint:
15131
case CK_MatrixCast:
15132
case CK_HLSLVectorTruncation:
15133
llvm_unreachable("invalid cast kind for complex value");
15134
15135
case CK_LValueToRValue:
15136
case CK_AtomicToNonAtomic:
15137
case CK_NoOp:
15138
case CK_LValueToRValueBitCast:
15139
case CK_HLSLArrayRValue:
15140
return ExprEvaluatorBaseTy::VisitCastExpr(E);
15141
15142
case CK_Dependent:
15143
case CK_LValueBitCast:
15144
case CK_UserDefinedConversion:
15145
return Error(E);
15146
15147
case CK_FloatingRealToComplex: {
15148
APFloat &Real = Result.FloatReal;
15149
if (!EvaluateFloat(E->getSubExpr(), Real, Info))
15150
return false;
15151
15152
Result.makeComplexFloat();
15153
Result.FloatImag = APFloat(Real.getSemantics());
15154
return true;
15155
}
15156
15157
case CK_FloatingComplexCast: {
15158
if (!Visit(E->getSubExpr()))
15159
return false;
15160
15161
QualType To = E->getType()->castAs<ComplexType>()->getElementType();
15162
QualType From
15163
= E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
15164
15165
return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
15166
HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
15167
}
15168
15169
case CK_FloatingComplexToIntegralComplex: {
15170
if (!Visit(E->getSubExpr()))
15171
return false;
15172
15173
QualType To = E->getType()->castAs<ComplexType>()->getElementType();
15174
QualType From
15175
= E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
15176
Result.makeComplexInt();
15177
return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
15178
To, Result.IntReal) &&
15179
HandleFloatToIntCast(Info, E, From, Result.FloatImag,
15180
To, Result.IntImag);
15181
}
15182
15183
case CK_IntegralRealToComplex: {
15184
APSInt &Real = Result.IntReal;
15185
if (!EvaluateInteger(E->getSubExpr(), Real, Info))
15186
return false;
15187
15188
Result.makeComplexInt();
15189
Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
15190
return true;
15191
}
15192
15193
case CK_IntegralComplexCast: {
15194
if (!Visit(E->getSubExpr()))
15195
return false;
15196
15197
QualType To = E->getType()->castAs<ComplexType>()->getElementType();
15198
QualType From
15199
= E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
15200
15201
Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
15202
Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
15203
return true;
15204
}
15205
15206
case CK_IntegralComplexToFloatingComplex: {
15207
if (!Visit(E->getSubExpr()))
15208
return false;
15209
15210
const FPOptions FPO = E->getFPFeaturesInEffect(
15211
Info.Ctx.getLangOpts());
15212
QualType To = E->getType()->castAs<ComplexType>()->getElementType();
15213
QualType From
15214
= E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
15215
Result.makeComplexFloat();
15216
return HandleIntToFloatCast(Info, E, FPO, From, Result.IntReal,
15217
To, Result.FloatReal) &&
15218
HandleIntToFloatCast(Info, E, FPO, From, Result.IntImag,
15219
To, Result.FloatImag);
15220
}
15221
}
15222
15223
llvm_unreachable("unknown cast resulting in complex value");
15224
}
15225
15226
void HandleComplexComplexMul(APFloat A, APFloat B, APFloat C, APFloat D,
15227
APFloat &ResR, APFloat &ResI) {
15228
// This is an implementation of complex multiplication according to the
15229
// constraints laid out in C11 Annex G. The implementation uses the
15230
// following naming scheme:
15231
// (a + ib) * (c + id)
15232
15233
APFloat AC = A * C;
15234
APFloat BD = B * D;
15235
APFloat AD = A * D;
15236
APFloat BC = B * C;
15237
ResR = AC - BD;
15238
ResI = AD + BC;
15239
if (ResR.isNaN() && ResI.isNaN()) {
15240
bool Recalc = false;
15241
if (A.isInfinity() || B.isInfinity()) {
15242
A = APFloat::copySign(APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0),
15243
A);
15244
B = APFloat::copySign(APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0),
15245
B);
15246
if (C.isNaN())
15247
C = APFloat::copySign(APFloat(C.getSemantics()), C);
15248
if (D.isNaN())
15249
D = APFloat::copySign(APFloat(D.getSemantics()), D);
15250
Recalc = true;
15251
}
15252
if (C.isInfinity() || D.isInfinity()) {
15253
C = APFloat::copySign(APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0),
15254
C);
15255
D = APFloat::copySign(APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0),
15256
D);
15257
if (A.isNaN())
15258
A = APFloat::copySign(APFloat(A.getSemantics()), A);
15259
if (B.isNaN())
15260
B = APFloat::copySign(APFloat(B.getSemantics()), B);
15261
Recalc = true;
15262
}
15263
if (!Recalc && (AC.isInfinity() || BD.isInfinity() || AD.isInfinity() ||
15264
BC.isInfinity())) {
15265
if (A.isNaN())
15266
A = APFloat::copySign(APFloat(A.getSemantics()), A);
15267
if (B.isNaN())
15268
B = APFloat::copySign(APFloat(B.getSemantics()), B);
15269
if (C.isNaN())
15270
C = APFloat::copySign(APFloat(C.getSemantics()), C);
15271
if (D.isNaN())
15272
D = APFloat::copySign(APFloat(D.getSemantics()), D);
15273
Recalc = true;
15274
}
15275
if (Recalc) {
15276
ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
15277
ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
15278
}
15279
}
15280
}
15281
15282
void HandleComplexComplexDiv(APFloat A, APFloat B, APFloat C, APFloat D,
15283
APFloat &ResR, APFloat &ResI) {
15284
// This is an implementation of complex division according to the
15285
// constraints laid out in C11 Annex G. The implementation uses the
15286
// following naming scheme:
15287
// (a + ib) / (c + id)
15288
15289
int DenomLogB = 0;
15290
APFloat MaxCD = maxnum(abs(C), abs(D));
15291
if (MaxCD.isFinite()) {
15292
DenomLogB = ilogb(MaxCD);
15293
C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven);
15294
D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven);
15295
}
15296
APFloat Denom = C * C + D * D;
15297
ResR =
15298
scalbn((A * C + B * D) / Denom, -DenomLogB, APFloat::rmNearestTiesToEven);
15299
ResI =
15300
scalbn((B * C - A * D) / Denom, -DenomLogB, APFloat::rmNearestTiesToEven);
15301
if (ResR.isNaN() && ResI.isNaN()) {
15302
if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
15303
ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
15304
ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
15305
} else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
15306
D.isFinite()) {
15307
A = APFloat::copySign(APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0),
15308
A);
15309
B = APFloat::copySign(APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0),
15310
B);
15311
ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
15312
ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
15313
} else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
15314
C = APFloat::copySign(APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0),
15315
C);
15316
D = APFloat::copySign(APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0),
15317
D);
15318
ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
15319
ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
15320
}
15321
}
15322
}
15323
15324
bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
15325
if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
15326
return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
15327
15328
// Track whether the LHS or RHS is real at the type system level. When this is
15329
// the case we can simplify our evaluation strategy.
15330
bool LHSReal = false, RHSReal = false;
15331
15332
bool LHSOK;
15333
if (E->getLHS()->getType()->isRealFloatingType()) {
15334
LHSReal = true;
15335
APFloat &Real = Result.FloatReal;
15336
LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
15337
if (LHSOK) {
15338
Result.makeComplexFloat();
15339
Result.FloatImag = APFloat(Real.getSemantics());
15340
}
15341
} else {
15342
LHSOK = Visit(E->getLHS());
15343
}
15344
if (!LHSOK && !Info.noteFailure())
15345
return false;
15346
15347
ComplexValue RHS;
15348
if (E->getRHS()->getType()->isRealFloatingType()) {
15349
RHSReal = true;
15350
APFloat &Real = RHS.FloatReal;
15351
if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
15352
return false;
15353
RHS.makeComplexFloat();
15354
RHS.FloatImag = APFloat(Real.getSemantics());
15355
} else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
15356
return false;
15357
15358
assert(!(LHSReal && RHSReal) &&
15359
"Cannot have both operands of a complex operation be real.");
15360
switch (E->getOpcode()) {
15361
default: return Error(E);
15362
case BO_Add:
15363
if (Result.isComplexFloat()) {
15364
Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
15365
APFloat::rmNearestTiesToEven);
15366
if (LHSReal)
15367
Result.getComplexFloatImag() = RHS.getComplexFloatImag();
15368
else if (!RHSReal)
15369
Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
15370
APFloat::rmNearestTiesToEven);
15371
} else {
15372
Result.getComplexIntReal() += RHS.getComplexIntReal();
15373
Result.getComplexIntImag() += RHS.getComplexIntImag();
15374
}
15375
break;
15376
case BO_Sub:
15377
if (Result.isComplexFloat()) {
15378
Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
15379
APFloat::rmNearestTiesToEven);
15380
if (LHSReal) {
15381
Result.getComplexFloatImag() = RHS.getComplexFloatImag();
15382
Result.getComplexFloatImag().changeSign();
15383
} else if (!RHSReal) {
15384
Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
15385
APFloat::rmNearestTiesToEven);
15386
}
15387
} else {
15388
Result.getComplexIntReal() -= RHS.getComplexIntReal();
15389
Result.getComplexIntImag() -= RHS.getComplexIntImag();
15390
}
15391
break;
15392
case BO_Mul:
15393
if (Result.isComplexFloat()) {
15394
// This is an implementation of complex multiplication according to the
15395
// constraints laid out in C11 Annex G. The implementation uses the
15396
// following naming scheme:
15397
// (a + ib) * (c + id)
15398
ComplexValue LHS = Result;
15399
APFloat &A = LHS.getComplexFloatReal();
15400
APFloat &B = LHS.getComplexFloatImag();
15401
APFloat &C = RHS.getComplexFloatReal();
15402
APFloat &D = RHS.getComplexFloatImag();
15403
APFloat &ResR = Result.getComplexFloatReal();
15404
APFloat &ResI = Result.getComplexFloatImag();
15405
if (LHSReal) {
15406
assert(!RHSReal && "Cannot have two real operands for a complex op!");
15407
ResR = A;
15408
ResI = A;
15409
// ResR = A * C;
15410
// ResI = A * D;
15411
if (!handleFloatFloatBinOp(Info, E, ResR, BO_Mul, C) ||
15412
!handleFloatFloatBinOp(Info, E, ResI, BO_Mul, D))
15413
return false;
15414
} else if (RHSReal) {
15415
// ResR = C * A;
15416
// ResI = C * B;
15417
ResR = C;
15418
ResI = C;
15419
if (!handleFloatFloatBinOp(Info, E, ResR, BO_Mul, A) ||
15420
!handleFloatFloatBinOp(Info, E, ResI, BO_Mul, B))
15421
return false;
15422
} else {
15423
HandleComplexComplexMul(A, B, C, D, ResR, ResI);
15424
}
15425
} else {
15426
ComplexValue LHS = Result;
15427
Result.getComplexIntReal() =
15428
(LHS.getComplexIntReal() * RHS.getComplexIntReal() -
15429
LHS.getComplexIntImag() * RHS.getComplexIntImag());
15430
Result.getComplexIntImag() =
15431
(LHS.getComplexIntReal() * RHS.getComplexIntImag() +
15432
LHS.getComplexIntImag() * RHS.getComplexIntReal());
15433
}
15434
break;
15435
case BO_Div:
15436
if (Result.isComplexFloat()) {
15437
// This is an implementation of complex division according to the
15438
// constraints laid out in C11 Annex G. The implementation uses the
15439
// following naming scheme:
15440
// (a + ib) / (c + id)
15441
ComplexValue LHS = Result;
15442
APFloat &A = LHS.getComplexFloatReal();
15443
APFloat &B = LHS.getComplexFloatImag();
15444
APFloat &C = RHS.getComplexFloatReal();
15445
APFloat &D = RHS.getComplexFloatImag();
15446
APFloat &ResR = Result.getComplexFloatReal();
15447
APFloat &ResI = Result.getComplexFloatImag();
15448
if (RHSReal) {
15449
ResR = A;
15450
ResI = B;
15451
// ResR = A / C;
15452
// ResI = B / C;
15453
if (!handleFloatFloatBinOp(Info, E, ResR, BO_Div, C) ||
15454
!handleFloatFloatBinOp(Info, E, ResI, BO_Div, C))
15455
return false;
15456
} else {
15457
if (LHSReal) {
15458
// No real optimizations we can do here, stub out with zero.
15459
B = APFloat::getZero(A.getSemantics());
15460
}
15461
HandleComplexComplexDiv(A, B, C, D, ResR, ResI);
15462
}
15463
} else {
15464
if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
15465
return Error(E, diag::note_expr_divide_by_zero);
15466
15467
ComplexValue LHS = Result;
15468
APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
15469
RHS.getComplexIntImag() * RHS.getComplexIntImag();
15470
Result.getComplexIntReal() =
15471
(LHS.getComplexIntReal() * RHS.getComplexIntReal() +
15472
LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
15473
Result.getComplexIntImag() =
15474
(LHS.getComplexIntImag() * RHS.getComplexIntReal() -
15475
LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
15476
}
15477
break;
15478
}
15479
15480
return true;
15481
}
15482
15483
bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
15484
// Get the operand value into 'Result'.
15485
if (!Visit(E->getSubExpr()))
15486
return false;
15487
15488
switch (E->getOpcode()) {
15489
default:
15490
return Error(E);
15491
case UO_Extension:
15492
return true;
15493
case UO_Plus:
15494
// The result is always just the subexpr.
15495
return true;
15496
case UO_Minus:
15497
if (Result.isComplexFloat()) {
15498
Result.getComplexFloatReal().changeSign();
15499
Result.getComplexFloatImag().changeSign();
15500
}
15501
else {
15502
Result.getComplexIntReal() = -Result.getComplexIntReal();
15503
Result.getComplexIntImag() = -Result.getComplexIntImag();
15504
}
15505
return true;
15506
case UO_Not:
15507
if (Result.isComplexFloat())
15508
Result.getComplexFloatImag().changeSign();
15509
else
15510
Result.getComplexIntImag() = -Result.getComplexIntImag();
15511
return true;
15512
}
15513
}
15514
15515
bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
15516
if (E->getNumInits() == 2) {
15517
if (E->getType()->isComplexType()) {
15518
Result.makeComplexFloat();
15519
if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
15520
return false;
15521
if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
15522
return false;
15523
} else {
15524
Result.makeComplexInt();
15525
if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
15526
return false;
15527
if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
15528
return false;
15529
}
15530
return true;
15531
}
15532
return ExprEvaluatorBaseTy::VisitInitListExpr(E);
15533
}
15534
15535
bool ComplexExprEvaluator::VisitCallExpr(const CallExpr *E) {
15536
if (!IsConstantEvaluatedBuiltinCall(E))
15537
return ExprEvaluatorBaseTy::VisitCallExpr(E);
15538
15539
switch (E->getBuiltinCallee()) {
15540
case Builtin::BI__builtin_complex:
15541
Result.makeComplexFloat();
15542
if (!EvaluateFloat(E->getArg(0), Result.FloatReal, Info))
15543
return false;
15544
if (!EvaluateFloat(E->getArg(1), Result.FloatImag, Info))
15545
return false;
15546
return true;
15547
15548
default:
15549
return false;
15550
}
15551
}
15552
15553
//===----------------------------------------------------------------------===//
15554
// Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
15555
// implicit conversion.
15556
//===----------------------------------------------------------------------===//
15557
15558
namespace {
15559
class AtomicExprEvaluator :
15560
public ExprEvaluatorBase<AtomicExprEvaluator> {
15561
const LValue *This;
15562
APValue &Result;
15563
public:
15564
AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result)
15565
: ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
15566
15567
bool Success(const APValue &V, const Expr *E) {
15568
Result = V;
15569
return true;
15570
}
15571
15572
bool ZeroInitialization(const Expr *E) {
15573
ImplicitValueInitExpr VIE(
15574
E->getType()->castAs<AtomicType>()->getValueType());
15575
// For atomic-qualified class (and array) types in C++, initialize the
15576
// _Atomic-wrapped subobject directly, in-place.
15577
return This ? EvaluateInPlace(Result, Info, *This, &VIE)
15578
: Evaluate(Result, Info, &VIE);
15579
}
15580
15581
bool VisitCastExpr(const CastExpr *E) {
15582
switch (E->getCastKind()) {
15583
default:
15584
return ExprEvaluatorBaseTy::VisitCastExpr(E);
15585
case CK_NullToPointer:
15586
VisitIgnoredValue(E->getSubExpr());
15587
return ZeroInitialization(E);
15588
case CK_NonAtomicToAtomic:
15589
return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr())
15590
: Evaluate(Result, Info, E->getSubExpr());
15591
}
15592
}
15593
};
15594
} // end anonymous namespace
15595
15596
static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
15597
EvalInfo &Info) {
15598
assert(!E->isValueDependent());
15599
assert(E->isPRValue() && E->getType()->isAtomicType());
15600
return AtomicExprEvaluator(Info, This, Result).Visit(E);
15601
}
15602
15603
//===----------------------------------------------------------------------===//
15604
// Void expression evaluation, primarily for a cast to void on the LHS of a
15605
// comma operator
15606
//===----------------------------------------------------------------------===//
15607
15608
namespace {
15609
class VoidExprEvaluator
15610
: public ExprEvaluatorBase<VoidExprEvaluator> {
15611
public:
15612
VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
15613
15614
bool Success(const APValue &V, const Expr *e) { return true; }
15615
15616
bool ZeroInitialization(const Expr *E) { return true; }
15617
15618
bool VisitCastExpr(const CastExpr *E) {
15619
switch (E->getCastKind()) {
15620
default:
15621
return ExprEvaluatorBaseTy::VisitCastExpr(E);
15622
case CK_ToVoid:
15623
VisitIgnoredValue(E->getSubExpr());
15624
return true;
15625
}
15626
}
15627
15628
bool VisitCallExpr(const CallExpr *E) {
15629
if (!IsConstantEvaluatedBuiltinCall(E))
15630
return ExprEvaluatorBaseTy::VisitCallExpr(E);
15631
15632
switch (E->getBuiltinCallee()) {
15633
case Builtin::BI__assume:
15634
case Builtin::BI__builtin_assume:
15635
// The argument is not evaluated!
15636
return true;
15637
15638
case Builtin::BI__builtin_operator_delete:
15639
return HandleOperatorDeleteCall(Info, E);
15640
15641
default:
15642
return false;
15643
}
15644
}
15645
15646
bool VisitCXXDeleteExpr(const CXXDeleteExpr *E);
15647
};
15648
} // end anonymous namespace
15649
15650
bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
15651
// We cannot speculatively evaluate a delete expression.
15652
if (Info.SpeculativeEvaluationDepth)
15653
return false;
15654
15655
FunctionDecl *OperatorDelete = E->getOperatorDelete();
15656
if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) {
15657
Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
15658
<< isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete;
15659
return false;
15660
}
15661
15662
const Expr *Arg = E->getArgument();
15663
15664
LValue Pointer;
15665
if (!EvaluatePointer(Arg, Pointer, Info))
15666
return false;
15667
if (Pointer.Designator.Invalid)
15668
return false;
15669
15670
// Deleting a null pointer has no effect.
15671
if (Pointer.isNullPointer()) {
15672
// This is the only case where we need to produce an extension warning:
15673
// the only other way we can succeed is if we find a dynamic allocation,
15674
// and we will have warned when we allocated it in that case.
15675
if (!Info.getLangOpts().CPlusPlus20)
15676
Info.CCEDiag(E, diag::note_constexpr_new);
15677
return true;
15678
}
15679
15680
std::optional<DynAlloc *> Alloc = CheckDeleteKind(
15681
Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New);
15682
if (!Alloc)
15683
return false;
15684
QualType AllocType = Pointer.Base.getDynamicAllocType();
15685
15686
// For the non-array case, the designator must be empty if the static type
15687
// does not have a virtual destructor.
15688
if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 &&
15689
!hasVirtualDestructor(Arg->getType()->getPointeeType())) {
15690
Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor)
15691
<< Arg->getType()->getPointeeType() << AllocType;
15692
return false;
15693
}
15694
15695
// For a class type with a virtual destructor, the selected operator delete
15696
// is the one looked up when building the destructor.
15697
if (!E->isArrayForm() && !E->isGlobalDelete()) {
15698
const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(AllocType);
15699
if (VirtualDelete &&
15700
!VirtualDelete->isReplaceableGlobalAllocationFunction()) {
15701
Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
15702
<< isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete;
15703
return false;
15704
}
15705
}
15706
15707
if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(),
15708
(*Alloc)->Value, AllocType))
15709
return false;
15710
15711
if (!Info.HeapAllocs.erase(Pointer.Base.dyn_cast<DynamicAllocLValue>())) {
15712
// The element was already erased. This means the destructor call also
15713
// deleted the object.
15714
// FIXME: This probably results in undefined behavior before we get this
15715
// far, and should be diagnosed elsewhere first.
15716
Info.FFDiag(E, diag::note_constexpr_double_delete);
15717
return false;
15718
}
15719
15720
return true;
15721
}
15722
15723
static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
15724
assert(!E->isValueDependent());
15725
assert(E->isPRValue() && E->getType()->isVoidType());
15726
return VoidExprEvaluator(Info).Visit(E);
15727
}
15728
15729
//===----------------------------------------------------------------------===//
15730
// Top level Expr::EvaluateAsRValue method.
15731
//===----------------------------------------------------------------------===//
15732
15733
static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
15734
assert(!E->isValueDependent());
15735
// In C, function designators are not lvalues, but we evaluate them as if they
15736
// are.
15737
QualType T = E->getType();
15738
if (E->isGLValue() || T->isFunctionType()) {
15739
LValue LV;
15740
if (!EvaluateLValue(E, LV, Info))
15741
return false;
15742
LV.moveInto(Result);
15743
} else if (T->isVectorType()) {
15744
if (!EvaluateVector(E, Result, Info))
15745
return false;
15746
} else if (T->isIntegralOrEnumerationType()) {
15747
if (!IntExprEvaluator(Info, Result).Visit(E))
15748
return false;
15749
} else if (T->hasPointerRepresentation()) {
15750
LValue LV;
15751
if (!EvaluatePointer(E, LV, Info))
15752
return false;
15753
LV.moveInto(Result);
15754
} else if (T->isRealFloatingType()) {
15755
llvm::APFloat F(0.0);
15756
if (!EvaluateFloat(E, F, Info))
15757
return false;
15758
Result = APValue(F);
15759
} else if (T->isAnyComplexType()) {
15760
ComplexValue C;
15761
if (!EvaluateComplex(E, C, Info))
15762
return false;
15763
C.moveInto(Result);
15764
} else if (T->isFixedPointType()) {
15765
if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false;
15766
} else if (T->isMemberPointerType()) {
15767
MemberPtr P;
15768
if (!EvaluateMemberPointer(E, P, Info))
15769
return false;
15770
P.moveInto(Result);
15771
return true;
15772
} else if (T->isArrayType()) {
15773
LValue LV;
15774
APValue &Value =
15775
Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
15776
if (!EvaluateArray(E, LV, Value, Info))
15777
return false;
15778
Result = Value;
15779
} else if (T->isRecordType()) {
15780
LValue LV;
15781
APValue &Value =
15782
Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
15783
if (!EvaluateRecord(E, LV, Value, Info))
15784
return false;
15785
Result = Value;
15786
} else if (T->isVoidType()) {
15787
if (!Info.getLangOpts().CPlusPlus11)
15788
Info.CCEDiag(E, diag::note_constexpr_nonliteral)
15789
<< E->getType();
15790
if (!EvaluateVoid(E, Info))
15791
return false;
15792
} else if (T->isAtomicType()) {
15793
QualType Unqual = T.getAtomicUnqualifiedType();
15794
if (Unqual->isArrayType() || Unqual->isRecordType()) {
15795
LValue LV;
15796
APValue &Value = Info.CurrentCall->createTemporary(
15797
E, Unqual, ScopeKind::FullExpression, LV);
15798
if (!EvaluateAtomic(E, &LV, Value, Info))
15799
return false;
15800
Result = Value;
15801
} else {
15802
if (!EvaluateAtomic(E, nullptr, Result, Info))
15803
return false;
15804
}
15805
} else if (Info.getLangOpts().CPlusPlus11) {
15806
Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
15807
return false;
15808
} else {
15809
Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
15810
return false;
15811
}
15812
15813
return true;
15814
}
15815
15816
/// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
15817
/// cases, the in-place evaluation is essential, since later initializers for
15818
/// an object can indirectly refer to subobjects which were initialized earlier.
15819
static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
15820
const Expr *E, bool AllowNonLiteralTypes) {
15821
assert(!E->isValueDependent());
15822
15823
if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
15824
return false;
15825
15826
if (E->isPRValue()) {
15827
// Evaluate arrays and record types in-place, so that later initializers can
15828
// refer to earlier-initialized members of the object.
15829
QualType T = E->getType();
15830
if (T->isArrayType())
15831
return EvaluateArray(E, This, Result, Info);
15832
else if (T->isRecordType())
15833
return EvaluateRecord(E, This, Result, Info);
15834
else if (T->isAtomicType()) {
15835
QualType Unqual = T.getAtomicUnqualifiedType();
15836
if (Unqual->isArrayType() || Unqual->isRecordType())
15837
return EvaluateAtomic(E, &This, Result, Info);
15838
}
15839
}
15840
15841
// For any other type, in-place evaluation is unimportant.
15842
return Evaluate(Result, Info, E);
15843
}
15844
15845
/// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
15846
/// lvalue-to-rvalue cast if it is an lvalue.
15847
static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
15848
assert(!E->isValueDependent());
15849
15850
if (E->getType().isNull())
15851
return false;
15852
15853
if (!CheckLiteralType(Info, E))
15854
return false;
15855
15856
if (Info.EnableNewConstInterp) {
15857
if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, E, Result))
15858
return false;
15859
return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
15860
ConstantExprKind::Normal);
15861
}
15862
15863
if (!::Evaluate(Result, Info, E))
15864
return false;
15865
15866
// Implicit lvalue-to-rvalue cast.
15867
if (E->isGLValue()) {
15868
LValue LV;
15869
LV.setFrom(Info.Ctx, Result);
15870
if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
15871
return false;
15872
}
15873
15874
// Check this core constant expression is a constant expression.
15875
return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
15876
ConstantExprKind::Normal) &&
15877
CheckMemoryLeaks(Info);
15878
}
15879
15880
static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
15881
const ASTContext &Ctx, bool &IsConst) {
15882
// Fast-path evaluations of integer literals, since we sometimes see files
15883
// containing vast quantities of these.
15884
if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
15885
Result.Val = APValue(APSInt(L->getValue(),
15886
L->getType()->isUnsignedIntegerType()));
15887
IsConst = true;
15888
return true;
15889
}
15890
15891
if (const auto *L = dyn_cast<CXXBoolLiteralExpr>(Exp)) {
15892
Result.Val = APValue(APSInt(APInt(1, L->getValue())));
15893
IsConst = true;
15894
return true;
15895
}
15896
15897
if (const auto *CE = dyn_cast<ConstantExpr>(Exp)) {
15898
if (CE->hasAPValueResult()) {
15899
APValue APV = CE->getAPValueResult();
15900
if (!APV.isLValue()) {
15901
Result.Val = std::move(APV);
15902
IsConst = true;
15903
return true;
15904
}
15905
}
15906
15907
// The SubExpr is usually just an IntegerLiteral.
15908
return FastEvaluateAsRValue(CE->getSubExpr(), Result, Ctx, IsConst);
15909
}
15910
15911
// This case should be rare, but we need to check it before we check on
15912
// the type below.
15913
if (Exp->getType().isNull()) {
15914
IsConst = false;
15915
return true;
15916
}
15917
15918
return false;
15919
}
15920
15921
static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
15922
Expr::SideEffectsKind SEK) {
15923
return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
15924
(SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
15925
}
15926
15927
static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result,
15928
const ASTContext &Ctx, EvalInfo &Info) {
15929
assert(!E->isValueDependent());
15930
bool IsConst;
15931
if (FastEvaluateAsRValue(E, Result, Ctx, IsConst))
15932
return IsConst;
15933
15934
return EvaluateAsRValue(Info, E, Result.Val);
15935
}
15936
15937
static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult,
15938
const ASTContext &Ctx,
15939
Expr::SideEffectsKind AllowSideEffects,
15940
EvalInfo &Info) {
15941
assert(!E->isValueDependent());
15942
if (!E->getType()->isIntegralOrEnumerationType())
15943
return false;
15944
15945
if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) ||
15946
!ExprResult.Val.isInt() ||
15947
hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
15948
return false;
15949
15950
return true;
15951
}
15952
15953
static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult,
15954
const ASTContext &Ctx,
15955
Expr::SideEffectsKind AllowSideEffects,
15956
EvalInfo &Info) {
15957
assert(!E->isValueDependent());
15958
if (!E->getType()->isFixedPointType())
15959
return false;
15960
15961
if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info))
15962
return false;
15963
15964
if (!ExprResult.Val.isFixedPoint() ||
15965
hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
15966
return false;
15967
15968
return true;
15969
}
15970
15971
/// EvaluateAsRValue - Return true if this is a constant which we can fold using
15972
/// any crazy technique (that has nothing to do with language standards) that
15973
/// we want to. If this function returns true, it returns the folded constant
15974
/// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
15975
/// will be applied to the result.
15976
bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx,
15977
bool InConstantContext) const {
15978
assert(!isValueDependent() &&
15979
"Expression evaluator can't be called on a dependent expression.");
15980
ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsRValue");
15981
EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
15982
Info.InConstantContext = InConstantContext;
15983
return ::EvaluateAsRValue(this, Result, Ctx, Info);
15984
}
15985
15986
bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx,
15987
bool InConstantContext) const {
15988
assert(!isValueDependent() &&
15989
"Expression evaluator can't be called on a dependent expression.");
15990
ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsBooleanCondition");
15991
EvalResult Scratch;
15992
return EvaluateAsRValue(Scratch, Ctx, InConstantContext) &&
15993
HandleConversionToBool(Scratch.Val, Result);
15994
}
15995
15996
bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx,
15997
SideEffectsKind AllowSideEffects,
15998
bool InConstantContext) const {
15999
assert(!isValueDependent() &&
16000
"Expression evaluator can't be called on a dependent expression.");
16001
ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsInt");
16002
EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
16003
Info.InConstantContext = InConstantContext;
16004
return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info);
16005
}
16006
16007
bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx,
16008
SideEffectsKind AllowSideEffects,
16009
bool InConstantContext) const {
16010
assert(!isValueDependent() &&
16011
"Expression evaluator can't be called on a dependent expression.");
16012
ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsFixedPoint");
16013
EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
16014
Info.InConstantContext = InConstantContext;
16015
return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info);
16016
}
16017
16018
bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
16019
SideEffectsKind AllowSideEffects,
16020
bool InConstantContext) const {
16021
assert(!isValueDependent() &&
16022
"Expression evaluator can't be called on a dependent expression.");
16023
16024
if (!getType()->isRealFloatingType())
16025
return false;
16026
16027
ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsFloat");
16028
EvalResult ExprResult;
16029
if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) ||
16030
!ExprResult.Val.isFloat() ||
16031
hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
16032
return false;
16033
16034
Result = ExprResult.Val.getFloat();
16035
return true;
16036
}
16037
16038
bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx,
16039
bool InConstantContext) const {
16040
assert(!isValueDependent() &&
16041
"Expression evaluator can't be called on a dependent expression.");
16042
16043
ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsLValue");
16044
EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
16045
Info.InConstantContext = InConstantContext;
16046
LValue LV;
16047
CheckedTemporaries CheckedTemps;
16048
if (!EvaluateLValue(this, LV, Info) || !Info.discardCleanups() ||
16049
Result.HasSideEffects ||
16050
!CheckLValueConstantExpression(Info, getExprLoc(),
16051
Ctx.getLValueReferenceType(getType()), LV,
16052
ConstantExprKind::Normal, CheckedTemps))
16053
return false;
16054
16055
LV.moveInto(Result.Val);
16056
return true;
16057
}
16058
16059
static bool EvaluateDestruction(const ASTContext &Ctx, APValue::LValueBase Base,
16060
APValue DestroyedValue, QualType Type,
16061
SourceLocation Loc, Expr::EvalStatus &EStatus,
16062
bool IsConstantDestruction) {
16063
EvalInfo Info(Ctx, EStatus,
16064
IsConstantDestruction ? EvalInfo::EM_ConstantExpression
16065
: EvalInfo::EM_ConstantFold);
16066
Info.setEvaluatingDecl(Base, DestroyedValue,
16067
EvalInfo::EvaluatingDeclKind::Dtor);
16068
Info.InConstantContext = IsConstantDestruction;
16069
16070
LValue LVal;
16071
LVal.set(Base);
16072
16073
if (!HandleDestruction(Info, Loc, Base, DestroyedValue, Type) ||
16074
EStatus.HasSideEffects)
16075
return false;
16076
16077
if (!Info.discardCleanups())
16078
llvm_unreachable("Unhandled cleanup; missing full expression marker?");
16079
16080
return true;
16081
}
16082
16083
bool Expr::EvaluateAsConstantExpr(EvalResult &Result, const ASTContext &Ctx,
16084
ConstantExprKind Kind) const {
16085
assert(!isValueDependent() &&
16086
"Expression evaluator can't be called on a dependent expression.");
16087
bool IsConst;
16088
if (FastEvaluateAsRValue(this, Result, Ctx, IsConst) && Result.Val.hasValue())
16089
return true;
16090
16091
ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsConstantExpr");
16092
EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression;
16093
EvalInfo Info(Ctx, Result, EM);
16094
Info.InConstantContext = true;
16095
16096
if (Info.EnableNewConstInterp) {
16097
if (!Info.Ctx.getInterpContext().evaluate(Info, this, Result.Val))
16098
return false;
16099
return CheckConstantExpression(Info, getExprLoc(),
16100
getStorageType(Ctx, this), Result.Val, Kind);
16101
}
16102
16103
// The type of the object we're initializing is 'const T' for a class NTTP.
16104
QualType T = getType();
16105
if (Kind == ConstantExprKind::ClassTemplateArgument)
16106
T.addConst();
16107
16108
// If we're evaluating a prvalue, fake up a MaterializeTemporaryExpr to
16109
// represent the result of the evaluation. CheckConstantExpression ensures
16110
// this doesn't escape.
16111
MaterializeTemporaryExpr BaseMTE(T, const_cast<Expr*>(this), true);
16112
APValue::LValueBase Base(&BaseMTE);
16113
Info.setEvaluatingDecl(Base, Result.Val);
16114
16115
if (Info.EnableNewConstInterp) {
16116
if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, this, Result.Val))
16117
return false;
16118
} else {
16119
LValue LVal;
16120
LVal.set(Base);
16121
// C++23 [intro.execution]/p5
16122
// A full-expression is [...] a constant-expression
16123
// So we need to make sure temporary objects are destroyed after having
16124
// evaluating the expression (per C++23 [class.temporary]/p4).
16125
FullExpressionRAII Scope(Info);
16126
if (!::EvaluateInPlace(Result.Val, Info, LVal, this) ||
16127
Result.HasSideEffects || !Scope.destroy())
16128
return false;
16129
16130
if (!Info.discardCleanups())
16131
llvm_unreachable("Unhandled cleanup; missing full expression marker?");
16132
}
16133
16134
if (!CheckConstantExpression(Info, getExprLoc(), getStorageType(Ctx, this),
16135
Result.Val, Kind))
16136
return false;
16137
if (!CheckMemoryLeaks(Info))
16138
return false;
16139
16140
// If this is a class template argument, it's required to have constant
16141
// destruction too.
16142
if (Kind == ConstantExprKind::ClassTemplateArgument &&
16143
(!EvaluateDestruction(Ctx, Base, Result.Val, T, getBeginLoc(), Result,
16144
true) ||
16145
Result.HasSideEffects)) {
16146
// FIXME: Prefix a note to indicate that the problem is lack of constant
16147
// destruction.
16148
return false;
16149
}
16150
16151
return true;
16152
}
16153
16154
bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
16155
const VarDecl *VD,
16156
SmallVectorImpl<PartialDiagnosticAt> &Notes,
16157
bool IsConstantInitialization) const {
16158
assert(!isValueDependent() &&
16159
"Expression evaluator can't be called on a dependent expression.");
16160
16161
llvm::TimeTraceScope TimeScope("EvaluateAsInitializer", [&] {
16162
std::string Name;
16163
llvm::raw_string_ostream OS(Name);
16164
VD->printQualifiedName(OS);
16165
return Name;
16166
});
16167
16168
Expr::EvalStatus EStatus;
16169
EStatus.Diag = &Notes;
16170
16171
EvalInfo Info(Ctx, EStatus,
16172
(IsConstantInitialization &&
16173
(Ctx.getLangOpts().CPlusPlus || Ctx.getLangOpts().C23))
16174
? EvalInfo::EM_ConstantExpression
16175
: EvalInfo::EM_ConstantFold);
16176
Info.setEvaluatingDecl(VD, Value);
16177
Info.InConstantContext = IsConstantInitialization;
16178
16179
SourceLocation DeclLoc = VD->getLocation();
16180
QualType DeclTy = VD->getType();
16181
16182
if (Info.EnableNewConstInterp) {
16183
auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext();
16184
if (!InterpCtx.evaluateAsInitializer(Info, VD, Value))
16185
return false;
16186
16187
return CheckConstantExpression(Info, DeclLoc, DeclTy, Value,
16188
ConstantExprKind::Normal);
16189
} else {
16190
LValue LVal;
16191
LVal.set(VD);
16192
16193
{
16194
// C++23 [intro.execution]/p5
16195
// A full-expression is ... an init-declarator ([dcl.decl]) or a
16196
// mem-initializer.
16197
// So we need to make sure temporary objects are destroyed after having
16198
// evaluated the expression (per C++23 [class.temporary]/p4).
16199
//
16200
// FIXME: Otherwise this may break test/Modules/pr68702.cpp because the
16201
// serialization code calls ParmVarDecl::getDefaultArg() which strips the
16202
// outermost FullExpr, such as ExprWithCleanups.
16203
FullExpressionRAII Scope(Info);
16204
if (!EvaluateInPlace(Value, Info, LVal, this,
16205
/*AllowNonLiteralTypes=*/true) ||
16206
EStatus.HasSideEffects)
16207
return false;
16208
}
16209
16210
// At this point, any lifetime-extended temporaries are completely
16211
// initialized.
16212
Info.performLifetimeExtension();
16213
16214
if (!Info.discardCleanups())
16215
llvm_unreachable("Unhandled cleanup; missing full expression marker?");
16216
}
16217
16218
return CheckConstantExpression(Info, DeclLoc, DeclTy, Value,
16219
ConstantExprKind::Normal) &&
16220
CheckMemoryLeaks(Info);
16221
}
16222
16223
bool VarDecl::evaluateDestruction(
16224
SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
16225
Expr::EvalStatus EStatus;
16226
EStatus.Diag = &Notes;
16227
16228
// Only treat the destruction as constant destruction if we formally have
16229
// constant initialization (or are usable in a constant expression).
16230
bool IsConstantDestruction = hasConstantInitialization();
16231
16232
// Make a copy of the value for the destructor to mutate, if we know it.
16233
// Otherwise, treat the value as default-initialized; if the destructor works
16234
// anyway, then the destruction is constant (and must be essentially empty).
16235
APValue DestroyedValue;
16236
if (getEvaluatedValue() && !getEvaluatedValue()->isAbsent())
16237
DestroyedValue = *getEvaluatedValue();
16238
else if (!handleDefaultInitValue(getType(), DestroyedValue))
16239
return false;
16240
16241
if (!EvaluateDestruction(getASTContext(), this, std::move(DestroyedValue),
16242
getType(), getLocation(), EStatus,
16243
IsConstantDestruction) ||
16244
EStatus.HasSideEffects)
16245
return false;
16246
16247
ensureEvaluatedStmt()->HasConstantDestruction = true;
16248
return true;
16249
}
16250
16251
/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
16252
/// constant folded, but discard the result.
16253
bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
16254
assert(!isValueDependent() &&
16255
"Expression evaluator can't be called on a dependent expression.");
16256
16257
EvalResult Result;
16258
return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) &&
16259
!hasUnacceptableSideEffect(Result, SEK);
16260
}
16261
16262
APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
16263
SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
16264
assert(!isValueDependent() &&
16265
"Expression evaluator can't be called on a dependent expression.");
16266
16267
ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateKnownConstInt");
16268
EvalResult EVResult;
16269
EVResult.Diag = Diag;
16270
EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
16271
Info.InConstantContext = true;
16272
16273
bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info);
16274
(void)Result;
16275
assert(Result && "Could not evaluate expression");
16276
assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
16277
16278
return EVResult.Val.getInt();
16279
}
16280
16281
APSInt Expr::EvaluateKnownConstIntCheckOverflow(
16282
const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
16283
assert(!isValueDependent() &&
16284
"Expression evaluator can't be called on a dependent expression.");
16285
16286
ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateKnownConstIntCheckOverflow");
16287
EvalResult EVResult;
16288
EVResult.Diag = Diag;
16289
EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
16290
Info.InConstantContext = true;
16291
Info.CheckingForUndefinedBehavior = true;
16292
16293
bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val);
16294
(void)Result;
16295
assert(Result && "Could not evaluate expression");
16296
assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
16297
16298
return EVResult.Val.getInt();
16299
}
16300
16301
void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
16302
assert(!isValueDependent() &&
16303
"Expression evaluator can't be called on a dependent expression.");
16304
16305
ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateForOverflow");
16306
bool IsConst;
16307
EvalResult EVResult;
16308
if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) {
16309
EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
16310
Info.CheckingForUndefinedBehavior = true;
16311
(void)::EvaluateAsRValue(Info, this, EVResult.Val);
16312
}
16313
}
16314
16315
bool Expr::EvalResult::isGlobalLValue() const {
16316
assert(Val.isLValue());
16317
return IsGlobalLValue(Val.getLValueBase());
16318
}
16319
16320
/// isIntegerConstantExpr - this recursive routine will test if an expression is
16321
/// an integer constant expression.
16322
16323
/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
16324
/// comma, etc
16325
16326
// CheckICE - This function does the fundamental ICE checking: the returned
16327
// ICEDiag contains an ICEKind indicating whether the expression is an ICE,
16328
// and a (possibly null) SourceLocation indicating the location of the problem.
16329
//
16330
// Note that to reduce code duplication, this helper does no evaluation
16331
// itself; the caller checks whether the expression is evaluatable, and
16332
// in the rare cases where CheckICE actually cares about the evaluated
16333
// value, it calls into Evaluate.
16334
16335
namespace {
16336
16337
enum ICEKind {
16338
/// This expression is an ICE.
16339
IK_ICE,
16340
/// This expression is not an ICE, but if it isn't evaluated, it's
16341
/// a legal subexpression for an ICE. This return value is used to handle
16342
/// the comma operator in C99 mode, and non-constant subexpressions.
16343
IK_ICEIfUnevaluated,
16344
/// This expression is not an ICE, and is not a legal subexpression for one.
16345
IK_NotICE
16346
};
16347
16348
struct ICEDiag {
16349
ICEKind Kind;
16350
SourceLocation Loc;
16351
16352
ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
16353
};
16354
16355
}
16356
16357
static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
16358
16359
static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
16360
16361
static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
16362
Expr::EvalResult EVResult;
16363
Expr::EvalStatus Status;
16364
EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
16365
16366
Info.InConstantContext = true;
16367
if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects ||
16368
!EVResult.Val.isInt())
16369
return ICEDiag(IK_NotICE, E->getBeginLoc());
16370
16371
return NoDiag();
16372
}
16373
16374
static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
16375
assert(!E->isValueDependent() && "Should not see value dependent exprs!");
16376
if (!E->getType()->isIntegralOrEnumerationType())
16377
return ICEDiag(IK_NotICE, E->getBeginLoc());
16378
16379
switch (E->getStmtClass()) {
16380
#define ABSTRACT_STMT(Node)
16381
#define STMT(Node, Base) case Expr::Node##Class:
16382
#define EXPR(Node, Base)
16383
#include "clang/AST/StmtNodes.inc"
16384
case Expr::PredefinedExprClass:
16385
case Expr::FloatingLiteralClass:
16386
case Expr::ImaginaryLiteralClass:
16387
case Expr::StringLiteralClass:
16388
case Expr::ArraySubscriptExprClass:
16389
case Expr::MatrixSubscriptExprClass:
16390
case Expr::ArraySectionExprClass:
16391
case Expr::OMPArrayShapingExprClass:
16392
case Expr::OMPIteratorExprClass:
16393
case Expr::MemberExprClass:
16394
case Expr::CompoundAssignOperatorClass:
16395
case Expr::CompoundLiteralExprClass:
16396
case Expr::ExtVectorElementExprClass:
16397
case Expr::DesignatedInitExprClass:
16398
case Expr::ArrayInitLoopExprClass:
16399
case Expr::ArrayInitIndexExprClass:
16400
case Expr::NoInitExprClass:
16401
case Expr::DesignatedInitUpdateExprClass:
16402
case Expr::ImplicitValueInitExprClass:
16403
case Expr::ParenListExprClass:
16404
case Expr::VAArgExprClass:
16405
case Expr::AddrLabelExprClass:
16406
case Expr::StmtExprClass:
16407
case Expr::CXXMemberCallExprClass:
16408
case Expr::CUDAKernelCallExprClass:
16409
case Expr::CXXAddrspaceCastExprClass:
16410
case Expr::CXXDynamicCastExprClass:
16411
case Expr::CXXTypeidExprClass:
16412
case Expr::CXXUuidofExprClass:
16413
case Expr::MSPropertyRefExprClass:
16414
case Expr::MSPropertySubscriptExprClass:
16415
case Expr::CXXNullPtrLiteralExprClass:
16416
case Expr::UserDefinedLiteralClass:
16417
case Expr::CXXThisExprClass:
16418
case Expr::CXXThrowExprClass:
16419
case Expr::CXXNewExprClass:
16420
case Expr::CXXDeleteExprClass:
16421
case Expr::CXXPseudoDestructorExprClass:
16422
case Expr::UnresolvedLookupExprClass:
16423
case Expr::TypoExprClass:
16424
case Expr::RecoveryExprClass:
16425
case Expr::DependentScopeDeclRefExprClass:
16426
case Expr::CXXConstructExprClass:
16427
case Expr::CXXInheritedCtorInitExprClass:
16428
case Expr::CXXStdInitializerListExprClass:
16429
case Expr::CXXBindTemporaryExprClass:
16430
case Expr::ExprWithCleanupsClass:
16431
case Expr::CXXTemporaryObjectExprClass:
16432
case Expr::CXXUnresolvedConstructExprClass:
16433
case Expr::CXXDependentScopeMemberExprClass:
16434
case Expr::UnresolvedMemberExprClass:
16435
case Expr::ObjCStringLiteralClass:
16436
case Expr::ObjCBoxedExprClass:
16437
case Expr::ObjCArrayLiteralClass:
16438
case Expr::ObjCDictionaryLiteralClass:
16439
case Expr::ObjCEncodeExprClass:
16440
case Expr::ObjCMessageExprClass:
16441
case Expr::ObjCSelectorExprClass:
16442
case Expr::ObjCProtocolExprClass:
16443
case Expr::ObjCIvarRefExprClass:
16444
case Expr::ObjCPropertyRefExprClass:
16445
case Expr::ObjCSubscriptRefExprClass:
16446
case Expr::ObjCIsaExprClass:
16447
case Expr::ObjCAvailabilityCheckExprClass:
16448
case Expr::ShuffleVectorExprClass:
16449
case Expr::ConvertVectorExprClass:
16450
case Expr::BlockExprClass:
16451
case Expr::NoStmtClass:
16452
case Expr::OpaqueValueExprClass:
16453
case Expr::PackExpansionExprClass:
16454
case Expr::SubstNonTypeTemplateParmPackExprClass:
16455
case Expr::FunctionParmPackExprClass:
16456
case Expr::AsTypeExprClass:
16457
case Expr::ObjCIndirectCopyRestoreExprClass:
16458
case Expr::MaterializeTemporaryExprClass:
16459
case Expr::PseudoObjectExprClass:
16460
case Expr::AtomicExprClass:
16461
case Expr::LambdaExprClass:
16462
case Expr::CXXFoldExprClass:
16463
case Expr::CoawaitExprClass:
16464
case Expr::DependentCoawaitExprClass:
16465
case Expr::CoyieldExprClass:
16466
case Expr::SYCLUniqueStableNameExprClass:
16467
case Expr::CXXParenListInitExprClass:
16468
return ICEDiag(IK_NotICE, E->getBeginLoc());
16469
16470
case Expr::InitListExprClass: {
16471
// C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
16472
// form "T x = { a };" is equivalent to "T x = a;".
16473
// Unless we're initializing a reference, T is a scalar as it is known to be
16474
// of integral or enumeration type.
16475
if (E->isPRValue())
16476
if (cast<InitListExpr>(E)->getNumInits() == 1)
16477
return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
16478
return ICEDiag(IK_NotICE, E->getBeginLoc());
16479
}
16480
16481
case Expr::SizeOfPackExprClass:
16482
case Expr::GNUNullExprClass:
16483
case Expr::SourceLocExprClass:
16484
case Expr::EmbedExprClass:
16485
return NoDiag();
16486
16487
case Expr::PackIndexingExprClass:
16488
return CheckICE(cast<PackIndexingExpr>(E)->getSelectedExpr(), Ctx);
16489
16490
case Expr::SubstNonTypeTemplateParmExprClass:
16491
return
16492
CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
16493
16494
case Expr::ConstantExprClass:
16495
return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx);
16496
16497
case Expr::ParenExprClass:
16498
return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
16499
case Expr::GenericSelectionExprClass:
16500
return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
16501
case Expr::IntegerLiteralClass:
16502
case Expr::FixedPointLiteralClass:
16503
case Expr::CharacterLiteralClass:
16504
case Expr::ObjCBoolLiteralExprClass:
16505
case Expr::CXXBoolLiteralExprClass:
16506
case Expr::CXXScalarValueInitExprClass:
16507
case Expr::TypeTraitExprClass:
16508
case Expr::ConceptSpecializationExprClass:
16509
case Expr::RequiresExprClass:
16510
case Expr::ArrayTypeTraitExprClass:
16511
case Expr::ExpressionTraitExprClass:
16512
case Expr::CXXNoexceptExprClass:
16513
return NoDiag();
16514
case Expr::CallExprClass:
16515
case Expr::CXXOperatorCallExprClass: {
16516
// C99 6.6/3 allows function calls within unevaluated subexpressions of
16517
// constant expressions, but they can never be ICEs because an ICE cannot
16518
// contain an operand of (pointer to) function type.
16519
const CallExpr *CE = cast<CallExpr>(E);
16520
if (CE->getBuiltinCallee())
16521
return CheckEvalInICE(E, Ctx);
16522
return ICEDiag(IK_NotICE, E->getBeginLoc());
16523
}
16524
case Expr::CXXRewrittenBinaryOperatorClass:
16525
return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(),
16526
Ctx);
16527
case Expr::DeclRefExprClass: {
16528
const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
16529
if (isa<EnumConstantDecl>(D))
16530
return NoDiag();
16531
16532
// C++ and OpenCL (FIXME: spec reference?) allow reading const-qualified
16533
// integer variables in constant expressions:
16534
//
16535
// C++ 7.1.5.1p2
16536
// A variable of non-volatile const-qualified integral or enumeration
16537
// type initialized by an ICE can be used in ICEs.
16538
//
16539
// We sometimes use CheckICE to check the C++98 rules in C++11 mode. In
16540
// that mode, use of reference variables should not be allowed.
16541
const VarDecl *VD = dyn_cast<VarDecl>(D);
16542
if (VD && VD->isUsableInConstantExpressions(Ctx) &&
16543
!VD->getType()->isReferenceType())
16544
return NoDiag();
16545
16546
return ICEDiag(IK_NotICE, E->getBeginLoc());
16547
}
16548
case Expr::UnaryOperatorClass: {
16549
const UnaryOperator *Exp = cast<UnaryOperator>(E);
16550
switch (Exp->getOpcode()) {
16551
case UO_PostInc:
16552
case UO_PostDec:
16553
case UO_PreInc:
16554
case UO_PreDec:
16555
case UO_AddrOf:
16556
case UO_Deref:
16557
case UO_Coawait:
16558
// C99 6.6/3 allows increment and decrement within unevaluated
16559
// subexpressions of constant expressions, but they can never be ICEs
16560
// because an ICE cannot contain an lvalue operand.
16561
return ICEDiag(IK_NotICE, E->getBeginLoc());
16562
case UO_Extension:
16563
case UO_LNot:
16564
case UO_Plus:
16565
case UO_Minus:
16566
case UO_Not:
16567
case UO_Real:
16568
case UO_Imag:
16569
return CheckICE(Exp->getSubExpr(), Ctx);
16570
}
16571
llvm_unreachable("invalid unary operator class");
16572
}
16573
case Expr::OffsetOfExprClass: {
16574
// Note that per C99, offsetof must be an ICE. And AFAIK, using
16575
// EvaluateAsRValue matches the proposed gcc behavior for cases like
16576
// "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect
16577
// compliance: we should warn earlier for offsetof expressions with
16578
// array subscripts that aren't ICEs, and if the array subscripts
16579
// are ICEs, the value of the offsetof must be an integer constant.
16580
return CheckEvalInICE(E, Ctx);
16581
}
16582
case Expr::UnaryExprOrTypeTraitExprClass: {
16583
const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
16584
if ((Exp->getKind() == UETT_SizeOf) &&
16585
Exp->getTypeOfArgument()->isVariableArrayType())
16586
return ICEDiag(IK_NotICE, E->getBeginLoc());
16587
return NoDiag();
16588
}
16589
case Expr::BinaryOperatorClass: {
16590
const BinaryOperator *Exp = cast<BinaryOperator>(E);
16591
switch (Exp->getOpcode()) {
16592
case BO_PtrMemD:
16593
case BO_PtrMemI:
16594
case BO_Assign:
16595
case BO_MulAssign:
16596
case BO_DivAssign:
16597
case BO_RemAssign:
16598
case BO_AddAssign:
16599
case BO_SubAssign:
16600
case BO_ShlAssign:
16601
case BO_ShrAssign:
16602
case BO_AndAssign:
16603
case BO_XorAssign:
16604
case BO_OrAssign:
16605
// C99 6.6/3 allows assignments within unevaluated subexpressions of
16606
// constant expressions, but they can never be ICEs because an ICE cannot
16607
// contain an lvalue operand.
16608
return ICEDiag(IK_NotICE, E->getBeginLoc());
16609
16610
case BO_Mul:
16611
case BO_Div:
16612
case BO_Rem:
16613
case BO_Add:
16614
case BO_Sub:
16615
case BO_Shl:
16616
case BO_Shr:
16617
case BO_LT:
16618
case BO_GT:
16619
case BO_LE:
16620
case BO_GE:
16621
case BO_EQ:
16622
case BO_NE:
16623
case BO_And:
16624
case BO_Xor:
16625
case BO_Or:
16626
case BO_Comma:
16627
case BO_Cmp: {
16628
ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
16629
ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
16630
if (Exp->getOpcode() == BO_Div ||
16631
Exp->getOpcode() == BO_Rem) {
16632
// EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
16633
// we don't evaluate one.
16634
if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
16635
llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
16636
if (REval == 0)
16637
return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
16638
if (REval.isSigned() && REval.isAllOnes()) {
16639
llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
16640
if (LEval.isMinSignedValue())
16641
return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
16642
}
16643
}
16644
}
16645
if (Exp->getOpcode() == BO_Comma) {
16646
if (Ctx.getLangOpts().C99) {
16647
// C99 6.6p3 introduces a strange edge case: comma can be in an ICE
16648
// if it isn't evaluated.
16649
if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
16650
return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
16651
} else {
16652
// In both C89 and C++, commas in ICEs are illegal.
16653
return ICEDiag(IK_NotICE, E->getBeginLoc());
16654
}
16655
}
16656
return Worst(LHSResult, RHSResult);
16657
}
16658
case BO_LAnd:
16659
case BO_LOr: {
16660
ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
16661
ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
16662
if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
16663
// Rare case where the RHS has a comma "side-effect"; we need
16664
// to actually check the condition to see whether the side
16665
// with the comma is evaluated.
16666
if ((Exp->getOpcode() == BO_LAnd) !=
16667
(Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
16668
return RHSResult;
16669
return NoDiag();
16670
}
16671
16672
return Worst(LHSResult, RHSResult);
16673
}
16674
}
16675
llvm_unreachable("invalid binary operator kind");
16676
}
16677
case Expr::ImplicitCastExprClass:
16678
case Expr::CStyleCastExprClass:
16679
case Expr::CXXFunctionalCastExprClass:
16680
case Expr::CXXStaticCastExprClass:
16681
case Expr::CXXReinterpretCastExprClass:
16682
case Expr::CXXConstCastExprClass:
16683
case Expr::ObjCBridgedCastExprClass: {
16684
const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
16685
if (isa<ExplicitCastExpr>(E)) {
16686
if (const FloatingLiteral *FL
16687
= dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
16688
unsigned DestWidth = Ctx.getIntWidth(E->getType());
16689
bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
16690
APSInt IgnoredVal(DestWidth, !DestSigned);
16691
bool Ignored;
16692
// If the value does not fit in the destination type, the behavior is
16693
// undefined, so we are not required to treat it as a constant
16694
// expression.
16695
if (FL->getValue().convertToInteger(IgnoredVal,
16696
llvm::APFloat::rmTowardZero,
16697
&Ignored) & APFloat::opInvalidOp)
16698
return ICEDiag(IK_NotICE, E->getBeginLoc());
16699
return NoDiag();
16700
}
16701
}
16702
switch (cast<CastExpr>(E)->getCastKind()) {
16703
case CK_LValueToRValue:
16704
case CK_AtomicToNonAtomic:
16705
case CK_NonAtomicToAtomic:
16706
case CK_NoOp:
16707
case CK_IntegralToBoolean:
16708
case CK_IntegralCast:
16709
return CheckICE(SubExpr, Ctx);
16710
default:
16711
return ICEDiag(IK_NotICE, E->getBeginLoc());
16712
}
16713
}
16714
case Expr::BinaryConditionalOperatorClass: {
16715
const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
16716
ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
16717
if (CommonResult.Kind == IK_NotICE) return CommonResult;
16718
ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
16719
if (FalseResult.Kind == IK_NotICE) return FalseResult;
16720
if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
16721
if (FalseResult.Kind == IK_ICEIfUnevaluated &&
16722
Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
16723
return FalseResult;
16724
}
16725
case Expr::ConditionalOperatorClass: {
16726
const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
16727
// If the condition (ignoring parens) is a __builtin_constant_p call,
16728
// then only the true side is actually considered in an integer constant
16729
// expression, and it is fully evaluated. This is an important GNU
16730
// extension. See GCC PR38377 for discussion.
16731
if (const CallExpr *CallCE
16732
= dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
16733
if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
16734
return CheckEvalInICE(E, Ctx);
16735
ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
16736
if (CondResult.Kind == IK_NotICE)
16737
return CondResult;
16738
16739
ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
16740
ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
16741
16742
if (TrueResult.Kind == IK_NotICE)
16743
return TrueResult;
16744
if (FalseResult.Kind == IK_NotICE)
16745
return FalseResult;
16746
if (CondResult.Kind == IK_ICEIfUnevaluated)
16747
return CondResult;
16748
if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
16749
return NoDiag();
16750
// Rare case where the diagnostics depend on which side is evaluated
16751
// Note that if we get here, CondResult is 0, and at least one of
16752
// TrueResult and FalseResult is non-zero.
16753
if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
16754
return FalseResult;
16755
return TrueResult;
16756
}
16757
case Expr::CXXDefaultArgExprClass:
16758
return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
16759
case Expr::CXXDefaultInitExprClass:
16760
return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
16761
case Expr::ChooseExprClass: {
16762
return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
16763
}
16764
case Expr::BuiltinBitCastExprClass: {
16765
if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E)))
16766
return ICEDiag(IK_NotICE, E->getBeginLoc());
16767
return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx);
16768
}
16769
}
16770
16771
llvm_unreachable("Invalid StmtClass!");
16772
}
16773
16774
/// Evaluate an expression as a C++11 integral constant expression.
16775
static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
16776
const Expr *E,
16777
llvm::APSInt *Value,
16778
SourceLocation *Loc) {
16779
if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
16780
if (Loc) *Loc = E->getExprLoc();
16781
return false;
16782
}
16783
16784
APValue Result;
16785
if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
16786
return false;
16787
16788
if (!Result.isInt()) {
16789
if (Loc) *Loc = E->getExprLoc();
16790
return false;
16791
}
16792
16793
if (Value) *Value = Result.getInt();
16794
return true;
16795
}
16796
16797
bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
16798
SourceLocation *Loc) const {
16799
assert(!isValueDependent() &&
16800
"Expression evaluator can't be called on a dependent expression.");
16801
16802
ExprTimeTraceScope TimeScope(this, Ctx, "isIntegerConstantExpr");
16803
16804
if (Ctx.getLangOpts().CPlusPlus11)
16805
return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
16806
16807
ICEDiag D = CheckICE(this, Ctx);
16808
if (D.Kind != IK_ICE) {
16809
if (Loc) *Loc = D.Loc;
16810
return false;
16811
}
16812
return true;
16813
}
16814
16815
std::optional<llvm::APSInt>
16816
Expr::getIntegerConstantExpr(const ASTContext &Ctx, SourceLocation *Loc) const {
16817
if (isValueDependent()) {
16818
// Expression evaluator can't succeed on a dependent expression.
16819
return std::nullopt;
16820
}
16821
16822
APSInt Value;
16823
16824
if (Ctx.getLangOpts().CPlusPlus11) {
16825
if (EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc))
16826
return Value;
16827
return std::nullopt;
16828
}
16829
16830
if (!isIntegerConstantExpr(Ctx, Loc))
16831
return std::nullopt;
16832
16833
// The only possible side-effects here are due to UB discovered in the
16834
// evaluation (for instance, INT_MAX + 1). In such a case, we are still
16835
// required to treat the expression as an ICE, so we produce the folded
16836
// value.
16837
EvalResult ExprResult;
16838
Expr::EvalStatus Status;
16839
EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects);
16840
Info.InConstantContext = true;
16841
16842
if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info))
16843
llvm_unreachable("ICE cannot be evaluated!");
16844
16845
return ExprResult.Val.getInt();
16846
}
16847
16848
bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
16849
assert(!isValueDependent() &&
16850
"Expression evaluator can't be called on a dependent expression.");
16851
16852
return CheckICE(this, Ctx).Kind == IK_ICE;
16853
}
16854
16855
bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
16856
SourceLocation *Loc) const {
16857
assert(!isValueDependent() &&
16858
"Expression evaluator can't be called on a dependent expression.");
16859
16860
// We support this checking in C++98 mode in order to diagnose compatibility
16861
// issues.
16862
assert(Ctx.getLangOpts().CPlusPlus);
16863
16864
// Build evaluation settings.
16865
Expr::EvalStatus Status;
16866
SmallVector<PartialDiagnosticAt, 8> Diags;
16867
Status.Diag = &Diags;
16868
EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
16869
16870
APValue Scratch;
16871
bool IsConstExpr =
16872
::EvaluateAsRValue(Info, this, Result ? *Result : Scratch) &&
16873
// FIXME: We don't produce a diagnostic for this, but the callers that
16874
// call us on arbitrary full-expressions should generally not care.
16875
Info.discardCleanups() && !Status.HasSideEffects;
16876
16877
if (!Diags.empty()) {
16878
IsConstExpr = false;
16879
if (Loc) *Loc = Diags[0].first;
16880
} else if (!IsConstExpr) {
16881
// FIXME: This shouldn't happen.
16882
if (Loc) *Loc = getExprLoc();
16883
}
16884
16885
return IsConstExpr;
16886
}
16887
16888
bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
16889
const FunctionDecl *Callee,
16890
ArrayRef<const Expr*> Args,
16891
const Expr *This) const {
16892
assert(!isValueDependent() &&
16893
"Expression evaluator can't be called on a dependent expression.");
16894
16895
llvm::TimeTraceScope TimeScope("EvaluateWithSubstitution", [&] {
16896
std::string Name;
16897
llvm::raw_string_ostream OS(Name);
16898
Callee->getNameForDiagnostic(OS, Ctx.getPrintingPolicy(),
16899
/*Qualified=*/true);
16900
return Name;
16901
});
16902
16903
Expr::EvalStatus Status;
16904
EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
16905
Info.InConstantContext = true;
16906
16907
LValue ThisVal;
16908
const LValue *ThisPtr = nullptr;
16909
if (This) {
16910
#ifndef NDEBUG
16911
auto *MD = dyn_cast<CXXMethodDecl>(Callee);
16912
assert(MD && "Don't provide `this` for non-methods.");
16913
assert(MD->isImplicitObjectMemberFunction() &&
16914
"Don't provide `this` for methods without an implicit object.");
16915
#endif
16916
if (!This->isValueDependent() &&
16917
EvaluateObjectArgument(Info, This, ThisVal) &&
16918
!Info.EvalStatus.HasSideEffects)
16919
ThisPtr = &ThisVal;
16920
16921
// Ignore any side-effects from a failed evaluation. This is safe because
16922
// they can't interfere with any other argument evaluation.
16923
Info.EvalStatus.HasSideEffects = false;
16924
}
16925
16926
CallRef Call = Info.CurrentCall->createCall(Callee);
16927
for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
16928
I != E; ++I) {
16929
unsigned Idx = I - Args.begin();
16930
if (Idx >= Callee->getNumParams())
16931
break;
16932
const ParmVarDecl *PVD = Callee->getParamDecl(Idx);
16933
if ((*I)->isValueDependent() ||
16934
!EvaluateCallArg(PVD, *I, Call, Info) ||
16935
Info.EvalStatus.HasSideEffects) {
16936
// If evaluation fails, throw away the argument entirely.
16937
if (APValue *Slot = Info.getParamSlot(Call, PVD))
16938
*Slot = APValue();
16939
}
16940
16941
// Ignore any side-effects from a failed evaluation. This is safe because
16942
// they can't interfere with any other argument evaluation.
16943
Info.EvalStatus.HasSideEffects = false;
16944
}
16945
16946
// Parameter cleanups happen in the caller and are not part of this
16947
// evaluation.
16948
Info.discardCleanups();
16949
Info.EvalStatus.HasSideEffects = false;
16950
16951
// Build fake call to Callee.
16952
CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, This,
16953
Call);
16954
// FIXME: Missing ExprWithCleanups in enable_if conditions?
16955
FullExpressionRAII Scope(Info);
16956
return Evaluate(Value, Info, this) && Scope.destroy() &&
16957
!Info.EvalStatus.HasSideEffects;
16958
}
16959
16960
bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
16961
SmallVectorImpl<
16962
PartialDiagnosticAt> &Diags) {
16963
// FIXME: It would be useful to check constexpr function templates, but at the
16964
// moment the constant expression evaluator cannot cope with the non-rigorous
16965
// ASTs which we build for dependent expressions.
16966
if (FD->isDependentContext())
16967
return true;
16968
16969
llvm::TimeTraceScope TimeScope("isPotentialConstantExpr", [&] {
16970
std::string Name;
16971
llvm::raw_string_ostream OS(Name);
16972
FD->getNameForDiagnostic(OS, FD->getASTContext().getPrintingPolicy(),
16973
/*Qualified=*/true);
16974
return Name;
16975
});
16976
16977
Expr::EvalStatus Status;
16978
Status.Diag = &Diags;
16979
16980
EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression);
16981
Info.InConstantContext = true;
16982
Info.CheckingPotentialConstantExpression = true;
16983
16984
// The constexpr VM attempts to compile all methods to bytecode here.
16985
if (Info.EnableNewConstInterp) {
16986
Info.Ctx.getInterpContext().isPotentialConstantExpr(Info, FD);
16987
return Diags.empty();
16988
}
16989
16990
const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
16991
const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
16992
16993
// Fabricate an arbitrary expression on the stack and pretend that it
16994
// is a temporary being used as the 'this' pointer.
16995
LValue This;
16996
ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
16997
This.set({&VIE, Info.CurrentCall->Index});
16998
16999
ArrayRef<const Expr*> Args;
17000
17001
APValue Scratch;
17002
if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
17003
// Evaluate the call as a constant initializer, to allow the construction
17004
// of objects of non-literal types.
17005
Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
17006
HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
17007
} else {
17008
SourceLocation Loc = FD->getLocation();
17009
HandleFunctionCall(
17010
Loc, FD, (MD && MD->isImplicitObjectMemberFunction()) ? &This : nullptr,
17011
&VIE, Args, CallRef(), FD->getBody(), Info, Scratch,
17012
/*ResultSlot=*/nullptr);
17013
}
17014
17015
return Diags.empty();
17016
}
17017
17018
bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
17019
const FunctionDecl *FD,
17020
SmallVectorImpl<
17021
PartialDiagnosticAt> &Diags) {
17022
assert(!E->isValueDependent() &&
17023
"Expression evaluator can't be called on a dependent expression.");
17024
17025
Expr::EvalStatus Status;
17026
Status.Diag = &Diags;
17027
17028
EvalInfo Info(FD->getASTContext(), Status,
17029
EvalInfo::EM_ConstantExpressionUnevaluated);
17030
Info.InConstantContext = true;
17031
Info.CheckingPotentialConstantExpression = true;
17032
17033
// Fabricate a call stack frame to give the arguments a plausible cover story.
17034
CallStackFrame Frame(Info, SourceLocation(), FD, /*This=*/nullptr,
17035
/*CallExpr=*/nullptr, CallRef());
17036
17037
APValue ResultScratch;
17038
Evaluate(ResultScratch, Info, E);
17039
return Diags.empty();
17040
}
17041
17042
bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
17043
unsigned Type) const {
17044
if (!getType()->isPointerType())
17045
return false;
17046
17047
Expr::EvalStatus Status;
17048
EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
17049
return tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
17050
}
17051
17052
static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result,
17053
EvalInfo &Info, std::string *StringResult) {
17054
if (!E->getType()->hasPointerRepresentation() || !E->isPRValue())
17055
return false;
17056
17057
LValue String;
17058
17059
if (!EvaluatePointer(E, String, Info))
17060
return false;
17061
17062
QualType CharTy = E->getType()->getPointeeType();
17063
17064
// Fast path: if it's a string literal, search the string value.
17065
if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
17066
String.getLValueBase().dyn_cast<const Expr *>())) {
17067
StringRef Str = S->getBytes();
17068
int64_t Off = String.Offset.getQuantity();
17069
if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
17070
S->getCharByteWidth() == 1 &&
17071
// FIXME: Add fast-path for wchar_t too.
17072
Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) {
17073
Str = Str.substr(Off);
17074
17075
StringRef::size_type Pos = Str.find(0);
17076
if (Pos != StringRef::npos)
17077
Str = Str.substr(0, Pos);
17078
17079
Result = Str.size();
17080
if (StringResult)
17081
*StringResult = Str;
17082
return true;
17083
}
17084
17085
// Fall through to slow path.
17086
}
17087
17088
// Slow path: scan the bytes of the string looking for the terminating 0.
17089
for (uint64_t Strlen = 0; /**/; ++Strlen) {
17090
APValue Char;
17091
if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
17092
!Char.isInt())
17093
return false;
17094
if (!Char.getInt()) {
17095
Result = Strlen;
17096
return true;
17097
} else if (StringResult)
17098
StringResult->push_back(Char.getInt().getExtValue());
17099
if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
17100
return false;
17101
}
17102
}
17103
17104
std::optional<std::string> Expr::tryEvaluateString(ASTContext &Ctx) const {
17105
Expr::EvalStatus Status;
17106
EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
17107
uint64_t Result;
17108
std::string StringResult;
17109
17110
if (EvaluateBuiltinStrLen(this, Result, Info, &StringResult))
17111
return StringResult;
17112
return {};
17113
}
17114
17115
bool Expr::EvaluateCharRangeAsString(std::string &Result,
17116
const Expr *SizeExpression,
17117
const Expr *PtrExpression, ASTContext &Ctx,
17118
EvalResult &Status) const {
17119
LValue String;
17120
EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
17121
Info.InConstantContext = true;
17122
17123
FullExpressionRAII Scope(Info);
17124
APSInt SizeValue;
17125
if (!::EvaluateInteger(SizeExpression, SizeValue, Info))
17126
return false;
17127
17128
uint64_t Size = SizeValue.getZExtValue();
17129
17130
if (!::EvaluatePointer(PtrExpression, String, Info))
17131
return false;
17132
17133
QualType CharTy = PtrExpression->getType()->getPointeeType();
17134
for (uint64_t I = 0; I < Size; ++I) {
17135
APValue Char;
17136
if (!handleLValueToRValueConversion(Info, PtrExpression, CharTy, String,
17137
Char))
17138
return false;
17139
17140
APSInt C = Char.getInt();
17141
Result.push_back(static_cast<char>(C.getExtValue()));
17142
if (!HandleLValueArrayAdjustment(Info, PtrExpression, String, CharTy, 1))
17143
return false;
17144
}
17145
if (!Scope.destroy())
17146
return false;
17147
17148
if (!CheckMemoryLeaks(Info))
17149
return false;
17150
17151
return true;
17152
}
17153
17154
bool Expr::tryEvaluateStrLen(uint64_t &Result, ASTContext &Ctx) const {
17155
Expr::EvalStatus Status;
17156
EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
17157
return EvaluateBuiltinStrLen(this, Result, Info);
17158
}
17159
17160