Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/clang/lib/AST/Interp/ByteCodeEmitter.cpp
35291 views
1
//===--- ByteCodeEmitter.cpp - Instruction emitter for the VM ---*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#include "ByteCodeEmitter.h"
10
#include "Context.h"
11
#include "Floating.h"
12
#include "IntegralAP.h"
13
#include "Opcode.h"
14
#include "Program.h"
15
#include "clang/AST/ASTLambda.h"
16
#include "clang/AST/Attr.h"
17
#include "clang/AST/DeclCXX.h"
18
#include "clang/Basic/Builtins.h"
19
#include <type_traits>
20
21
using namespace clang;
22
using namespace clang::interp;
23
24
/// Unevaluated builtins don't get their arguments put on the stack
25
/// automatically. They instead operate on the AST of their Call
26
/// Expression.
27
/// Similar information is available via ASTContext::BuiltinInfo,
28
/// but that is not correct for our use cases.
29
static bool isUnevaluatedBuiltin(unsigned BuiltinID) {
30
return BuiltinID == Builtin::BI__builtin_classify_type ||
31
BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size;
32
}
33
34
Function *ByteCodeEmitter::compileFunc(const FunctionDecl *FuncDecl) {
35
36
// Manually created functions that haven't been assigned proper
37
// parameters yet.
38
if (!FuncDecl->param_empty() && !FuncDecl->param_begin())
39
return nullptr;
40
41
bool IsLambdaStaticInvoker = false;
42
if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl);
43
MD && MD->isLambdaStaticInvoker()) {
44
// For a lambda static invoker, we might have to pick a specialized
45
// version if the lambda is generic. In that case, the picked function
46
// will *NOT* be a static invoker anymore. However, it will still
47
// be a non-static member function, this (usually) requiring an
48
// instance pointer. We suppress that later in this function.
49
IsLambdaStaticInvoker = true;
50
51
const CXXRecordDecl *ClosureClass = MD->getParent();
52
assert(ClosureClass->captures_begin() == ClosureClass->captures_end());
53
if (ClosureClass->isGenericLambda()) {
54
const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator();
55
assert(MD->isFunctionTemplateSpecialization() &&
56
"A generic lambda's static-invoker function must be a "
57
"template specialization");
58
const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
59
FunctionTemplateDecl *CallOpTemplate =
60
LambdaCallOp->getDescribedFunctionTemplate();
61
void *InsertPos = nullptr;
62
const FunctionDecl *CorrespondingCallOpSpecialization =
63
CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
64
assert(CorrespondingCallOpSpecialization);
65
FuncDecl = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
66
}
67
}
68
69
// Set up argument indices.
70
unsigned ParamOffset = 0;
71
SmallVector<PrimType, 8> ParamTypes;
72
SmallVector<unsigned, 8> ParamOffsets;
73
llvm::DenseMap<unsigned, Function::ParamDescriptor> ParamDescriptors;
74
75
// If the return is not a primitive, a pointer to the storage where the
76
// value is initialized in is passed as the first argument. See 'RVO'
77
// elsewhere in the code.
78
QualType Ty = FuncDecl->getReturnType();
79
bool HasRVO = false;
80
if (!Ty->isVoidType() && !Ctx.classify(Ty)) {
81
HasRVO = true;
82
ParamTypes.push_back(PT_Ptr);
83
ParamOffsets.push_back(ParamOffset);
84
ParamOffset += align(primSize(PT_Ptr));
85
}
86
87
// If the function decl is a member decl, the next parameter is
88
// the 'this' pointer. This parameter is pop()ed from the
89
// InterpStack when calling the function.
90
bool HasThisPointer = false;
91
if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl)) {
92
if (!IsLambdaStaticInvoker) {
93
HasThisPointer = MD->isInstance();
94
if (MD->isImplicitObjectMemberFunction()) {
95
ParamTypes.push_back(PT_Ptr);
96
ParamOffsets.push_back(ParamOffset);
97
ParamOffset += align(primSize(PT_Ptr));
98
}
99
}
100
101
// Set up lambda capture to closure record field mapping.
102
if (isLambdaCallOperator(MD)) {
103
// The parent record needs to be complete, we need to know about all
104
// the lambda captures.
105
if (!MD->getParent()->isCompleteDefinition())
106
return nullptr;
107
108
const Record *R = P.getOrCreateRecord(MD->getParent());
109
llvm::DenseMap<const ValueDecl *, FieldDecl *> LC;
110
FieldDecl *LTC;
111
112
MD->getParent()->getCaptureFields(LC, LTC);
113
114
for (auto Cap : LC) {
115
// Static lambdas cannot have any captures. If this one does,
116
// it has already been diagnosed and we can only ignore it.
117
if (MD->isStatic())
118
return nullptr;
119
120
unsigned Offset = R->getField(Cap.second)->Offset;
121
this->LambdaCaptures[Cap.first] = {
122
Offset, Cap.second->getType()->isReferenceType()};
123
}
124
if (LTC) {
125
QualType CaptureType = R->getField(LTC)->Decl->getType();
126
this->LambdaThisCapture = {R->getField(LTC)->Offset,
127
CaptureType->isReferenceType() ||
128
CaptureType->isPointerType()};
129
}
130
}
131
}
132
133
// Assign descriptors to all parameters.
134
// Composite objects are lowered to pointers.
135
for (const ParmVarDecl *PD : FuncDecl->parameters()) {
136
std::optional<PrimType> T = Ctx.classify(PD->getType());
137
PrimType PT = T.value_or(PT_Ptr);
138
Descriptor *Desc = P.createDescriptor(PD, PT);
139
ParamDescriptors.insert({ParamOffset, {PT, Desc}});
140
Params.insert({PD, {ParamOffset, T != std::nullopt}});
141
ParamOffsets.push_back(ParamOffset);
142
ParamOffset += align(primSize(PT));
143
ParamTypes.push_back(PT);
144
}
145
146
// Create a handle over the emitted code.
147
Function *Func = P.getFunction(FuncDecl);
148
if (!Func) {
149
bool IsUnevaluatedBuiltin = false;
150
if (unsigned BI = FuncDecl->getBuiltinID())
151
IsUnevaluatedBuiltin = isUnevaluatedBuiltin(BI);
152
153
Func =
154
P.createFunction(FuncDecl, ParamOffset, std::move(ParamTypes),
155
std::move(ParamDescriptors), std::move(ParamOffsets),
156
HasThisPointer, HasRVO, IsUnevaluatedBuiltin);
157
}
158
159
assert(Func);
160
// For not-yet-defined functions, we only create a Function instance and
161
// compile their body later.
162
if (!FuncDecl->isDefined() ||
163
(FuncDecl->willHaveBody() && !FuncDecl->hasBody())) {
164
Func->setDefined(false);
165
return Func;
166
}
167
168
Func->setDefined(true);
169
170
// Lambda static invokers are a special case that we emit custom code for.
171
bool IsEligibleForCompilation = false;
172
if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl))
173
IsEligibleForCompilation = MD->isLambdaStaticInvoker();
174
if (!IsEligibleForCompilation)
175
IsEligibleForCompilation =
176
FuncDecl->isConstexpr() || FuncDecl->hasAttr<MSConstexprAttr>();
177
178
// Compile the function body.
179
if (!IsEligibleForCompilation || !visitFunc(FuncDecl)) {
180
Func->setIsFullyCompiled(true);
181
return Func;
182
}
183
184
// Create scopes from descriptors.
185
llvm::SmallVector<Scope, 2> Scopes;
186
for (auto &DS : Descriptors) {
187
Scopes.emplace_back(std::move(DS));
188
}
189
190
// Set the function's code.
191
Func->setCode(NextLocalOffset, std::move(Code), std::move(SrcMap),
192
std::move(Scopes), FuncDecl->hasBody());
193
Func->setIsFullyCompiled(true);
194
return Func;
195
}
196
197
Scope::Local ByteCodeEmitter::createLocal(Descriptor *D) {
198
NextLocalOffset += sizeof(Block);
199
unsigned Location = NextLocalOffset;
200
NextLocalOffset += align(D->getAllocSize());
201
return {Location, D};
202
}
203
204
void ByteCodeEmitter::emitLabel(LabelTy Label) {
205
const size_t Target = Code.size();
206
LabelOffsets.insert({Label, Target});
207
208
if (auto It = LabelRelocs.find(Label);
209
It != LabelRelocs.end()) {
210
for (unsigned Reloc : It->second) {
211
using namespace llvm::support;
212
213
// Rewrite the operand of all jumps to this label.
214
void *Location = Code.data() + Reloc - align(sizeof(int32_t));
215
assert(aligned(Location));
216
const int32_t Offset = Target - static_cast<int64_t>(Reloc);
217
endian::write<int32_t, llvm::endianness::native>(Location, Offset);
218
}
219
LabelRelocs.erase(It);
220
}
221
}
222
223
int32_t ByteCodeEmitter::getOffset(LabelTy Label) {
224
// Compute the PC offset which the jump is relative to.
225
const int64_t Position =
226
Code.size() + align(sizeof(Opcode)) + align(sizeof(int32_t));
227
assert(aligned(Position));
228
229
// If target is known, compute jump offset.
230
if (auto It = LabelOffsets.find(Label);
231
It != LabelOffsets.end())
232
return It->second - Position;
233
234
// Otherwise, record relocation and return dummy offset.
235
LabelRelocs[Label].push_back(Position);
236
return 0ull;
237
}
238
239
/// Helper to write bytecode and bail out if 32-bit offsets become invalid.
240
/// Pointers will be automatically marshalled as 32-bit IDs.
241
template <typename T>
242
static void emit(Program &P, std::vector<std::byte> &Code, const T &Val,
243
bool &Success) {
244
size_t Size;
245
246
if constexpr (std::is_pointer_v<T>)
247
Size = sizeof(uint32_t);
248
else
249
Size = sizeof(T);
250
251
if (Code.size() + Size > std::numeric_limits<unsigned>::max()) {
252
Success = false;
253
return;
254
}
255
256
// Access must be aligned!
257
size_t ValPos = align(Code.size());
258
Size = align(Size);
259
assert(aligned(ValPos + Size));
260
Code.resize(ValPos + Size);
261
262
if constexpr (!std::is_pointer_v<T>) {
263
new (Code.data() + ValPos) T(Val);
264
} else {
265
uint32_t ID = P.getOrCreateNativePointer(Val);
266
new (Code.data() + ValPos) uint32_t(ID);
267
}
268
}
269
270
/// Emits a serializable value. These usually (potentially) contain
271
/// heap-allocated memory and aren't trivially copyable.
272
template <typename T>
273
static void emitSerialized(std::vector<std::byte> &Code, const T &Val,
274
bool &Success) {
275
size_t Size = Val.bytesToSerialize();
276
277
if (Code.size() + Size > std::numeric_limits<unsigned>::max()) {
278
Success = false;
279
return;
280
}
281
282
// Access must be aligned!
283
size_t ValPos = align(Code.size());
284
Size = align(Size);
285
assert(aligned(ValPos + Size));
286
Code.resize(ValPos + Size);
287
288
Val.serialize(Code.data() + ValPos);
289
}
290
291
template <>
292
void emit(Program &P, std::vector<std::byte> &Code, const Floating &Val,
293
bool &Success) {
294
emitSerialized(Code, Val, Success);
295
}
296
297
template <>
298
void emit(Program &P, std::vector<std::byte> &Code,
299
const IntegralAP<false> &Val, bool &Success) {
300
emitSerialized(Code, Val, Success);
301
}
302
303
template <>
304
void emit(Program &P, std::vector<std::byte> &Code, const IntegralAP<true> &Val,
305
bool &Success) {
306
emitSerialized(Code, Val, Success);
307
}
308
309
template <typename... Tys>
310
bool ByteCodeEmitter::emitOp(Opcode Op, const Tys &... Args, const SourceInfo &SI) {
311
bool Success = true;
312
313
// The opcode is followed by arguments. The source info is
314
// attached to the address after the opcode.
315
emit(P, Code, Op, Success);
316
if (SI)
317
SrcMap.emplace_back(Code.size(), SI);
318
319
(..., emit(P, Code, Args, Success));
320
return Success;
321
}
322
323
bool ByteCodeEmitter::jumpTrue(const LabelTy &Label) {
324
return emitJt(getOffset(Label), SourceInfo{});
325
}
326
327
bool ByteCodeEmitter::jumpFalse(const LabelTy &Label) {
328
return emitJf(getOffset(Label), SourceInfo{});
329
}
330
331
bool ByteCodeEmitter::jump(const LabelTy &Label) {
332
return emitJmp(getOffset(Label), SourceInfo{});
333
}
334
335
bool ByteCodeEmitter::fallthrough(const LabelTy &Label) {
336
emitLabel(Label);
337
return true;
338
}
339
340
//===----------------------------------------------------------------------===//
341
// Opcode emitters
342
//===----------------------------------------------------------------------===//
343
344
#define GET_LINK_IMPL
345
#include "Opcodes.inc"
346
#undef GET_LINK_IMPL
347
348