Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/clang/lib/Analysis/CalledOnceCheck.cpp
35234 views
1
//===- CalledOnceCheck.cpp - Check 'called once' parameters ---------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#include "clang/Analysis/Analyses/CalledOnceCheck.h"
10
#include "clang/AST/ASTContext.h"
11
#include "clang/AST/Attr.h"
12
#include "clang/AST/Decl.h"
13
#include "clang/AST/DeclBase.h"
14
#include "clang/AST/Expr.h"
15
#include "clang/AST/ExprObjC.h"
16
#include "clang/AST/OperationKinds.h"
17
#include "clang/AST/ParentMap.h"
18
#include "clang/AST/RecursiveASTVisitor.h"
19
#include "clang/AST/Stmt.h"
20
#include "clang/AST/StmtObjC.h"
21
#include "clang/AST/StmtVisitor.h"
22
#include "clang/AST/Type.h"
23
#include "clang/Analysis/AnalysisDeclContext.h"
24
#include "clang/Analysis/CFG.h"
25
#include "clang/Analysis/FlowSensitive/DataflowWorklist.h"
26
#include "clang/Basic/Builtins.h"
27
#include "clang/Basic/IdentifierTable.h"
28
#include "clang/Basic/LLVM.h"
29
#include "llvm/ADT/BitVector.h"
30
#include "llvm/ADT/BitmaskEnum.h"
31
#include "llvm/ADT/PointerIntPair.h"
32
#include "llvm/ADT/STLExtras.h"
33
#include "llvm/ADT/Sequence.h"
34
#include "llvm/ADT/SmallVector.h"
35
#include "llvm/ADT/StringRef.h"
36
#include "llvm/Support/Casting.h"
37
#include "llvm/Support/Compiler.h"
38
#include "llvm/Support/ErrorHandling.h"
39
#include <memory>
40
#include <optional>
41
42
using namespace clang;
43
44
namespace {
45
static constexpr unsigned EXPECTED_MAX_NUMBER_OF_PARAMS = 2;
46
template <class T>
47
using ParamSizedVector = llvm::SmallVector<T, EXPECTED_MAX_NUMBER_OF_PARAMS>;
48
static constexpr unsigned EXPECTED_NUMBER_OF_BASIC_BLOCKS = 8;
49
template <class T>
50
using CFGSizedVector = llvm::SmallVector<T, EXPECTED_NUMBER_OF_BASIC_BLOCKS>;
51
constexpr llvm::StringLiteral CONVENTIONAL_NAMES[] = {
52
"completionHandler", "completion", "withCompletionHandler",
53
"withCompletion", "completionBlock", "withCompletionBlock",
54
"replyTo", "reply", "withReplyTo"};
55
constexpr llvm::StringLiteral CONVENTIONAL_SUFFIXES[] = {
56
"WithCompletionHandler", "WithCompletion", "WithCompletionBlock",
57
"WithReplyTo", "WithReply"};
58
constexpr llvm::StringLiteral CONVENTIONAL_CONDITIONS[] = {
59
"error", "cancel", "shouldCall", "done", "OK", "success"};
60
61
struct KnownCalledOnceParameter {
62
llvm::StringLiteral FunctionName;
63
unsigned ParamIndex;
64
};
65
constexpr KnownCalledOnceParameter KNOWN_CALLED_ONCE_PARAMETERS[] = {
66
{llvm::StringLiteral{"dispatch_async"}, 1},
67
{llvm::StringLiteral{"dispatch_async_and_wait"}, 1},
68
{llvm::StringLiteral{"dispatch_after"}, 2},
69
{llvm::StringLiteral{"dispatch_sync"}, 1},
70
{llvm::StringLiteral{"dispatch_once"}, 1},
71
{llvm::StringLiteral{"dispatch_barrier_async"}, 1},
72
{llvm::StringLiteral{"dispatch_barrier_async_and_wait"}, 1},
73
{llvm::StringLiteral{"dispatch_barrier_sync"}, 1}};
74
75
class ParameterStatus {
76
public:
77
// Status kind is basically the main part of parameter's status.
78
// The kind represents our knowledge (so far) about a tracked parameter
79
// in the context of this analysis.
80
//
81
// Since we want to report on missing and extraneous calls, we need to
82
// track the fact whether paramater was called or not. This automatically
83
// decides two kinds: `NotCalled` and `Called`.
84
//
85
// One of the erroneous situations is the case when parameter is called only
86
// on some of the paths. We could've considered it `NotCalled`, but we want
87
// to report double call warnings even if these two calls are not guaranteed
88
// to happen in every execution. We also don't want to have it as `Called`
89
// because not calling tracked parameter on all of the paths is an error
90
// on its own. For these reasons, we need to have a separate kind,
91
// `MaybeCalled`, and change `Called` to `DefinitelyCalled` to avoid
92
// confusion.
93
//
94
// Two violations of calling parameter more than once and not calling it on
95
// every path are not, however, mutually exclusive. In situations where both
96
// violations take place, we prefer to report ONLY double call. It's always
97
// harder to pinpoint a bug that has arisen when a user neglects to take the
98
// right action (and therefore, no action is taken), than when a user takes
99
// the wrong action. And, in order to remember that we already reported
100
// a double call, we need another kind: `Reported`.
101
//
102
// Our analysis is intra-procedural and, while in the perfect world,
103
// developers only use tracked parameters to call them, in the real world,
104
// the picture might be different. Parameters can be stored in global
105
// variables or leaked into other functions that we know nothing about.
106
// We try to be lenient and trust users. Another kind `Escaped` reflects
107
// such situations. We don't know if it gets called there or not, but we
108
// should always think of `Escaped` as the best possible option.
109
//
110
// Some of the paths in the analyzed functions might end with a call
111
// to noreturn functions. Such paths are not required to have parameter
112
// calls and we want to track that. For the purposes of better diagnostics,
113
// we don't want to reuse `Escaped` and, thus, have another kind `NoReturn`.
114
//
115
// Additionally, we have `NotVisited` kind that tells us nothing about
116
// a tracked parameter, but is used for tracking analyzed (aka visited)
117
// basic blocks.
118
//
119
// If we consider `|` to be a JOIN operation of two kinds coming from
120
// two different paths, the following properties must hold:
121
//
122
// 1. for any Kind K: K | K == K
123
// Joining two identical kinds should result in the same kind.
124
//
125
// 2. for any Kind K: Reported | K == Reported
126
// Doesn't matter on which path it was reported, it still is.
127
//
128
// 3. for any Kind K: NoReturn | K == K
129
// We can totally ignore noreturn paths during merges.
130
//
131
// 4. DefinitelyCalled | NotCalled == MaybeCalled
132
// Called on one path, not called on another - that's simply
133
// a definition for MaybeCalled.
134
//
135
// 5. for any Kind K in [DefinitelyCalled, NotCalled, MaybeCalled]:
136
// Escaped | K == K
137
// Escaped mirrors other statuses after joins.
138
// Every situation, when we join any of the listed kinds K,
139
// is a violation. For this reason, in order to assume the
140
// best outcome for this escape, we consider it to be the
141
// same as the other path.
142
//
143
// 6. for any Kind K in [DefinitelyCalled, NotCalled]:
144
// MaybeCalled | K == MaybeCalled
145
// MaybeCalled should basically stay after almost every join.
146
enum Kind {
147
// No-return paths should be absolutely transparent for the analysis.
148
// 0x0 is the identity element for selected join operation (binary or).
149
NoReturn = 0x0, /* 0000 */
150
// Escaped marks situations when marked parameter escaped into
151
// another function (so we can assume that it was possibly called there).
152
Escaped = 0x1, /* 0001 */
153
// Parameter was definitely called once at this point.
154
DefinitelyCalled = 0x3, /* 0011 */
155
// Kinds less or equal to NON_ERROR_STATUS are not considered errors.
156
NON_ERROR_STATUS = DefinitelyCalled,
157
// Parameter was not yet called.
158
NotCalled = 0x5, /* 0101 */
159
// Parameter was not called at least on one path leading to this point,
160
// while there is also at least one path that it gets called.
161
MaybeCalled = 0x7, /* 0111 */
162
// Parameter was not yet analyzed.
163
NotVisited = 0x8, /* 1000 */
164
// We already reported a violation and stopped tracking calls for this
165
// parameter.
166
Reported = 0xF, /* 1111 */
167
LLVM_MARK_AS_BITMASK_ENUM(/* LargestValue = */ Reported)
168
};
169
170
constexpr ParameterStatus() = default;
171
/* implicit */ ParameterStatus(Kind K) : StatusKind(K) {
172
assert(!seenAnyCalls(K) && "Can't initialize status without a call");
173
}
174
ParameterStatus(Kind K, const Expr *Call) : StatusKind(K), Call(Call) {
175
assert(seenAnyCalls(K) && "This kind is not supposed to have a call");
176
}
177
178
const Expr &getCall() const {
179
assert(seenAnyCalls(getKind()) && "ParameterStatus doesn't have a call");
180
return *Call;
181
}
182
static bool seenAnyCalls(Kind K) {
183
return (K & DefinitelyCalled) == DefinitelyCalled && K != Reported;
184
}
185
bool seenAnyCalls() const { return seenAnyCalls(getKind()); }
186
187
static bool isErrorStatus(Kind K) { return K > NON_ERROR_STATUS; }
188
bool isErrorStatus() const { return isErrorStatus(getKind()); }
189
190
Kind getKind() const { return StatusKind; }
191
192
void join(const ParameterStatus &Other) {
193
// If we have a pointer already, let's keep it.
194
// For the purposes of the analysis, it doesn't really matter
195
// which call we report.
196
//
197
// If we don't have a pointer, let's take whatever gets joined.
198
if (!Call) {
199
Call = Other.Call;
200
}
201
// Join kinds.
202
StatusKind |= Other.getKind();
203
}
204
205
bool operator==(const ParameterStatus &Other) const {
206
// We compare only kinds, pointers on their own is only additional
207
// information.
208
return getKind() == Other.getKind();
209
}
210
211
private:
212
// It would've been a perfect place to use llvm::PointerIntPair, but
213
// unfortunately NumLowBitsAvailable for clang::Expr had been reduced to 2.
214
Kind StatusKind = NotVisited;
215
const Expr *Call = nullptr;
216
};
217
218
/// State aggregates statuses of all tracked parameters.
219
class State {
220
public:
221
State(unsigned Size, ParameterStatus::Kind K = ParameterStatus::NotVisited)
222
: ParamData(Size, K) {}
223
224
/// Return status of a parameter with the given index.
225
/// \{
226
ParameterStatus &getStatusFor(unsigned Index) { return ParamData[Index]; }
227
const ParameterStatus &getStatusFor(unsigned Index) const {
228
return ParamData[Index];
229
}
230
/// \}
231
232
/// Return true if parameter with the given index can be called.
233
bool seenAnyCalls(unsigned Index) const {
234
return getStatusFor(Index).seenAnyCalls();
235
}
236
/// Return a reference that we consider a call.
237
///
238
/// Should only be used for parameters that can be called.
239
const Expr &getCallFor(unsigned Index) const {
240
return getStatusFor(Index).getCall();
241
}
242
/// Return status kind of parameter with the given index.
243
ParameterStatus::Kind getKindFor(unsigned Index) const {
244
return getStatusFor(Index).getKind();
245
}
246
247
bool isVisited() const {
248
return llvm::all_of(ParamData, [](const ParameterStatus &S) {
249
return S.getKind() != ParameterStatus::NotVisited;
250
});
251
}
252
253
// Join other state into the current state.
254
void join(const State &Other) {
255
assert(ParamData.size() == Other.ParamData.size() &&
256
"Couldn't join statuses with different sizes");
257
for (auto Pair : llvm::zip(ParamData, Other.ParamData)) {
258
std::get<0>(Pair).join(std::get<1>(Pair));
259
}
260
}
261
262
using iterator = ParamSizedVector<ParameterStatus>::iterator;
263
using const_iterator = ParamSizedVector<ParameterStatus>::const_iterator;
264
265
iterator begin() { return ParamData.begin(); }
266
iterator end() { return ParamData.end(); }
267
268
const_iterator begin() const { return ParamData.begin(); }
269
const_iterator end() const { return ParamData.end(); }
270
271
bool operator==(const State &Other) const {
272
return ParamData == Other.ParamData;
273
}
274
275
private:
276
ParamSizedVector<ParameterStatus> ParamData;
277
};
278
279
/// A simple class that finds DeclRefExpr in the given expression.
280
///
281
/// However, we don't want to find ANY nested DeclRefExpr skipping whatever
282
/// expressions on our way. Only certain expressions considered "no-op"
283
/// for our task are indeed skipped.
284
class DeclRefFinder
285
: public ConstStmtVisitor<DeclRefFinder, const DeclRefExpr *> {
286
public:
287
/// Find a DeclRefExpr in the given expression.
288
///
289
/// In its most basic form (ShouldRetrieveFromComparisons == false),
290
/// this function can be simply reduced to the following question:
291
///
292
/// - If expression E is used as a function argument, could we say
293
/// that DeclRefExpr nested in E is used as an argument?
294
///
295
/// According to this rule, we can say that parens, casts and dereferencing
296
/// (dereferencing only applied to function pointers, but this is our case)
297
/// can be skipped.
298
///
299
/// When we should look into comparisons the question changes to:
300
///
301
/// - If expression E is used as a condition, could we say that
302
/// DeclRefExpr is being checked?
303
///
304
/// And even though, these are two different questions, they have quite a lot
305
/// in common. Actually, we can say that whatever expression answers
306
/// positively the first question also fits the second question as well.
307
///
308
/// In addition, we skip binary operators == and !=, and unary opeartor !.
309
static const DeclRefExpr *find(const Expr *E,
310
bool ShouldRetrieveFromComparisons = false) {
311
return DeclRefFinder(ShouldRetrieveFromComparisons).Visit(E);
312
}
313
314
const DeclRefExpr *VisitDeclRefExpr(const DeclRefExpr *DR) { return DR; }
315
316
const DeclRefExpr *VisitUnaryOperator(const UnaryOperator *UO) {
317
switch (UO->getOpcode()) {
318
case UO_LNot:
319
// We care about logical not only if we care about comparisons.
320
if (!ShouldRetrieveFromComparisons)
321
return nullptr;
322
[[fallthrough]];
323
// Function pointer/references can be dereferenced before a call.
324
// That doesn't make it, however, any different from a regular call.
325
// For this reason, dereference operation is a "no-op".
326
case UO_Deref:
327
return Visit(UO->getSubExpr());
328
default:
329
return nullptr;
330
}
331
}
332
333
const DeclRefExpr *VisitBinaryOperator(const BinaryOperator *BO) {
334
if (!ShouldRetrieveFromComparisons)
335
return nullptr;
336
337
switch (BO->getOpcode()) {
338
case BO_EQ:
339
case BO_NE: {
340
const DeclRefExpr *LHS = Visit(BO->getLHS());
341
return LHS ? LHS : Visit(BO->getRHS());
342
}
343
default:
344
return nullptr;
345
}
346
}
347
348
const DeclRefExpr *VisitOpaqueValueExpr(const OpaqueValueExpr *OVE) {
349
return Visit(OVE->getSourceExpr());
350
}
351
352
const DeclRefExpr *VisitCallExpr(const CallExpr *CE) {
353
if (!ShouldRetrieveFromComparisons)
354
return nullptr;
355
356
// We want to see through some of the boolean builtin functions
357
// that we are likely to see in conditions.
358
switch (CE->getBuiltinCallee()) {
359
case Builtin::BI__builtin_expect:
360
case Builtin::BI__builtin_expect_with_probability: {
361
assert(CE->getNumArgs() >= 2);
362
363
const DeclRefExpr *Candidate = Visit(CE->getArg(0));
364
return Candidate != nullptr ? Candidate : Visit(CE->getArg(1));
365
}
366
367
case Builtin::BI__builtin_unpredictable:
368
return Visit(CE->getArg(0));
369
370
default:
371
return nullptr;
372
}
373
}
374
375
const DeclRefExpr *VisitExpr(const Expr *E) {
376
// It is a fallback method that gets called whenever the actual type
377
// of the given expression is not covered.
378
//
379
// We first check if we have anything to skip. And then repeat the whole
380
// procedure for a nested expression instead.
381
const Expr *DeclutteredExpr = E->IgnoreParenCasts();
382
return E != DeclutteredExpr ? Visit(DeclutteredExpr) : nullptr;
383
}
384
385
private:
386
DeclRefFinder(bool ShouldRetrieveFromComparisons)
387
: ShouldRetrieveFromComparisons(ShouldRetrieveFromComparisons) {}
388
389
bool ShouldRetrieveFromComparisons;
390
};
391
392
const DeclRefExpr *findDeclRefExpr(const Expr *In,
393
bool ShouldRetrieveFromComparisons = false) {
394
return DeclRefFinder::find(In, ShouldRetrieveFromComparisons);
395
}
396
397
const ParmVarDecl *
398
findReferencedParmVarDecl(const Expr *In,
399
bool ShouldRetrieveFromComparisons = false) {
400
if (const DeclRefExpr *DR =
401
findDeclRefExpr(In, ShouldRetrieveFromComparisons)) {
402
return dyn_cast<ParmVarDecl>(DR->getDecl());
403
}
404
405
return nullptr;
406
}
407
408
/// Return conditions expression of a statement if it has one.
409
const Expr *getCondition(const Stmt *S) {
410
if (!S) {
411
return nullptr;
412
}
413
414
if (const auto *If = dyn_cast<IfStmt>(S)) {
415
return If->getCond();
416
}
417
if (const auto *Ternary = dyn_cast<AbstractConditionalOperator>(S)) {
418
return Ternary->getCond();
419
}
420
421
return nullptr;
422
}
423
424
/// A small helper class that collects all named identifiers in the given
425
/// expression. It traverses it recursively, so names from deeper levels
426
/// of the AST will end up in the results.
427
/// Results might have duplicate names, if this is a problem, convert to
428
/// string sets afterwards.
429
class NamesCollector : public RecursiveASTVisitor<NamesCollector> {
430
public:
431
static constexpr unsigned EXPECTED_NUMBER_OF_NAMES = 5;
432
using NameCollection =
433
llvm::SmallVector<llvm::StringRef, EXPECTED_NUMBER_OF_NAMES>;
434
435
static NameCollection collect(const Expr *From) {
436
NamesCollector Impl;
437
Impl.TraverseStmt(const_cast<Expr *>(From));
438
return Impl.Result;
439
}
440
441
bool VisitDeclRefExpr(const DeclRefExpr *E) {
442
Result.push_back(E->getDecl()->getName());
443
return true;
444
}
445
446
bool VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *E) {
447
llvm::StringRef Name;
448
449
if (E->isImplicitProperty()) {
450
ObjCMethodDecl *PropertyMethodDecl = nullptr;
451
if (E->isMessagingGetter()) {
452
PropertyMethodDecl = E->getImplicitPropertyGetter();
453
} else {
454
PropertyMethodDecl = E->getImplicitPropertySetter();
455
}
456
assert(PropertyMethodDecl &&
457
"Implicit property must have associated declaration");
458
Name = PropertyMethodDecl->getSelector().getNameForSlot(0);
459
} else {
460
assert(E->isExplicitProperty());
461
Name = E->getExplicitProperty()->getName();
462
}
463
464
Result.push_back(Name);
465
return true;
466
}
467
468
private:
469
NamesCollector() = default;
470
NameCollection Result;
471
};
472
473
/// Check whether the given expression mentions any of conventional names.
474
bool mentionsAnyOfConventionalNames(const Expr *E) {
475
NamesCollector::NameCollection MentionedNames = NamesCollector::collect(E);
476
477
return llvm::any_of(MentionedNames, [](llvm::StringRef ConditionName) {
478
return llvm::any_of(
479
CONVENTIONAL_CONDITIONS,
480
[ConditionName](const llvm::StringLiteral &Conventional) {
481
return ConditionName.contains_insensitive(Conventional);
482
});
483
});
484
}
485
486
/// Clarification is a simple pair of a reason why parameter is not called
487
/// on every path and a statement to blame.
488
struct Clarification {
489
NeverCalledReason Reason;
490
const Stmt *Location;
491
};
492
493
/// A helper class that can produce a clarification based on the given pair
494
/// of basic blocks.
495
class NotCalledClarifier
496
: public ConstStmtVisitor<NotCalledClarifier,
497
std::optional<Clarification>> {
498
public:
499
/// The main entrypoint for the class, the function that tries to find the
500
/// clarification of how to explain which sub-path starts with a CFG edge
501
/// from Conditional to SuccWithoutCall.
502
///
503
/// This means that this function has one precondition:
504
/// SuccWithoutCall should be a successor block for Conditional.
505
///
506
/// Because clarification is not needed for non-trivial pairs of blocks
507
/// (i.e. SuccWithoutCall is not the only successor), it returns meaningful
508
/// results only for such cases. For this very reason, the parent basic
509
/// block, Conditional, is named that way, so it is clear what kind of
510
/// block is expected.
511
static std::optional<Clarification> clarify(const CFGBlock *Conditional,
512
const CFGBlock *SuccWithoutCall) {
513
if (const Stmt *Terminator = Conditional->getTerminatorStmt()) {
514
return NotCalledClarifier{Conditional, SuccWithoutCall}.Visit(Terminator);
515
}
516
return std::nullopt;
517
}
518
519
std::optional<Clarification> VisitIfStmt(const IfStmt *If) {
520
return VisitBranchingBlock(If, NeverCalledReason::IfThen);
521
}
522
523
std::optional<Clarification>
524
VisitAbstractConditionalOperator(const AbstractConditionalOperator *Ternary) {
525
return VisitBranchingBlock(Ternary, NeverCalledReason::IfThen);
526
}
527
528
std::optional<Clarification> VisitSwitchStmt(const SwitchStmt *Switch) {
529
const Stmt *CaseToBlame = SuccInQuestion->getLabel();
530
if (!CaseToBlame) {
531
// If interesting basic block is not labeled, it means that this
532
// basic block does not represent any of the cases.
533
return Clarification{NeverCalledReason::SwitchSkipped, Switch};
534
}
535
536
for (const SwitchCase *Case = Switch->getSwitchCaseList(); Case;
537
Case = Case->getNextSwitchCase()) {
538
if (Case == CaseToBlame) {
539
return Clarification{NeverCalledReason::Switch, Case};
540
}
541
}
542
543
llvm_unreachable("Found unexpected switch structure");
544
}
545
546
std::optional<Clarification> VisitForStmt(const ForStmt *For) {
547
return VisitBranchingBlock(For, NeverCalledReason::LoopEntered);
548
}
549
550
std::optional<Clarification> VisitWhileStmt(const WhileStmt *While) {
551
return VisitBranchingBlock(While, NeverCalledReason::LoopEntered);
552
}
553
554
std::optional<Clarification>
555
VisitBranchingBlock(const Stmt *Terminator, NeverCalledReason DefaultReason) {
556
assert(Parent->succ_size() == 2 &&
557
"Branching block should have exactly two successors");
558
unsigned SuccessorIndex = getSuccessorIndex(Parent, SuccInQuestion);
559
NeverCalledReason ActualReason =
560
updateForSuccessor(DefaultReason, SuccessorIndex);
561
return Clarification{ActualReason, Terminator};
562
}
563
564
std::optional<Clarification> VisitBinaryOperator(const BinaryOperator *) {
565
// We don't want to report on short-curcuit logical operations.
566
return std::nullopt;
567
}
568
569
std::optional<Clarification> VisitStmt(const Stmt *Terminator) {
570
// If we got here, we didn't have a visit function for more derived
571
// classes of statement that this terminator actually belongs to.
572
//
573
// This is not a good scenario and should not happen in practice, but
574
// at least we'll warn the user.
575
return Clarification{NeverCalledReason::FallbackReason, Terminator};
576
}
577
578
static unsigned getSuccessorIndex(const CFGBlock *Parent,
579
const CFGBlock *Child) {
580
CFGBlock::const_succ_iterator It = llvm::find(Parent->succs(), Child);
581
assert(It != Parent->succ_end() &&
582
"Given blocks should be in parent-child relationship");
583
return It - Parent->succ_begin();
584
}
585
586
static NeverCalledReason
587
updateForSuccessor(NeverCalledReason ReasonForTrueBranch,
588
unsigned SuccessorIndex) {
589
assert(SuccessorIndex <= 1);
590
unsigned RawReason =
591
static_cast<unsigned>(ReasonForTrueBranch) + SuccessorIndex;
592
assert(RawReason <=
593
static_cast<unsigned>(NeverCalledReason::LARGEST_VALUE));
594
return static_cast<NeverCalledReason>(RawReason);
595
}
596
597
private:
598
NotCalledClarifier(const CFGBlock *Parent, const CFGBlock *SuccInQuestion)
599
: Parent(Parent), SuccInQuestion(SuccInQuestion) {}
600
601
const CFGBlock *Parent, *SuccInQuestion;
602
};
603
604
class CalledOnceChecker : public ConstStmtVisitor<CalledOnceChecker> {
605
public:
606
static void check(AnalysisDeclContext &AC, CalledOnceCheckHandler &Handler,
607
bool CheckConventionalParameters) {
608
CalledOnceChecker(AC, Handler, CheckConventionalParameters).check();
609
}
610
611
private:
612
CalledOnceChecker(AnalysisDeclContext &AC, CalledOnceCheckHandler &Handler,
613
bool CheckConventionalParameters)
614
: FunctionCFG(*AC.getCFG()), AC(AC), Handler(Handler),
615
CheckConventionalParameters(CheckConventionalParameters),
616
CurrentState(0) {
617
initDataStructures();
618
assert((size() == 0 || !States.empty()) &&
619
"Data structures are inconsistent");
620
}
621
622
//===----------------------------------------------------------------------===//
623
// Initializing functions
624
//===----------------------------------------------------------------------===//
625
626
void initDataStructures() {
627
const Decl *AnalyzedDecl = AC.getDecl();
628
629
if (const auto *Function = dyn_cast<FunctionDecl>(AnalyzedDecl)) {
630
findParamsToTrack(Function);
631
} else if (const auto *Method = dyn_cast<ObjCMethodDecl>(AnalyzedDecl)) {
632
findParamsToTrack(Method);
633
} else if (const auto *Block = dyn_cast<BlockDecl>(AnalyzedDecl)) {
634
findCapturesToTrack(Block);
635
findParamsToTrack(Block);
636
}
637
638
// Have something to track, let's init states for every block from the CFG.
639
if (size() != 0) {
640
States =
641
CFGSizedVector<State>(FunctionCFG.getNumBlockIDs(), State(size()));
642
}
643
}
644
645
void findCapturesToTrack(const BlockDecl *Block) {
646
for (const auto &Capture : Block->captures()) {
647
if (const auto *P = dyn_cast<ParmVarDecl>(Capture.getVariable())) {
648
// Parameter DeclContext is its owning function or method.
649
const DeclContext *ParamContext = P->getDeclContext();
650
if (shouldBeCalledOnce(ParamContext, P)) {
651
TrackedParams.push_back(P);
652
}
653
}
654
}
655
}
656
657
template <class FunctionLikeDecl>
658
void findParamsToTrack(const FunctionLikeDecl *Function) {
659
for (unsigned Index : llvm::seq<unsigned>(0u, Function->param_size())) {
660
if (shouldBeCalledOnce(Function, Index)) {
661
TrackedParams.push_back(Function->getParamDecl(Index));
662
}
663
}
664
}
665
666
//===----------------------------------------------------------------------===//
667
// Main logic 'check' functions
668
//===----------------------------------------------------------------------===//
669
670
void check() {
671
// Nothing to check here: we don't have marked parameters.
672
if (size() == 0 || isPossiblyEmptyImpl())
673
return;
674
675
assert(
676
llvm::none_of(States, [](const State &S) { return S.isVisited(); }) &&
677
"None of the blocks should be 'visited' before the analysis");
678
679
// For our task, both backward and forward approaches suite well.
680
// However, in order to report better diagnostics, we decided to go with
681
// backward analysis.
682
//
683
// Let's consider the following CFG and how forward and backward analyses
684
// will work for it.
685
//
686
// FORWARD: | BACKWARD:
687
// #1 | #1
688
// +---------+ | +-----------+
689
// | if | | |MaybeCalled|
690
// +---------+ | +-----------+
691
// |NotCalled| | | if |
692
// +---------+ | +-----------+
693
// / \ | / \
694
// #2 / \ #3 | #2 / \ #3
695
// +----------------+ +---------+ | +----------------+ +---------+
696
// | foo() | | ... | | |DefinitelyCalled| |NotCalled|
697
// +----------------+ +---------+ | +----------------+ +---------+
698
// |DefinitelyCalled| |NotCalled| | | foo() | | ... |
699
// +----------------+ +---------+ | +----------------+ +---------+
700
// \ / | \ /
701
// \ #4 / | \ #4 /
702
// +-----------+ | +---------+
703
// | ... | | |NotCalled|
704
// +-----------+ | +---------+
705
// |MaybeCalled| | | ... |
706
// +-----------+ | +---------+
707
//
708
// The most natural way to report lacking call in the block #3 would be to
709
// message that the false branch of the if statement in the block #1 doesn't
710
// have a call. And while with the forward approach we'll need to find a
711
// least common ancestor or something like that to find the 'if' to blame,
712
// backward analysis gives it to us out of the box.
713
BackwardDataflowWorklist Worklist(FunctionCFG, AC);
714
715
// Let's visit EXIT.
716
const CFGBlock *Exit = &FunctionCFG.getExit();
717
assignState(Exit, State(size(), ParameterStatus::NotCalled));
718
Worklist.enqueuePredecessors(Exit);
719
720
while (const CFGBlock *BB = Worklist.dequeue()) {
721
assert(BB && "Worklist should filter out null blocks");
722
check(BB);
723
assert(CurrentState.isVisited() &&
724
"After the check, basic block should be visited");
725
726
// Traverse successor basic blocks if the status of this block
727
// has changed.
728
if (assignState(BB, CurrentState)) {
729
Worklist.enqueuePredecessors(BB);
730
}
731
}
732
733
// Check that we have all tracked parameters at the last block.
734
// As we are performing a backward version of the analysis,
735
// it should be the ENTRY block.
736
checkEntry(&FunctionCFG.getEntry());
737
}
738
739
void check(const CFGBlock *BB) {
740
// We start with a state 'inherited' from all the successors.
741
CurrentState = joinSuccessors(BB);
742
assert(CurrentState.isVisited() &&
743
"Shouldn't start with a 'not visited' state");
744
745
// This is the 'exit' situation, broken promises are probably OK
746
// in such scenarios.
747
if (BB->hasNoReturnElement()) {
748
markNoReturn();
749
// This block still can have calls (even multiple calls) and
750
// for this reason there is no early return here.
751
}
752
753
// We use a backward dataflow propagation and for this reason we
754
// should traverse basic blocks bottom-up.
755
for (const CFGElement &Element : llvm::reverse(*BB)) {
756
if (std::optional<CFGStmt> S = Element.getAs<CFGStmt>()) {
757
check(S->getStmt());
758
}
759
}
760
}
761
void check(const Stmt *S) { Visit(S); }
762
763
void checkEntry(const CFGBlock *Entry) {
764
// We finalize this algorithm with the ENTRY block because
765
// we use a backward version of the analysis. This is where
766
// we can judge that some of the tracked parameters are not called on
767
// every path from ENTRY to EXIT.
768
769
const State &EntryStatus = getState(Entry);
770
llvm::BitVector NotCalledOnEveryPath(size(), false);
771
llvm::BitVector NotUsedOnEveryPath(size(), false);
772
773
// Check if there are no calls of the marked parameter at all
774
for (const auto &IndexedStatus : llvm::enumerate(EntryStatus)) {
775
const ParmVarDecl *Parameter = getParameter(IndexedStatus.index());
776
777
switch (IndexedStatus.value().getKind()) {
778
case ParameterStatus::NotCalled:
779
// If there were places where this parameter escapes (aka being used),
780
// we can provide a more useful diagnostic by pointing at the exact
781
// branches where it is not even mentioned.
782
if (!hasEverEscaped(IndexedStatus.index())) {
783
// This parameter is was not used at all, so we should report the
784
// most generic version of the warning.
785
if (isCaptured(Parameter)) {
786
// We want to specify that it was captured by the block.
787
Handler.handleCapturedNeverCalled(Parameter, AC.getDecl(),
788
!isExplicitlyMarked(Parameter));
789
} else {
790
Handler.handleNeverCalled(Parameter,
791
!isExplicitlyMarked(Parameter));
792
}
793
} else {
794
// Mark it as 'interesting' to figure out which paths don't even
795
// have escapes.
796
NotUsedOnEveryPath[IndexedStatus.index()] = true;
797
}
798
799
break;
800
case ParameterStatus::MaybeCalled:
801
// If we have 'maybe called' at this point, we have an error
802
// that there is at least one path where this parameter
803
// is not called.
804
//
805
// However, reporting the warning with only that information can be
806
// too vague for the users. For this reason, we mark such parameters
807
// as "interesting" for further analysis.
808
NotCalledOnEveryPath[IndexedStatus.index()] = true;
809
break;
810
default:
811
break;
812
}
813
}
814
815
// Early exit if we don't have parameters for extra analysis...
816
if (NotCalledOnEveryPath.none() && NotUsedOnEveryPath.none() &&
817
// ... or if we've seen variables with cleanup functions.
818
// We can't reason that we've seen every path in this case,
819
// and thus abandon reporting any warnings that imply that.
820
!FunctionHasCleanupVars)
821
return;
822
823
// We are looking for a pair of blocks A, B so that the following is true:
824
// * A is a predecessor of B
825
// * B is marked as NotCalled
826
// * A has at least one successor marked as either
827
// Escaped or DefinitelyCalled
828
//
829
// In that situation, it is guaranteed that B is the first block of the path
830
// where the user doesn't call or use parameter in question.
831
//
832
// For this reason, branch A -> B can be used for reporting.
833
//
834
// This part of the algorithm is guarded by a condition that the function
835
// does indeed have a violation of contract. For this reason, we can
836
// spend more time to find a good spot to place the warning.
837
//
838
// The following algorithm has the worst case complexity of O(V + E),
839
// where V is the number of basic blocks in FunctionCFG,
840
// E is the number of edges between blocks in FunctionCFG.
841
for (const CFGBlock *BB : FunctionCFG) {
842
if (!BB)
843
continue;
844
845
const State &BlockState = getState(BB);
846
847
for (unsigned Index : llvm::seq(0u, size())) {
848
// We don't want to use 'isLosingCall' here because we want to report
849
// the following situation as well:
850
//
851
// MaybeCalled
852
// | ... |
853
// MaybeCalled NotCalled
854
//
855
// Even though successor is not 'DefinitelyCalled', it is still useful
856
// to report it, it is still a path without a call.
857
if (NotCalledOnEveryPath[Index] &&
858
BlockState.getKindFor(Index) == ParameterStatus::MaybeCalled) {
859
860
findAndReportNotCalledBranches(BB, Index);
861
} else if (NotUsedOnEveryPath[Index] &&
862
isLosingEscape(BlockState, BB, Index)) {
863
864
findAndReportNotCalledBranches(BB, Index, /* IsEscape = */ true);
865
}
866
}
867
}
868
}
869
870
/// Check potential call of a tracked parameter.
871
void checkDirectCall(const CallExpr *Call) {
872
if (auto Index = getIndexOfCallee(Call)) {
873
processCallFor(*Index, Call);
874
}
875
}
876
877
/// Check the call expression for being an indirect call of one of the tracked
878
/// parameters. It is indirect in the sense that this particular call is not
879
/// calling the parameter itself, but rather uses it as the argument.
880
template <class CallLikeExpr>
881
void checkIndirectCall(const CallLikeExpr *CallOrMessage) {
882
// CallExpr::arguments does not interact nicely with llvm::enumerate.
883
llvm::ArrayRef<const Expr *> Arguments =
884
llvm::ArrayRef(CallOrMessage->getArgs(), CallOrMessage->getNumArgs());
885
886
// Let's check if any of the call arguments is a point of interest.
887
for (const auto &Argument : llvm::enumerate(Arguments)) {
888
if (auto Index = getIndexOfExpression(Argument.value())) {
889
if (shouldBeCalledOnce(CallOrMessage, Argument.index())) {
890
// If the corresponding parameter is marked as 'called_once' we should
891
// consider it as a call.
892
processCallFor(*Index, CallOrMessage);
893
} else {
894
// Otherwise, we mark this parameter as escaped, which can be
895
// interpreted both as called or not called depending on the context.
896
processEscapeFor(*Index);
897
}
898
// Otherwise, let's keep the state as it is.
899
}
900
}
901
}
902
903
/// Process call of the parameter with the given index
904
void processCallFor(unsigned Index, const Expr *Call) {
905
ParameterStatus &CurrentParamStatus = CurrentState.getStatusFor(Index);
906
907
if (CurrentParamStatus.seenAnyCalls()) {
908
909
// At this point, this parameter was called, so this is a second call.
910
const ParmVarDecl *Parameter = getParameter(Index);
911
Handler.handleDoubleCall(
912
Parameter, &CurrentState.getCallFor(Index), Call,
913
!isExplicitlyMarked(Parameter),
914
// We are sure that the second call is definitely
915
// going to happen if the status is 'DefinitelyCalled'.
916
CurrentParamStatus.getKind() == ParameterStatus::DefinitelyCalled);
917
918
// Mark this parameter as already reported on, so we don't repeat
919
// warnings.
920
CurrentParamStatus = ParameterStatus::Reported;
921
922
} else if (CurrentParamStatus.getKind() != ParameterStatus::Reported) {
923
// If we didn't report anything yet, let's mark this parameter
924
// as called.
925
ParameterStatus Called(ParameterStatus::DefinitelyCalled, Call);
926
CurrentParamStatus = Called;
927
}
928
}
929
930
/// Process escape of the parameter with the given index
931
void processEscapeFor(unsigned Index) {
932
ParameterStatus &CurrentParamStatus = CurrentState.getStatusFor(Index);
933
934
// Escape overrides whatever error we think happened.
935
if (CurrentParamStatus.isErrorStatus() &&
936
CurrentParamStatus.getKind() != ParameterStatus::Kind::Reported) {
937
CurrentParamStatus = ParameterStatus::Escaped;
938
}
939
}
940
941
void findAndReportNotCalledBranches(const CFGBlock *Parent, unsigned Index,
942
bool IsEscape = false) {
943
for (const CFGBlock *Succ : Parent->succs()) {
944
if (!Succ)
945
continue;
946
947
if (getState(Succ).getKindFor(Index) == ParameterStatus::NotCalled) {
948
assert(Parent->succ_size() >= 2 &&
949
"Block should have at least two successors at this point");
950
if (auto Clarification = NotCalledClarifier::clarify(Parent, Succ)) {
951
const ParmVarDecl *Parameter = getParameter(Index);
952
Handler.handleNeverCalled(
953
Parameter, AC.getDecl(), Clarification->Location,
954
Clarification->Reason, !IsEscape, !isExplicitlyMarked(Parameter));
955
}
956
}
957
}
958
}
959
960
//===----------------------------------------------------------------------===//
961
// Predicate functions to check parameters
962
//===----------------------------------------------------------------------===//
963
964
/// Return true if parameter is explicitly marked as 'called_once'.
965
static bool isExplicitlyMarked(const ParmVarDecl *Parameter) {
966
return Parameter->hasAttr<CalledOnceAttr>();
967
}
968
969
/// Return true if the given name matches conventional pattens.
970
static bool isConventional(llvm::StringRef Name) {
971
return llvm::count(CONVENTIONAL_NAMES, Name) != 0;
972
}
973
974
/// Return true if the given name has conventional suffixes.
975
static bool hasConventionalSuffix(llvm::StringRef Name) {
976
return llvm::any_of(CONVENTIONAL_SUFFIXES, [Name](llvm::StringRef Suffix) {
977
return Name.ends_with(Suffix);
978
});
979
}
980
981
/// Return true if the given type can be used for conventional parameters.
982
static bool isConventional(QualType Ty) {
983
if (!Ty->isBlockPointerType()) {
984
return false;
985
}
986
987
QualType BlockType = Ty->castAs<BlockPointerType>()->getPointeeType();
988
// Completion handlers should have a block type with void return type.
989
return BlockType->castAs<FunctionType>()->getReturnType()->isVoidType();
990
}
991
992
/// Return true if the only parameter of the function is conventional.
993
static bool isOnlyParameterConventional(const FunctionDecl *Function) {
994
IdentifierInfo *II = Function->getIdentifier();
995
return Function->getNumParams() == 1 && II &&
996
hasConventionalSuffix(II->getName());
997
}
998
999
/// Return true/false if 'swift_async' attribute states that the given
1000
/// parameter is conventionally called once.
1001
/// Return std::nullopt if the given declaration doesn't have 'swift_async'
1002
/// attribute.
1003
static std::optional<bool> isConventionalSwiftAsync(const Decl *D,
1004
unsigned ParamIndex) {
1005
if (const SwiftAsyncAttr *A = D->getAttr<SwiftAsyncAttr>()) {
1006
if (A->getKind() == SwiftAsyncAttr::None) {
1007
return false;
1008
}
1009
1010
return A->getCompletionHandlerIndex().getASTIndex() == ParamIndex;
1011
}
1012
return std::nullopt;
1013
}
1014
1015
/// Return true if the specified selector represents init method.
1016
static bool isInitMethod(Selector MethodSelector) {
1017
return MethodSelector.getMethodFamily() == OMF_init;
1018
}
1019
1020
/// Return true if the specified selector piece matches conventions.
1021
static bool isConventionalSelectorPiece(Selector MethodSelector,
1022
unsigned PieceIndex,
1023
QualType PieceType) {
1024
if (!isConventional(PieceType) || isInitMethod(MethodSelector)) {
1025
return false;
1026
}
1027
1028
if (MethodSelector.getNumArgs() == 1) {
1029
assert(PieceIndex == 0);
1030
return hasConventionalSuffix(MethodSelector.getNameForSlot(0));
1031
}
1032
1033
llvm::StringRef PieceName = MethodSelector.getNameForSlot(PieceIndex);
1034
return isConventional(PieceName) || hasConventionalSuffix(PieceName);
1035
}
1036
1037
bool shouldBeCalledOnce(const ParmVarDecl *Parameter) const {
1038
return isExplicitlyMarked(Parameter) ||
1039
(CheckConventionalParameters &&
1040
(isConventional(Parameter->getName()) ||
1041
hasConventionalSuffix(Parameter->getName())) &&
1042
isConventional(Parameter->getType()));
1043
}
1044
1045
bool shouldBeCalledOnce(const DeclContext *ParamContext,
1046
const ParmVarDecl *Param) {
1047
unsigned ParamIndex = Param->getFunctionScopeIndex();
1048
if (const auto *Function = dyn_cast<FunctionDecl>(ParamContext)) {
1049
return shouldBeCalledOnce(Function, ParamIndex);
1050
}
1051
if (const auto *Method = dyn_cast<ObjCMethodDecl>(ParamContext)) {
1052
return shouldBeCalledOnce(Method, ParamIndex);
1053
}
1054
return shouldBeCalledOnce(Param);
1055
}
1056
1057
bool shouldBeCalledOnce(const BlockDecl *Block, unsigned ParamIndex) const {
1058
return shouldBeCalledOnce(Block->getParamDecl(ParamIndex));
1059
}
1060
1061
bool shouldBeCalledOnce(const FunctionDecl *Function,
1062
unsigned ParamIndex) const {
1063
if (ParamIndex >= Function->getNumParams()) {
1064
return false;
1065
}
1066
// 'swift_async' goes first and overrides anything else.
1067
if (auto ConventionalAsync =
1068
isConventionalSwiftAsync(Function, ParamIndex)) {
1069
return *ConventionalAsync;
1070
}
1071
1072
return shouldBeCalledOnce(Function->getParamDecl(ParamIndex)) ||
1073
(CheckConventionalParameters &&
1074
isOnlyParameterConventional(Function));
1075
}
1076
1077
bool shouldBeCalledOnce(const ObjCMethodDecl *Method,
1078
unsigned ParamIndex) const {
1079
Selector MethodSelector = Method->getSelector();
1080
if (ParamIndex >= MethodSelector.getNumArgs()) {
1081
return false;
1082
}
1083
1084
// 'swift_async' goes first and overrides anything else.
1085
if (auto ConventionalAsync = isConventionalSwiftAsync(Method, ParamIndex)) {
1086
return *ConventionalAsync;
1087
}
1088
1089
const ParmVarDecl *Parameter = Method->getParamDecl(ParamIndex);
1090
return shouldBeCalledOnce(Parameter) ||
1091
(CheckConventionalParameters &&
1092
isConventionalSelectorPiece(MethodSelector, ParamIndex,
1093
Parameter->getType()));
1094
}
1095
1096
bool shouldBeCalledOnce(const CallExpr *Call, unsigned ParamIndex) const {
1097
const FunctionDecl *Function = Call->getDirectCallee();
1098
return Function && shouldBeCalledOnce(Function, ParamIndex);
1099
}
1100
1101
bool shouldBeCalledOnce(const ObjCMessageExpr *Message,
1102
unsigned ParamIndex) const {
1103
const ObjCMethodDecl *Method = Message->getMethodDecl();
1104
return Method && ParamIndex < Method->param_size() &&
1105
shouldBeCalledOnce(Method, ParamIndex);
1106
}
1107
1108
//===----------------------------------------------------------------------===//
1109
// Utility methods
1110
//===----------------------------------------------------------------------===//
1111
1112
bool isCaptured(const ParmVarDecl *Parameter) const {
1113
if (const BlockDecl *Block = dyn_cast<BlockDecl>(AC.getDecl())) {
1114
return Block->capturesVariable(Parameter);
1115
}
1116
return false;
1117
}
1118
1119
// Return a call site where the block is called exactly once or null otherwise
1120
const Expr *getBlockGuaraneedCallSite(const BlockExpr *Block) const {
1121
ParentMap &PM = AC.getParentMap();
1122
1123
// We don't want to track the block through assignments and so on, instead
1124
// we simply see how the block used and if it's used directly in a call,
1125
// we decide based on call to what it is.
1126
//
1127
// In order to do this, we go up the parents of the block looking for
1128
// a call or a message expressions. These might not be immediate parents
1129
// of the actual block expression due to casts and parens, so we skip them.
1130
for (const Stmt *Prev = Block, *Current = PM.getParent(Block);
1131
Current != nullptr; Prev = Current, Current = PM.getParent(Current)) {
1132
// Skip no-op (for our case) operations.
1133
if (isa<CastExpr>(Current) || isa<ParenExpr>(Current))
1134
continue;
1135
1136
// At this point, Prev represents our block as an immediate child of the
1137
// call.
1138
if (const auto *Call = dyn_cast<CallExpr>(Current)) {
1139
// It might be the call of the Block itself...
1140
if (Call->getCallee() == Prev)
1141
return Call;
1142
1143
// ...or it can be an indirect call of the block.
1144
return shouldBlockArgumentBeCalledOnce(Call, Prev) ? Call : nullptr;
1145
}
1146
if (const auto *Message = dyn_cast<ObjCMessageExpr>(Current)) {
1147
return shouldBlockArgumentBeCalledOnce(Message, Prev) ? Message
1148
: nullptr;
1149
}
1150
1151
break;
1152
}
1153
1154
return nullptr;
1155
}
1156
1157
template <class CallLikeExpr>
1158
bool shouldBlockArgumentBeCalledOnce(const CallLikeExpr *CallOrMessage,
1159
const Stmt *BlockArgument) const {
1160
// CallExpr::arguments does not interact nicely with llvm::enumerate.
1161
llvm::ArrayRef<const Expr *> Arguments =
1162
llvm::ArrayRef(CallOrMessage->getArgs(), CallOrMessage->getNumArgs());
1163
1164
for (const auto &Argument : llvm::enumerate(Arguments)) {
1165
if (Argument.value() == BlockArgument) {
1166
return shouldBlockArgumentBeCalledOnce(CallOrMessage, Argument.index());
1167
}
1168
}
1169
1170
return false;
1171
}
1172
1173
bool shouldBlockArgumentBeCalledOnce(const CallExpr *Call,
1174
unsigned ParamIndex) const {
1175
const FunctionDecl *Function = Call->getDirectCallee();
1176
return shouldBlockArgumentBeCalledOnce(Function, ParamIndex) ||
1177
shouldBeCalledOnce(Call, ParamIndex);
1178
}
1179
1180
bool shouldBlockArgumentBeCalledOnce(const ObjCMessageExpr *Message,
1181
unsigned ParamIndex) const {
1182
// At the moment, we don't have any Obj-C methods we want to specifically
1183
// check in here.
1184
return shouldBeCalledOnce(Message, ParamIndex);
1185
}
1186
1187
static bool shouldBlockArgumentBeCalledOnce(const FunctionDecl *Function,
1188
unsigned ParamIndex) {
1189
// There is a list of important API functions that while not following
1190
// conventions nor being directly annotated, still guarantee that the
1191
// callback parameter will be called exactly once.
1192
//
1193
// Here we check if this is the case.
1194
return Function &&
1195
llvm::any_of(KNOWN_CALLED_ONCE_PARAMETERS,
1196
[Function, ParamIndex](
1197
const KnownCalledOnceParameter &Reference) {
1198
return Reference.FunctionName ==
1199
Function->getName() &&
1200
Reference.ParamIndex == ParamIndex;
1201
});
1202
}
1203
1204
/// Return true if the analyzed function is actually a default implementation
1205
/// of the method that has to be overriden.
1206
///
1207
/// These functions can have tracked parameters, but wouldn't call them
1208
/// because they are not designed to perform any meaningful actions.
1209
///
1210
/// There are a couple of flavors of such default implementations:
1211
/// 1. Empty methods or methods with a single return statement
1212
/// 2. Methods that have one block with a call to no return function
1213
/// 3. Methods with only assertion-like operations
1214
bool isPossiblyEmptyImpl() const {
1215
if (!isa<ObjCMethodDecl>(AC.getDecl())) {
1216
// We care only about functions that are not supposed to be called.
1217
// Only methods can be overriden.
1218
return false;
1219
}
1220
1221
// Case #1 (without return statements)
1222
if (FunctionCFG.size() == 2) {
1223
// Method has only two blocks: ENTRY and EXIT.
1224
// This is equivalent to empty function.
1225
return true;
1226
}
1227
1228
// Case #2
1229
if (FunctionCFG.size() == 3) {
1230
const CFGBlock &Entry = FunctionCFG.getEntry();
1231
if (Entry.succ_empty()) {
1232
return false;
1233
}
1234
1235
const CFGBlock *OnlyBlock = *Entry.succ_begin();
1236
// Method has only one block, let's see if it has a no-return
1237
// element.
1238
if (OnlyBlock && OnlyBlock->hasNoReturnElement()) {
1239
return true;
1240
}
1241
// Fallthrough, CFGs with only one block can fall into #1 and #3 as well.
1242
}
1243
1244
// Cases #1 (return statements) and #3.
1245
//
1246
// It is hard to detect that something is an assertion or came
1247
// from assertion. Here we use a simple heuristic:
1248
//
1249
// - If it came from a macro, it can be an assertion.
1250
//
1251
// Additionally, we can't assume a number of basic blocks or the CFG's
1252
// structure because assertions might include loops and conditions.
1253
return llvm::all_of(FunctionCFG, [](const CFGBlock *BB) {
1254
if (!BB) {
1255
// Unreachable blocks are totally fine.
1256
return true;
1257
}
1258
1259
// Return statements can have sub-expressions that are represented as
1260
// separate statements of a basic block. We should allow this.
1261
// This parent map will be initialized with a parent tree for all
1262
// subexpressions of the block's return statement (if it has one).
1263
std::unique_ptr<ParentMap> ReturnChildren;
1264
1265
return llvm::all_of(
1266
llvm::reverse(*BB), // we should start with return statements, if we
1267
// have any, i.e. from the bottom of the block
1268
[&ReturnChildren](const CFGElement &Element) {
1269
if (std::optional<CFGStmt> S = Element.getAs<CFGStmt>()) {
1270
const Stmt *SuspiciousStmt = S->getStmt();
1271
1272
if (isa<ReturnStmt>(SuspiciousStmt)) {
1273
// Let's initialize this structure to test whether
1274
// some further statement is a part of this return.
1275
ReturnChildren = std::make_unique<ParentMap>(
1276
const_cast<Stmt *>(SuspiciousStmt));
1277
// Return statements are allowed as part of #1.
1278
return true;
1279
}
1280
1281
return SuspiciousStmt->getBeginLoc().isMacroID() ||
1282
(ReturnChildren &&
1283
ReturnChildren->hasParent(SuspiciousStmt));
1284
}
1285
return true;
1286
});
1287
});
1288
}
1289
1290
/// Check if parameter with the given index has ever escaped.
1291
bool hasEverEscaped(unsigned Index) const {
1292
return llvm::any_of(States, [Index](const State &StateForOneBB) {
1293
return StateForOneBB.getKindFor(Index) == ParameterStatus::Escaped;
1294
});
1295
}
1296
1297
/// Return status stored for the given basic block.
1298
/// \{
1299
State &getState(const CFGBlock *BB) {
1300
assert(BB);
1301
return States[BB->getBlockID()];
1302
}
1303
const State &getState(const CFGBlock *BB) const {
1304
assert(BB);
1305
return States[BB->getBlockID()];
1306
}
1307
/// \}
1308
1309
/// Assign status to the given basic block.
1310
///
1311
/// Returns true when the stored status changed.
1312
bool assignState(const CFGBlock *BB, const State &ToAssign) {
1313
State &Current = getState(BB);
1314
if (Current == ToAssign) {
1315
return false;
1316
}
1317
1318
Current = ToAssign;
1319
return true;
1320
}
1321
1322
/// Join all incoming statuses for the given basic block.
1323
State joinSuccessors(const CFGBlock *BB) const {
1324
auto Succs =
1325
llvm::make_filter_range(BB->succs(), [this](const CFGBlock *Succ) {
1326
return Succ && this->getState(Succ).isVisited();
1327
});
1328
// We came to this block from somewhere after all.
1329
assert(!Succs.empty() &&
1330
"Basic block should have at least one visited successor");
1331
1332
State Result = getState(*Succs.begin());
1333
1334
for (const CFGBlock *Succ : llvm::drop_begin(Succs, 1)) {
1335
Result.join(getState(Succ));
1336
}
1337
1338
if (const Expr *Condition = getCondition(BB->getTerminatorStmt())) {
1339
handleConditional(BB, Condition, Result);
1340
}
1341
1342
return Result;
1343
}
1344
1345
void handleConditional(const CFGBlock *BB, const Expr *Condition,
1346
State &ToAlter) const {
1347
handleParameterCheck(BB, Condition, ToAlter);
1348
if (SuppressOnConventionalErrorPaths) {
1349
handleConventionalCheck(BB, Condition, ToAlter);
1350
}
1351
}
1352
1353
void handleParameterCheck(const CFGBlock *BB, const Expr *Condition,
1354
State &ToAlter) const {
1355
// In this function, we try to deal with the following pattern:
1356
//
1357
// if (parameter)
1358
// parameter(...);
1359
//
1360
// It's not good to show a warning here because clearly 'parameter'
1361
// couldn't and shouldn't be called on the 'else' path.
1362
//
1363
// Let's check if this if statement has a check involving one of
1364
// the tracked parameters.
1365
if (const ParmVarDecl *Parameter = findReferencedParmVarDecl(
1366
Condition,
1367
/* ShouldRetrieveFromComparisons = */ true)) {
1368
if (const auto Index = getIndex(*Parameter)) {
1369
ParameterStatus &CurrentStatus = ToAlter.getStatusFor(*Index);
1370
1371
// We don't want to deep dive into semantics of the check and
1372
// figure out if that check was for null or something else.
1373
// We simply trust the user that they know what they are doing.
1374
//
1375
// For this reason, in the following loop we look for the
1376
// best-looking option.
1377
for (const CFGBlock *Succ : BB->succs()) {
1378
if (!Succ)
1379
continue;
1380
1381
const ParameterStatus &StatusInSucc =
1382
getState(Succ).getStatusFor(*Index);
1383
1384
if (StatusInSucc.isErrorStatus()) {
1385
continue;
1386
}
1387
1388
// Let's use this status instead.
1389
CurrentStatus = StatusInSucc;
1390
1391
if (StatusInSucc.getKind() == ParameterStatus::DefinitelyCalled) {
1392
// This is the best option to have and we already found it.
1393
break;
1394
}
1395
1396
// If we found 'Escaped' first, we still might find 'DefinitelyCalled'
1397
// on the other branch. And we prefer the latter.
1398
}
1399
}
1400
}
1401
}
1402
1403
void handleConventionalCheck(const CFGBlock *BB, const Expr *Condition,
1404
State &ToAlter) const {
1405
// Even when the analysis is technically correct, it is a widespread pattern
1406
// not to call completion handlers in some scenarios. These usually have
1407
// typical conditional names, such as 'error' or 'cancel'.
1408
if (!mentionsAnyOfConventionalNames(Condition)) {
1409
return;
1410
}
1411
1412
for (const auto &IndexedStatus : llvm::enumerate(ToAlter)) {
1413
const ParmVarDecl *Parameter = getParameter(IndexedStatus.index());
1414
// Conventions do not apply to explicitly marked parameters.
1415
if (isExplicitlyMarked(Parameter)) {
1416
continue;
1417
}
1418
1419
ParameterStatus &CurrentStatus = IndexedStatus.value();
1420
// If we did find that on one of the branches the user uses the callback
1421
// and doesn't on the other path, we believe that they know what they are
1422
// doing and trust them.
1423
//
1424
// There are two possible scenarios for that:
1425
// 1. Current status is 'MaybeCalled' and one of the branches is
1426
// 'DefinitelyCalled'
1427
// 2. Current status is 'NotCalled' and one of the branches is 'Escaped'
1428
if (isLosingCall(ToAlter, BB, IndexedStatus.index()) ||
1429
isLosingEscape(ToAlter, BB, IndexedStatus.index())) {
1430
CurrentStatus = ParameterStatus::Escaped;
1431
}
1432
}
1433
}
1434
1435
bool isLosingCall(const State &StateAfterJoin, const CFGBlock *JoinBlock,
1436
unsigned ParameterIndex) const {
1437
// Let's check if the block represents DefinitelyCalled -> MaybeCalled
1438
// transition.
1439
return isLosingJoin(StateAfterJoin, JoinBlock, ParameterIndex,
1440
ParameterStatus::MaybeCalled,
1441
ParameterStatus::DefinitelyCalled);
1442
}
1443
1444
bool isLosingEscape(const State &StateAfterJoin, const CFGBlock *JoinBlock,
1445
unsigned ParameterIndex) const {
1446
// Let's check if the block represents Escaped -> NotCalled transition.
1447
return isLosingJoin(StateAfterJoin, JoinBlock, ParameterIndex,
1448
ParameterStatus::NotCalled, ParameterStatus::Escaped);
1449
}
1450
1451
bool isLosingJoin(const State &StateAfterJoin, const CFGBlock *JoinBlock,
1452
unsigned ParameterIndex, ParameterStatus::Kind AfterJoin,
1453
ParameterStatus::Kind BeforeJoin) const {
1454
assert(!ParameterStatus::isErrorStatus(BeforeJoin) &&
1455
ParameterStatus::isErrorStatus(AfterJoin) &&
1456
"It's not a losing join if statuses do not represent "
1457
"correct-to-error transition");
1458
1459
const ParameterStatus &CurrentStatus =
1460
StateAfterJoin.getStatusFor(ParameterIndex);
1461
1462
return CurrentStatus.getKind() == AfterJoin &&
1463
anySuccessorHasStatus(JoinBlock, ParameterIndex, BeforeJoin);
1464
}
1465
1466
/// Return true if any of the successors of the given basic block has
1467
/// a specified status for the given parameter.
1468
bool anySuccessorHasStatus(const CFGBlock *Parent, unsigned ParameterIndex,
1469
ParameterStatus::Kind ToFind) const {
1470
return llvm::any_of(
1471
Parent->succs(), [this, ParameterIndex, ToFind](const CFGBlock *Succ) {
1472
return Succ && getState(Succ).getKindFor(ParameterIndex) == ToFind;
1473
});
1474
}
1475
1476
/// Check given expression that was discovered to escape.
1477
void checkEscapee(const Expr *E) {
1478
if (const ParmVarDecl *Parameter = findReferencedParmVarDecl(E)) {
1479
checkEscapee(*Parameter);
1480
}
1481
}
1482
1483
/// Check given parameter that was discovered to escape.
1484
void checkEscapee(const ParmVarDecl &Parameter) {
1485
if (auto Index = getIndex(Parameter)) {
1486
processEscapeFor(*Index);
1487
}
1488
}
1489
1490
/// Mark all parameters in the current state as 'no-return'.
1491
void markNoReturn() {
1492
for (ParameterStatus &PS : CurrentState) {
1493
PS = ParameterStatus::NoReturn;
1494
}
1495
}
1496
1497
/// Check if the given assignment represents suppression and act on it.
1498
void checkSuppression(const BinaryOperator *Assignment) {
1499
// Suppression has the following form:
1500
// parameter = 0;
1501
// 0 can be of any form (NULL, nil, etc.)
1502
if (auto Index = getIndexOfExpression(Assignment->getLHS())) {
1503
1504
// We don't care what is written in the RHS, it could be whatever
1505
// we can interpret as 0.
1506
if (auto Constant =
1507
Assignment->getRHS()->IgnoreParenCasts()->getIntegerConstantExpr(
1508
AC.getASTContext())) {
1509
1510
ParameterStatus &CurrentParamStatus = CurrentState.getStatusFor(*Index);
1511
1512
if (0 == *Constant && CurrentParamStatus.seenAnyCalls()) {
1513
// Even though this suppression mechanism is introduced to tackle
1514
// false positives for multiple calls, the fact that the user has
1515
// to use suppression can also tell us that we couldn't figure out
1516
// how different paths cancel each other out. And if that is true,
1517
// we will most certainly have false positives about parameters not
1518
// being called on certain paths.
1519
//
1520
// For this reason, we abandon tracking this parameter altogether.
1521
CurrentParamStatus = ParameterStatus::Reported;
1522
}
1523
}
1524
}
1525
}
1526
1527
public:
1528
//===----------------------------------------------------------------------===//
1529
// Tree traversal methods
1530
//===----------------------------------------------------------------------===//
1531
1532
void VisitCallExpr(const CallExpr *Call) {
1533
// This call might be a direct call, i.e. a parameter call...
1534
checkDirectCall(Call);
1535
// ... or an indirect call, i.e. when parameter is an argument.
1536
checkIndirectCall(Call);
1537
}
1538
1539
void VisitObjCMessageExpr(const ObjCMessageExpr *Message) {
1540
// The most common situation that we are defending against here is
1541
// copying a tracked parameter.
1542
if (const Expr *Receiver = Message->getInstanceReceiver()) {
1543
checkEscapee(Receiver);
1544
}
1545
// Message expressions unlike calls, could not be direct.
1546
checkIndirectCall(Message);
1547
}
1548
1549
void VisitBlockExpr(const BlockExpr *Block) {
1550
// Block expressions are tricky. It is a very common practice to capture
1551
// completion handlers by blocks and use them there.
1552
// For this reason, it is important to analyze blocks and report warnings
1553
// for completion handler misuse in blocks.
1554
//
1555
// However, it can be quite difficult to track how the block itself is being
1556
// used. The full precise anlysis of that will be similar to alias analysis
1557
// for completion handlers and can be too heavyweight for a compile-time
1558
// diagnostic. Instead, we judge about the immediate use of the block.
1559
//
1560
// Here, we try to find a call expression where we know due to conventions,
1561
// annotations, or other reasons that the block is called once and only
1562
// once.
1563
const Expr *CalledOnceCallSite = getBlockGuaraneedCallSite(Block);
1564
1565
// We need to report this information to the handler because in the
1566
// situation when we know that the block is called exactly once, we can be
1567
// stricter in terms of reported diagnostics.
1568
if (CalledOnceCallSite) {
1569
Handler.handleBlockThatIsGuaranteedToBeCalledOnce(Block->getBlockDecl());
1570
} else {
1571
Handler.handleBlockWithNoGuarantees(Block->getBlockDecl());
1572
}
1573
1574
for (const auto &Capture : Block->getBlockDecl()->captures()) {
1575
if (const auto *Param = dyn_cast<ParmVarDecl>(Capture.getVariable())) {
1576
if (auto Index = getIndex(*Param)) {
1577
if (CalledOnceCallSite) {
1578
// The call site of a block can be considered a call site of the
1579
// captured parameter we track.
1580
processCallFor(*Index, CalledOnceCallSite);
1581
} else {
1582
// We still should consider this block as an escape for parameter,
1583
// if we don't know about its call site or the number of time it
1584
// can be invoked.
1585
processEscapeFor(*Index);
1586
}
1587
}
1588
}
1589
}
1590
}
1591
1592
void VisitBinaryOperator(const BinaryOperator *Op) {
1593
if (Op->getOpcode() == clang::BO_Assign) {
1594
// Let's check if one of the tracked parameters is assigned into
1595
// something, and if it is we don't want to track extra variables, so we
1596
// consider it as an escapee.
1597
checkEscapee(Op->getRHS());
1598
1599
// Let's check whether this assignment is a suppression.
1600
checkSuppression(Op);
1601
}
1602
}
1603
1604
void VisitDeclStmt(const DeclStmt *DS) {
1605
// Variable initialization is not assignment and should be handled
1606
// separately.
1607
//
1608
// Multiple declarations can be a part of declaration statement.
1609
for (const auto *Declaration : DS->getDeclGroup()) {
1610
if (const auto *Var = dyn_cast<VarDecl>(Declaration)) {
1611
if (Var->getInit()) {
1612
checkEscapee(Var->getInit());
1613
}
1614
1615
if (Var->hasAttr<CleanupAttr>()) {
1616
FunctionHasCleanupVars = true;
1617
}
1618
}
1619
}
1620
}
1621
1622
void VisitCStyleCastExpr(const CStyleCastExpr *Cast) {
1623
// We consider '(void)parameter' as a manual no-op escape.
1624
// It should be used to explicitly tell the analysis that this parameter
1625
// is intentionally not called on this path.
1626
if (Cast->getType().getCanonicalType()->isVoidType()) {
1627
checkEscapee(Cast->getSubExpr());
1628
}
1629
}
1630
1631
void VisitObjCAtThrowStmt(const ObjCAtThrowStmt *) {
1632
// It is OK not to call marked parameters on exceptional paths.
1633
markNoReturn();
1634
}
1635
1636
private:
1637
unsigned size() const { return TrackedParams.size(); }
1638
1639
std::optional<unsigned> getIndexOfCallee(const CallExpr *Call) const {
1640
return getIndexOfExpression(Call->getCallee());
1641
}
1642
1643
std::optional<unsigned> getIndexOfExpression(const Expr *E) const {
1644
if (const ParmVarDecl *Parameter = findReferencedParmVarDecl(E)) {
1645
return getIndex(*Parameter);
1646
}
1647
1648
return std::nullopt;
1649
}
1650
1651
std::optional<unsigned> getIndex(const ParmVarDecl &Parameter) const {
1652
// Expected number of parameters that we actually track is 1.
1653
//
1654
// Also, the maximum number of declared parameters could not be on a scale
1655
// of hundreds of thousands.
1656
//
1657
// In this setting, linear search seems reasonable and even performs better
1658
// than bisection.
1659
ParamSizedVector<const ParmVarDecl *>::const_iterator It =
1660
llvm::find(TrackedParams, &Parameter);
1661
1662
if (It != TrackedParams.end()) {
1663
return It - TrackedParams.begin();
1664
}
1665
1666
return std::nullopt;
1667
}
1668
1669
const ParmVarDecl *getParameter(unsigned Index) const {
1670
assert(Index < TrackedParams.size());
1671
return TrackedParams[Index];
1672
}
1673
1674
const CFG &FunctionCFG;
1675
AnalysisDeclContext &AC;
1676
CalledOnceCheckHandler &Handler;
1677
bool CheckConventionalParameters;
1678
// As of now, we turn this behavior off. So, we still are going to report
1679
// missing calls on paths that look like it was intentional.
1680
// Technically such reports are true positives, but they can make some users
1681
// grumpy because of the sheer number of warnings.
1682
// It can be turned back on if we decide that we want to have the other way
1683
// around.
1684
bool SuppressOnConventionalErrorPaths = false;
1685
1686
// The user can annotate variable declarations with cleanup functions, which
1687
// essentially imposes a custom destructor logic on that variable.
1688
// It is possible to use it, however, to call tracked parameters on all exits
1689
// from the function. For this reason, we track the fact that the function
1690
// actually has these.
1691
bool FunctionHasCleanupVars = false;
1692
1693
State CurrentState;
1694
ParamSizedVector<const ParmVarDecl *> TrackedParams;
1695
CFGSizedVector<State> States;
1696
};
1697
1698
} // end anonymous namespace
1699
1700
namespace clang {
1701
void checkCalledOnceParameters(AnalysisDeclContext &AC,
1702
CalledOnceCheckHandler &Handler,
1703
bool CheckConventionalParameters) {
1704
CalledOnceChecker::check(AC, Handler, CheckConventionalParameters);
1705
}
1706
} // end namespace clang
1707
1708