Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/clang/lib/Analysis/ReachableCode.cpp
35233 views
1
//===-- ReachableCode.cpp - Code Reachability Analysis --------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements a flow-sensitive, path-insensitive analysis of
10
// determining reachable blocks within a CFG.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "clang/Analysis/Analyses/ReachableCode.h"
15
#include "clang/AST/Attr.h"
16
#include "clang/AST/Expr.h"
17
#include "clang/AST/ExprCXX.h"
18
#include "clang/AST/ExprObjC.h"
19
#include "clang/AST/ParentMap.h"
20
#include "clang/AST/RecursiveASTVisitor.h"
21
#include "clang/AST/StmtCXX.h"
22
#include "clang/Analysis/AnalysisDeclContext.h"
23
#include "clang/Analysis/CFG.h"
24
#include "clang/Basic/Builtins.h"
25
#include "clang/Basic/SourceManager.h"
26
#include "clang/Lex/Preprocessor.h"
27
#include "llvm/ADT/BitVector.h"
28
#include "llvm/ADT/SmallVector.h"
29
#include <optional>
30
31
using namespace clang;
32
33
//===----------------------------------------------------------------------===//
34
// Core Reachability Analysis routines.
35
//===----------------------------------------------------------------------===//
36
37
static bool isEnumConstant(const Expr *Ex) {
38
const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex);
39
if (!DR)
40
return false;
41
return isa<EnumConstantDecl>(DR->getDecl());
42
}
43
44
static bool isTrivialExpression(const Expr *Ex) {
45
Ex = Ex->IgnoreParenCasts();
46
return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) ||
47
isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) ||
48
isa<CharacterLiteral>(Ex) ||
49
isEnumConstant(Ex);
50
}
51
52
static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) {
53
// Check if the block ends with a do...while() and see if 'S' is the
54
// condition.
55
if (const Stmt *Term = B->getTerminatorStmt()) {
56
if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) {
57
const Expr *Cond = DS->getCond()->IgnoreParenCasts();
58
return Cond == S && isTrivialExpression(Cond);
59
}
60
}
61
return false;
62
}
63
64
static bool isBuiltinUnreachable(const Stmt *S) {
65
if (const auto *DRE = dyn_cast<DeclRefExpr>(S))
66
if (const auto *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()))
67
return FDecl->getIdentifier() &&
68
FDecl->getBuiltinID() == Builtin::BI__builtin_unreachable;
69
return false;
70
}
71
72
static bool isBuiltinAssumeFalse(const CFGBlock *B, const Stmt *S,
73
ASTContext &C) {
74
if (B->empty()) {
75
// Happens if S is B's terminator and B contains nothing else
76
// (e.g. a CFGBlock containing only a goto).
77
return false;
78
}
79
if (std::optional<CFGStmt> CS = B->back().getAs<CFGStmt>()) {
80
if (const auto *CE = dyn_cast<CallExpr>(CS->getStmt())) {
81
return CE->getCallee()->IgnoreCasts() == S && CE->isBuiltinAssumeFalse(C);
82
}
83
}
84
return false;
85
}
86
87
static bool isDeadReturn(const CFGBlock *B, const Stmt *S) {
88
// Look to see if the current control flow ends with a 'return', and see if
89
// 'S' is a substatement. The 'return' may not be the last element in the
90
// block, or may be in a subsequent block because of destructors.
91
const CFGBlock *Current = B;
92
while (true) {
93
for (const CFGElement &CE : llvm::reverse(*Current)) {
94
if (std::optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
95
if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) {
96
if (RS == S)
97
return true;
98
if (const Expr *RE = RS->getRetValue()) {
99
RE = RE->IgnoreParenCasts();
100
if (RE == S)
101
return true;
102
ParentMap PM(const_cast<Expr *>(RE));
103
// If 'S' is in the ParentMap, it is a subexpression of
104
// the return statement.
105
return PM.getParent(S);
106
}
107
}
108
break;
109
}
110
}
111
// Note also that we are restricting the search for the return statement
112
// to stop at control-flow; only part of a return statement may be dead,
113
// without the whole return statement being dead.
114
if (Current->getTerminator().isTemporaryDtorsBranch()) {
115
// Temporary destructors have a predictable control flow, thus we want to
116
// look into the next block for the return statement.
117
// We look into the false branch, as we know the true branch only contains
118
// the call to the destructor.
119
assert(Current->succ_size() == 2);
120
Current = *(Current->succ_begin() + 1);
121
} else if (!Current->getTerminatorStmt() && Current->succ_size() == 1) {
122
// If there is only one successor, we're not dealing with outgoing control
123
// flow. Thus, look into the next block.
124
Current = *Current->succ_begin();
125
if (Current->pred_size() > 1) {
126
// If there is more than one predecessor, we're dealing with incoming
127
// control flow - if the return statement is in that block, it might
128
// well be reachable via a different control flow, thus it's not dead.
129
return false;
130
}
131
} else {
132
// We hit control flow or a dead end. Stop searching.
133
return false;
134
}
135
}
136
llvm_unreachable("Broke out of infinite loop.");
137
}
138
139
static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) {
140
assert(Loc.isMacroID());
141
SourceLocation Last;
142
do {
143
Last = Loc;
144
Loc = SM.getImmediateMacroCallerLoc(Loc);
145
} while (Loc.isMacroID());
146
return Last;
147
}
148
149
/// Returns true if the statement is expanded from a configuration macro.
150
static bool isExpandedFromConfigurationMacro(const Stmt *S,
151
Preprocessor &PP,
152
bool IgnoreYES_NO = false) {
153
// FIXME: This is not very precise. Here we just check to see if the
154
// value comes from a macro, but we can do much better. This is likely
155
// to be over conservative. This logic is factored into a separate function
156
// so that we can refine it later.
157
SourceLocation L = S->getBeginLoc();
158
if (L.isMacroID()) {
159
SourceManager &SM = PP.getSourceManager();
160
if (IgnoreYES_NO) {
161
// The Objective-C constant 'YES' and 'NO'
162
// are defined as macros. Do not treat them
163
// as configuration values.
164
SourceLocation TopL = getTopMostMacro(L, SM);
165
StringRef MacroName = PP.getImmediateMacroName(TopL);
166
if (MacroName == "YES" || MacroName == "NO")
167
return false;
168
} else if (!PP.getLangOpts().CPlusPlus) {
169
// Do not treat C 'false' and 'true' macros as configuration values.
170
SourceLocation TopL = getTopMostMacro(L, SM);
171
StringRef MacroName = PP.getImmediateMacroName(TopL);
172
if (MacroName == "false" || MacroName == "true")
173
return false;
174
}
175
return true;
176
}
177
return false;
178
}
179
180
static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP);
181
182
/// Returns true if the statement represents a configuration value.
183
///
184
/// A configuration value is something usually determined at compile-time
185
/// to conditionally always execute some branch. Such guards are for
186
/// "sometimes unreachable" code. Such code is usually not interesting
187
/// to report as unreachable, and may mask truly unreachable code within
188
/// those blocks.
189
static bool isConfigurationValue(const Stmt *S,
190
Preprocessor &PP,
191
SourceRange *SilenceableCondVal = nullptr,
192
bool IncludeIntegers = true,
193
bool WrappedInParens = false) {
194
if (!S)
195
return false;
196
197
if (const auto *Ex = dyn_cast<Expr>(S))
198
S = Ex->IgnoreImplicit();
199
200
if (const auto *Ex = dyn_cast<Expr>(S))
201
S = Ex->IgnoreCasts();
202
203
// Special case looking for the sigil '()' around an integer literal.
204
if (const ParenExpr *PE = dyn_cast<ParenExpr>(S))
205
if (!PE->getBeginLoc().isMacroID())
206
return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal,
207
IncludeIntegers, true);
208
209
if (const Expr *Ex = dyn_cast<Expr>(S))
210
S = Ex->IgnoreCasts();
211
212
bool IgnoreYES_NO = false;
213
214
switch (S->getStmtClass()) {
215
case Stmt::CallExprClass: {
216
const FunctionDecl *Callee =
217
dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl());
218
return Callee ? Callee->isConstexpr() : false;
219
}
220
case Stmt::DeclRefExprClass:
221
return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP);
222
case Stmt::ObjCBoolLiteralExprClass:
223
IgnoreYES_NO = true;
224
[[fallthrough]];
225
case Stmt::CXXBoolLiteralExprClass:
226
case Stmt::IntegerLiteralClass: {
227
const Expr *E = cast<Expr>(S);
228
if (IncludeIntegers) {
229
if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid())
230
*SilenceableCondVal = E->getSourceRange();
231
return WrappedInParens ||
232
isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO);
233
}
234
return false;
235
}
236
case Stmt::MemberExprClass:
237
return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP);
238
case Stmt::UnaryExprOrTypeTraitExprClass:
239
return true;
240
case Stmt::BinaryOperatorClass: {
241
const BinaryOperator *B = cast<BinaryOperator>(S);
242
// Only include raw integers (not enums) as configuration
243
// values if they are used in a logical or comparison operator
244
// (not arithmetic).
245
IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp());
246
return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal,
247
IncludeIntegers) ||
248
isConfigurationValue(B->getRHS(), PP, SilenceableCondVal,
249
IncludeIntegers);
250
}
251
case Stmt::UnaryOperatorClass: {
252
const UnaryOperator *UO = cast<UnaryOperator>(S);
253
if (UO->getOpcode() != UO_LNot && UO->getOpcode() != UO_Minus)
254
return false;
255
bool SilenceableCondValNotSet =
256
SilenceableCondVal && SilenceableCondVal->getBegin().isInvalid();
257
bool IsSubExprConfigValue =
258
isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal,
259
IncludeIntegers, WrappedInParens);
260
// Update the silenceable condition value source range only if the range
261
// was set directly by the child expression.
262
if (SilenceableCondValNotSet &&
263
SilenceableCondVal->getBegin().isValid() &&
264
*SilenceableCondVal ==
265
UO->getSubExpr()->IgnoreCasts()->getSourceRange())
266
*SilenceableCondVal = UO->getSourceRange();
267
return IsSubExprConfigValue;
268
}
269
default:
270
return false;
271
}
272
}
273
274
static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) {
275
if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D))
276
return isConfigurationValue(ED->getInitExpr(), PP);
277
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
278
// As a heuristic, treat globals as configuration values. Note
279
// that we only will get here if Sema evaluated this
280
// condition to a constant expression, which means the global
281
// had to be declared in a way to be a truly constant value.
282
// We could generalize this to local variables, but it isn't
283
// clear if those truly represent configuration values that
284
// gate unreachable code.
285
if (!VD->hasLocalStorage())
286
return true;
287
288
// As a heuristic, locals that have been marked 'const' explicitly
289
// can be treated as configuration values as well.
290
return VD->getType().isLocalConstQualified();
291
}
292
return false;
293
}
294
295
/// Returns true if we should always explore all successors of a block.
296
static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B,
297
Preprocessor &PP) {
298
if (const Stmt *Term = B->getTerminatorStmt()) {
299
if (isa<SwitchStmt>(Term))
300
return true;
301
// Specially handle '||' and '&&'.
302
if (isa<BinaryOperator>(Term)) {
303
return isConfigurationValue(Term, PP);
304
}
305
// Do not treat constexpr if statement successors as unreachable in warnings
306
// since the point of these statements is to determine branches at compile
307
// time.
308
if (const auto *IS = dyn_cast<IfStmt>(Term);
309
IS != nullptr && IS->isConstexpr())
310
return true;
311
}
312
313
const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ false);
314
return isConfigurationValue(Cond, PP);
315
}
316
317
static unsigned scanFromBlock(const CFGBlock *Start,
318
llvm::BitVector &Reachable,
319
Preprocessor *PP,
320
bool IncludeSometimesUnreachableEdges) {
321
unsigned count = 0;
322
323
// Prep work queue
324
SmallVector<const CFGBlock*, 32> WL;
325
326
// The entry block may have already been marked reachable
327
// by the caller.
328
if (!Reachable[Start->getBlockID()]) {
329
++count;
330
Reachable[Start->getBlockID()] = true;
331
}
332
333
WL.push_back(Start);
334
335
// Find the reachable blocks from 'Start'.
336
while (!WL.empty()) {
337
const CFGBlock *item = WL.pop_back_val();
338
339
// There are cases where we want to treat all successors as reachable.
340
// The idea is that some "sometimes unreachable" code is not interesting,
341
// and that we should forge ahead and explore those branches anyway.
342
// This allows us to potentially uncover some "always unreachable" code
343
// within the "sometimes unreachable" code.
344
// Look at the successors and mark then reachable.
345
std::optional<bool> TreatAllSuccessorsAsReachable;
346
if (!IncludeSometimesUnreachableEdges)
347
TreatAllSuccessorsAsReachable = false;
348
349
for (CFGBlock::const_succ_iterator I = item->succ_begin(),
350
E = item->succ_end(); I != E; ++I) {
351
const CFGBlock *B = *I;
352
if (!B) do {
353
const CFGBlock *UB = I->getPossiblyUnreachableBlock();
354
if (!UB)
355
break;
356
357
if (!TreatAllSuccessorsAsReachable) {
358
assert(PP);
359
TreatAllSuccessorsAsReachable =
360
shouldTreatSuccessorsAsReachable(item, *PP);
361
}
362
363
if (*TreatAllSuccessorsAsReachable) {
364
B = UB;
365
break;
366
}
367
}
368
while (false);
369
370
if (B) {
371
unsigned blockID = B->getBlockID();
372
if (!Reachable[blockID]) {
373
Reachable.set(blockID);
374
WL.push_back(B);
375
++count;
376
}
377
}
378
}
379
}
380
return count;
381
}
382
383
static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start,
384
Preprocessor &PP,
385
llvm::BitVector &Reachable) {
386
return scanFromBlock(Start, Reachable, &PP, true);
387
}
388
389
//===----------------------------------------------------------------------===//
390
// Dead Code Scanner.
391
//===----------------------------------------------------------------------===//
392
393
namespace {
394
class DeadCodeScan {
395
llvm::BitVector Visited;
396
llvm::BitVector &Reachable;
397
SmallVector<const CFGBlock *, 10> WorkList;
398
Preprocessor &PP;
399
ASTContext &C;
400
401
typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12>
402
DeferredLocsTy;
403
404
DeferredLocsTy DeferredLocs;
405
406
public:
407
DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP, ASTContext &C)
408
: Visited(reachable.size()),
409
Reachable(reachable),
410
PP(PP), C(C) {}
411
412
void enqueue(const CFGBlock *block);
413
unsigned scanBackwards(const CFGBlock *Start,
414
clang::reachable_code::Callback &CB);
415
416
bool isDeadCodeRoot(const CFGBlock *Block);
417
418
const Stmt *findDeadCode(const CFGBlock *Block);
419
420
void reportDeadCode(const CFGBlock *B,
421
const Stmt *S,
422
clang::reachable_code::Callback &CB);
423
};
424
}
425
426
void DeadCodeScan::enqueue(const CFGBlock *block) {
427
unsigned blockID = block->getBlockID();
428
if (Reachable[blockID] || Visited[blockID])
429
return;
430
Visited[blockID] = true;
431
WorkList.push_back(block);
432
}
433
434
bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) {
435
bool isDeadRoot = true;
436
437
for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
438
E = Block->pred_end(); I != E; ++I) {
439
if (const CFGBlock *PredBlock = *I) {
440
unsigned blockID = PredBlock->getBlockID();
441
if (Visited[blockID]) {
442
isDeadRoot = false;
443
continue;
444
}
445
if (!Reachable[blockID]) {
446
isDeadRoot = false;
447
Visited[blockID] = true;
448
WorkList.push_back(PredBlock);
449
continue;
450
}
451
}
452
}
453
454
return isDeadRoot;
455
}
456
457
// Check if the given `DeadStmt` is a coroutine statement and is a substmt of
458
// the coroutine statement. `Block` is the CFGBlock containing the `DeadStmt`.
459
static bool isInCoroutineStmt(const Stmt *DeadStmt, const CFGBlock *Block) {
460
// The coroutine statement, co_return, co_await, or co_yield.
461
const Stmt *CoroStmt = nullptr;
462
// Find the first coroutine statement after the DeadStmt in the block.
463
bool AfterDeadStmt = false;
464
for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I != E;
465
++I)
466
if (std::optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
467
const Stmt *S = CS->getStmt();
468
if (S == DeadStmt)
469
AfterDeadStmt = true;
470
if (AfterDeadStmt &&
471
// For simplicity, we only check simple coroutine statements.
472
(llvm::isa<CoreturnStmt>(S) || llvm::isa<CoroutineSuspendExpr>(S))) {
473
CoroStmt = S;
474
break;
475
}
476
}
477
if (!CoroStmt)
478
return false;
479
struct Checker : RecursiveASTVisitor<Checker> {
480
const Stmt *DeadStmt;
481
bool CoroutineSubStmt = false;
482
Checker(const Stmt *S) : DeadStmt(S) {}
483
bool VisitStmt(const Stmt *S) {
484
if (S == DeadStmt)
485
CoroutineSubStmt = true;
486
return true;
487
}
488
// Statements captured in the CFG can be implicit.
489
bool shouldVisitImplicitCode() const { return true; }
490
};
491
Checker checker(DeadStmt);
492
checker.TraverseStmt(const_cast<Stmt *>(CoroStmt));
493
return checker.CoroutineSubStmt;
494
}
495
496
static bool isValidDeadStmt(const Stmt *S, const clang::CFGBlock *Block) {
497
if (S->getBeginLoc().isInvalid())
498
return false;
499
if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S))
500
return BO->getOpcode() != BO_Comma;
501
// Coroutine statements are never considered dead statements, because removing
502
// them may change the function semantic if it is the only coroutine statement
503
// of the coroutine.
504
return !isInCoroutineStmt(S, Block);
505
}
506
507
const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) {
508
for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I)
509
if (std::optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
510
const Stmt *S = CS->getStmt();
511
if (isValidDeadStmt(S, Block))
512
return S;
513
}
514
515
CFGTerminator T = Block->getTerminator();
516
if (T.isStmtBranch()) {
517
const Stmt *S = T.getStmt();
518
if (S && isValidDeadStmt(S, Block))
519
return S;
520
}
521
522
return nullptr;
523
}
524
525
static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1,
526
const std::pair<const CFGBlock *, const Stmt *> *p2) {
527
if (p1->second->getBeginLoc() < p2->second->getBeginLoc())
528
return -1;
529
if (p2->second->getBeginLoc() < p1->second->getBeginLoc())
530
return 1;
531
return 0;
532
}
533
534
unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start,
535
clang::reachable_code::Callback &CB) {
536
537
unsigned count = 0;
538
enqueue(Start);
539
540
while (!WorkList.empty()) {
541
const CFGBlock *Block = WorkList.pop_back_val();
542
543
// It is possible that this block has been marked reachable after
544
// it was enqueued.
545
if (Reachable[Block->getBlockID()])
546
continue;
547
548
// Look for any dead code within the block.
549
const Stmt *S = findDeadCode(Block);
550
551
if (!S) {
552
// No dead code. Possibly an empty block. Look at dead predecessors.
553
for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
554
E = Block->pred_end(); I != E; ++I) {
555
if (const CFGBlock *predBlock = *I)
556
enqueue(predBlock);
557
}
558
continue;
559
}
560
561
// Specially handle macro-expanded code.
562
if (S->getBeginLoc().isMacroID()) {
563
count += scanMaybeReachableFromBlock(Block, PP, Reachable);
564
continue;
565
}
566
567
if (isDeadCodeRoot(Block)) {
568
reportDeadCode(Block, S, CB);
569
count += scanMaybeReachableFromBlock(Block, PP, Reachable);
570
}
571
else {
572
// Record this statement as the possibly best location in a
573
// strongly-connected component of dead code for emitting a
574
// warning.
575
DeferredLocs.push_back(std::make_pair(Block, S));
576
}
577
}
578
579
// If we didn't find a dead root, then report the dead code with the
580
// earliest location.
581
if (!DeferredLocs.empty()) {
582
llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp);
583
for (const auto &I : DeferredLocs) {
584
const CFGBlock *Block = I.first;
585
if (Reachable[Block->getBlockID()])
586
continue;
587
reportDeadCode(Block, I.second, CB);
588
count += scanMaybeReachableFromBlock(Block, PP, Reachable);
589
}
590
}
591
592
return count;
593
}
594
595
static SourceLocation GetUnreachableLoc(const Stmt *S,
596
SourceRange &R1,
597
SourceRange &R2) {
598
R1 = R2 = SourceRange();
599
600
if (const Expr *Ex = dyn_cast<Expr>(S))
601
S = Ex->IgnoreParenImpCasts();
602
603
switch (S->getStmtClass()) {
604
case Expr::BinaryOperatorClass: {
605
const BinaryOperator *BO = cast<BinaryOperator>(S);
606
return BO->getOperatorLoc();
607
}
608
case Expr::UnaryOperatorClass: {
609
const UnaryOperator *UO = cast<UnaryOperator>(S);
610
R1 = UO->getSubExpr()->getSourceRange();
611
return UO->getOperatorLoc();
612
}
613
case Expr::CompoundAssignOperatorClass: {
614
const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S);
615
R1 = CAO->getLHS()->getSourceRange();
616
R2 = CAO->getRHS()->getSourceRange();
617
return CAO->getOperatorLoc();
618
}
619
case Expr::BinaryConditionalOperatorClass:
620
case Expr::ConditionalOperatorClass: {
621
const AbstractConditionalOperator *CO =
622
cast<AbstractConditionalOperator>(S);
623
return CO->getQuestionLoc();
624
}
625
case Expr::MemberExprClass: {
626
const MemberExpr *ME = cast<MemberExpr>(S);
627
R1 = ME->getSourceRange();
628
return ME->getMemberLoc();
629
}
630
case Expr::ArraySubscriptExprClass: {
631
const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S);
632
R1 = ASE->getLHS()->getSourceRange();
633
R2 = ASE->getRHS()->getSourceRange();
634
return ASE->getRBracketLoc();
635
}
636
case Expr::CStyleCastExprClass: {
637
const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S);
638
R1 = CSC->getSubExpr()->getSourceRange();
639
return CSC->getLParenLoc();
640
}
641
case Expr::CXXFunctionalCastExprClass: {
642
const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S);
643
R1 = CE->getSubExpr()->getSourceRange();
644
return CE->getBeginLoc();
645
}
646
case Stmt::CXXTryStmtClass: {
647
return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc();
648
}
649
case Expr::ObjCBridgedCastExprClass: {
650
const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S);
651
R1 = CSC->getSubExpr()->getSourceRange();
652
return CSC->getLParenLoc();
653
}
654
default: ;
655
}
656
R1 = S->getSourceRange();
657
return S->getBeginLoc();
658
}
659
660
void DeadCodeScan::reportDeadCode(const CFGBlock *B,
661
const Stmt *S,
662
clang::reachable_code::Callback &CB) {
663
// Classify the unreachable code found, or suppress it in some cases.
664
reachable_code::UnreachableKind UK = reachable_code::UK_Other;
665
666
if (isa<BreakStmt>(S)) {
667
UK = reachable_code::UK_Break;
668
} else if (isTrivialDoWhile(B, S) || isBuiltinUnreachable(S) ||
669
isBuiltinAssumeFalse(B, S, C)) {
670
return;
671
}
672
else if (isDeadReturn(B, S)) {
673
UK = reachable_code::UK_Return;
674
}
675
676
const auto *AS = dyn_cast<AttributedStmt>(S);
677
bool HasFallThroughAttr =
678
AS && hasSpecificAttr<FallThroughAttr>(AS->getAttrs());
679
680
SourceRange SilenceableCondVal;
681
682
if (UK == reachable_code::UK_Other) {
683
// Check if the dead code is part of the "loop target" of
684
// a for/for-range loop. This is the block that contains
685
// the increment code.
686
if (const Stmt *LoopTarget = B->getLoopTarget()) {
687
SourceLocation Loc = LoopTarget->getBeginLoc();
688
SourceRange R1(Loc, Loc), R2;
689
690
if (const ForStmt *FS = dyn_cast<ForStmt>(LoopTarget)) {
691
const Expr *Inc = FS->getInc();
692
Loc = Inc->getBeginLoc();
693
R2 = Inc->getSourceRange();
694
}
695
696
CB.HandleUnreachable(reachable_code::UK_Loop_Increment, Loc,
697
SourceRange(), SourceRange(Loc, Loc), R2,
698
HasFallThroughAttr);
699
return;
700
}
701
702
// Check if the dead block has a predecessor whose branch has
703
// a configuration value that *could* be modified to
704
// silence the warning.
705
CFGBlock::const_pred_iterator PI = B->pred_begin();
706
if (PI != B->pred_end()) {
707
if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) {
708
const Stmt *TermCond =
709
PredBlock->getTerminatorCondition(/* strip parens */ false);
710
isConfigurationValue(TermCond, PP, &SilenceableCondVal);
711
}
712
}
713
}
714
715
SourceRange R1, R2;
716
SourceLocation Loc = GetUnreachableLoc(S, R1, R2);
717
CB.HandleUnreachable(UK, Loc, SilenceableCondVal, R1, R2, HasFallThroughAttr);
718
}
719
720
//===----------------------------------------------------------------------===//
721
// Reachability APIs.
722
//===----------------------------------------------------------------------===//
723
724
namespace clang { namespace reachable_code {
725
726
void Callback::anchor() { }
727
728
unsigned ScanReachableFromBlock(const CFGBlock *Start,
729
llvm::BitVector &Reachable) {
730
return scanFromBlock(Start, Reachable, /* SourceManager* */ nullptr, false);
731
}
732
733
void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP,
734
Callback &CB) {
735
736
CFG *cfg = AC.getCFG();
737
if (!cfg)
738
return;
739
740
// Scan for reachable blocks from the entrance of the CFG.
741
// If there are no unreachable blocks, we're done.
742
llvm::BitVector reachable(cfg->getNumBlockIDs());
743
unsigned numReachable =
744
scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable);
745
if (numReachable == cfg->getNumBlockIDs())
746
return;
747
748
// If there aren't explicit EH edges, we should include the 'try' dispatch
749
// blocks as roots.
750
if (!AC.getCFGBuildOptions().AddEHEdges) {
751
for (const CFGBlock *B : cfg->try_blocks())
752
numReachable += scanMaybeReachableFromBlock(B, PP, reachable);
753
if (numReachable == cfg->getNumBlockIDs())
754
return;
755
}
756
757
// There are some unreachable blocks. We need to find the root blocks that
758
// contain code that should be considered unreachable.
759
for (const CFGBlock *block : *cfg) {
760
// A block may have been marked reachable during this loop.
761
if (reachable[block->getBlockID()])
762
continue;
763
764
DeadCodeScan DS(reachable, PP, AC.getASTContext());
765
numReachable += DS.scanBackwards(block, CB);
766
767
if (numReachable == cfg->getNumBlockIDs())
768
return;
769
}
770
}
771
772
}} // end namespace clang::reachable_code
773
774