Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/clang/lib/Analysis/ThreadSafetyCommon.cpp
35233 views
1
//===- ThreadSafetyCommon.cpp ---------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// Implementation of the interfaces declared in ThreadSafetyCommon.h
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
14
#include "clang/AST/Attr.h"
15
#include "clang/AST/Decl.h"
16
#include "clang/AST/DeclCXX.h"
17
#include "clang/AST/DeclGroup.h"
18
#include "clang/AST/DeclObjC.h"
19
#include "clang/AST/Expr.h"
20
#include "clang/AST/ExprCXX.h"
21
#include "clang/AST/OperationKinds.h"
22
#include "clang/AST/Stmt.h"
23
#include "clang/AST/Type.h"
24
#include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
25
#include "clang/Analysis/CFG.h"
26
#include "clang/Basic/LLVM.h"
27
#include "clang/Basic/OperatorKinds.h"
28
#include "clang/Basic/Specifiers.h"
29
#include "llvm/ADT/StringExtras.h"
30
#include "llvm/ADT/StringRef.h"
31
#include "llvm/Support/Casting.h"
32
#include <algorithm>
33
#include <cassert>
34
#include <string>
35
#include <utility>
36
37
using namespace clang;
38
using namespace threadSafety;
39
40
// From ThreadSafetyUtil.h
41
std::string threadSafety::getSourceLiteralString(const Expr *CE) {
42
switch (CE->getStmtClass()) {
43
case Stmt::IntegerLiteralClass:
44
return toString(cast<IntegerLiteral>(CE)->getValue(), 10, true);
45
case Stmt::StringLiteralClass: {
46
std::string ret("\"");
47
ret += cast<StringLiteral>(CE)->getString();
48
ret += "\"";
49
return ret;
50
}
51
case Stmt::CharacterLiteralClass:
52
case Stmt::CXXNullPtrLiteralExprClass:
53
case Stmt::GNUNullExprClass:
54
case Stmt::CXXBoolLiteralExprClass:
55
case Stmt::FloatingLiteralClass:
56
case Stmt::ImaginaryLiteralClass:
57
case Stmt::ObjCStringLiteralClass:
58
default:
59
return "#lit";
60
}
61
}
62
63
// Return true if E is a variable that points to an incomplete Phi node.
64
static bool isIncompletePhi(const til::SExpr *E) {
65
if (const auto *Ph = dyn_cast<til::Phi>(E))
66
return Ph->status() == til::Phi::PH_Incomplete;
67
return false;
68
}
69
70
using CallingContext = SExprBuilder::CallingContext;
71
72
til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) { return SMap.lookup(S); }
73
74
til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) {
75
Walker.walk(*this);
76
return Scfg;
77
}
78
79
static bool isCalleeArrow(const Expr *E) {
80
const auto *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts());
81
return ME ? ME->isArrow() : false;
82
}
83
84
static StringRef ClassifyDiagnostic(const CapabilityAttr *A) {
85
return A->getName();
86
}
87
88
static StringRef ClassifyDiagnostic(QualType VDT) {
89
// We need to look at the declaration of the type of the value to determine
90
// which it is. The type should either be a record or a typedef, or a pointer
91
// or reference thereof.
92
if (const auto *RT = VDT->getAs<RecordType>()) {
93
if (const auto *RD = RT->getDecl())
94
if (const auto *CA = RD->getAttr<CapabilityAttr>())
95
return ClassifyDiagnostic(CA);
96
} else if (const auto *TT = VDT->getAs<TypedefType>()) {
97
if (const auto *TD = TT->getDecl())
98
if (const auto *CA = TD->getAttr<CapabilityAttr>())
99
return ClassifyDiagnostic(CA);
100
} else if (VDT->isPointerType() || VDT->isReferenceType())
101
return ClassifyDiagnostic(VDT->getPointeeType());
102
103
return "mutex";
104
}
105
106
/// Translate a clang expression in an attribute to a til::SExpr.
107
/// Constructs the context from D, DeclExp, and SelfDecl.
108
///
109
/// \param AttrExp The expression to translate.
110
/// \param D The declaration to which the attribute is attached.
111
/// \param DeclExp An expression involving the Decl to which the attribute
112
/// is attached. E.g. the call to a function.
113
/// \param Self S-expression to substitute for a \ref CXXThisExpr in a call,
114
/// or argument to a cleanup function.
115
CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
116
const NamedDecl *D,
117
const Expr *DeclExp,
118
til::SExpr *Self) {
119
// If we are processing a raw attribute expression, with no substitutions.
120
if (!DeclExp && !Self)
121
return translateAttrExpr(AttrExp, nullptr);
122
123
CallingContext Ctx(nullptr, D);
124
125
// Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
126
// for formal parameters when we call buildMutexID later.
127
if (!DeclExp)
128
/* We'll use Self. */;
129
else if (const auto *ME = dyn_cast<MemberExpr>(DeclExp)) {
130
Ctx.SelfArg = ME->getBase();
131
Ctx.SelfArrow = ME->isArrow();
132
} else if (const auto *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
133
Ctx.SelfArg = CE->getImplicitObjectArgument();
134
Ctx.SelfArrow = isCalleeArrow(CE->getCallee());
135
Ctx.NumArgs = CE->getNumArgs();
136
Ctx.FunArgs = CE->getArgs();
137
} else if (const auto *CE = dyn_cast<CallExpr>(DeclExp)) {
138
Ctx.NumArgs = CE->getNumArgs();
139
Ctx.FunArgs = CE->getArgs();
140
} else if (const auto *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
141
Ctx.SelfArg = nullptr; // Will be set below
142
Ctx.NumArgs = CE->getNumArgs();
143
Ctx.FunArgs = CE->getArgs();
144
}
145
146
if (Self) {
147
assert(!Ctx.SelfArg && "Ambiguous self argument");
148
assert(isa<FunctionDecl>(D) && "Self argument requires function");
149
if (isa<CXXMethodDecl>(D))
150
Ctx.SelfArg = Self;
151
else
152
Ctx.FunArgs = Self;
153
154
// If the attribute has no arguments, then assume the argument is "this".
155
if (!AttrExp)
156
return CapabilityExpr(
157
Self,
158
ClassifyDiagnostic(
159
cast<CXXMethodDecl>(D)->getFunctionObjectParameterType()),
160
false);
161
else // For most attributes.
162
return translateAttrExpr(AttrExp, &Ctx);
163
}
164
165
// If the attribute has no arguments, then assume the argument is "this".
166
if (!AttrExp)
167
return translateAttrExpr(cast<const Expr *>(Ctx.SelfArg), nullptr);
168
else // For most attributes.
169
return translateAttrExpr(AttrExp, &Ctx);
170
}
171
172
/// Translate a clang expression in an attribute to a til::SExpr.
173
// This assumes a CallingContext has already been created.
174
CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
175
CallingContext *Ctx) {
176
if (!AttrExp)
177
return CapabilityExpr();
178
179
if (const auto* SLit = dyn_cast<StringLiteral>(AttrExp)) {
180
if (SLit->getString() == "*")
181
// The "*" expr is a universal lock, which essentially turns off
182
// checks until it is removed from the lockset.
183
return CapabilityExpr(new (Arena) til::Wildcard(), StringRef("wildcard"),
184
false);
185
else
186
// Ignore other string literals for now.
187
return CapabilityExpr();
188
}
189
190
bool Neg = false;
191
if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) {
192
if (OE->getOperator() == OO_Exclaim) {
193
Neg = true;
194
AttrExp = OE->getArg(0);
195
}
196
}
197
else if (const auto *UO = dyn_cast<UnaryOperator>(AttrExp)) {
198
if (UO->getOpcode() == UO_LNot) {
199
Neg = true;
200
AttrExp = UO->getSubExpr()->IgnoreImplicit();
201
}
202
}
203
204
til::SExpr *E = translate(AttrExp, Ctx);
205
206
// Trap mutex expressions like nullptr, or 0.
207
// Any literal value is nonsense.
208
if (!E || isa<til::Literal>(E))
209
return CapabilityExpr();
210
211
StringRef Kind = ClassifyDiagnostic(AttrExp->getType());
212
213
// Hack to deal with smart pointers -- strip off top-level pointer casts.
214
if (const auto *CE = dyn_cast<til::Cast>(E)) {
215
if (CE->castOpcode() == til::CAST_objToPtr)
216
return CapabilityExpr(CE->expr(), Kind, Neg);
217
}
218
return CapabilityExpr(E, Kind, Neg);
219
}
220
221
til::LiteralPtr *SExprBuilder::createVariable(const VarDecl *VD) {
222
return new (Arena) til::LiteralPtr(VD);
223
}
224
225
std::pair<til::LiteralPtr *, StringRef>
226
SExprBuilder::createThisPlaceholder(const Expr *Exp) {
227
return {new (Arena) til::LiteralPtr(nullptr),
228
ClassifyDiagnostic(Exp->getType())};
229
}
230
231
// Translate a clang statement or expression to a TIL expression.
232
// Also performs substitution of variables; Ctx provides the context.
233
// Dispatches on the type of S.
234
til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) {
235
if (!S)
236
return nullptr;
237
238
// Check if S has already been translated and cached.
239
// This handles the lookup of SSA names for DeclRefExprs here.
240
if (til::SExpr *E = lookupStmt(S))
241
return E;
242
243
switch (S->getStmtClass()) {
244
case Stmt::DeclRefExprClass:
245
return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx);
246
case Stmt::CXXThisExprClass:
247
return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx);
248
case Stmt::MemberExprClass:
249
return translateMemberExpr(cast<MemberExpr>(S), Ctx);
250
case Stmt::ObjCIvarRefExprClass:
251
return translateObjCIVarRefExpr(cast<ObjCIvarRefExpr>(S), Ctx);
252
case Stmt::CallExprClass:
253
return translateCallExpr(cast<CallExpr>(S), Ctx);
254
case Stmt::CXXMemberCallExprClass:
255
return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx);
256
case Stmt::CXXOperatorCallExprClass:
257
return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx);
258
case Stmt::UnaryOperatorClass:
259
return translateUnaryOperator(cast<UnaryOperator>(S), Ctx);
260
case Stmt::BinaryOperatorClass:
261
case Stmt::CompoundAssignOperatorClass:
262
return translateBinaryOperator(cast<BinaryOperator>(S), Ctx);
263
264
case Stmt::ArraySubscriptExprClass:
265
return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx);
266
case Stmt::ConditionalOperatorClass:
267
return translateAbstractConditionalOperator(
268
cast<ConditionalOperator>(S), Ctx);
269
case Stmt::BinaryConditionalOperatorClass:
270
return translateAbstractConditionalOperator(
271
cast<BinaryConditionalOperator>(S), Ctx);
272
273
// We treat these as no-ops
274
case Stmt::ConstantExprClass:
275
return translate(cast<ConstantExpr>(S)->getSubExpr(), Ctx);
276
case Stmt::ParenExprClass:
277
return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx);
278
case Stmt::ExprWithCleanupsClass:
279
return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx);
280
case Stmt::CXXBindTemporaryExprClass:
281
return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx);
282
case Stmt::MaterializeTemporaryExprClass:
283
return translate(cast<MaterializeTemporaryExpr>(S)->getSubExpr(), Ctx);
284
285
// Collect all literals
286
case Stmt::CharacterLiteralClass:
287
case Stmt::CXXNullPtrLiteralExprClass:
288
case Stmt::GNUNullExprClass:
289
case Stmt::CXXBoolLiteralExprClass:
290
case Stmt::FloatingLiteralClass:
291
case Stmt::ImaginaryLiteralClass:
292
case Stmt::IntegerLiteralClass:
293
case Stmt::StringLiteralClass:
294
case Stmt::ObjCStringLiteralClass:
295
return new (Arena) til::Literal(cast<Expr>(S));
296
297
case Stmt::DeclStmtClass:
298
return translateDeclStmt(cast<DeclStmt>(S), Ctx);
299
default:
300
break;
301
}
302
if (const auto *CE = dyn_cast<CastExpr>(S))
303
return translateCastExpr(CE, Ctx);
304
305
return new (Arena) til::Undefined(S);
306
}
307
308
til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE,
309
CallingContext *Ctx) {
310
const auto *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
311
312
// Function parameters require substitution and/or renaming.
313
if (const auto *PV = dyn_cast<ParmVarDecl>(VD)) {
314
unsigned I = PV->getFunctionScopeIndex();
315
const DeclContext *D = PV->getDeclContext();
316
if (Ctx && Ctx->FunArgs) {
317
const Decl *Canonical = Ctx->AttrDecl->getCanonicalDecl();
318
if (isa<FunctionDecl>(D)
319
? (cast<FunctionDecl>(D)->getCanonicalDecl() == Canonical)
320
: (cast<ObjCMethodDecl>(D)->getCanonicalDecl() == Canonical)) {
321
// Substitute call arguments for references to function parameters
322
if (const Expr *const *FunArgs =
323
Ctx->FunArgs.dyn_cast<const Expr *const *>()) {
324
assert(I < Ctx->NumArgs);
325
return translate(FunArgs[I], Ctx->Prev);
326
}
327
328
assert(I == 0);
329
return Ctx->FunArgs.get<til::SExpr *>();
330
}
331
}
332
// Map the param back to the param of the original function declaration
333
// for consistent comparisons.
334
VD = isa<FunctionDecl>(D)
335
? cast<FunctionDecl>(D)->getCanonicalDecl()->getParamDecl(I)
336
: cast<ObjCMethodDecl>(D)->getCanonicalDecl()->getParamDecl(I);
337
}
338
339
// For non-local variables, treat it as a reference to a named object.
340
return new (Arena) til::LiteralPtr(VD);
341
}
342
343
til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE,
344
CallingContext *Ctx) {
345
// Substitute for 'this'
346
if (Ctx && Ctx->SelfArg) {
347
if (const auto *SelfArg = dyn_cast<const Expr *>(Ctx->SelfArg))
348
return translate(SelfArg, Ctx->Prev);
349
else
350
return cast<til::SExpr *>(Ctx->SelfArg);
351
}
352
assert(SelfVar && "We have no variable for 'this'!");
353
return SelfVar;
354
}
355
356
static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) {
357
if (const auto *V = dyn_cast<til::Variable>(E))
358
return V->clangDecl();
359
if (const auto *Ph = dyn_cast<til::Phi>(E))
360
return Ph->clangDecl();
361
if (const auto *P = dyn_cast<til::Project>(E))
362
return P->clangDecl();
363
if (const auto *L = dyn_cast<til::LiteralPtr>(E))
364
return L->clangDecl();
365
return nullptr;
366
}
367
368
static bool hasAnyPointerType(const til::SExpr *E) {
369
auto *VD = getValueDeclFromSExpr(E);
370
if (VD && VD->getType()->isAnyPointerType())
371
return true;
372
if (const auto *C = dyn_cast<til::Cast>(E))
373
return C->castOpcode() == til::CAST_objToPtr;
374
375
return false;
376
}
377
378
// Grab the very first declaration of virtual method D
379
static const CXXMethodDecl *getFirstVirtualDecl(const CXXMethodDecl *D) {
380
while (true) {
381
D = D->getCanonicalDecl();
382
auto OverriddenMethods = D->overridden_methods();
383
if (OverriddenMethods.begin() == OverriddenMethods.end())
384
return D; // Method does not override anything
385
// FIXME: this does not work with multiple inheritance.
386
D = *OverriddenMethods.begin();
387
}
388
return nullptr;
389
}
390
391
til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME,
392
CallingContext *Ctx) {
393
til::SExpr *BE = translate(ME->getBase(), Ctx);
394
til::SExpr *E = new (Arena) til::SApply(BE);
395
396
const auto *D = cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
397
if (const auto *VD = dyn_cast<CXXMethodDecl>(D))
398
D = getFirstVirtualDecl(VD);
399
400
til::Project *P = new (Arena) til::Project(E, D);
401
if (hasAnyPointerType(BE))
402
P->setArrow(true);
403
return P;
404
}
405
406
til::SExpr *SExprBuilder::translateObjCIVarRefExpr(const ObjCIvarRefExpr *IVRE,
407
CallingContext *Ctx) {
408
til::SExpr *BE = translate(IVRE->getBase(), Ctx);
409
til::SExpr *E = new (Arena) til::SApply(BE);
410
411
const auto *D = cast<ObjCIvarDecl>(IVRE->getDecl()->getCanonicalDecl());
412
413
til::Project *P = new (Arena) til::Project(E, D);
414
if (hasAnyPointerType(BE))
415
P->setArrow(true);
416
return P;
417
}
418
419
til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE,
420
CallingContext *Ctx,
421
const Expr *SelfE) {
422
if (CapabilityExprMode) {
423
// Handle LOCK_RETURNED
424
if (const FunctionDecl *FD = CE->getDirectCallee()) {
425
FD = FD->getMostRecentDecl();
426
if (LockReturnedAttr *At = FD->getAttr<LockReturnedAttr>()) {
427
CallingContext LRCallCtx(Ctx);
428
LRCallCtx.AttrDecl = CE->getDirectCallee();
429
LRCallCtx.SelfArg = SelfE;
430
LRCallCtx.NumArgs = CE->getNumArgs();
431
LRCallCtx.FunArgs = CE->getArgs();
432
return const_cast<til::SExpr *>(
433
translateAttrExpr(At->getArg(), &LRCallCtx).sexpr());
434
}
435
}
436
}
437
438
til::SExpr *E = translate(CE->getCallee(), Ctx);
439
for (const auto *Arg : CE->arguments()) {
440
til::SExpr *A = translate(Arg, Ctx);
441
E = new (Arena) til::Apply(E, A);
442
}
443
return new (Arena) til::Call(E, CE);
444
}
445
446
til::SExpr *SExprBuilder::translateCXXMemberCallExpr(
447
const CXXMemberCallExpr *ME, CallingContext *Ctx) {
448
if (CapabilityExprMode) {
449
// Ignore calls to get() on smart pointers.
450
if (ME->getMethodDecl()->getNameAsString() == "get" &&
451
ME->getNumArgs() == 0) {
452
auto *E = translate(ME->getImplicitObjectArgument(), Ctx);
453
return new (Arena) til::Cast(til::CAST_objToPtr, E);
454
// return E;
455
}
456
}
457
return translateCallExpr(cast<CallExpr>(ME), Ctx,
458
ME->getImplicitObjectArgument());
459
}
460
461
til::SExpr *SExprBuilder::translateCXXOperatorCallExpr(
462
const CXXOperatorCallExpr *OCE, CallingContext *Ctx) {
463
if (CapabilityExprMode) {
464
// Ignore operator * and operator -> on smart pointers.
465
OverloadedOperatorKind k = OCE->getOperator();
466
if (k == OO_Star || k == OO_Arrow) {
467
auto *E = translate(OCE->getArg(0), Ctx);
468
return new (Arena) til::Cast(til::CAST_objToPtr, E);
469
// return E;
470
}
471
}
472
return translateCallExpr(cast<CallExpr>(OCE), Ctx);
473
}
474
475
til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO,
476
CallingContext *Ctx) {
477
switch (UO->getOpcode()) {
478
case UO_PostInc:
479
case UO_PostDec:
480
case UO_PreInc:
481
case UO_PreDec:
482
return new (Arena) til::Undefined(UO);
483
484
case UO_AddrOf:
485
if (CapabilityExprMode) {
486
// interpret &Graph::mu_ as an existential.
487
if (const auto *DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) {
488
if (DRE->getDecl()->isCXXInstanceMember()) {
489
// This is a pointer-to-member expression, e.g. &MyClass::mu_.
490
// We interpret this syntax specially, as a wildcard.
491
auto *W = new (Arena) til::Wildcard();
492
return new (Arena) til::Project(W, DRE->getDecl());
493
}
494
}
495
}
496
// otherwise, & is a no-op
497
return translate(UO->getSubExpr(), Ctx);
498
499
// We treat these as no-ops
500
case UO_Deref:
501
case UO_Plus:
502
return translate(UO->getSubExpr(), Ctx);
503
504
case UO_Minus:
505
return new (Arena)
506
til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx));
507
case UO_Not:
508
return new (Arena)
509
til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx));
510
case UO_LNot:
511
return new (Arena)
512
til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx));
513
514
// Currently unsupported
515
case UO_Real:
516
case UO_Imag:
517
case UO_Extension:
518
case UO_Coawait:
519
return new (Arena) til::Undefined(UO);
520
}
521
return new (Arena) til::Undefined(UO);
522
}
523
524
til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op,
525
const BinaryOperator *BO,
526
CallingContext *Ctx, bool Reverse) {
527
til::SExpr *E0 = translate(BO->getLHS(), Ctx);
528
til::SExpr *E1 = translate(BO->getRHS(), Ctx);
529
if (Reverse)
530
return new (Arena) til::BinaryOp(Op, E1, E0);
531
else
532
return new (Arena) til::BinaryOp(Op, E0, E1);
533
}
534
535
til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op,
536
const BinaryOperator *BO,
537
CallingContext *Ctx,
538
bool Assign) {
539
const Expr *LHS = BO->getLHS();
540
const Expr *RHS = BO->getRHS();
541
til::SExpr *E0 = translate(LHS, Ctx);
542
til::SExpr *E1 = translate(RHS, Ctx);
543
544
const ValueDecl *VD = nullptr;
545
til::SExpr *CV = nullptr;
546
if (const auto *DRE = dyn_cast<DeclRefExpr>(LHS)) {
547
VD = DRE->getDecl();
548
CV = lookupVarDecl(VD);
549
}
550
551
if (!Assign) {
552
til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0);
553
E1 = new (Arena) til::BinaryOp(Op, Arg, E1);
554
E1 = addStatement(E1, nullptr, VD);
555
}
556
if (VD && CV)
557
return updateVarDecl(VD, E1);
558
return new (Arena) til::Store(E0, E1);
559
}
560
561
til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO,
562
CallingContext *Ctx) {
563
switch (BO->getOpcode()) {
564
case BO_PtrMemD:
565
case BO_PtrMemI:
566
return new (Arena) til::Undefined(BO);
567
568
case BO_Mul: return translateBinOp(til::BOP_Mul, BO, Ctx);
569
case BO_Div: return translateBinOp(til::BOP_Div, BO, Ctx);
570
case BO_Rem: return translateBinOp(til::BOP_Rem, BO, Ctx);
571
case BO_Add: return translateBinOp(til::BOP_Add, BO, Ctx);
572
case BO_Sub: return translateBinOp(til::BOP_Sub, BO, Ctx);
573
case BO_Shl: return translateBinOp(til::BOP_Shl, BO, Ctx);
574
case BO_Shr: return translateBinOp(til::BOP_Shr, BO, Ctx);
575
case BO_LT: return translateBinOp(til::BOP_Lt, BO, Ctx);
576
case BO_GT: return translateBinOp(til::BOP_Lt, BO, Ctx, true);
577
case BO_LE: return translateBinOp(til::BOP_Leq, BO, Ctx);
578
case BO_GE: return translateBinOp(til::BOP_Leq, BO, Ctx, true);
579
case BO_EQ: return translateBinOp(til::BOP_Eq, BO, Ctx);
580
case BO_NE: return translateBinOp(til::BOP_Neq, BO, Ctx);
581
case BO_Cmp: return translateBinOp(til::BOP_Cmp, BO, Ctx);
582
case BO_And: return translateBinOp(til::BOP_BitAnd, BO, Ctx);
583
case BO_Xor: return translateBinOp(til::BOP_BitXor, BO, Ctx);
584
case BO_Or: return translateBinOp(til::BOP_BitOr, BO, Ctx);
585
case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx);
586
case BO_LOr: return translateBinOp(til::BOP_LogicOr, BO, Ctx);
587
588
case BO_Assign: return translateBinAssign(til::BOP_Eq, BO, Ctx, true);
589
case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx);
590
case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx);
591
case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx);
592
case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx);
593
case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx);
594
case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx);
595
case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx);
596
case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx);
597
case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx);
598
case BO_OrAssign: return translateBinAssign(til::BOP_BitOr, BO, Ctx);
599
600
case BO_Comma:
601
// The clang CFG should have already processed both sides.
602
return translate(BO->getRHS(), Ctx);
603
}
604
return new (Arena) til::Undefined(BO);
605
}
606
607
til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE,
608
CallingContext *Ctx) {
609
CastKind K = CE->getCastKind();
610
switch (K) {
611
case CK_LValueToRValue: {
612
if (const auto *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
613
til::SExpr *E0 = lookupVarDecl(DRE->getDecl());
614
if (E0)
615
return E0;
616
}
617
til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
618
return E0;
619
// FIXME!! -- get Load working properly
620
// return new (Arena) til::Load(E0);
621
}
622
case CK_NoOp:
623
case CK_DerivedToBase:
624
case CK_UncheckedDerivedToBase:
625
case CK_ArrayToPointerDecay:
626
case CK_FunctionToPointerDecay: {
627
til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
628
return E0;
629
}
630
default: {
631
// FIXME: handle different kinds of casts.
632
til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
633
if (CapabilityExprMode)
634
return E0;
635
return new (Arena) til::Cast(til::CAST_none, E0);
636
}
637
}
638
}
639
640
til::SExpr *
641
SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E,
642
CallingContext *Ctx) {
643
til::SExpr *E0 = translate(E->getBase(), Ctx);
644
til::SExpr *E1 = translate(E->getIdx(), Ctx);
645
return new (Arena) til::ArrayIndex(E0, E1);
646
}
647
648
til::SExpr *
649
SExprBuilder::translateAbstractConditionalOperator(
650
const AbstractConditionalOperator *CO, CallingContext *Ctx) {
651
auto *C = translate(CO->getCond(), Ctx);
652
auto *T = translate(CO->getTrueExpr(), Ctx);
653
auto *E = translate(CO->getFalseExpr(), Ctx);
654
return new (Arena) til::IfThenElse(C, T, E);
655
}
656
657
til::SExpr *
658
SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) {
659
DeclGroupRef DGrp = S->getDeclGroup();
660
for (auto *I : DGrp) {
661
if (auto *VD = dyn_cast_or_null<VarDecl>(I)) {
662
Expr *E = VD->getInit();
663
til::SExpr* SE = translate(E, Ctx);
664
665
// Add local variables with trivial type to the variable map
666
QualType T = VD->getType();
667
if (T.isTrivialType(VD->getASTContext()))
668
return addVarDecl(VD, SE);
669
else {
670
// TODO: add alloca
671
}
672
}
673
}
674
return nullptr;
675
}
676
677
// If (E) is non-trivial, then add it to the current basic block, and
678
// update the statement map so that S refers to E. Returns a new variable
679
// that refers to E.
680
// If E is trivial returns E.
681
til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S,
682
const ValueDecl *VD) {
683
if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E))
684
return E;
685
if (VD)
686
E = new (Arena) til::Variable(E, VD);
687
CurrentInstructions.push_back(E);
688
if (S)
689
insertStmt(S, E);
690
return E;
691
}
692
693
// Returns the current value of VD, if known, and nullptr otherwise.
694
til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) {
695
auto It = LVarIdxMap.find(VD);
696
if (It != LVarIdxMap.end()) {
697
assert(CurrentLVarMap[It->second].first == VD);
698
return CurrentLVarMap[It->second].second;
699
}
700
return nullptr;
701
}
702
703
// if E is a til::Variable, update its clangDecl.
704
static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) {
705
if (!E)
706
return;
707
if (auto *V = dyn_cast<til::Variable>(E)) {
708
if (!V->clangDecl())
709
V->setClangDecl(VD);
710
}
711
}
712
713
// Adds a new variable declaration.
714
til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) {
715
maybeUpdateVD(E, VD);
716
LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size()));
717
CurrentLVarMap.makeWritable();
718
CurrentLVarMap.push_back(std::make_pair(VD, E));
719
return E;
720
}
721
722
// Updates a current variable declaration. (E.g. by assignment)
723
til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) {
724
maybeUpdateVD(E, VD);
725
auto It = LVarIdxMap.find(VD);
726
if (It == LVarIdxMap.end()) {
727
til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD);
728
til::SExpr *St = new (Arena) til::Store(Ptr, E);
729
return St;
730
}
731
CurrentLVarMap.makeWritable();
732
CurrentLVarMap.elem(It->second).second = E;
733
return E;
734
}
735
736
// Make a Phi node in the current block for the i^th variable in CurrentVarMap.
737
// If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E.
738
// If E == null, this is a backedge and will be set later.
739
void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) {
740
unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors;
741
assert(ArgIndex > 0 && ArgIndex < NPreds);
742
743
til::SExpr *CurrE = CurrentLVarMap[i].second;
744
if (CurrE->block() == CurrentBB) {
745
// We already have a Phi node in the current block,
746
// so just add the new variable to the Phi node.
747
auto *Ph = dyn_cast<til::Phi>(CurrE);
748
assert(Ph && "Expecting Phi node.");
749
if (E)
750
Ph->values()[ArgIndex] = E;
751
return;
752
}
753
754
// Make a new phi node: phi(..., E)
755
// All phi args up to the current index are set to the current value.
756
til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds);
757
Ph->values().setValues(NPreds, nullptr);
758
for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx)
759
Ph->values()[PIdx] = CurrE;
760
if (E)
761
Ph->values()[ArgIndex] = E;
762
Ph->setClangDecl(CurrentLVarMap[i].first);
763
// If E is from a back-edge, or either E or CurrE are incomplete, then
764
// mark this node as incomplete; we may need to remove it later.
765
if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE))
766
Ph->setStatus(til::Phi::PH_Incomplete);
767
768
// Add Phi node to current block, and update CurrentLVarMap[i]
769
CurrentArguments.push_back(Ph);
770
if (Ph->status() == til::Phi::PH_Incomplete)
771
IncompleteArgs.push_back(Ph);
772
773
CurrentLVarMap.makeWritable();
774
CurrentLVarMap.elem(i).second = Ph;
775
}
776
777
// Merge values from Map into the current variable map.
778
// This will construct Phi nodes in the current basic block as necessary.
779
void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) {
780
assert(CurrentBlockInfo && "Not processing a block!");
781
782
if (!CurrentLVarMap.valid()) {
783
// Steal Map, using copy-on-write.
784
CurrentLVarMap = std::move(Map);
785
return;
786
}
787
if (CurrentLVarMap.sameAs(Map))
788
return; // Easy merge: maps from different predecessors are unchanged.
789
790
unsigned NPreds = CurrentBB->numPredecessors();
791
unsigned ESz = CurrentLVarMap.size();
792
unsigned MSz = Map.size();
793
unsigned Sz = std::min(ESz, MSz);
794
795
for (unsigned i = 0; i < Sz; ++i) {
796
if (CurrentLVarMap[i].first != Map[i].first) {
797
// We've reached the end of variables in common.
798
CurrentLVarMap.makeWritable();
799
CurrentLVarMap.downsize(i);
800
break;
801
}
802
if (CurrentLVarMap[i].second != Map[i].second)
803
makePhiNodeVar(i, NPreds, Map[i].second);
804
}
805
if (ESz > MSz) {
806
CurrentLVarMap.makeWritable();
807
CurrentLVarMap.downsize(Map.size());
808
}
809
}
810
811
// Merge a back edge into the current variable map.
812
// This will create phi nodes for all variables in the variable map.
813
void SExprBuilder::mergeEntryMapBackEdge() {
814
// We don't have definitions for variables on the backedge, because we
815
// haven't gotten that far in the CFG. Thus, when encountering a back edge,
816
// we conservatively create Phi nodes for all variables. Unnecessary Phi
817
// nodes will be marked as incomplete, and stripped out at the end.
818
//
819
// An Phi node is unnecessary if it only refers to itself and one other
820
// variable, e.g. x = Phi(y, y, x) can be reduced to x = y.
821
822
assert(CurrentBlockInfo && "Not processing a block!");
823
824
if (CurrentBlockInfo->HasBackEdges)
825
return;
826
CurrentBlockInfo->HasBackEdges = true;
827
828
CurrentLVarMap.makeWritable();
829
unsigned Sz = CurrentLVarMap.size();
830
unsigned NPreds = CurrentBB->numPredecessors();
831
832
for (unsigned i = 0; i < Sz; ++i)
833
makePhiNodeVar(i, NPreds, nullptr);
834
}
835
836
// Update the phi nodes that were initially created for a back edge
837
// once the variable definitions have been computed.
838
// I.e., merge the current variable map into the phi nodes for Blk.
839
void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) {
840
til::BasicBlock *BB = lookupBlock(Blk);
841
unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors;
842
assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors());
843
844
for (til::SExpr *PE : BB->arguments()) {
845
auto *Ph = dyn_cast_or_null<til::Phi>(PE);
846
assert(Ph && "Expecting Phi Node.");
847
assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge.");
848
849
til::SExpr *E = lookupVarDecl(Ph->clangDecl());
850
assert(E && "Couldn't find local variable for Phi node.");
851
Ph->values()[ArgIndex] = E;
852
}
853
}
854
855
void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D,
856
const CFGBlock *First) {
857
// Perform initial setup operations.
858
unsigned NBlocks = Cfg->getNumBlockIDs();
859
Scfg = new (Arena) til::SCFG(Arena, NBlocks);
860
861
// allocate all basic blocks immediately, to handle forward references.
862
BBInfo.resize(NBlocks);
863
BlockMap.resize(NBlocks, nullptr);
864
// create map from clang blockID to til::BasicBlocks
865
for (auto *B : *Cfg) {
866
auto *BB = new (Arena) til::BasicBlock(Arena);
867
BB->reserveInstructions(B->size());
868
BlockMap[B->getBlockID()] = BB;
869
}
870
871
CurrentBB = lookupBlock(&Cfg->getEntry());
872
auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters()
873
: cast<FunctionDecl>(D)->parameters();
874
for (auto *Pm : Parms) {
875
QualType T = Pm->getType();
876
if (!T.isTrivialType(Pm->getASTContext()))
877
continue;
878
879
// Add parameters to local variable map.
880
// FIXME: right now we emulate params with loads; that should be fixed.
881
til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm);
882
til::SExpr *Ld = new (Arena) til::Load(Lp);
883
til::SExpr *V = addStatement(Ld, nullptr, Pm);
884
addVarDecl(Pm, V);
885
}
886
}
887
888
void SExprBuilder::enterCFGBlock(const CFGBlock *B) {
889
// Initialize TIL basic block and add it to the CFG.
890
CurrentBB = lookupBlock(B);
891
CurrentBB->reservePredecessors(B->pred_size());
892
Scfg->add(CurrentBB);
893
894
CurrentBlockInfo = &BBInfo[B->getBlockID()];
895
896
// CurrentLVarMap is moved to ExitMap on block exit.
897
// FIXME: the entry block will hold function parameters.
898
// assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized.");
899
}
900
901
void SExprBuilder::handlePredecessor(const CFGBlock *Pred) {
902
// Compute CurrentLVarMap on entry from ExitMaps of predecessors
903
904
CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]);
905
BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()];
906
assert(PredInfo->UnprocessedSuccessors > 0);
907
908
if (--PredInfo->UnprocessedSuccessors == 0)
909
mergeEntryMap(std::move(PredInfo->ExitMap));
910
else
911
mergeEntryMap(PredInfo->ExitMap.clone());
912
913
++CurrentBlockInfo->ProcessedPredecessors;
914
}
915
916
void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) {
917
mergeEntryMapBackEdge();
918
}
919
920
void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) {
921
// The merge*() methods have created arguments.
922
// Push those arguments onto the basic block.
923
CurrentBB->arguments().reserve(
924
static_cast<unsigned>(CurrentArguments.size()), Arena);
925
for (auto *A : CurrentArguments)
926
CurrentBB->addArgument(A);
927
}
928
929
void SExprBuilder::handleStatement(const Stmt *S) {
930
til::SExpr *E = translate(S, nullptr);
931
addStatement(E, S);
932
}
933
934
void SExprBuilder::handleDestructorCall(const VarDecl *VD,
935
const CXXDestructorDecl *DD) {
936
til::SExpr *Sf = new (Arena) til::LiteralPtr(VD);
937
til::SExpr *Dr = new (Arena) til::LiteralPtr(DD);
938
til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf);
939
til::SExpr *E = new (Arena) til::Call(Ap);
940
addStatement(E, nullptr);
941
}
942
943
void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) {
944
CurrentBB->instructions().reserve(
945
static_cast<unsigned>(CurrentInstructions.size()), Arena);
946
for (auto *V : CurrentInstructions)
947
CurrentBB->addInstruction(V);
948
949
// Create an appropriate terminator
950
unsigned N = B->succ_size();
951
auto It = B->succ_begin();
952
if (N == 1) {
953
til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr;
954
// TODO: set index
955
unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0;
956
auto *Tm = new (Arena) til::Goto(BB, Idx);
957
CurrentBB->setTerminator(Tm);
958
}
959
else if (N == 2) {
960
til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr);
961
til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr;
962
++It;
963
til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr;
964
// FIXME: make sure these aren't critical edges.
965
auto *Tm = new (Arena) til::Branch(C, BB1, BB2);
966
CurrentBB->setTerminator(Tm);
967
}
968
}
969
970
void SExprBuilder::handleSuccessor(const CFGBlock *Succ) {
971
++CurrentBlockInfo->UnprocessedSuccessors;
972
}
973
974
void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) {
975
mergePhiNodesBackEdge(Succ);
976
++BBInfo[Succ->getBlockID()].ProcessedPredecessors;
977
}
978
979
void SExprBuilder::exitCFGBlock(const CFGBlock *B) {
980
CurrentArguments.clear();
981
CurrentInstructions.clear();
982
CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap);
983
CurrentBB = nullptr;
984
CurrentBlockInfo = nullptr;
985
}
986
987
void SExprBuilder::exitCFG(const CFGBlock *Last) {
988
for (auto *Ph : IncompleteArgs) {
989
if (Ph->status() == til::Phi::PH_Incomplete)
990
simplifyIncompleteArg(Ph);
991
}
992
993
CurrentArguments.clear();
994
CurrentInstructions.clear();
995
IncompleteArgs.clear();
996
}
997
998
#ifndef NDEBUG
999
namespace {
1000
1001
class TILPrinter :
1002
public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {};
1003
1004
} // namespace
1005
1006
namespace clang {
1007
namespace threadSafety {
1008
1009
void printSCFG(CFGWalker &Walker) {
1010
llvm::BumpPtrAllocator Bpa;
1011
til::MemRegionRef Arena(&Bpa);
1012
SExprBuilder SxBuilder(Arena);
1013
til::SCFG *Scfg = SxBuilder.buildCFG(Walker);
1014
TILPrinter::print(Scfg, llvm::errs());
1015
}
1016
1017
} // namespace threadSafety
1018
} // namespace clang
1019
#endif // NDEBUG
1020
1021