Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/clang/lib/CodeGen/CGBuiltin.cpp
35233 views
1
//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This contains code to emit Builtin calls as LLVM code.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "ABIInfo.h"
14
#include "CGCUDARuntime.h"
15
#include "CGCXXABI.h"
16
#include "CGHLSLRuntime.h"
17
#include "CGObjCRuntime.h"
18
#include "CGOpenCLRuntime.h"
19
#include "CGRecordLayout.h"
20
#include "CodeGenFunction.h"
21
#include "CodeGenModule.h"
22
#include "ConstantEmitter.h"
23
#include "PatternInit.h"
24
#include "TargetInfo.h"
25
#include "clang/AST/ASTContext.h"
26
#include "clang/AST/Attr.h"
27
#include "clang/AST/Decl.h"
28
#include "clang/AST/OSLog.h"
29
#include "clang/AST/OperationKinds.h"
30
#include "clang/Basic/TargetBuiltins.h"
31
#include "clang/Basic/TargetInfo.h"
32
#include "clang/Basic/TargetOptions.h"
33
#include "clang/CodeGen/CGFunctionInfo.h"
34
#include "clang/Frontend/FrontendDiagnostic.h"
35
#include "llvm/ADT/APFloat.h"
36
#include "llvm/ADT/APInt.h"
37
#include "llvm/ADT/FloatingPointMode.h"
38
#include "llvm/ADT/SmallPtrSet.h"
39
#include "llvm/ADT/StringExtras.h"
40
#include "llvm/Analysis/ValueTracking.h"
41
#include "llvm/IR/DataLayout.h"
42
#include "llvm/IR/InlineAsm.h"
43
#include "llvm/IR/Intrinsics.h"
44
#include "llvm/IR/IntrinsicsAArch64.h"
45
#include "llvm/IR/IntrinsicsAMDGPU.h"
46
#include "llvm/IR/IntrinsicsARM.h"
47
#include "llvm/IR/IntrinsicsBPF.h"
48
#include "llvm/IR/IntrinsicsDirectX.h"
49
#include "llvm/IR/IntrinsicsHexagon.h"
50
#include "llvm/IR/IntrinsicsNVPTX.h"
51
#include "llvm/IR/IntrinsicsPowerPC.h"
52
#include "llvm/IR/IntrinsicsR600.h"
53
#include "llvm/IR/IntrinsicsRISCV.h"
54
#include "llvm/IR/IntrinsicsS390.h"
55
#include "llvm/IR/IntrinsicsVE.h"
56
#include "llvm/IR/IntrinsicsWebAssembly.h"
57
#include "llvm/IR/IntrinsicsX86.h"
58
#include "llvm/IR/MDBuilder.h"
59
#include "llvm/IR/MatrixBuilder.h"
60
#include "llvm/IR/MemoryModelRelaxationAnnotations.h"
61
#include "llvm/Support/ConvertUTF.h"
62
#include "llvm/Support/MathExtras.h"
63
#include "llvm/Support/ScopedPrinter.h"
64
#include "llvm/TargetParser/AArch64TargetParser.h"
65
#include "llvm/TargetParser/X86TargetParser.h"
66
#include <optional>
67
#include <sstream>
68
69
using namespace clang;
70
using namespace CodeGen;
71
using namespace llvm;
72
73
static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size,
74
Align AlignmentInBytes) {
75
ConstantInt *Byte;
76
switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
77
case LangOptions::TrivialAutoVarInitKind::Uninitialized:
78
// Nothing to initialize.
79
return;
80
case LangOptions::TrivialAutoVarInitKind::Zero:
81
Byte = CGF.Builder.getInt8(0x00);
82
break;
83
case LangOptions::TrivialAutoVarInitKind::Pattern: {
84
llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
85
Byte = llvm::dyn_cast<llvm::ConstantInt>(
86
initializationPatternFor(CGF.CGM, Int8));
87
break;
88
}
89
}
90
if (CGF.CGM.stopAutoInit())
91
return;
92
auto *I = CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
93
I->addAnnotationMetadata("auto-init");
94
}
95
96
/// getBuiltinLibFunction - Given a builtin id for a function like
97
/// "__builtin_fabsf", return a Function* for "fabsf".
98
llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
99
unsigned BuiltinID) {
100
assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
101
102
// Get the name, skip over the __builtin_ prefix (if necessary).
103
StringRef Name;
104
GlobalDecl D(FD);
105
106
// TODO: This list should be expanded or refactored after all GCC-compatible
107
// std libcall builtins are implemented.
108
static SmallDenseMap<unsigned, StringRef, 64> F128Builtins{
109
{Builtin::BI__builtin___fprintf_chk, "__fprintf_chkieee128"},
110
{Builtin::BI__builtin___printf_chk, "__printf_chkieee128"},
111
{Builtin::BI__builtin___snprintf_chk, "__snprintf_chkieee128"},
112
{Builtin::BI__builtin___sprintf_chk, "__sprintf_chkieee128"},
113
{Builtin::BI__builtin___vfprintf_chk, "__vfprintf_chkieee128"},
114
{Builtin::BI__builtin___vprintf_chk, "__vprintf_chkieee128"},
115
{Builtin::BI__builtin___vsnprintf_chk, "__vsnprintf_chkieee128"},
116
{Builtin::BI__builtin___vsprintf_chk, "__vsprintf_chkieee128"},
117
{Builtin::BI__builtin_fprintf, "__fprintfieee128"},
118
{Builtin::BI__builtin_printf, "__printfieee128"},
119
{Builtin::BI__builtin_snprintf, "__snprintfieee128"},
120
{Builtin::BI__builtin_sprintf, "__sprintfieee128"},
121
{Builtin::BI__builtin_vfprintf, "__vfprintfieee128"},
122
{Builtin::BI__builtin_vprintf, "__vprintfieee128"},
123
{Builtin::BI__builtin_vsnprintf, "__vsnprintfieee128"},
124
{Builtin::BI__builtin_vsprintf, "__vsprintfieee128"},
125
{Builtin::BI__builtin_fscanf, "__fscanfieee128"},
126
{Builtin::BI__builtin_scanf, "__scanfieee128"},
127
{Builtin::BI__builtin_sscanf, "__sscanfieee128"},
128
{Builtin::BI__builtin_vfscanf, "__vfscanfieee128"},
129
{Builtin::BI__builtin_vscanf, "__vscanfieee128"},
130
{Builtin::BI__builtin_vsscanf, "__vsscanfieee128"},
131
{Builtin::BI__builtin_nexttowardf128, "__nexttowardieee128"},
132
};
133
134
// The AIX library functions frexpl, ldexpl, and modfl are for 128-bit
135
// IBM 'long double' (i.e. __ibm128). Map to the 'double' versions
136
// if it is 64-bit 'long double' mode.
137
static SmallDenseMap<unsigned, StringRef, 4> AIXLongDouble64Builtins{
138
{Builtin::BI__builtin_frexpl, "frexp"},
139
{Builtin::BI__builtin_ldexpl, "ldexp"},
140
{Builtin::BI__builtin_modfl, "modf"},
141
};
142
143
// If the builtin has been declared explicitly with an assembler label,
144
// use the mangled name. This differs from the plain label on platforms
145
// that prefix labels.
146
if (FD->hasAttr<AsmLabelAttr>())
147
Name = getMangledName(D);
148
else {
149
// TODO: This mutation should also be applied to other targets other than
150
// PPC, after backend supports IEEE 128-bit style libcalls.
151
if (getTriple().isPPC64() &&
152
&getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad() &&
153
F128Builtins.contains(BuiltinID))
154
Name = F128Builtins[BuiltinID];
155
else if (getTriple().isOSAIX() &&
156
&getTarget().getLongDoubleFormat() ==
157
&llvm::APFloat::IEEEdouble() &&
158
AIXLongDouble64Builtins.contains(BuiltinID))
159
Name = AIXLongDouble64Builtins[BuiltinID];
160
else
161
Name = Context.BuiltinInfo.getName(BuiltinID).substr(10);
162
}
163
164
llvm::FunctionType *Ty =
165
cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
166
167
return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
168
}
169
170
/// Emit the conversions required to turn the given value into an
171
/// integer of the given size.
172
static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
173
QualType T, llvm::IntegerType *IntType) {
174
V = CGF.EmitToMemory(V, T);
175
176
if (V->getType()->isPointerTy())
177
return CGF.Builder.CreatePtrToInt(V, IntType);
178
179
assert(V->getType() == IntType);
180
return V;
181
}
182
183
static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
184
QualType T, llvm::Type *ResultType) {
185
V = CGF.EmitFromMemory(V, T);
186
187
if (ResultType->isPointerTy())
188
return CGF.Builder.CreateIntToPtr(V, ResultType);
189
190
assert(V->getType() == ResultType);
191
return V;
192
}
193
194
static Address CheckAtomicAlignment(CodeGenFunction &CGF, const CallExpr *E) {
195
ASTContext &Ctx = CGF.getContext();
196
Address Ptr = CGF.EmitPointerWithAlignment(E->getArg(0));
197
unsigned Bytes = Ptr.getElementType()->isPointerTy()
198
? Ctx.getTypeSizeInChars(Ctx.VoidPtrTy).getQuantity()
199
: Ptr.getElementType()->getScalarSizeInBits() / 8;
200
unsigned Align = Ptr.getAlignment().getQuantity();
201
if (Align % Bytes != 0) {
202
DiagnosticsEngine &Diags = CGF.CGM.getDiags();
203
Diags.Report(E->getBeginLoc(), diag::warn_sync_op_misaligned);
204
// Force address to be at least naturally-aligned.
205
return Ptr.withAlignment(CharUnits::fromQuantity(Bytes));
206
}
207
return Ptr;
208
}
209
210
/// Utility to insert an atomic instruction based on Intrinsic::ID
211
/// and the expression node.
212
static Value *MakeBinaryAtomicValue(
213
CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
214
AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
215
216
QualType T = E->getType();
217
assert(E->getArg(0)->getType()->isPointerType());
218
assert(CGF.getContext().hasSameUnqualifiedType(T,
219
E->getArg(0)->getType()->getPointeeType()));
220
assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
221
222
Address DestAddr = CheckAtomicAlignment(CGF, E);
223
224
llvm::IntegerType *IntType = llvm::IntegerType::get(
225
CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
226
227
llvm::Value *Val = CGF.EmitScalarExpr(E->getArg(1));
228
llvm::Type *ValueType = Val->getType();
229
Val = EmitToInt(CGF, Val, T, IntType);
230
231
llvm::Value *Result =
232
CGF.Builder.CreateAtomicRMW(Kind, DestAddr, Val, Ordering);
233
return EmitFromInt(CGF, Result, T, ValueType);
234
}
235
236
static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
237
Value *Val = CGF.EmitScalarExpr(E->getArg(0));
238
Address Addr = CGF.EmitPointerWithAlignment(E->getArg(1));
239
240
Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
241
LValue LV = CGF.MakeAddrLValue(Addr, E->getArg(0)->getType());
242
LV.setNontemporal(true);
243
CGF.EmitStoreOfScalar(Val, LV, false);
244
return nullptr;
245
}
246
247
static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
248
Address Addr = CGF.EmitPointerWithAlignment(E->getArg(0));
249
250
LValue LV = CGF.MakeAddrLValue(Addr, E->getType());
251
LV.setNontemporal(true);
252
return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
253
}
254
255
static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
256
llvm::AtomicRMWInst::BinOp Kind,
257
const CallExpr *E) {
258
return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
259
}
260
261
/// Utility to insert an atomic instruction based Intrinsic::ID and
262
/// the expression node, where the return value is the result of the
263
/// operation.
264
static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
265
llvm::AtomicRMWInst::BinOp Kind,
266
const CallExpr *E,
267
Instruction::BinaryOps Op,
268
bool Invert = false) {
269
QualType T = E->getType();
270
assert(E->getArg(0)->getType()->isPointerType());
271
assert(CGF.getContext().hasSameUnqualifiedType(T,
272
E->getArg(0)->getType()->getPointeeType()));
273
assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
274
275
Address DestAddr = CheckAtomicAlignment(CGF, E);
276
277
llvm::IntegerType *IntType = llvm::IntegerType::get(
278
CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
279
280
llvm::Value *Val = CGF.EmitScalarExpr(E->getArg(1));
281
llvm::Type *ValueType = Val->getType();
282
Val = EmitToInt(CGF, Val, T, IntType);
283
284
llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
285
Kind, DestAddr, Val, llvm::AtomicOrdering::SequentiallyConsistent);
286
Result = CGF.Builder.CreateBinOp(Op, Result, Val);
287
if (Invert)
288
Result =
289
CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
290
llvm::ConstantInt::getAllOnesValue(IntType));
291
Result = EmitFromInt(CGF, Result, T, ValueType);
292
return RValue::get(Result);
293
}
294
295
/// Utility to insert an atomic cmpxchg instruction.
296
///
297
/// @param CGF The current codegen function.
298
/// @param E Builtin call expression to convert to cmpxchg.
299
/// arg0 - address to operate on
300
/// arg1 - value to compare with
301
/// arg2 - new value
302
/// @param ReturnBool Specifies whether to return success flag of
303
/// cmpxchg result or the old value.
304
///
305
/// @returns result of cmpxchg, according to ReturnBool
306
///
307
/// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
308
/// invoke the function EmitAtomicCmpXchgForMSIntrin.
309
static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
310
bool ReturnBool) {
311
QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
312
Address DestAddr = CheckAtomicAlignment(CGF, E);
313
314
llvm::IntegerType *IntType = llvm::IntegerType::get(
315
CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
316
317
Value *Cmp = CGF.EmitScalarExpr(E->getArg(1));
318
llvm::Type *ValueType = Cmp->getType();
319
Cmp = EmitToInt(CGF, Cmp, T, IntType);
320
Value *New = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
321
322
Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
323
DestAddr, Cmp, New, llvm::AtomicOrdering::SequentiallyConsistent,
324
llvm::AtomicOrdering::SequentiallyConsistent);
325
if (ReturnBool)
326
// Extract boolean success flag and zext it to int.
327
return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
328
CGF.ConvertType(E->getType()));
329
else
330
// Extract old value and emit it using the same type as compare value.
331
return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
332
ValueType);
333
}
334
335
/// This function should be invoked to emit atomic cmpxchg for Microsoft's
336
/// _InterlockedCompareExchange* intrinsics which have the following signature:
337
/// T _InterlockedCompareExchange(T volatile *Destination,
338
/// T Exchange,
339
/// T Comparand);
340
///
341
/// Whereas the llvm 'cmpxchg' instruction has the following syntax:
342
/// cmpxchg *Destination, Comparand, Exchange.
343
/// So we need to swap Comparand and Exchange when invoking
344
/// CreateAtomicCmpXchg. That is the reason we could not use the above utility
345
/// function MakeAtomicCmpXchgValue since it expects the arguments to be
346
/// already swapped.
347
348
static
349
Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
350
AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
351
assert(E->getArg(0)->getType()->isPointerType());
352
assert(CGF.getContext().hasSameUnqualifiedType(
353
E->getType(), E->getArg(0)->getType()->getPointeeType()));
354
assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
355
E->getArg(1)->getType()));
356
assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
357
E->getArg(2)->getType()));
358
359
Address DestAddr = CheckAtomicAlignment(CGF, E);
360
361
auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
362
auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
363
364
// For Release ordering, the failure ordering should be Monotonic.
365
auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
366
AtomicOrdering::Monotonic :
367
SuccessOrdering;
368
369
// The atomic instruction is marked volatile for consistency with MSVC. This
370
// blocks the few atomics optimizations that LLVM has. If we want to optimize
371
// _Interlocked* operations in the future, we will have to remove the volatile
372
// marker.
373
auto *Result = CGF.Builder.CreateAtomicCmpXchg(
374
DestAddr, Comparand, Exchange, SuccessOrdering, FailureOrdering);
375
Result->setVolatile(true);
376
return CGF.Builder.CreateExtractValue(Result, 0);
377
}
378
379
// 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are
380
// prototyped like this:
381
//
382
// unsigned char _InterlockedCompareExchange128...(
383
// __int64 volatile * _Destination,
384
// __int64 _ExchangeHigh,
385
// __int64 _ExchangeLow,
386
// __int64 * _ComparandResult);
387
//
388
// Note that Destination is assumed to be at least 16-byte aligned, despite
389
// being typed int64.
390
391
static Value *EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction &CGF,
392
const CallExpr *E,
393
AtomicOrdering SuccessOrdering) {
394
assert(E->getNumArgs() == 4);
395
llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
396
llvm::Value *ExchangeHigh = CGF.EmitScalarExpr(E->getArg(1));
397
llvm::Value *ExchangeLow = CGF.EmitScalarExpr(E->getArg(2));
398
Address ComparandAddr = CGF.EmitPointerWithAlignment(E->getArg(3));
399
400
assert(DestPtr->getType()->isPointerTy());
401
assert(!ExchangeHigh->getType()->isPointerTy());
402
assert(!ExchangeLow->getType()->isPointerTy());
403
404
// For Release ordering, the failure ordering should be Monotonic.
405
auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release
406
? AtomicOrdering::Monotonic
407
: SuccessOrdering;
408
409
// Convert to i128 pointers and values. Alignment is also overridden for
410
// destination pointer.
411
llvm::Type *Int128Ty = llvm::IntegerType::get(CGF.getLLVMContext(), 128);
412
Address DestAddr(DestPtr, Int128Ty,
413
CGF.getContext().toCharUnitsFromBits(128));
414
ComparandAddr = ComparandAddr.withElementType(Int128Ty);
415
416
// (((i128)hi) << 64) | ((i128)lo)
417
ExchangeHigh = CGF.Builder.CreateZExt(ExchangeHigh, Int128Ty);
418
ExchangeLow = CGF.Builder.CreateZExt(ExchangeLow, Int128Ty);
419
ExchangeHigh =
420
CGF.Builder.CreateShl(ExchangeHigh, llvm::ConstantInt::get(Int128Ty, 64));
421
llvm::Value *Exchange = CGF.Builder.CreateOr(ExchangeHigh, ExchangeLow);
422
423
// Load the comparand for the instruction.
424
llvm::Value *Comparand = CGF.Builder.CreateLoad(ComparandAddr);
425
426
auto *CXI = CGF.Builder.CreateAtomicCmpXchg(DestAddr, Comparand, Exchange,
427
SuccessOrdering, FailureOrdering);
428
429
// The atomic instruction is marked volatile for consistency with MSVC. This
430
// blocks the few atomics optimizations that LLVM has. If we want to optimize
431
// _Interlocked* operations in the future, we will have to remove the volatile
432
// marker.
433
CXI->setVolatile(true);
434
435
// Store the result as an outparameter.
436
CGF.Builder.CreateStore(CGF.Builder.CreateExtractValue(CXI, 0),
437
ComparandAddr);
438
439
// Get the success boolean and zero extend it to i8.
440
Value *Success = CGF.Builder.CreateExtractValue(CXI, 1);
441
return CGF.Builder.CreateZExt(Success, CGF.Int8Ty);
442
}
443
444
static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
445
AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
446
assert(E->getArg(0)->getType()->isPointerType());
447
448
auto *IntTy = CGF.ConvertType(E->getType());
449
Address DestAddr = CheckAtomicAlignment(CGF, E);
450
auto *Result = CGF.Builder.CreateAtomicRMW(
451
AtomicRMWInst::Add, DestAddr, ConstantInt::get(IntTy, 1), Ordering);
452
return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
453
}
454
455
static Value *EmitAtomicDecrementValue(
456
CodeGenFunction &CGF, const CallExpr *E,
457
AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
458
assert(E->getArg(0)->getType()->isPointerType());
459
460
auto *IntTy = CGF.ConvertType(E->getType());
461
Address DestAddr = CheckAtomicAlignment(CGF, E);
462
auto *Result = CGF.Builder.CreateAtomicRMW(
463
AtomicRMWInst::Sub, DestAddr, ConstantInt::get(IntTy, 1), Ordering);
464
return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
465
}
466
467
// Build a plain volatile load.
468
static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
469
Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
470
QualType ElTy = E->getArg(0)->getType()->getPointeeType();
471
CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
472
llvm::Type *ITy =
473
llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
474
llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(ITy, Ptr, LoadSize);
475
Load->setVolatile(true);
476
return Load;
477
}
478
479
// Build a plain volatile store.
480
static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
481
Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
482
Value *Value = CGF.EmitScalarExpr(E->getArg(1));
483
QualType ElTy = E->getArg(0)->getType()->getPointeeType();
484
CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
485
llvm::StoreInst *Store =
486
CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
487
Store->setVolatile(true);
488
return Store;
489
}
490
491
// Emit a simple mangled intrinsic that has 1 argument and a return type
492
// matching the argument type. Depending on mode, this may be a constrained
493
// floating-point intrinsic.
494
static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
495
const CallExpr *E, unsigned IntrinsicID,
496
unsigned ConstrainedIntrinsicID) {
497
llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
498
499
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
500
if (CGF.Builder.getIsFPConstrained()) {
501
Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
502
return CGF.Builder.CreateConstrainedFPCall(F, { Src0 });
503
} else {
504
Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
505
return CGF.Builder.CreateCall(F, Src0);
506
}
507
}
508
509
// Emit an intrinsic that has 2 operands of the same type as its result.
510
// Depending on mode, this may be a constrained floating-point intrinsic.
511
static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
512
const CallExpr *E, unsigned IntrinsicID,
513
unsigned ConstrainedIntrinsicID) {
514
llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
515
llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
516
517
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
518
if (CGF.Builder.getIsFPConstrained()) {
519
Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
520
return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 });
521
} else {
522
Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
523
return CGF.Builder.CreateCall(F, { Src0, Src1 });
524
}
525
}
526
527
// Has second type mangled argument.
528
static Value *emitBinaryExpMaybeConstrainedFPBuiltin(
529
CodeGenFunction &CGF, const CallExpr *E, llvm::Intrinsic::ID IntrinsicID,
530
llvm::Intrinsic::ID ConstrainedIntrinsicID) {
531
llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
532
llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
533
534
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
535
if (CGF.Builder.getIsFPConstrained()) {
536
Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID,
537
{Src0->getType(), Src1->getType()});
538
return CGF.Builder.CreateConstrainedFPCall(F, {Src0, Src1});
539
}
540
541
Function *F =
542
CGF.CGM.getIntrinsic(IntrinsicID, {Src0->getType(), Src1->getType()});
543
return CGF.Builder.CreateCall(F, {Src0, Src1});
544
}
545
546
// Emit an intrinsic that has 3 operands of the same type as its result.
547
// Depending on mode, this may be a constrained floating-point intrinsic.
548
static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
549
const CallExpr *E, unsigned IntrinsicID,
550
unsigned ConstrainedIntrinsicID) {
551
llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
552
llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
553
llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
554
555
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
556
if (CGF.Builder.getIsFPConstrained()) {
557
Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
558
return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 });
559
} else {
560
Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
561
return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
562
}
563
}
564
565
// Emit an intrinsic where all operands are of the same type as the result.
566
// Depending on mode, this may be a constrained floating-point intrinsic.
567
static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
568
unsigned IntrinsicID,
569
unsigned ConstrainedIntrinsicID,
570
llvm::Type *Ty,
571
ArrayRef<Value *> Args) {
572
Function *F;
573
if (CGF.Builder.getIsFPConstrained())
574
F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty);
575
else
576
F = CGF.CGM.getIntrinsic(IntrinsicID, Ty);
577
578
if (CGF.Builder.getIsFPConstrained())
579
return CGF.Builder.CreateConstrainedFPCall(F, Args);
580
else
581
return CGF.Builder.CreateCall(F, Args);
582
}
583
584
// Emit a simple intrinsic that has N scalar arguments and a return type
585
// matching the argument type. It is assumed that only the first argument is
586
// overloaded.
587
template <unsigned N>
588
Value *emitBuiltinWithOneOverloadedType(CodeGenFunction &CGF, const CallExpr *E,
589
unsigned IntrinsicID,
590
llvm::StringRef Name = "") {
591
static_assert(N, "expect non-empty argument");
592
SmallVector<Value *, N> Args;
593
for (unsigned I = 0; I < N; ++I)
594
Args.push_back(CGF.EmitScalarExpr(E->getArg(I)));
595
Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Args[0]->getType());
596
return CGF.Builder.CreateCall(F, Args, Name);
597
}
598
599
// Emit an intrinsic that has 1 float or double operand, and 1 integer.
600
static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
601
const CallExpr *E,
602
unsigned IntrinsicID) {
603
llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
604
llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
605
606
Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
607
return CGF.Builder.CreateCall(F, {Src0, Src1});
608
}
609
610
// Emit an intrinsic that has overloaded integer result and fp operand.
611
static Value *
612
emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E,
613
unsigned IntrinsicID,
614
unsigned ConstrainedIntrinsicID) {
615
llvm::Type *ResultType = CGF.ConvertType(E->getType());
616
llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
617
618
if (CGF.Builder.getIsFPConstrained()) {
619
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
620
Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID,
621
{ResultType, Src0->getType()});
622
return CGF.Builder.CreateConstrainedFPCall(F, {Src0});
623
} else {
624
Function *F =
625
CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()});
626
return CGF.Builder.CreateCall(F, Src0);
627
}
628
}
629
630
static Value *emitFrexpBuiltin(CodeGenFunction &CGF, const CallExpr *E,
631
llvm::Intrinsic::ID IntrinsicID) {
632
llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
633
llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
634
635
QualType IntPtrTy = E->getArg(1)->getType()->getPointeeType();
636
llvm::Type *IntTy = CGF.ConvertType(IntPtrTy);
637
llvm::Function *F =
638
CGF.CGM.getIntrinsic(IntrinsicID, {Src0->getType(), IntTy});
639
llvm::Value *Call = CGF.Builder.CreateCall(F, Src0);
640
641
llvm::Value *Exp = CGF.Builder.CreateExtractValue(Call, 1);
642
LValue LV = CGF.MakeNaturalAlignAddrLValue(Src1, IntPtrTy);
643
CGF.EmitStoreOfScalar(Exp, LV);
644
645
return CGF.Builder.CreateExtractValue(Call, 0);
646
}
647
648
/// EmitFAbs - Emit a call to @llvm.fabs().
649
static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
650
Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
651
llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
652
Call->setDoesNotAccessMemory();
653
return Call;
654
}
655
656
/// Emit the computation of the sign bit for a floating point value. Returns
657
/// the i1 sign bit value.
658
static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
659
LLVMContext &C = CGF.CGM.getLLVMContext();
660
661
llvm::Type *Ty = V->getType();
662
int Width = Ty->getPrimitiveSizeInBits();
663
llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
664
V = CGF.Builder.CreateBitCast(V, IntTy);
665
if (Ty->isPPC_FP128Ty()) {
666
// We want the sign bit of the higher-order double. The bitcast we just
667
// did works as if the double-double was stored to memory and then
668
// read as an i128. The "store" will put the higher-order double in the
669
// lower address in both little- and big-Endian modes, but the "load"
670
// will treat those bits as a different part of the i128: the low bits in
671
// little-Endian, the high bits in big-Endian. Therefore, on big-Endian
672
// we need to shift the high bits down to the low before truncating.
673
Width >>= 1;
674
if (CGF.getTarget().isBigEndian()) {
675
Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
676
V = CGF.Builder.CreateLShr(V, ShiftCst);
677
}
678
// We are truncating value in order to extract the higher-order
679
// double, which we will be using to extract the sign from.
680
IntTy = llvm::IntegerType::get(C, Width);
681
V = CGF.Builder.CreateTrunc(V, IntTy);
682
}
683
Value *Zero = llvm::Constant::getNullValue(IntTy);
684
return CGF.Builder.CreateICmpSLT(V, Zero);
685
}
686
687
static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
688
const CallExpr *E, llvm::Constant *calleeValue) {
689
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
690
CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
691
RValue Call =
692
CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
693
694
// Check the supported intrinsic.
695
if (unsigned BuiltinID = FD->getBuiltinID()) {
696
auto IsErrnoIntrinsic = [&]() -> unsigned {
697
switch (BuiltinID) {
698
case Builtin::BIexpf:
699
case Builtin::BI__builtin_expf:
700
case Builtin::BI__builtin_expf128:
701
return true;
702
}
703
// TODO: support more FP math libcalls
704
return false;
705
}();
706
707
// Restrict to target with errno, for example, MacOS doesn't set errno.
708
if (IsErrnoIntrinsic && CGF.CGM.getLangOpts().MathErrno &&
709
!CGF.Builder.getIsFPConstrained()) {
710
ASTContext &Context = CGF.getContext();
711
// Emit "int" TBAA metadata on FP math libcalls.
712
clang::QualType IntTy = Context.IntTy;
713
TBAAAccessInfo TBAAInfo = CGF.CGM.getTBAAAccessInfo(IntTy);
714
Instruction *Inst = cast<llvm::Instruction>(Call.getScalarVal());
715
CGF.CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
716
}
717
}
718
return Call;
719
}
720
721
/// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
722
/// depending on IntrinsicID.
723
///
724
/// \arg CGF The current codegen function.
725
/// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
726
/// \arg X The first argument to the llvm.*.with.overflow.*.
727
/// \arg Y The second argument to the llvm.*.with.overflow.*.
728
/// \arg Carry The carry returned by the llvm.*.with.overflow.*.
729
/// \returns The result (i.e. sum/product) returned by the intrinsic.
730
static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
731
const llvm::Intrinsic::ID IntrinsicID,
732
llvm::Value *X, llvm::Value *Y,
733
llvm::Value *&Carry) {
734
// Make sure we have integers of the same width.
735
assert(X->getType() == Y->getType() &&
736
"Arguments must be the same type. (Did you forget to make sure both "
737
"arguments have the same integer width?)");
738
739
Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
740
llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
741
Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
742
return CGF.Builder.CreateExtractValue(Tmp, 0);
743
}
744
745
static Value *emitRangedBuiltin(CodeGenFunction &CGF, unsigned IntrinsicID,
746
int low, int high) {
747
Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
748
llvm::CallInst *Call = CGF.Builder.CreateCall(F);
749
llvm::ConstantRange CR(APInt(32, low), APInt(32, high));
750
Call->addRangeRetAttr(CR);
751
Call->addRetAttr(llvm::Attribute::AttrKind::NoUndef);
752
return Call;
753
}
754
755
namespace {
756
struct WidthAndSignedness {
757
unsigned Width;
758
bool Signed;
759
};
760
}
761
762
static WidthAndSignedness
763
getIntegerWidthAndSignedness(const clang::ASTContext &context,
764
const clang::QualType Type) {
765
assert(Type->isIntegerType() && "Given type is not an integer.");
766
unsigned Width = Type->isBooleanType() ? 1
767
: Type->isBitIntType() ? context.getIntWidth(Type)
768
: context.getTypeInfo(Type).Width;
769
bool Signed = Type->isSignedIntegerType();
770
return {Width, Signed};
771
}
772
773
// Given one or more integer types, this function produces an integer type that
774
// encompasses them: any value in one of the given types could be expressed in
775
// the encompassing type.
776
static struct WidthAndSignedness
777
EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
778
assert(Types.size() > 0 && "Empty list of types.");
779
780
// If any of the given types is signed, we must return a signed type.
781
bool Signed = false;
782
for (const auto &Type : Types) {
783
Signed |= Type.Signed;
784
}
785
786
// The encompassing type must have a width greater than or equal to the width
787
// of the specified types. Additionally, if the encompassing type is signed,
788
// its width must be strictly greater than the width of any unsigned types
789
// given.
790
unsigned Width = 0;
791
for (const auto &Type : Types) {
792
unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
793
if (Width < MinWidth) {
794
Width = MinWidth;
795
}
796
}
797
798
return {Width, Signed};
799
}
800
801
Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
802
Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
803
return Builder.CreateCall(CGM.getIntrinsic(inst, {ArgValue->getType()}),
804
ArgValue);
805
}
806
807
/// Checks if using the result of __builtin_object_size(p, @p From) in place of
808
/// __builtin_object_size(p, @p To) is correct
809
static bool areBOSTypesCompatible(int From, int To) {
810
// Note: Our __builtin_object_size implementation currently treats Type=0 and
811
// Type=2 identically. Encoding this implementation detail here may make
812
// improving __builtin_object_size difficult in the future, so it's omitted.
813
return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
814
}
815
816
static llvm::Value *
817
getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
818
return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
819
}
820
821
llvm::Value *
822
CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
823
llvm::IntegerType *ResType,
824
llvm::Value *EmittedE,
825
bool IsDynamic) {
826
uint64_t ObjectSize;
827
if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
828
return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
829
return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
830
}
831
832
const FieldDecl *CodeGenFunction::FindFlexibleArrayMemberFieldAndOffset(
833
ASTContext &Ctx, const RecordDecl *RD, const FieldDecl *FAMDecl,
834
uint64_t &Offset) {
835
const LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel =
836
getLangOpts().getStrictFlexArraysLevel();
837
uint32_t FieldNo = 0;
838
839
if (RD->isImplicit())
840
return nullptr;
841
842
for (const FieldDecl *FD : RD->fields()) {
843
if ((!FAMDecl || FD == FAMDecl) &&
844
Decl::isFlexibleArrayMemberLike(
845
Ctx, FD, FD->getType(), StrictFlexArraysLevel,
846
/*IgnoreTemplateOrMacroSubstitution=*/true)) {
847
const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(RD);
848
Offset += Layout.getFieldOffset(FieldNo);
849
return FD;
850
}
851
852
QualType Ty = FD->getType();
853
if (Ty->isRecordType()) {
854
if (const FieldDecl *Field = FindFlexibleArrayMemberFieldAndOffset(
855
Ctx, Ty->getAsRecordDecl(), FAMDecl, Offset)) {
856
const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(RD);
857
Offset += Layout.getFieldOffset(FieldNo);
858
return Field;
859
}
860
}
861
862
if (!RD->isUnion())
863
++FieldNo;
864
}
865
866
return nullptr;
867
}
868
869
static unsigned CountCountedByAttrs(const RecordDecl *RD) {
870
unsigned Num = 0;
871
872
for (const FieldDecl *FD : RD->fields()) {
873
if (FD->getType()->isCountAttributedType())
874
return ++Num;
875
876
QualType Ty = FD->getType();
877
if (Ty->isRecordType())
878
Num += CountCountedByAttrs(Ty->getAsRecordDecl());
879
}
880
881
return Num;
882
}
883
884
llvm::Value *
885
CodeGenFunction::emitFlexibleArrayMemberSize(const Expr *E, unsigned Type,
886
llvm::IntegerType *ResType) {
887
// The code generated here calculates the size of a struct with a flexible
888
// array member that uses the counted_by attribute. There are two instances
889
// we handle:
890
//
891
// struct s {
892
// unsigned long flags;
893
// int count;
894
// int array[] __attribute__((counted_by(count)));
895
// }
896
//
897
// 1) bdos of the flexible array itself:
898
//
899
// __builtin_dynamic_object_size(p->array, 1) ==
900
// p->count * sizeof(*p->array)
901
//
902
// 2) bdos of a pointer into the flexible array:
903
//
904
// __builtin_dynamic_object_size(&p->array[42], 1) ==
905
// (p->count - 42) * sizeof(*p->array)
906
//
907
// 2) bdos of the whole struct, including the flexible array:
908
//
909
// __builtin_dynamic_object_size(p, 1) ==
910
// max(sizeof(struct s),
911
// offsetof(struct s, array) + p->count * sizeof(*p->array))
912
//
913
ASTContext &Ctx = getContext();
914
const Expr *Base = E->IgnoreParenImpCasts();
915
const Expr *Idx = nullptr;
916
917
if (const auto *UO = dyn_cast<UnaryOperator>(Base);
918
UO && UO->getOpcode() == UO_AddrOf) {
919
Expr *SubExpr = UO->getSubExpr()->IgnoreParenImpCasts();
920
if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(SubExpr)) {
921
Base = ASE->getBase()->IgnoreParenImpCasts();
922
Idx = ASE->getIdx()->IgnoreParenImpCasts();
923
924
if (const auto *IL = dyn_cast<IntegerLiteral>(Idx)) {
925
int64_t Val = IL->getValue().getSExtValue();
926
if (Val < 0)
927
return getDefaultBuiltinObjectSizeResult(Type, ResType);
928
929
if (Val == 0)
930
// The index is 0, so we don't need to take it into account.
931
Idx = nullptr;
932
}
933
} else {
934
// Potential pointer to another element in the struct.
935
Base = SubExpr;
936
}
937
}
938
939
// Get the flexible array member Decl.
940
const RecordDecl *OuterRD = nullptr;
941
const FieldDecl *FAMDecl = nullptr;
942
if (const auto *ME = dyn_cast<MemberExpr>(Base)) {
943
// Check if \p Base is referencing the FAM itself.
944
const ValueDecl *VD = ME->getMemberDecl();
945
OuterRD = VD->getDeclContext()->getOuterLexicalRecordContext();
946
FAMDecl = dyn_cast<FieldDecl>(VD);
947
if (!FAMDecl)
948
return nullptr;
949
} else if (const auto *DRE = dyn_cast<DeclRefExpr>(Base)) {
950
// Check if we're pointing to the whole struct.
951
QualType Ty = DRE->getDecl()->getType();
952
if (Ty->isPointerType())
953
Ty = Ty->getPointeeType();
954
OuterRD = Ty->getAsRecordDecl();
955
956
// If we have a situation like this:
957
//
958
// struct union_of_fams {
959
// int flags;
960
// union {
961
// signed char normal_field;
962
// struct {
963
// int count1;
964
// int arr1[] __counted_by(count1);
965
// };
966
// struct {
967
// signed char count2;
968
// int arr2[] __counted_by(count2);
969
// };
970
// };
971
// };
972
//
973
// We don't know which 'count' to use in this scenario:
974
//
975
// size_t get_size(struct union_of_fams *p) {
976
// return __builtin_dynamic_object_size(p, 1);
977
// }
978
//
979
// Instead of calculating a wrong number, we give up.
980
if (OuterRD && CountCountedByAttrs(OuterRD) > 1)
981
return nullptr;
982
}
983
984
if (!OuterRD)
985
return nullptr;
986
987
// We call FindFlexibleArrayMemberAndOffset even if FAMDecl is non-null to
988
// get its offset.
989
uint64_t Offset = 0;
990
FAMDecl =
991
FindFlexibleArrayMemberFieldAndOffset(Ctx, OuterRD, FAMDecl, Offset);
992
Offset = Ctx.toCharUnitsFromBits(Offset).getQuantity();
993
994
if (!FAMDecl || !FAMDecl->getType()->isCountAttributedType())
995
// No flexible array member found or it doesn't have the "counted_by"
996
// attribute.
997
return nullptr;
998
999
const FieldDecl *CountedByFD = FindCountedByField(FAMDecl);
1000
if (!CountedByFD)
1001
// Can't find the field referenced by the "counted_by" attribute.
1002
return nullptr;
1003
1004
if (isa<DeclRefExpr>(Base))
1005
// The whole struct is specificed in the __bdos. The calculation of the
1006
// whole size of the structure can be done in two ways:
1007
//
1008
// 1) sizeof(struct S) + count * sizeof(typeof(fam))
1009
// 2) offsetof(struct S, fam) + count * sizeof(typeof(fam))
1010
//
1011
// The first will add additional padding after the end of the array,
1012
// allocation while the second method is more precise, but not quite
1013
// expected from programmers. See
1014
// https://lore.kernel.org/lkml/ZvV6X5FPBBW7CO1f@archlinux/ for a
1015
// discussion of the topic.
1016
//
1017
// GCC isn't (currently) able to calculate __bdos on a pointer to the whole
1018
// structure. Therefore, because of the above issue, we'll choose to match
1019
// what GCC does for consistency's sake.
1020
return nullptr;
1021
1022
// Build a load of the counted_by field.
1023
bool IsSigned = CountedByFD->getType()->isSignedIntegerType();
1024
Value *CountedByInst = EmitCountedByFieldExpr(Base, FAMDecl, CountedByFD);
1025
if (!CountedByInst)
1026
return getDefaultBuiltinObjectSizeResult(Type, ResType);
1027
1028
CountedByInst = Builder.CreateIntCast(CountedByInst, ResType, IsSigned);
1029
1030
// Build a load of the index and subtract it from the count.
1031
Value *IdxInst = nullptr;
1032
if (Idx) {
1033
if (Idx->HasSideEffects(getContext()))
1034
// We can't have side-effects.
1035
return getDefaultBuiltinObjectSizeResult(Type, ResType);
1036
1037
bool IdxSigned = Idx->getType()->isSignedIntegerType();
1038
IdxInst = EmitAnyExprToTemp(Idx).getScalarVal();
1039
IdxInst = Builder.CreateIntCast(IdxInst, ResType, IdxSigned);
1040
1041
// We go ahead with the calculation here. If the index turns out to be
1042
// negative, we'll catch it at the end.
1043
CountedByInst =
1044
Builder.CreateSub(CountedByInst, IdxInst, "", !IsSigned, IsSigned);
1045
}
1046
1047
// Calculate how large the flexible array member is in bytes.
1048
const ArrayType *ArrayTy = Ctx.getAsArrayType(FAMDecl->getType());
1049
CharUnits Size = Ctx.getTypeSizeInChars(ArrayTy->getElementType());
1050
llvm::Constant *ElemSize =
1051
llvm::ConstantInt::get(ResType, Size.getQuantity(), IsSigned);
1052
Value *Res =
1053
Builder.CreateMul(CountedByInst, ElemSize, "", !IsSigned, IsSigned);
1054
Res = Builder.CreateIntCast(Res, ResType, IsSigned);
1055
1056
// A negative \p IdxInst or \p CountedByInst means that the index lands
1057
// outside of the flexible array member. If that's the case, we want to
1058
// return 0.
1059
Value *Cmp = Builder.CreateIsNotNeg(CountedByInst);
1060
if (IdxInst)
1061
Cmp = Builder.CreateAnd(Builder.CreateIsNotNeg(IdxInst), Cmp);
1062
1063
return Builder.CreateSelect(Cmp, Res, ConstantInt::get(ResType, 0, IsSigned));
1064
}
1065
1066
/// Returns a Value corresponding to the size of the given expression.
1067
/// This Value may be either of the following:
1068
/// - A llvm::Argument (if E is a param with the pass_object_size attribute on
1069
/// it)
1070
/// - A call to the @llvm.objectsize intrinsic
1071
///
1072
/// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
1073
/// and we wouldn't otherwise try to reference a pass_object_size parameter,
1074
/// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
1075
llvm::Value *
1076
CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
1077
llvm::IntegerType *ResType,
1078
llvm::Value *EmittedE, bool IsDynamic) {
1079
// We need to reference an argument if the pointer is a parameter with the
1080
// pass_object_size attribute.
1081
if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
1082
auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
1083
auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
1084
if (Param != nullptr && PS != nullptr &&
1085
areBOSTypesCompatible(PS->getType(), Type)) {
1086
auto Iter = SizeArguments.find(Param);
1087
assert(Iter != SizeArguments.end());
1088
1089
const ImplicitParamDecl *D = Iter->second;
1090
auto DIter = LocalDeclMap.find(D);
1091
assert(DIter != LocalDeclMap.end());
1092
1093
return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
1094
getContext().getSizeType(), E->getBeginLoc());
1095
}
1096
}
1097
1098
if (IsDynamic) {
1099
// Emit special code for a flexible array member with the "counted_by"
1100
// attribute.
1101
if (Value *V = emitFlexibleArrayMemberSize(E, Type, ResType))
1102
return V;
1103
}
1104
1105
// LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
1106
// evaluate E for side-effects. In either case, we shouldn't lower to
1107
// @llvm.objectsize.
1108
if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
1109
return getDefaultBuiltinObjectSizeResult(Type, ResType);
1110
1111
Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
1112
assert(Ptr->getType()->isPointerTy() &&
1113
"Non-pointer passed to __builtin_object_size?");
1114
1115
Function *F =
1116
CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
1117
1118
// LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
1119
Value *Min = Builder.getInt1((Type & 2) != 0);
1120
// For GCC compatibility, __builtin_object_size treat NULL as unknown size.
1121
Value *NullIsUnknown = Builder.getTrue();
1122
Value *Dynamic = Builder.getInt1(IsDynamic);
1123
return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
1124
}
1125
1126
namespace {
1127
/// A struct to generically describe a bit test intrinsic.
1128
struct BitTest {
1129
enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
1130
enum InterlockingKind : uint8_t {
1131
Unlocked,
1132
Sequential,
1133
Acquire,
1134
Release,
1135
NoFence
1136
};
1137
1138
ActionKind Action;
1139
InterlockingKind Interlocking;
1140
bool Is64Bit;
1141
1142
static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
1143
};
1144
1145
} // namespace
1146
1147
BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
1148
switch (BuiltinID) {
1149
// Main portable variants.
1150
case Builtin::BI_bittest:
1151
return {TestOnly, Unlocked, false};
1152
case Builtin::BI_bittestandcomplement:
1153
return {Complement, Unlocked, false};
1154
case Builtin::BI_bittestandreset:
1155
return {Reset, Unlocked, false};
1156
case Builtin::BI_bittestandset:
1157
return {Set, Unlocked, false};
1158
case Builtin::BI_interlockedbittestandreset:
1159
return {Reset, Sequential, false};
1160
case Builtin::BI_interlockedbittestandset:
1161
return {Set, Sequential, false};
1162
1163
// X86-specific 64-bit variants.
1164
case Builtin::BI_bittest64:
1165
return {TestOnly, Unlocked, true};
1166
case Builtin::BI_bittestandcomplement64:
1167
return {Complement, Unlocked, true};
1168
case Builtin::BI_bittestandreset64:
1169
return {Reset, Unlocked, true};
1170
case Builtin::BI_bittestandset64:
1171
return {Set, Unlocked, true};
1172
case Builtin::BI_interlockedbittestandreset64:
1173
return {Reset, Sequential, true};
1174
case Builtin::BI_interlockedbittestandset64:
1175
return {Set, Sequential, true};
1176
1177
// ARM/AArch64-specific ordering variants.
1178
case Builtin::BI_interlockedbittestandset_acq:
1179
return {Set, Acquire, false};
1180
case Builtin::BI_interlockedbittestandset_rel:
1181
return {Set, Release, false};
1182
case Builtin::BI_interlockedbittestandset_nf:
1183
return {Set, NoFence, false};
1184
case Builtin::BI_interlockedbittestandreset_acq:
1185
return {Reset, Acquire, false};
1186
case Builtin::BI_interlockedbittestandreset_rel:
1187
return {Reset, Release, false};
1188
case Builtin::BI_interlockedbittestandreset_nf:
1189
return {Reset, NoFence, false};
1190
}
1191
llvm_unreachable("expected only bittest intrinsics");
1192
}
1193
1194
static char bitActionToX86BTCode(BitTest::ActionKind A) {
1195
switch (A) {
1196
case BitTest::TestOnly: return '\0';
1197
case BitTest::Complement: return 'c';
1198
case BitTest::Reset: return 'r';
1199
case BitTest::Set: return 's';
1200
}
1201
llvm_unreachable("invalid action");
1202
}
1203
1204
static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
1205
BitTest BT,
1206
const CallExpr *E, Value *BitBase,
1207
Value *BitPos) {
1208
char Action = bitActionToX86BTCode(BT.Action);
1209
char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
1210
1211
// Build the assembly.
1212
SmallString<64> Asm;
1213
raw_svector_ostream AsmOS(Asm);
1214
if (BT.Interlocking != BitTest::Unlocked)
1215
AsmOS << "lock ";
1216
AsmOS << "bt";
1217
if (Action)
1218
AsmOS << Action;
1219
AsmOS << SizeSuffix << " $2, ($1)";
1220
1221
// Build the constraints. FIXME: We should support immediates when possible.
1222
std::string Constraints = "={@ccc},r,r,~{cc},~{memory}";
1223
std::string_view MachineClobbers = CGF.getTarget().getClobbers();
1224
if (!MachineClobbers.empty()) {
1225
Constraints += ',';
1226
Constraints += MachineClobbers;
1227
}
1228
llvm::IntegerType *IntType = llvm::IntegerType::get(
1229
CGF.getLLVMContext(),
1230
CGF.getContext().getTypeSize(E->getArg(1)->getType()));
1231
llvm::FunctionType *FTy =
1232
llvm::FunctionType::get(CGF.Int8Ty, {CGF.UnqualPtrTy, IntType}, false);
1233
1234
llvm::InlineAsm *IA =
1235
llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1236
return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
1237
}
1238
1239
static llvm::AtomicOrdering
1240
getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
1241
switch (I) {
1242
case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic;
1243
case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
1244
case BitTest::Acquire: return llvm::AtomicOrdering::Acquire;
1245
case BitTest::Release: return llvm::AtomicOrdering::Release;
1246
case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic;
1247
}
1248
llvm_unreachable("invalid interlocking");
1249
}
1250
1251
/// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
1252
/// bits and a bit position and read and optionally modify the bit at that
1253
/// position. The position index can be arbitrarily large, i.e. it can be larger
1254
/// than 31 or 63, so we need an indexed load in the general case.
1255
static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
1256
unsigned BuiltinID,
1257
const CallExpr *E) {
1258
Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
1259
Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
1260
1261
BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
1262
1263
// X86 has special BT, BTC, BTR, and BTS instructions that handle the array
1264
// indexing operation internally. Use them if possible.
1265
if (CGF.getTarget().getTriple().isX86())
1266
return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
1267
1268
// Otherwise, use generic code to load one byte and test the bit. Use all but
1269
// the bottom three bits as the array index, and the bottom three bits to form
1270
// a mask.
1271
// Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
1272
Value *ByteIndex = CGF.Builder.CreateAShr(
1273
BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
1274
Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
1275
Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
1276
ByteIndex, "bittest.byteaddr"),
1277
CGF.Int8Ty, CharUnits::One());
1278
Value *PosLow =
1279
CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
1280
llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
1281
1282
// The updating instructions will need a mask.
1283
Value *Mask = nullptr;
1284
if (BT.Action != BitTest::TestOnly) {
1285
Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
1286
"bittest.mask");
1287
}
1288
1289
// Check the action and ordering of the interlocked intrinsics.
1290
llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
1291
1292
Value *OldByte = nullptr;
1293
if (Ordering != llvm::AtomicOrdering::NotAtomic) {
1294
// Emit a combined atomicrmw load/store operation for the interlocked
1295
// intrinsics.
1296
llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
1297
if (BT.Action == BitTest::Reset) {
1298
Mask = CGF.Builder.CreateNot(Mask);
1299
RMWOp = llvm::AtomicRMWInst::And;
1300
}
1301
OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr, Mask, Ordering);
1302
} else {
1303
// Emit a plain load for the non-interlocked intrinsics.
1304
OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
1305
Value *NewByte = nullptr;
1306
switch (BT.Action) {
1307
case BitTest::TestOnly:
1308
// Don't store anything.
1309
break;
1310
case BitTest::Complement:
1311
NewByte = CGF.Builder.CreateXor(OldByte, Mask);
1312
break;
1313
case BitTest::Reset:
1314
NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
1315
break;
1316
case BitTest::Set:
1317
NewByte = CGF.Builder.CreateOr(OldByte, Mask);
1318
break;
1319
}
1320
if (NewByte)
1321
CGF.Builder.CreateStore(NewByte, ByteAddr);
1322
}
1323
1324
// However we loaded the old byte, either by plain load or atomicrmw, shift
1325
// the bit into the low position and mask it to 0 or 1.
1326
Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
1327
return CGF.Builder.CreateAnd(
1328
ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
1329
}
1330
1331
static llvm::Value *emitPPCLoadReserveIntrinsic(CodeGenFunction &CGF,
1332
unsigned BuiltinID,
1333
const CallExpr *E) {
1334
Value *Addr = CGF.EmitScalarExpr(E->getArg(0));
1335
1336
SmallString<64> Asm;
1337
raw_svector_ostream AsmOS(Asm);
1338
llvm::IntegerType *RetType = CGF.Int32Ty;
1339
1340
switch (BuiltinID) {
1341
case clang::PPC::BI__builtin_ppc_ldarx:
1342
AsmOS << "ldarx ";
1343
RetType = CGF.Int64Ty;
1344
break;
1345
case clang::PPC::BI__builtin_ppc_lwarx:
1346
AsmOS << "lwarx ";
1347
RetType = CGF.Int32Ty;
1348
break;
1349
case clang::PPC::BI__builtin_ppc_lharx:
1350
AsmOS << "lharx ";
1351
RetType = CGF.Int16Ty;
1352
break;
1353
case clang::PPC::BI__builtin_ppc_lbarx:
1354
AsmOS << "lbarx ";
1355
RetType = CGF.Int8Ty;
1356
break;
1357
default:
1358
llvm_unreachable("Expected only PowerPC load reserve intrinsics");
1359
}
1360
1361
AsmOS << "$0, ${1:y}";
1362
1363
std::string Constraints = "=r,*Z,~{memory}";
1364
std::string_view MachineClobbers = CGF.getTarget().getClobbers();
1365
if (!MachineClobbers.empty()) {
1366
Constraints += ',';
1367
Constraints += MachineClobbers;
1368
}
1369
1370
llvm::Type *PtrType = CGF.UnqualPtrTy;
1371
llvm::FunctionType *FTy = llvm::FunctionType::get(RetType, {PtrType}, false);
1372
1373
llvm::InlineAsm *IA =
1374
llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1375
llvm::CallInst *CI = CGF.Builder.CreateCall(IA, {Addr});
1376
CI->addParamAttr(
1377
0, Attribute::get(CGF.getLLVMContext(), Attribute::ElementType, RetType));
1378
return CI;
1379
}
1380
1381
namespace {
1382
enum class MSVCSetJmpKind {
1383
_setjmpex,
1384
_setjmp3,
1385
_setjmp
1386
};
1387
}
1388
1389
/// MSVC handles setjmp a bit differently on different platforms. On every
1390
/// architecture except 32-bit x86, the frame address is passed. On x86, extra
1391
/// parameters can be passed as variadic arguments, but we always pass none.
1392
static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
1393
const CallExpr *E) {
1394
llvm::Value *Arg1 = nullptr;
1395
llvm::Type *Arg1Ty = nullptr;
1396
StringRef Name;
1397
bool IsVarArg = false;
1398
if (SJKind == MSVCSetJmpKind::_setjmp3) {
1399
Name = "_setjmp3";
1400
Arg1Ty = CGF.Int32Ty;
1401
Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
1402
IsVarArg = true;
1403
} else {
1404
Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
1405
Arg1Ty = CGF.Int8PtrTy;
1406
if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
1407
Arg1 = CGF.Builder.CreateCall(
1408
CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy));
1409
} else
1410
Arg1 = CGF.Builder.CreateCall(
1411
CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy),
1412
llvm::ConstantInt::get(CGF.Int32Ty, 0));
1413
}
1414
1415
// Mark the call site and declaration with ReturnsTwice.
1416
llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
1417
llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
1418
CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
1419
llvm::Attribute::ReturnsTwice);
1420
llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
1421
llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
1422
ReturnsTwiceAttr, /*Local=*/true);
1423
1424
llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
1425
CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
1426
llvm::Value *Args[] = {Buf, Arg1};
1427
llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
1428
CB->setAttributes(ReturnsTwiceAttr);
1429
return RValue::get(CB);
1430
}
1431
1432
// Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
1433
// we handle them here.
1434
enum class CodeGenFunction::MSVCIntrin {
1435
_BitScanForward,
1436
_BitScanReverse,
1437
_InterlockedAnd,
1438
_InterlockedDecrement,
1439
_InterlockedExchange,
1440
_InterlockedExchangeAdd,
1441
_InterlockedExchangeSub,
1442
_InterlockedIncrement,
1443
_InterlockedOr,
1444
_InterlockedXor,
1445
_InterlockedExchangeAdd_acq,
1446
_InterlockedExchangeAdd_rel,
1447
_InterlockedExchangeAdd_nf,
1448
_InterlockedExchange_acq,
1449
_InterlockedExchange_rel,
1450
_InterlockedExchange_nf,
1451
_InterlockedCompareExchange_acq,
1452
_InterlockedCompareExchange_rel,
1453
_InterlockedCompareExchange_nf,
1454
_InterlockedCompareExchange128,
1455
_InterlockedCompareExchange128_acq,
1456
_InterlockedCompareExchange128_rel,
1457
_InterlockedCompareExchange128_nf,
1458
_InterlockedOr_acq,
1459
_InterlockedOr_rel,
1460
_InterlockedOr_nf,
1461
_InterlockedXor_acq,
1462
_InterlockedXor_rel,
1463
_InterlockedXor_nf,
1464
_InterlockedAnd_acq,
1465
_InterlockedAnd_rel,
1466
_InterlockedAnd_nf,
1467
_InterlockedIncrement_acq,
1468
_InterlockedIncrement_rel,
1469
_InterlockedIncrement_nf,
1470
_InterlockedDecrement_acq,
1471
_InterlockedDecrement_rel,
1472
_InterlockedDecrement_nf,
1473
__fastfail,
1474
};
1475
1476
static std::optional<CodeGenFunction::MSVCIntrin>
1477
translateArmToMsvcIntrin(unsigned BuiltinID) {
1478
using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1479
switch (BuiltinID) {
1480
default:
1481
return std::nullopt;
1482
case clang::ARM::BI_BitScanForward:
1483
case clang::ARM::BI_BitScanForward64:
1484
return MSVCIntrin::_BitScanForward;
1485
case clang::ARM::BI_BitScanReverse:
1486
case clang::ARM::BI_BitScanReverse64:
1487
return MSVCIntrin::_BitScanReverse;
1488
case clang::ARM::BI_InterlockedAnd64:
1489
return MSVCIntrin::_InterlockedAnd;
1490
case clang::ARM::BI_InterlockedExchange64:
1491
return MSVCIntrin::_InterlockedExchange;
1492
case clang::ARM::BI_InterlockedExchangeAdd64:
1493
return MSVCIntrin::_InterlockedExchangeAdd;
1494
case clang::ARM::BI_InterlockedExchangeSub64:
1495
return MSVCIntrin::_InterlockedExchangeSub;
1496
case clang::ARM::BI_InterlockedOr64:
1497
return MSVCIntrin::_InterlockedOr;
1498
case clang::ARM::BI_InterlockedXor64:
1499
return MSVCIntrin::_InterlockedXor;
1500
case clang::ARM::BI_InterlockedDecrement64:
1501
return MSVCIntrin::_InterlockedDecrement;
1502
case clang::ARM::BI_InterlockedIncrement64:
1503
return MSVCIntrin::_InterlockedIncrement;
1504
case clang::ARM::BI_InterlockedExchangeAdd8_acq:
1505
case clang::ARM::BI_InterlockedExchangeAdd16_acq:
1506
case clang::ARM::BI_InterlockedExchangeAdd_acq:
1507
case clang::ARM::BI_InterlockedExchangeAdd64_acq:
1508
return MSVCIntrin::_InterlockedExchangeAdd_acq;
1509
case clang::ARM::BI_InterlockedExchangeAdd8_rel:
1510
case clang::ARM::BI_InterlockedExchangeAdd16_rel:
1511
case clang::ARM::BI_InterlockedExchangeAdd_rel:
1512
case clang::ARM::BI_InterlockedExchangeAdd64_rel:
1513
return MSVCIntrin::_InterlockedExchangeAdd_rel;
1514
case clang::ARM::BI_InterlockedExchangeAdd8_nf:
1515
case clang::ARM::BI_InterlockedExchangeAdd16_nf:
1516
case clang::ARM::BI_InterlockedExchangeAdd_nf:
1517
case clang::ARM::BI_InterlockedExchangeAdd64_nf:
1518
return MSVCIntrin::_InterlockedExchangeAdd_nf;
1519
case clang::ARM::BI_InterlockedExchange8_acq:
1520
case clang::ARM::BI_InterlockedExchange16_acq:
1521
case clang::ARM::BI_InterlockedExchange_acq:
1522
case clang::ARM::BI_InterlockedExchange64_acq:
1523
return MSVCIntrin::_InterlockedExchange_acq;
1524
case clang::ARM::BI_InterlockedExchange8_rel:
1525
case clang::ARM::BI_InterlockedExchange16_rel:
1526
case clang::ARM::BI_InterlockedExchange_rel:
1527
case clang::ARM::BI_InterlockedExchange64_rel:
1528
return MSVCIntrin::_InterlockedExchange_rel;
1529
case clang::ARM::BI_InterlockedExchange8_nf:
1530
case clang::ARM::BI_InterlockedExchange16_nf:
1531
case clang::ARM::BI_InterlockedExchange_nf:
1532
case clang::ARM::BI_InterlockedExchange64_nf:
1533
return MSVCIntrin::_InterlockedExchange_nf;
1534
case clang::ARM::BI_InterlockedCompareExchange8_acq:
1535
case clang::ARM::BI_InterlockedCompareExchange16_acq:
1536
case clang::ARM::BI_InterlockedCompareExchange_acq:
1537
case clang::ARM::BI_InterlockedCompareExchange64_acq:
1538
return MSVCIntrin::_InterlockedCompareExchange_acq;
1539
case clang::ARM::BI_InterlockedCompareExchange8_rel:
1540
case clang::ARM::BI_InterlockedCompareExchange16_rel:
1541
case clang::ARM::BI_InterlockedCompareExchange_rel:
1542
case clang::ARM::BI_InterlockedCompareExchange64_rel:
1543
return MSVCIntrin::_InterlockedCompareExchange_rel;
1544
case clang::ARM::BI_InterlockedCompareExchange8_nf:
1545
case clang::ARM::BI_InterlockedCompareExchange16_nf:
1546
case clang::ARM::BI_InterlockedCompareExchange_nf:
1547
case clang::ARM::BI_InterlockedCompareExchange64_nf:
1548
return MSVCIntrin::_InterlockedCompareExchange_nf;
1549
case clang::ARM::BI_InterlockedOr8_acq:
1550
case clang::ARM::BI_InterlockedOr16_acq:
1551
case clang::ARM::BI_InterlockedOr_acq:
1552
case clang::ARM::BI_InterlockedOr64_acq:
1553
return MSVCIntrin::_InterlockedOr_acq;
1554
case clang::ARM::BI_InterlockedOr8_rel:
1555
case clang::ARM::BI_InterlockedOr16_rel:
1556
case clang::ARM::BI_InterlockedOr_rel:
1557
case clang::ARM::BI_InterlockedOr64_rel:
1558
return MSVCIntrin::_InterlockedOr_rel;
1559
case clang::ARM::BI_InterlockedOr8_nf:
1560
case clang::ARM::BI_InterlockedOr16_nf:
1561
case clang::ARM::BI_InterlockedOr_nf:
1562
case clang::ARM::BI_InterlockedOr64_nf:
1563
return MSVCIntrin::_InterlockedOr_nf;
1564
case clang::ARM::BI_InterlockedXor8_acq:
1565
case clang::ARM::BI_InterlockedXor16_acq:
1566
case clang::ARM::BI_InterlockedXor_acq:
1567
case clang::ARM::BI_InterlockedXor64_acq:
1568
return MSVCIntrin::_InterlockedXor_acq;
1569
case clang::ARM::BI_InterlockedXor8_rel:
1570
case clang::ARM::BI_InterlockedXor16_rel:
1571
case clang::ARM::BI_InterlockedXor_rel:
1572
case clang::ARM::BI_InterlockedXor64_rel:
1573
return MSVCIntrin::_InterlockedXor_rel;
1574
case clang::ARM::BI_InterlockedXor8_nf:
1575
case clang::ARM::BI_InterlockedXor16_nf:
1576
case clang::ARM::BI_InterlockedXor_nf:
1577
case clang::ARM::BI_InterlockedXor64_nf:
1578
return MSVCIntrin::_InterlockedXor_nf;
1579
case clang::ARM::BI_InterlockedAnd8_acq:
1580
case clang::ARM::BI_InterlockedAnd16_acq:
1581
case clang::ARM::BI_InterlockedAnd_acq:
1582
case clang::ARM::BI_InterlockedAnd64_acq:
1583
return MSVCIntrin::_InterlockedAnd_acq;
1584
case clang::ARM::BI_InterlockedAnd8_rel:
1585
case clang::ARM::BI_InterlockedAnd16_rel:
1586
case clang::ARM::BI_InterlockedAnd_rel:
1587
case clang::ARM::BI_InterlockedAnd64_rel:
1588
return MSVCIntrin::_InterlockedAnd_rel;
1589
case clang::ARM::BI_InterlockedAnd8_nf:
1590
case clang::ARM::BI_InterlockedAnd16_nf:
1591
case clang::ARM::BI_InterlockedAnd_nf:
1592
case clang::ARM::BI_InterlockedAnd64_nf:
1593
return MSVCIntrin::_InterlockedAnd_nf;
1594
case clang::ARM::BI_InterlockedIncrement16_acq:
1595
case clang::ARM::BI_InterlockedIncrement_acq:
1596
case clang::ARM::BI_InterlockedIncrement64_acq:
1597
return MSVCIntrin::_InterlockedIncrement_acq;
1598
case clang::ARM::BI_InterlockedIncrement16_rel:
1599
case clang::ARM::BI_InterlockedIncrement_rel:
1600
case clang::ARM::BI_InterlockedIncrement64_rel:
1601
return MSVCIntrin::_InterlockedIncrement_rel;
1602
case clang::ARM::BI_InterlockedIncrement16_nf:
1603
case clang::ARM::BI_InterlockedIncrement_nf:
1604
case clang::ARM::BI_InterlockedIncrement64_nf:
1605
return MSVCIntrin::_InterlockedIncrement_nf;
1606
case clang::ARM::BI_InterlockedDecrement16_acq:
1607
case clang::ARM::BI_InterlockedDecrement_acq:
1608
case clang::ARM::BI_InterlockedDecrement64_acq:
1609
return MSVCIntrin::_InterlockedDecrement_acq;
1610
case clang::ARM::BI_InterlockedDecrement16_rel:
1611
case clang::ARM::BI_InterlockedDecrement_rel:
1612
case clang::ARM::BI_InterlockedDecrement64_rel:
1613
return MSVCIntrin::_InterlockedDecrement_rel;
1614
case clang::ARM::BI_InterlockedDecrement16_nf:
1615
case clang::ARM::BI_InterlockedDecrement_nf:
1616
case clang::ARM::BI_InterlockedDecrement64_nf:
1617
return MSVCIntrin::_InterlockedDecrement_nf;
1618
}
1619
llvm_unreachable("must return from switch");
1620
}
1621
1622
static std::optional<CodeGenFunction::MSVCIntrin>
1623
translateAarch64ToMsvcIntrin(unsigned BuiltinID) {
1624
using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1625
switch (BuiltinID) {
1626
default:
1627
return std::nullopt;
1628
case clang::AArch64::BI_BitScanForward:
1629
case clang::AArch64::BI_BitScanForward64:
1630
return MSVCIntrin::_BitScanForward;
1631
case clang::AArch64::BI_BitScanReverse:
1632
case clang::AArch64::BI_BitScanReverse64:
1633
return MSVCIntrin::_BitScanReverse;
1634
case clang::AArch64::BI_InterlockedAnd64:
1635
return MSVCIntrin::_InterlockedAnd;
1636
case clang::AArch64::BI_InterlockedExchange64:
1637
return MSVCIntrin::_InterlockedExchange;
1638
case clang::AArch64::BI_InterlockedExchangeAdd64:
1639
return MSVCIntrin::_InterlockedExchangeAdd;
1640
case clang::AArch64::BI_InterlockedExchangeSub64:
1641
return MSVCIntrin::_InterlockedExchangeSub;
1642
case clang::AArch64::BI_InterlockedOr64:
1643
return MSVCIntrin::_InterlockedOr;
1644
case clang::AArch64::BI_InterlockedXor64:
1645
return MSVCIntrin::_InterlockedXor;
1646
case clang::AArch64::BI_InterlockedDecrement64:
1647
return MSVCIntrin::_InterlockedDecrement;
1648
case clang::AArch64::BI_InterlockedIncrement64:
1649
return MSVCIntrin::_InterlockedIncrement;
1650
case clang::AArch64::BI_InterlockedExchangeAdd8_acq:
1651
case clang::AArch64::BI_InterlockedExchangeAdd16_acq:
1652
case clang::AArch64::BI_InterlockedExchangeAdd_acq:
1653
case clang::AArch64::BI_InterlockedExchangeAdd64_acq:
1654
return MSVCIntrin::_InterlockedExchangeAdd_acq;
1655
case clang::AArch64::BI_InterlockedExchangeAdd8_rel:
1656
case clang::AArch64::BI_InterlockedExchangeAdd16_rel:
1657
case clang::AArch64::BI_InterlockedExchangeAdd_rel:
1658
case clang::AArch64::BI_InterlockedExchangeAdd64_rel:
1659
return MSVCIntrin::_InterlockedExchangeAdd_rel;
1660
case clang::AArch64::BI_InterlockedExchangeAdd8_nf:
1661
case clang::AArch64::BI_InterlockedExchangeAdd16_nf:
1662
case clang::AArch64::BI_InterlockedExchangeAdd_nf:
1663
case clang::AArch64::BI_InterlockedExchangeAdd64_nf:
1664
return MSVCIntrin::_InterlockedExchangeAdd_nf;
1665
case clang::AArch64::BI_InterlockedExchange8_acq:
1666
case clang::AArch64::BI_InterlockedExchange16_acq:
1667
case clang::AArch64::BI_InterlockedExchange_acq:
1668
case clang::AArch64::BI_InterlockedExchange64_acq:
1669
return MSVCIntrin::_InterlockedExchange_acq;
1670
case clang::AArch64::BI_InterlockedExchange8_rel:
1671
case clang::AArch64::BI_InterlockedExchange16_rel:
1672
case clang::AArch64::BI_InterlockedExchange_rel:
1673
case clang::AArch64::BI_InterlockedExchange64_rel:
1674
return MSVCIntrin::_InterlockedExchange_rel;
1675
case clang::AArch64::BI_InterlockedExchange8_nf:
1676
case clang::AArch64::BI_InterlockedExchange16_nf:
1677
case clang::AArch64::BI_InterlockedExchange_nf:
1678
case clang::AArch64::BI_InterlockedExchange64_nf:
1679
return MSVCIntrin::_InterlockedExchange_nf;
1680
case clang::AArch64::BI_InterlockedCompareExchange8_acq:
1681
case clang::AArch64::BI_InterlockedCompareExchange16_acq:
1682
case clang::AArch64::BI_InterlockedCompareExchange_acq:
1683
case clang::AArch64::BI_InterlockedCompareExchange64_acq:
1684
return MSVCIntrin::_InterlockedCompareExchange_acq;
1685
case clang::AArch64::BI_InterlockedCompareExchange8_rel:
1686
case clang::AArch64::BI_InterlockedCompareExchange16_rel:
1687
case clang::AArch64::BI_InterlockedCompareExchange_rel:
1688
case clang::AArch64::BI_InterlockedCompareExchange64_rel:
1689
return MSVCIntrin::_InterlockedCompareExchange_rel;
1690
case clang::AArch64::BI_InterlockedCompareExchange8_nf:
1691
case clang::AArch64::BI_InterlockedCompareExchange16_nf:
1692
case clang::AArch64::BI_InterlockedCompareExchange_nf:
1693
case clang::AArch64::BI_InterlockedCompareExchange64_nf:
1694
return MSVCIntrin::_InterlockedCompareExchange_nf;
1695
case clang::AArch64::BI_InterlockedCompareExchange128:
1696
return MSVCIntrin::_InterlockedCompareExchange128;
1697
case clang::AArch64::BI_InterlockedCompareExchange128_acq:
1698
return MSVCIntrin::_InterlockedCompareExchange128_acq;
1699
case clang::AArch64::BI_InterlockedCompareExchange128_nf:
1700
return MSVCIntrin::_InterlockedCompareExchange128_nf;
1701
case clang::AArch64::BI_InterlockedCompareExchange128_rel:
1702
return MSVCIntrin::_InterlockedCompareExchange128_rel;
1703
case clang::AArch64::BI_InterlockedOr8_acq:
1704
case clang::AArch64::BI_InterlockedOr16_acq:
1705
case clang::AArch64::BI_InterlockedOr_acq:
1706
case clang::AArch64::BI_InterlockedOr64_acq:
1707
return MSVCIntrin::_InterlockedOr_acq;
1708
case clang::AArch64::BI_InterlockedOr8_rel:
1709
case clang::AArch64::BI_InterlockedOr16_rel:
1710
case clang::AArch64::BI_InterlockedOr_rel:
1711
case clang::AArch64::BI_InterlockedOr64_rel:
1712
return MSVCIntrin::_InterlockedOr_rel;
1713
case clang::AArch64::BI_InterlockedOr8_nf:
1714
case clang::AArch64::BI_InterlockedOr16_nf:
1715
case clang::AArch64::BI_InterlockedOr_nf:
1716
case clang::AArch64::BI_InterlockedOr64_nf:
1717
return MSVCIntrin::_InterlockedOr_nf;
1718
case clang::AArch64::BI_InterlockedXor8_acq:
1719
case clang::AArch64::BI_InterlockedXor16_acq:
1720
case clang::AArch64::BI_InterlockedXor_acq:
1721
case clang::AArch64::BI_InterlockedXor64_acq:
1722
return MSVCIntrin::_InterlockedXor_acq;
1723
case clang::AArch64::BI_InterlockedXor8_rel:
1724
case clang::AArch64::BI_InterlockedXor16_rel:
1725
case clang::AArch64::BI_InterlockedXor_rel:
1726
case clang::AArch64::BI_InterlockedXor64_rel:
1727
return MSVCIntrin::_InterlockedXor_rel;
1728
case clang::AArch64::BI_InterlockedXor8_nf:
1729
case clang::AArch64::BI_InterlockedXor16_nf:
1730
case clang::AArch64::BI_InterlockedXor_nf:
1731
case clang::AArch64::BI_InterlockedXor64_nf:
1732
return MSVCIntrin::_InterlockedXor_nf;
1733
case clang::AArch64::BI_InterlockedAnd8_acq:
1734
case clang::AArch64::BI_InterlockedAnd16_acq:
1735
case clang::AArch64::BI_InterlockedAnd_acq:
1736
case clang::AArch64::BI_InterlockedAnd64_acq:
1737
return MSVCIntrin::_InterlockedAnd_acq;
1738
case clang::AArch64::BI_InterlockedAnd8_rel:
1739
case clang::AArch64::BI_InterlockedAnd16_rel:
1740
case clang::AArch64::BI_InterlockedAnd_rel:
1741
case clang::AArch64::BI_InterlockedAnd64_rel:
1742
return MSVCIntrin::_InterlockedAnd_rel;
1743
case clang::AArch64::BI_InterlockedAnd8_nf:
1744
case clang::AArch64::BI_InterlockedAnd16_nf:
1745
case clang::AArch64::BI_InterlockedAnd_nf:
1746
case clang::AArch64::BI_InterlockedAnd64_nf:
1747
return MSVCIntrin::_InterlockedAnd_nf;
1748
case clang::AArch64::BI_InterlockedIncrement16_acq:
1749
case clang::AArch64::BI_InterlockedIncrement_acq:
1750
case clang::AArch64::BI_InterlockedIncrement64_acq:
1751
return MSVCIntrin::_InterlockedIncrement_acq;
1752
case clang::AArch64::BI_InterlockedIncrement16_rel:
1753
case clang::AArch64::BI_InterlockedIncrement_rel:
1754
case clang::AArch64::BI_InterlockedIncrement64_rel:
1755
return MSVCIntrin::_InterlockedIncrement_rel;
1756
case clang::AArch64::BI_InterlockedIncrement16_nf:
1757
case clang::AArch64::BI_InterlockedIncrement_nf:
1758
case clang::AArch64::BI_InterlockedIncrement64_nf:
1759
return MSVCIntrin::_InterlockedIncrement_nf;
1760
case clang::AArch64::BI_InterlockedDecrement16_acq:
1761
case clang::AArch64::BI_InterlockedDecrement_acq:
1762
case clang::AArch64::BI_InterlockedDecrement64_acq:
1763
return MSVCIntrin::_InterlockedDecrement_acq;
1764
case clang::AArch64::BI_InterlockedDecrement16_rel:
1765
case clang::AArch64::BI_InterlockedDecrement_rel:
1766
case clang::AArch64::BI_InterlockedDecrement64_rel:
1767
return MSVCIntrin::_InterlockedDecrement_rel;
1768
case clang::AArch64::BI_InterlockedDecrement16_nf:
1769
case clang::AArch64::BI_InterlockedDecrement_nf:
1770
case clang::AArch64::BI_InterlockedDecrement64_nf:
1771
return MSVCIntrin::_InterlockedDecrement_nf;
1772
}
1773
llvm_unreachable("must return from switch");
1774
}
1775
1776
static std::optional<CodeGenFunction::MSVCIntrin>
1777
translateX86ToMsvcIntrin(unsigned BuiltinID) {
1778
using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1779
switch (BuiltinID) {
1780
default:
1781
return std::nullopt;
1782
case clang::X86::BI_BitScanForward:
1783
case clang::X86::BI_BitScanForward64:
1784
return MSVCIntrin::_BitScanForward;
1785
case clang::X86::BI_BitScanReverse:
1786
case clang::X86::BI_BitScanReverse64:
1787
return MSVCIntrin::_BitScanReverse;
1788
case clang::X86::BI_InterlockedAnd64:
1789
return MSVCIntrin::_InterlockedAnd;
1790
case clang::X86::BI_InterlockedCompareExchange128:
1791
return MSVCIntrin::_InterlockedCompareExchange128;
1792
case clang::X86::BI_InterlockedExchange64:
1793
return MSVCIntrin::_InterlockedExchange;
1794
case clang::X86::BI_InterlockedExchangeAdd64:
1795
return MSVCIntrin::_InterlockedExchangeAdd;
1796
case clang::X86::BI_InterlockedExchangeSub64:
1797
return MSVCIntrin::_InterlockedExchangeSub;
1798
case clang::X86::BI_InterlockedOr64:
1799
return MSVCIntrin::_InterlockedOr;
1800
case clang::X86::BI_InterlockedXor64:
1801
return MSVCIntrin::_InterlockedXor;
1802
case clang::X86::BI_InterlockedDecrement64:
1803
return MSVCIntrin::_InterlockedDecrement;
1804
case clang::X86::BI_InterlockedIncrement64:
1805
return MSVCIntrin::_InterlockedIncrement;
1806
}
1807
llvm_unreachable("must return from switch");
1808
}
1809
1810
// Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated.
1811
Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
1812
const CallExpr *E) {
1813
switch (BuiltinID) {
1814
case MSVCIntrin::_BitScanForward:
1815
case MSVCIntrin::_BitScanReverse: {
1816
Address IndexAddress(EmitPointerWithAlignment(E->getArg(0)));
1817
Value *ArgValue = EmitScalarExpr(E->getArg(1));
1818
1819
llvm::Type *ArgType = ArgValue->getType();
1820
llvm::Type *IndexType = IndexAddress.getElementType();
1821
llvm::Type *ResultType = ConvertType(E->getType());
1822
1823
Value *ArgZero = llvm::Constant::getNullValue(ArgType);
1824
Value *ResZero = llvm::Constant::getNullValue(ResultType);
1825
Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
1826
1827
BasicBlock *Begin = Builder.GetInsertBlock();
1828
BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
1829
Builder.SetInsertPoint(End);
1830
PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
1831
1832
Builder.SetInsertPoint(Begin);
1833
Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
1834
BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
1835
Builder.CreateCondBr(IsZero, End, NotZero);
1836
Result->addIncoming(ResZero, Begin);
1837
1838
Builder.SetInsertPoint(NotZero);
1839
1840
if (BuiltinID == MSVCIntrin::_BitScanForward) {
1841
Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1842
Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1843
ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1844
Builder.CreateStore(ZeroCount, IndexAddress, false);
1845
} else {
1846
unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
1847
Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
1848
1849
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1850
Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1851
ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1852
Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
1853
Builder.CreateStore(Index, IndexAddress, false);
1854
}
1855
Builder.CreateBr(End);
1856
Result->addIncoming(ResOne, NotZero);
1857
1858
Builder.SetInsertPoint(End);
1859
return Result;
1860
}
1861
case MSVCIntrin::_InterlockedAnd:
1862
return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
1863
case MSVCIntrin::_InterlockedExchange:
1864
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
1865
case MSVCIntrin::_InterlockedExchangeAdd:
1866
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
1867
case MSVCIntrin::_InterlockedExchangeSub:
1868
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
1869
case MSVCIntrin::_InterlockedOr:
1870
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
1871
case MSVCIntrin::_InterlockedXor:
1872
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
1873
case MSVCIntrin::_InterlockedExchangeAdd_acq:
1874
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1875
AtomicOrdering::Acquire);
1876
case MSVCIntrin::_InterlockedExchangeAdd_rel:
1877
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1878
AtomicOrdering::Release);
1879
case MSVCIntrin::_InterlockedExchangeAdd_nf:
1880
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1881
AtomicOrdering::Monotonic);
1882
case MSVCIntrin::_InterlockedExchange_acq:
1883
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1884
AtomicOrdering::Acquire);
1885
case MSVCIntrin::_InterlockedExchange_rel:
1886
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1887
AtomicOrdering::Release);
1888
case MSVCIntrin::_InterlockedExchange_nf:
1889
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1890
AtomicOrdering::Monotonic);
1891
case MSVCIntrin::_InterlockedCompareExchange_acq:
1892
return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
1893
case MSVCIntrin::_InterlockedCompareExchange_rel:
1894
return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
1895
case MSVCIntrin::_InterlockedCompareExchange_nf:
1896
return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1897
case MSVCIntrin::_InterlockedCompareExchange128:
1898
return EmitAtomicCmpXchg128ForMSIntrin(
1899
*this, E, AtomicOrdering::SequentiallyConsistent);
1900
case MSVCIntrin::_InterlockedCompareExchange128_acq:
1901
return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Acquire);
1902
case MSVCIntrin::_InterlockedCompareExchange128_rel:
1903
return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Release);
1904
case MSVCIntrin::_InterlockedCompareExchange128_nf:
1905
return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1906
case MSVCIntrin::_InterlockedOr_acq:
1907
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1908
AtomicOrdering::Acquire);
1909
case MSVCIntrin::_InterlockedOr_rel:
1910
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1911
AtomicOrdering::Release);
1912
case MSVCIntrin::_InterlockedOr_nf:
1913
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1914
AtomicOrdering::Monotonic);
1915
case MSVCIntrin::_InterlockedXor_acq:
1916
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1917
AtomicOrdering::Acquire);
1918
case MSVCIntrin::_InterlockedXor_rel:
1919
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1920
AtomicOrdering::Release);
1921
case MSVCIntrin::_InterlockedXor_nf:
1922
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1923
AtomicOrdering::Monotonic);
1924
case MSVCIntrin::_InterlockedAnd_acq:
1925
return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1926
AtomicOrdering::Acquire);
1927
case MSVCIntrin::_InterlockedAnd_rel:
1928
return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1929
AtomicOrdering::Release);
1930
case MSVCIntrin::_InterlockedAnd_nf:
1931
return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1932
AtomicOrdering::Monotonic);
1933
case MSVCIntrin::_InterlockedIncrement_acq:
1934
return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
1935
case MSVCIntrin::_InterlockedIncrement_rel:
1936
return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
1937
case MSVCIntrin::_InterlockedIncrement_nf:
1938
return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
1939
case MSVCIntrin::_InterlockedDecrement_acq:
1940
return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
1941
case MSVCIntrin::_InterlockedDecrement_rel:
1942
return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
1943
case MSVCIntrin::_InterlockedDecrement_nf:
1944
return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
1945
1946
case MSVCIntrin::_InterlockedDecrement:
1947
return EmitAtomicDecrementValue(*this, E);
1948
case MSVCIntrin::_InterlockedIncrement:
1949
return EmitAtomicIncrementValue(*this, E);
1950
1951
case MSVCIntrin::__fastfail: {
1952
// Request immediate process termination from the kernel. The instruction
1953
// sequences to do this are documented on MSDN:
1954
// https://msdn.microsoft.com/en-us/library/dn774154.aspx
1955
llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
1956
StringRef Asm, Constraints;
1957
switch (ISA) {
1958
default:
1959
ErrorUnsupported(E, "__fastfail call for this architecture");
1960
break;
1961
case llvm::Triple::x86:
1962
case llvm::Triple::x86_64:
1963
Asm = "int $$0x29";
1964
Constraints = "{cx}";
1965
break;
1966
case llvm::Triple::thumb:
1967
Asm = "udf #251";
1968
Constraints = "{r0}";
1969
break;
1970
case llvm::Triple::aarch64:
1971
Asm = "brk #0xF003";
1972
Constraints = "{w0}";
1973
}
1974
llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
1975
llvm::InlineAsm *IA =
1976
llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1977
llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
1978
getLLVMContext(), llvm::AttributeList::FunctionIndex,
1979
llvm::Attribute::NoReturn);
1980
llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
1981
CI->setAttributes(NoReturnAttr);
1982
return CI;
1983
}
1984
}
1985
llvm_unreachable("Incorrect MSVC intrinsic!");
1986
}
1987
1988
namespace {
1989
// ARC cleanup for __builtin_os_log_format
1990
struct CallObjCArcUse final : EHScopeStack::Cleanup {
1991
CallObjCArcUse(llvm::Value *object) : object(object) {}
1992
llvm::Value *object;
1993
1994
void Emit(CodeGenFunction &CGF, Flags flags) override {
1995
CGF.EmitARCIntrinsicUse(object);
1996
}
1997
};
1998
}
1999
2000
Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
2001
BuiltinCheckKind Kind) {
2002
assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)
2003
&& "Unsupported builtin check kind");
2004
2005
Value *ArgValue = EmitScalarExpr(E);
2006
if (!SanOpts.has(SanitizerKind::Builtin))
2007
return ArgValue;
2008
2009
SanitizerScope SanScope(this);
2010
Value *Cond = Builder.CreateICmpNE(
2011
ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
2012
EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
2013
SanitizerHandler::InvalidBuiltin,
2014
{EmitCheckSourceLocation(E->getExprLoc()),
2015
llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
2016
std::nullopt);
2017
return ArgValue;
2018
}
2019
2020
static Value *EmitAbs(CodeGenFunction &CGF, Value *ArgValue, bool HasNSW) {
2021
return CGF.Builder.CreateBinaryIntrinsic(
2022
Intrinsic::abs, ArgValue,
2023
ConstantInt::get(CGF.Builder.getInt1Ty(), HasNSW));
2024
}
2025
2026
static Value *EmitOverflowCheckedAbs(CodeGenFunction &CGF, const CallExpr *E,
2027
bool SanitizeOverflow) {
2028
Value *ArgValue = CGF.EmitScalarExpr(E->getArg(0));
2029
2030
// Try to eliminate overflow check.
2031
if (const auto *VCI = dyn_cast<llvm::ConstantInt>(ArgValue)) {
2032
if (!VCI->isMinSignedValue())
2033
return EmitAbs(CGF, ArgValue, true);
2034
}
2035
2036
CodeGenFunction::SanitizerScope SanScope(&CGF);
2037
2038
Constant *Zero = Constant::getNullValue(ArgValue->getType());
2039
Value *ResultAndOverflow = CGF.Builder.CreateBinaryIntrinsic(
2040
Intrinsic::ssub_with_overflow, Zero, ArgValue);
2041
Value *Result = CGF.Builder.CreateExtractValue(ResultAndOverflow, 0);
2042
Value *NotOverflow = CGF.Builder.CreateNot(
2043
CGF.Builder.CreateExtractValue(ResultAndOverflow, 1));
2044
2045
// TODO: support -ftrapv-handler.
2046
if (SanitizeOverflow) {
2047
CGF.EmitCheck({{NotOverflow, SanitizerKind::SignedIntegerOverflow}},
2048
SanitizerHandler::NegateOverflow,
2049
{CGF.EmitCheckSourceLocation(E->getArg(0)->getExprLoc()),
2050
CGF.EmitCheckTypeDescriptor(E->getType())},
2051
{ArgValue});
2052
} else
2053
CGF.EmitTrapCheck(NotOverflow, SanitizerHandler::SubOverflow);
2054
2055
Value *CmpResult = CGF.Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
2056
return CGF.Builder.CreateSelect(CmpResult, Result, ArgValue, "abs");
2057
}
2058
2059
/// Get the argument type for arguments to os_log_helper.
2060
static CanQualType getOSLogArgType(ASTContext &C, int Size) {
2061
QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
2062
return C.getCanonicalType(UnsignedTy);
2063
}
2064
2065
llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
2066
const analyze_os_log::OSLogBufferLayout &Layout,
2067
CharUnits BufferAlignment) {
2068
ASTContext &Ctx = getContext();
2069
2070
llvm::SmallString<64> Name;
2071
{
2072
raw_svector_ostream OS(Name);
2073
OS << "__os_log_helper";
2074
OS << "_" << BufferAlignment.getQuantity();
2075
OS << "_" << int(Layout.getSummaryByte());
2076
OS << "_" << int(Layout.getNumArgsByte());
2077
for (const auto &Item : Layout.Items)
2078
OS << "_" << int(Item.getSizeByte()) << "_"
2079
<< int(Item.getDescriptorByte());
2080
}
2081
2082
if (llvm::Function *F = CGM.getModule().getFunction(Name))
2083
return F;
2084
2085
llvm::SmallVector<QualType, 4> ArgTys;
2086
FunctionArgList Args;
2087
Args.push_back(ImplicitParamDecl::Create(
2088
Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
2089
ImplicitParamKind::Other));
2090
ArgTys.emplace_back(Ctx.VoidPtrTy);
2091
2092
for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
2093
char Size = Layout.Items[I].getSizeByte();
2094
if (!Size)
2095
continue;
2096
2097
QualType ArgTy = getOSLogArgType(Ctx, Size);
2098
Args.push_back(ImplicitParamDecl::Create(
2099
Ctx, nullptr, SourceLocation(),
2100
&Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
2101
ImplicitParamKind::Other));
2102
ArgTys.emplace_back(ArgTy);
2103
}
2104
2105
QualType ReturnTy = Ctx.VoidTy;
2106
2107
// The helper function has linkonce_odr linkage to enable the linker to merge
2108
// identical functions. To ensure the merging always happens, 'noinline' is
2109
// attached to the function when compiling with -Oz.
2110
const CGFunctionInfo &FI =
2111
CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
2112
llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
2113
llvm::Function *Fn = llvm::Function::Create(
2114
FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
2115
Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
2116
CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn, /*IsThunk=*/false);
2117
CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
2118
Fn->setDoesNotThrow();
2119
2120
// Attach 'noinline' at -Oz.
2121
if (CGM.getCodeGenOpts().OptimizeSize == 2)
2122
Fn->addFnAttr(llvm::Attribute::NoInline);
2123
2124
auto NL = ApplyDebugLocation::CreateEmpty(*this);
2125
StartFunction(GlobalDecl(), ReturnTy, Fn, FI, Args);
2126
2127
// Create a scope with an artificial location for the body of this function.
2128
auto AL = ApplyDebugLocation::CreateArtificial(*this);
2129
2130
CharUnits Offset;
2131
Address BufAddr = makeNaturalAddressForPointer(
2132
Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"), Ctx.VoidTy,
2133
BufferAlignment);
2134
Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
2135
Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
2136
Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
2137
Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
2138
2139
unsigned I = 1;
2140
for (const auto &Item : Layout.Items) {
2141
Builder.CreateStore(
2142
Builder.getInt8(Item.getDescriptorByte()),
2143
Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
2144
Builder.CreateStore(
2145
Builder.getInt8(Item.getSizeByte()),
2146
Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
2147
2148
CharUnits Size = Item.size();
2149
if (!Size.getQuantity())
2150
continue;
2151
2152
Address Arg = GetAddrOfLocalVar(Args[I]);
2153
Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
2154
Addr = Addr.withElementType(Arg.getElementType());
2155
Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
2156
Offset += Size;
2157
++I;
2158
}
2159
2160
FinishFunction();
2161
2162
return Fn;
2163
}
2164
2165
RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
2166
assert(E.getNumArgs() >= 2 &&
2167
"__builtin_os_log_format takes at least 2 arguments");
2168
ASTContext &Ctx = getContext();
2169
analyze_os_log::OSLogBufferLayout Layout;
2170
analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
2171
Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
2172
llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
2173
2174
// Ignore argument 1, the format string. It is not currently used.
2175
CallArgList Args;
2176
Args.add(RValue::get(BufAddr.emitRawPointer(*this)), Ctx.VoidPtrTy);
2177
2178
for (const auto &Item : Layout.Items) {
2179
int Size = Item.getSizeByte();
2180
if (!Size)
2181
continue;
2182
2183
llvm::Value *ArgVal;
2184
2185
if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
2186
uint64_t Val = 0;
2187
for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
2188
Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
2189
ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
2190
} else if (const Expr *TheExpr = Item.getExpr()) {
2191
ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
2192
2193
// If a temporary object that requires destruction after the full
2194
// expression is passed, push a lifetime-extended cleanup to extend its
2195
// lifetime to the end of the enclosing block scope.
2196
auto LifetimeExtendObject = [&](const Expr *E) {
2197
E = E->IgnoreParenCasts();
2198
// Extend lifetimes of objects returned by function calls and message
2199
// sends.
2200
2201
// FIXME: We should do this in other cases in which temporaries are
2202
// created including arguments of non-ARC types (e.g., C++
2203
// temporaries).
2204
if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E))
2205
return true;
2206
return false;
2207
};
2208
2209
if (TheExpr->getType()->isObjCRetainableType() &&
2210
getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) {
2211
assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
2212
"Only scalar can be a ObjC retainable type");
2213
if (!isa<Constant>(ArgVal)) {
2214
CleanupKind Cleanup = getARCCleanupKind();
2215
QualType Ty = TheExpr->getType();
2216
RawAddress Alloca = RawAddress::invalid();
2217
RawAddress Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca);
2218
ArgVal = EmitARCRetain(Ty, ArgVal);
2219
Builder.CreateStore(ArgVal, Addr);
2220
pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty,
2221
CodeGenFunction::destroyARCStrongPrecise,
2222
Cleanup & EHCleanup);
2223
2224
// Push a clang.arc.use call to ensure ARC optimizer knows that the
2225
// argument has to be alive.
2226
if (CGM.getCodeGenOpts().OptimizationLevel != 0)
2227
pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal);
2228
}
2229
}
2230
} else {
2231
ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
2232
}
2233
2234
unsigned ArgValSize =
2235
CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
2236
llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
2237
ArgValSize);
2238
ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
2239
CanQualType ArgTy = getOSLogArgType(Ctx, Size);
2240
// If ArgVal has type x86_fp80, zero-extend ArgVal.
2241
ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
2242
Args.add(RValue::get(ArgVal), ArgTy);
2243
}
2244
2245
const CGFunctionInfo &FI =
2246
CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
2247
llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
2248
Layout, BufAddr.getAlignment());
2249
EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
2250
return RValue::get(BufAddr, *this);
2251
}
2252
2253
static bool isSpecialUnsignedMultiplySignedResult(
2254
unsigned BuiltinID, WidthAndSignedness Op1Info, WidthAndSignedness Op2Info,
2255
WidthAndSignedness ResultInfo) {
2256
return BuiltinID == Builtin::BI__builtin_mul_overflow &&
2257
Op1Info.Width == Op2Info.Width && Op2Info.Width == ResultInfo.Width &&
2258
!Op1Info.Signed && !Op2Info.Signed && ResultInfo.Signed;
2259
}
2260
2261
static RValue EmitCheckedUnsignedMultiplySignedResult(
2262
CodeGenFunction &CGF, const clang::Expr *Op1, WidthAndSignedness Op1Info,
2263
const clang::Expr *Op2, WidthAndSignedness Op2Info,
2264
const clang::Expr *ResultArg, QualType ResultQTy,
2265
WidthAndSignedness ResultInfo) {
2266
assert(isSpecialUnsignedMultiplySignedResult(
2267
Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
2268
"Cannot specialize this multiply");
2269
2270
llvm::Value *V1 = CGF.EmitScalarExpr(Op1);
2271
llvm::Value *V2 = CGF.EmitScalarExpr(Op2);
2272
2273
llvm::Value *HasOverflow;
2274
llvm::Value *Result = EmitOverflowIntrinsic(
2275
CGF, llvm::Intrinsic::umul_with_overflow, V1, V2, HasOverflow);
2276
2277
// The intrinsic call will detect overflow when the value is > UINT_MAX,
2278
// however, since the original builtin had a signed result, we need to report
2279
// an overflow when the result is greater than INT_MAX.
2280
auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width);
2281
llvm::Value *IntMaxValue = llvm::ConstantInt::get(Result->getType(), IntMax);
2282
2283
llvm::Value *IntMaxOverflow = CGF.Builder.CreateICmpUGT(Result, IntMaxValue);
2284
HasOverflow = CGF.Builder.CreateOr(HasOverflow, IntMaxOverflow);
2285
2286
bool isVolatile =
2287
ResultArg->getType()->getPointeeType().isVolatileQualified();
2288
Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
2289
CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
2290
isVolatile);
2291
return RValue::get(HasOverflow);
2292
}
2293
2294
/// Determine if a binop is a checked mixed-sign multiply we can specialize.
2295
static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
2296
WidthAndSignedness Op1Info,
2297
WidthAndSignedness Op2Info,
2298
WidthAndSignedness ResultInfo) {
2299
return BuiltinID == Builtin::BI__builtin_mul_overflow &&
2300
std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
2301
Op1Info.Signed != Op2Info.Signed;
2302
}
2303
2304
/// Emit a checked mixed-sign multiply. This is a cheaper specialization of
2305
/// the generic checked-binop irgen.
2306
static RValue
2307
EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
2308
WidthAndSignedness Op1Info, const clang::Expr *Op2,
2309
WidthAndSignedness Op2Info,
2310
const clang::Expr *ResultArg, QualType ResultQTy,
2311
WidthAndSignedness ResultInfo) {
2312
assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,
2313
Op2Info, ResultInfo) &&
2314
"Not a mixed-sign multipliction we can specialize");
2315
2316
// Emit the signed and unsigned operands.
2317
const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
2318
const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
2319
llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
2320
llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
2321
unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
2322
unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
2323
2324
// One of the operands may be smaller than the other. If so, [s|z]ext it.
2325
if (SignedOpWidth < UnsignedOpWidth)
2326
Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
2327
if (UnsignedOpWidth < SignedOpWidth)
2328
Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
2329
2330
llvm::Type *OpTy = Signed->getType();
2331
llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
2332
Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
2333
llvm::Type *ResTy = ResultPtr.getElementType();
2334
unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
2335
2336
// Take the absolute value of the signed operand.
2337
llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
2338
llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
2339
llvm::Value *AbsSigned =
2340
CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
2341
2342
// Perform a checked unsigned multiplication.
2343
llvm::Value *UnsignedOverflow;
2344
llvm::Value *UnsignedResult =
2345
EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
2346
Unsigned, UnsignedOverflow);
2347
2348
llvm::Value *Overflow, *Result;
2349
if (ResultInfo.Signed) {
2350
// Signed overflow occurs if the result is greater than INT_MAX or lesser
2351
// than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
2352
auto IntMax =
2353
llvm::APInt::getSignedMaxValue(ResultInfo.Width).zext(OpWidth);
2354
llvm::Value *MaxResult =
2355
CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
2356
CGF.Builder.CreateZExt(IsNegative, OpTy));
2357
llvm::Value *SignedOverflow =
2358
CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
2359
Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
2360
2361
// Prepare the signed result (possibly by negating it).
2362
llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
2363
llvm::Value *SignedResult =
2364
CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
2365
Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
2366
} else {
2367
// Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
2368
llvm::Value *Underflow = CGF.Builder.CreateAnd(
2369
IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
2370
Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
2371
if (ResultInfo.Width < OpWidth) {
2372
auto IntMax =
2373
llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
2374
llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
2375
UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
2376
Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
2377
}
2378
2379
// Negate the product if it would be negative in infinite precision.
2380
Result = CGF.Builder.CreateSelect(
2381
IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
2382
2383
Result = CGF.Builder.CreateTrunc(Result, ResTy);
2384
}
2385
assert(Overflow && Result && "Missing overflow or result");
2386
2387
bool isVolatile =
2388
ResultArg->getType()->getPointeeType().isVolatileQualified();
2389
CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
2390
isVolatile);
2391
return RValue::get(Overflow);
2392
}
2393
2394
static bool
2395
TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
2396
llvm::SmallPtrSetImpl<const Decl *> &Seen) {
2397
if (const auto *Arr = Ctx.getAsArrayType(Ty))
2398
Ty = Ctx.getBaseElementType(Arr);
2399
2400
const auto *Record = Ty->getAsCXXRecordDecl();
2401
if (!Record)
2402
return false;
2403
2404
// We've already checked this type, or are in the process of checking it.
2405
if (!Seen.insert(Record).second)
2406
return false;
2407
2408
assert(Record->hasDefinition() &&
2409
"Incomplete types should already be diagnosed");
2410
2411
if (Record->isDynamicClass())
2412
return true;
2413
2414
for (FieldDecl *F : Record->fields()) {
2415
if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
2416
return true;
2417
}
2418
return false;
2419
}
2420
2421
/// Determine if the specified type requires laundering by checking if it is a
2422
/// dynamic class type or contains a subobject which is a dynamic class type.
2423
static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
2424
if (!CGM.getCodeGenOpts().StrictVTablePointers)
2425
return false;
2426
llvm::SmallPtrSet<const Decl *, 16> Seen;
2427
return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
2428
}
2429
2430
RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
2431
llvm::Value *Src = EmitScalarExpr(E->getArg(0));
2432
llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
2433
2434
// The builtin's shift arg may have a different type than the source arg and
2435
// result, but the LLVM intrinsic uses the same type for all values.
2436
llvm::Type *Ty = Src->getType();
2437
ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
2438
2439
// Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
2440
unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
2441
Function *F = CGM.getIntrinsic(IID, Ty);
2442
return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
2443
}
2444
2445
// Map math builtins for long-double to f128 version.
2446
static unsigned mutateLongDoubleBuiltin(unsigned BuiltinID) {
2447
switch (BuiltinID) {
2448
#define MUTATE_LDBL(func) \
2449
case Builtin::BI__builtin_##func##l: \
2450
return Builtin::BI__builtin_##func##f128;
2451
MUTATE_LDBL(sqrt)
2452
MUTATE_LDBL(cbrt)
2453
MUTATE_LDBL(fabs)
2454
MUTATE_LDBL(log)
2455
MUTATE_LDBL(log2)
2456
MUTATE_LDBL(log10)
2457
MUTATE_LDBL(log1p)
2458
MUTATE_LDBL(logb)
2459
MUTATE_LDBL(exp)
2460
MUTATE_LDBL(exp2)
2461
MUTATE_LDBL(expm1)
2462
MUTATE_LDBL(fdim)
2463
MUTATE_LDBL(hypot)
2464
MUTATE_LDBL(ilogb)
2465
MUTATE_LDBL(pow)
2466
MUTATE_LDBL(fmin)
2467
MUTATE_LDBL(fmax)
2468
MUTATE_LDBL(ceil)
2469
MUTATE_LDBL(trunc)
2470
MUTATE_LDBL(rint)
2471
MUTATE_LDBL(nearbyint)
2472
MUTATE_LDBL(round)
2473
MUTATE_LDBL(floor)
2474
MUTATE_LDBL(lround)
2475
MUTATE_LDBL(llround)
2476
MUTATE_LDBL(lrint)
2477
MUTATE_LDBL(llrint)
2478
MUTATE_LDBL(fmod)
2479
MUTATE_LDBL(modf)
2480
MUTATE_LDBL(nan)
2481
MUTATE_LDBL(nans)
2482
MUTATE_LDBL(inf)
2483
MUTATE_LDBL(fma)
2484
MUTATE_LDBL(sin)
2485
MUTATE_LDBL(cos)
2486
MUTATE_LDBL(tan)
2487
MUTATE_LDBL(sinh)
2488
MUTATE_LDBL(cosh)
2489
MUTATE_LDBL(tanh)
2490
MUTATE_LDBL(asin)
2491
MUTATE_LDBL(acos)
2492
MUTATE_LDBL(atan)
2493
MUTATE_LDBL(asinh)
2494
MUTATE_LDBL(acosh)
2495
MUTATE_LDBL(atanh)
2496
MUTATE_LDBL(atan2)
2497
MUTATE_LDBL(erf)
2498
MUTATE_LDBL(erfc)
2499
MUTATE_LDBL(ldexp)
2500
MUTATE_LDBL(frexp)
2501
MUTATE_LDBL(huge_val)
2502
MUTATE_LDBL(copysign)
2503
MUTATE_LDBL(nextafter)
2504
MUTATE_LDBL(nexttoward)
2505
MUTATE_LDBL(remainder)
2506
MUTATE_LDBL(remquo)
2507
MUTATE_LDBL(scalbln)
2508
MUTATE_LDBL(scalbn)
2509
MUTATE_LDBL(tgamma)
2510
MUTATE_LDBL(lgamma)
2511
#undef MUTATE_LDBL
2512
default:
2513
return BuiltinID;
2514
}
2515
}
2516
2517
static Value *tryUseTestFPKind(CodeGenFunction &CGF, unsigned BuiltinID,
2518
Value *V) {
2519
if (CGF.Builder.getIsFPConstrained() &&
2520
CGF.Builder.getDefaultConstrainedExcept() != fp::ebIgnore) {
2521
if (Value *Result =
2522
CGF.getTargetHooks().testFPKind(V, BuiltinID, CGF.Builder, CGF.CGM))
2523
return Result;
2524
}
2525
return nullptr;
2526
}
2527
2528
static RValue EmitHipStdParUnsupportedBuiltin(CodeGenFunction *CGF,
2529
const FunctionDecl *FD) {
2530
auto Name = FD->getNameAsString() + "__hipstdpar_unsupported";
2531
auto FnTy = CGF->CGM.getTypes().GetFunctionType(FD);
2532
auto UBF = CGF->CGM.getModule().getOrInsertFunction(Name, FnTy);
2533
2534
SmallVector<Value *, 16> Args;
2535
for (auto &&FormalTy : FnTy->params())
2536
Args.push_back(llvm::PoisonValue::get(FormalTy));
2537
2538
return RValue::get(CGF->Builder.CreateCall(UBF, Args));
2539
}
2540
2541
RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
2542
const CallExpr *E,
2543
ReturnValueSlot ReturnValue) {
2544
const FunctionDecl *FD = GD.getDecl()->getAsFunction();
2545
// See if we can constant fold this builtin. If so, don't emit it at all.
2546
// TODO: Extend this handling to all builtin calls that we can constant-fold.
2547
Expr::EvalResult Result;
2548
if (E->isPRValue() && E->EvaluateAsRValue(Result, CGM.getContext()) &&
2549
!Result.hasSideEffects()) {
2550
if (Result.Val.isInt())
2551
return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
2552
Result.Val.getInt()));
2553
if (Result.Val.isFloat())
2554
return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
2555
Result.Val.getFloat()));
2556
}
2557
2558
// If current long-double semantics is IEEE 128-bit, replace math builtins
2559
// of long-double with f128 equivalent.
2560
// TODO: This mutation should also be applied to other targets other than PPC,
2561
// after backend supports IEEE 128-bit style libcalls.
2562
if (getTarget().getTriple().isPPC64() &&
2563
&getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
2564
BuiltinID = mutateLongDoubleBuiltin(BuiltinID);
2565
2566
// If the builtin has been declared explicitly with an assembler label,
2567
// disable the specialized emitting below. Ideally we should communicate the
2568
// rename in IR, or at least avoid generating the intrinsic calls that are
2569
// likely to get lowered to the renamed library functions.
2570
const unsigned BuiltinIDIfNoAsmLabel =
2571
FD->hasAttr<AsmLabelAttr>() ? 0 : BuiltinID;
2572
2573
std::optional<bool> ErrnoOverriden;
2574
// ErrnoOverriden is true if math-errno is overriden via the
2575
// '#pragma float_control(precise, on)'. This pragma disables fast-math,
2576
// which implies math-errno.
2577
if (E->hasStoredFPFeatures()) {
2578
FPOptionsOverride OP = E->getFPFeatures();
2579
if (OP.hasMathErrnoOverride())
2580
ErrnoOverriden = OP.getMathErrnoOverride();
2581
}
2582
// True if 'attribute__((optnone))' is used. This attribute overrides
2583
// fast-math which implies math-errno.
2584
bool OptNone = CurFuncDecl && CurFuncDecl->hasAttr<OptimizeNoneAttr>();
2585
2586
// True if we are compiling at -O2 and errno has been disabled
2587
// using the '#pragma float_control(precise, off)', and
2588
// attribute opt-none hasn't been seen.
2589
bool ErrnoOverridenToFalseWithOpt =
2590
ErrnoOverriden.has_value() && !ErrnoOverriden.value() && !OptNone &&
2591
CGM.getCodeGenOpts().OptimizationLevel != 0;
2592
2593
// There are LLVM math intrinsics/instructions corresponding to math library
2594
// functions except the LLVM op will never set errno while the math library
2595
// might. Also, math builtins have the same semantics as their math library
2596
// twins. Thus, we can transform math library and builtin calls to their
2597
// LLVM counterparts if the call is marked 'const' (known to never set errno).
2598
// In case FP exceptions are enabled, the experimental versions of the
2599
// intrinsics model those.
2600
bool ConstAlways =
2601
getContext().BuiltinInfo.isConst(BuiltinID);
2602
2603
// There's a special case with the fma builtins where they are always const
2604
// if the target environment is GNU or the target is OS is Windows and we're
2605
// targeting the MSVCRT.dll environment.
2606
// FIXME: This list can be become outdated. Need to find a way to get it some
2607
// other way.
2608
switch (BuiltinID) {
2609
case Builtin::BI__builtin_fma:
2610
case Builtin::BI__builtin_fmaf:
2611
case Builtin::BI__builtin_fmal:
2612
case Builtin::BI__builtin_fmaf16:
2613
case Builtin::BIfma:
2614
case Builtin::BIfmaf:
2615
case Builtin::BIfmal: {
2616
auto &Trip = CGM.getTriple();
2617
if (Trip.isGNUEnvironment() || Trip.isOSMSVCRT())
2618
ConstAlways = true;
2619
break;
2620
}
2621
default:
2622
break;
2623
}
2624
2625
bool ConstWithoutErrnoAndExceptions =
2626
getContext().BuiltinInfo.isConstWithoutErrnoAndExceptions(BuiltinID);
2627
bool ConstWithoutExceptions =
2628
getContext().BuiltinInfo.isConstWithoutExceptions(BuiltinID);
2629
2630
// ConstAttr is enabled in fast-math mode. In fast-math mode, math-errno is
2631
// disabled.
2632
// Math intrinsics are generated only when math-errno is disabled. Any pragmas
2633
// or attributes that affect math-errno should prevent or allow math
2634
// intrincs to be generated. Intrinsics are generated:
2635
// 1- In fast math mode, unless math-errno is overriden
2636
// via '#pragma float_control(precise, on)', or via an
2637
// 'attribute__((optnone))'.
2638
// 2- If math-errno was enabled on command line but overriden
2639
// to false via '#pragma float_control(precise, off))' and
2640
// 'attribute__((optnone))' hasn't been used.
2641
// 3- If we are compiling with optimization and errno has been disabled
2642
// via '#pragma float_control(precise, off)', and
2643
// 'attribute__((optnone))' hasn't been used.
2644
2645
bool ConstWithoutErrnoOrExceptions =
2646
ConstWithoutErrnoAndExceptions || ConstWithoutExceptions;
2647
bool GenerateIntrinsics =
2648
(ConstAlways && !OptNone) ||
2649
(!getLangOpts().MathErrno &&
2650
!(ErrnoOverriden.has_value() && ErrnoOverriden.value()) && !OptNone);
2651
if (!GenerateIntrinsics) {
2652
GenerateIntrinsics =
2653
ConstWithoutErrnoOrExceptions && !ConstWithoutErrnoAndExceptions;
2654
if (!GenerateIntrinsics)
2655
GenerateIntrinsics =
2656
ConstWithoutErrnoOrExceptions &&
2657
(!getLangOpts().MathErrno &&
2658
!(ErrnoOverriden.has_value() && ErrnoOverriden.value()) && !OptNone);
2659
if (!GenerateIntrinsics)
2660
GenerateIntrinsics =
2661
ConstWithoutErrnoOrExceptions && ErrnoOverridenToFalseWithOpt;
2662
}
2663
if (GenerateIntrinsics) {
2664
switch (BuiltinIDIfNoAsmLabel) {
2665
case Builtin::BIacos:
2666
case Builtin::BIacosf:
2667
case Builtin::BIacosl:
2668
case Builtin::BI__builtin_acos:
2669
case Builtin::BI__builtin_acosf:
2670
case Builtin::BI__builtin_acosf16:
2671
case Builtin::BI__builtin_acosl:
2672
case Builtin::BI__builtin_acosf128:
2673
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
2674
*this, E, Intrinsic::acos, Intrinsic::experimental_constrained_acos));
2675
2676
case Builtin::BIasin:
2677
case Builtin::BIasinf:
2678
case Builtin::BIasinl:
2679
case Builtin::BI__builtin_asin:
2680
case Builtin::BI__builtin_asinf:
2681
case Builtin::BI__builtin_asinf16:
2682
case Builtin::BI__builtin_asinl:
2683
case Builtin::BI__builtin_asinf128:
2684
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
2685
*this, E, Intrinsic::asin, Intrinsic::experimental_constrained_asin));
2686
2687
case Builtin::BIatan:
2688
case Builtin::BIatanf:
2689
case Builtin::BIatanl:
2690
case Builtin::BI__builtin_atan:
2691
case Builtin::BI__builtin_atanf:
2692
case Builtin::BI__builtin_atanf16:
2693
case Builtin::BI__builtin_atanl:
2694
case Builtin::BI__builtin_atanf128:
2695
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
2696
*this, E, Intrinsic::atan, Intrinsic::experimental_constrained_atan));
2697
2698
case Builtin::BIceil:
2699
case Builtin::BIceilf:
2700
case Builtin::BIceill:
2701
case Builtin::BI__builtin_ceil:
2702
case Builtin::BI__builtin_ceilf:
2703
case Builtin::BI__builtin_ceilf16:
2704
case Builtin::BI__builtin_ceill:
2705
case Builtin::BI__builtin_ceilf128:
2706
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2707
Intrinsic::ceil,
2708
Intrinsic::experimental_constrained_ceil));
2709
2710
case Builtin::BIcopysign:
2711
case Builtin::BIcopysignf:
2712
case Builtin::BIcopysignl:
2713
case Builtin::BI__builtin_copysign:
2714
case Builtin::BI__builtin_copysignf:
2715
case Builtin::BI__builtin_copysignf16:
2716
case Builtin::BI__builtin_copysignl:
2717
case Builtin::BI__builtin_copysignf128:
2718
return RValue::get(
2719
emitBuiltinWithOneOverloadedType<2>(*this, E, Intrinsic::copysign));
2720
2721
case Builtin::BIcos:
2722
case Builtin::BIcosf:
2723
case Builtin::BIcosl:
2724
case Builtin::BI__builtin_cos:
2725
case Builtin::BI__builtin_cosf:
2726
case Builtin::BI__builtin_cosf16:
2727
case Builtin::BI__builtin_cosl:
2728
case Builtin::BI__builtin_cosf128:
2729
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2730
Intrinsic::cos,
2731
Intrinsic::experimental_constrained_cos));
2732
2733
case Builtin::BIcosh:
2734
case Builtin::BIcoshf:
2735
case Builtin::BIcoshl:
2736
case Builtin::BI__builtin_cosh:
2737
case Builtin::BI__builtin_coshf:
2738
case Builtin::BI__builtin_coshf16:
2739
case Builtin::BI__builtin_coshl:
2740
case Builtin::BI__builtin_coshf128:
2741
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
2742
*this, E, Intrinsic::cosh, Intrinsic::experimental_constrained_cosh));
2743
2744
case Builtin::BIexp:
2745
case Builtin::BIexpf:
2746
case Builtin::BIexpl:
2747
case Builtin::BI__builtin_exp:
2748
case Builtin::BI__builtin_expf:
2749
case Builtin::BI__builtin_expf16:
2750
case Builtin::BI__builtin_expl:
2751
case Builtin::BI__builtin_expf128:
2752
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2753
Intrinsic::exp,
2754
Intrinsic::experimental_constrained_exp));
2755
2756
case Builtin::BIexp2:
2757
case Builtin::BIexp2f:
2758
case Builtin::BIexp2l:
2759
case Builtin::BI__builtin_exp2:
2760
case Builtin::BI__builtin_exp2f:
2761
case Builtin::BI__builtin_exp2f16:
2762
case Builtin::BI__builtin_exp2l:
2763
case Builtin::BI__builtin_exp2f128:
2764
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2765
Intrinsic::exp2,
2766
Intrinsic::experimental_constrained_exp2));
2767
case Builtin::BI__builtin_exp10:
2768
case Builtin::BI__builtin_exp10f:
2769
case Builtin::BI__builtin_exp10f16:
2770
case Builtin::BI__builtin_exp10l:
2771
case Builtin::BI__builtin_exp10f128: {
2772
// TODO: strictfp support
2773
if (Builder.getIsFPConstrained())
2774
break;
2775
return RValue::get(
2776
emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::exp10));
2777
}
2778
case Builtin::BIfabs:
2779
case Builtin::BIfabsf:
2780
case Builtin::BIfabsl:
2781
case Builtin::BI__builtin_fabs:
2782
case Builtin::BI__builtin_fabsf:
2783
case Builtin::BI__builtin_fabsf16:
2784
case Builtin::BI__builtin_fabsl:
2785
case Builtin::BI__builtin_fabsf128:
2786
return RValue::get(
2787
emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::fabs));
2788
2789
case Builtin::BIfloor:
2790
case Builtin::BIfloorf:
2791
case Builtin::BIfloorl:
2792
case Builtin::BI__builtin_floor:
2793
case Builtin::BI__builtin_floorf:
2794
case Builtin::BI__builtin_floorf16:
2795
case Builtin::BI__builtin_floorl:
2796
case Builtin::BI__builtin_floorf128:
2797
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2798
Intrinsic::floor,
2799
Intrinsic::experimental_constrained_floor));
2800
2801
case Builtin::BIfma:
2802
case Builtin::BIfmaf:
2803
case Builtin::BIfmal:
2804
case Builtin::BI__builtin_fma:
2805
case Builtin::BI__builtin_fmaf:
2806
case Builtin::BI__builtin_fmaf16:
2807
case Builtin::BI__builtin_fmal:
2808
case Builtin::BI__builtin_fmaf128:
2809
return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E,
2810
Intrinsic::fma,
2811
Intrinsic::experimental_constrained_fma));
2812
2813
case Builtin::BIfmax:
2814
case Builtin::BIfmaxf:
2815
case Builtin::BIfmaxl:
2816
case Builtin::BI__builtin_fmax:
2817
case Builtin::BI__builtin_fmaxf:
2818
case Builtin::BI__builtin_fmaxf16:
2819
case Builtin::BI__builtin_fmaxl:
2820
case Builtin::BI__builtin_fmaxf128:
2821
return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2822
Intrinsic::maxnum,
2823
Intrinsic::experimental_constrained_maxnum));
2824
2825
case Builtin::BIfmin:
2826
case Builtin::BIfminf:
2827
case Builtin::BIfminl:
2828
case Builtin::BI__builtin_fmin:
2829
case Builtin::BI__builtin_fminf:
2830
case Builtin::BI__builtin_fminf16:
2831
case Builtin::BI__builtin_fminl:
2832
case Builtin::BI__builtin_fminf128:
2833
return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2834
Intrinsic::minnum,
2835
Intrinsic::experimental_constrained_minnum));
2836
2837
// fmod() is a special-case. It maps to the frem instruction rather than an
2838
// LLVM intrinsic.
2839
case Builtin::BIfmod:
2840
case Builtin::BIfmodf:
2841
case Builtin::BIfmodl:
2842
case Builtin::BI__builtin_fmod:
2843
case Builtin::BI__builtin_fmodf:
2844
case Builtin::BI__builtin_fmodf16:
2845
case Builtin::BI__builtin_fmodl:
2846
case Builtin::BI__builtin_fmodf128: {
2847
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2848
Value *Arg1 = EmitScalarExpr(E->getArg(0));
2849
Value *Arg2 = EmitScalarExpr(E->getArg(1));
2850
return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
2851
}
2852
2853
case Builtin::BIlog:
2854
case Builtin::BIlogf:
2855
case Builtin::BIlogl:
2856
case Builtin::BI__builtin_log:
2857
case Builtin::BI__builtin_logf:
2858
case Builtin::BI__builtin_logf16:
2859
case Builtin::BI__builtin_logl:
2860
case Builtin::BI__builtin_logf128:
2861
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2862
Intrinsic::log,
2863
Intrinsic::experimental_constrained_log));
2864
2865
case Builtin::BIlog10:
2866
case Builtin::BIlog10f:
2867
case Builtin::BIlog10l:
2868
case Builtin::BI__builtin_log10:
2869
case Builtin::BI__builtin_log10f:
2870
case Builtin::BI__builtin_log10f16:
2871
case Builtin::BI__builtin_log10l:
2872
case Builtin::BI__builtin_log10f128:
2873
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2874
Intrinsic::log10,
2875
Intrinsic::experimental_constrained_log10));
2876
2877
case Builtin::BIlog2:
2878
case Builtin::BIlog2f:
2879
case Builtin::BIlog2l:
2880
case Builtin::BI__builtin_log2:
2881
case Builtin::BI__builtin_log2f:
2882
case Builtin::BI__builtin_log2f16:
2883
case Builtin::BI__builtin_log2l:
2884
case Builtin::BI__builtin_log2f128:
2885
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2886
Intrinsic::log2,
2887
Intrinsic::experimental_constrained_log2));
2888
2889
case Builtin::BInearbyint:
2890
case Builtin::BInearbyintf:
2891
case Builtin::BInearbyintl:
2892
case Builtin::BI__builtin_nearbyint:
2893
case Builtin::BI__builtin_nearbyintf:
2894
case Builtin::BI__builtin_nearbyintl:
2895
case Builtin::BI__builtin_nearbyintf128:
2896
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2897
Intrinsic::nearbyint,
2898
Intrinsic::experimental_constrained_nearbyint));
2899
2900
case Builtin::BIpow:
2901
case Builtin::BIpowf:
2902
case Builtin::BIpowl:
2903
case Builtin::BI__builtin_pow:
2904
case Builtin::BI__builtin_powf:
2905
case Builtin::BI__builtin_powf16:
2906
case Builtin::BI__builtin_powl:
2907
case Builtin::BI__builtin_powf128:
2908
return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2909
Intrinsic::pow,
2910
Intrinsic::experimental_constrained_pow));
2911
2912
case Builtin::BIrint:
2913
case Builtin::BIrintf:
2914
case Builtin::BIrintl:
2915
case Builtin::BI__builtin_rint:
2916
case Builtin::BI__builtin_rintf:
2917
case Builtin::BI__builtin_rintf16:
2918
case Builtin::BI__builtin_rintl:
2919
case Builtin::BI__builtin_rintf128:
2920
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2921
Intrinsic::rint,
2922
Intrinsic::experimental_constrained_rint));
2923
2924
case Builtin::BIround:
2925
case Builtin::BIroundf:
2926
case Builtin::BIroundl:
2927
case Builtin::BI__builtin_round:
2928
case Builtin::BI__builtin_roundf:
2929
case Builtin::BI__builtin_roundf16:
2930
case Builtin::BI__builtin_roundl:
2931
case Builtin::BI__builtin_roundf128:
2932
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2933
Intrinsic::round,
2934
Intrinsic::experimental_constrained_round));
2935
2936
case Builtin::BIroundeven:
2937
case Builtin::BIroundevenf:
2938
case Builtin::BIroundevenl:
2939
case Builtin::BI__builtin_roundeven:
2940
case Builtin::BI__builtin_roundevenf:
2941
case Builtin::BI__builtin_roundevenf16:
2942
case Builtin::BI__builtin_roundevenl:
2943
case Builtin::BI__builtin_roundevenf128:
2944
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2945
Intrinsic::roundeven,
2946
Intrinsic::experimental_constrained_roundeven));
2947
2948
case Builtin::BIsin:
2949
case Builtin::BIsinf:
2950
case Builtin::BIsinl:
2951
case Builtin::BI__builtin_sin:
2952
case Builtin::BI__builtin_sinf:
2953
case Builtin::BI__builtin_sinf16:
2954
case Builtin::BI__builtin_sinl:
2955
case Builtin::BI__builtin_sinf128:
2956
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2957
Intrinsic::sin,
2958
Intrinsic::experimental_constrained_sin));
2959
2960
case Builtin::BIsinh:
2961
case Builtin::BIsinhf:
2962
case Builtin::BIsinhl:
2963
case Builtin::BI__builtin_sinh:
2964
case Builtin::BI__builtin_sinhf:
2965
case Builtin::BI__builtin_sinhf16:
2966
case Builtin::BI__builtin_sinhl:
2967
case Builtin::BI__builtin_sinhf128:
2968
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
2969
*this, E, Intrinsic::sinh, Intrinsic::experimental_constrained_sinh));
2970
2971
case Builtin::BIsqrt:
2972
case Builtin::BIsqrtf:
2973
case Builtin::BIsqrtl:
2974
case Builtin::BI__builtin_sqrt:
2975
case Builtin::BI__builtin_sqrtf:
2976
case Builtin::BI__builtin_sqrtf16:
2977
case Builtin::BI__builtin_sqrtl:
2978
case Builtin::BI__builtin_sqrtf128:
2979
case Builtin::BI__builtin_elementwise_sqrt: {
2980
llvm::Value *Call = emitUnaryMaybeConstrainedFPBuiltin(
2981
*this, E, Intrinsic::sqrt, Intrinsic::experimental_constrained_sqrt);
2982
SetSqrtFPAccuracy(Call);
2983
return RValue::get(Call);
2984
}
2985
2986
case Builtin::BItan:
2987
case Builtin::BItanf:
2988
case Builtin::BItanl:
2989
case Builtin::BI__builtin_tan:
2990
case Builtin::BI__builtin_tanf:
2991
case Builtin::BI__builtin_tanf16:
2992
case Builtin::BI__builtin_tanl:
2993
case Builtin::BI__builtin_tanf128:
2994
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
2995
*this, E, Intrinsic::tan, Intrinsic::experimental_constrained_tan));
2996
2997
case Builtin::BItanh:
2998
case Builtin::BItanhf:
2999
case Builtin::BItanhl:
3000
case Builtin::BI__builtin_tanh:
3001
case Builtin::BI__builtin_tanhf:
3002
case Builtin::BI__builtin_tanhf16:
3003
case Builtin::BI__builtin_tanhl:
3004
case Builtin::BI__builtin_tanhf128:
3005
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
3006
*this, E, Intrinsic::tanh, Intrinsic::experimental_constrained_tanh));
3007
3008
case Builtin::BItrunc:
3009
case Builtin::BItruncf:
3010
case Builtin::BItruncl:
3011
case Builtin::BI__builtin_trunc:
3012
case Builtin::BI__builtin_truncf:
3013
case Builtin::BI__builtin_truncf16:
3014
case Builtin::BI__builtin_truncl:
3015
case Builtin::BI__builtin_truncf128:
3016
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
3017
Intrinsic::trunc,
3018
Intrinsic::experimental_constrained_trunc));
3019
3020
case Builtin::BIlround:
3021
case Builtin::BIlroundf:
3022
case Builtin::BIlroundl:
3023
case Builtin::BI__builtin_lround:
3024
case Builtin::BI__builtin_lroundf:
3025
case Builtin::BI__builtin_lroundl:
3026
case Builtin::BI__builtin_lroundf128:
3027
return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
3028
*this, E, Intrinsic::lround,
3029
Intrinsic::experimental_constrained_lround));
3030
3031
case Builtin::BIllround:
3032
case Builtin::BIllroundf:
3033
case Builtin::BIllroundl:
3034
case Builtin::BI__builtin_llround:
3035
case Builtin::BI__builtin_llroundf:
3036
case Builtin::BI__builtin_llroundl:
3037
case Builtin::BI__builtin_llroundf128:
3038
return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
3039
*this, E, Intrinsic::llround,
3040
Intrinsic::experimental_constrained_llround));
3041
3042
case Builtin::BIlrint:
3043
case Builtin::BIlrintf:
3044
case Builtin::BIlrintl:
3045
case Builtin::BI__builtin_lrint:
3046
case Builtin::BI__builtin_lrintf:
3047
case Builtin::BI__builtin_lrintl:
3048
case Builtin::BI__builtin_lrintf128:
3049
return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
3050
*this, E, Intrinsic::lrint,
3051
Intrinsic::experimental_constrained_lrint));
3052
3053
case Builtin::BIllrint:
3054
case Builtin::BIllrintf:
3055
case Builtin::BIllrintl:
3056
case Builtin::BI__builtin_llrint:
3057
case Builtin::BI__builtin_llrintf:
3058
case Builtin::BI__builtin_llrintl:
3059
case Builtin::BI__builtin_llrintf128:
3060
return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
3061
*this, E, Intrinsic::llrint,
3062
Intrinsic::experimental_constrained_llrint));
3063
case Builtin::BI__builtin_ldexp:
3064
case Builtin::BI__builtin_ldexpf:
3065
case Builtin::BI__builtin_ldexpl:
3066
case Builtin::BI__builtin_ldexpf16:
3067
case Builtin::BI__builtin_ldexpf128: {
3068
return RValue::get(emitBinaryExpMaybeConstrainedFPBuiltin(
3069
*this, E, Intrinsic::ldexp,
3070
Intrinsic::experimental_constrained_ldexp));
3071
}
3072
default:
3073
break;
3074
}
3075
}
3076
3077
// Check NonnullAttribute/NullabilityArg and Alignment.
3078
auto EmitArgCheck = [&](TypeCheckKind Kind, Address A, const Expr *Arg,
3079
unsigned ParmNum) {
3080
Value *Val = A.emitRawPointer(*this);
3081
EmitNonNullArgCheck(RValue::get(Val), Arg->getType(), Arg->getExprLoc(), FD,
3082
ParmNum);
3083
3084
if (SanOpts.has(SanitizerKind::Alignment)) {
3085
SanitizerSet SkippedChecks;
3086
SkippedChecks.set(SanitizerKind::All);
3087
SkippedChecks.clear(SanitizerKind::Alignment);
3088
SourceLocation Loc = Arg->getExprLoc();
3089
// Strip an implicit cast.
3090
if (auto *CE = dyn_cast<ImplicitCastExpr>(Arg))
3091
if (CE->getCastKind() == CK_BitCast)
3092
Arg = CE->getSubExpr();
3093
EmitTypeCheck(Kind, Loc, Val, Arg->getType(), A.getAlignment(),
3094
SkippedChecks);
3095
}
3096
};
3097
3098
switch (BuiltinIDIfNoAsmLabel) {
3099
default: break;
3100
case Builtin::BI__builtin___CFStringMakeConstantString:
3101
case Builtin::BI__builtin___NSStringMakeConstantString:
3102
return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
3103
case Builtin::BI__builtin_stdarg_start:
3104
case Builtin::BI__builtin_va_start:
3105
case Builtin::BI__va_start:
3106
case Builtin::BI__builtin_va_end:
3107
EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
3108
? EmitScalarExpr(E->getArg(0))
3109
: EmitVAListRef(E->getArg(0)).emitRawPointer(*this),
3110
BuiltinID != Builtin::BI__builtin_va_end);
3111
return RValue::get(nullptr);
3112
case Builtin::BI__builtin_va_copy: {
3113
Value *DstPtr = EmitVAListRef(E->getArg(0)).emitRawPointer(*this);
3114
Value *SrcPtr = EmitVAListRef(E->getArg(1)).emitRawPointer(*this);
3115
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy, {DstPtr->getType()}),
3116
{DstPtr, SrcPtr});
3117
return RValue::get(nullptr);
3118
}
3119
case Builtin::BIabs:
3120
case Builtin::BIlabs:
3121
case Builtin::BIllabs:
3122
case Builtin::BI__builtin_abs:
3123
case Builtin::BI__builtin_labs:
3124
case Builtin::BI__builtin_llabs: {
3125
bool SanitizeOverflow = SanOpts.has(SanitizerKind::SignedIntegerOverflow);
3126
3127
Value *Result;
3128
switch (getLangOpts().getSignedOverflowBehavior()) {
3129
case LangOptions::SOB_Defined:
3130
Result = EmitAbs(*this, EmitScalarExpr(E->getArg(0)), false);
3131
break;
3132
case LangOptions::SOB_Undefined:
3133
if (!SanitizeOverflow) {
3134
Result = EmitAbs(*this, EmitScalarExpr(E->getArg(0)), true);
3135
break;
3136
}
3137
[[fallthrough]];
3138
case LangOptions::SOB_Trapping:
3139
// TODO: Somehow handle the corner case when the address of abs is taken.
3140
Result = EmitOverflowCheckedAbs(*this, E, SanitizeOverflow);
3141
break;
3142
}
3143
return RValue::get(Result);
3144
}
3145
case Builtin::BI__builtin_complex: {
3146
Value *Real = EmitScalarExpr(E->getArg(0));
3147
Value *Imag = EmitScalarExpr(E->getArg(1));
3148
return RValue::getComplex({Real, Imag});
3149
}
3150
case Builtin::BI__builtin_conj:
3151
case Builtin::BI__builtin_conjf:
3152
case Builtin::BI__builtin_conjl:
3153
case Builtin::BIconj:
3154
case Builtin::BIconjf:
3155
case Builtin::BIconjl: {
3156
ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
3157
Value *Real = ComplexVal.first;
3158
Value *Imag = ComplexVal.second;
3159
Imag = Builder.CreateFNeg(Imag, "neg");
3160
return RValue::getComplex(std::make_pair(Real, Imag));
3161
}
3162
case Builtin::BI__builtin_creal:
3163
case Builtin::BI__builtin_crealf:
3164
case Builtin::BI__builtin_creall:
3165
case Builtin::BIcreal:
3166
case Builtin::BIcrealf:
3167
case Builtin::BIcreall: {
3168
ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
3169
return RValue::get(ComplexVal.first);
3170
}
3171
3172
case Builtin::BI__builtin_preserve_access_index: {
3173
// Only enabled preserved access index region when debuginfo
3174
// is available as debuginfo is needed to preserve user-level
3175
// access pattern.
3176
if (!getDebugInfo()) {
3177
CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
3178
return RValue::get(EmitScalarExpr(E->getArg(0)));
3179
}
3180
3181
// Nested builtin_preserve_access_index() not supported
3182
if (IsInPreservedAIRegion) {
3183
CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
3184
return RValue::get(EmitScalarExpr(E->getArg(0)));
3185
}
3186
3187
IsInPreservedAIRegion = true;
3188
Value *Res = EmitScalarExpr(E->getArg(0));
3189
IsInPreservedAIRegion = false;
3190
return RValue::get(Res);
3191
}
3192
3193
case Builtin::BI__builtin_cimag:
3194
case Builtin::BI__builtin_cimagf:
3195
case Builtin::BI__builtin_cimagl:
3196
case Builtin::BIcimag:
3197
case Builtin::BIcimagf:
3198
case Builtin::BIcimagl: {
3199
ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
3200
return RValue::get(ComplexVal.second);
3201
}
3202
3203
case Builtin::BI__builtin_clrsb:
3204
case Builtin::BI__builtin_clrsbl:
3205
case Builtin::BI__builtin_clrsbll: {
3206
// clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
3207
Value *ArgValue = EmitScalarExpr(E->getArg(0));
3208
3209
llvm::Type *ArgType = ArgValue->getType();
3210
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
3211
3212
llvm::Type *ResultType = ConvertType(E->getType());
3213
Value *Zero = llvm::Constant::getNullValue(ArgType);
3214
Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
3215
Value *Inverse = Builder.CreateNot(ArgValue, "not");
3216
Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
3217
Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
3218
Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
3219
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3220
"cast");
3221
return RValue::get(Result);
3222
}
3223
case Builtin::BI__builtin_ctzs:
3224
case Builtin::BI__builtin_ctz:
3225
case Builtin::BI__builtin_ctzl:
3226
case Builtin::BI__builtin_ctzll:
3227
case Builtin::BI__builtin_ctzg: {
3228
bool HasFallback = BuiltinIDIfNoAsmLabel == Builtin::BI__builtin_ctzg &&
3229
E->getNumArgs() > 1;
3230
3231
Value *ArgValue =
3232
HasFallback ? EmitScalarExpr(E->getArg(0))
3233
: EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
3234
3235
llvm::Type *ArgType = ArgValue->getType();
3236
Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
3237
3238
llvm::Type *ResultType = ConvertType(E->getType());
3239
Value *ZeroUndef =
3240
Builder.getInt1(HasFallback || getTarget().isCLZForZeroUndef());
3241
Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
3242
if (Result->getType() != ResultType)
3243
Result =
3244
Builder.CreateIntCast(Result, ResultType, /*isSigned*/ false, "cast");
3245
if (!HasFallback)
3246
return RValue::get(Result);
3247
3248
Value *Zero = Constant::getNullValue(ArgType);
3249
Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
3250
Value *FallbackValue = EmitScalarExpr(E->getArg(1));
3251
Value *ResultOrFallback =
3252
Builder.CreateSelect(IsZero, FallbackValue, Result, "ctzg");
3253
return RValue::get(ResultOrFallback);
3254
}
3255
case Builtin::BI__builtin_clzs:
3256
case Builtin::BI__builtin_clz:
3257
case Builtin::BI__builtin_clzl:
3258
case Builtin::BI__builtin_clzll:
3259
case Builtin::BI__builtin_clzg: {
3260
bool HasFallback = BuiltinIDIfNoAsmLabel == Builtin::BI__builtin_clzg &&
3261
E->getNumArgs() > 1;
3262
3263
Value *ArgValue =
3264
HasFallback ? EmitScalarExpr(E->getArg(0))
3265
: EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
3266
3267
llvm::Type *ArgType = ArgValue->getType();
3268
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
3269
3270
llvm::Type *ResultType = ConvertType(E->getType());
3271
Value *ZeroUndef =
3272
Builder.getInt1(HasFallback || getTarget().isCLZForZeroUndef());
3273
Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
3274
if (Result->getType() != ResultType)
3275
Result =
3276
Builder.CreateIntCast(Result, ResultType, /*isSigned*/ false, "cast");
3277
if (!HasFallback)
3278
return RValue::get(Result);
3279
3280
Value *Zero = Constant::getNullValue(ArgType);
3281
Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
3282
Value *FallbackValue = EmitScalarExpr(E->getArg(1));
3283
Value *ResultOrFallback =
3284
Builder.CreateSelect(IsZero, FallbackValue, Result, "clzg");
3285
return RValue::get(ResultOrFallback);
3286
}
3287
case Builtin::BI__builtin_ffs:
3288
case Builtin::BI__builtin_ffsl:
3289
case Builtin::BI__builtin_ffsll: {
3290
// ffs(x) -> x ? cttz(x) + 1 : 0
3291
Value *ArgValue = EmitScalarExpr(E->getArg(0));
3292
3293
llvm::Type *ArgType = ArgValue->getType();
3294
Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
3295
3296
llvm::Type *ResultType = ConvertType(E->getType());
3297
Value *Tmp =
3298
Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
3299
llvm::ConstantInt::get(ArgType, 1));
3300
Value *Zero = llvm::Constant::getNullValue(ArgType);
3301
Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
3302
Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
3303
if (Result->getType() != ResultType)
3304
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3305
"cast");
3306
return RValue::get(Result);
3307
}
3308
case Builtin::BI__builtin_parity:
3309
case Builtin::BI__builtin_parityl:
3310
case Builtin::BI__builtin_parityll: {
3311
// parity(x) -> ctpop(x) & 1
3312
Value *ArgValue = EmitScalarExpr(E->getArg(0));
3313
3314
llvm::Type *ArgType = ArgValue->getType();
3315
Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
3316
3317
llvm::Type *ResultType = ConvertType(E->getType());
3318
Value *Tmp = Builder.CreateCall(F, ArgValue);
3319
Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
3320
if (Result->getType() != ResultType)
3321
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3322
"cast");
3323
return RValue::get(Result);
3324
}
3325
case Builtin::BI__lzcnt16:
3326
case Builtin::BI__lzcnt:
3327
case Builtin::BI__lzcnt64: {
3328
Value *ArgValue = EmitScalarExpr(E->getArg(0));
3329
3330
llvm::Type *ArgType = ArgValue->getType();
3331
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
3332
3333
llvm::Type *ResultType = ConvertType(E->getType());
3334
Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
3335
if (Result->getType() != ResultType)
3336
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3337
"cast");
3338
return RValue::get(Result);
3339
}
3340
case Builtin::BI__popcnt16:
3341
case Builtin::BI__popcnt:
3342
case Builtin::BI__popcnt64:
3343
case Builtin::BI__builtin_popcount:
3344
case Builtin::BI__builtin_popcountl:
3345
case Builtin::BI__builtin_popcountll:
3346
case Builtin::BI__builtin_popcountg: {
3347
Value *ArgValue = EmitScalarExpr(E->getArg(0));
3348
3349
llvm::Type *ArgType = ArgValue->getType();
3350
Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
3351
3352
llvm::Type *ResultType = ConvertType(E->getType());
3353
Value *Result = Builder.CreateCall(F, ArgValue);
3354
if (Result->getType() != ResultType)
3355
Result =
3356
Builder.CreateIntCast(Result, ResultType, /*isSigned*/ false, "cast");
3357
return RValue::get(Result);
3358
}
3359
case Builtin::BI__builtin_unpredictable: {
3360
// Always return the argument of __builtin_unpredictable. LLVM does not
3361
// handle this builtin. Metadata for this builtin should be added directly
3362
// to instructions such as branches or switches that use it.
3363
return RValue::get(EmitScalarExpr(E->getArg(0)));
3364
}
3365
case Builtin::BI__builtin_expect: {
3366
Value *ArgValue = EmitScalarExpr(E->getArg(0));
3367
llvm::Type *ArgType = ArgValue->getType();
3368
3369
Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
3370
// Don't generate llvm.expect on -O0 as the backend won't use it for
3371
// anything.
3372
// Note, we still IRGen ExpectedValue because it could have side-effects.
3373
if (CGM.getCodeGenOpts().OptimizationLevel == 0)
3374
return RValue::get(ArgValue);
3375
3376
Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
3377
Value *Result =
3378
Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
3379
return RValue::get(Result);
3380
}
3381
case Builtin::BI__builtin_expect_with_probability: {
3382
Value *ArgValue = EmitScalarExpr(E->getArg(0));
3383
llvm::Type *ArgType = ArgValue->getType();
3384
3385
Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
3386
llvm::APFloat Probability(0.0);
3387
const Expr *ProbArg = E->getArg(2);
3388
bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext());
3389
assert(EvalSucceed && "probability should be able to evaluate as float");
3390
(void)EvalSucceed;
3391
bool LoseInfo = false;
3392
Probability.convert(llvm::APFloat::IEEEdouble(),
3393
llvm::RoundingMode::Dynamic, &LoseInfo);
3394
llvm::Type *Ty = ConvertType(ProbArg->getType());
3395
Constant *Confidence = ConstantFP::get(Ty, Probability);
3396
// Don't generate llvm.expect.with.probability on -O0 as the backend
3397
// won't use it for anything.
3398
// Note, we still IRGen ExpectedValue because it could have side-effects.
3399
if (CGM.getCodeGenOpts().OptimizationLevel == 0)
3400
return RValue::get(ArgValue);
3401
3402
Function *FnExpect =
3403
CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType);
3404
Value *Result = Builder.CreateCall(
3405
FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval");
3406
return RValue::get(Result);
3407
}
3408
case Builtin::BI__builtin_assume_aligned: {
3409
const Expr *Ptr = E->getArg(0);
3410
Value *PtrValue = EmitScalarExpr(Ptr);
3411
Value *OffsetValue =
3412
(E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
3413
3414
Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
3415
ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
3416
if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
3417
AlignmentCI = ConstantInt::get(AlignmentCI->getIntegerType(),
3418
llvm::Value::MaximumAlignment);
3419
3420
emitAlignmentAssumption(PtrValue, Ptr,
3421
/*The expr loc is sufficient.*/ SourceLocation(),
3422
AlignmentCI, OffsetValue);
3423
return RValue::get(PtrValue);
3424
}
3425
case Builtin::BI__assume:
3426
case Builtin::BI__builtin_assume: {
3427
if (E->getArg(0)->HasSideEffects(getContext()))
3428
return RValue::get(nullptr);
3429
3430
Value *ArgValue = EmitScalarExpr(E->getArg(0));
3431
Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
3432
Builder.CreateCall(FnAssume, ArgValue);
3433
return RValue::get(nullptr);
3434
}
3435
case Builtin::BI__builtin_assume_separate_storage: {
3436
const Expr *Arg0 = E->getArg(0);
3437
const Expr *Arg1 = E->getArg(1);
3438
3439
Value *Value0 = EmitScalarExpr(Arg0);
3440
Value *Value1 = EmitScalarExpr(Arg1);
3441
3442
Value *Values[] = {Value0, Value1};
3443
OperandBundleDefT<Value *> OBD("separate_storage", Values);
3444
Builder.CreateAssumption(ConstantInt::getTrue(getLLVMContext()), {OBD});
3445
return RValue::get(nullptr);
3446
}
3447
case Builtin::BI__builtin_allow_runtime_check: {
3448
StringRef Kind =
3449
cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts())->getString();
3450
LLVMContext &Ctx = CGM.getLLVMContext();
3451
llvm::Value *Allow = Builder.CreateCall(
3452
CGM.getIntrinsic(llvm::Intrinsic::allow_runtime_check),
3453
llvm::MetadataAsValue::get(Ctx, llvm::MDString::get(Ctx, Kind)));
3454
return RValue::get(Allow);
3455
}
3456
case Builtin::BI__arithmetic_fence: {
3457
// Create the builtin call if FastMath is selected, and the target
3458
// supports the builtin, otherwise just return the argument.
3459
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3460
llvm::FastMathFlags FMF = Builder.getFastMathFlags();
3461
bool isArithmeticFenceEnabled =
3462
FMF.allowReassoc() &&
3463
getContext().getTargetInfo().checkArithmeticFenceSupported();
3464
QualType ArgType = E->getArg(0)->getType();
3465
if (ArgType->isComplexType()) {
3466
if (isArithmeticFenceEnabled) {
3467
QualType ElementType = ArgType->castAs<ComplexType>()->getElementType();
3468
ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
3469
Value *Real = Builder.CreateArithmeticFence(ComplexVal.first,
3470
ConvertType(ElementType));
3471
Value *Imag = Builder.CreateArithmeticFence(ComplexVal.second,
3472
ConvertType(ElementType));
3473
return RValue::getComplex(std::make_pair(Real, Imag));
3474
}
3475
ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
3476
Value *Real = ComplexVal.first;
3477
Value *Imag = ComplexVal.second;
3478
return RValue::getComplex(std::make_pair(Real, Imag));
3479
}
3480
Value *ArgValue = EmitScalarExpr(E->getArg(0));
3481
if (isArithmeticFenceEnabled)
3482
return RValue::get(
3483
Builder.CreateArithmeticFence(ArgValue, ConvertType(ArgType)));
3484
return RValue::get(ArgValue);
3485
}
3486
case Builtin::BI__builtin_bswap16:
3487
case Builtin::BI__builtin_bswap32:
3488
case Builtin::BI__builtin_bswap64:
3489
case Builtin::BI_byteswap_ushort:
3490
case Builtin::BI_byteswap_ulong:
3491
case Builtin::BI_byteswap_uint64: {
3492
return RValue::get(
3493
emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::bswap));
3494
}
3495
case Builtin::BI__builtin_bitreverse8:
3496
case Builtin::BI__builtin_bitreverse16:
3497
case Builtin::BI__builtin_bitreverse32:
3498
case Builtin::BI__builtin_bitreverse64: {
3499
return RValue::get(
3500
emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::bitreverse));
3501
}
3502
case Builtin::BI__builtin_rotateleft8:
3503
case Builtin::BI__builtin_rotateleft16:
3504
case Builtin::BI__builtin_rotateleft32:
3505
case Builtin::BI__builtin_rotateleft64:
3506
case Builtin::BI_rotl8: // Microsoft variants of rotate left
3507
case Builtin::BI_rotl16:
3508
case Builtin::BI_rotl:
3509
case Builtin::BI_lrotl:
3510
case Builtin::BI_rotl64:
3511
return emitRotate(E, false);
3512
3513
case Builtin::BI__builtin_rotateright8:
3514
case Builtin::BI__builtin_rotateright16:
3515
case Builtin::BI__builtin_rotateright32:
3516
case Builtin::BI__builtin_rotateright64:
3517
case Builtin::BI_rotr8: // Microsoft variants of rotate right
3518
case Builtin::BI_rotr16:
3519
case Builtin::BI_rotr:
3520
case Builtin::BI_lrotr:
3521
case Builtin::BI_rotr64:
3522
return emitRotate(E, true);
3523
3524
case Builtin::BI__builtin_constant_p: {
3525
llvm::Type *ResultType = ConvertType(E->getType());
3526
3527
const Expr *Arg = E->getArg(0);
3528
QualType ArgType = Arg->getType();
3529
// FIXME: The allowance for Obj-C pointers and block pointers is historical
3530
// and likely a mistake.
3531
if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
3532
!ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
3533
// Per the GCC documentation, only numeric constants are recognized after
3534
// inlining.
3535
return RValue::get(ConstantInt::get(ResultType, 0));
3536
3537
if (Arg->HasSideEffects(getContext()))
3538
// The argument is unevaluated, so be conservative if it might have
3539
// side-effects.
3540
return RValue::get(ConstantInt::get(ResultType, 0));
3541
3542
Value *ArgValue = EmitScalarExpr(Arg);
3543
if (ArgType->isObjCObjectPointerType()) {
3544
// Convert Objective-C objects to id because we cannot distinguish between
3545
// LLVM types for Obj-C classes as they are opaque.
3546
ArgType = CGM.getContext().getObjCIdType();
3547
ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
3548
}
3549
Function *F =
3550
CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
3551
Value *Result = Builder.CreateCall(F, ArgValue);
3552
if (Result->getType() != ResultType)
3553
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
3554
return RValue::get(Result);
3555
}
3556
case Builtin::BI__builtin_dynamic_object_size:
3557
case Builtin::BI__builtin_object_size: {
3558
unsigned Type =
3559
E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
3560
auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
3561
3562
// We pass this builtin onto the optimizer so that it can figure out the
3563
// object size in more complex cases.
3564
bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
3565
return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
3566
/*EmittedE=*/nullptr, IsDynamic));
3567
}
3568
case Builtin::BI__builtin_prefetch: {
3569
Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
3570
// FIXME: Technically these constants should of type 'int', yes?
3571
RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
3572
llvm::ConstantInt::get(Int32Ty, 0);
3573
Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
3574
llvm::ConstantInt::get(Int32Ty, 3);
3575
Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
3576
Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
3577
Builder.CreateCall(F, {Address, RW, Locality, Data});
3578
return RValue::get(nullptr);
3579
}
3580
case Builtin::BI__builtin_readcyclecounter: {
3581
Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
3582
return RValue::get(Builder.CreateCall(F));
3583
}
3584
case Builtin::BI__builtin_readsteadycounter: {
3585
Function *F = CGM.getIntrinsic(Intrinsic::readsteadycounter);
3586
return RValue::get(Builder.CreateCall(F));
3587
}
3588
case Builtin::BI__builtin___clear_cache: {
3589
Value *Begin = EmitScalarExpr(E->getArg(0));
3590
Value *End = EmitScalarExpr(E->getArg(1));
3591
Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
3592
return RValue::get(Builder.CreateCall(F, {Begin, End}));
3593
}
3594
case Builtin::BI__builtin_trap:
3595
EmitTrapCall(Intrinsic::trap);
3596
return RValue::get(nullptr);
3597
case Builtin::BI__builtin_verbose_trap: {
3598
llvm::DILocation *TrapLocation = Builder.getCurrentDebugLocation();
3599
if (getDebugInfo()) {
3600
TrapLocation = getDebugInfo()->CreateTrapFailureMessageFor(
3601
TrapLocation, *E->getArg(0)->tryEvaluateString(getContext()),
3602
*E->getArg(1)->tryEvaluateString(getContext()));
3603
}
3604
ApplyDebugLocation ApplyTrapDI(*this, TrapLocation);
3605
// Currently no attempt is made to prevent traps from being merged.
3606
EmitTrapCall(Intrinsic::trap);
3607
return RValue::get(nullptr);
3608
}
3609
case Builtin::BI__debugbreak:
3610
EmitTrapCall(Intrinsic::debugtrap);
3611
return RValue::get(nullptr);
3612
case Builtin::BI__builtin_unreachable: {
3613
EmitUnreachable(E->getExprLoc());
3614
3615
// We do need to preserve an insertion point.
3616
EmitBlock(createBasicBlock("unreachable.cont"));
3617
3618
return RValue::get(nullptr);
3619
}
3620
3621
case Builtin::BI__builtin_powi:
3622
case Builtin::BI__builtin_powif:
3623
case Builtin::BI__builtin_powil: {
3624
llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
3625
llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
3626
3627
if (Builder.getIsFPConstrained()) {
3628
// FIXME: llvm.powi has 2 mangling types,
3629
// llvm.experimental.constrained.powi has one.
3630
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3631
Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_powi,
3632
Src0->getType());
3633
return RValue::get(Builder.CreateConstrainedFPCall(F, { Src0, Src1 }));
3634
}
3635
3636
Function *F = CGM.getIntrinsic(Intrinsic::powi,
3637
{ Src0->getType(), Src1->getType() });
3638
return RValue::get(Builder.CreateCall(F, { Src0, Src1 }));
3639
}
3640
case Builtin::BI__builtin_frexpl: {
3641
// Linux PPC will not be adding additional PPCDoubleDouble support.
3642
// WIP to switch default to IEEE long double. Will emit libcall for
3643
// frexpl instead of legalizing this type in the BE.
3644
if (&getTarget().getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble())
3645
break;
3646
[[fallthrough]];
3647
}
3648
case Builtin::BI__builtin_frexp:
3649
case Builtin::BI__builtin_frexpf:
3650
case Builtin::BI__builtin_frexpf128:
3651
case Builtin::BI__builtin_frexpf16:
3652
return RValue::get(emitFrexpBuiltin(*this, E, Intrinsic::frexp));
3653
case Builtin::BI__builtin_isgreater:
3654
case Builtin::BI__builtin_isgreaterequal:
3655
case Builtin::BI__builtin_isless:
3656
case Builtin::BI__builtin_islessequal:
3657
case Builtin::BI__builtin_islessgreater:
3658
case Builtin::BI__builtin_isunordered: {
3659
// Ordered comparisons: we know the arguments to these are matching scalar
3660
// floating point values.
3661
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3662
Value *LHS = EmitScalarExpr(E->getArg(0));
3663
Value *RHS = EmitScalarExpr(E->getArg(1));
3664
3665
switch (BuiltinID) {
3666
default: llvm_unreachable("Unknown ordered comparison");
3667
case Builtin::BI__builtin_isgreater:
3668
LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
3669
break;
3670
case Builtin::BI__builtin_isgreaterequal:
3671
LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
3672
break;
3673
case Builtin::BI__builtin_isless:
3674
LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
3675
break;
3676
case Builtin::BI__builtin_islessequal:
3677
LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
3678
break;
3679
case Builtin::BI__builtin_islessgreater:
3680
LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
3681
break;
3682
case Builtin::BI__builtin_isunordered:
3683
LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
3684
break;
3685
}
3686
// ZExt bool to int type.
3687
return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
3688
}
3689
3690
case Builtin::BI__builtin_isnan: {
3691
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3692
Value *V = EmitScalarExpr(E->getArg(0));
3693
if (Value *Result = tryUseTestFPKind(*this, BuiltinID, V))
3694
return RValue::get(Result);
3695
return RValue::get(
3696
Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcNan),
3697
ConvertType(E->getType())));
3698
}
3699
3700
case Builtin::BI__builtin_issignaling: {
3701
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3702
Value *V = EmitScalarExpr(E->getArg(0));
3703
return RValue::get(
3704
Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcSNan),
3705
ConvertType(E->getType())));
3706
}
3707
3708
case Builtin::BI__builtin_isinf: {
3709
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3710
Value *V = EmitScalarExpr(E->getArg(0));
3711
if (Value *Result = tryUseTestFPKind(*this, BuiltinID, V))
3712
return RValue::get(Result);
3713
return RValue::get(
3714
Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcInf),
3715
ConvertType(E->getType())));
3716
}
3717
3718
case Builtin::BIfinite:
3719
case Builtin::BI__finite:
3720
case Builtin::BIfinitef:
3721
case Builtin::BI__finitef:
3722
case Builtin::BIfinitel:
3723
case Builtin::BI__finitel:
3724
case Builtin::BI__builtin_isfinite: {
3725
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3726
Value *V = EmitScalarExpr(E->getArg(0));
3727
if (Value *Result = tryUseTestFPKind(*this, BuiltinID, V))
3728
return RValue::get(Result);
3729
return RValue::get(
3730
Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcFinite),
3731
ConvertType(E->getType())));
3732
}
3733
3734
case Builtin::BI__builtin_isnormal: {
3735
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3736
Value *V = EmitScalarExpr(E->getArg(0));
3737
return RValue::get(
3738
Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcNormal),
3739
ConvertType(E->getType())));
3740
}
3741
3742
case Builtin::BI__builtin_issubnormal: {
3743
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3744
Value *V = EmitScalarExpr(E->getArg(0));
3745
return RValue::get(
3746
Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcSubnormal),
3747
ConvertType(E->getType())));
3748
}
3749
3750
case Builtin::BI__builtin_iszero: {
3751
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3752
Value *V = EmitScalarExpr(E->getArg(0));
3753
return RValue::get(
3754
Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcZero),
3755
ConvertType(E->getType())));
3756
}
3757
3758
case Builtin::BI__builtin_isfpclass: {
3759
Expr::EvalResult Result;
3760
if (!E->getArg(1)->EvaluateAsInt(Result, CGM.getContext()))
3761
break;
3762
uint64_t Test = Result.Val.getInt().getLimitedValue();
3763
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3764
Value *V = EmitScalarExpr(E->getArg(0));
3765
return RValue::get(Builder.CreateZExt(Builder.createIsFPClass(V, Test),
3766
ConvertType(E->getType())));
3767
}
3768
3769
case Builtin::BI__builtin_nondeterministic_value: {
3770
llvm::Type *Ty = ConvertType(E->getArg(0)->getType());
3771
3772
Value *Result = PoisonValue::get(Ty);
3773
Result = Builder.CreateFreeze(Result);
3774
3775
return RValue::get(Result);
3776
}
3777
3778
case Builtin::BI__builtin_elementwise_abs: {
3779
Value *Result;
3780
QualType QT = E->getArg(0)->getType();
3781
3782
if (auto *VecTy = QT->getAs<VectorType>())
3783
QT = VecTy->getElementType();
3784
if (QT->isIntegerType())
3785
Result = Builder.CreateBinaryIntrinsic(
3786
llvm::Intrinsic::abs, EmitScalarExpr(E->getArg(0)),
3787
Builder.getFalse(), nullptr, "elt.abs");
3788
else
3789
Result = emitBuiltinWithOneOverloadedType<1>(
3790
*this, E, llvm::Intrinsic::fabs, "elt.abs");
3791
3792
return RValue::get(Result);
3793
}
3794
case Builtin::BI__builtin_elementwise_acos:
3795
return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3796
*this, E, llvm::Intrinsic::acos, "elt.acos"));
3797
case Builtin::BI__builtin_elementwise_asin:
3798
return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3799
*this, E, llvm::Intrinsic::asin, "elt.asin"));
3800
case Builtin::BI__builtin_elementwise_atan:
3801
return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3802
*this, E, llvm::Intrinsic::atan, "elt.atan"));
3803
case Builtin::BI__builtin_elementwise_ceil:
3804
return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3805
*this, E, llvm::Intrinsic::ceil, "elt.ceil"));
3806
case Builtin::BI__builtin_elementwise_exp:
3807
return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3808
*this, E, llvm::Intrinsic::exp, "elt.exp"));
3809
case Builtin::BI__builtin_elementwise_exp2:
3810
return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3811
*this, E, llvm::Intrinsic::exp2, "elt.exp2"));
3812
case Builtin::BI__builtin_elementwise_log:
3813
return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3814
*this, E, llvm::Intrinsic::log, "elt.log"));
3815
case Builtin::BI__builtin_elementwise_log2:
3816
return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3817
*this, E, llvm::Intrinsic::log2, "elt.log2"));
3818
case Builtin::BI__builtin_elementwise_log10:
3819
return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3820
*this, E, llvm::Intrinsic::log10, "elt.log10"));
3821
case Builtin::BI__builtin_elementwise_pow: {
3822
return RValue::get(
3823
emitBuiltinWithOneOverloadedType<2>(*this, E, llvm::Intrinsic::pow));
3824
}
3825
case Builtin::BI__builtin_elementwise_bitreverse:
3826
return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3827
*this, E, llvm::Intrinsic::bitreverse, "elt.bitreverse"));
3828
case Builtin::BI__builtin_elementwise_cos:
3829
return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3830
*this, E, llvm::Intrinsic::cos, "elt.cos"));
3831
case Builtin::BI__builtin_elementwise_cosh:
3832
return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3833
*this, E, llvm::Intrinsic::cosh, "elt.cosh"));
3834
case Builtin::BI__builtin_elementwise_floor:
3835
return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3836
*this, E, llvm::Intrinsic::floor, "elt.floor"));
3837
case Builtin::BI__builtin_elementwise_roundeven:
3838
return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3839
*this, E, llvm::Intrinsic::roundeven, "elt.roundeven"));
3840
case Builtin::BI__builtin_elementwise_round:
3841
return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3842
*this, E, llvm::Intrinsic::round, "elt.round"));
3843
case Builtin::BI__builtin_elementwise_rint:
3844
return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3845
*this, E, llvm::Intrinsic::rint, "elt.rint"));
3846
case Builtin::BI__builtin_elementwise_nearbyint:
3847
return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3848
*this, E, llvm::Intrinsic::nearbyint, "elt.nearbyint"));
3849
case Builtin::BI__builtin_elementwise_sin:
3850
return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3851
*this, E, llvm::Intrinsic::sin, "elt.sin"));
3852
case Builtin::BI__builtin_elementwise_sinh:
3853
return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3854
*this, E, llvm::Intrinsic::sinh, "elt.sinh"));
3855
case Builtin::BI__builtin_elementwise_tan:
3856
return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3857
*this, E, llvm::Intrinsic::tan, "elt.tan"));
3858
case Builtin::BI__builtin_elementwise_tanh:
3859
return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3860
*this, E, llvm::Intrinsic::tanh, "elt.tanh"));
3861
case Builtin::BI__builtin_elementwise_trunc:
3862
return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3863
*this, E, llvm::Intrinsic::trunc, "elt.trunc"));
3864
case Builtin::BI__builtin_elementwise_canonicalize:
3865
return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3866
*this, E, llvm::Intrinsic::canonicalize, "elt.canonicalize"));
3867
case Builtin::BI__builtin_elementwise_copysign:
3868
return RValue::get(emitBuiltinWithOneOverloadedType<2>(
3869
*this, E, llvm::Intrinsic::copysign));
3870
case Builtin::BI__builtin_elementwise_fma:
3871
return RValue::get(
3872
emitBuiltinWithOneOverloadedType<3>(*this, E, llvm::Intrinsic::fma));
3873
case Builtin::BI__builtin_elementwise_add_sat:
3874
case Builtin::BI__builtin_elementwise_sub_sat: {
3875
Value *Op0 = EmitScalarExpr(E->getArg(0));
3876
Value *Op1 = EmitScalarExpr(E->getArg(1));
3877
Value *Result;
3878
assert(Op0->getType()->isIntOrIntVectorTy() && "integer type expected");
3879
QualType Ty = E->getArg(0)->getType();
3880
if (auto *VecTy = Ty->getAs<VectorType>())
3881
Ty = VecTy->getElementType();
3882
bool IsSigned = Ty->isSignedIntegerType();
3883
unsigned Opc;
3884
if (BuiltinIDIfNoAsmLabel == Builtin::BI__builtin_elementwise_add_sat)
3885
Opc = IsSigned ? llvm::Intrinsic::sadd_sat : llvm::Intrinsic::uadd_sat;
3886
else
3887
Opc = IsSigned ? llvm::Intrinsic::ssub_sat : llvm::Intrinsic::usub_sat;
3888
Result = Builder.CreateBinaryIntrinsic(Opc, Op0, Op1, nullptr, "elt.sat");
3889
return RValue::get(Result);
3890
}
3891
3892
case Builtin::BI__builtin_elementwise_max: {
3893
Value *Op0 = EmitScalarExpr(E->getArg(0));
3894
Value *Op1 = EmitScalarExpr(E->getArg(1));
3895
Value *Result;
3896
if (Op0->getType()->isIntOrIntVectorTy()) {
3897
QualType Ty = E->getArg(0)->getType();
3898
if (auto *VecTy = Ty->getAs<VectorType>())
3899
Ty = VecTy->getElementType();
3900
Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType()
3901
? llvm::Intrinsic::smax
3902
: llvm::Intrinsic::umax,
3903
Op0, Op1, nullptr, "elt.max");
3904
} else
3905
Result = Builder.CreateMaxNum(Op0, Op1, "elt.max");
3906
return RValue::get(Result);
3907
}
3908
case Builtin::BI__builtin_elementwise_min: {
3909
Value *Op0 = EmitScalarExpr(E->getArg(0));
3910
Value *Op1 = EmitScalarExpr(E->getArg(1));
3911
Value *Result;
3912
if (Op0->getType()->isIntOrIntVectorTy()) {
3913
QualType Ty = E->getArg(0)->getType();
3914
if (auto *VecTy = Ty->getAs<VectorType>())
3915
Ty = VecTy->getElementType();
3916
Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType()
3917
? llvm::Intrinsic::smin
3918
: llvm::Intrinsic::umin,
3919
Op0, Op1, nullptr, "elt.min");
3920
} else
3921
Result = Builder.CreateMinNum(Op0, Op1, "elt.min");
3922
return RValue::get(Result);
3923
}
3924
3925
case Builtin::BI__builtin_reduce_max: {
3926
auto GetIntrinsicID = [this](QualType QT) {
3927
if (auto *VecTy = QT->getAs<VectorType>())
3928
QT = VecTy->getElementType();
3929
else if (QT->isSizelessVectorType())
3930
QT = QT->getSizelessVectorEltType(CGM.getContext());
3931
3932
if (QT->isSignedIntegerType())
3933
return llvm::Intrinsic::vector_reduce_smax;
3934
if (QT->isUnsignedIntegerType())
3935
return llvm::Intrinsic::vector_reduce_umax;
3936
assert(QT->isFloatingType() && "must have a float here");
3937
return llvm::Intrinsic::vector_reduce_fmax;
3938
};
3939
return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3940
*this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min"));
3941
}
3942
3943
case Builtin::BI__builtin_reduce_min: {
3944
auto GetIntrinsicID = [this](QualType QT) {
3945
if (auto *VecTy = QT->getAs<VectorType>())
3946
QT = VecTy->getElementType();
3947
else if (QT->isSizelessVectorType())
3948
QT = QT->getSizelessVectorEltType(CGM.getContext());
3949
3950
if (QT->isSignedIntegerType())
3951
return llvm::Intrinsic::vector_reduce_smin;
3952
if (QT->isUnsignedIntegerType())
3953
return llvm::Intrinsic::vector_reduce_umin;
3954
assert(QT->isFloatingType() && "must have a float here");
3955
return llvm::Intrinsic::vector_reduce_fmin;
3956
};
3957
3958
return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3959
*this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min"));
3960
}
3961
3962
case Builtin::BI__builtin_reduce_add:
3963
return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3964
*this, E, llvm::Intrinsic::vector_reduce_add, "rdx.add"));
3965
case Builtin::BI__builtin_reduce_mul:
3966
return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3967
*this, E, llvm::Intrinsic::vector_reduce_mul, "rdx.mul"));
3968
case Builtin::BI__builtin_reduce_xor:
3969
return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3970
*this, E, llvm::Intrinsic::vector_reduce_xor, "rdx.xor"));
3971
case Builtin::BI__builtin_reduce_or:
3972
return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3973
*this, E, llvm::Intrinsic::vector_reduce_or, "rdx.or"));
3974
case Builtin::BI__builtin_reduce_and:
3975
return RValue::get(emitBuiltinWithOneOverloadedType<1>(
3976
*this, E, llvm::Intrinsic::vector_reduce_and, "rdx.and"));
3977
3978
case Builtin::BI__builtin_matrix_transpose: {
3979
auto *MatrixTy = E->getArg(0)->getType()->castAs<ConstantMatrixType>();
3980
Value *MatValue = EmitScalarExpr(E->getArg(0));
3981
MatrixBuilder MB(Builder);
3982
Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(),
3983
MatrixTy->getNumColumns());
3984
return RValue::get(Result);
3985
}
3986
3987
case Builtin::BI__builtin_matrix_column_major_load: {
3988
MatrixBuilder MB(Builder);
3989
// Emit everything that isn't dependent on the first parameter type
3990
Value *Stride = EmitScalarExpr(E->getArg(3));
3991
const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>();
3992
auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>();
3993
assert(PtrTy && "arg0 must be of pointer type");
3994
bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3995
3996
Address Src = EmitPointerWithAlignment(E->getArg(0));
3997
EmitNonNullArgCheck(RValue::get(Src.emitRawPointer(*this)),
3998
E->getArg(0)->getType(), E->getArg(0)->getExprLoc(), FD,
3999
0);
4000
Value *Result = MB.CreateColumnMajorLoad(
4001
Src.getElementType(), Src.emitRawPointer(*this),
4002
Align(Src.getAlignment().getQuantity()), Stride, IsVolatile,
4003
ResultTy->getNumRows(), ResultTy->getNumColumns(), "matrix");
4004
return RValue::get(Result);
4005
}
4006
4007
case Builtin::BI__builtin_matrix_column_major_store: {
4008
MatrixBuilder MB(Builder);
4009
Value *Matrix = EmitScalarExpr(E->getArg(0));
4010
Address Dst = EmitPointerWithAlignment(E->getArg(1));
4011
Value *Stride = EmitScalarExpr(E->getArg(2));
4012
4013
const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
4014
auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>();
4015
assert(PtrTy && "arg1 must be of pointer type");
4016
bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
4017
4018
EmitNonNullArgCheck(RValue::get(Dst.emitRawPointer(*this)),
4019
E->getArg(1)->getType(), E->getArg(1)->getExprLoc(), FD,
4020
0);
4021
Value *Result = MB.CreateColumnMajorStore(
4022
Matrix, Dst.emitRawPointer(*this),
4023
Align(Dst.getAlignment().getQuantity()), Stride, IsVolatile,
4024
MatrixTy->getNumRows(), MatrixTy->getNumColumns());
4025
return RValue::get(Result);
4026
}
4027
4028
case Builtin::BI__builtin_isinf_sign: {
4029
// isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
4030
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
4031
// FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
4032
Value *Arg = EmitScalarExpr(E->getArg(0));
4033
Value *AbsArg = EmitFAbs(*this, Arg);
4034
Value *IsInf = Builder.CreateFCmpOEQ(
4035
AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
4036
Value *IsNeg = EmitSignBit(*this, Arg);
4037
4038
llvm::Type *IntTy = ConvertType(E->getType());
4039
Value *Zero = Constant::getNullValue(IntTy);
4040
Value *One = ConstantInt::get(IntTy, 1);
4041
Value *NegativeOne = ConstantInt::get(IntTy, -1);
4042
Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
4043
Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
4044
return RValue::get(Result);
4045
}
4046
4047
case Builtin::BI__builtin_flt_rounds: {
4048
Function *F = CGM.getIntrinsic(Intrinsic::get_rounding);
4049
4050
llvm::Type *ResultType = ConvertType(E->getType());
4051
Value *Result = Builder.CreateCall(F);
4052
if (Result->getType() != ResultType)
4053
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
4054
"cast");
4055
return RValue::get(Result);
4056
}
4057
4058
case Builtin::BI__builtin_set_flt_rounds: {
4059
Function *F = CGM.getIntrinsic(Intrinsic::set_rounding);
4060
4061
Value *V = EmitScalarExpr(E->getArg(0));
4062
Builder.CreateCall(F, V);
4063
return RValue::get(nullptr);
4064
}
4065
4066
case Builtin::BI__builtin_fpclassify: {
4067
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
4068
// FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
4069
Value *V = EmitScalarExpr(E->getArg(5));
4070
llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
4071
4072
// Create Result
4073
BasicBlock *Begin = Builder.GetInsertBlock();
4074
BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
4075
Builder.SetInsertPoint(End);
4076
PHINode *Result =
4077
Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
4078
"fpclassify_result");
4079
4080
// if (V==0) return FP_ZERO
4081
Builder.SetInsertPoint(Begin);
4082
Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
4083
"iszero");
4084
Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
4085
BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
4086
Builder.CreateCondBr(IsZero, End, NotZero);
4087
Result->addIncoming(ZeroLiteral, Begin);
4088
4089
// if (V != V) return FP_NAN
4090
Builder.SetInsertPoint(NotZero);
4091
Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
4092
Value *NanLiteral = EmitScalarExpr(E->getArg(0));
4093
BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
4094
Builder.CreateCondBr(IsNan, End, NotNan);
4095
Result->addIncoming(NanLiteral, NotZero);
4096
4097
// if (fabs(V) == infinity) return FP_INFINITY
4098
Builder.SetInsertPoint(NotNan);
4099
Value *VAbs = EmitFAbs(*this, V);
4100
Value *IsInf =
4101
Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
4102
"isinf");
4103
Value *InfLiteral = EmitScalarExpr(E->getArg(1));
4104
BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
4105
Builder.CreateCondBr(IsInf, End, NotInf);
4106
Result->addIncoming(InfLiteral, NotNan);
4107
4108
// if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
4109
Builder.SetInsertPoint(NotInf);
4110
APFloat Smallest = APFloat::getSmallestNormalized(
4111
getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
4112
Value *IsNormal =
4113
Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
4114
"isnormal");
4115
Value *NormalResult =
4116
Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
4117
EmitScalarExpr(E->getArg(3)));
4118
Builder.CreateBr(End);
4119
Result->addIncoming(NormalResult, NotInf);
4120
4121
// return Result
4122
Builder.SetInsertPoint(End);
4123
return RValue::get(Result);
4124
}
4125
4126
// An alloca will always return a pointer to the alloca (stack) address
4127
// space. This address space need not be the same as the AST / Language
4128
// default (e.g. in C / C++ auto vars are in the generic address space). At
4129
// the AST level this is handled within CreateTempAlloca et al., but for the
4130
// builtin / dynamic alloca we have to handle it here. We use an explicit cast
4131
// instead of passing an AS to CreateAlloca so as to not inhibit optimisation.
4132
case Builtin::BIalloca:
4133
case Builtin::BI_alloca:
4134
case Builtin::BI__builtin_alloca_uninitialized:
4135
case Builtin::BI__builtin_alloca: {
4136
Value *Size = EmitScalarExpr(E->getArg(0));
4137
const TargetInfo &TI = getContext().getTargetInfo();
4138
// The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
4139
const Align SuitableAlignmentInBytes =
4140
CGM.getContext()
4141
.toCharUnitsFromBits(TI.getSuitableAlign())
4142
.getAsAlign();
4143
AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
4144
AI->setAlignment(SuitableAlignmentInBytes);
4145
if (BuiltinID != Builtin::BI__builtin_alloca_uninitialized)
4146
initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
4147
LangAS AAS = getASTAllocaAddressSpace();
4148
LangAS EAS = E->getType()->getPointeeType().getAddressSpace();
4149
if (AAS != EAS) {
4150
llvm::Type *Ty = CGM.getTypes().ConvertType(E->getType());
4151
return RValue::get(getTargetHooks().performAddrSpaceCast(*this, AI, AAS,
4152
EAS, Ty));
4153
}
4154
return RValue::get(AI);
4155
}
4156
4157
case Builtin::BI__builtin_alloca_with_align_uninitialized:
4158
case Builtin::BI__builtin_alloca_with_align: {
4159
Value *Size = EmitScalarExpr(E->getArg(0));
4160
Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
4161
auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
4162
unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
4163
const Align AlignmentInBytes =
4164
CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign();
4165
AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
4166
AI->setAlignment(AlignmentInBytes);
4167
if (BuiltinID != Builtin::BI__builtin_alloca_with_align_uninitialized)
4168
initializeAlloca(*this, AI, Size, AlignmentInBytes);
4169
LangAS AAS = getASTAllocaAddressSpace();
4170
LangAS EAS = E->getType()->getPointeeType().getAddressSpace();
4171
if (AAS != EAS) {
4172
llvm::Type *Ty = CGM.getTypes().ConvertType(E->getType());
4173
return RValue::get(getTargetHooks().performAddrSpaceCast(*this, AI, AAS,
4174
EAS, Ty));
4175
}
4176
return RValue::get(AI);
4177
}
4178
4179
case Builtin::BIbzero:
4180
case Builtin::BI__builtin_bzero: {
4181
Address Dest = EmitPointerWithAlignment(E->getArg(0));
4182
Value *SizeVal = EmitScalarExpr(E->getArg(1));
4183
EmitNonNullArgCheck(Dest, E->getArg(0)->getType(),
4184
E->getArg(0)->getExprLoc(), FD, 0);
4185
Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
4186
return RValue::get(nullptr);
4187
}
4188
4189
case Builtin::BIbcopy:
4190
case Builtin::BI__builtin_bcopy: {
4191
Address Src = EmitPointerWithAlignment(E->getArg(0));
4192
Address Dest = EmitPointerWithAlignment(E->getArg(1));
4193
Value *SizeVal = EmitScalarExpr(E->getArg(2));
4194
EmitNonNullArgCheck(RValue::get(Src.emitRawPointer(*this)),
4195
E->getArg(0)->getType(), E->getArg(0)->getExprLoc(), FD,
4196
0);
4197
EmitNonNullArgCheck(RValue::get(Dest.emitRawPointer(*this)),
4198
E->getArg(1)->getType(), E->getArg(1)->getExprLoc(), FD,
4199
0);
4200
Builder.CreateMemMove(Dest, Src, SizeVal, false);
4201
return RValue::get(nullptr);
4202
}
4203
4204
case Builtin::BImemcpy:
4205
case Builtin::BI__builtin_memcpy:
4206
case Builtin::BImempcpy:
4207
case Builtin::BI__builtin_mempcpy: {
4208
Address Dest = EmitPointerWithAlignment(E->getArg(0));
4209
Address Src = EmitPointerWithAlignment(E->getArg(1));
4210
Value *SizeVal = EmitScalarExpr(E->getArg(2));
4211
EmitArgCheck(TCK_Store, Dest, E->getArg(0), 0);
4212
EmitArgCheck(TCK_Load, Src, E->getArg(1), 1);
4213
Builder.CreateMemCpy(Dest, Src, SizeVal, false);
4214
if (BuiltinID == Builtin::BImempcpy ||
4215
BuiltinID == Builtin::BI__builtin_mempcpy)
4216
return RValue::get(Builder.CreateInBoundsGEP(
4217
Dest.getElementType(), Dest.emitRawPointer(*this), SizeVal));
4218
else
4219
return RValue::get(Dest, *this);
4220
}
4221
4222
case Builtin::BI__builtin_memcpy_inline: {
4223
Address Dest = EmitPointerWithAlignment(E->getArg(0));
4224
Address Src = EmitPointerWithAlignment(E->getArg(1));
4225
uint64_t Size =
4226
E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
4227
EmitArgCheck(TCK_Store, Dest, E->getArg(0), 0);
4228
EmitArgCheck(TCK_Load, Src, E->getArg(1), 1);
4229
Builder.CreateMemCpyInline(Dest, Src, Size);
4230
return RValue::get(nullptr);
4231
}
4232
4233
case Builtin::BI__builtin_char_memchr:
4234
BuiltinID = Builtin::BI__builtin_memchr;
4235
break;
4236
4237
case Builtin::BI__builtin___memcpy_chk: {
4238
// fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
4239
Expr::EvalResult SizeResult, DstSizeResult;
4240
if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
4241
!E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
4242
break;
4243
llvm::APSInt Size = SizeResult.Val.getInt();
4244
llvm::APSInt DstSize = DstSizeResult.Val.getInt();
4245
if (Size.ugt(DstSize))
4246
break;
4247
Address Dest = EmitPointerWithAlignment(E->getArg(0));
4248
Address Src = EmitPointerWithAlignment(E->getArg(1));
4249
Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
4250
Builder.CreateMemCpy(Dest, Src, SizeVal, false);
4251
return RValue::get(Dest, *this);
4252
}
4253
4254
case Builtin::BI__builtin_objc_memmove_collectable: {
4255
Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
4256
Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
4257
Value *SizeVal = EmitScalarExpr(E->getArg(2));
4258
CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
4259
DestAddr, SrcAddr, SizeVal);
4260
return RValue::get(DestAddr, *this);
4261
}
4262
4263
case Builtin::BI__builtin___memmove_chk: {
4264
// fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
4265
Expr::EvalResult SizeResult, DstSizeResult;
4266
if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
4267
!E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
4268
break;
4269
llvm::APSInt Size = SizeResult.Val.getInt();
4270
llvm::APSInt DstSize = DstSizeResult.Val.getInt();
4271
if (Size.ugt(DstSize))
4272
break;
4273
Address Dest = EmitPointerWithAlignment(E->getArg(0));
4274
Address Src = EmitPointerWithAlignment(E->getArg(1));
4275
Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
4276
Builder.CreateMemMove(Dest, Src, SizeVal, false);
4277
return RValue::get(Dest, *this);
4278
}
4279
4280
case Builtin::BImemmove:
4281
case Builtin::BI__builtin_memmove: {
4282
Address Dest = EmitPointerWithAlignment(E->getArg(0));
4283
Address Src = EmitPointerWithAlignment(E->getArg(1));
4284
Value *SizeVal = EmitScalarExpr(E->getArg(2));
4285
EmitArgCheck(TCK_Store, Dest, E->getArg(0), 0);
4286
EmitArgCheck(TCK_Load, Src, E->getArg(1), 1);
4287
Builder.CreateMemMove(Dest, Src, SizeVal, false);
4288
return RValue::get(Dest, *this);
4289
}
4290
case Builtin::BImemset:
4291
case Builtin::BI__builtin_memset: {
4292
Address Dest = EmitPointerWithAlignment(E->getArg(0));
4293
Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
4294
Builder.getInt8Ty());
4295
Value *SizeVal = EmitScalarExpr(E->getArg(2));
4296
EmitNonNullArgCheck(Dest, E->getArg(0)->getType(),
4297
E->getArg(0)->getExprLoc(), FD, 0);
4298
Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
4299
return RValue::get(Dest, *this);
4300
}
4301
case Builtin::BI__builtin_memset_inline: {
4302
Address Dest = EmitPointerWithAlignment(E->getArg(0));
4303
Value *ByteVal =
4304
Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), Builder.getInt8Ty());
4305
uint64_t Size =
4306
E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
4307
EmitNonNullArgCheck(RValue::get(Dest.emitRawPointer(*this)),
4308
E->getArg(0)->getType(), E->getArg(0)->getExprLoc(), FD,
4309
0);
4310
Builder.CreateMemSetInline(Dest, ByteVal, Size);
4311
return RValue::get(nullptr);
4312
}
4313
case Builtin::BI__builtin___memset_chk: {
4314
// fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
4315
Expr::EvalResult SizeResult, DstSizeResult;
4316
if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
4317
!E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
4318
break;
4319
llvm::APSInt Size = SizeResult.Val.getInt();
4320
llvm::APSInt DstSize = DstSizeResult.Val.getInt();
4321
if (Size.ugt(DstSize))
4322
break;
4323
Address Dest = EmitPointerWithAlignment(E->getArg(0));
4324
Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
4325
Builder.getInt8Ty());
4326
Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
4327
Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
4328
return RValue::get(Dest, *this);
4329
}
4330
case Builtin::BI__builtin_wmemchr: {
4331
// The MSVC runtime library does not provide a definition of wmemchr, so we
4332
// need an inline implementation.
4333
if (!getTarget().getTriple().isOSMSVCRT())
4334
break;
4335
4336
llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
4337
Value *Str = EmitScalarExpr(E->getArg(0));
4338
Value *Chr = EmitScalarExpr(E->getArg(1));
4339
Value *Size = EmitScalarExpr(E->getArg(2));
4340
4341
BasicBlock *Entry = Builder.GetInsertBlock();
4342
BasicBlock *CmpEq = createBasicBlock("wmemchr.eq");
4343
BasicBlock *Next = createBasicBlock("wmemchr.next");
4344
BasicBlock *Exit = createBasicBlock("wmemchr.exit");
4345
Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
4346
Builder.CreateCondBr(SizeEq0, Exit, CmpEq);
4347
4348
EmitBlock(CmpEq);
4349
PHINode *StrPhi = Builder.CreatePHI(Str->getType(), 2);
4350
StrPhi->addIncoming(Str, Entry);
4351
PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
4352
SizePhi->addIncoming(Size, Entry);
4353
CharUnits WCharAlign =
4354
getContext().getTypeAlignInChars(getContext().WCharTy);
4355
Value *StrCh = Builder.CreateAlignedLoad(WCharTy, StrPhi, WCharAlign);
4356
Value *FoundChr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 0);
4357
Value *StrEqChr = Builder.CreateICmpEQ(StrCh, Chr);
4358
Builder.CreateCondBr(StrEqChr, Exit, Next);
4359
4360
EmitBlock(Next);
4361
Value *NextStr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 1);
4362
Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
4363
Value *NextSizeEq0 =
4364
Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
4365
Builder.CreateCondBr(NextSizeEq0, Exit, CmpEq);
4366
StrPhi->addIncoming(NextStr, Next);
4367
SizePhi->addIncoming(NextSize, Next);
4368
4369
EmitBlock(Exit);
4370
PHINode *Ret = Builder.CreatePHI(Str->getType(), 3);
4371
Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Entry);
4372
Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Next);
4373
Ret->addIncoming(FoundChr, CmpEq);
4374
return RValue::get(Ret);
4375
}
4376
case Builtin::BI__builtin_wmemcmp: {
4377
// The MSVC runtime library does not provide a definition of wmemcmp, so we
4378
// need an inline implementation.
4379
if (!getTarget().getTriple().isOSMSVCRT())
4380
break;
4381
4382
llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
4383
4384
Value *Dst = EmitScalarExpr(E->getArg(0));
4385
Value *Src = EmitScalarExpr(E->getArg(1));
4386
Value *Size = EmitScalarExpr(E->getArg(2));
4387
4388
BasicBlock *Entry = Builder.GetInsertBlock();
4389
BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
4390
BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
4391
BasicBlock *Next = createBasicBlock("wmemcmp.next");
4392
BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
4393
Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
4394
Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
4395
4396
EmitBlock(CmpGT);
4397
PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
4398
DstPhi->addIncoming(Dst, Entry);
4399
PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
4400
SrcPhi->addIncoming(Src, Entry);
4401
PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
4402
SizePhi->addIncoming(Size, Entry);
4403
CharUnits WCharAlign =
4404
getContext().getTypeAlignInChars(getContext().WCharTy);
4405
Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
4406
Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
4407
Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
4408
Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
4409
4410
EmitBlock(CmpLT);
4411
Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
4412
Builder.CreateCondBr(DstLtSrc, Exit, Next);
4413
4414
EmitBlock(Next);
4415
Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
4416
Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
4417
Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
4418
Value *NextSizeEq0 =
4419
Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
4420
Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
4421
DstPhi->addIncoming(NextDst, Next);
4422
SrcPhi->addIncoming(NextSrc, Next);
4423
SizePhi->addIncoming(NextSize, Next);
4424
4425
EmitBlock(Exit);
4426
PHINode *Ret = Builder.CreatePHI(IntTy, 4);
4427
Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
4428
Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
4429
Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
4430
Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
4431
return RValue::get(Ret);
4432
}
4433
case Builtin::BI__builtin_dwarf_cfa: {
4434
// The offset in bytes from the first argument to the CFA.
4435
//
4436
// Why on earth is this in the frontend? Is there any reason at
4437
// all that the backend can't reasonably determine this while
4438
// lowering llvm.eh.dwarf.cfa()?
4439
//
4440
// TODO: If there's a satisfactory reason, add a target hook for
4441
// this instead of hard-coding 0, which is correct for most targets.
4442
int32_t Offset = 0;
4443
4444
Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
4445
return RValue::get(Builder.CreateCall(F,
4446
llvm::ConstantInt::get(Int32Ty, Offset)));
4447
}
4448
case Builtin::BI__builtin_return_address: {
4449
Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
4450
getContext().UnsignedIntTy);
4451
Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
4452
return RValue::get(Builder.CreateCall(F, Depth));
4453
}
4454
case Builtin::BI_ReturnAddress: {
4455
Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
4456
return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
4457
}
4458
case Builtin::BI__builtin_frame_address: {
4459
Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
4460
getContext().UnsignedIntTy);
4461
Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy);
4462
return RValue::get(Builder.CreateCall(F, Depth));
4463
}
4464
case Builtin::BI__builtin_extract_return_addr: {
4465
Value *Address = EmitScalarExpr(E->getArg(0));
4466
Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
4467
return RValue::get(Result);
4468
}
4469
case Builtin::BI__builtin_frob_return_addr: {
4470
Value *Address = EmitScalarExpr(E->getArg(0));
4471
Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
4472
return RValue::get(Result);
4473
}
4474
case Builtin::BI__builtin_dwarf_sp_column: {
4475
llvm::IntegerType *Ty
4476
= cast<llvm::IntegerType>(ConvertType(E->getType()));
4477
int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
4478
if (Column == -1) {
4479
CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
4480
return RValue::get(llvm::UndefValue::get(Ty));
4481
}
4482
return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
4483
}
4484
case Builtin::BI__builtin_init_dwarf_reg_size_table: {
4485
Value *Address = EmitScalarExpr(E->getArg(0));
4486
if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
4487
CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
4488
return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
4489
}
4490
case Builtin::BI__builtin_eh_return: {
4491
Value *Int = EmitScalarExpr(E->getArg(0));
4492
Value *Ptr = EmitScalarExpr(E->getArg(1));
4493
4494
llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
4495
assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
4496
"LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
4497
Function *F =
4498
CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
4499
: Intrinsic::eh_return_i64);
4500
Builder.CreateCall(F, {Int, Ptr});
4501
Builder.CreateUnreachable();
4502
4503
// We do need to preserve an insertion point.
4504
EmitBlock(createBasicBlock("builtin_eh_return.cont"));
4505
4506
return RValue::get(nullptr);
4507
}
4508
case Builtin::BI__builtin_unwind_init: {
4509
Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
4510
Builder.CreateCall(F);
4511
return RValue::get(nullptr);
4512
}
4513
case Builtin::BI__builtin_extend_pointer: {
4514
// Extends a pointer to the size of an _Unwind_Word, which is
4515
// uint64_t on all platforms. Generally this gets poked into a
4516
// register and eventually used as an address, so if the
4517
// addressing registers are wider than pointers and the platform
4518
// doesn't implicitly ignore high-order bits when doing
4519
// addressing, we need to make sure we zext / sext based on
4520
// the platform's expectations.
4521
//
4522
// See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
4523
4524
// Cast the pointer to intptr_t.
4525
Value *Ptr = EmitScalarExpr(E->getArg(0));
4526
Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
4527
4528
// If that's 64 bits, we're done.
4529
if (IntPtrTy->getBitWidth() == 64)
4530
return RValue::get(Result);
4531
4532
// Otherwise, ask the codegen data what to do.
4533
if (getTargetHooks().extendPointerWithSExt())
4534
return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
4535
else
4536
return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
4537
}
4538
case Builtin::BI__builtin_setjmp: {
4539
// Buffer is a void**.
4540
Address Buf = EmitPointerWithAlignment(E->getArg(0));
4541
4542
// Store the frame pointer to the setjmp buffer.
4543
Value *FrameAddr = Builder.CreateCall(
4544
CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy),
4545
ConstantInt::get(Int32Ty, 0));
4546
Builder.CreateStore(FrameAddr, Buf);
4547
4548
// Store the stack pointer to the setjmp buffer.
4549
Value *StackAddr = Builder.CreateStackSave();
4550
assert(Buf.emitRawPointer(*this)->getType() == StackAddr->getType());
4551
4552
Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
4553
Builder.CreateStore(StackAddr, StackSaveSlot);
4554
4555
// Call LLVM's EH setjmp, which is lightweight.
4556
Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
4557
return RValue::get(Builder.CreateCall(F, Buf.emitRawPointer(*this)));
4558
}
4559
case Builtin::BI__builtin_longjmp: {
4560
Value *Buf = EmitScalarExpr(E->getArg(0));
4561
4562
// Call LLVM's EH longjmp, which is lightweight.
4563
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
4564
4565
// longjmp doesn't return; mark this as unreachable.
4566
Builder.CreateUnreachable();
4567
4568
// We do need to preserve an insertion point.
4569
EmitBlock(createBasicBlock("longjmp.cont"));
4570
4571
return RValue::get(nullptr);
4572
}
4573
case Builtin::BI__builtin_launder: {
4574
const Expr *Arg = E->getArg(0);
4575
QualType ArgTy = Arg->getType()->getPointeeType();
4576
Value *Ptr = EmitScalarExpr(Arg);
4577
if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
4578
Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
4579
4580
return RValue::get(Ptr);
4581
}
4582
case Builtin::BI__sync_fetch_and_add:
4583
case Builtin::BI__sync_fetch_and_sub:
4584
case Builtin::BI__sync_fetch_and_or:
4585
case Builtin::BI__sync_fetch_and_and:
4586
case Builtin::BI__sync_fetch_and_xor:
4587
case Builtin::BI__sync_fetch_and_nand:
4588
case Builtin::BI__sync_add_and_fetch:
4589
case Builtin::BI__sync_sub_and_fetch:
4590
case Builtin::BI__sync_and_and_fetch:
4591
case Builtin::BI__sync_or_and_fetch:
4592
case Builtin::BI__sync_xor_and_fetch:
4593
case Builtin::BI__sync_nand_and_fetch:
4594
case Builtin::BI__sync_val_compare_and_swap:
4595
case Builtin::BI__sync_bool_compare_and_swap:
4596
case Builtin::BI__sync_lock_test_and_set:
4597
case Builtin::BI__sync_lock_release:
4598
case Builtin::BI__sync_swap:
4599
llvm_unreachable("Shouldn't make it through sema");
4600
case Builtin::BI__sync_fetch_and_add_1:
4601
case Builtin::BI__sync_fetch_and_add_2:
4602
case Builtin::BI__sync_fetch_and_add_4:
4603
case Builtin::BI__sync_fetch_and_add_8:
4604
case Builtin::BI__sync_fetch_and_add_16:
4605
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
4606
case Builtin::BI__sync_fetch_and_sub_1:
4607
case Builtin::BI__sync_fetch_and_sub_2:
4608
case Builtin::BI__sync_fetch_and_sub_4:
4609
case Builtin::BI__sync_fetch_and_sub_8:
4610
case Builtin::BI__sync_fetch_and_sub_16:
4611
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
4612
case Builtin::BI__sync_fetch_and_or_1:
4613
case Builtin::BI__sync_fetch_and_or_2:
4614
case Builtin::BI__sync_fetch_and_or_4:
4615
case Builtin::BI__sync_fetch_and_or_8:
4616
case Builtin::BI__sync_fetch_and_or_16:
4617
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
4618
case Builtin::BI__sync_fetch_and_and_1:
4619
case Builtin::BI__sync_fetch_and_and_2:
4620
case Builtin::BI__sync_fetch_and_and_4:
4621
case Builtin::BI__sync_fetch_and_and_8:
4622
case Builtin::BI__sync_fetch_and_and_16:
4623
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
4624
case Builtin::BI__sync_fetch_and_xor_1:
4625
case Builtin::BI__sync_fetch_and_xor_2:
4626
case Builtin::BI__sync_fetch_and_xor_4:
4627
case Builtin::BI__sync_fetch_and_xor_8:
4628
case Builtin::BI__sync_fetch_and_xor_16:
4629
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
4630
case Builtin::BI__sync_fetch_and_nand_1:
4631
case Builtin::BI__sync_fetch_and_nand_2:
4632
case Builtin::BI__sync_fetch_and_nand_4:
4633
case Builtin::BI__sync_fetch_and_nand_8:
4634
case Builtin::BI__sync_fetch_and_nand_16:
4635
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
4636
4637
// Clang extensions: not overloaded yet.
4638
case Builtin::BI__sync_fetch_and_min:
4639
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
4640
case Builtin::BI__sync_fetch_and_max:
4641
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
4642
case Builtin::BI__sync_fetch_and_umin:
4643
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
4644
case Builtin::BI__sync_fetch_and_umax:
4645
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
4646
4647
case Builtin::BI__sync_add_and_fetch_1:
4648
case Builtin::BI__sync_add_and_fetch_2:
4649
case Builtin::BI__sync_add_and_fetch_4:
4650
case Builtin::BI__sync_add_and_fetch_8:
4651
case Builtin::BI__sync_add_and_fetch_16:
4652
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
4653
llvm::Instruction::Add);
4654
case Builtin::BI__sync_sub_and_fetch_1:
4655
case Builtin::BI__sync_sub_and_fetch_2:
4656
case Builtin::BI__sync_sub_and_fetch_4:
4657
case Builtin::BI__sync_sub_and_fetch_8:
4658
case Builtin::BI__sync_sub_and_fetch_16:
4659
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
4660
llvm::Instruction::Sub);
4661
case Builtin::BI__sync_and_and_fetch_1:
4662
case Builtin::BI__sync_and_and_fetch_2:
4663
case Builtin::BI__sync_and_and_fetch_4:
4664
case Builtin::BI__sync_and_and_fetch_8:
4665
case Builtin::BI__sync_and_and_fetch_16:
4666
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
4667
llvm::Instruction::And);
4668
case Builtin::BI__sync_or_and_fetch_1:
4669
case Builtin::BI__sync_or_and_fetch_2:
4670
case Builtin::BI__sync_or_and_fetch_4:
4671
case Builtin::BI__sync_or_and_fetch_8:
4672
case Builtin::BI__sync_or_and_fetch_16:
4673
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
4674
llvm::Instruction::Or);
4675
case Builtin::BI__sync_xor_and_fetch_1:
4676
case Builtin::BI__sync_xor_and_fetch_2:
4677
case Builtin::BI__sync_xor_and_fetch_4:
4678
case Builtin::BI__sync_xor_and_fetch_8:
4679
case Builtin::BI__sync_xor_and_fetch_16:
4680
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
4681
llvm::Instruction::Xor);
4682
case Builtin::BI__sync_nand_and_fetch_1:
4683
case Builtin::BI__sync_nand_and_fetch_2:
4684
case Builtin::BI__sync_nand_and_fetch_4:
4685
case Builtin::BI__sync_nand_and_fetch_8:
4686
case Builtin::BI__sync_nand_and_fetch_16:
4687
return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
4688
llvm::Instruction::And, true);
4689
4690
case Builtin::BI__sync_val_compare_and_swap_1:
4691
case Builtin::BI__sync_val_compare_and_swap_2:
4692
case Builtin::BI__sync_val_compare_and_swap_4:
4693
case Builtin::BI__sync_val_compare_and_swap_8:
4694
case Builtin::BI__sync_val_compare_and_swap_16:
4695
return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
4696
4697
case Builtin::BI__sync_bool_compare_and_swap_1:
4698
case Builtin::BI__sync_bool_compare_and_swap_2:
4699
case Builtin::BI__sync_bool_compare_and_swap_4:
4700
case Builtin::BI__sync_bool_compare_and_swap_8:
4701
case Builtin::BI__sync_bool_compare_and_swap_16:
4702
return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
4703
4704
case Builtin::BI__sync_swap_1:
4705
case Builtin::BI__sync_swap_2:
4706
case Builtin::BI__sync_swap_4:
4707
case Builtin::BI__sync_swap_8:
4708
case Builtin::BI__sync_swap_16:
4709
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
4710
4711
case Builtin::BI__sync_lock_test_and_set_1:
4712
case Builtin::BI__sync_lock_test_and_set_2:
4713
case Builtin::BI__sync_lock_test_and_set_4:
4714
case Builtin::BI__sync_lock_test_and_set_8:
4715
case Builtin::BI__sync_lock_test_and_set_16:
4716
return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
4717
4718
case Builtin::BI__sync_lock_release_1:
4719
case Builtin::BI__sync_lock_release_2:
4720
case Builtin::BI__sync_lock_release_4:
4721
case Builtin::BI__sync_lock_release_8:
4722
case Builtin::BI__sync_lock_release_16: {
4723
Address Ptr = CheckAtomicAlignment(*this, E);
4724
QualType ElTy = E->getArg(0)->getType()->getPointeeType();
4725
4726
llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
4727
getContext().getTypeSize(ElTy));
4728
llvm::StoreInst *Store =
4729
Builder.CreateStore(llvm::Constant::getNullValue(ITy), Ptr);
4730
Store->setAtomic(llvm::AtomicOrdering::Release);
4731
return RValue::get(nullptr);
4732
}
4733
4734
case Builtin::BI__sync_synchronize: {
4735
// We assume this is supposed to correspond to a C++0x-style
4736
// sequentially-consistent fence (i.e. this is only usable for
4737
// synchronization, not device I/O or anything like that). This intrinsic
4738
// is really badly designed in the sense that in theory, there isn't
4739
// any way to safely use it... but in practice, it mostly works
4740
// to use it with non-atomic loads and stores to get acquire/release
4741
// semantics.
4742
Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
4743
return RValue::get(nullptr);
4744
}
4745
4746
case Builtin::BI__builtin_nontemporal_load:
4747
return RValue::get(EmitNontemporalLoad(*this, E));
4748
case Builtin::BI__builtin_nontemporal_store:
4749
return RValue::get(EmitNontemporalStore(*this, E));
4750
case Builtin::BI__c11_atomic_is_lock_free:
4751
case Builtin::BI__atomic_is_lock_free: {
4752
// Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
4753
// __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
4754
// _Atomic(T) is always properly-aligned.
4755
const char *LibCallName = "__atomic_is_lock_free";
4756
CallArgList Args;
4757
Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
4758
getContext().getSizeType());
4759
if (BuiltinID == Builtin::BI__atomic_is_lock_free)
4760
Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
4761
getContext().VoidPtrTy);
4762
else
4763
Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
4764
getContext().VoidPtrTy);
4765
const CGFunctionInfo &FuncInfo =
4766
CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
4767
llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
4768
llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
4769
return EmitCall(FuncInfo, CGCallee::forDirect(Func),
4770
ReturnValueSlot(), Args);
4771
}
4772
4773
case Builtin::BI__atomic_test_and_set: {
4774
// Look at the argument type to determine whether this is a volatile
4775
// operation. The parameter type is always volatile.
4776
QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
4777
bool Volatile =
4778
PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
4779
4780
Address Ptr =
4781
EmitPointerWithAlignment(E->getArg(0)).withElementType(Int8Ty);
4782
4783
Value *NewVal = Builder.getInt8(1);
4784
Value *Order = EmitScalarExpr(E->getArg(1));
4785
if (isa<llvm::ConstantInt>(Order)) {
4786
int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4787
AtomicRMWInst *Result = nullptr;
4788
switch (ord) {
4789
case 0: // memory_order_relaxed
4790
default: // invalid order
4791
Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4792
llvm::AtomicOrdering::Monotonic);
4793
break;
4794
case 1: // memory_order_consume
4795
case 2: // memory_order_acquire
4796
Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4797
llvm::AtomicOrdering::Acquire);
4798
break;
4799
case 3: // memory_order_release
4800
Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4801
llvm::AtomicOrdering::Release);
4802
break;
4803
case 4: // memory_order_acq_rel
4804
4805
Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4806
llvm::AtomicOrdering::AcquireRelease);
4807
break;
4808
case 5: // memory_order_seq_cst
4809
Result = Builder.CreateAtomicRMW(
4810
llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4811
llvm::AtomicOrdering::SequentiallyConsistent);
4812
break;
4813
}
4814
Result->setVolatile(Volatile);
4815
return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
4816
}
4817
4818
llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4819
4820
llvm::BasicBlock *BBs[5] = {
4821
createBasicBlock("monotonic", CurFn),
4822
createBasicBlock("acquire", CurFn),
4823
createBasicBlock("release", CurFn),
4824
createBasicBlock("acqrel", CurFn),
4825
createBasicBlock("seqcst", CurFn)
4826
};
4827
llvm::AtomicOrdering Orders[5] = {
4828
llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
4829
llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
4830
llvm::AtomicOrdering::SequentiallyConsistent};
4831
4832
Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4833
llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
4834
4835
Builder.SetInsertPoint(ContBB);
4836
PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
4837
4838
for (unsigned i = 0; i < 5; ++i) {
4839
Builder.SetInsertPoint(BBs[i]);
4840
AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
4841
Ptr, NewVal, Orders[i]);
4842
RMW->setVolatile(Volatile);
4843
Result->addIncoming(RMW, BBs[i]);
4844
Builder.CreateBr(ContBB);
4845
}
4846
4847
SI->addCase(Builder.getInt32(0), BBs[0]);
4848
SI->addCase(Builder.getInt32(1), BBs[1]);
4849
SI->addCase(Builder.getInt32(2), BBs[1]);
4850
SI->addCase(Builder.getInt32(3), BBs[2]);
4851
SI->addCase(Builder.getInt32(4), BBs[3]);
4852
SI->addCase(Builder.getInt32(5), BBs[4]);
4853
4854
Builder.SetInsertPoint(ContBB);
4855
return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
4856
}
4857
4858
case Builtin::BI__atomic_clear: {
4859
QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
4860
bool Volatile =
4861
PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
4862
4863
Address Ptr = EmitPointerWithAlignment(E->getArg(0));
4864
Ptr = Ptr.withElementType(Int8Ty);
4865
Value *NewVal = Builder.getInt8(0);
4866
Value *Order = EmitScalarExpr(E->getArg(1));
4867
if (isa<llvm::ConstantInt>(Order)) {
4868
int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4869
StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
4870
switch (ord) {
4871
case 0: // memory_order_relaxed
4872
default: // invalid order
4873
Store->setOrdering(llvm::AtomicOrdering::Monotonic);
4874
break;
4875
case 3: // memory_order_release
4876
Store->setOrdering(llvm::AtomicOrdering::Release);
4877
break;
4878
case 5: // memory_order_seq_cst
4879
Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
4880
break;
4881
}
4882
return RValue::get(nullptr);
4883
}
4884
4885
llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4886
4887
llvm::BasicBlock *BBs[3] = {
4888
createBasicBlock("monotonic", CurFn),
4889
createBasicBlock("release", CurFn),
4890
createBasicBlock("seqcst", CurFn)
4891
};
4892
llvm::AtomicOrdering Orders[3] = {
4893
llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
4894
llvm::AtomicOrdering::SequentiallyConsistent};
4895
4896
Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4897
llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
4898
4899
for (unsigned i = 0; i < 3; ++i) {
4900
Builder.SetInsertPoint(BBs[i]);
4901
StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
4902
Store->setOrdering(Orders[i]);
4903
Builder.CreateBr(ContBB);
4904
}
4905
4906
SI->addCase(Builder.getInt32(0), BBs[0]);
4907
SI->addCase(Builder.getInt32(3), BBs[1]);
4908
SI->addCase(Builder.getInt32(5), BBs[2]);
4909
4910
Builder.SetInsertPoint(ContBB);
4911
return RValue::get(nullptr);
4912
}
4913
4914
case Builtin::BI__atomic_thread_fence:
4915
case Builtin::BI__atomic_signal_fence:
4916
case Builtin::BI__c11_atomic_thread_fence:
4917
case Builtin::BI__c11_atomic_signal_fence: {
4918
llvm::SyncScope::ID SSID;
4919
if (BuiltinID == Builtin::BI__atomic_signal_fence ||
4920
BuiltinID == Builtin::BI__c11_atomic_signal_fence)
4921
SSID = llvm::SyncScope::SingleThread;
4922
else
4923
SSID = llvm::SyncScope::System;
4924
Value *Order = EmitScalarExpr(E->getArg(0));
4925
if (isa<llvm::ConstantInt>(Order)) {
4926
int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4927
switch (ord) {
4928
case 0: // memory_order_relaxed
4929
default: // invalid order
4930
break;
4931
case 1: // memory_order_consume
4932
case 2: // memory_order_acquire
4933
Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4934
break;
4935
case 3: // memory_order_release
4936
Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4937
break;
4938
case 4: // memory_order_acq_rel
4939
Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4940
break;
4941
case 5: // memory_order_seq_cst
4942
Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4943
break;
4944
}
4945
return RValue::get(nullptr);
4946
}
4947
4948
llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
4949
AcquireBB = createBasicBlock("acquire", CurFn);
4950
ReleaseBB = createBasicBlock("release", CurFn);
4951
AcqRelBB = createBasicBlock("acqrel", CurFn);
4952
SeqCstBB = createBasicBlock("seqcst", CurFn);
4953
llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4954
4955
Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4956
llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
4957
4958
Builder.SetInsertPoint(AcquireBB);
4959
Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4960
Builder.CreateBr(ContBB);
4961
SI->addCase(Builder.getInt32(1), AcquireBB);
4962
SI->addCase(Builder.getInt32(2), AcquireBB);
4963
4964
Builder.SetInsertPoint(ReleaseBB);
4965
Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4966
Builder.CreateBr(ContBB);
4967
SI->addCase(Builder.getInt32(3), ReleaseBB);
4968
4969
Builder.SetInsertPoint(AcqRelBB);
4970
Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4971
Builder.CreateBr(ContBB);
4972
SI->addCase(Builder.getInt32(4), AcqRelBB);
4973
4974
Builder.SetInsertPoint(SeqCstBB);
4975
Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4976
Builder.CreateBr(ContBB);
4977
SI->addCase(Builder.getInt32(5), SeqCstBB);
4978
4979
Builder.SetInsertPoint(ContBB);
4980
return RValue::get(nullptr);
4981
}
4982
4983
case Builtin::BI__builtin_signbit:
4984
case Builtin::BI__builtin_signbitf:
4985
case Builtin::BI__builtin_signbitl: {
4986
return RValue::get(
4987
Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
4988
ConvertType(E->getType())));
4989
}
4990
case Builtin::BI__warn_memset_zero_len:
4991
return RValue::getIgnored();
4992
case Builtin::BI__annotation: {
4993
// Re-encode each wide string to UTF8 and make an MDString.
4994
SmallVector<Metadata *, 1> Strings;
4995
for (const Expr *Arg : E->arguments()) {
4996
const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
4997
assert(Str->getCharByteWidth() == 2);
4998
StringRef WideBytes = Str->getBytes();
4999
std::string StrUtf8;
5000
if (!convertUTF16ToUTF8String(
5001
ArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
5002
CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
5003
continue;
5004
}
5005
Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
5006
}
5007
5008
// Build and MDTuple of MDStrings and emit the intrinsic call.
5009
llvm::Function *F =
5010
CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
5011
MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
5012
Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
5013
return RValue::getIgnored();
5014
}
5015
case Builtin::BI__builtin_annotation: {
5016
llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
5017
llvm::Function *F =
5018
CGM.getIntrinsic(llvm::Intrinsic::annotation,
5019
{AnnVal->getType(), CGM.ConstGlobalsPtrTy});
5020
5021
// Get the annotation string, go through casts. Sema requires this to be a
5022
// non-wide string literal, potentially casted, so the cast<> is safe.
5023
const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
5024
StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
5025
return RValue::get(
5026
EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc(), nullptr));
5027
}
5028
case Builtin::BI__builtin_addcb:
5029
case Builtin::BI__builtin_addcs:
5030
case Builtin::BI__builtin_addc:
5031
case Builtin::BI__builtin_addcl:
5032
case Builtin::BI__builtin_addcll:
5033
case Builtin::BI__builtin_subcb:
5034
case Builtin::BI__builtin_subcs:
5035
case Builtin::BI__builtin_subc:
5036
case Builtin::BI__builtin_subcl:
5037
case Builtin::BI__builtin_subcll: {
5038
5039
// We translate all of these builtins from expressions of the form:
5040
// int x = ..., y = ..., carryin = ..., carryout, result;
5041
// result = __builtin_addc(x, y, carryin, &carryout);
5042
//
5043
// to LLVM IR of the form:
5044
//
5045
// %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
5046
// %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
5047
// %carry1 = extractvalue {i32, i1} %tmp1, 1
5048
// %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
5049
// i32 %carryin)
5050
// %result = extractvalue {i32, i1} %tmp2, 0
5051
// %carry2 = extractvalue {i32, i1} %tmp2, 1
5052
// %tmp3 = or i1 %carry1, %carry2
5053
// %tmp4 = zext i1 %tmp3 to i32
5054
// store i32 %tmp4, i32* %carryout
5055
5056
// Scalarize our inputs.
5057
llvm::Value *X = EmitScalarExpr(E->getArg(0));
5058
llvm::Value *Y = EmitScalarExpr(E->getArg(1));
5059
llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
5060
Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
5061
5062
// Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
5063
llvm::Intrinsic::ID IntrinsicId;
5064
switch (BuiltinID) {
5065
default: llvm_unreachable("Unknown multiprecision builtin id.");
5066
case Builtin::BI__builtin_addcb:
5067
case Builtin::BI__builtin_addcs:
5068
case Builtin::BI__builtin_addc:
5069
case Builtin::BI__builtin_addcl:
5070
case Builtin::BI__builtin_addcll:
5071
IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
5072
break;
5073
case Builtin::BI__builtin_subcb:
5074
case Builtin::BI__builtin_subcs:
5075
case Builtin::BI__builtin_subc:
5076
case Builtin::BI__builtin_subcl:
5077
case Builtin::BI__builtin_subcll:
5078
IntrinsicId = llvm::Intrinsic::usub_with_overflow;
5079
break;
5080
}
5081
5082
// Construct our resulting LLVM IR expression.
5083
llvm::Value *Carry1;
5084
llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
5085
X, Y, Carry1);
5086
llvm::Value *Carry2;
5087
llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
5088
Sum1, Carryin, Carry2);
5089
llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
5090
X->getType());
5091
Builder.CreateStore(CarryOut, CarryOutPtr);
5092
return RValue::get(Sum2);
5093
}
5094
5095
case Builtin::BI__builtin_add_overflow:
5096
case Builtin::BI__builtin_sub_overflow:
5097
case Builtin::BI__builtin_mul_overflow: {
5098
const clang::Expr *LeftArg = E->getArg(0);
5099
const clang::Expr *RightArg = E->getArg(1);
5100
const clang::Expr *ResultArg = E->getArg(2);
5101
5102
clang::QualType ResultQTy =
5103
ResultArg->getType()->castAs<PointerType>()->getPointeeType();
5104
5105
WidthAndSignedness LeftInfo =
5106
getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
5107
WidthAndSignedness RightInfo =
5108
getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
5109
WidthAndSignedness ResultInfo =
5110
getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
5111
5112
// Handle mixed-sign multiplication as a special case, because adding
5113
// runtime or backend support for our generic irgen would be too expensive.
5114
if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
5115
return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
5116
RightInfo, ResultArg, ResultQTy,
5117
ResultInfo);
5118
5119
if (isSpecialUnsignedMultiplySignedResult(BuiltinID, LeftInfo, RightInfo,
5120
ResultInfo))
5121
return EmitCheckedUnsignedMultiplySignedResult(
5122
*this, LeftArg, LeftInfo, RightArg, RightInfo, ResultArg, ResultQTy,
5123
ResultInfo);
5124
5125
WidthAndSignedness EncompassingInfo =
5126
EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
5127
5128
llvm::Type *EncompassingLLVMTy =
5129
llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
5130
5131
llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
5132
5133
llvm::Intrinsic::ID IntrinsicId;
5134
switch (BuiltinID) {
5135
default:
5136
llvm_unreachable("Unknown overflow builtin id.");
5137
case Builtin::BI__builtin_add_overflow:
5138
IntrinsicId = EncompassingInfo.Signed
5139
? llvm::Intrinsic::sadd_with_overflow
5140
: llvm::Intrinsic::uadd_with_overflow;
5141
break;
5142
case Builtin::BI__builtin_sub_overflow:
5143
IntrinsicId = EncompassingInfo.Signed
5144
? llvm::Intrinsic::ssub_with_overflow
5145
: llvm::Intrinsic::usub_with_overflow;
5146
break;
5147
case Builtin::BI__builtin_mul_overflow:
5148
IntrinsicId = EncompassingInfo.Signed
5149
? llvm::Intrinsic::smul_with_overflow
5150
: llvm::Intrinsic::umul_with_overflow;
5151
break;
5152
}
5153
5154
llvm::Value *Left = EmitScalarExpr(LeftArg);
5155
llvm::Value *Right = EmitScalarExpr(RightArg);
5156
Address ResultPtr = EmitPointerWithAlignment(ResultArg);
5157
5158
// Extend each operand to the encompassing type.
5159
Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
5160
Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
5161
5162
// Perform the operation on the extended values.
5163
llvm::Value *Overflow, *Result;
5164
Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
5165
5166
if (EncompassingInfo.Width > ResultInfo.Width) {
5167
// The encompassing type is wider than the result type, so we need to
5168
// truncate it.
5169
llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
5170
5171
// To see if the truncation caused an overflow, we will extend
5172
// the result and then compare it to the original result.
5173
llvm::Value *ResultTruncExt = Builder.CreateIntCast(
5174
ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
5175
llvm::Value *TruncationOverflow =
5176
Builder.CreateICmpNE(Result, ResultTruncExt);
5177
5178
Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
5179
Result = ResultTrunc;
5180
}
5181
5182
// Finally, store the result using the pointer.
5183
bool isVolatile =
5184
ResultArg->getType()->getPointeeType().isVolatileQualified();
5185
Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
5186
5187
return RValue::get(Overflow);
5188
}
5189
5190
case Builtin::BI__builtin_uadd_overflow:
5191
case Builtin::BI__builtin_uaddl_overflow:
5192
case Builtin::BI__builtin_uaddll_overflow:
5193
case Builtin::BI__builtin_usub_overflow:
5194
case Builtin::BI__builtin_usubl_overflow:
5195
case Builtin::BI__builtin_usubll_overflow:
5196
case Builtin::BI__builtin_umul_overflow:
5197
case Builtin::BI__builtin_umull_overflow:
5198
case Builtin::BI__builtin_umulll_overflow:
5199
case Builtin::BI__builtin_sadd_overflow:
5200
case Builtin::BI__builtin_saddl_overflow:
5201
case Builtin::BI__builtin_saddll_overflow:
5202
case Builtin::BI__builtin_ssub_overflow:
5203
case Builtin::BI__builtin_ssubl_overflow:
5204
case Builtin::BI__builtin_ssubll_overflow:
5205
case Builtin::BI__builtin_smul_overflow:
5206
case Builtin::BI__builtin_smull_overflow:
5207
case Builtin::BI__builtin_smulll_overflow: {
5208
5209
// We translate all of these builtins directly to the relevant llvm IR node.
5210
5211
// Scalarize our inputs.
5212
llvm::Value *X = EmitScalarExpr(E->getArg(0));
5213
llvm::Value *Y = EmitScalarExpr(E->getArg(1));
5214
Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
5215
5216
// Decide which of the overflow intrinsics we are lowering to:
5217
llvm::Intrinsic::ID IntrinsicId;
5218
switch (BuiltinID) {
5219
default: llvm_unreachable("Unknown overflow builtin id.");
5220
case Builtin::BI__builtin_uadd_overflow:
5221
case Builtin::BI__builtin_uaddl_overflow:
5222
case Builtin::BI__builtin_uaddll_overflow:
5223
IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
5224
break;
5225
case Builtin::BI__builtin_usub_overflow:
5226
case Builtin::BI__builtin_usubl_overflow:
5227
case Builtin::BI__builtin_usubll_overflow:
5228
IntrinsicId = llvm::Intrinsic::usub_with_overflow;
5229
break;
5230
case Builtin::BI__builtin_umul_overflow:
5231
case Builtin::BI__builtin_umull_overflow:
5232
case Builtin::BI__builtin_umulll_overflow:
5233
IntrinsicId = llvm::Intrinsic::umul_with_overflow;
5234
break;
5235
case Builtin::BI__builtin_sadd_overflow:
5236
case Builtin::BI__builtin_saddl_overflow:
5237
case Builtin::BI__builtin_saddll_overflow:
5238
IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
5239
break;
5240
case Builtin::BI__builtin_ssub_overflow:
5241
case Builtin::BI__builtin_ssubl_overflow:
5242
case Builtin::BI__builtin_ssubll_overflow:
5243
IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
5244
break;
5245
case Builtin::BI__builtin_smul_overflow:
5246
case Builtin::BI__builtin_smull_overflow:
5247
case Builtin::BI__builtin_smulll_overflow:
5248
IntrinsicId = llvm::Intrinsic::smul_with_overflow;
5249
break;
5250
}
5251
5252
5253
llvm::Value *Carry;
5254
llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
5255
Builder.CreateStore(Sum, SumOutPtr);
5256
5257
return RValue::get(Carry);
5258
}
5259
case Builtin::BIaddressof:
5260
case Builtin::BI__addressof:
5261
case Builtin::BI__builtin_addressof:
5262
return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
5263
case Builtin::BI__builtin_function_start:
5264
return RValue::get(CGM.GetFunctionStart(
5265
E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext())));
5266
case Builtin::BI__builtin_operator_new:
5267
return EmitBuiltinNewDeleteCall(
5268
E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
5269
case Builtin::BI__builtin_operator_delete:
5270
EmitBuiltinNewDeleteCall(
5271
E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
5272
return RValue::get(nullptr);
5273
5274
case Builtin::BI__builtin_is_aligned:
5275
return EmitBuiltinIsAligned(E);
5276
case Builtin::BI__builtin_align_up:
5277
return EmitBuiltinAlignTo(E, true);
5278
case Builtin::BI__builtin_align_down:
5279
return EmitBuiltinAlignTo(E, false);
5280
5281
case Builtin::BI__noop:
5282
// __noop always evaluates to an integer literal zero.
5283
return RValue::get(ConstantInt::get(IntTy, 0));
5284
case Builtin::BI__builtin_call_with_static_chain: {
5285
const CallExpr *Call = cast<CallExpr>(E->getArg(0));
5286
const Expr *Chain = E->getArg(1);
5287
return EmitCall(Call->getCallee()->getType(),
5288
EmitCallee(Call->getCallee()), Call, ReturnValue,
5289
EmitScalarExpr(Chain));
5290
}
5291
case Builtin::BI_InterlockedExchange8:
5292
case Builtin::BI_InterlockedExchange16:
5293
case Builtin::BI_InterlockedExchange:
5294
case Builtin::BI_InterlockedExchangePointer:
5295
return RValue::get(
5296
EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
5297
case Builtin::BI_InterlockedCompareExchangePointer:
5298
case Builtin::BI_InterlockedCompareExchangePointer_nf: {
5299
llvm::Type *RTy;
5300
llvm::IntegerType *IntType = IntegerType::get(
5301
getLLVMContext(), getContext().getTypeSize(E->getType()));
5302
5303
Address DestAddr = CheckAtomicAlignment(*this, E);
5304
5305
llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
5306
RTy = Exchange->getType();
5307
Exchange = Builder.CreatePtrToInt(Exchange, IntType);
5308
5309
llvm::Value *Comparand =
5310
Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
5311
5312
auto Ordering =
5313
BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
5314
AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
5315
5316
auto Result = Builder.CreateAtomicCmpXchg(DestAddr, Comparand, Exchange,
5317
Ordering, Ordering);
5318
Result->setVolatile(true);
5319
5320
return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
5321
0),
5322
RTy));
5323
}
5324
case Builtin::BI_InterlockedCompareExchange8:
5325
case Builtin::BI_InterlockedCompareExchange16:
5326
case Builtin::BI_InterlockedCompareExchange:
5327
case Builtin::BI_InterlockedCompareExchange64:
5328
return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
5329
case Builtin::BI_InterlockedIncrement16:
5330
case Builtin::BI_InterlockedIncrement:
5331
return RValue::get(
5332
EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
5333
case Builtin::BI_InterlockedDecrement16:
5334
case Builtin::BI_InterlockedDecrement:
5335
return RValue::get(
5336
EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
5337
case Builtin::BI_InterlockedAnd8:
5338
case Builtin::BI_InterlockedAnd16:
5339
case Builtin::BI_InterlockedAnd:
5340
return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
5341
case Builtin::BI_InterlockedExchangeAdd8:
5342
case Builtin::BI_InterlockedExchangeAdd16:
5343
case Builtin::BI_InterlockedExchangeAdd:
5344
return RValue::get(
5345
EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
5346
case Builtin::BI_InterlockedExchangeSub8:
5347
case Builtin::BI_InterlockedExchangeSub16:
5348
case Builtin::BI_InterlockedExchangeSub:
5349
return RValue::get(
5350
EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
5351
case Builtin::BI_InterlockedOr8:
5352
case Builtin::BI_InterlockedOr16:
5353
case Builtin::BI_InterlockedOr:
5354
return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
5355
case Builtin::BI_InterlockedXor8:
5356
case Builtin::BI_InterlockedXor16:
5357
case Builtin::BI_InterlockedXor:
5358
return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
5359
5360
case Builtin::BI_bittest64:
5361
case Builtin::BI_bittest:
5362
case Builtin::BI_bittestandcomplement64:
5363
case Builtin::BI_bittestandcomplement:
5364
case Builtin::BI_bittestandreset64:
5365
case Builtin::BI_bittestandreset:
5366
case Builtin::BI_bittestandset64:
5367
case Builtin::BI_bittestandset:
5368
case Builtin::BI_interlockedbittestandreset:
5369
case Builtin::BI_interlockedbittestandreset64:
5370
case Builtin::BI_interlockedbittestandset64:
5371
case Builtin::BI_interlockedbittestandset:
5372
case Builtin::BI_interlockedbittestandset_acq:
5373
case Builtin::BI_interlockedbittestandset_rel:
5374
case Builtin::BI_interlockedbittestandset_nf:
5375
case Builtin::BI_interlockedbittestandreset_acq:
5376
case Builtin::BI_interlockedbittestandreset_rel:
5377
case Builtin::BI_interlockedbittestandreset_nf:
5378
return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
5379
5380
// These builtins exist to emit regular volatile loads and stores not
5381
// affected by the -fms-volatile setting.
5382
case Builtin::BI__iso_volatile_load8:
5383
case Builtin::BI__iso_volatile_load16:
5384
case Builtin::BI__iso_volatile_load32:
5385
case Builtin::BI__iso_volatile_load64:
5386
return RValue::get(EmitISOVolatileLoad(*this, E));
5387
case Builtin::BI__iso_volatile_store8:
5388
case Builtin::BI__iso_volatile_store16:
5389
case Builtin::BI__iso_volatile_store32:
5390
case Builtin::BI__iso_volatile_store64:
5391
return RValue::get(EmitISOVolatileStore(*this, E));
5392
5393
case Builtin::BI__builtin_ptrauth_sign_constant:
5394
return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
5395
5396
case Builtin::BI__builtin_ptrauth_auth:
5397
case Builtin::BI__builtin_ptrauth_auth_and_resign:
5398
case Builtin::BI__builtin_ptrauth_blend_discriminator:
5399
case Builtin::BI__builtin_ptrauth_sign_generic_data:
5400
case Builtin::BI__builtin_ptrauth_sign_unauthenticated:
5401
case Builtin::BI__builtin_ptrauth_strip: {
5402
// Emit the arguments.
5403
SmallVector<llvm::Value *, 5> Args;
5404
for (auto argExpr : E->arguments())
5405
Args.push_back(EmitScalarExpr(argExpr));
5406
5407
// Cast the value to intptr_t, saving its original type.
5408
llvm::Type *OrigValueType = Args[0]->getType();
5409
if (OrigValueType->isPointerTy())
5410
Args[0] = Builder.CreatePtrToInt(Args[0], IntPtrTy);
5411
5412
switch (BuiltinID) {
5413
case Builtin::BI__builtin_ptrauth_auth_and_resign:
5414
if (Args[4]->getType()->isPointerTy())
5415
Args[4] = Builder.CreatePtrToInt(Args[4], IntPtrTy);
5416
[[fallthrough]];
5417
5418
case Builtin::BI__builtin_ptrauth_auth:
5419
case Builtin::BI__builtin_ptrauth_sign_unauthenticated:
5420
if (Args[2]->getType()->isPointerTy())
5421
Args[2] = Builder.CreatePtrToInt(Args[2], IntPtrTy);
5422
break;
5423
5424
case Builtin::BI__builtin_ptrauth_sign_generic_data:
5425
if (Args[1]->getType()->isPointerTy())
5426
Args[1] = Builder.CreatePtrToInt(Args[1], IntPtrTy);
5427
break;
5428
5429
case Builtin::BI__builtin_ptrauth_blend_discriminator:
5430
case Builtin::BI__builtin_ptrauth_strip:
5431
break;
5432
}
5433
5434
// Call the intrinsic.
5435
auto IntrinsicID = [&]() -> unsigned {
5436
switch (BuiltinID) {
5437
case Builtin::BI__builtin_ptrauth_auth:
5438
return llvm::Intrinsic::ptrauth_auth;
5439
case Builtin::BI__builtin_ptrauth_auth_and_resign:
5440
return llvm::Intrinsic::ptrauth_resign;
5441
case Builtin::BI__builtin_ptrauth_blend_discriminator:
5442
return llvm::Intrinsic::ptrauth_blend;
5443
case Builtin::BI__builtin_ptrauth_sign_generic_data:
5444
return llvm::Intrinsic::ptrauth_sign_generic;
5445
case Builtin::BI__builtin_ptrauth_sign_unauthenticated:
5446
return llvm::Intrinsic::ptrauth_sign;
5447
case Builtin::BI__builtin_ptrauth_strip:
5448
return llvm::Intrinsic::ptrauth_strip;
5449
}
5450
llvm_unreachable("bad ptrauth intrinsic");
5451
}();
5452
auto Intrinsic = CGM.getIntrinsic(IntrinsicID);
5453
llvm::Value *Result = EmitRuntimeCall(Intrinsic, Args);
5454
5455
if (BuiltinID != Builtin::BI__builtin_ptrauth_sign_generic_data &&
5456
BuiltinID != Builtin::BI__builtin_ptrauth_blend_discriminator &&
5457
OrigValueType->isPointerTy()) {
5458
Result = Builder.CreateIntToPtr(Result, OrigValueType);
5459
}
5460
return RValue::get(Result);
5461
}
5462
5463
case Builtin::BI__exception_code:
5464
case Builtin::BI_exception_code:
5465
return RValue::get(EmitSEHExceptionCode());
5466
case Builtin::BI__exception_info:
5467
case Builtin::BI_exception_info:
5468
return RValue::get(EmitSEHExceptionInfo());
5469
case Builtin::BI__abnormal_termination:
5470
case Builtin::BI_abnormal_termination:
5471
return RValue::get(EmitSEHAbnormalTermination());
5472
case Builtin::BI_setjmpex:
5473
if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
5474
E->getArg(0)->getType()->isPointerType())
5475
return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
5476
break;
5477
case Builtin::BI_setjmp:
5478
if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
5479
E->getArg(0)->getType()->isPointerType()) {
5480
if (getTarget().getTriple().getArch() == llvm::Triple::x86)
5481
return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
5482
else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
5483
return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
5484
return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
5485
}
5486
break;
5487
5488
// C++ std:: builtins.
5489
case Builtin::BImove:
5490
case Builtin::BImove_if_noexcept:
5491
case Builtin::BIforward:
5492
case Builtin::BIforward_like:
5493
case Builtin::BIas_const:
5494
return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
5495
case Builtin::BI__GetExceptionInfo: {
5496
if (llvm::GlobalVariable *GV =
5497
CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
5498
return RValue::get(GV);
5499
break;
5500
}
5501
5502
case Builtin::BI__fastfail:
5503
return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
5504
5505
case Builtin::BI__builtin_coro_id:
5506
return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
5507
case Builtin::BI__builtin_coro_promise:
5508
return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
5509
case Builtin::BI__builtin_coro_resume:
5510
EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
5511
return RValue::get(nullptr);
5512
case Builtin::BI__builtin_coro_frame:
5513
return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
5514
case Builtin::BI__builtin_coro_noop:
5515
return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
5516
case Builtin::BI__builtin_coro_free:
5517
return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
5518
case Builtin::BI__builtin_coro_destroy:
5519
EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
5520
return RValue::get(nullptr);
5521
case Builtin::BI__builtin_coro_done:
5522
return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
5523
case Builtin::BI__builtin_coro_alloc:
5524
return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
5525
case Builtin::BI__builtin_coro_begin:
5526
return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
5527
case Builtin::BI__builtin_coro_end:
5528
return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
5529
case Builtin::BI__builtin_coro_suspend:
5530
return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
5531
case Builtin::BI__builtin_coro_size:
5532
return EmitCoroutineIntrinsic(E, Intrinsic::coro_size);
5533
case Builtin::BI__builtin_coro_align:
5534
return EmitCoroutineIntrinsic(E, Intrinsic::coro_align);
5535
5536
// OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
5537
case Builtin::BIread_pipe:
5538
case Builtin::BIwrite_pipe: {
5539
Value *Arg0 = EmitScalarExpr(E->getArg(0)),
5540
*Arg1 = EmitScalarExpr(E->getArg(1));
5541
CGOpenCLRuntime OpenCLRT(CGM);
5542
Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
5543
Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
5544
5545
// Type of the generic packet parameter.
5546
unsigned GenericAS =
5547
getContext().getTargetAddressSpace(LangAS::opencl_generic);
5548
llvm::Type *I8PTy = llvm::PointerType::get(getLLVMContext(), GenericAS);
5549
5550
// Testing which overloaded version we should generate the call for.
5551
if (2U == E->getNumArgs()) {
5552
const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
5553
: "__write_pipe_2";
5554
// Creating a generic function type to be able to call with any builtin or
5555
// user defined type.
5556
llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
5557
llvm::FunctionType *FTy = llvm::FunctionType::get(
5558
Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5559
Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
5560
return RValue::get(
5561
EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5562
{Arg0, BCast, PacketSize, PacketAlign}));
5563
} else {
5564
assert(4 == E->getNumArgs() &&
5565
"Illegal number of parameters to pipe function");
5566
const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
5567
: "__write_pipe_4";
5568
5569
llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
5570
Int32Ty, Int32Ty};
5571
Value *Arg2 = EmitScalarExpr(E->getArg(2)),
5572
*Arg3 = EmitScalarExpr(E->getArg(3));
5573
llvm::FunctionType *FTy = llvm::FunctionType::get(
5574
Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5575
Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
5576
// We know the third argument is an integer type, but we may need to cast
5577
// it to i32.
5578
if (Arg2->getType() != Int32Ty)
5579
Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
5580
return RValue::get(
5581
EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5582
{Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
5583
}
5584
}
5585
// OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
5586
// functions
5587
case Builtin::BIreserve_read_pipe:
5588
case Builtin::BIreserve_write_pipe:
5589
case Builtin::BIwork_group_reserve_read_pipe:
5590
case Builtin::BIwork_group_reserve_write_pipe:
5591
case Builtin::BIsub_group_reserve_read_pipe:
5592
case Builtin::BIsub_group_reserve_write_pipe: {
5593
// Composing the mangled name for the function.
5594
const char *Name;
5595
if (BuiltinID == Builtin::BIreserve_read_pipe)
5596
Name = "__reserve_read_pipe";
5597
else if (BuiltinID == Builtin::BIreserve_write_pipe)
5598
Name = "__reserve_write_pipe";
5599
else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
5600
Name = "__work_group_reserve_read_pipe";
5601
else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
5602
Name = "__work_group_reserve_write_pipe";
5603
else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
5604
Name = "__sub_group_reserve_read_pipe";
5605
else
5606
Name = "__sub_group_reserve_write_pipe";
5607
5608
Value *Arg0 = EmitScalarExpr(E->getArg(0)),
5609
*Arg1 = EmitScalarExpr(E->getArg(1));
5610
llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
5611
CGOpenCLRuntime OpenCLRT(CGM);
5612
Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
5613
Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
5614
5615
// Building the generic function prototype.
5616
llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
5617
llvm::FunctionType *FTy = llvm::FunctionType::get(
5618
ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5619
// We know the second argument is an integer type, but we may need to cast
5620
// it to i32.
5621
if (Arg1->getType() != Int32Ty)
5622
Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
5623
return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5624
{Arg0, Arg1, PacketSize, PacketAlign}));
5625
}
5626
// OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
5627
// functions
5628
case Builtin::BIcommit_read_pipe:
5629
case Builtin::BIcommit_write_pipe:
5630
case Builtin::BIwork_group_commit_read_pipe:
5631
case Builtin::BIwork_group_commit_write_pipe:
5632
case Builtin::BIsub_group_commit_read_pipe:
5633
case Builtin::BIsub_group_commit_write_pipe: {
5634
const char *Name;
5635
if (BuiltinID == Builtin::BIcommit_read_pipe)
5636
Name = "__commit_read_pipe";
5637
else if (BuiltinID == Builtin::BIcommit_write_pipe)
5638
Name = "__commit_write_pipe";
5639
else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
5640
Name = "__work_group_commit_read_pipe";
5641
else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
5642
Name = "__work_group_commit_write_pipe";
5643
else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
5644
Name = "__sub_group_commit_read_pipe";
5645
else
5646
Name = "__sub_group_commit_write_pipe";
5647
5648
Value *Arg0 = EmitScalarExpr(E->getArg(0)),
5649
*Arg1 = EmitScalarExpr(E->getArg(1));
5650
CGOpenCLRuntime OpenCLRT(CGM);
5651
Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
5652
Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
5653
5654
// Building the generic function prototype.
5655
llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
5656
llvm::FunctionType *FTy =
5657
llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
5658
llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5659
5660
return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5661
{Arg0, Arg1, PacketSize, PacketAlign}));
5662
}
5663
// OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
5664
case Builtin::BIget_pipe_num_packets:
5665
case Builtin::BIget_pipe_max_packets: {
5666
const char *BaseName;
5667
const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>();
5668
if (BuiltinID == Builtin::BIget_pipe_num_packets)
5669
BaseName = "__get_pipe_num_packets";
5670
else
5671
BaseName = "__get_pipe_max_packets";
5672
std::string Name = std::string(BaseName) +
5673
std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
5674
5675
// Building the generic function prototype.
5676
Value *Arg0 = EmitScalarExpr(E->getArg(0));
5677
CGOpenCLRuntime OpenCLRT(CGM);
5678
Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
5679
Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
5680
llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
5681
llvm::FunctionType *FTy = llvm::FunctionType::get(
5682
Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5683
5684
return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5685
{Arg0, PacketSize, PacketAlign}));
5686
}
5687
5688
// OpenCL v2.0 s6.13.9 - Address space qualifier functions.
5689
case Builtin::BIto_global:
5690
case Builtin::BIto_local:
5691
case Builtin::BIto_private: {
5692
auto Arg0 = EmitScalarExpr(E->getArg(0));
5693
auto NewArgT = llvm::PointerType::get(
5694
getLLVMContext(),
5695
CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
5696
auto NewRetT = llvm::PointerType::get(
5697
getLLVMContext(),
5698
CGM.getContext().getTargetAddressSpace(
5699
E->getType()->getPointeeType().getAddressSpace()));
5700
auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
5701
llvm::Value *NewArg;
5702
if (Arg0->getType()->getPointerAddressSpace() !=
5703
NewArgT->getPointerAddressSpace())
5704
NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
5705
else
5706
NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
5707
auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
5708
auto NewCall =
5709
EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
5710
return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
5711
ConvertType(E->getType())));
5712
}
5713
5714
// OpenCL v2.0, s6.13.17 - Enqueue kernel function.
5715
// Table 6.13.17.1 specifies four overload forms of enqueue_kernel.
5716
// The code below expands the builtin call to a call to one of the following
5717
// functions that an OpenCL runtime library will have to provide:
5718
// __enqueue_kernel_basic
5719
// __enqueue_kernel_varargs
5720
// __enqueue_kernel_basic_events
5721
// __enqueue_kernel_events_varargs
5722
case Builtin::BIenqueue_kernel: {
5723
StringRef Name; // Generated function call name
5724
unsigned NumArgs = E->getNumArgs();
5725
5726
llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
5727
llvm::Type *GenericVoidPtrTy = Builder.getPtrTy(
5728
getContext().getTargetAddressSpace(LangAS::opencl_generic));
5729
5730
llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
5731
llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
5732
LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
5733
llvm::Value *Range = NDRangeL.getAddress().emitRawPointer(*this);
5734
llvm::Type *RangeTy = NDRangeL.getAddress().getType();
5735
5736
if (NumArgs == 4) {
5737
// The most basic form of the call with parameters:
5738
// queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
5739
Name = "__enqueue_kernel_basic";
5740
llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
5741
GenericVoidPtrTy};
5742
llvm::FunctionType *FTy = llvm::FunctionType::get(
5743
Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5744
5745
auto Info =
5746
CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
5747
llvm::Value *Kernel =
5748
Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5749
llvm::Value *Block =
5750
Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5751
5752
AttrBuilder B(Builder.getContext());
5753
B.addByValAttr(NDRangeL.getAddress().getElementType());
5754
llvm::AttributeList ByValAttrSet =
5755
llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
5756
5757
auto RTCall =
5758
EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
5759
{Queue, Flags, Range, Kernel, Block});
5760
RTCall->setAttributes(ByValAttrSet);
5761
return RValue::get(RTCall);
5762
}
5763
assert(NumArgs >= 5 && "Invalid enqueue_kernel signature");
5764
5765
// Create a temporary array to hold the sizes of local pointer arguments
5766
// for the block. \p First is the position of the first size argument.
5767
auto CreateArrayForSizeVar = [=](unsigned First)
5768
-> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
5769
llvm::APInt ArraySize(32, NumArgs - First);
5770
QualType SizeArrayTy = getContext().getConstantArrayType(
5771
getContext().getSizeType(), ArraySize, nullptr,
5772
ArraySizeModifier::Normal,
5773
/*IndexTypeQuals=*/0);
5774
auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
5775
llvm::Value *TmpPtr = Tmp.getPointer();
5776
llvm::Value *TmpSize = EmitLifetimeStart(
5777
CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
5778
llvm::Value *ElemPtr;
5779
// Each of the following arguments specifies the size of the corresponding
5780
// argument passed to the enqueued block.
5781
auto *Zero = llvm::ConstantInt::get(IntTy, 0);
5782
for (unsigned I = First; I < NumArgs; ++I) {
5783
auto *Index = llvm::ConstantInt::get(IntTy, I - First);
5784
auto *GEP = Builder.CreateGEP(Tmp.getElementType(), TmpPtr,
5785
{Zero, Index});
5786
if (I == First)
5787
ElemPtr = GEP;
5788
auto *V =
5789
Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
5790
Builder.CreateAlignedStore(
5791
V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy));
5792
}
5793
return std::tie(ElemPtr, TmpSize, TmpPtr);
5794
};
5795
5796
// Could have events and/or varargs.
5797
if (E->getArg(3)->getType()->isBlockPointerType()) {
5798
// No events passed, but has variadic arguments.
5799
Name = "__enqueue_kernel_varargs";
5800
auto Info =
5801
CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
5802
llvm::Value *Kernel =
5803
Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5804
auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5805
llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
5806
std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
5807
5808
// Create a vector of the arguments, as well as a constant value to
5809
// express to the runtime the number of variadic arguments.
5810
llvm::Value *const Args[] = {Queue, Flags,
5811
Range, Kernel,
5812
Block, ConstantInt::get(IntTy, NumArgs - 4),
5813
ElemPtr};
5814
llvm::Type *const ArgTys[] = {
5815
QueueTy, IntTy, RangeTy, GenericVoidPtrTy,
5816
GenericVoidPtrTy, IntTy, ElemPtr->getType()};
5817
5818
llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false);
5819
auto Call = RValue::get(
5820
EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Args));
5821
if (TmpSize)
5822
EmitLifetimeEnd(TmpSize, TmpPtr);
5823
return Call;
5824
}
5825
// Any calls now have event arguments passed.
5826
if (NumArgs >= 7) {
5827
llvm::PointerType *PtrTy = llvm::PointerType::get(
5828
CGM.getLLVMContext(),
5829
CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
5830
5831
llvm::Value *NumEvents =
5832
Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
5833
5834
// Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
5835
// to be a null pointer constant (including `0` literal), we can take it
5836
// into account and emit null pointer directly.
5837
llvm::Value *EventWaitList = nullptr;
5838
if (E->getArg(4)->isNullPointerConstant(
5839
getContext(), Expr::NPC_ValueDependentIsNotNull)) {
5840
EventWaitList = llvm::ConstantPointerNull::get(PtrTy);
5841
} else {
5842
EventWaitList =
5843
E->getArg(4)->getType()->isArrayType()
5844
? EmitArrayToPointerDecay(E->getArg(4)).emitRawPointer(*this)
5845
: EmitScalarExpr(E->getArg(4));
5846
// Convert to generic address space.
5847
EventWaitList = Builder.CreatePointerCast(EventWaitList, PtrTy);
5848
}
5849
llvm::Value *EventRet = nullptr;
5850
if (E->getArg(5)->isNullPointerConstant(
5851
getContext(), Expr::NPC_ValueDependentIsNotNull)) {
5852
EventRet = llvm::ConstantPointerNull::get(PtrTy);
5853
} else {
5854
EventRet =
5855
Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), PtrTy);
5856
}
5857
5858
auto Info =
5859
CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
5860
llvm::Value *Kernel =
5861
Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5862
llvm::Value *Block =
5863
Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5864
5865
std::vector<llvm::Type *> ArgTys = {
5866
QueueTy, Int32Ty, RangeTy, Int32Ty,
5867
PtrTy, PtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
5868
5869
std::vector<llvm::Value *> Args = {Queue, Flags, Range,
5870
NumEvents, EventWaitList, EventRet,
5871
Kernel, Block};
5872
5873
if (NumArgs == 7) {
5874
// Has events but no variadics.
5875
Name = "__enqueue_kernel_basic_events";
5876
llvm::FunctionType *FTy = llvm::FunctionType::get(
5877
Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5878
return RValue::get(
5879
EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5880
llvm::ArrayRef<llvm::Value *>(Args)));
5881
}
5882
// Has event info and variadics
5883
// Pass the number of variadics to the runtime function too.
5884
Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
5885
ArgTys.push_back(Int32Ty);
5886
Name = "__enqueue_kernel_events_varargs";
5887
5888
llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
5889
std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
5890
Args.push_back(ElemPtr);
5891
ArgTys.push_back(ElemPtr->getType());
5892
5893
llvm::FunctionType *FTy = llvm::FunctionType::get(
5894
Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5895
auto Call =
5896
RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5897
llvm::ArrayRef<llvm::Value *>(Args)));
5898
if (TmpSize)
5899
EmitLifetimeEnd(TmpSize, TmpPtr);
5900
return Call;
5901
}
5902
llvm_unreachable("Unexpected enqueue_kernel signature");
5903
}
5904
// OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
5905
// parameter.
5906
case Builtin::BIget_kernel_work_group_size: {
5907
llvm::Type *GenericVoidPtrTy = Builder.getPtrTy(
5908
getContext().getTargetAddressSpace(LangAS::opencl_generic));
5909
auto Info =
5910
CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
5911
Value *Kernel =
5912
Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5913
Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5914
return RValue::get(EmitRuntimeCall(
5915
CGM.CreateRuntimeFunction(
5916
llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
5917
false),
5918
"__get_kernel_work_group_size_impl"),
5919
{Kernel, Arg}));
5920
}
5921
case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
5922
llvm::Type *GenericVoidPtrTy = Builder.getPtrTy(
5923
getContext().getTargetAddressSpace(LangAS::opencl_generic));
5924
auto Info =
5925
CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
5926
Value *Kernel =
5927
Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5928
Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5929
return RValue::get(EmitRuntimeCall(
5930
CGM.CreateRuntimeFunction(
5931
llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
5932
false),
5933
"__get_kernel_preferred_work_group_size_multiple_impl"),
5934
{Kernel, Arg}));
5935
}
5936
case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
5937
case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
5938
llvm::Type *GenericVoidPtrTy = Builder.getPtrTy(
5939
getContext().getTargetAddressSpace(LangAS::opencl_generic));
5940
LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
5941
llvm::Value *NDRange = NDRangeL.getAddress().emitRawPointer(*this);
5942
auto Info =
5943
CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
5944
Value *Kernel =
5945
Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5946
Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5947
const char *Name =
5948
BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
5949
? "__get_kernel_max_sub_group_size_for_ndrange_impl"
5950
: "__get_kernel_sub_group_count_for_ndrange_impl";
5951
return RValue::get(EmitRuntimeCall(
5952
CGM.CreateRuntimeFunction(
5953
llvm::FunctionType::get(
5954
IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
5955
false),
5956
Name),
5957
{NDRange, Kernel, Block}));
5958
}
5959
case Builtin::BI__builtin_store_half:
5960
case Builtin::BI__builtin_store_halff: {
5961
Value *Val = EmitScalarExpr(E->getArg(0));
5962
Address Address = EmitPointerWithAlignment(E->getArg(1));
5963
Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
5964
Builder.CreateStore(HalfVal, Address);
5965
return RValue::get(nullptr);
5966
}
5967
case Builtin::BI__builtin_load_half: {
5968
Address Address = EmitPointerWithAlignment(E->getArg(0));
5969
Value *HalfVal = Builder.CreateLoad(Address);
5970
return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
5971
}
5972
case Builtin::BI__builtin_load_halff: {
5973
Address Address = EmitPointerWithAlignment(E->getArg(0));
5974
Value *HalfVal = Builder.CreateLoad(Address);
5975
return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
5976
}
5977
case Builtin::BI__builtin_printf:
5978
case Builtin::BIprintf:
5979
if (getTarget().getTriple().isNVPTX() ||
5980
getTarget().getTriple().isAMDGCN() ||
5981
(getTarget().getTriple().isSPIRV() &&
5982
getTarget().getTriple().getVendor() == Triple::VendorType::AMD)) {
5983
if (getLangOpts().OpenMPIsTargetDevice)
5984
return EmitOpenMPDevicePrintfCallExpr(E);
5985
if (getTarget().getTriple().isNVPTX())
5986
return EmitNVPTXDevicePrintfCallExpr(E);
5987
if ((getTarget().getTriple().isAMDGCN() ||
5988
getTarget().getTriple().isSPIRV()) &&
5989
getLangOpts().HIP)
5990
return EmitAMDGPUDevicePrintfCallExpr(E);
5991
}
5992
5993
break;
5994
case Builtin::BI__builtin_canonicalize:
5995
case Builtin::BI__builtin_canonicalizef:
5996
case Builtin::BI__builtin_canonicalizef16:
5997
case Builtin::BI__builtin_canonicalizel:
5998
return RValue::get(
5999
emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::canonicalize));
6000
6001
case Builtin::BI__builtin_thread_pointer: {
6002
if (!getContext().getTargetInfo().isTLSSupported())
6003
CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
6004
// Fall through - it's already mapped to the intrinsic by ClangBuiltin.
6005
break;
6006
}
6007
case Builtin::BI__builtin_os_log_format:
6008
return emitBuiltinOSLogFormat(*E);
6009
6010
case Builtin::BI__xray_customevent: {
6011
if (!ShouldXRayInstrumentFunction())
6012
return RValue::getIgnored();
6013
6014
if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
6015
XRayInstrKind::Custom))
6016
return RValue::getIgnored();
6017
6018
if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
6019
if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
6020
return RValue::getIgnored();
6021
6022
Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
6023
auto FTy = F->getFunctionType();
6024
auto Arg0 = E->getArg(0);
6025
auto Arg0Val = EmitScalarExpr(Arg0);
6026
auto Arg0Ty = Arg0->getType();
6027
auto PTy0 = FTy->getParamType(0);
6028
if (PTy0 != Arg0Val->getType()) {
6029
if (Arg0Ty->isArrayType())
6030
Arg0Val = EmitArrayToPointerDecay(Arg0).emitRawPointer(*this);
6031
else
6032
Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
6033
}
6034
auto Arg1 = EmitScalarExpr(E->getArg(1));
6035
auto PTy1 = FTy->getParamType(1);
6036
if (PTy1 != Arg1->getType())
6037
Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
6038
return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
6039
}
6040
6041
case Builtin::BI__xray_typedevent: {
6042
// TODO: There should be a way to always emit events even if the current
6043
// function is not instrumented. Losing events in a stream can cripple
6044
// a trace.
6045
if (!ShouldXRayInstrumentFunction())
6046
return RValue::getIgnored();
6047
6048
if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
6049
XRayInstrKind::Typed))
6050
return RValue::getIgnored();
6051
6052
if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
6053
if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
6054
return RValue::getIgnored();
6055
6056
Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
6057
auto FTy = F->getFunctionType();
6058
auto Arg0 = EmitScalarExpr(E->getArg(0));
6059
auto PTy0 = FTy->getParamType(0);
6060
if (PTy0 != Arg0->getType())
6061
Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
6062
auto Arg1 = E->getArg(1);
6063
auto Arg1Val = EmitScalarExpr(Arg1);
6064
auto Arg1Ty = Arg1->getType();
6065
auto PTy1 = FTy->getParamType(1);
6066
if (PTy1 != Arg1Val->getType()) {
6067
if (Arg1Ty->isArrayType())
6068
Arg1Val = EmitArrayToPointerDecay(Arg1).emitRawPointer(*this);
6069
else
6070
Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
6071
}
6072
auto Arg2 = EmitScalarExpr(E->getArg(2));
6073
auto PTy2 = FTy->getParamType(2);
6074
if (PTy2 != Arg2->getType())
6075
Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
6076
return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
6077
}
6078
6079
case Builtin::BI__builtin_ms_va_start:
6080
case Builtin::BI__builtin_ms_va_end:
6081
return RValue::get(
6082
EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).emitRawPointer(*this),
6083
BuiltinID == Builtin::BI__builtin_ms_va_start));
6084
6085
case Builtin::BI__builtin_ms_va_copy: {
6086
// Lower this manually. We can't reliably determine whether or not any
6087
// given va_copy() is for a Win64 va_list from the calling convention
6088
// alone, because it's legal to do this from a System V ABI function.
6089
// With opaque pointer types, we won't have enough information in LLVM
6090
// IR to determine this from the argument types, either. Best to do it
6091
// now, while we have enough information.
6092
Address DestAddr = EmitMSVAListRef(E->getArg(0));
6093
Address SrcAddr = EmitMSVAListRef(E->getArg(1));
6094
6095
DestAddr = DestAddr.withElementType(Int8PtrTy);
6096
SrcAddr = SrcAddr.withElementType(Int8PtrTy);
6097
6098
Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
6099
return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
6100
}
6101
6102
case Builtin::BI__builtin_get_device_side_mangled_name: {
6103
auto Name = CGM.getCUDARuntime().getDeviceSideName(
6104
cast<DeclRefExpr>(E->getArg(0)->IgnoreImpCasts())->getDecl());
6105
auto Str = CGM.GetAddrOfConstantCString(Name, "");
6106
return RValue::get(Str.getPointer());
6107
}
6108
}
6109
6110
// If this is an alias for a lib function (e.g. __builtin_sin), emit
6111
// the call using the normal call path, but using the unmangled
6112
// version of the function name.
6113
if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
6114
return emitLibraryCall(*this, FD, E,
6115
CGM.getBuiltinLibFunction(FD, BuiltinID));
6116
6117
// If this is a predefined lib function (e.g. malloc), emit the call
6118
// using exactly the normal call path.
6119
if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
6120
return emitLibraryCall(*this, FD, E, CGM.getRawFunctionPointer(FD));
6121
6122
// Check that a call to a target specific builtin has the correct target
6123
// features.
6124
// This is down here to avoid non-target specific builtins, however, if
6125
// generic builtins start to require generic target features then we
6126
// can move this up to the beginning of the function.
6127
checkTargetFeatures(E, FD);
6128
6129
if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
6130
LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
6131
6132
// See if we have a target specific intrinsic.
6133
StringRef Name = getContext().BuiltinInfo.getName(BuiltinID);
6134
Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
6135
StringRef Prefix =
6136
llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
6137
if (!Prefix.empty()) {
6138
IntrinsicID = Intrinsic::getIntrinsicForClangBuiltin(Prefix.data(), Name);
6139
if (IntrinsicID == Intrinsic::not_intrinsic && Prefix == "spv" &&
6140
getTarget().getTriple().getOS() == llvm::Triple::OSType::AMDHSA)
6141
IntrinsicID = Intrinsic::getIntrinsicForClangBuiltin("amdgcn", Name);
6142
// NOTE we don't need to perform a compatibility flag check here since the
6143
// intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
6144
// MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
6145
if (IntrinsicID == Intrinsic::not_intrinsic)
6146
IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
6147
}
6148
6149
if (IntrinsicID != Intrinsic::not_intrinsic) {
6150
SmallVector<Value*, 16> Args;
6151
6152
// Find out if any arguments are required to be integer constant
6153
// expressions.
6154
unsigned ICEArguments = 0;
6155
ASTContext::GetBuiltinTypeError Error;
6156
getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
6157
assert(Error == ASTContext::GE_None && "Should not codegen an error");
6158
6159
Function *F = CGM.getIntrinsic(IntrinsicID);
6160
llvm::FunctionType *FTy = F->getFunctionType();
6161
6162
for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
6163
Value *ArgValue = EmitScalarOrConstFoldImmArg(ICEArguments, i, E);
6164
// If the intrinsic arg type is different from the builtin arg type
6165
// we need to do a bit cast.
6166
llvm::Type *PTy = FTy->getParamType(i);
6167
if (PTy != ArgValue->getType()) {
6168
// XXX - vector of pointers?
6169
if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
6170
if (PtrTy->getAddressSpace() !=
6171
ArgValue->getType()->getPointerAddressSpace()) {
6172
ArgValue = Builder.CreateAddrSpaceCast(
6173
ArgValue, llvm::PointerType::get(getLLVMContext(),
6174
PtrTy->getAddressSpace()));
6175
}
6176
}
6177
6178
// Cast vector type (e.g., v256i32) to x86_amx, this only happen
6179
// in amx intrinsics.
6180
if (PTy->isX86_AMXTy())
6181
ArgValue = Builder.CreateIntrinsic(Intrinsic::x86_cast_vector_to_tile,
6182
{ArgValue->getType()}, {ArgValue});
6183
else
6184
ArgValue = Builder.CreateBitCast(ArgValue, PTy);
6185
}
6186
6187
Args.push_back(ArgValue);
6188
}
6189
6190
Value *V = Builder.CreateCall(F, Args);
6191
QualType BuiltinRetType = E->getType();
6192
6193
llvm::Type *RetTy = VoidTy;
6194
if (!BuiltinRetType->isVoidType())
6195
RetTy = ConvertType(BuiltinRetType);
6196
6197
if (RetTy != V->getType()) {
6198
// XXX - vector of pointers?
6199
if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
6200
if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
6201
V = Builder.CreateAddrSpaceCast(
6202
V, llvm::PointerType::get(getLLVMContext(),
6203
PtrTy->getAddressSpace()));
6204
}
6205
}
6206
6207
// Cast x86_amx to vector type (e.g., v256i32), this only happen
6208
// in amx intrinsics.
6209
if (V->getType()->isX86_AMXTy())
6210
V = Builder.CreateIntrinsic(Intrinsic::x86_cast_tile_to_vector, {RetTy},
6211
{V});
6212
else
6213
V = Builder.CreateBitCast(V, RetTy);
6214
}
6215
6216
if (RetTy->isVoidTy())
6217
return RValue::get(nullptr);
6218
6219
return RValue::get(V);
6220
}
6221
6222
// Some target-specific builtins can have aggregate return values, e.g.
6223
// __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force
6224
// ReturnValue to be non-null, so that the target-specific emission code can
6225
// always just emit into it.
6226
TypeEvaluationKind EvalKind = getEvaluationKind(E->getType());
6227
if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) {
6228
Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp");
6229
ReturnValue = ReturnValueSlot(DestPtr, false);
6230
}
6231
6232
// Now see if we can emit a target-specific builtin.
6233
if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) {
6234
switch (EvalKind) {
6235
case TEK_Scalar:
6236
if (V->getType()->isVoidTy())
6237
return RValue::get(nullptr);
6238
return RValue::get(V);
6239
case TEK_Aggregate:
6240
return RValue::getAggregate(ReturnValue.getAddress(),
6241
ReturnValue.isVolatile());
6242
case TEK_Complex:
6243
llvm_unreachable("No current target builtin returns complex");
6244
}
6245
llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr");
6246
}
6247
6248
// EmitHLSLBuiltinExpr will check getLangOpts().HLSL
6249
if (Value *V = EmitHLSLBuiltinExpr(BuiltinID, E))
6250
return RValue::get(V);
6251
6252
if (getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice)
6253
return EmitHipStdParUnsupportedBuiltin(this, FD);
6254
6255
ErrorUnsupported(E, "builtin function");
6256
6257
// Unknown builtin, for now just dump it out and return undef.
6258
return GetUndefRValue(E->getType());
6259
}
6260
6261
static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
6262
unsigned BuiltinID, const CallExpr *E,
6263
ReturnValueSlot ReturnValue,
6264
llvm::Triple::ArchType Arch) {
6265
// When compiling in HipStdPar mode we have to be conservative in rejecting
6266
// target specific features in the FE, and defer the possible error to the
6267
// AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
6268
// referenced by an accelerator executable function, we emit an error.
6269
// Returning nullptr here leads to the builtin being handled in
6270
// EmitStdParUnsupportedBuiltin.
6271
if (CGF->getLangOpts().HIPStdPar && CGF->getLangOpts().CUDAIsDevice &&
6272
Arch != CGF->getTarget().getTriple().getArch())
6273
return nullptr;
6274
6275
switch (Arch) {
6276
case llvm::Triple::arm:
6277
case llvm::Triple::armeb:
6278
case llvm::Triple::thumb:
6279
case llvm::Triple::thumbeb:
6280
return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch);
6281
case llvm::Triple::aarch64:
6282
case llvm::Triple::aarch64_32:
6283
case llvm::Triple::aarch64_be:
6284
return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
6285
case llvm::Triple::bpfeb:
6286
case llvm::Triple::bpfel:
6287
return CGF->EmitBPFBuiltinExpr(BuiltinID, E);
6288
case llvm::Triple::x86:
6289
case llvm::Triple::x86_64:
6290
return CGF->EmitX86BuiltinExpr(BuiltinID, E);
6291
case llvm::Triple::ppc:
6292
case llvm::Triple::ppcle:
6293
case llvm::Triple::ppc64:
6294
case llvm::Triple::ppc64le:
6295
return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
6296
case llvm::Triple::r600:
6297
case llvm::Triple::amdgcn:
6298
return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
6299
case llvm::Triple::systemz:
6300
return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
6301
case llvm::Triple::nvptx:
6302
case llvm::Triple::nvptx64:
6303
return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
6304
case llvm::Triple::wasm32:
6305
case llvm::Triple::wasm64:
6306
return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
6307
case llvm::Triple::hexagon:
6308
return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
6309
case llvm::Triple::riscv32:
6310
case llvm::Triple::riscv64:
6311
return CGF->EmitRISCVBuiltinExpr(BuiltinID, E, ReturnValue);
6312
case llvm::Triple::spirv64:
6313
if (CGF->getTarget().getTriple().getOS() != llvm::Triple::OSType::AMDHSA)
6314
return nullptr;
6315
return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
6316
default:
6317
return nullptr;
6318
}
6319
}
6320
6321
Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
6322
const CallExpr *E,
6323
ReturnValueSlot ReturnValue) {
6324
if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
6325
assert(getContext().getAuxTargetInfo() && "Missing aux target info");
6326
return EmitTargetArchBuiltinExpr(
6327
this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
6328
ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch());
6329
}
6330
6331
return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue,
6332
getTarget().getTriple().getArch());
6333
}
6334
6335
static llvm::FixedVectorType *GetNeonType(CodeGenFunction *CGF,
6336
NeonTypeFlags TypeFlags,
6337
bool HasLegalHalfType = true,
6338
bool V1Ty = false,
6339
bool AllowBFloatArgsAndRet = true) {
6340
int IsQuad = TypeFlags.isQuad();
6341
switch (TypeFlags.getEltType()) {
6342
case NeonTypeFlags::Int8:
6343
case NeonTypeFlags::Poly8:
6344
return llvm::FixedVectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
6345
case NeonTypeFlags::Int16:
6346
case NeonTypeFlags::Poly16:
6347
return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
6348
case NeonTypeFlags::BFloat16:
6349
if (AllowBFloatArgsAndRet)
6350
return llvm::FixedVectorType::get(CGF->BFloatTy, V1Ty ? 1 : (4 << IsQuad));
6351
else
6352
return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
6353
case NeonTypeFlags::Float16:
6354
if (HasLegalHalfType)
6355
return llvm::FixedVectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
6356
else
6357
return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
6358
case NeonTypeFlags::Int32:
6359
return llvm::FixedVectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
6360
case NeonTypeFlags::Int64:
6361
case NeonTypeFlags::Poly64:
6362
return llvm::FixedVectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
6363
case NeonTypeFlags::Poly128:
6364
// FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
6365
// There is a lot of i128 and f128 API missing.
6366
// so we use v16i8 to represent poly128 and get pattern matched.
6367
return llvm::FixedVectorType::get(CGF->Int8Ty, 16);
6368
case NeonTypeFlags::Float32:
6369
return llvm::FixedVectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
6370
case NeonTypeFlags::Float64:
6371
return llvm::FixedVectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
6372
}
6373
llvm_unreachable("Unknown vector element type!");
6374
}
6375
6376
static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
6377
NeonTypeFlags IntTypeFlags) {
6378
int IsQuad = IntTypeFlags.isQuad();
6379
switch (IntTypeFlags.getEltType()) {
6380
case NeonTypeFlags::Int16:
6381
return llvm::FixedVectorType::get(CGF->HalfTy, (4 << IsQuad));
6382
case NeonTypeFlags::Int32:
6383
return llvm::FixedVectorType::get(CGF->FloatTy, (2 << IsQuad));
6384
case NeonTypeFlags::Int64:
6385
return llvm::FixedVectorType::get(CGF->DoubleTy, (1 << IsQuad));
6386
default:
6387
llvm_unreachable("Type can't be converted to floating-point!");
6388
}
6389
}
6390
6391
Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C,
6392
const ElementCount &Count) {
6393
Value *SV = llvm::ConstantVector::getSplat(Count, C);
6394
return Builder.CreateShuffleVector(V, V, SV, "lane");
6395
}
6396
6397
Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
6398
ElementCount EC = cast<llvm::VectorType>(V->getType())->getElementCount();
6399
return EmitNeonSplat(V, C, EC);
6400
}
6401
6402
Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
6403
const char *name,
6404
unsigned shift, bool rightshift) {
6405
unsigned j = 0;
6406
for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
6407
ai != ae; ++ai, ++j) {
6408
if (F->isConstrainedFPIntrinsic())
6409
if (ai->getType()->isMetadataTy())
6410
continue;
6411
if (shift > 0 && shift == j)
6412
Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
6413
else
6414
Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
6415
}
6416
6417
if (F->isConstrainedFPIntrinsic())
6418
return Builder.CreateConstrainedFPCall(F, Ops, name);
6419
else
6420
return Builder.CreateCall(F, Ops, name);
6421
}
6422
6423
Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
6424
bool neg) {
6425
int SV = cast<ConstantInt>(V)->getSExtValue();
6426
return ConstantInt::get(Ty, neg ? -SV : SV);
6427
}
6428
6429
// Right-shift a vector by a constant.
6430
Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
6431
llvm::Type *Ty, bool usgn,
6432
const char *name) {
6433
llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
6434
6435
int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
6436
int EltSize = VTy->getScalarSizeInBits();
6437
6438
Vec = Builder.CreateBitCast(Vec, Ty);
6439
6440
// lshr/ashr are undefined when the shift amount is equal to the vector
6441
// element size.
6442
if (ShiftAmt == EltSize) {
6443
if (usgn) {
6444
// Right-shifting an unsigned value by its size yields 0.
6445
return llvm::ConstantAggregateZero::get(VTy);
6446
} else {
6447
// Right-shifting a signed value by its size is equivalent
6448
// to a shift of size-1.
6449
--ShiftAmt;
6450
Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
6451
}
6452
}
6453
6454
Shift = EmitNeonShiftVector(Shift, Ty, false);
6455
if (usgn)
6456
return Builder.CreateLShr(Vec, Shift, name);
6457
else
6458
return Builder.CreateAShr(Vec, Shift, name);
6459
}
6460
6461
enum {
6462
AddRetType = (1 << 0),
6463
Add1ArgType = (1 << 1),
6464
Add2ArgTypes = (1 << 2),
6465
6466
VectorizeRetType = (1 << 3),
6467
VectorizeArgTypes = (1 << 4),
6468
6469
InventFloatType = (1 << 5),
6470
UnsignedAlts = (1 << 6),
6471
6472
Use64BitVectors = (1 << 7),
6473
Use128BitVectors = (1 << 8),
6474
6475
Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
6476
VectorRet = AddRetType | VectorizeRetType,
6477
VectorRetGetArgs01 =
6478
AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
6479
FpCmpzModifiers =
6480
AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
6481
};
6482
6483
namespace {
6484
struct ARMVectorIntrinsicInfo {
6485
const char *NameHint;
6486
unsigned BuiltinID;
6487
unsigned LLVMIntrinsic;
6488
unsigned AltLLVMIntrinsic;
6489
uint64_t TypeModifier;
6490
6491
bool operator<(unsigned RHSBuiltinID) const {
6492
return BuiltinID < RHSBuiltinID;
6493
}
6494
bool operator<(const ARMVectorIntrinsicInfo &TE) const {
6495
return BuiltinID < TE.BuiltinID;
6496
}
6497
};
6498
} // end anonymous namespace
6499
6500
#define NEONMAP0(NameBase) \
6501
{ #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
6502
6503
#define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
6504
{ #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
6505
Intrinsic::LLVMIntrinsic, 0, TypeModifier }
6506
6507
#define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
6508
{ #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
6509
Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
6510
TypeModifier }
6511
6512
static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap [] = {
6513
NEONMAP1(__a32_vcvt_bf16_f32, arm_neon_vcvtfp2bf, 0),
6514
NEONMAP0(splat_lane_v),
6515
NEONMAP0(splat_laneq_v),
6516
NEONMAP0(splatq_lane_v),
6517
NEONMAP0(splatq_laneq_v),
6518
NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
6519
NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
6520
NEONMAP1(vabs_v, arm_neon_vabs, 0),
6521
NEONMAP1(vabsq_v, arm_neon_vabs, 0),
6522
NEONMAP0(vadd_v),
6523
NEONMAP0(vaddhn_v),
6524
NEONMAP0(vaddq_v),
6525
NEONMAP1(vaesdq_u8, arm_neon_aesd, 0),
6526
NEONMAP1(vaeseq_u8, arm_neon_aese, 0),
6527
NEONMAP1(vaesimcq_u8, arm_neon_aesimc, 0),
6528
NEONMAP1(vaesmcq_u8, arm_neon_aesmc, 0),
6529
NEONMAP1(vbfdot_f32, arm_neon_bfdot, 0),
6530
NEONMAP1(vbfdotq_f32, arm_neon_bfdot, 0),
6531
NEONMAP1(vbfmlalbq_f32, arm_neon_bfmlalb, 0),
6532
NEONMAP1(vbfmlaltq_f32, arm_neon_bfmlalt, 0),
6533
NEONMAP1(vbfmmlaq_f32, arm_neon_bfmmla, 0),
6534
NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
6535
NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
6536
NEONMAP1(vcadd_rot270_f16, arm_neon_vcadd_rot270, Add1ArgType),
6537
NEONMAP1(vcadd_rot270_f32, arm_neon_vcadd_rot270, Add1ArgType),
6538
NEONMAP1(vcadd_rot90_f16, arm_neon_vcadd_rot90, Add1ArgType),
6539
NEONMAP1(vcadd_rot90_f32, arm_neon_vcadd_rot90, Add1ArgType),
6540
NEONMAP1(vcaddq_rot270_f16, arm_neon_vcadd_rot270, Add1ArgType),
6541
NEONMAP1(vcaddq_rot270_f32, arm_neon_vcadd_rot270, Add1ArgType),
6542
NEONMAP1(vcaddq_rot270_f64, arm_neon_vcadd_rot270, Add1ArgType),
6543
NEONMAP1(vcaddq_rot90_f16, arm_neon_vcadd_rot90, Add1ArgType),
6544
NEONMAP1(vcaddq_rot90_f32, arm_neon_vcadd_rot90, Add1ArgType),
6545
NEONMAP1(vcaddq_rot90_f64, arm_neon_vcadd_rot90, Add1ArgType),
6546
NEONMAP1(vcage_v, arm_neon_vacge, 0),
6547
NEONMAP1(vcageq_v, arm_neon_vacge, 0),
6548
NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
6549
NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
6550
NEONMAP1(vcale_v, arm_neon_vacge, 0),
6551
NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
6552
NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
6553
NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
6554
NEONMAP0(vceqz_v),
6555
NEONMAP0(vceqzq_v),
6556
NEONMAP0(vcgez_v),
6557
NEONMAP0(vcgezq_v),
6558
NEONMAP0(vcgtz_v),
6559
NEONMAP0(vcgtzq_v),
6560
NEONMAP0(vclez_v),
6561
NEONMAP0(vclezq_v),
6562
NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
6563
NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
6564
NEONMAP0(vcltz_v),
6565
NEONMAP0(vcltzq_v),
6566
NEONMAP1(vclz_v, ctlz, Add1ArgType),
6567
NEONMAP1(vclzq_v, ctlz, Add1ArgType),
6568
NEONMAP1(vcnt_v, ctpop, Add1ArgType),
6569
NEONMAP1(vcntq_v, ctpop, Add1ArgType),
6570
NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
6571
NEONMAP0(vcvt_f16_s16),
6572
NEONMAP0(vcvt_f16_u16),
6573
NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
6574
NEONMAP0(vcvt_f32_v),
6575
NEONMAP1(vcvt_n_f16_s16, arm_neon_vcvtfxs2fp, 0),
6576
NEONMAP1(vcvt_n_f16_u16, arm_neon_vcvtfxu2fp, 0),
6577
NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
6578
NEONMAP1(vcvt_n_s16_f16, arm_neon_vcvtfp2fxs, 0),
6579
NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
6580
NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
6581
NEONMAP1(vcvt_n_u16_f16, arm_neon_vcvtfp2fxu, 0),
6582
NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
6583
NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
6584
NEONMAP0(vcvt_s16_f16),
6585
NEONMAP0(vcvt_s32_v),
6586
NEONMAP0(vcvt_s64_v),
6587
NEONMAP0(vcvt_u16_f16),
6588
NEONMAP0(vcvt_u32_v),
6589
NEONMAP0(vcvt_u64_v),
6590
NEONMAP1(vcvta_s16_f16, arm_neon_vcvtas, 0),
6591
NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
6592
NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
6593
NEONMAP1(vcvta_u16_f16, arm_neon_vcvtau, 0),
6594
NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
6595
NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
6596
NEONMAP1(vcvtaq_s16_f16, arm_neon_vcvtas, 0),
6597
NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
6598
NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
6599
NEONMAP1(vcvtaq_u16_f16, arm_neon_vcvtau, 0),
6600
NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
6601
NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
6602
NEONMAP1(vcvth_bf16_f32, arm_neon_vcvtbfp2bf, 0),
6603
NEONMAP1(vcvtm_s16_f16, arm_neon_vcvtms, 0),
6604
NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
6605
NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
6606
NEONMAP1(vcvtm_u16_f16, arm_neon_vcvtmu, 0),
6607
NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
6608
NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
6609
NEONMAP1(vcvtmq_s16_f16, arm_neon_vcvtms, 0),
6610
NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
6611
NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
6612
NEONMAP1(vcvtmq_u16_f16, arm_neon_vcvtmu, 0),
6613
NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
6614
NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
6615
NEONMAP1(vcvtn_s16_f16, arm_neon_vcvtns, 0),
6616
NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
6617
NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
6618
NEONMAP1(vcvtn_u16_f16, arm_neon_vcvtnu, 0),
6619
NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
6620
NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
6621
NEONMAP1(vcvtnq_s16_f16, arm_neon_vcvtns, 0),
6622
NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
6623
NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
6624
NEONMAP1(vcvtnq_u16_f16, arm_neon_vcvtnu, 0),
6625
NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
6626
NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
6627
NEONMAP1(vcvtp_s16_f16, arm_neon_vcvtps, 0),
6628
NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
6629
NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
6630
NEONMAP1(vcvtp_u16_f16, arm_neon_vcvtpu, 0),
6631
NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
6632
NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
6633
NEONMAP1(vcvtpq_s16_f16, arm_neon_vcvtps, 0),
6634
NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
6635
NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
6636
NEONMAP1(vcvtpq_u16_f16, arm_neon_vcvtpu, 0),
6637
NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
6638
NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
6639
NEONMAP0(vcvtq_f16_s16),
6640
NEONMAP0(vcvtq_f16_u16),
6641
NEONMAP0(vcvtq_f32_v),
6642
NEONMAP1(vcvtq_n_f16_s16, arm_neon_vcvtfxs2fp, 0),
6643
NEONMAP1(vcvtq_n_f16_u16, arm_neon_vcvtfxu2fp, 0),
6644
NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
6645
NEONMAP1(vcvtq_n_s16_f16, arm_neon_vcvtfp2fxs, 0),
6646
NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
6647
NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
6648
NEONMAP1(vcvtq_n_u16_f16, arm_neon_vcvtfp2fxu, 0),
6649
NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
6650
NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
6651
NEONMAP0(vcvtq_s16_f16),
6652
NEONMAP0(vcvtq_s32_v),
6653
NEONMAP0(vcvtq_s64_v),
6654
NEONMAP0(vcvtq_u16_f16),
6655
NEONMAP0(vcvtq_u32_v),
6656
NEONMAP0(vcvtq_u64_v),
6657
NEONMAP1(vdot_s32, arm_neon_sdot, 0),
6658
NEONMAP1(vdot_u32, arm_neon_udot, 0),
6659
NEONMAP1(vdotq_s32, arm_neon_sdot, 0),
6660
NEONMAP1(vdotq_u32, arm_neon_udot, 0),
6661
NEONMAP0(vext_v),
6662
NEONMAP0(vextq_v),
6663
NEONMAP0(vfma_v),
6664
NEONMAP0(vfmaq_v),
6665
NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
6666
NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
6667
NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
6668
NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
6669
NEONMAP0(vld1_dup_v),
6670
NEONMAP1(vld1_v, arm_neon_vld1, 0),
6671
NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
6672
NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
6673
NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
6674
NEONMAP0(vld1q_dup_v),
6675
NEONMAP1(vld1q_v, arm_neon_vld1, 0),
6676
NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
6677
NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
6678
NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
6679
NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
6680
NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
6681
NEONMAP1(vld2_v, arm_neon_vld2, 0),
6682
NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
6683
NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
6684
NEONMAP1(vld2q_v, arm_neon_vld2, 0),
6685
NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
6686
NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
6687
NEONMAP1(vld3_v, arm_neon_vld3, 0),
6688
NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
6689
NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
6690
NEONMAP1(vld3q_v, arm_neon_vld3, 0),
6691
NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
6692
NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
6693
NEONMAP1(vld4_v, arm_neon_vld4, 0),
6694
NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
6695
NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
6696
NEONMAP1(vld4q_v, arm_neon_vld4, 0),
6697
NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
6698
NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
6699
NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
6700
NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
6701
NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
6702
NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
6703
NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
6704
NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
6705
NEONMAP1(vmmlaq_s32, arm_neon_smmla, 0),
6706
NEONMAP1(vmmlaq_u32, arm_neon_ummla, 0),
6707
NEONMAP0(vmovl_v),
6708
NEONMAP0(vmovn_v),
6709
NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
6710
NEONMAP0(vmull_v),
6711
NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
6712
NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
6713
NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
6714
NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
6715
NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
6716
NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
6717
NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
6718
NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
6719
NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
6720
NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
6721
NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
6722
NEONMAP2(vqadd_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
6723
NEONMAP2(vqaddq_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
6724
NEONMAP2(vqdmlal_v, arm_neon_vqdmull, sadd_sat, 0),
6725
NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, ssub_sat, 0),
6726
NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
6727
NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
6728
NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
6729
NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
6730
NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
6731
NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
6732
NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
6733
NEONMAP1(vqrdmlah_s16, arm_neon_vqrdmlah, Add1ArgType),
6734
NEONMAP1(vqrdmlah_s32, arm_neon_vqrdmlah, Add1ArgType),
6735
NEONMAP1(vqrdmlahq_s16, arm_neon_vqrdmlah, Add1ArgType),
6736
NEONMAP1(vqrdmlahq_s32, arm_neon_vqrdmlah, Add1ArgType),
6737
NEONMAP1(vqrdmlsh_s16, arm_neon_vqrdmlsh, Add1ArgType),
6738
NEONMAP1(vqrdmlsh_s32, arm_neon_vqrdmlsh, Add1ArgType),
6739
NEONMAP1(vqrdmlshq_s16, arm_neon_vqrdmlsh, Add1ArgType),
6740
NEONMAP1(vqrdmlshq_s32, arm_neon_vqrdmlsh, Add1ArgType),
6741
NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
6742
NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
6743
NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
6744
NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
6745
NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
6746
NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
6747
NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
6748
NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
6749
NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
6750
NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
6751
NEONMAP2(vqsub_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
6752
NEONMAP2(vqsubq_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
6753
NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
6754
NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
6755
NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
6756
NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
6757
NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
6758
NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
6759
NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
6760
NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
6761
NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
6762
NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
6763
NEONMAP0(vrndi_v),
6764
NEONMAP0(vrndiq_v),
6765
NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
6766
NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
6767
NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
6768
NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
6769
NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
6770
NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
6771
NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
6772
NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
6773
NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
6774
NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
6775
NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
6776
NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
6777
NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
6778
NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
6779
NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
6780
NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
6781
NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
6782
NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
6783
NEONMAP1(vsha1su0q_u32, arm_neon_sha1su0, 0),
6784
NEONMAP1(vsha1su1q_u32, arm_neon_sha1su1, 0),
6785
NEONMAP1(vsha256h2q_u32, arm_neon_sha256h2, 0),
6786
NEONMAP1(vsha256hq_u32, arm_neon_sha256h, 0),
6787
NEONMAP1(vsha256su0q_u32, arm_neon_sha256su0, 0),
6788
NEONMAP1(vsha256su1q_u32, arm_neon_sha256su1, 0),
6789
NEONMAP0(vshl_n_v),
6790
NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
6791
NEONMAP0(vshll_n_v),
6792
NEONMAP0(vshlq_n_v),
6793
NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
6794
NEONMAP0(vshr_n_v),
6795
NEONMAP0(vshrn_n_v),
6796
NEONMAP0(vshrq_n_v),
6797
NEONMAP1(vst1_v, arm_neon_vst1, 0),
6798
NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
6799
NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
6800
NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
6801
NEONMAP1(vst1q_v, arm_neon_vst1, 0),
6802
NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
6803
NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
6804
NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
6805
NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
6806
NEONMAP1(vst2_v, arm_neon_vst2, 0),
6807
NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
6808
NEONMAP1(vst2q_v, arm_neon_vst2, 0),
6809
NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
6810
NEONMAP1(vst3_v, arm_neon_vst3, 0),
6811
NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
6812
NEONMAP1(vst3q_v, arm_neon_vst3, 0),
6813
NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
6814
NEONMAP1(vst4_v, arm_neon_vst4, 0),
6815
NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
6816
NEONMAP1(vst4q_v, arm_neon_vst4, 0),
6817
NEONMAP0(vsubhn_v),
6818
NEONMAP0(vtrn_v),
6819
NEONMAP0(vtrnq_v),
6820
NEONMAP0(vtst_v),
6821
NEONMAP0(vtstq_v),
6822
NEONMAP1(vusdot_s32, arm_neon_usdot, 0),
6823
NEONMAP1(vusdotq_s32, arm_neon_usdot, 0),
6824
NEONMAP1(vusmmlaq_s32, arm_neon_usmmla, 0),
6825
NEONMAP0(vuzp_v),
6826
NEONMAP0(vuzpq_v),
6827
NEONMAP0(vzip_v),
6828
NEONMAP0(vzipq_v)
6829
};
6830
6831
static const ARMVectorIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
6832
NEONMAP1(__a64_vcvtq_low_bf16_f32, aarch64_neon_bfcvtn, 0),
6833
NEONMAP0(splat_lane_v),
6834
NEONMAP0(splat_laneq_v),
6835
NEONMAP0(splatq_lane_v),
6836
NEONMAP0(splatq_laneq_v),
6837
NEONMAP1(vabs_v, aarch64_neon_abs, 0),
6838
NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
6839
NEONMAP0(vadd_v),
6840
NEONMAP0(vaddhn_v),
6841
NEONMAP0(vaddq_p128),
6842
NEONMAP0(vaddq_v),
6843
NEONMAP1(vaesdq_u8, aarch64_crypto_aesd, 0),
6844
NEONMAP1(vaeseq_u8, aarch64_crypto_aese, 0),
6845
NEONMAP1(vaesimcq_u8, aarch64_crypto_aesimc, 0),
6846
NEONMAP1(vaesmcq_u8, aarch64_crypto_aesmc, 0),
6847
NEONMAP2(vbcaxq_s16, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6848
NEONMAP2(vbcaxq_s32, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6849
NEONMAP2(vbcaxq_s64, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6850
NEONMAP2(vbcaxq_s8, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6851
NEONMAP2(vbcaxq_u16, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6852
NEONMAP2(vbcaxq_u32, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6853
NEONMAP2(vbcaxq_u64, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6854
NEONMAP2(vbcaxq_u8, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6855
NEONMAP1(vbfdot_f32, aarch64_neon_bfdot, 0),
6856
NEONMAP1(vbfdotq_f32, aarch64_neon_bfdot, 0),
6857
NEONMAP1(vbfmlalbq_f32, aarch64_neon_bfmlalb, 0),
6858
NEONMAP1(vbfmlaltq_f32, aarch64_neon_bfmlalt, 0),
6859
NEONMAP1(vbfmmlaq_f32, aarch64_neon_bfmmla, 0),
6860
NEONMAP1(vcadd_rot270_f16, aarch64_neon_vcadd_rot270, Add1ArgType),
6861
NEONMAP1(vcadd_rot270_f32, aarch64_neon_vcadd_rot270, Add1ArgType),
6862
NEONMAP1(vcadd_rot90_f16, aarch64_neon_vcadd_rot90, Add1ArgType),
6863
NEONMAP1(vcadd_rot90_f32, aarch64_neon_vcadd_rot90, Add1ArgType),
6864
NEONMAP1(vcaddq_rot270_f16, aarch64_neon_vcadd_rot270, Add1ArgType),
6865
NEONMAP1(vcaddq_rot270_f32, aarch64_neon_vcadd_rot270, Add1ArgType),
6866
NEONMAP1(vcaddq_rot270_f64, aarch64_neon_vcadd_rot270, Add1ArgType),
6867
NEONMAP1(vcaddq_rot90_f16, aarch64_neon_vcadd_rot90, Add1ArgType),
6868
NEONMAP1(vcaddq_rot90_f32, aarch64_neon_vcadd_rot90, Add1ArgType),
6869
NEONMAP1(vcaddq_rot90_f64, aarch64_neon_vcadd_rot90, Add1ArgType),
6870
NEONMAP1(vcage_v, aarch64_neon_facge, 0),
6871
NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
6872
NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
6873
NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
6874
NEONMAP1(vcale_v, aarch64_neon_facge, 0),
6875
NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
6876
NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
6877
NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
6878
NEONMAP0(vceqz_v),
6879
NEONMAP0(vceqzq_v),
6880
NEONMAP0(vcgez_v),
6881
NEONMAP0(vcgezq_v),
6882
NEONMAP0(vcgtz_v),
6883
NEONMAP0(vcgtzq_v),
6884
NEONMAP0(vclez_v),
6885
NEONMAP0(vclezq_v),
6886
NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
6887
NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
6888
NEONMAP0(vcltz_v),
6889
NEONMAP0(vcltzq_v),
6890
NEONMAP1(vclz_v, ctlz, Add1ArgType),
6891
NEONMAP1(vclzq_v, ctlz, Add1ArgType),
6892
NEONMAP1(vcmla_f16, aarch64_neon_vcmla_rot0, Add1ArgType),
6893
NEONMAP1(vcmla_f32, aarch64_neon_vcmla_rot0, Add1ArgType),
6894
NEONMAP1(vcmla_rot180_f16, aarch64_neon_vcmla_rot180, Add1ArgType),
6895
NEONMAP1(vcmla_rot180_f32, aarch64_neon_vcmla_rot180, Add1ArgType),
6896
NEONMAP1(vcmla_rot270_f16, aarch64_neon_vcmla_rot270, Add1ArgType),
6897
NEONMAP1(vcmla_rot270_f32, aarch64_neon_vcmla_rot270, Add1ArgType),
6898
NEONMAP1(vcmla_rot90_f16, aarch64_neon_vcmla_rot90, Add1ArgType),
6899
NEONMAP1(vcmla_rot90_f32, aarch64_neon_vcmla_rot90, Add1ArgType),
6900
NEONMAP1(vcmlaq_f16, aarch64_neon_vcmla_rot0, Add1ArgType),
6901
NEONMAP1(vcmlaq_f32, aarch64_neon_vcmla_rot0, Add1ArgType),
6902
NEONMAP1(vcmlaq_f64, aarch64_neon_vcmla_rot0, Add1ArgType),
6903
NEONMAP1(vcmlaq_rot180_f16, aarch64_neon_vcmla_rot180, Add1ArgType),
6904
NEONMAP1(vcmlaq_rot180_f32, aarch64_neon_vcmla_rot180, Add1ArgType),
6905
NEONMAP1(vcmlaq_rot180_f64, aarch64_neon_vcmla_rot180, Add1ArgType),
6906
NEONMAP1(vcmlaq_rot270_f16, aarch64_neon_vcmla_rot270, Add1ArgType),
6907
NEONMAP1(vcmlaq_rot270_f32, aarch64_neon_vcmla_rot270, Add1ArgType),
6908
NEONMAP1(vcmlaq_rot270_f64, aarch64_neon_vcmla_rot270, Add1ArgType),
6909
NEONMAP1(vcmlaq_rot90_f16, aarch64_neon_vcmla_rot90, Add1ArgType),
6910
NEONMAP1(vcmlaq_rot90_f32, aarch64_neon_vcmla_rot90, Add1ArgType),
6911
NEONMAP1(vcmlaq_rot90_f64, aarch64_neon_vcmla_rot90, Add1ArgType),
6912
NEONMAP1(vcnt_v, ctpop, Add1ArgType),
6913
NEONMAP1(vcntq_v, ctpop, Add1ArgType),
6914
NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
6915
NEONMAP0(vcvt_f16_s16),
6916
NEONMAP0(vcvt_f16_u16),
6917
NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
6918
NEONMAP0(vcvt_f32_v),
6919
NEONMAP1(vcvt_n_f16_s16, aarch64_neon_vcvtfxs2fp, 0),
6920
NEONMAP1(vcvt_n_f16_u16, aarch64_neon_vcvtfxu2fp, 0),
6921
NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6922
NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6923
NEONMAP1(vcvt_n_s16_f16, aarch64_neon_vcvtfp2fxs, 0),
6924
NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
6925
NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
6926
NEONMAP1(vcvt_n_u16_f16, aarch64_neon_vcvtfp2fxu, 0),
6927
NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
6928
NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
6929
NEONMAP0(vcvtq_f16_s16),
6930
NEONMAP0(vcvtq_f16_u16),
6931
NEONMAP0(vcvtq_f32_v),
6932
NEONMAP1(vcvtq_high_bf16_f32, aarch64_neon_bfcvtn2, 0),
6933
NEONMAP1(vcvtq_n_f16_s16, aarch64_neon_vcvtfxs2fp, 0),
6934
NEONMAP1(vcvtq_n_f16_u16, aarch64_neon_vcvtfxu2fp, 0),
6935
NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6936
NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6937
NEONMAP1(vcvtq_n_s16_f16, aarch64_neon_vcvtfp2fxs, 0),
6938
NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
6939
NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
6940
NEONMAP1(vcvtq_n_u16_f16, aarch64_neon_vcvtfp2fxu, 0),
6941
NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
6942
NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
6943
NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
6944
NEONMAP1(vdot_s32, aarch64_neon_sdot, 0),
6945
NEONMAP1(vdot_u32, aarch64_neon_udot, 0),
6946
NEONMAP1(vdotq_s32, aarch64_neon_sdot, 0),
6947
NEONMAP1(vdotq_u32, aarch64_neon_udot, 0),
6948
NEONMAP2(veor3q_s16, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6949
NEONMAP2(veor3q_s32, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6950
NEONMAP2(veor3q_s64, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6951
NEONMAP2(veor3q_s8, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6952
NEONMAP2(veor3q_u16, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6953
NEONMAP2(veor3q_u32, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6954
NEONMAP2(veor3q_u64, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6955
NEONMAP2(veor3q_u8, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6956
NEONMAP0(vext_v),
6957
NEONMAP0(vextq_v),
6958
NEONMAP0(vfma_v),
6959
NEONMAP0(vfmaq_v),
6960
NEONMAP1(vfmlal_high_f16, aarch64_neon_fmlal2, 0),
6961
NEONMAP1(vfmlal_low_f16, aarch64_neon_fmlal, 0),
6962
NEONMAP1(vfmlalq_high_f16, aarch64_neon_fmlal2, 0),
6963
NEONMAP1(vfmlalq_low_f16, aarch64_neon_fmlal, 0),
6964
NEONMAP1(vfmlsl_high_f16, aarch64_neon_fmlsl2, 0),
6965
NEONMAP1(vfmlsl_low_f16, aarch64_neon_fmlsl, 0),
6966
NEONMAP1(vfmlslq_high_f16, aarch64_neon_fmlsl2, 0),
6967
NEONMAP1(vfmlslq_low_f16, aarch64_neon_fmlsl, 0),
6968
NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
6969
NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
6970
NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
6971
NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
6972
NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
6973
NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
6974
NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
6975
NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
6976
NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
6977
NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
6978
NEONMAP1(vmmlaq_s32, aarch64_neon_smmla, 0),
6979
NEONMAP1(vmmlaq_u32, aarch64_neon_ummla, 0),
6980
NEONMAP0(vmovl_v),
6981
NEONMAP0(vmovn_v),
6982
NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
6983
NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
6984
NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
6985
NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
6986
NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
6987
NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
6988
NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
6989
NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
6990
NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
6991
NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
6992
NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
6993
NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
6994
NEONMAP1(vqdmulh_lane_v, aarch64_neon_sqdmulh_lane, 0),
6995
NEONMAP1(vqdmulh_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
6996
NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
6997
NEONMAP1(vqdmulhq_lane_v, aarch64_neon_sqdmulh_lane, 0),
6998
NEONMAP1(vqdmulhq_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
6999
NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
7000
NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
7001
NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
7002
NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
7003
NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
7004
NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
7005
NEONMAP1(vqrdmlah_s16, aarch64_neon_sqrdmlah, Add1ArgType),
7006
NEONMAP1(vqrdmlah_s32, aarch64_neon_sqrdmlah, Add1ArgType),
7007
NEONMAP1(vqrdmlahq_s16, aarch64_neon_sqrdmlah, Add1ArgType),
7008
NEONMAP1(vqrdmlahq_s32, aarch64_neon_sqrdmlah, Add1ArgType),
7009
NEONMAP1(vqrdmlsh_s16, aarch64_neon_sqrdmlsh, Add1ArgType),
7010
NEONMAP1(vqrdmlsh_s32, aarch64_neon_sqrdmlsh, Add1ArgType),
7011
NEONMAP1(vqrdmlshq_s16, aarch64_neon_sqrdmlsh, Add1ArgType),
7012
NEONMAP1(vqrdmlshq_s32, aarch64_neon_sqrdmlsh, Add1ArgType),
7013
NEONMAP1(vqrdmulh_lane_v, aarch64_neon_sqrdmulh_lane, 0),
7014
NEONMAP1(vqrdmulh_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
7015
NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
7016
NEONMAP1(vqrdmulhq_lane_v, aarch64_neon_sqrdmulh_lane, 0),
7017
NEONMAP1(vqrdmulhq_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
7018
NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
7019
NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
7020
NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
7021
NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
7022
NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
7023
NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
7024
NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
7025
NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
7026
NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
7027
NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
7028
NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
7029
NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
7030
NEONMAP1(vrax1q_u64, aarch64_crypto_rax1, 0),
7031
NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
7032
NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
7033
NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
7034
NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
7035
NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
7036
NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
7037
NEONMAP1(vrnd32x_f32, aarch64_neon_frint32x, Add1ArgType),
7038
NEONMAP1(vrnd32x_f64, aarch64_neon_frint32x, Add1ArgType),
7039
NEONMAP1(vrnd32xq_f32, aarch64_neon_frint32x, Add1ArgType),
7040
NEONMAP1(vrnd32xq_f64, aarch64_neon_frint32x, Add1ArgType),
7041
NEONMAP1(vrnd32z_f32, aarch64_neon_frint32z, Add1ArgType),
7042
NEONMAP1(vrnd32z_f64, aarch64_neon_frint32z, Add1ArgType),
7043
NEONMAP1(vrnd32zq_f32, aarch64_neon_frint32z, Add1ArgType),
7044
NEONMAP1(vrnd32zq_f64, aarch64_neon_frint32z, Add1ArgType),
7045
NEONMAP1(vrnd64x_f32, aarch64_neon_frint64x, Add1ArgType),
7046
NEONMAP1(vrnd64x_f64, aarch64_neon_frint64x, Add1ArgType),
7047
NEONMAP1(vrnd64xq_f32, aarch64_neon_frint64x, Add1ArgType),
7048
NEONMAP1(vrnd64xq_f64, aarch64_neon_frint64x, Add1ArgType),
7049
NEONMAP1(vrnd64z_f32, aarch64_neon_frint64z, Add1ArgType),
7050
NEONMAP1(vrnd64z_f64, aarch64_neon_frint64z, Add1ArgType),
7051
NEONMAP1(vrnd64zq_f32, aarch64_neon_frint64z, Add1ArgType),
7052
NEONMAP1(vrnd64zq_f64, aarch64_neon_frint64z, Add1ArgType),
7053
NEONMAP0(vrndi_v),
7054
NEONMAP0(vrndiq_v),
7055
NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
7056
NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
7057
NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
7058
NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
7059
NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
7060
NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
7061
NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
7062
NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
7063
NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
7064
NEONMAP1(vsha1su0q_u32, aarch64_crypto_sha1su0, 0),
7065
NEONMAP1(vsha1su1q_u32, aarch64_crypto_sha1su1, 0),
7066
NEONMAP1(vsha256h2q_u32, aarch64_crypto_sha256h2, 0),
7067
NEONMAP1(vsha256hq_u32, aarch64_crypto_sha256h, 0),
7068
NEONMAP1(vsha256su0q_u32, aarch64_crypto_sha256su0, 0),
7069
NEONMAP1(vsha256su1q_u32, aarch64_crypto_sha256su1, 0),
7070
NEONMAP1(vsha512h2q_u64, aarch64_crypto_sha512h2, 0),
7071
NEONMAP1(vsha512hq_u64, aarch64_crypto_sha512h, 0),
7072
NEONMAP1(vsha512su0q_u64, aarch64_crypto_sha512su0, 0),
7073
NEONMAP1(vsha512su1q_u64, aarch64_crypto_sha512su1, 0),
7074
NEONMAP0(vshl_n_v),
7075
NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
7076
NEONMAP0(vshll_n_v),
7077
NEONMAP0(vshlq_n_v),
7078
NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
7079
NEONMAP0(vshr_n_v),
7080
NEONMAP0(vshrn_n_v),
7081
NEONMAP0(vshrq_n_v),
7082
NEONMAP1(vsm3partw1q_u32, aarch64_crypto_sm3partw1, 0),
7083
NEONMAP1(vsm3partw2q_u32, aarch64_crypto_sm3partw2, 0),
7084
NEONMAP1(vsm3ss1q_u32, aarch64_crypto_sm3ss1, 0),
7085
NEONMAP1(vsm3tt1aq_u32, aarch64_crypto_sm3tt1a, 0),
7086
NEONMAP1(vsm3tt1bq_u32, aarch64_crypto_sm3tt1b, 0),
7087
NEONMAP1(vsm3tt2aq_u32, aarch64_crypto_sm3tt2a, 0),
7088
NEONMAP1(vsm3tt2bq_u32, aarch64_crypto_sm3tt2b, 0),
7089
NEONMAP1(vsm4ekeyq_u32, aarch64_crypto_sm4ekey, 0),
7090
NEONMAP1(vsm4eq_u32, aarch64_crypto_sm4e, 0),
7091
NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
7092
NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
7093
NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
7094
NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
7095
NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
7096
NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
7097
NEONMAP0(vsubhn_v),
7098
NEONMAP0(vtst_v),
7099
NEONMAP0(vtstq_v),
7100
NEONMAP1(vusdot_s32, aarch64_neon_usdot, 0),
7101
NEONMAP1(vusdotq_s32, aarch64_neon_usdot, 0),
7102
NEONMAP1(vusmmlaq_s32, aarch64_neon_usmmla, 0),
7103
NEONMAP1(vxarq_u64, aarch64_crypto_xar, 0),
7104
};
7105
7106
static const ARMVectorIntrinsicInfo AArch64SISDIntrinsicMap[] = {
7107
NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
7108
NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
7109
NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
7110
NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
7111
NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
7112
NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
7113
NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
7114
NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
7115
NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
7116
NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
7117
NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
7118
NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
7119
NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
7120
NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
7121
NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
7122
NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
7123
NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
7124
NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
7125
NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
7126
NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
7127
NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
7128
NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
7129
NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
7130
NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
7131
NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
7132
NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
7133
NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
7134
NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
7135
NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
7136
NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
7137
NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
7138
NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
7139
NEONMAP1(vcvtd_s64_f64, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
7140
NEONMAP1(vcvtd_u64_f64, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
7141
NEONMAP1(vcvth_bf16_f32, aarch64_neon_bfcvt, 0),
7142
NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
7143
NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
7144
NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
7145
NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
7146
NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
7147
NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
7148
NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
7149
NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
7150
NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
7151
NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
7152
NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
7153
NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
7154
NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
7155
NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
7156
NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
7157
NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
7158
NEONMAP1(vcvts_s32_f32, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
7159
NEONMAP1(vcvts_u32_f32, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
7160
NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
7161
NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
7162
NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
7163
NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
7164
NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
7165
NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
7166
NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
7167
NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
7168
NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
7169
NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
7170
NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
7171
NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
7172
NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
7173
NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
7174
NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
7175
NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
7176
NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
7177
NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
7178
NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
7179
NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
7180
NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
7181
NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
7182
NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
7183
NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
7184
NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
7185
NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
7186
NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
7187
NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
7188
NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
7189
NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
7190
NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
7191
NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
7192
NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
7193
NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
7194
NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
7195
NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
7196
NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
7197
NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
7198
NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
7199
NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
7200
NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
7201
NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
7202
NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
7203
NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
7204
NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
7205
NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
7206
NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
7207
NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
7208
NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
7209
NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
7210
NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
7211
NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
7212
NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
7213
NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
7214
NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
7215
NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
7216
NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
7217
NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
7218
NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
7219
NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
7220
NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
7221
NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
7222
NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
7223
NEONMAP1(vqrdmlahh_s16, aarch64_neon_sqrdmlah, Vectorize1ArgType | Use64BitVectors),
7224
NEONMAP1(vqrdmlahs_s32, aarch64_neon_sqrdmlah, Add1ArgType),
7225
NEONMAP1(vqrdmlshh_s16, aarch64_neon_sqrdmlsh, Vectorize1ArgType | Use64BitVectors),
7226
NEONMAP1(vqrdmlshs_s32, aarch64_neon_sqrdmlsh, Add1ArgType),
7227
NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
7228
NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
7229
NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
7230
NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
7231
NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
7232
NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
7233
NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
7234
NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
7235
NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
7236
NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
7237
NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
7238
NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
7239
NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
7240
NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
7241
NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
7242
NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
7243
NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
7244
NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
7245
NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
7246
NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
7247
NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
7248
NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
7249
NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
7250
NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
7251
NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
7252
NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
7253
NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
7254
NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
7255
NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
7256
NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
7257
NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
7258
NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
7259
NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
7260
NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
7261
NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
7262
NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
7263
NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
7264
NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
7265
NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
7266
NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
7267
NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
7268
NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
7269
NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
7270
NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
7271
NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
7272
NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
7273
NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
7274
NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
7275
NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
7276
NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
7277
NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
7278
NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
7279
NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
7280
NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
7281
NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
7282
NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
7283
NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
7284
NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
7285
NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
7286
NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
7287
NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
7288
NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
7289
NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
7290
NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
7291
NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
7292
NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
7293
NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
7294
NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
7295
NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
7296
NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
7297
NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
7298
NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
7299
NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
7300
NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
7301
NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
7302
NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
7303
NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
7304
NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
7305
NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
7306
NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
7307
NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
7308
// FP16 scalar intrinisics go here.
7309
NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
7310
NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
7311
NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
7312
NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
7313
NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
7314
NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
7315
NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
7316
NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
7317
NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
7318
NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
7319
NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
7320
NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
7321
NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
7322
NEONMAP1(vcvth_s32_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
7323
NEONMAP1(vcvth_s64_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
7324
NEONMAP1(vcvth_u32_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
7325
NEONMAP1(vcvth_u64_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
7326
NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
7327
NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
7328
NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
7329
NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
7330
NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
7331
NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
7332
NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
7333
NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
7334
NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
7335
NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
7336
NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
7337
NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
7338
NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
7339
NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
7340
NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
7341
NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
7342
NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
7343
};
7344
7345
// Some intrinsics are equivalent for codegen.
7346
static const std::pair<unsigned, unsigned> NEONEquivalentIntrinsicMap[] = {
7347
{ NEON::BI__builtin_neon_splat_lane_bf16, NEON::BI__builtin_neon_splat_lane_v, },
7348
{ NEON::BI__builtin_neon_splat_laneq_bf16, NEON::BI__builtin_neon_splat_laneq_v, },
7349
{ NEON::BI__builtin_neon_splatq_lane_bf16, NEON::BI__builtin_neon_splatq_lane_v, },
7350
{ NEON::BI__builtin_neon_splatq_laneq_bf16, NEON::BI__builtin_neon_splatq_laneq_v, },
7351
{ NEON::BI__builtin_neon_vabd_f16, NEON::BI__builtin_neon_vabd_v, },
7352
{ NEON::BI__builtin_neon_vabdq_f16, NEON::BI__builtin_neon_vabdq_v, },
7353
{ NEON::BI__builtin_neon_vabs_f16, NEON::BI__builtin_neon_vabs_v, },
7354
{ NEON::BI__builtin_neon_vabsq_f16, NEON::BI__builtin_neon_vabsq_v, },
7355
{ NEON::BI__builtin_neon_vcage_f16, NEON::BI__builtin_neon_vcage_v, },
7356
{ NEON::BI__builtin_neon_vcageq_f16, NEON::BI__builtin_neon_vcageq_v, },
7357
{ NEON::BI__builtin_neon_vcagt_f16, NEON::BI__builtin_neon_vcagt_v, },
7358
{ NEON::BI__builtin_neon_vcagtq_f16, NEON::BI__builtin_neon_vcagtq_v, },
7359
{ NEON::BI__builtin_neon_vcale_f16, NEON::BI__builtin_neon_vcale_v, },
7360
{ NEON::BI__builtin_neon_vcaleq_f16, NEON::BI__builtin_neon_vcaleq_v, },
7361
{ NEON::BI__builtin_neon_vcalt_f16, NEON::BI__builtin_neon_vcalt_v, },
7362
{ NEON::BI__builtin_neon_vcaltq_f16, NEON::BI__builtin_neon_vcaltq_v, },
7363
{ NEON::BI__builtin_neon_vceqz_f16, NEON::BI__builtin_neon_vceqz_v, },
7364
{ NEON::BI__builtin_neon_vceqzq_f16, NEON::BI__builtin_neon_vceqzq_v, },
7365
{ NEON::BI__builtin_neon_vcgez_f16, NEON::BI__builtin_neon_vcgez_v, },
7366
{ NEON::BI__builtin_neon_vcgezq_f16, NEON::BI__builtin_neon_vcgezq_v, },
7367
{ NEON::BI__builtin_neon_vcgtz_f16, NEON::BI__builtin_neon_vcgtz_v, },
7368
{ NEON::BI__builtin_neon_vcgtzq_f16, NEON::BI__builtin_neon_vcgtzq_v, },
7369
{ NEON::BI__builtin_neon_vclez_f16, NEON::BI__builtin_neon_vclez_v, },
7370
{ NEON::BI__builtin_neon_vclezq_f16, NEON::BI__builtin_neon_vclezq_v, },
7371
{ NEON::BI__builtin_neon_vcltz_f16, NEON::BI__builtin_neon_vcltz_v, },
7372
{ NEON::BI__builtin_neon_vcltzq_f16, NEON::BI__builtin_neon_vcltzq_v, },
7373
{ NEON::BI__builtin_neon_vfma_f16, NEON::BI__builtin_neon_vfma_v, },
7374
{ NEON::BI__builtin_neon_vfma_lane_f16, NEON::BI__builtin_neon_vfma_lane_v, },
7375
{ NEON::BI__builtin_neon_vfma_laneq_f16, NEON::BI__builtin_neon_vfma_laneq_v, },
7376
{ NEON::BI__builtin_neon_vfmaq_f16, NEON::BI__builtin_neon_vfmaq_v, },
7377
{ NEON::BI__builtin_neon_vfmaq_lane_f16, NEON::BI__builtin_neon_vfmaq_lane_v, },
7378
{ NEON::BI__builtin_neon_vfmaq_laneq_f16, NEON::BI__builtin_neon_vfmaq_laneq_v, },
7379
{ NEON::BI__builtin_neon_vld1_bf16_x2, NEON::BI__builtin_neon_vld1_x2_v },
7380
{ NEON::BI__builtin_neon_vld1_bf16_x3, NEON::BI__builtin_neon_vld1_x3_v },
7381
{ NEON::BI__builtin_neon_vld1_bf16_x4, NEON::BI__builtin_neon_vld1_x4_v },
7382
{ NEON::BI__builtin_neon_vld1_bf16, NEON::BI__builtin_neon_vld1_v },
7383
{ NEON::BI__builtin_neon_vld1_dup_bf16, NEON::BI__builtin_neon_vld1_dup_v },
7384
{ NEON::BI__builtin_neon_vld1_lane_bf16, NEON::BI__builtin_neon_vld1_lane_v },
7385
{ NEON::BI__builtin_neon_vld1q_bf16_x2, NEON::BI__builtin_neon_vld1q_x2_v },
7386
{ NEON::BI__builtin_neon_vld1q_bf16_x3, NEON::BI__builtin_neon_vld1q_x3_v },
7387
{ NEON::BI__builtin_neon_vld1q_bf16_x4, NEON::BI__builtin_neon_vld1q_x4_v },
7388
{ NEON::BI__builtin_neon_vld1q_bf16, NEON::BI__builtin_neon_vld1q_v },
7389
{ NEON::BI__builtin_neon_vld1q_dup_bf16, NEON::BI__builtin_neon_vld1q_dup_v },
7390
{ NEON::BI__builtin_neon_vld1q_lane_bf16, NEON::BI__builtin_neon_vld1q_lane_v },
7391
{ NEON::BI__builtin_neon_vld2_bf16, NEON::BI__builtin_neon_vld2_v },
7392
{ NEON::BI__builtin_neon_vld2_dup_bf16, NEON::BI__builtin_neon_vld2_dup_v },
7393
{ NEON::BI__builtin_neon_vld2_lane_bf16, NEON::BI__builtin_neon_vld2_lane_v },
7394
{ NEON::BI__builtin_neon_vld2q_bf16, NEON::BI__builtin_neon_vld2q_v },
7395
{ NEON::BI__builtin_neon_vld2q_dup_bf16, NEON::BI__builtin_neon_vld2q_dup_v },
7396
{ NEON::BI__builtin_neon_vld2q_lane_bf16, NEON::BI__builtin_neon_vld2q_lane_v },
7397
{ NEON::BI__builtin_neon_vld3_bf16, NEON::BI__builtin_neon_vld3_v },
7398
{ NEON::BI__builtin_neon_vld3_dup_bf16, NEON::BI__builtin_neon_vld3_dup_v },
7399
{ NEON::BI__builtin_neon_vld3_lane_bf16, NEON::BI__builtin_neon_vld3_lane_v },
7400
{ NEON::BI__builtin_neon_vld3q_bf16, NEON::BI__builtin_neon_vld3q_v },
7401
{ NEON::BI__builtin_neon_vld3q_dup_bf16, NEON::BI__builtin_neon_vld3q_dup_v },
7402
{ NEON::BI__builtin_neon_vld3q_lane_bf16, NEON::BI__builtin_neon_vld3q_lane_v },
7403
{ NEON::BI__builtin_neon_vld4_bf16, NEON::BI__builtin_neon_vld4_v },
7404
{ NEON::BI__builtin_neon_vld4_dup_bf16, NEON::BI__builtin_neon_vld4_dup_v },
7405
{ NEON::BI__builtin_neon_vld4_lane_bf16, NEON::BI__builtin_neon_vld4_lane_v },
7406
{ NEON::BI__builtin_neon_vld4q_bf16, NEON::BI__builtin_neon_vld4q_v },
7407
{ NEON::BI__builtin_neon_vld4q_dup_bf16, NEON::BI__builtin_neon_vld4q_dup_v },
7408
{ NEON::BI__builtin_neon_vld4q_lane_bf16, NEON::BI__builtin_neon_vld4q_lane_v },
7409
{ NEON::BI__builtin_neon_vmax_f16, NEON::BI__builtin_neon_vmax_v, },
7410
{ NEON::BI__builtin_neon_vmaxnm_f16, NEON::BI__builtin_neon_vmaxnm_v, },
7411
{ NEON::BI__builtin_neon_vmaxnmq_f16, NEON::BI__builtin_neon_vmaxnmq_v, },
7412
{ NEON::BI__builtin_neon_vmaxq_f16, NEON::BI__builtin_neon_vmaxq_v, },
7413
{ NEON::BI__builtin_neon_vmin_f16, NEON::BI__builtin_neon_vmin_v, },
7414
{ NEON::BI__builtin_neon_vminnm_f16, NEON::BI__builtin_neon_vminnm_v, },
7415
{ NEON::BI__builtin_neon_vminnmq_f16, NEON::BI__builtin_neon_vminnmq_v, },
7416
{ NEON::BI__builtin_neon_vminq_f16, NEON::BI__builtin_neon_vminq_v, },
7417
{ NEON::BI__builtin_neon_vmulx_f16, NEON::BI__builtin_neon_vmulx_v, },
7418
{ NEON::BI__builtin_neon_vmulxq_f16, NEON::BI__builtin_neon_vmulxq_v, },
7419
{ NEON::BI__builtin_neon_vpadd_f16, NEON::BI__builtin_neon_vpadd_v, },
7420
{ NEON::BI__builtin_neon_vpaddq_f16, NEON::BI__builtin_neon_vpaddq_v, },
7421
{ NEON::BI__builtin_neon_vpmax_f16, NEON::BI__builtin_neon_vpmax_v, },
7422
{ NEON::BI__builtin_neon_vpmaxnm_f16, NEON::BI__builtin_neon_vpmaxnm_v, },
7423
{ NEON::BI__builtin_neon_vpmaxnmq_f16, NEON::BI__builtin_neon_vpmaxnmq_v, },
7424
{ NEON::BI__builtin_neon_vpmaxq_f16, NEON::BI__builtin_neon_vpmaxq_v, },
7425
{ NEON::BI__builtin_neon_vpmin_f16, NEON::BI__builtin_neon_vpmin_v, },
7426
{ NEON::BI__builtin_neon_vpminnm_f16, NEON::BI__builtin_neon_vpminnm_v, },
7427
{ NEON::BI__builtin_neon_vpminnmq_f16, NEON::BI__builtin_neon_vpminnmq_v, },
7428
{ NEON::BI__builtin_neon_vpminq_f16, NEON::BI__builtin_neon_vpminq_v, },
7429
{ NEON::BI__builtin_neon_vrecpe_f16, NEON::BI__builtin_neon_vrecpe_v, },
7430
{ NEON::BI__builtin_neon_vrecpeq_f16, NEON::BI__builtin_neon_vrecpeq_v, },
7431
{ NEON::BI__builtin_neon_vrecps_f16, NEON::BI__builtin_neon_vrecps_v, },
7432
{ NEON::BI__builtin_neon_vrecpsq_f16, NEON::BI__builtin_neon_vrecpsq_v, },
7433
{ NEON::BI__builtin_neon_vrnd_f16, NEON::BI__builtin_neon_vrnd_v, },
7434
{ NEON::BI__builtin_neon_vrnda_f16, NEON::BI__builtin_neon_vrnda_v, },
7435
{ NEON::BI__builtin_neon_vrndaq_f16, NEON::BI__builtin_neon_vrndaq_v, },
7436
{ NEON::BI__builtin_neon_vrndi_f16, NEON::BI__builtin_neon_vrndi_v, },
7437
{ NEON::BI__builtin_neon_vrndiq_f16, NEON::BI__builtin_neon_vrndiq_v, },
7438
{ NEON::BI__builtin_neon_vrndm_f16, NEON::BI__builtin_neon_vrndm_v, },
7439
{ NEON::BI__builtin_neon_vrndmq_f16, NEON::BI__builtin_neon_vrndmq_v, },
7440
{ NEON::BI__builtin_neon_vrndn_f16, NEON::BI__builtin_neon_vrndn_v, },
7441
{ NEON::BI__builtin_neon_vrndnq_f16, NEON::BI__builtin_neon_vrndnq_v, },
7442
{ NEON::BI__builtin_neon_vrndp_f16, NEON::BI__builtin_neon_vrndp_v, },
7443
{ NEON::BI__builtin_neon_vrndpq_f16, NEON::BI__builtin_neon_vrndpq_v, },
7444
{ NEON::BI__builtin_neon_vrndq_f16, NEON::BI__builtin_neon_vrndq_v, },
7445
{ NEON::BI__builtin_neon_vrndx_f16, NEON::BI__builtin_neon_vrndx_v, },
7446
{ NEON::BI__builtin_neon_vrndxq_f16, NEON::BI__builtin_neon_vrndxq_v, },
7447
{ NEON::BI__builtin_neon_vrsqrte_f16, NEON::BI__builtin_neon_vrsqrte_v, },
7448
{ NEON::BI__builtin_neon_vrsqrteq_f16, NEON::BI__builtin_neon_vrsqrteq_v, },
7449
{ NEON::BI__builtin_neon_vrsqrts_f16, NEON::BI__builtin_neon_vrsqrts_v, },
7450
{ NEON::BI__builtin_neon_vrsqrtsq_f16, NEON::BI__builtin_neon_vrsqrtsq_v, },
7451
{ NEON::BI__builtin_neon_vsqrt_f16, NEON::BI__builtin_neon_vsqrt_v, },
7452
{ NEON::BI__builtin_neon_vsqrtq_f16, NEON::BI__builtin_neon_vsqrtq_v, },
7453
{ NEON::BI__builtin_neon_vst1_bf16_x2, NEON::BI__builtin_neon_vst1_x2_v },
7454
{ NEON::BI__builtin_neon_vst1_bf16_x3, NEON::BI__builtin_neon_vst1_x3_v },
7455
{ NEON::BI__builtin_neon_vst1_bf16_x4, NEON::BI__builtin_neon_vst1_x4_v },
7456
{ NEON::BI__builtin_neon_vst1_bf16, NEON::BI__builtin_neon_vst1_v },
7457
{ NEON::BI__builtin_neon_vst1_lane_bf16, NEON::BI__builtin_neon_vst1_lane_v },
7458
{ NEON::BI__builtin_neon_vst1q_bf16_x2, NEON::BI__builtin_neon_vst1q_x2_v },
7459
{ NEON::BI__builtin_neon_vst1q_bf16_x3, NEON::BI__builtin_neon_vst1q_x3_v },
7460
{ NEON::BI__builtin_neon_vst1q_bf16_x4, NEON::BI__builtin_neon_vst1q_x4_v },
7461
{ NEON::BI__builtin_neon_vst1q_bf16, NEON::BI__builtin_neon_vst1q_v },
7462
{ NEON::BI__builtin_neon_vst1q_lane_bf16, NEON::BI__builtin_neon_vst1q_lane_v },
7463
{ NEON::BI__builtin_neon_vst2_bf16, NEON::BI__builtin_neon_vst2_v },
7464
{ NEON::BI__builtin_neon_vst2_lane_bf16, NEON::BI__builtin_neon_vst2_lane_v },
7465
{ NEON::BI__builtin_neon_vst2q_bf16, NEON::BI__builtin_neon_vst2q_v },
7466
{ NEON::BI__builtin_neon_vst2q_lane_bf16, NEON::BI__builtin_neon_vst2q_lane_v },
7467
{ NEON::BI__builtin_neon_vst3_bf16, NEON::BI__builtin_neon_vst3_v },
7468
{ NEON::BI__builtin_neon_vst3_lane_bf16, NEON::BI__builtin_neon_vst3_lane_v },
7469
{ NEON::BI__builtin_neon_vst3q_bf16, NEON::BI__builtin_neon_vst3q_v },
7470
{ NEON::BI__builtin_neon_vst3q_lane_bf16, NEON::BI__builtin_neon_vst3q_lane_v },
7471
{ NEON::BI__builtin_neon_vst4_bf16, NEON::BI__builtin_neon_vst4_v },
7472
{ NEON::BI__builtin_neon_vst4_lane_bf16, NEON::BI__builtin_neon_vst4_lane_v },
7473
{ NEON::BI__builtin_neon_vst4q_bf16, NEON::BI__builtin_neon_vst4q_v },
7474
{ NEON::BI__builtin_neon_vst4q_lane_bf16, NEON::BI__builtin_neon_vst4q_lane_v },
7475
// The mangling rules cause us to have one ID for each type for vldap1(q)_lane
7476
// and vstl1(q)_lane, but codegen is equivalent for all of them. Choose an
7477
// arbitrary one to be handled as tha canonical variation.
7478
{ NEON::BI__builtin_neon_vldap1_lane_u64, NEON::BI__builtin_neon_vldap1_lane_s64 },
7479
{ NEON::BI__builtin_neon_vldap1_lane_f64, NEON::BI__builtin_neon_vldap1_lane_s64 },
7480
{ NEON::BI__builtin_neon_vldap1_lane_p64, NEON::BI__builtin_neon_vldap1_lane_s64 },
7481
{ NEON::BI__builtin_neon_vldap1q_lane_u64, NEON::BI__builtin_neon_vldap1q_lane_s64 },
7482
{ NEON::BI__builtin_neon_vldap1q_lane_f64, NEON::BI__builtin_neon_vldap1q_lane_s64 },
7483
{ NEON::BI__builtin_neon_vldap1q_lane_p64, NEON::BI__builtin_neon_vldap1q_lane_s64 },
7484
{ NEON::BI__builtin_neon_vstl1_lane_u64, NEON::BI__builtin_neon_vstl1_lane_s64 },
7485
{ NEON::BI__builtin_neon_vstl1_lane_f64, NEON::BI__builtin_neon_vstl1_lane_s64 },
7486
{ NEON::BI__builtin_neon_vstl1_lane_p64, NEON::BI__builtin_neon_vstl1_lane_s64 },
7487
{ NEON::BI__builtin_neon_vstl1q_lane_u64, NEON::BI__builtin_neon_vstl1q_lane_s64 },
7488
{ NEON::BI__builtin_neon_vstl1q_lane_f64, NEON::BI__builtin_neon_vstl1q_lane_s64 },
7489
{ NEON::BI__builtin_neon_vstl1q_lane_p64, NEON::BI__builtin_neon_vstl1q_lane_s64 },
7490
};
7491
7492
#undef NEONMAP0
7493
#undef NEONMAP1
7494
#undef NEONMAP2
7495
7496
#define SVEMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
7497
{ \
7498
#NameBase, SVE::BI__builtin_sve_##NameBase, Intrinsic::LLVMIntrinsic, 0, \
7499
TypeModifier \
7500
}
7501
7502
#define SVEMAP2(NameBase, TypeModifier) \
7503
{ #NameBase, SVE::BI__builtin_sve_##NameBase, 0, 0, TypeModifier }
7504
static const ARMVectorIntrinsicInfo AArch64SVEIntrinsicMap[] = {
7505
#define GET_SVE_LLVM_INTRINSIC_MAP
7506
#include "clang/Basic/arm_sve_builtin_cg.inc"
7507
#include "clang/Basic/BuiltinsAArch64NeonSVEBridge_cg.def"
7508
#undef GET_SVE_LLVM_INTRINSIC_MAP
7509
};
7510
7511
#undef SVEMAP1
7512
#undef SVEMAP2
7513
7514
#define SMEMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
7515
{ \
7516
#NameBase, SME::BI__builtin_sme_##NameBase, Intrinsic::LLVMIntrinsic, 0, \
7517
TypeModifier \
7518
}
7519
7520
#define SMEMAP2(NameBase, TypeModifier) \
7521
{ #NameBase, SME::BI__builtin_sme_##NameBase, 0, 0, TypeModifier }
7522
static const ARMVectorIntrinsicInfo AArch64SMEIntrinsicMap[] = {
7523
#define GET_SME_LLVM_INTRINSIC_MAP
7524
#include "clang/Basic/arm_sme_builtin_cg.inc"
7525
#undef GET_SME_LLVM_INTRINSIC_MAP
7526
};
7527
7528
#undef SMEMAP1
7529
#undef SMEMAP2
7530
7531
static bool NEONSIMDIntrinsicsProvenSorted = false;
7532
7533
static bool AArch64SIMDIntrinsicsProvenSorted = false;
7534
static bool AArch64SISDIntrinsicsProvenSorted = false;
7535
static bool AArch64SVEIntrinsicsProvenSorted = false;
7536
static bool AArch64SMEIntrinsicsProvenSorted = false;
7537
7538
static const ARMVectorIntrinsicInfo *
7539
findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap,
7540
unsigned BuiltinID, bool &MapProvenSorted) {
7541
7542
#ifndef NDEBUG
7543
if (!MapProvenSorted) {
7544
assert(llvm::is_sorted(IntrinsicMap));
7545
MapProvenSorted = true;
7546
}
7547
#endif
7548
7549
const ARMVectorIntrinsicInfo *Builtin =
7550
llvm::lower_bound(IntrinsicMap, BuiltinID);
7551
7552
if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
7553
return Builtin;
7554
7555
return nullptr;
7556
}
7557
7558
Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
7559
unsigned Modifier,
7560
llvm::Type *ArgType,
7561
const CallExpr *E) {
7562
int VectorSize = 0;
7563
if (Modifier & Use64BitVectors)
7564
VectorSize = 64;
7565
else if (Modifier & Use128BitVectors)
7566
VectorSize = 128;
7567
7568
// Return type.
7569
SmallVector<llvm::Type *, 3> Tys;
7570
if (Modifier & AddRetType) {
7571
llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
7572
if (Modifier & VectorizeRetType)
7573
Ty = llvm::FixedVectorType::get(
7574
Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
7575
7576
Tys.push_back(Ty);
7577
}
7578
7579
// Arguments.
7580
if (Modifier & VectorizeArgTypes) {
7581
int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
7582
ArgType = llvm::FixedVectorType::get(ArgType, Elts);
7583
}
7584
7585
if (Modifier & (Add1ArgType | Add2ArgTypes))
7586
Tys.push_back(ArgType);
7587
7588
if (Modifier & Add2ArgTypes)
7589
Tys.push_back(ArgType);
7590
7591
if (Modifier & InventFloatType)
7592
Tys.push_back(FloatTy);
7593
7594
return CGM.getIntrinsic(IntrinsicID, Tys);
7595
}
7596
7597
static Value *EmitCommonNeonSISDBuiltinExpr(
7598
CodeGenFunction &CGF, const ARMVectorIntrinsicInfo &SISDInfo,
7599
SmallVectorImpl<Value *> &Ops, const CallExpr *E) {
7600
unsigned BuiltinID = SISDInfo.BuiltinID;
7601
unsigned int Int = SISDInfo.LLVMIntrinsic;
7602
unsigned Modifier = SISDInfo.TypeModifier;
7603
const char *s = SISDInfo.NameHint;
7604
7605
switch (BuiltinID) {
7606
case NEON::BI__builtin_neon_vcled_s64:
7607
case NEON::BI__builtin_neon_vcled_u64:
7608
case NEON::BI__builtin_neon_vcles_f32:
7609
case NEON::BI__builtin_neon_vcled_f64:
7610
case NEON::BI__builtin_neon_vcltd_s64:
7611
case NEON::BI__builtin_neon_vcltd_u64:
7612
case NEON::BI__builtin_neon_vclts_f32:
7613
case NEON::BI__builtin_neon_vcltd_f64:
7614
case NEON::BI__builtin_neon_vcales_f32:
7615
case NEON::BI__builtin_neon_vcaled_f64:
7616
case NEON::BI__builtin_neon_vcalts_f32:
7617
case NEON::BI__builtin_neon_vcaltd_f64:
7618
// Only one direction of comparisons actually exist, cmle is actually a cmge
7619
// with swapped operands. The table gives us the right intrinsic but we
7620
// still need to do the swap.
7621
std::swap(Ops[0], Ops[1]);
7622
break;
7623
}
7624
7625
assert(Int && "Generic code assumes a valid intrinsic");
7626
7627
// Determine the type(s) of this overloaded AArch64 intrinsic.
7628
const Expr *Arg = E->getArg(0);
7629
llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
7630
Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
7631
7632
int j = 0;
7633
ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
7634
for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
7635
ai != ae; ++ai, ++j) {
7636
llvm::Type *ArgTy = ai->getType();
7637
if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
7638
ArgTy->getPrimitiveSizeInBits())
7639
continue;
7640
7641
assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy());
7642
// The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
7643
// it before inserting.
7644
Ops[j] = CGF.Builder.CreateTruncOrBitCast(
7645
Ops[j], cast<llvm::VectorType>(ArgTy)->getElementType());
7646
Ops[j] =
7647
CGF.Builder.CreateInsertElement(PoisonValue::get(ArgTy), Ops[j], C0);
7648
}
7649
7650
Value *Result = CGF.EmitNeonCall(F, Ops, s);
7651
llvm::Type *ResultType = CGF.ConvertType(E->getType());
7652
if (ResultType->getPrimitiveSizeInBits().getFixedValue() <
7653
Result->getType()->getPrimitiveSizeInBits().getFixedValue())
7654
return CGF.Builder.CreateExtractElement(Result, C0);
7655
7656
return CGF.Builder.CreateBitCast(Result, ResultType, s);
7657
}
7658
7659
Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
7660
unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
7661
const char *NameHint, unsigned Modifier, const CallExpr *E,
7662
SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
7663
llvm::Triple::ArchType Arch) {
7664
// Get the last argument, which specifies the vector type.
7665
const Expr *Arg = E->getArg(E->getNumArgs() - 1);
7666
std::optional<llvm::APSInt> NeonTypeConst =
7667
Arg->getIntegerConstantExpr(getContext());
7668
if (!NeonTypeConst)
7669
return nullptr;
7670
7671
// Determine the type of this overloaded NEON intrinsic.
7672
NeonTypeFlags Type(NeonTypeConst->getZExtValue());
7673
bool Usgn = Type.isUnsigned();
7674
bool Quad = Type.isQuad();
7675
const bool HasLegalHalfType = getTarget().hasLegalHalfType();
7676
const bool AllowBFloatArgsAndRet =
7677
getTargetHooks().getABIInfo().allowBFloatArgsAndRet();
7678
7679
llvm::FixedVectorType *VTy =
7680
GetNeonType(this, Type, HasLegalHalfType, false, AllowBFloatArgsAndRet);
7681
llvm::Type *Ty = VTy;
7682
if (!Ty)
7683
return nullptr;
7684
7685
auto getAlignmentValue32 = [&](Address addr) -> Value* {
7686
return Builder.getInt32(addr.getAlignment().getQuantity());
7687
};
7688
7689
unsigned Int = LLVMIntrinsic;
7690
if ((Modifier & UnsignedAlts) && !Usgn)
7691
Int = AltLLVMIntrinsic;
7692
7693
switch (BuiltinID) {
7694
default: break;
7695
case NEON::BI__builtin_neon_splat_lane_v:
7696
case NEON::BI__builtin_neon_splat_laneq_v:
7697
case NEON::BI__builtin_neon_splatq_lane_v:
7698
case NEON::BI__builtin_neon_splatq_laneq_v: {
7699
auto NumElements = VTy->getElementCount();
7700
if (BuiltinID == NEON::BI__builtin_neon_splatq_lane_v)
7701
NumElements = NumElements * 2;
7702
if (BuiltinID == NEON::BI__builtin_neon_splat_laneq_v)
7703
NumElements = NumElements.divideCoefficientBy(2);
7704
7705
Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
7706
return EmitNeonSplat(Ops[0], cast<ConstantInt>(Ops[1]), NumElements);
7707
}
7708
case NEON::BI__builtin_neon_vpadd_v:
7709
case NEON::BI__builtin_neon_vpaddq_v:
7710
// We don't allow fp/int overloading of intrinsics.
7711
if (VTy->getElementType()->isFloatingPointTy() &&
7712
Int == Intrinsic::aarch64_neon_addp)
7713
Int = Intrinsic::aarch64_neon_faddp;
7714
break;
7715
case NEON::BI__builtin_neon_vabs_v:
7716
case NEON::BI__builtin_neon_vabsq_v:
7717
if (VTy->getElementType()->isFloatingPointTy())
7718
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
7719
return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
7720
case NEON::BI__builtin_neon_vadd_v:
7721
case NEON::BI__builtin_neon_vaddq_v: {
7722
llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, Quad ? 16 : 8);
7723
Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
7724
Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
7725
Ops[0] = Builder.CreateXor(Ops[0], Ops[1]);
7726
return Builder.CreateBitCast(Ops[0], Ty);
7727
}
7728
case NEON::BI__builtin_neon_vaddhn_v: {
7729
llvm::FixedVectorType *SrcTy =
7730
llvm::FixedVectorType::getExtendedElementVectorType(VTy);
7731
7732
// %sum = add <4 x i32> %lhs, %rhs
7733
Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
7734
Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
7735
Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
7736
7737
// %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
7738
Constant *ShiftAmt =
7739
ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
7740
Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
7741
7742
// %res = trunc <4 x i32> %high to <4 x i16>
7743
return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
7744
}
7745
case NEON::BI__builtin_neon_vcale_v:
7746
case NEON::BI__builtin_neon_vcaleq_v:
7747
case NEON::BI__builtin_neon_vcalt_v:
7748
case NEON::BI__builtin_neon_vcaltq_v:
7749
std::swap(Ops[0], Ops[1]);
7750
[[fallthrough]];
7751
case NEON::BI__builtin_neon_vcage_v:
7752
case NEON::BI__builtin_neon_vcageq_v:
7753
case NEON::BI__builtin_neon_vcagt_v:
7754
case NEON::BI__builtin_neon_vcagtq_v: {
7755
llvm::Type *Ty;
7756
switch (VTy->getScalarSizeInBits()) {
7757
default: llvm_unreachable("unexpected type");
7758
case 32:
7759
Ty = FloatTy;
7760
break;
7761
case 64:
7762
Ty = DoubleTy;
7763
break;
7764
case 16:
7765
Ty = HalfTy;
7766
break;
7767
}
7768
auto *VecFlt = llvm::FixedVectorType::get(Ty, VTy->getNumElements());
7769
llvm::Type *Tys[] = { VTy, VecFlt };
7770
Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
7771
return EmitNeonCall(F, Ops, NameHint);
7772
}
7773
case NEON::BI__builtin_neon_vceqz_v:
7774
case NEON::BI__builtin_neon_vceqzq_v:
7775
return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
7776
ICmpInst::ICMP_EQ, "vceqz");
7777
case NEON::BI__builtin_neon_vcgez_v:
7778
case NEON::BI__builtin_neon_vcgezq_v:
7779
return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
7780
ICmpInst::ICMP_SGE, "vcgez");
7781
case NEON::BI__builtin_neon_vclez_v:
7782
case NEON::BI__builtin_neon_vclezq_v:
7783
return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
7784
ICmpInst::ICMP_SLE, "vclez");
7785
case NEON::BI__builtin_neon_vcgtz_v:
7786
case NEON::BI__builtin_neon_vcgtzq_v:
7787
return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
7788
ICmpInst::ICMP_SGT, "vcgtz");
7789
case NEON::BI__builtin_neon_vcltz_v:
7790
case NEON::BI__builtin_neon_vcltzq_v:
7791
return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
7792
ICmpInst::ICMP_SLT, "vcltz");
7793
case NEON::BI__builtin_neon_vclz_v:
7794
case NEON::BI__builtin_neon_vclzq_v:
7795
// We generate target-independent intrinsic, which needs a second argument
7796
// for whether or not clz of zero is undefined; on ARM it isn't.
7797
Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
7798
break;
7799
case NEON::BI__builtin_neon_vcvt_f32_v:
7800
case NEON::BI__builtin_neon_vcvtq_f32_v:
7801
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7802
Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
7803
HasLegalHalfType);
7804
return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
7805
: Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
7806
case NEON::BI__builtin_neon_vcvt_f16_s16:
7807
case NEON::BI__builtin_neon_vcvt_f16_u16:
7808
case NEON::BI__builtin_neon_vcvtq_f16_s16:
7809
case NEON::BI__builtin_neon_vcvtq_f16_u16:
7810
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7811
Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
7812
HasLegalHalfType);
7813
return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
7814
: Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
7815
case NEON::BI__builtin_neon_vcvt_n_f16_s16:
7816
case NEON::BI__builtin_neon_vcvt_n_f16_u16:
7817
case NEON::BI__builtin_neon_vcvtq_n_f16_s16:
7818
case NEON::BI__builtin_neon_vcvtq_n_f16_u16: {
7819
llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
7820
Function *F = CGM.getIntrinsic(Int, Tys);
7821
return EmitNeonCall(F, Ops, "vcvt_n");
7822
}
7823
case NEON::BI__builtin_neon_vcvt_n_f32_v:
7824
case NEON::BI__builtin_neon_vcvt_n_f64_v:
7825
case NEON::BI__builtin_neon_vcvtq_n_f32_v:
7826
case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
7827
llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
7828
Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
7829
Function *F = CGM.getIntrinsic(Int, Tys);
7830
return EmitNeonCall(F, Ops, "vcvt_n");
7831
}
7832
case NEON::BI__builtin_neon_vcvt_n_s16_f16:
7833
case NEON::BI__builtin_neon_vcvt_n_s32_v:
7834
case NEON::BI__builtin_neon_vcvt_n_u16_f16:
7835
case NEON::BI__builtin_neon_vcvt_n_u32_v:
7836
case NEON::BI__builtin_neon_vcvt_n_s64_v:
7837
case NEON::BI__builtin_neon_vcvt_n_u64_v:
7838
case NEON::BI__builtin_neon_vcvtq_n_s16_f16:
7839
case NEON::BI__builtin_neon_vcvtq_n_s32_v:
7840
case NEON::BI__builtin_neon_vcvtq_n_u16_f16:
7841
case NEON::BI__builtin_neon_vcvtq_n_u32_v:
7842
case NEON::BI__builtin_neon_vcvtq_n_s64_v:
7843
case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
7844
llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
7845
Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
7846
return EmitNeonCall(F, Ops, "vcvt_n");
7847
}
7848
case NEON::BI__builtin_neon_vcvt_s32_v:
7849
case NEON::BI__builtin_neon_vcvt_u32_v:
7850
case NEON::BI__builtin_neon_vcvt_s64_v:
7851
case NEON::BI__builtin_neon_vcvt_u64_v:
7852
case NEON::BI__builtin_neon_vcvt_s16_f16:
7853
case NEON::BI__builtin_neon_vcvt_u16_f16:
7854
case NEON::BI__builtin_neon_vcvtq_s32_v:
7855
case NEON::BI__builtin_neon_vcvtq_u32_v:
7856
case NEON::BI__builtin_neon_vcvtq_s64_v:
7857
case NEON::BI__builtin_neon_vcvtq_u64_v:
7858
case NEON::BI__builtin_neon_vcvtq_s16_f16:
7859
case NEON::BI__builtin_neon_vcvtq_u16_f16: {
7860
Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
7861
return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
7862
: Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
7863
}
7864
case NEON::BI__builtin_neon_vcvta_s16_f16:
7865
case NEON::BI__builtin_neon_vcvta_s32_v:
7866
case NEON::BI__builtin_neon_vcvta_s64_v:
7867
case NEON::BI__builtin_neon_vcvta_u16_f16:
7868
case NEON::BI__builtin_neon_vcvta_u32_v:
7869
case NEON::BI__builtin_neon_vcvta_u64_v:
7870
case NEON::BI__builtin_neon_vcvtaq_s16_f16:
7871
case NEON::BI__builtin_neon_vcvtaq_s32_v:
7872
case NEON::BI__builtin_neon_vcvtaq_s64_v:
7873
case NEON::BI__builtin_neon_vcvtaq_u16_f16:
7874
case NEON::BI__builtin_neon_vcvtaq_u32_v:
7875
case NEON::BI__builtin_neon_vcvtaq_u64_v:
7876
case NEON::BI__builtin_neon_vcvtn_s16_f16:
7877
case NEON::BI__builtin_neon_vcvtn_s32_v:
7878
case NEON::BI__builtin_neon_vcvtn_s64_v:
7879
case NEON::BI__builtin_neon_vcvtn_u16_f16:
7880
case NEON::BI__builtin_neon_vcvtn_u32_v:
7881
case NEON::BI__builtin_neon_vcvtn_u64_v:
7882
case NEON::BI__builtin_neon_vcvtnq_s16_f16:
7883
case NEON::BI__builtin_neon_vcvtnq_s32_v:
7884
case NEON::BI__builtin_neon_vcvtnq_s64_v:
7885
case NEON::BI__builtin_neon_vcvtnq_u16_f16:
7886
case NEON::BI__builtin_neon_vcvtnq_u32_v:
7887
case NEON::BI__builtin_neon_vcvtnq_u64_v:
7888
case NEON::BI__builtin_neon_vcvtp_s16_f16:
7889
case NEON::BI__builtin_neon_vcvtp_s32_v:
7890
case NEON::BI__builtin_neon_vcvtp_s64_v:
7891
case NEON::BI__builtin_neon_vcvtp_u16_f16:
7892
case NEON::BI__builtin_neon_vcvtp_u32_v:
7893
case NEON::BI__builtin_neon_vcvtp_u64_v:
7894
case NEON::BI__builtin_neon_vcvtpq_s16_f16:
7895
case NEON::BI__builtin_neon_vcvtpq_s32_v:
7896
case NEON::BI__builtin_neon_vcvtpq_s64_v:
7897
case NEON::BI__builtin_neon_vcvtpq_u16_f16:
7898
case NEON::BI__builtin_neon_vcvtpq_u32_v:
7899
case NEON::BI__builtin_neon_vcvtpq_u64_v:
7900
case NEON::BI__builtin_neon_vcvtm_s16_f16:
7901
case NEON::BI__builtin_neon_vcvtm_s32_v:
7902
case NEON::BI__builtin_neon_vcvtm_s64_v:
7903
case NEON::BI__builtin_neon_vcvtm_u16_f16:
7904
case NEON::BI__builtin_neon_vcvtm_u32_v:
7905
case NEON::BI__builtin_neon_vcvtm_u64_v:
7906
case NEON::BI__builtin_neon_vcvtmq_s16_f16:
7907
case NEON::BI__builtin_neon_vcvtmq_s32_v:
7908
case NEON::BI__builtin_neon_vcvtmq_s64_v:
7909
case NEON::BI__builtin_neon_vcvtmq_u16_f16:
7910
case NEON::BI__builtin_neon_vcvtmq_u32_v:
7911
case NEON::BI__builtin_neon_vcvtmq_u64_v: {
7912
llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
7913
return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
7914
}
7915
case NEON::BI__builtin_neon_vcvtx_f32_v: {
7916
llvm::Type *Tys[2] = { VTy->getTruncatedElementVectorType(VTy), Ty};
7917
return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
7918
7919
}
7920
case NEON::BI__builtin_neon_vext_v:
7921
case NEON::BI__builtin_neon_vextq_v: {
7922
int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
7923
SmallVector<int, 16> Indices;
7924
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
7925
Indices.push_back(i+CV);
7926
7927
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7928
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7929
return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
7930
}
7931
case NEON::BI__builtin_neon_vfma_v:
7932
case NEON::BI__builtin_neon_vfmaq_v: {
7933
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7934
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7935
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7936
7937
// NEON intrinsic puts accumulator first, unlike the LLVM fma.
7938
return emitCallMaybeConstrainedFPBuiltin(
7939
*this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
7940
{Ops[1], Ops[2], Ops[0]});
7941
}
7942
case NEON::BI__builtin_neon_vld1_v:
7943
case NEON::BI__builtin_neon_vld1q_v: {
7944
llvm::Type *Tys[] = {Ty, Int8PtrTy};
7945
Ops.push_back(getAlignmentValue32(PtrOp0));
7946
return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
7947
}
7948
case NEON::BI__builtin_neon_vld1_x2_v:
7949
case NEON::BI__builtin_neon_vld1q_x2_v:
7950
case NEON::BI__builtin_neon_vld1_x3_v:
7951
case NEON::BI__builtin_neon_vld1q_x3_v:
7952
case NEON::BI__builtin_neon_vld1_x4_v:
7953
case NEON::BI__builtin_neon_vld1q_x4_v: {
7954
llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
7955
Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
7956
Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
7957
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7958
}
7959
case NEON::BI__builtin_neon_vld2_v:
7960
case NEON::BI__builtin_neon_vld2q_v:
7961
case NEON::BI__builtin_neon_vld3_v:
7962
case NEON::BI__builtin_neon_vld3q_v:
7963
case NEON::BI__builtin_neon_vld4_v:
7964
case NEON::BI__builtin_neon_vld4q_v:
7965
case NEON::BI__builtin_neon_vld2_dup_v:
7966
case NEON::BI__builtin_neon_vld2q_dup_v:
7967
case NEON::BI__builtin_neon_vld3_dup_v:
7968
case NEON::BI__builtin_neon_vld3q_dup_v:
7969
case NEON::BI__builtin_neon_vld4_dup_v:
7970
case NEON::BI__builtin_neon_vld4q_dup_v: {
7971
llvm::Type *Tys[] = {Ty, Int8PtrTy};
7972
Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
7973
Value *Align = getAlignmentValue32(PtrOp1);
7974
Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
7975
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7976
}
7977
case NEON::BI__builtin_neon_vld1_dup_v:
7978
case NEON::BI__builtin_neon_vld1q_dup_v: {
7979
Value *V = PoisonValue::get(Ty);
7980
PtrOp0 = PtrOp0.withElementType(VTy->getElementType());
7981
LoadInst *Ld = Builder.CreateLoad(PtrOp0);
7982
llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
7983
Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
7984
return EmitNeonSplat(Ops[0], CI);
7985
}
7986
case NEON::BI__builtin_neon_vld2_lane_v:
7987
case NEON::BI__builtin_neon_vld2q_lane_v:
7988
case NEON::BI__builtin_neon_vld3_lane_v:
7989
case NEON::BI__builtin_neon_vld3q_lane_v:
7990
case NEON::BI__builtin_neon_vld4_lane_v:
7991
case NEON::BI__builtin_neon_vld4q_lane_v: {
7992
llvm::Type *Tys[] = {Ty, Int8PtrTy};
7993
Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
7994
for (unsigned I = 2; I < Ops.size() - 1; ++I)
7995
Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
7996
Ops.push_back(getAlignmentValue32(PtrOp1));
7997
Ops[1] = Builder.CreateCall(F, ArrayRef(Ops).slice(1), NameHint);
7998
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7999
}
8000
case NEON::BI__builtin_neon_vmovl_v: {
8001
llvm::FixedVectorType *DTy =
8002
llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
8003
Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
8004
if (Usgn)
8005
return Builder.CreateZExt(Ops[0], Ty, "vmovl");
8006
return Builder.CreateSExt(Ops[0], Ty, "vmovl");
8007
}
8008
case NEON::BI__builtin_neon_vmovn_v: {
8009
llvm::FixedVectorType *QTy =
8010
llvm::FixedVectorType::getExtendedElementVectorType(VTy);
8011
Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
8012
return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
8013
}
8014
case NEON::BI__builtin_neon_vmull_v:
8015
// FIXME: the integer vmull operations could be emitted in terms of pure
8016
// LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
8017
// hoisting the exts outside loops. Until global ISel comes along that can
8018
// see through such movement this leads to bad CodeGen. So we need an
8019
// intrinsic for now.
8020
Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
8021
Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
8022
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
8023
case NEON::BI__builtin_neon_vpadal_v:
8024
case NEON::BI__builtin_neon_vpadalq_v: {
8025
// The source operand type has twice as many elements of half the size.
8026
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
8027
llvm::Type *EltTy =
8028
llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
8029
auto *NarrowTy =
8030
llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
8031
llvm::Type *Tys[2] = { Ty, NarrowTy };
8032
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
8033
}
8034
case NEON::BI__builtin_neon_vpaddl_v:
8035
case NEON::BI__builtin_neon_vpaddlq_v: {
8036
// The source operand type has twice as many elements of half the size.
8037
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
8038
llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
8039
auto *NarrowTy =
8040
llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
8041
llvm::Type *Tys[2] = { Ty, NarrowTy };
8042
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
8043
}
8044
case NEON::BI__builtin_neon_vqdmlal_v:
8045
case NEON::BI__builtin_neon_vqdmlsl_v: {
8046
SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
8047
Ops[1] =
8048
EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
8049
Ops.resize(2);
8050
return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
8051
}
8052
case NEON::BI__builtin_neon_vqdmulhq_lane_v:
8053
case NEON::BI__builtin_neon_vqdmulh_lane_v:
8054
case NEON::BI__builtin_neon_vqrdmulhq_lane_v:
8055
case NEON::BI__builtin_neon_vqrdmulh_lane_v: {
8056
auto *RTy = cast<llvm::FixedVectorType>(Ty);
8057
if (BuiltinID == NEON::BI__builtin_neon_vqdmulhq_lane_v ||
8058
BuiltinID == NEON::BI__builtin_neon_vqrdmulhq_lane_v)
8059
RTy = llvm::FixedVectorType::get(RTy->getElementType(),
8060
RTy->getNumElements() * 2);
8061
llvm::Type *Tys[2] = {
8062
RTy, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
8063
/*isQuad*/ false))};
8064
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
8065
}
8066
case NEON::BI__builtin_neon_vqdmulhq_laneq_v:
8067
case NEON::BI__builtin_neon_vqdmulh_laneq_v:
8068
case NEON::BI__builtin_neon_vqrdmulhq_laneq_v:
8069
case NEON::BI__builtin_neon_vqrdmulh_laneq_v: {
8070
llvm::Type *Tys[2] = {
8071
Ty, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
8072
/*isQuad*/ true))};
8073
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
8074
}
8075
case NEON::BI__builtin_neon_vqshl_n_v:
8076
case NEON::BI__builtin_neon_vqshlq_n_v:
8077
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
8078
1, false);
8079
case NEON::BI__builtin_neon_vqshlu_n_v:
8080
case NEON::BI__builtin_neon_vqshluq_n_v:
8081
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
8082
1, false);
8083
case NEON::BI__builtin_neon_vrecpe_v:
8084
case NEON::BI__builtin_neon_vrecpeq_v:
8085
case NEON::BI__builtin_neon_vrsqrte_v:
8086
case NEON::BI__builtin_neon_vrsqrteq_v:
8087
Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
8088
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
8089
case NEON::BI__builtin_neon_vrndi_v:
8090
case NEON::BI__builtin_neon_vrndiq_v:
8091
Int = Builder.getIsFPConstrained()
8092
? Intrinsic::experimental_constrained_nearbyint
8093
: Intrinsic::nearbyint;
8094
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
8095
case NEON::BI__builtin_neon_vrshr_n_v:
8096
case NEON::BI__builtin_neon_vrshrq_n_v:
8097
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
8098
1, true);
8099
case NEON::BI__builtin_neon_vsha512hq_u64:
8100
case NEON::BI__builtin_neon_vsha512h2q_u64:
8101
case NEON::BI__builtin_neon_vsha512su0q_u64:
8102
case NEON::BI__builtin_neon_vsha512su1q_u64: {
8103
Function *F = CGM.getIntrinsic(Int);
8104
return EmitNeonCall(F, Ops, "");
8105
}
8106
case NEON::BI__builtin_neon_vshl_n_v:
8107
case NEON::BI__builtin_neon_vshlq_n_v:
8108
Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
8109
return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
8110
"vshl_n");
8111
case NEON::BI__builtin_neon_vshll_n_v: {
8112
llvm::FixedVectorType *SrcTy =
8113
llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
8114
Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
8115
if (Usgn)
8116
Ops[0] = Builder.CreateZExt(Ops[0], VTy);
8117
else
8118
Ops[0] = Builder.CreateSExt(Ops[0], VTy);
8119
Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
8120
return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
8121
}
8122
case NEON::BI__builtin_neon_vshrn_n_v: {
8123
llvm::FixedVectorType *SrcTy =
8124
llvm::FixedVectorType::getExtendedElementVectorType(VTy);
8125
Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
8126
Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
8127
if (Usgn)
8128
Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
8129
else
8130
Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
8131
return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
8132
}
8133
case NEON::BI__builtin_neon_vshr_n_v:
8134
case NEON::BI__builtin_neon_vshrq_n_v:
8135
return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
8136
case NEON::BI__builtin_neon_vst1_v:
8137
case NEON::BI__builtin_neon_vst1q_v:
8138
case NEON::BI__builtin_neon_vst2_v:
8139
case NEON::BI__builtin_neon_vst2q_v:
8140
case NEON::BI__builtin_neon_vst3_v:
8141
case NEON::BI__builtin_neon_vst3q_v:
8142
case NEON::BI__builtin_neon_vst4_v:
8143
case NEON::BI__builtin_neon_vst4q_v:
8144
case NEON::BI__builtin_neon_vst2_lane_v:
8145
case NEON::BI__builtin_neon_vst2q_lane_v:
8146
case NEON::BI__builtin_neon_vst3_lane_v:
8147
case NEON::BI__builtin_neon_vst3q_lane_v:
8148
case NEON::BI__builtin_neon_vst4_lane_v:
8149
case NEON::BI__builtin_neon_vst4q_lane_v: {
8150
llvm::Type *Tys[] = {Int8PtrTy, Ty};
8151
Ops.push_back(getAlignmentValue32(PtrOp0));
8152
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
8153
}
8154
case NEON::BI__builtin_neon_vsm3partw1q_u32:
8155
case NEON::BI__builtin_neon_vsm3partw2q_u32:
8156
case NEON::BI__builtin_neon_vsm3ss1q_u32:
8157
case NEON::BI__builtin_neon_vsm4ekeyq_u32:
8158
case NEON::BI__builtin_neon_vsm4eq_u32: {
8159
Function *F = CGM.getIntrinsic(Int);
8160
return EmitNeonCall(F, Ops, "");
8161
}
8162
case NEON::BI__builtin_neon_vsm3tt1aq_u32:
8163
case NEON::BI__builtin_neon_vsm3tt1bq_u32:
8164
case NEON::BI__builtin_neon_vsm3tt2aq_u32:
8165
case NEON::BI__builtin_neon_vsm3tt2bq_u32: {
8166
Function *F = CGM.getIntrinsic(Int);
8167
Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
8168
return EmitNeonCall(F, Ops, "");
8169
}
8170
case NEON::BI__builtin_neon_vst1_x2_v:
8171
case NEON::BI__builtin_neon_vst1q_x2_v:
8172
case NEON::BI__builtin_neon_vst1_x3_v:
8173
case NEON::BI__builtin_neon_vst1q_x3_v:
8174
case NEON::BI__builtin_neon_vst1_x4_v:
8175
case NEON::BI__builtin_neon_vst1q_x4_v: {
8176
// TODO: Currently in AArch32 mode the pointer operand comes first, whereas
8177
// in AArch64 it comes last. We may want to stick to one or another.
8178
if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be ||
8179
Arch == llvm::Triple::aarch64_32) {
8180
llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
8181
std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
8182
return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
8183
}
8184
llvm::Type *Tys[2] = {UnqualPtrTy, VTy};
8185
return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
8186
}
8187
case NEON::BI__builtin_neon_vsubhn_v: {
8188
llvm::FixedVectorType *SrcTy =
8189
llvm::FixedVectorType::getExtendedElementVectorType(VTy);
8190
8191
// %sum = add <4 x i32> %lhs, %rhs
8192
Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
8193
Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
8194
Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
8195
8196
// %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
8197
Constant *ShiftAmt =
8198
ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
8199
Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
8200
8201
// %res = trunc <4 x i32> %high to <4 x i16>
8202
return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
8203
}
8204
case NEON::BI__builtin_neon_vtrn_v:
8205
case NEON::BI__builtin_neon_vtrnq_v: {
8206
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8207
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
8208
Value *SV = nullptr;
8209
8210
for (unsigned vi = 0; vi != 2; ++vi) {
8211
SmallVector<int, 16> Indices;
8212
for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
8213
Indices.push_back(i+vi);
8214
Indices.push_back(i+e+vi);
8215
}
8216
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
8217
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
8218
SV = Builder.CreateDefaultAlignedStore(SV, Addr);
8219
}
8220
return SV;
8221
}
8222
case NEON::BI__builtin_neon_vtst_v:
8223
case NEON::BI__builtin_neon_vtstq_v: {
8224
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8225
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8226
Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
8227
Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
8228
ConstantAggregateZero::get(Ty));
8229
return Builder.CreateSExt(Ops[0], Ty, "vtst");
8230
}
8231
case NEON::BI__builtin_neon_vuzp_v:
8232
case NEON::BI__builtin_neon_vuzpq_v: {
8233
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8234
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
8235
Value *SV = nullptr;
8236
8237
for (unsigned vi = 0; vi != 2; ++vi) {
8238
SmallVector<int, 16> Indices;
8239
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
8240
Indices.push_back(2*i+vi);
8241
8242
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
8243
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
8244
SV = Builder.CreateDefaultAlignedStore(SV, Addr);
8245
}
8246
return SV;
8247
}
8248
case NEON::BI__builtin_neon_vxarq_u64: {
8249
Function *F = CGM.getIntrinsic(Int);
8250
Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
8251
return EmitNeonCall(F, Ops, "");
8252
}
8253
case NEON::BI__builtin_neon_vzip_v:
8254
case NEON::BI__builtin_neon_vzipq_v: {
8255
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8256
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
8257
Value *SV = nullptr;
8258
8259
for (unsigned vi = 0; vi != 2; ++vi) {
8260
SmallVector<int, 16> Indices;
8261
for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
8262
Indices.push_back((i + vi*e) >> 1);
8263
Indices.push_back(((i + vi*e) >> 1)+e);
8264
}
8265
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
8266
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
8267
SV = Builder.CreateDefaultAlignedStore(SV, Addr);
8268
}
8269
return SV;
8270
}
8271
case NEON::BI__builtin_neon_vdot_s32:
8272
case NEON::BI__builtin_neon_vdot_u32:
8273
case NEON::BI__builtin_neon_vdotq_s32:
8274
case NEON::BI__builtin_neon_vdotq_u32: {
8275
auto *InputTy =
8276
llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
8277
llvm::Type *Tys[2] = { Ty, InputTy };
8278
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
8279
}
8280
case NEON::BI__builtin_neon_vfmlal_low_f16:
8281
case NEON::BI__builtin_neon_vfmlalq_low_f16: {
8282
auto *InputTy =
8283
llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
8284
llvm::Type *Tys[2] = { Ty, InputTy };
8285
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
8286
}
8287
case NEON::BI__builtin_neon_vfmlsl_low_f16:
8288
case NEON::BI__builtin_neon_vfmlslq_low_f16: {
8289
auto *InputTy =
8290
llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
8291
llvm::Type *Tys[2] = { Ty, InputTy };
8292
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
8293
}
8294
case NEON::BI__builtin_neon_vfmlal_high_f16:
8295
case NEON::BI__builtin_neon_vfmlalq_high_f16: {
8296
auto *InputTy =
8297
llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
8298
llvm::Type *Tys[2] = { Ty, InputTy };
8299
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
8300
}
8301
case NEON::BI__builtin_neon_vfmlsl_high_f16:
8302
case NEON::BI__builtin_neon_vfmlslq_high_f16: {
8303
auto *InputTy =
8304
llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
8305
llvm::Type *Tys[2] = { Ty, InputTy };
8306
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
8307
}
8308
case NEON::BI__builtin_neon_vmmlaq_s32:
8309
case NEON::BI__builtin_neon_vmmlaq_u32: {
8310
auto *InputTy =
8311
llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
8312
llvm::Type *Tys[2] = { Ty, InputTy };
8313
return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vmmla");
8314
}
8315
case NEON::BI__builtin_neon_vusmmlaq_s32: {
8316
auto *InputTy =
8317
llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
8318
llvm::Type *Tys[2] = { Ty, InputTy };
8319
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusmmla");
8320
}
8321
case NEON::BI__builtin_neon_vusdot_s32:
8322
case NEON::BI__builtin_neon_vusdotq_s32: {
8323
auto *InputTy =
8324
llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
8325
llvm::Type *Tys[2] = { Ty, InputTy };
8326
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusdot");
8327
}
8328
case NEON::BI__builtin_neon_vbfdot_f32:
8329
case NEON::BI__builtin_neon_vbfdotq_f32: {
8330
llvm::Type *InputTy =
8331
llvm::FixedVectorType::get(BFloatTy, Ty->getPrimitiveSizeInBits() / 16);
8332
llvm::Type *Tys[2] = { Ty, InputTy };
8333
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfdot");
8334
}
8335
case NEON::BI__builtin_neon___a32_vcvt_bf16_f32: {
8336
llvm::Type *Tys[1] = { Ty };
8337
Function *F = CGM.getIntrinsic(Int, Tys);
8338
return EmitNeonCall(F, Ops, "vcvtfp2bf");
8339
}
8340
8341
}
8342
8343
assert(Int && "Expected valid intrinsic number");
8344
8345
// Determine the type(s) of this overloaded AArch64 intrinsic.
8346
Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
8347
8348
Value *Result = EmitNeonCall(F, Ops, NameHint);
8349
llvm::Type *ResultType = ConvertType(E->getType());
8350
// AArch64 intrinsic one-element vector type cast to
8351
// scalar type expected by the builtin
8352
return Builder.CreateBitCast(Result, ResultType, NameHint);
8353
}
8354
8355
Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
8356
Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
8357
const CmpInst::Predicate Ip, const Twine &Name) {
8358
llvm::Type *OTy = Op->getType();
8359
8360
// FIXME: this is utterly horrific. We should not be looking at previous
8361
// codegen context to find out what needs doing. Unfortunately TableGen
8362
// currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
8363
// (etc).
8364
if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
8365
OTy = BI->getOperand(0)->getType();
8366
8367
Op = Builder.CreateBitCast(Op, OTy);
8368
if (OTy->getScalarType()->isFloatingPointTy()) {
8369
if (Fp == CmpInst::FCMP_OEQ)
8370
Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
8371
else
8372
Op = Builder.CreateFCmpS(Fp, Op, Constant::getNullValue(OTy));
8373
} else {
8374
Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
8375
}
8376
return Builder.CreateSExt(Op, Ty, Name);
8377
}
8378
8379
static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
8380
Value *ExtOp, Value *IndexOp,
8381
llvm::Type *ResTy, unsigned IntID,
8382
const char *Name) {
8383
SmallVector<Value *, 2> TblOps;
8384
if (ExtOp)
8385
TblOps.push_back(ExtOp);
8386
8387
// Build a vector containing sequential number like (0, 1, 2, ..., 15)
8388
SmallVector<int, 16> Indices;
8389
auto *TblTy = cast<llvm::FixedVectorType>(Ops[0]->getType());
8390
for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
8391
Indices.push_back(2*i);
8392
Indices.push_back(2*i+1);
8393
}
8394
8395
int PairPos = 0, End = Ops.size() - 1;
8396
while (PairPos < End) {
8397
TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
8398
Ops[PairPos+1], Indices,
8399
Name));
8400
PairPos += 2;
8401
}
8402
8403
// If there's an odd number of 64-bit lookup table, fill the high 64-bit
8404
// of the 128-bit lookup table with zero.
8405
if (PairPos == End) {
8406
Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
8407
TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
8408
ZeroTbl, Indices, Name));
8409
}
8410
8411
Function *TblF;
8412
TblOps.push_back(IndexOp);
8413
TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
8414
8415
return CGF.EmitNeonCall(TblF, TblOps, Name);
8416
}
8417
8418
Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
8419
unsigned Value;
8420
switch (BuiltinID) {
8421
default:
8422
return nullptr;
8423
case clang::ARM::BI__builtin_arm_nop:
8424
Value = 0;
8425
break;
8426
case clang::ARM::BI__builtin_arm_yield:
8427
case clang::ARM::BI__yield:
8428
Value = 1;
8429
break;
8430
case clang::ARM::BI__builtin_arm_wfe:
8431
case clang::ARM::BI__wfe:
8432
Value = 2;
8433
break;
8434
case clang::ARM::BI__builtin_arm_wfi:
8435
case clang::ARM::BI__wfi:
8436
Value = 3;
8437
break;
8438
case clang::ARM::BI__builtin_arm_sev:
8439
case clang::ARM::BI__sev:
8440
Value = 4;
8441
break;
8442
case clang::ARM::BI__builtin_arm_sevl:
8443
case clang::ARM::BI__sevl:
8444
Value = 5;
8445
break;
8446
}
8447
8448
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
8449
llvm::ConstantInt::get(Int32Ty, Value));
8450
}
8451
8452
enum SpecialRegisterAccessKind {
8453
NormalRead,
8454
VolatileRead,
8455
Write,
8456
};
8457
8458
// Generates the IR for __builtin_read_exec_*.
8459
// Lowers the builtin to amdgcn_ballot intrinsic.
8460
static Value *EmitAMDGCNBallotForExec(CodeGenFunction &CGF, const CallExpr *E,
8461
llvm::Type *RegisterType,
8462
llvm::Type *ValueType, bool isExecHi) {
8463
CodeGen::CGBuilderTy &Builder = CGF.Builder;
8464
CodeGen::CodeGenModule &CGM = CGF.CGM;
8465
8466
Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_ballot, {RegisterType});
8467
llvm::Value *Call = Builder.CreateCall(F, {Builder.getInt1(true)});
8468
8469
if (isExecHi) {
8470
Value *Rt2 = Builder.CreateLShr(Call, 32);
8471
Rt2 = Builder.CreateTrunc(Rt2, CGF.Int32Ty);
8472
return Rt2;
8473
}
8474
8475
return Call;
8476
}
8477
8478
// Generates the IR for the read/write special register builtin,
8479
// ValueType is the type of the value that is to be written or read,
8480
// RegisterType is the type of the register being written to or read from.
8481
static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
8482
const CallExpr *E,
8483
llvm::Type *RegisterType,
8484
llvm::Type *ValueType,
8485
SpecialRegisterAccessKind AccessKind,
8486
StringRef SysReg = "") {
8487
// write and register intrinsics only support 32, 64 and 128 bit operations.
8488
assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64) ||
8489
RegisterType->isIntegerTy(128)) &&
8490
"Unsupported size for register.");
8491
8492
CodeGen::CGBuilderTy &Builder = CGF.Builder;
8493
CodeGen::CodeGenModule &CGM = CGF.CGM;
8494
LLVMContext &Context = CGM.getLLVMContext();
8495
8496
if (SysReg.empty()) {
8497
const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
8498
SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
8499
}
8500
8501
llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
8502
llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
8503
llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
8504
8505
llvm::Type *Types[] = { RegisterType };
8506
8507
bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
8508
assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))
8509
&& "Can't fit 64-bit value in 32-bit register");
8510
8511
if (AccessKind != Write) {
8512
assert(AccessKind == NormalRead || AccessKind == VolatileRead);
8513
llvm::Function *F = CGM.getIntrinsic(
8514
AccessKind == VolatileRead ? llvm::Intrinsic::read_volatile_register
8515
: llvm::Intrinsic::read_register,
8516
Types);
8517
llvm::Value *Call = Builder.CreateCall(F, Metadata);
8518
8519
if (MixedTypes)
8520
// Read into 64 bit register and then truncate result to 32 bit.
8521
return Builder.CreateTrunc(Call, ValueType);
8522
8523
if (ValueType->isPointerTy())
8524
// Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
8525
return Builder.CreateIntToPtr(Call, ValueType);
8526
8527
return Call;
8528
}
8529
8530
llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
8531
llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
8532
if (MixedTypes) {
8533
// Extend 32 bit write value to 64 bit to pass to write.
8534
ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
8535
return Builder.CreateCall(F, { Metadata, ArgValue });
8536
}
8537
8538
if (ValueType->isPointerTy()) {
8539
// Have VoidPtrTy ArgValue but want to return an i32/i64.
8540
ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
8541
return Builder.CreateCall(F, { Metadata, ArgValue });
8542
}
8543
8544
return Builder.CreateCall(F, { Metadata, ArgValue });
8545
}
8546
8547
/// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
8548
/// argument that specifies the vector type.
8549
static bool HasExtraNeonArgument(unsigned BuiltinID) {
8550
switch (BuiltinID) {
8551
default: break;
8552
case NEON::BI__builtin_neon_vget_lane_i8:
8553
case NEON::BI__builtin_neon_vget_lane_i16:
8554
case NEON::BI__builtin_neon_vget_lane_bf16:
8555
case NEON::BI__builtin_neon_vget_lane_i32:
8556
case NEON::BI__builtin_neon_vget_lane_i64:
8557
case NEON::BI__builtin_neon_vget_lane_f32:
8558
case NEON::BI__builtin_neon_vgetq_lane_i8:
8559
case NEON::BI__builtin_neon_vgetq_lane_i16:
8560
case NEON::BI__builtin_neon_vgetq_lane_bf16:
8561
case NEON::BI__builtin_neon_vgetq_lane_i32:
8562
case NEON::BI__builtin_neon_vgetq_lane_i64:
8563
case NEON::BI__builtin_neon_vgetq_lane_f32:
8564
case NEON::BI__builtin_neon_vduph_lane_bf16:
8565
case NEON::BI__builtin_neon_vduph_laneq_bf16:
8566
case NEON::BI__builtin_neon_vset_lane_i8:
8567
case NEON::BI__builtin_neon_vset_lane_i16:
8568
case NEON::BI__builtin_neon_vset_lane_bf16:
8569
case NEON::BI__builtin_neon_vset_lane_i32:
8570
case NEON::BI__builtin_neon_vset_lane_i64:
8571
case NEON::BI__builtin_neon_vset_lane_f32:
8572
case NEON::BI__builtin_neon_vsetq_lane_i8:
8573
case NEON::BI__builtin_neon_vsetq_lane_i16:
8574
case NEON::BI__builtin_neon_vsetq_lane_bf16:
8575
case NEON::BI__builtin_neon_vsetq_lane_i32:
8576
case NEON::BI__builtin_neon_vsetq_lane_i64:
8577
case NEON::BI__builtin_neon_vsetq_lane_f32:
8578
case NEON::BI__builtin_neon_vsha1h_u32:
8579
case NEON::BI__builtin_neon_vsha1cq_u32:
8580
case NEON::BI__builtin_neon_vsha1pq_u32:
8581
case NEON::BI__builtin_neon_vsha1mq_u32:
8582
case NEON::BI__builtin_neon_vcvth_bf16_f32:
8583
case clang::ARM::BI_MoveToCoprocessor:
8584
case clang::ARM::BI_MoveToCoprocessor2:
8585
return false;
8586
}
8587
return true;
8588
}
8589
8590
Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
8591
const CallExpr *E,
8592
ReturnValueSlot ReturnValue,
8593
llvm::Triple::ArchType Arch) {
8594
if (auto Hint = GetValueForARMHint(BuiltinID))
8595
return Hint;
8596
8597
if (BuiltinID == clang::ARM::BI__emit) {
8598
bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
8599
llvm::FunctionType *FTy =
8600
llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
8601
8602
Expr::EvalResult Result;
8603
if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
8604
llvm_unreachable("Sema will ensure that the parameter is constant");
8605
8606
llvm::APSInt Value = Result.Val.getInt();
8607
uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
8608
8609
llvm::InlineAsm *Emit =
8610
IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
8611
/*hasSideEffects=*/true)
8612
: InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
8613
/*hasSideEffects=*/true);
8614
8615
return Builder.CreateCall(Emit);
8616
}
8617
8618
if (BuiltinID == clang::ARM::BI__builtin_arm_dbg) {
8619
Value *Option = EmitScalarExpr(E->getArg(0));
8620
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
8621
}
8622
8623
if (BuiltinID == clang::ARM::BI__builtin_arm_prefetch) {
8624
Value *Address = EmitScalarExpr(E->getArg(0));
8625
Value *RW = EmitScalarExpr(E->getArg(1));
8626
Value *IsData = EmitScalarExpr(E->getArg(2));
8627
8628
// Locality is not supported on ARM target
8629
Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
8630
8631
Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
8632
return Builder.CreateCall(F, {Address, RW, Locality, IsData});
8633
}
8634
8635
if (BuiltinID == clang::ARM::BI__builtin_arm_rbit) {
8636
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8637
return Builder.CreateCall(
8638
CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
8639
}
8640
8641
if (BuiltinID == clang::ARM::BI__builtin_arm_clz ||
8642
BuiltinID == clang::ARM::BI__builtin_arm_clz64) {
8643
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8644
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Arg->getType());
8645
Value *Res = Builder.CreateCall(F, {Arg, Builder.getInt1(false)});
8646
if (BuiltinID == clang::ARM::BI__builtin_arm_clz64)
8647
Res = Builder.CreateTrunc(Res, Builder.getInt32Ty());
8648
return Res;
8649
}
8650
8651
8652
if (BuiltinID == clang::ARM::BI__builtin_arm_cls) {
8653
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8654
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls");
8655
}
8656
if (BuiltinID == clang::ARM::BI__builtin_arm_cls64) {
8657
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8658
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg,
8659
"cls");
8660
}
8661
8662
if (BuiltinID == clang::ARM::BI__clear_cache) {
8663
assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
8664
const FunctionDecl *FD = E->getDirectCallee();
8665
Value *Ops[2];
8666
for (unsigned i = 0; i < 2; i++)
8667
Ops[i] = EmitScalarExpr(E->getArg(i));
8668
llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
8669
llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
8670
StringRef Name = FD->getName();
8671
return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
8672
}
8673
8674
if (BuiltinID == clang::ARM::BI__builtin_arm_mcrr ||
8675
BuiltinID == clang::ARM::BI__builtin_arm_mcrr2) {
8676
Function *F;
8677
8678
switch (BuiltinID) {
8679
default: llvm_unreachable("unexpected builtin");
8680
case clang::ARM::BI__builtin_arm_mcrr:
8681
F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
8682
break;
8683
case clang::ARM::BI__builtin_arm_mcrr2:
8684
F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
8685
break;
8686
}
8687
8688
// MCRR{2} instruction has 5 operands but
8689
// the intrinsic has 4 because Rt and Rt2
8690
// are represented as a single unsigned 64
8691
// bit integer in the intrinsic definition
8692
// but internally it's represented as 2 32
8693
// bit integers.
8694
8695
Value *Coproc = EmitScalarExpr(E->getArg(0));
8696
Value *Opc1 = EmitScalarExpr(E->getArg(1));
8697
Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
8698
Value *CRm = EmitScalarExpr(E->getArg(3));
8699
8700
Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
8701
Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
8702
Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
8703
Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
8704
8705
return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
8706
}
8707
8708
if (BuiltinID == clang::ARM::BI__builtin_arm_mrrc ||
8709
BuiltinID == clang::ARM::BI__builtin_arm_mrrc2) {
8710
Function *F;
8711
8712
switch (BuiltinID) {
8713
default: llvm_unreachable("unexpected builtin");
8714
case clang::ARM::BI__builtin_arm_mrrc:
8715
F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
8716
break;
8717
case clang::ARM::BI__builtin_arm_mrrc2:
8718
F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
8719
break;
8720
}
8721
8722
Value *Coproc = EmitScalarExpr(E->getArg(0));
8723
Value *Opc1 = EmitScalarExpr(E->getArg(1));
8724
Value *CRm = EmitScalarExpr(E->getArg(2));
8725
Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
8726
8727
// Returns an unsigned 64 bit integer, represented
8728
// as two 32 bit integers.
8729
8730
Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
8731
Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
8732
Rt = Builder.CreateZExt(Rt, Int64Ty);
8733
Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
8734
8735
Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
8736
RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
8737
RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
8738
8739
return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
8740
}
8741
8742
if (BuiltinID == clang::ARM::BI__builtin_arm_ldrexd ||
8743
((BuiltinID == clang::ARM::BI__builtin_arm_ldrex ||
8744
BuiltinID == clang::ARM::BI__builtin_arm_ldaex) &&
8745
getContext().getTypeSize(E->getType()) == 64) ||
8746
BuiltinID == clang::ARM::BI__ldrexd) {
8747
Function *F;
8748
8749
switch (BuiltinID) {
8750
default: llvm_unreachable("unexpected builtin");
8751
case clang::ARM::BI__builtin_arm_ldaex:
8752
F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
8753
break;
8754
case clang::ARM::BI__builtin_arm_ldrexd:
8755
case clang::ARM::BI__builtin_arm_ldrex:
8756
case clang::ARM::BI__ldrexd:
8757
F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
8758
break;
8759
}
8760
8761
Value *LdPtr = EmitScalarExpr(E->getArg(0));
8762
Value *Val = Builder.CreateCall(F, LdPtr, "ldrexd");
8763
8764
Value *Val0 = Builder.CreateExtractValue(Val, 1);
8765
Value *Val1 = Builder.CreateExtractValue(Val, 0);
8766
Val0 = Builder.CreateZExt(Val0, Int64Ty);
8767
Val1 = Builder.CreateZExt(Val1, Int64Ty);
8768
8769
Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
8770
Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
8771
Val = Builder.CreateOr(Val, Val1);
8772
return Builder.CreateBitCast(Val, ConvertType(E->getType()));
8773
}
8774
8775
if (BuiltinID == clang::ARM::BI__builtin_arm_ldrex ||
8776
BuiltinID == clang::ARM::BI__builtin_arm_ldaex) {
8777
Value *LoadAddr = EmitScalarExpr(E->getArg(0));
8778
8779
QualType Ty = E->getType();
8780
llvm::Type *RealResTy = ConvertType(Ty);
8781
llvm::Type *IntTy =
8782
llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty));
8783
8784
Function *F = CGM.getIntrinsic(
8785
BuiltinID == clang::ARM::BI__builtin_arm_ldaex ? Intrinsic::arm_ldaex
8786
: Intrinsic::arm_ldrex,
8787
UnqualPtrTy);
8788
CallInst *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
8789
Val->addParamAttr(
8790
0, Attribute::get(getLLVMContext(), Attribute::ElementType, IntTy));
8791
8792
if (RealResTy->isPointerTy())
8793
return Builder.CreateIntToPtr(Val, RealResTy);
8794
else {
8795
llvm::Type *IntResTy = llvm::IntegerType::get(
8796
getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
8797
return Builder.CreateBitCast(Builder.CreateTruncOrBitCast(Val, IntResTy),
8798
RealResTy);
8799
}
8800
}
8801
8802
if (BuiltinID == clang::ARM::BI__builtin_arm_strexd ||
8803
((BuiltinID == clang::ARM::BI__builtin_arm_stlex ||
8804
BuiltinID == clang::ARM::BI__builtin_arm_strex) &&
8805
getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
8806
Function *F = CGM.getIntrinsic(
8807
BuiltinID == clang::ARM::BI__builtin_arm_stlex ? Intrinsic::arm_stlexd
8808
: Intrinsic::arm_strexd);
8809
llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
8810
8811
Address Tmp = CreateMemTemp(E->getArg(0)->getType());
8812
Value *Val = EmitScalarExpr(E->getArg(0));
8813
Builder.CreateStore(Val, Tmp);
8814
8815
Address LdPtr = Tmp.withElementType(STy);
8816
Val = Builder.CreateLoad(LdPtr);
8817
8818
Value *Arg0 = Builder.CreateExtractValue(Val, 0);
8819
Value *Arg1 = Builder.CreateExtractValue(Val, 1);
8820
Value *StPtr = EmitScalarExpr(E->getArg(1));
8821
return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
8822
}
8823
8824
if (BuiltinID == clang::ARM::BI__builtin_arm_strex ||
8825
BuiltinID == clang::ARM::BI__builtin_arm_stlex) {
8826
Value *StoreVal = EmitScalarExpr(E->getArg(0));
8827
Value *StoreAddr = EmitScalarExpr(E->getArg(1));
8828
8829
QualType Ty = E->getArg(0)->getType();
8830
llvm::Type *StoreTy =
8831
llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty));
8832
8833
if (StoreVal->getType()->isPointerTy())
8834
StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
8835
else {
8836
llvm::Type *IntTy = llvm::IntegerType::get(
8837
getLLVMContext(),
8838
CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
8839
StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
8840
StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
8841
}
8842
8843
Function *F = CGM.getIntrinsic(
8844
BuiltinID == clang::ARM::BI__builtin_arm_stlex ? Intrinsic::arm_stlex
8845
: Intrinsic::arm_strex,
8846
StoreAddr->getType());
8847
8848
CallInst *CI = Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
8849
CI->addParamAttr(
8850
1, Attribute::get(getLLVMContext(), Attribute::ElementType, StoreTy));
8851
return CI;
8852
}
8853
8854
if (BuiltinID == clang::ARM::BI__builtin_arm_clrex) {
8855
Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
8856
return Builder.CreateCall(F);
8857
}
8858
8859
// CRC32
8860
Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
8861
switch (BuiltinID) {
8862
case clang::ARM::BI__builtin_arm_crc32b:
8863
CRCIntrinsicID = Intrinsic::arm_crc32b; break;
8864
case clang::ARM::BI__builtin_arm_crc32cb:
8865
CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
8866
case clang::ARM::BI__builtin_arm_crc32h:
8867
CRCIntrinsicID = Intrinsic::arm_crc32h; break;
8868
case clang::ARM::BI__builtin_arm_crc32ch:
8869
CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
8870
case clang::ARM::BI__builtin_arm_crc32w:
8871
case clang::ARM::BI__builtin_arm_crc32d:
8872
CRCIntrinsicID = Intrinsic::arm_crc32w; break;
8873
case clang::ARM::BI__builtin_arm_crc32cw:
8874
case clang::ARM::BI__builtin_arm_crc32cd:
8875
CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
8876
}
8877
8878
if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
8879
Value *Arg0 = EmitScalarExpr(E->getArg(0));
8880
Value *Arg1 = EmitScalarExpr(E->getArg(1));
8881
8882
// crc32{c,}d intrinsics are implemented as two calls to crc32{c,}w
8883
// intrinsics, hence we need different codegen for these cases.
8884
if (BuiltinID == clang::ARM::BI__builtin_arm_crc32d ||
8885
BuiltinID == clang::ARM::BI__builtin_arm_crc32cd) {
8886
Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
8887
Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
8888
Value *Arg1b = Builder.CreateLShr(Arg1, C1);
8889
Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
8890
8891
Function *F = CGM.getIntrinsic(CRCIntrinsicID);
8892
Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
8893
return Builder.CreateCall(F, {Res, Arg1b});
8894
} else {
8895
Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
8896
8897
Function *F = CGM.getIntrinsic(CRCIntrinsicID);
8898
return Builder.CreateCall(F, {Arg0, Arg1});
8899
}
8900
}
8901
8902
if (BuiltinID == clang::ARM::BI__builtin_arm_rsr ||
8903
BuiltinID == clang::ARM::BI__builtin_arm_rsr64 ||
8904
BuiltinID == clang::ARM::BI__builtin_arm_rsrp ||
8905
BuiltinID == clang::ARM::BI__builtin_arm_wsr ||
8906
BuiltinID == clang::ARM::BI__builtin_arm_wsr64 ||
8907
BuiltinID == clang::ARM::BI__builtin_arm_wsrp) {
8908
8909
SpecialRegisterAccessKind AccessKind = Write;
8910
if (BuiltinID == clang::ARM::BI__builtin_arm_rsr ||
8911
BuiltinID == clang::ARM::BI__builtin_arm_rsr64 ||
8912
BuiltinID == clang::ARM::BI__builtin_arm_rsrp)
8913
AccessKind = VolatileRead;
8914
8915
bool IsPointerBuiltin = BuiltinID == clang::ARM::BI__builtin_arm_rsrp ||
8916
BuiltinID == clang::ARM::BI__builtin_arm_wsrp;
8917
8918
bool Is64Bit = BuiltinID == clang::ARM::BI__builtin_arm_rsr64 ||
8919
BuiltinID == clang::ARM::BI__builtin_arm_wsr64;
8920
8921
llvm::Type *ValueType;
8922
llvm::Type *RegisterType;
8923
if (IsPointerBuiltin) {
8924
ValueType = VoidPtrTy;
8925
RegisterType = Int32Ty;
8926
} else if (Is64Bit) {
8927
ValueType = RegisterType = Int64Ty;
8928
} else {
8929
ValueType = RegisterType = Int32Ty;
8930
}
8931
8932
return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
8933
AccessKind);
8934
}
8935
8936
if (BuiltinID == ARM::BI__builtin_sponentry) {
8937
llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
8938
return Builder.CreateCall(F);
8939
}
8940
8941
// Handle MSVC intrinsics before argument evaluation to prevent double
8942
// evaluation.
8943
if (std::optional<MSVCIntrin> MsvcIntId = translateArmToMsvcIntrin(BuiltinID))
8944
return EmitMSVCBuiltinExpr(*MsvcIntId, E);
8945
8946
// Deal with MVE builtins
8947
if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
8948
return Result;
8949
// Handle CDE builtins
8950
if (Value *Result = EmitARMCDEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
8951
return Result;
8952
8953
// Some intrinsics are equivalent - if they are use the base intrinsic ID.
8954
auto It = llvm::find_if(NEONEquivalentIntrinsicMap, [BuiltinID](auto &P) {
8955
return P.first == BuiltinID;
8956
});
8957
if (It != end(NEONEquivalentIntrinsicMap))
8958
BuiltinID = It->second;
8959
8960
// Find out if any arguments are required to be integer constant
8961
// expressions.
8962
unsigned ICEArguments = 0;
8963
ASTContext::GetBuiltinTypeError Error;
8964
getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
8965
assert(Error == ASTContext::GE_None && "Should not codegen an error");
8966
8967
auto getAlignmentValue32 = [&](Address addr) -> Value* {
8968
return Builder.getInt32(addr.getAlignment().getQuantity());
8969
};
8970
8971
Address PtrOp0 = Address::invalid();
8972
Address PtrOp1 = Address::invalid();
8973
SmallVector<Value*, 4> Ops;
8974
bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
8975
unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
8976
for (unsigned i = 0, e = NumArgs; i != e; i++) {
8977
if (i == 0) {
8978
switch (BuiltinID) {
8979
case NEON::BI__builtin_neon_vld1_v:
8980
case NEON::BI__builtin_neon_vld1q_v:
8981
case NEON::BI__builtin_neon_vld1q_lane_v:
8982
case NEON::BI__builtin_neon_vld1_lane_v:
8983
case NEON::BI__builtin_neon_vld1_dup_v:
8984
case NEON::BI__builtin_neon_vld1q_dup_v:
8985
case NEON::BI__builtin_neon_vst1_v:
8986
case NEON::BI__builtin_neon_vst1q_v:
8987
case NEON::BI__builtin_neon_vst1q_lane_v:
8988
case NEON::BI__builtin_neon_vst1_lane_v:
8989
case NEON::BI__builtin_neon_vst2_v:
8990
case NEON::BI__builtin_neon_vst2q_v:
8991
case NEON::BI__builtin_neon_vst2_lane_v:
8992
case NEON::BI__builtin_neon_vst2q_lane_v:
8993
case NEON::BI__builtin_neon_vst3_v:
8994
case NEON::BI__builtin_neon_vst3q_v:
8995
case NEON::BI__builtin_neon_vst3_lane_v:
8996
case NEON::BI__builtin_neon_vst3q_lane_v:
8997
case NEON::BI__builtin_neon_vst4_v:
8998
case NEON::BI__builtin_neon_vst4q_v:
8999
case NEON::BI__builtin_neon_vst4_lane_v:
9000
case NEON::BI__builtin_neon_vst4q_lane_v:
9001
// Get the alignment for the argument in addition to the value;
9002
// we'll use it later.
9003
PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
9004
Ops.push_back(PtrOp0.emitRawPointer(*this));
9005
continue;
9006
}
9007
}
9008
if (i == 1) {
9009
switch (BuiltinID) {
9010
case NEON::BI__builtin_neon_vld2_v:
9011
case NEON::BI__builtin_neon_vld2q_v:
9012
case NEON::BI__builtin_neon_vld3_v:
9013
case NEON::BI__builtin_neon_vld3q_v:
9014
case NEON::BI__builtin_neon_vld4_v:
9015
case NEON::BI__builtin_neon_vld4q_v:
9016
case NEON::BI__builtin_neon_vld2_lane_v:
9017
case NEON::BI__builtin_neon_vld2q_lane_v:
9018
case NEON::BI__builtin_neon_vld3_lane_v:
9019
case NEON::BI__builtin_neon_vld3q_lane_v:
9020
case NEON::BI__builtin_neon_vld4_lane_v:
9021
case NEON::BI__builtin_neon_vld4q_lane_v:
9022
case NEON::BI__builtin_neon_vld2_dup_v:
9023
case NEON::BI__builtin_neon_vld2q_dup_v:
9024
case NEON::BI__builtin_neon_vld3_dup_v:
9025
case NEON::BI__builtin_neon_vld3q_dup_v:
9026
case NEON::BI__builtin_neon_vld4_dup_v:
9027
case NEON::BI__builtin_neon_vld4q_dup_v:
9028
// Get the alignment for the argument in addition to the value;
9029
// we'll use it later.
9030
PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
9031
Ops.push_back(PtrOp1.emitRawPointer(*this));
9032
continue;
9033
}
9034
}
9035
9036
Ops.push_back(EmitScalarOrConstFoldImmArg(ICEArguments, i, E));
9037
}
9038
9039
switch (BuiltinID) {
9040
default: break;
9041
9042
case NEON::BI__builtin_neon_vget_lane_i8:
9043
case NEON::BI__builtin_neon_vget_lane_i16:
9044
case NEON::BI__builtin_neon_vget_lane_i32:
9045
case NEON::BI__builtin_neon_vget_lane_i64:
9046
case NEON::BI__builtin_neon_vget_lane_bf16:
9047
case NEON::BI__builtin_neon_vget_lane_f32:
9048
case NEON::BI__builtin_neon_vgetq_lane_i8:
9049
case NEON::BI__builtin_neon_vgetq_lane_i16:
9050
case NEON::BI__builtin_neon_vgetq_lane_i32:
9051
case NEON::BI__builtin_neon_vgetq_lane_i64:
9052
case NEON::BI__builtin_neon_vgetq_lane_bf16:
9053
case NEON::BI__builtin_neon_vgetq_lane_f32:
9054
case NEON::BI__builtin_neon_vduph_lane_bf16:
9055
case NEON::BI__builtin_neon_vduph_laneq_bf16:
9056
return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
9057
9058
case NEON::BI__builtin_neon_vrndns_f32: {
9059
Value *Arg = EmitScalarExpr(E->getArg(0));
9060
llvm::Type *Tys[] = {Arg->getType()};
9061
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
9062
return Builder.CreateCall(F, {Arg}, "vrndn"); }
9063
9064
case NEON::BI__builtin_neon_vset_lane_i8:
9065
case NEON::BI__builtin_neon_vset_lane_i16:
9066
case NEON::BI__builtin_neon_vset_lane_i32:
9067
case NEON::BI__builtin_neon_vset_lane_i64:
9068
case NEON::BI__builtin_neon_vset_lane_bf16:
9069
case NEON::BI__builtin_neon_vset_lane_f32:
9070
case NEON::BI__builtin_neon_vsetq_lane_i8:
9071
case NEON::BI__builtin_neon_vsetq_lane_i16:
9072
case NEON::BI__builtin_neon_vsetq_lane_i32:
9073
case NEON::BI__builtin_neon_vsetq_lane_i64:
9074
case NEON::BI__builtin_neon_vsetq_lane_bf16:
9075
case NEON::BI__builtin_neon_vsetq_lane_f32:
9076
return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
9077
9078
case NEON::BI__builtin_neon_vsha1h_u32:
9079
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
9080
"vsha1h");
9081
case NEON::BI__builtin_neon_vsha1cq_u32:
9082
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
9083
"vsha1h");
9084
case NEON::BI__builtin_neon_vsha1pq_u32:
9085
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
9086
"vsha1h");
9087
case NEON::BI__builtin_neon_vsha1mq_u32:
9088
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
9089
"vsha1h");
9090
9091
case NEON::BI__builtin_neon_vcvth_bf16_f32: {
9092
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vcvtbfp2bf), Ops,
9093
"vcvtbfp2bf");
9094
}
9095
9096
// The ARM _MoveToCoprocessor builtins put the input register value as
9097
// the first argument, but the LLVM intrinsic expects it as the third one.
9098
case clang::ARM::BI_MoveToCoprocessor:
9099
case clang::ARM::BI_MoveToCoprocessor2: {
9100
Function *F = CGM.getIntrinsic(BuiltinID == clang::ARM::BI_MoveToCoprocessor
9101
? Intrinsic::arm_mcr
9102
: Intrinsic::arm_mcr2);
9103
return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
9104
Ops[3], Ops[4], Ops[5]});
9105
}
9106
}
9107
9108
// Get the last argument, which specifies the vector type.
9109
assert(HasExtraArg);
9110
const Expr *Arg = E->getArg(E->getNumArgs()-1);
9111
std::optional<llvm::APSInt> Result =
9112
Arg->getIntegerConstantExpr(getContext());
9113
if (!Result)
9114
return nullptr;
9115
9116
if (BuiltinID == clang::ARM::BI__builtin_arm_vcvtr_f ||
9117
BuiltinID == clang::ARM::BI__builtin_arm_vcvtr_d) {
9118
// Determine the overloaded type of this builtin.
9119
llvm::Type *Ty;
9120
if (BuiltinID == clang::ARM::BI__builtin_arm_vcvtr_f)
9121
Ty = FloatTy;
9122
else
9123
Ty = DoubleTy;
9124
9125
// Determine whether this is an unsigned conversion or not.
9126
bool usgn = Result->getZExtValue() == 1;
9127
unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
9128
9129
// Call the appropriate intrinsic.
9130
Function *F = CGM.getIntrinsic(Int, Ty);
9131
return Builder.CreateCall(F, Ops, "vcvtr");
9132
}
9133
9134
// Determine the type of this overloaded NEON intrinsic.
9135
NeonTypeFlags Type = Result->getZExtValue();
9136
bool usgn = Type.isUnsigned();
9137
bool rightShift = false;
9138
9139
llvm::FixedVectorType *VTy =
9140
GetNeonType(this, Type, getTarget().hasLegalHalfType(), false,
9141
getTarget().hasBFloat16Type());
9142
llvm::Type *Ty = VTy;
9143
if (!Ty)
9144
return nullptr;
9145
9146
// Many NEON builtins have identical semantics and uses in ARM and
9147
// AArch64. Emit these in a single function.
9148
auto IntrinsicMap = ArrayRef(ARMSIMDIntrinsicMap);
9149
const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
9150
IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
9151
if (Builtin)
9152
return EmitCommonNeonBuiltinExpr(
9153
Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
9154
Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
9155
9156
unsigned Int;
9157
switch (BuiltinID) {
9158
default: return nullptr;
9159
case NEON::BI__builtin_neon_vld1q_lane_v:
9160
// Handle 64-bit integer elements as a special case. Use shuffles of
9161
// one-element vectors to avoid poor code for i64 in the backend.
9162
if (VTy->getElementType()->isIntegerTy(64)) {
9163
// Extract the other lane.
9164
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9165
int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
9166
Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
9167
Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
9168
// Load the value as a one-element vector.
9169
Ty = llvm::FixedVectorType::get(VTy->getElementType(), 1);
9170
llvm::Type *Tys[] = {Ty, Int8PtrTy};
9171
Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
9172
Value *Align = getAlignmentValue32(PtrOp0);
9173
Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
9174
// Combine them.
9175
int Indices[] = {1 - Lane, Lane};
9176
return Builder.CreateShuffleVector(Ops[1], Ld, Indices, "vld1q_lane");
9177
}
9178
[[fallthrough]];
9179
case NEON::BI__builtin_neon_vld1_lane_v: {
9180
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9181
PtrOp0 = PtrOp0.withElementType(VTy->getElementType());
9182
Value *Ld = Builder.CreateLoad(PtrOp0);
9183
return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
9184
}
9185
case NEON::BI__builtin_neon_vqrshrn_n_v:
9186
Int =
9187
usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
9188
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
9189
1, true);
9190
case NEON::BI__builtin_neon_vqrshrun_n_v:
9191
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
9192
Ops, "vqrshrun_n", 1, true);
9193
case NEON::BI__builtin_neon_vqshrn_n_v:
9194
Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
9195
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
9196
1, true);
9197
case NEON::BI__builtin_neon_vqshrun_n_v:
9198
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
9199
Ops, "vqshrun_n", 1, true);
9200
case NEON::BI__builtin_neon_vrecpe_v:
9201
case NEON::BI__builtin_neon_vrecpeq_v:
9202
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
9203
Ops, "vrecpe");
9204
case NEON::BI__builtin_neon_vrshrn_n_v:
9205
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
9206
Ops, "vrshrn_n", 1, true);
9207
case NEON::BI__builtin_neon_vrsra_n_v:
9208
case NEON::BI__builtin_neon_vrsraq_n_v:
9209
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9210
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9211
Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
9212
Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
9213
Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
9214
return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
9215
case NEON::BI__builtin_neon_vsri_n_v:
9216
case NEON::BI__builtin_neon_vsriq_n_v:
9217
rightShift = true;
9218
[[fallthrough]];
9219
case NEON::BI__builtin_neon_vsli_n_v:
9220
case NEON::BI__builtin_neon_vsliq_n_v:
9221
Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
9222
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
9223
Ops, "vsli_n");
9224
case NEON::BI__builtin_neon_vsra_n_v:
9225
case NEON::BI__builtin_neon_vsraq_n_v:
9226
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9227
Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
9228
return Builder.CreateAdd(Ops[0], Ops[1]);
9229
case NEON::BI__builtin_neon_vst1q_lane_v:
9230
// Handle 64-bit integer elements as a special case. Use a shuffle to get
9231
// a one-element vector and avoid poor code for i64 in the backend.
9232
if (VTy->getElementType()->isIntegerTy(64)) {
9233
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9234
Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
9235
Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
9236
Ops[2] = getAlignmentValue32(PtrOp0);
9237
llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
9238
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
9239
Tys), Ops);
9240
}
9241
[[fallthrough]];
9242
case NEON::BI__builtin_neon_vst1_lane_v: {
9243
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9244
Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
9245
return Builder.CreateStore(Ops[1],
9246
PtrOp0.withElementType(Ops[1]->getType()));
9247
}
9248
case NEON::BI__builtin_neon_vtbl1_v:
9249
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
9250
Ops, "vtbl1");
9251
case NEON::BI__builtin_neon_vtbl2_v:
9252
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
9253
Ops, "vtbl2");
9254
case NEON::BI__builtin_neon_vtbl3_v:
9255
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
9256
Ops, "vtbl3");
9257
case NEON::BI__builtin_neon_vtbl4_v:
9258
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
9259
Ops, "vtbl4");
9260
case NEON::BI__builtin_neon_vtbx1_v:
9261
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
9262
Ops, "vtbx1");
9263
case NEON::BI__builtin_neon_vtbx2_v:
9264
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
9265
Ops, "vtbx2");
9266
case NEON::BI__builtin_neon_vtbx3_v:
9267
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
9268
Ops, "vtbx3");
9269
case NEON::BI__builtin_neon_vtbx4_v:
9270
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
9271
Ops, "vtbx4");
9272
}
9273
}
9274
9275
template<typename Integer>
9276
static Integer GetIntegerConstantValue(const Expr *E, ASTContext &Context) {
9277
return E->getIntegerConstantExpr(Context)->getExtValue();
9278
}
9279
9280
static llvm::Value *SignOrZeroExtend(CGBuilderTy &Builder, llvm::Value *V,
9281
llvm::Type *T, bool Unsigned) {
9282
// Helper function called by Tablegen-constructed ARM MVE builtin codegen,
9283
// which finds it convenient to specify signed/unsigned as a boolean flag.
9284
return Unsigned ? Builder.CreateZExt(V, T) : Builder.CreateSExt(V, T);
9285
}
9286
9287
static llvm::Value *MVEImmediateShr(CGBuilderTy &Builder, llvm::Value *V,
9288
uint32_t Shift, bool Unsigned) {
9289
// MVE helper function for integer shift right. This must handle signed vs
9290
// unsigned, and also deal specially with the case where the shift count is
9291
// equal to the lane size. In LLVM IR, an LShr with that parameter would be
9292
// undefined behavior, but in MVE it's legal, so we must convert it to code
9293
// that is not undefined in IR.
9294
unsigned LaneBits = cast<llvm::VectorType>(V->getType())
9295
->getElementType()
9296
->getPrimitiveSizeInBits();
9297
if (Shift == LaneBits) {
9298
// An unsigned shift of the full lane size always generates zero, so we can
9299
// simply emit a zero vector. A signed shift of the full lane size does the
9300
// same thing as shifting by one bit fewer.
9301
if (Unsigned)
9302
return llvm::Constant::getNullValue(V->getType());
9303
else
9304
--Shift;
9305
}
9306
return Unsigned ? Builder.CreateLShr(V, Shift) : Builder.CreateAShr(V, Shift);
9307
}
9308
9309
static llvm::Value *ARMMVEVectorSplat(CGBuilderTy &Builder, llvm::Value *V) {
9310
// MVE-specific helper function for a vector splat, which infers the element
9311
// count of the output vector by knowing that MVE vectors are all 128 bits
9312
// wide.
9313
unsigned Elements = 128 / V->getType()->getPrimitiveSizeInBits();
9314
return Builder.CreateVectorSplat(Elements, V);
9315
}
9316
9317
static llvm::Value *ARMMVEVectorReinterpret(CGBuilderTy &Builder,
9318
CodeGenFunction *CGF,
9319
llvm::Value *V,
9320
llvm::Type *DestType) {
9321
// Convert one MVE vector type into another by reinterpreting its in-register
9322
// format.
9323
//
9324
// Little-endian, this is identical to a bitcast (which reinterprets the
9325
// memory format). But big-endian, they're not necessarily the same, because
9326
// the register and memory formats map to each other differently depending on
9327
// the lane size.
9328
//
9329
// We generate a bitcast whenever we can (if we're little-endian, or if the
9330
// lane sizes are the same anyway). Otherwise we fall back to an IR intrinsic
9331
// that performs the different kind of reinterpretation.
9332
if (CGF->getTarget().isBigEndian() &&
9333
V->getType()->getScalarSizeInBits() != DestType->getScalarSizeInBits()) {
9334
return Builder.CreateCall(
9335
CGF->CGM.getIntrinsic(Intrinsic::arm_mve_vreinterpretq,
9336
{DestType, V->getType()}),
9337
V);
9338
} else {
9339
return Builder.CreateBitCast(V, DestType);
9340
}
9341
}
9342
9343
static llvm::Value *VectorUnzip(CGBuilderTy &Builder, llvm::Value *V, bool Odd) {
9344
// Make a shufflevector that extracts every other element of a vector (evens
9345
// or odds, as desired).
9346
SmallVector<int, 16> Indices;
9347
unsigned InputElements =
9348
cast<llvm::FixedVectorType>(V->getType())->getNumElements();
9349
for (unsigned i = 0; i < InputElements; i += 2)
9350
Indices.push_back(i + Odd);
9351
return Builder.CreateShuffleVector(V, Indices);
9352
}
9353
9354
static llvm::Value *VectorZip(CGBuilderTy &Builder, llvm::Value *V0,
9355
llvm::Value *V1) {
9356
// Make a shufflevector that interleaves two vectors element by element.
9357
assert(V0->getType() == V1->getType() && "Can't zip different vector types");
9358
SmallVector<int, 16> Indices;
9359
unsigned InputElements =
9360
cast<llvm::FixedVectorType>(V0->getType())->getNumElements();
9361
for (unsigned i = 0; i < InputElements; i++) {
9362
Indices.push_back(i);
9363
Indices.push_back(i + InputElements);
9364
}
9365
return Builder.CreateShuffleVector(V0, V1, Indices);
9366
}
9367
9368
template<unsigned HighBit, unsigned OtherBits>
9369
static llvm::Value *ARMMVEConstantSplat(CGBuilderTy &Builder, llvm::Type *VT) {
9370
// MVE-specific helper function to make a vector splat of a constant such as
9371
// UINT_MAX or INT_MIN, in which all bits below the highest one are equal.
9372
llvm::Type *T = cast<llvm::VectorType>(VT)->getElementType();
9373
unsigned LaneBits = T->getPrimitiveSizeInBits();
9374
uint32_t Value = HighBit << (LaneBits - 1);
9375
if (OtherBits)
9376
Value |= (1UL << (LaneBits - 1)) - 1;
9377
llvm::Value *Lane = llvm::ConstantInt::get(T, Value);
9378
return ARMMVEVectorSplat(Builder, Lane);
9379
}
9380
9381
static llvm::Value *ARMMVEVectorElementReverse(CGBuilderTy &Builder,
9382
llvm::Value *V,
9383
unsigned ReverseWidth) {
9384
// MVE-specific helper function which reverses the elements of a
9385
// vector within every (ReverseWidth)-bit collection of lanes.
9386
SmallVector<int, 16> Indices;
9387
unsigned LaneSize = V->getType()->getScalarSizeInBits();
9388
unsigned Elements = 128 / LaneSize;
9389
unsigned Mask = ReverseWidth / LaneSize - 1;
9390
for (unsigned i = 0; i < Elements; i++)
9391
Indices.push_back(i ^ Mask);
9392
return Builder.CreateShuffleVector(V, Indices);
9393
}
9394
9395
Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID,
9396
const CallExpr *E,
9397
ReturnValueSlot ReturnValue,
9398
llvm::Triple::ArchType Arch) {
9399
enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType;
9400
Intrinsic::ID IRIntr;
9401
unsigned NumVectors;
9402
9403
// Code autogenerated by Tablegen will handle all the simple builtins.
9404
switch (BuiltinID) {
9405
#include "clang/Basic/arm_mve_builtin_cg.inc"
9406
9407
// If we didn't match an MVE builtin id at all, go back to the
9408
// main EmitARMBuiltinExpr.
9409
default:
9410
return nullptr;
9411
}
9412
9413
// Anything that breaks from that switch is an MVE builtin that
9414
// needs handwritten code to generate.
9415
9416
switch (CustomCodeGenType) {
9417
9418
case CustomCodeGen::VLD24: {
9419
llvm::SmallVector<Value *, 4> Ops;
9420
llvm::SmallVector<llvm::Type *, 4> Tys;
9421
9422
auto MvecCType = E->getType();
9423
auto MvecLType = ConvertType(MvecCType);
9424
assert(MvecLType->isStructTy() &&
9425
"Return type for vld[24]q should be a struct");
9426
assert(MvecLType->getStructNumElements() == 1 &&
9427
"Return-type struct for vld[24]q should have one element");
9428
auto MvecLTypeInner = MvecLType->getStructElementType(0);
9429
assert(MvecLTypeInner->isArrayTy() &&
9430
"Return-type struct for vld[24]q should contain an array");
9431
assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
9432
"Array member of return-type struct vld[24]q has wrong length");
9433
auto VecLType = MvecLTypeInner->getArrayElementType();
9434
9435
Tys.push_back(VecLType);
9436
9437
auto Addr = E->getArg(0);
9438
Ops.push_back(EmitScalarExpr(Addr));
9439
Tys.push_back(ConvertType(Addr->getType()));
9440
9441
Function *F = CGM.getIntrinsic(IRIntr, ArrayRef(Tys));
9442
Value *LoadResult = Builder.CreateCall(F, Ops);
9443
Value *MvecOut = PoisonValue::get(MvecLType);
9444
for (unsigned i = 0; i < NumVectors; ++i) {
9445
Value *Vec = Builder.CreateExtractValue(LoadResult, i);
9446
MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i});
9447
}
9448
9449
if (ReturnValue.isNull())
9450
return MvecOut;
9451
else
9452
return Builder.CreateStore(MvecOut, ReturnValue.getAddress());
9453
}
9454
9455
case CustomCodeGen::VST24: {
9456
llvm::SmallVector<Value *, 4> Ops;
9457
llvm::SmallVector<llvm::Type *, 4> Tys;
9458
9459
auto Addr = E->getArg(0);
9460
Ops.push_back(EmitScalarExpr(Addr));
9461
Tys.push_back(ConvertType(Addr->getType()));
9462
9463
auto MvecCType = E->getArg(1)->getType();
9464
auto MvecLType = ConvertType(MvecCType);
9465
assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct");
9466
assert(MvecLType->getStructNumElements() == 1 &&
9467
"Data-type struct for vst2q should have one element");
9468
auto MvecLTypeInner = MvecLType->getStructElementType(0);
9469
assert(MvecLTypeInner->isArrayTy() &&
9470
"Data-type struct for vst2q should contain an array");
9471
assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
9472
"Array member of return-type struct vld[24]q has wrong length");
9473
auto VecLType = MvecLTypeInner->getArrayElementType();
9474
9475
Tys.push_back(VecLType);
9476
9477
AggValueSlot MvecSlot = CreateAggTemp(MvecCType);
9478
EmitAggExpr(E->getArg(1), MvecSlot);
9479
auto Mvec = Builder.CreateLoad(MvecSlot.getAddress());
9480
for (unsigned i = 0; i < NumVectors; i++)
9481
Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i}));
9482
9483
Function *F = CGM.getIntrinsic(IRIntr, ArrayRef(Tys));
9484
Value *ToReturn = nullptr;
9485
for (unsigned i = 0; i < NumVectors; i++) {
9486
Ops.push_back(llvm::ConstantInt::get(Int32Ty, i));
9487
ToReturn = Builder.CreateCall(F, Ops);
9488
Ops.pop_back();
9489
}
9490
return ToReturn;
9491
}
9492
}
9493
llvm_unreachable("unknown custom codegen type.");
9494
}
9495
9496
Value *CodeGenFunction::EmitARMCDEBuiltinExpr(unsigned BuiltinID,
9497
const CallExpr *E,
9498
ReturnValueSlot ReturnValue,
9499
llvm::Triple::ArchType Arch) {
9500
switch (BuiltinID) {
9501
default:
9502
return nullptr;
9503
#include "clang/Basic/arm_cde_builtin_cg.inc"
9504
}
9505
}
9506
9507
static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
9508
const CallExpr *E,
9509
SmallVectorImpl<Value *> &Ops,
9510
llvm::Triple::ArchType Arch) {
9511
unsigned int Int = 0;
9512
const char *s = nullptr;
9513
9514
switch (BuiltinID) {
9515
default:
9516
return nullptr;
9517
case NEON::BI__builtin_neon_vtbl1_v:
9518
case NEON::BI__builtin_neon_vqtbl1_v:
9519
case NEON::BI__builtin_neon_vqtbl1q_v:
9520
case NEON::BI__builtin_neon_vtbl2_v:
9521
case NEON::BI__builtin_neon_vqtbl2_v:
9522
case NEON::BI__builtin_neon_vqtbl2q_v:
9523
case NEON::BI__builtin_neon_vtbl3_v:
9524
case NEON::BI__builtin_neon_vqtbl3_v:
9525
case NEON::BI__builtin_neon_vqtbl3q_v:
9526
case NEON::BI__builtin_neon_vtbl4_v:
9527
case NEON::BI__builtin_neon_vqtbl4_v:
9528
case NEON::BI__builtin_neon_vqtbl4q_v:
9529
break;
9530
case NEON::BI__builtin_neon_vtbx1_v:
9531
case NEON::BI__builtin_neon_vqtbx1_v:
9532
case NEON::BI__builtin_neon_vqtbx1q_v:
9533
case NEON::BI__builtin_neon_vtbx2_v:
9534
case NEON::BI__builtin_neon_vqtbx2_v:
9535
case NEON::BI__builtin_neon_vqtbx2q_v:
9536
case NEON::BI__builtin_neon_vtbx3_v:
9537
case NEON::BI__builtin_neon_vqtbx3_v:
9538
case NEON::BI__builtin_neon_vqtbx3q_v:
9539
case NEON::BI__builtin_neon_vtbx4_v:
9540
case NEON::BI__builtin_neon_vqtbx4_v:
9541
case NEON::BI__builtin_neon_vqtbx4q_v:
9542
break;
9543
}
9544
9545
assert(E->getNumArgs() >= 3);
9546
9547
// Get the last argument, which specifies the vector type.
9548
const Expr *Arg = E->getArg(E->getNumArgs() - 1);
9549
std::optional<llvm::APSInt> Result =
9550
Arg->getIntegerConstantExpr(CGF.getContext());
9551
if (!Result)
9552
return nullptr;
9553
9554
// Determine the type of this overloaded NEON intrinsic.
9555
NeonTypeFlags Type = Result->getZExtValue();
9556
llvm::FixedVectorType *Ty = GetNeonType(&CGF, Type);
9557
if (!Ty)
9558
return nullptr;
9559
9560
CodeGen::CGBuilderTy &Builder = CGF.Builder;
9561
9562
// AArch64 scalar builtins are not overloaded, they do not have an extra
9563
// argument that specifies the vector type, need to handle each case.
9564
switch (BuiltinID) {
9565
case NEON::BI__builtin_neon_vtbl1_v: {
9566
return packTBLDVectorList(CGF, ArrayRef(Ops).slice(0, 1), nullptr, Ops[1],
9567
Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
9568
}
9569
case NEON::BI__builtin_neon_vtbl2_v: {
9570
return packTBLDVectorList(CGF, ArrayRef(Ops).slice(0, 2), nullptr, Ops[2],
9571
Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
9572
}
9573
case NEON::BI__builtin_neon_vtbl3_v: {
9574
return packTBLDVectorList(CGF, ArrayRef(Ops).slice(0, 3), nullptr, Ops[3],
9575
Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
9576
}
9577
case NEON::BI__builtin_neon_vtbl4_v: {
9578
return packTBLDVectorList(CGF, ArrayRef(Ops).slice(0, 4), nullptr, Ops[4],
9579
Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
9580
}
9581
case NEON::BI__builtin_neon_vtbx1_v: {
9582
Value *TblRes =
9583
packTBLDVectorList(CGF, ArrayRef(Ops).slice(1, 1), nullptr, Ops[2], Ty,
9584
Intrinsic::aarch64_neon_tbl1, "vtbl1");
9585
9586
llvm::Constant *EightV = ConstantInt::get(Ty, 8);
9587
Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
9588
CmpRes = Builder.CreateSExt(CmpRes, Ty);
9589
9590
Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
9591
Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
9592
return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
9593
}
9594
case NEON::BI__builtin_neon_vtbx2_v: {
9595
return packTBLDVectorList(CGF, ArrayRef(Ops).slice(1, 2), Ops[0], Ops[3],
9596
Ty, Intrinsic::aarch64_neon_tbx1, "vtbx1");
9597
}
9598
case NEON::BI__builtin_neon_vtbx3_v: {
9599
Value *TblRes =
9600
packTBLDVectorList(CGF, ArrayRef(Ops).slice(1, 3), nullptr, Ops[4], Ty,
9601
Intrinsic::aarch64_neon_tbl2, "vtbl2");
9602
9603
llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
9604
Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
9605
TwentyFourV);
9606
CmpRes = Builder.CreateSExt(CmpRes, Ty);
9607
9608
Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
9609
Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
9610
return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
9611
}
9612
case NEON::BI__builtin_neon_vtbx4_v: {
9613
return packTBLDVectorList(CGF, ArrayRef(Ops).slice(1, 4), Ops[0], Ops[5],
9614
Ty, Intrinsic::aarch64_neon_tbx2, "vtbx2");
9615
}
9616
case NEON::BI__builtin_neon_vqtbl1_v:
9617
case NEON::BI__builtin_neon_vqtbl1q_v:
9618
Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
9619
case NEON::BI__builtin_neon_vqtbl2_v:
9620
case NEON::BI__builtin_neon_vqtbl2q_v: {
9621
Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
9622
case NEON::BI__builtin_neon_vqtbl3_v:
9623
case NEON::BI__builtin_neon_vqtbl3q_v:
9624
Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
9625
case NEON::BI__builtin_neon_vqtbl4_v:
9626
case NEON::BI__builtin_neon_vqtbl4q_v:
9627
Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
9628
case NEON::BI__builtin_neon_vqtbx1_v:
9629
case NEON::BI__builtin_neon_vqtbx1q_v:
9630
Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
9631
case NEON::BI__builtin_neon_vqtbx2_v:
9632
case NEON::BI__builtin_neon_vqtbx2q_v:
9633
Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
9634
case NEON::BI__builtin_neon_vqtbx3_v:
9635
case NEON::BI__builtin_neon_vqtbx3q_v:
9636
Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
9637
case NEON::BI__builtin_neon_vqtbx4_v:
9638
case NEON::BI__builtin_neon_vqtbx4q_v:
9639
Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
9640
}
9641
}
9642
9643
if (!Int)
9644
return nullptr;
9645
9646
Function *F = CGF.CGM.getIntrinsic(Int, Ty);
9647
return CGF.EmitNeonCall(F, Ops, s);
9648
}
9649
9650
Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
9651
auto *VTy = llvm::FixedVectorType::get(Int16Ty, 4);
9652
Op = Builder.CreateBitCast(Op, Int16Ty);
9653
Value *V = PoisonValue::get(VTy);
9654
llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
9655
Op = Builder.CreateInsertElement(V, Op, CI);
9656
return Op;
9657
}
9658
9659
/// SVEBuiltinMemEltTy - Returns the memory element type for this memory
9660
/// access builtin. Only required if it can't be inferred from the base pointer
9661
/// operand.
9662
llvm::Type *CodeGenFunction::SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags) {
9663
switch (TypeFlags.getMemEltType()) {
9664
case SVETypeFlags::MemEltTyDefault:
9665
return getEltType(TypeFlags);
9666
case SVETypeFlags::MemEltTyInt8:
9667
return Builder.getInt8Ty();
9668
case SVETypeFlags::MemEltTyInt16:
9669
return Builder.getInt16Ty();
9670
case SVETypeFlags::MemEltTyInt32:
9671
return Builder.getInt32Ty();
9672
case SVETypeFlags::MemEltTyInt64:
9673
return Builder.getInt64Ty();
9674
}
9675
llvm_unreachable("Unknown MemEltType");
9676
}
9677
9678
llvm::Type *CodeGenFunction::getEltType(const SVETypeFlags &TypeFlags) {
9679
switch (TypeFlags.getEltType()) {
9680
default:
9681
llvm_unreachable("Invalid SVETypeFlag!");
9682
9683
case SVETypeFlags::EltTyInt8:
9684
return Builder.getInt8Ty();
9685
case SVETypeFlags::EltTyInt16:
9686
return Builder.getInt16Ty();
9687
case SVETypeFlags::EltTyInt32:
9688
return Builder.getInt32Ty();
9689
case SVETypeFlags::EltTyInt64:
9690
return Builder.getInt64Ty();
9691
case SVETypeFlags::EltTyInt128:
9692
return Builder.getInt128Ty();
9693
9694
case SVETypeFlags::EltTyFloat16:
9695
return Builder.getHalfTy();
9696
case SVETypeFlags::EltTyFloat32:
9697
return Builder.getFloatTy();
9698
case SVETypeFlags::EltTyFloat64:
9699
return Builder.getDoubleTy();
9700
9701
case SVETypeFlags::EltTyBFloat16:
9702
return Builder.getBFloatTy();
9703
9704
case SVETypeFlags::EltTyBool8:
9705
case SVETypeFlags::EltTyBool16:
9706
case SVETypeFlags::EltTyBool32:
9707
case SVETypeFlags::EltTyBool64:
9708
return Builder.getInt1Ty();
9709
}
9710
}
9711
9712
// Return the llvm predicate vector type corresponding to the specified element
9713
// TypeFlags.
9714
llvm::ScalableVectorType *
9715
CodeGenFunction::getSVEPredType(const SVETypeFlags &TypeFlags) {
9716
switch (TypeFlags.getEltType()) {
9717
default: llvm_unreachable("Unhandled SVETypeFlag!");
9718
9719
case SVETypeFlags::EltTyInt8:
9720
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
9721
case SVETypeFlags::EltTyInt16:
9722
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
9723
case SVETypeFlags::EltTyInt32:
9724
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
9725
case SVETypeFlags::EltTyInt64:
9726
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
9727
9728
case SVETypeFlags::EltTyBFloat16:
9729
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
9730
case SVETypeFlags::EltTyFloat16:
9731
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
9732
case SVETypeFlags::EltTyFloat32:
9733
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
9734
case SVETypeFlags::EltTyFloat64:
9735
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
9736
9737
case SVETypeFlags::EltTyBool8:
9738
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
9739
case SVETypeFlags::EltTyBool16:
9740
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
9741
case SVETypeFlags::EltTyBool32:
9742
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
9743
case SVETypeFlags::EltTyBool64:
9744
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
9745
}
9746
}
9747
9748
// Return the llvm vector type corresponding to the specified element TypeFlags.
9749
llvm::ScalableVectorType *
9750
CodeGenFunction::getSVEType(const SVETypeFlags &TypeFlags) {
9751
switch (TypeFlags.getEltType()) {
9752
default:
9753
llvm_unreachable("Invalid SVETypeFlag!");
9754
9755
case SVETypeFlags::EltTyInt8:
9756
return llvm::ScalableVectorType::get(Builder.getInt8Ty(), 16);
9757
case SVETypeFlags::EltTyInt16:
9758
return llvm::ScalableVectorType::get(Builder.getInt16Ty(), 8);
9759
case SVETypeFlags::EltTyInt32:
9760
return llvm::ScalableVectorType::get(Builder.getInt32Ty(), 4);
9761
case SVETypeFlags::EltTyInt64:
9762
return llvm::ScalableVectorType::get(Builder.getInt64Ty(), 2);
9763
9764
case SVETypeFlags::EltTyFloat16:
9765
return llvm::ScalableVectorType::get(Builder.getHalfTy(), 8);
9766
case SVETypeFlags::EltTyBFloat16:
9767
return llvm::ScalableVectorType::get(Builder.getBFloatTy(), 8);
9768
case SVETypeFlags::EltTyFloat32:
9769
return llvm::ScalableVectorType::get(Builder.getFloatTy(), 4);
9770
case SVETypeFlags::EltTyFloat64:
9771
return llvm::ScalableVectorType::get(Builder.getDoubleTy(), 2);
9772
9773
case SVETypeFlags::EltTyBool8:
9774
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
9775
case SVETypeFlags::EltTyBool16:
9776
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
9777
case SVETypeFlags::EltTyBool32:
9778
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
9779
case SVETypeFlags::EltTyBool64:
9780
return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
9781
}
9782
}
9783
9784
llvm::Value *
9785
CodeGenFunction::EmitSVEAllTruePred(const SVETypeFlags &TypeFlags) {
9786
Function *Ptrue =
9787
CGM.getIntrinsic(Intrinsic::aarch64_sve_ptrue, getSVEPredType(TypeFlags));
9788
return Builder.CreateCall(Ptrue, {Builder.getInt32(/*SV_ALL*/ 31)});
9789
}
9790
9791
constexpr unsigned SVEBitsPerBlock = 128;
9792
9793
static llvm::ScalableVectorType *getSVEVectorForElementType(llvm::Type *EltTy) {
9794
unsigned NumElts = SVEBitsPerBlock / EltTy->getScalarSizeInBits();
9795
return llvm::ScalableVectorType::get(EltTy, NumElts);
9796
}
9797
9798
// Reinterpret the input predicate so that it can be used to correctly isolate
9799
// the elements of the specified datatype.
9800
Value *CodeGenFunction::EmitSVEPredicateCast(Value *Pred,
9801
llvm::ScalableVectorType *VTy) {
9802
9803
if (isa<TargetExtType>(Pred->getType()) &&
9804
cast<TargetExtType>(Pred->getType())->getName() == "aarch64.svcount")
9805
return Pred;
9806
9807
auto *RTy = llvm::VectorType::get(IntegerType::get(getLLVMContext(), 1), VTy);
9808
if (Pred->getType() == RTy)
9809
return Pred;
9810
9811
unsigned IntID;
9812
llvm::Type *IntrinsicTy;
9813
switch (VTy->getMinNumElements()) {
9814
default:
9815
llvm_unreachable("unsupported element count!");
9816
case 1:
9817
case 2:
9818
case 4:
9819
case 8:
9820
IntID = Intrinsic::aarch64_sve_convert_from_svbool;
9821
IntrinsicTy = RTy;
9822
break;
9823
case 16:
9824
IntID = Intrinsic::aarch64_sve_convert_to_svbool;
9825
IntrinsicTy = Pred->getType();
9826
break;
9827
}
9828
9829
Function *F = CGM.getIntrinsic(IntID, IntrinsicTy);
9830
Value *C = Builder.CreateCall(F, Pred);
9831
assert(C->getType() == RTy && "Unexpected return type!");
9832
return C;
9833
}
9834
9835
Value *CodeGenFunction::EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
9836
SmallVectorImpl<Value *> &Ops,
9837
unsigned IntID) {
9838
auto *ResultTy = getSVEType(TypeFlags);
9839
auto *OverloadedTy =
9840
llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), ResultTy);
9841
9842
Function *F = nullptr;
9843
if (Ops[1]->getType()->isVectorTy())
9844
// This is the "vector base, scalar offset" case. In order to uniquely
9845
// map this built-in to an LLVM IR intrinsic, we need both the return type
9846
// and the type of the vector base.
9847
F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[1]->getType()});
9848
else
9849
// This is the "scalar base, vector offset case". The type of the offset
9850
// is encoded in the name of the intrinsic. We only need to specify the
9851
// return type in order to uniquely map this built-in to an LLVM IR
9852
// intrinsic.
9853
F = CGM.getIntrinsic(IntID, OverloadedTy);
9854
9855
// At the ACLE level there's only one predicate type, svbool_t, which is
9856
// mapped to <n x 16 x i1>. However, this might be incompatible with the
9857
// actual type being loaded. For example, when loading doubles (i64) the
9858
// predicate should be <n x 2 x i1> instead. At the IR level the type of
9859
// the predicate and the data being loaded must match. Cast to the type
9860
// expected by the intrinsic. The intrinsic itself should be defined in
9861
// a way than enforces relations between parameter types.
9862
Ops[0] = EmitSVEPredicateCast(
9863
Ops[0], cast<llvm::ScalableVectorType>(F->getArg(0)->getType()));
9864
9865
// Pass 0 when the offset is missing. This can only be applied when using
9866
// the "vector base" addressing mode for which ACLE allows no offset. The
9867
// corresponding LLVM IR always requires an offset.
9868
if (Ops.size() == 2) {
9869
assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
9870
Ops.push_back(ConstantInt::get(Int64Ty, 0));
9871
}
9872
9873
// For "vector base, scalar index" scale the index so that it becomes a
9874
// scalar offset.
9875
if (!TypeFlags.isByteIndexed() && Ops[1]->getType()->isVectorTy()) {
9876
unsigned BytesPerElt =
9877
OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
9878
Ops[2] = Builder.CreateShl(Ops[2], Log2_32(BytesPerElt));
9879
}
9880
9881
Value *Call = Builder.CreateCall(F, Ops);
9882
9883
// The following sext/zext is only needed when ResultTy != OverloadedTy. In
9884
// other cases it's folded into a nop.
9885
return TypeFlags.isZExtReturn() ? Builder.CreateZExt(Call, ResultTy)
9886
: Builder.CreateSExt(Call, ResultTy);
9887
}
9888
9889
Value *CodeGenFunction::EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
9890
SmallVectorImpl<Value *> &Ops,
9891
unsigned IntID) {
9892
auto *SrcDataTy = getSVEType(TypeFlags);
9893
auto *OverloadedTy =
9894
llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), SrcDataTy);
9895
9896
// In ACLE the source data is passed in the last argument, whereas in LLVM IR
9897
// it's the first argument. Move it accordingly.
9898
Ops.insert(Ops.begin(), Ops.pop_back_val());
9899
9900
Function *F = nullptr;
9901
if (Ops[2]->getType()->isVectorTy())
9902
// This is the "vector base, scalar offset" case. In order to uniquely
9903
// map this built-in to an LLVM IR intrinsic, we need both the return type
9904
// and the type of the vector base.
9905
F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[2]->getType()});
9906
else
9907
// This is the "scalar base, vector offset case". The type of the offset
9908
// is encoded in the name of the intrinsic. We only need to specify the
9909
// return type in order to uniquely map this built-in to an LLVM IR
9910
// intrinsic.
9911
F = CGM.getIntrinsic(IntID, OverloadedTy);
9912
9913
// Pass 0 when the offset is missing. This can only be applied when using
9914
// the "vector base" addressing mode for which ACLE allows no offset. The
9915
// corresponding LLVM IR always requires an offset.
9916
if (Ops.size() == 3) {
9917
assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
9918
Ops.push_back(ConstantInt::get(Int64Ty, 0));
9919
}
9920
9921
// Truncation is needed when SrcDataTy != OverloadedTy. In other cases it's
9922
// folded into a nop.
9923
Ops[0] = Builder.CreateTrunc(Ops[0], OverloadedTy);
9924
9925
// At the ACLE level there's only one predicate type, svbool_t, which is
9926
// mapped to <n x 16 x i1>. However, this might be incompatible with the
9927
// actual type being stored. For example, when storing doubles (i64) the
9928
// predicated should be <n x 2 x i1> instead. At the IR level the type of
9929
// the predicate and the data being stored must match. Cast to the type
9930
// expected by the intrinsic. The intrinsic itself should be defined in
9931
// a way that enforces relations between parameter types.
9932
Ops[1] = EmitSVEPredicateCast(
9933
Ops[1], cast<llvm::ScalableVectorType>(F->getArg(1)->getType()));
9934
9935
// For "vector base, scalar index" scale the index so that it becomes a
9936
// scalar offset.
9937
if (!TypeFlags.isByteIndexed() && Ops[2]->getType()->isVectorTy()) {
9938
unsigned BytesPerElt =
9939
OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
9940
Ops[3] = Builder.CreateShl(Ops[3], Log2_32(BytesPerElt));
9941
}
9942
9943
return Builder.CreateCall(F, Ops);
9944
}
9945
9946
Value *CodeGenFunction::EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
9947
SmallVectorImpl<Value *> &Ops,
9948
unsigned IntID) {
9949
// The gather prefetches are overloaded on the vector input - this can either
9950
// be the vector of base addresses or vector of offsets.
9951
auto *OverloadedTy = dyn_cast<llvm::ScalableVectorType>(Ops[1]->getType());
9952
if (!OverloadedTy)
9953
OverloadedTy = cast<llvm::ScalableVectorType>(Ops[2]->getType());
9954
9955
// Cast the predicate from svbool_t to the right number of elements.
9956
Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
9957
9958
// vector + imm addressing modes
9959
if (Ops[1]->getType()->isVectorTy()) {
9960
if (Ops.size() == 3) {
9961
// Pass 0 for 'vector+imm' when the index is omitted.
9962
Ops.push_back(ConstantInt::get(Int64Ty, 0));
9963
9964
// The sv_prfop is the last operand in the builtin and IR intrinsic.
9965
std::swap(Ops[2], Ops[3]);
9966
} else {
9967
// Index needs to be passed as scaled offset.
9968
llvm::Type *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
9969
unsigned BytesPerElt = MemEltTy->getPrimitiveSizeInBits() / 8;
9970
if (BytesPerElt > 1)
9971
Ops[2] = Builder.CreateShl(Ops[2], Log2_32(BytesPerElt));
9972
}
9973
}
9974
9975
Function *F = CGM.getIntrinsic(IntID, OverloadedTy);
9976
return Builder.CreateCall(F, Ops);
9977
}
9978
9979
Value *CodeGenFunction::EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
9980
SmallVectorImpl<Value*> &Ops,
9981
unsigned IntID) {
9982
llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
9983
9984
unsigned N;
9985
switch (IntID) {
9986
case Intrinsic::aarch64_sve_ld2_sret:
9987
case Intrinsic::aarch64_sve_ld1_pn_x2:
9988
case Intrinsic::aarch64_sve_ldnt1_pn_x2:
9989
case Intrinsic::aarch64_sve_ld2q_sret:
9990
N = 2;
9991
break;
9992
case Intrinsic::aarch64_sve_ld3_sret:
9993
case Intrinsic::aarch64_sve_ld3q_sret:
9994
N = 3;
9995
break;
9996
case Intrinsic::aarch64_sve_ld4_sret:
9997
case Intrinsic::aarch64_sve_ld1_pn_x4:
9998
case Intrinsic::aarch64_sve_ldnt1_pn_x4:
9999
case Intrinsic::aarch64_sve_ld4q_sret:
10000
N = 4;
10001
break;
10002
default:
10003
llvm_unreachable("unknown intrinsic!");
10004
}
10005
auto RetTy = llvm::VectorType::get(VTy->getElementType(),
10006
VTy->getElementCount() * N);
10007
10008
Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
10009
Value *BasePtr = Ops[1];
10010
10011
// Does the load have an offset?
10012
if (Ops.size() > 2)
10013
BasePtr = Builder.CreateGEP(VTy, BasePtr, Ops[2]);
10014
10015
Function *F = CGM.getIntrinsic(IntID, {VTy});
10016
Value *Call = Builder.CreateCall(F, {Predicate, BasePtr});
10017
unsigned MinElts = VTy->getMinNumElements();
10018
Value *Ret = llvm::PoisonValue::get(RetTy);
10019
for (unsigned I = 0; I < N; I++) {
10020
Value *Idx = ConstantInt::get(CGM.Int64Ty, I * MinElts);
10021
Value *SRet = Builder.CreateExtractValue(Call, I);
10022
Ret = Builder.CreateInsertVector(RetTy, Ret, SRet, Idx);
10023
}
10024
return Ret;
10025
}
10026
10027
Value *CodeGenFunction::EmitSVEStructStore(const SVETypeFlags &TypeFlags,
10028
SmallVectorImpl<Value*> &Ops,
10029
unsigned IntID) {
10030
llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
10031
10032
unsigned N;
10033
switch (IntID) {
10034
case Intrinsic::aarch64_sve_st2:
10035
case Intrinsic::aarch64_sve_st1_pn_x2:
10036
case Intrinsic::aarch64_sve_stnt1_pn_x2:
10037
case Intrinsic::aarch64_sve_st2q:
10038
N = 2;
10039
break;
10040
case Intrinsic::aarch64_sve_st3:
10041
case Intrinsic::aarch64_sve_st3q:
10042
N = 3;
10043
break;
10044
case Intrinsic::aarch64_sve_st4:
10045
case Intrinsic::aarch64_sve_st1_pn_x4:
10046
case Intrinsic::aarch64_sve_stnt1_pn_x4:
10047
case Intrinsic::aarch64_sve_st4q:
10048
N = 4;
10049
break;
10050
default:
10051
llvm_unreachable("unknown intrinsic!");
10052
}
10053
10054
Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
10055
Value *BasePtr = Ops[1];
10056
10057
// Does the store have an offset?
10058
if (Ops.size() > (2 + N))
10059
BasePtr = Builder.CreateGEP(VTy, BasePtr, Ops[2]);
10060
10061
// The llvm.aarch64.sve.st2/3/4 intrinsics take legal part vectors, so we
10062
// need to break up the tuple vector.
10063
SmallVector<llvm::Value*, 5> Operands;
10064
for (unsigned I = Ops.size() - N; I < Ops.size(); ++I)
10065
Operands.push_back(Ops[I]);
10066
Operands.append({Predicate, BasePtr});
10067
Function *F = CGM.getIntrinsic(IntID, { VTy });
10068
10069
return Builder.CreateCall(F, Operands);
10070
}
10071
10072
// SVE2's svpmullb and svpmullt builtins are similar to the svpmullb_pair and
10073
// svpmullt_pair intrinsics, with the exception that their results are bitcast
10074
// to a wider type.
10075
Value *CodeGenFunction::EmitSVEPMull(const SVETypeFlags &TypeFlags,
10076
SmallVectorImpl<Value *> &Ops,
10077
unsigned BuiltinID) {
10078
// Splat scalar operand to vector (intrinsics with _n infix)
10079
if (TypeFlags.hasSplatOperand()) {
10080
unsigned OpNo = TypeFlags.getSplatOperand();
10081
Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
10082
}
10083
10084
// The pair-wise function has a narrower overloaded type.
10085
Function *F = CGM.getIntrinsic(BuiltinID, Ops[0]->getType());
10086
Value *Call = Builder.CreateCall(F, {Ops[0], Ops[1]});
10087
10088
// Now bitcast to the wider result type.
10089
llvm::ScalableVectorType *Ty = getSVEType(TypeFlags);
10090
return EmitSVEReinterpret(Call, Ty);
10091
}
10092
10093
Value *CodeGenFunction::EmitSVEMovl(const SVETypeFlags &TypeFlags,
10094
ArrayRef<Value *> Ops, unsigned BuiltinID) {
10095
llvm::Type *OverloadedTy = getSVEType(TypeFlags);
10096
Function *F = CGM.getIntrinsic(BuiltinID, OverloadedTy);
10097
return Builder.CreateCall(F, {Ops[0], Builder.getInt32(0)});
10098
}
10099
10100
Value *CodeGenFunction::EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
10101
SmallVectorImpl<Value *> &Ops,
10102
unsigned BuiltinID) {
10103
auto *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
10104
auto *VectorTy = getSVEVectorForElementType(MemEltTy);
10105
auto *MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
10106
10107
Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
10108
Value *BasePtr = Ops[1];
10109
10110
// Implement the index operand if not omitted.
10111
if (Ops.size() > 3)
10112
BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]);
10113
10114
Value *PrfOp = Ops.back();
10115
10116
Function *F = CGM.getIntrinsic(BuiltinID, Predicate->getType());
10117
return Builder.CreateCall(F, {Predicate, BasePtr, PrfOp});
10118
}
10119
10120
Value *CodeGenFunction::EmitSVEMaskedLoad(const CallExpr *E,
10121
llvm::Type *ReturnTy,
10122
SmallVectorImpl<Value *> &Ops,
10123
unsigned IntrinsicID,
10124
bool IsZExtReturn) {
10125
QualType LangPTy = E->getArg(1)->getType();
10126
llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
10127
LangPTy->castAs<PointerType>()->getPointeeType());
10128
10129
// The vector type that is returned may be different from the
10130
// eventual type loaded from memory.
10131
auto VectorTy = cast<llvm::ScalableVectorType>(ReturnTy);
10132
llvm::ScalableVectorType *MemoryTy = nullptr;
10133
llvm::ScalableVectorType *PredTy = nullptr;
10134
bool IsQuadLoad = false;
10135
switch (IntrinsicID) {
10136
case Intrinsic::aarch64_sve_ld1uwq:
10137
case Intrinsic::aarch64_sve_ld1udq:
10138
MemoryTy = llvm::ScalableVectorType::get(MemEltTy, 1);
10139
PredTy = llvm::ScalableVectorType::get(
10140
llvm::Type::getInt1Ty(getLLVMContext()), 1);
10141
IsQuadLoad = true;
10142
break;
10143
default:
10144
MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
10145
PredTy = MemoryTy;
10146
break;
10147
}
10148
10149
Value *Predicate = EmitSVEPredicateCast(Ops[0], PredTy);
10150
Value *BasePtr = Ops[1];
10151
10152
// Does the load have an offset?
10153
if (Ops.size() > 2)
10154
BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]);
10155
10156
Function *F = CGM.getIntrinsic(IntrinsicID, IsQuadLoad ? VectorTy : MemoryTy);
10157
auto *Load =
10158
cast<llvm::Instruction>(Builder.CreateCall(F, {Predicate, BasePtr}));
10159
auto TBAAInfo = CGM.getTBAAAccessInfo(LangPTy->getPointeeType());
10160
CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
10161
10162
if (IsQuadLoad)
10163
return Load;
10164
10165
return IsZExtReturn ? Builder.CreateZExt(Load, VectorTy)
10166
: Builder.CreateSExt(Load, VectorTy);
10167
}
10168
10169
Value *CodeGenFunction::EmitSVEMaskedStore(const CallExpr *E,
10170
SmallVectorImpl<Value *> &Ops,
10171
unsigned IntrinsicID) {
10172
QualType LangPTy = E->getArg(1)->getType();
10173
llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
10174
LangPTy->castAs<PointerType>()->getPointeeType());
10175
10176
// The vector type that is stored may be different from the
10177
// eventual type stored to memory.
10178
auto VectorTy = cast<llvm::ScalableVectorType>(Ops.back()->getType());
10179
auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
10180
10181
auto PredTy = MemoryTy;
10182
auto AddrMemoryTy = MemoryTy;
10183
bool IsQuadStore = false;
10184
10185
switch (IntrinsicID) {
10186
case Intrinsic::aarch64_sve_st1wq:
10187
case Intrinsic::aarch64_sve_st1dq:
10188
AddrMemoryTy = llvm::ScalableVectorType::get(MemEltTy, 1);
10189
PredTy =
10190
llvm::ScalableVectorType::get(IntegerType::get(getLLVMContext(), 1), 1);
10191
IsQuadStore = true;
10192
break;
10193
default:
10194
break;
10195
}
10196
Value *Predicate = EmitSVEPredicateCast(Ops[0], PredTy);
10197
Value *BasePtr = Ops[1];
10198
10199
// Does the store have an offset?
10200
if (Ops.size() == 4)
10201
BasePtr = Builder.CreateGEP(AddrMemoryTy, BasePtr, Ops[2]);
10202
10203
// Last value is always the data
10204
Value *Val =
10205
IsQuadStore ? Ops.back() : Builder.CreateTrunc(Ops.back(), MemoryTy);
10206
10207
Function *F =
10208
CGM.getIntrinsic(IntrinsicID, IsQuadStore ? VectorTy : MemoryTy);
10209
auto *Store =
10210
cast<llvm::Instruction>(Builder.CreateCall(F, {Val, Predicate, BasePtr}));
10211
auto TBAAInfo = CGM.getTBAAAccessInfo(LangPTy->getPointeeType());
10212
CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
10213
return Store;
10214
}
10215
10216
Value *CodeGenFunction::EmitSMELd1St1(const SVETypeFlags &TypeFlags,
10217
SmallVectorImpl<Value *> &Ops,
10218
unsigned IntID) {
10219
Ops[2] = EmitSVEPredicateCast(
10220
Ops[2], getSVEVectorForElementType(SVEBuiltinMemEltTy(TypeFlags)));
10221
10222
SmallVector<Value *> NewOps;
10223
NewOps.push_back(Ops[2]);
10224
10225
llvm::Value *BasePtr = Ops[3];
10226
10227
// If the intrinsic contains the vnum parameter, multiply it with the vector
10228
// size in bytes.
10229
if (Ops.size() == 5) {
10230
Function *StreamingVectorLength =
10231
CGM.getIntrinsic(Intrinsic::aarch64_sme_cntsb);
10232
llvm::Value *StreamingVectorLengthCall =
10233
Builder.CreateCall(StreamingVectorLength);
10234
llvm::Value *Mulvl =
10235
Builder.CreateMul(StreamingVectorLengthCall, Ops[4], "mulvl");
10236
// The type of the ptr parameter is void *, so use Int8Ty here.
10237
BasePtr = Builder.CreateGEP(Int8Ty, Ops[3], Mulvl);
10238
}
10239
NewOps.push_back(BasePtr);
10240
NewOps.push_back(Ops[0]);
10241
NewOps.push_back(Ops[1]);
10242
Function *F = CGM.getIntrinsic(IntID);
10243
return Builder.CreateCall(F, NewOps);
10244
}
10245
10246
Value *CodeGenFunction::EmitSMEReadWrite(const SVETypeFlags &TypeFlags,
10247
SmallVectorImpl<Value *> &Ops,
10248
unsigned IntID) {
10249
auto *VecTy = getSVEType(TypeFlags);
10250
Function *F = CGM.getIntrinsic(IntID, VecTy);
10251
if (TypeFlags.isReadZA())
10252
Ops[1] = EmitSVEPredicateCast(Ops[1], VecTy);
10253
else if (TypeFlags.isWriteZA())
10254
Ops[2] = EmitSVEPredicateCast(Ops[2], VecTy);
10255
return Builder.CreateCall(F, Ops);
10256
}
10257
10258
Value *CodeGenFunction::EmitSMEZero(const SVETypeFlags &TypeFlags,
10259
SmallVectorImpl<Value *> &Ops,
10260
unsigned IntID) {
10261
// svzero_za() intrinsic zeros the entire za tile and has no paramters.
10262
if (Ops.size() == 0)
10263
Ops.push_back(llvm::ConstantInt::get(Int32Ty, 255));
10264
Function *F = CGM.getIntrinsic(IntID, {});
10265
return Builder.CreateCall(F, Ops);
10266
}
10267
10268
Value *CodeGenFunction::EmitSMELdrStr(const SVETypeFlags &TypeFlags,
10269
SmallVectorImpl<Value *> &Ops,
10270
unsigned IntID) {
10271
if (Ops.size() == 2)
10272
Ops.push_back(Builder.getInt32(0));
10273
else
10274
Ops[2] = Builder.CreateIntCast(Ops[2], Int32Ty, true);
10275
Function *F = CGM.getIntrinsic(IntID, {});
10276
return Builder.CreateCall(F, Ops);
10277
}
10278
10279
// Limit the usage of scalable llvm IR generated by the ACLE by using the
10280
// sve dup.x intrinsic instead of IRBuilder::CreateVectorSplat.
10281
Value *CodeGenFunction::EmitSVEDupX(Value *Scalar, llvm::Type *Ty) {
10282
return Builder.CreateVectorSplat(
10283
cast<llvm::VectorType>(Ty)->getElementCount(), Scalar);
10284
}
10285
10286
Value *CodeGenFunction::EmitSVEDupX(Value* Scalar) {
10287
return EmitSVEDupX(Scalar, getSVEVectorForElementType(Scalar->getType()));
10288
}
10289
10290
Value *CodeGenFunction::EmitSVEReinterpret(Value *Val, llvm::Type *Ty) {
10291
// FIXME: For big endian this needs an additional REV, or needs a separate
10292
// intrinsic that is code-generated as a no-op, because the LLVM bitcast
10293
// instruction is defined as 'bitwise' equivalent from memory point of
10294
// view (when storing/reloading), whereas the svreinterpret builtin
10295
// implements bitwise equivalent cast from register point of view.
10296
// LLVM CodeGen for a bitcast must add an explicit REV for big-endian.
10297
return Builder.CreateBitCast(Val, Ty);
10298
}
10299
10300
static void InsertExplicitZeroOperand(CGBuilderTy &Builder, llvm::Type *Ty,
10301
SmallVectorImpl<Value *> &Ops) {
10302
auto *SplatZero = Constant::getNullValue(Ty);
10303
Ops.insert(Ops.begin(), SplatZero);
10304
}
10305
10306
static void InsertExplicitUndefOperand(CGBuilderTy &Builder, llvm::Type *Ty,
10307
SmallVectorImpl<Value *> &Ops) {
10308
auto *SplatUndef = UndefValue::get(Ty);
10309
Ops.insert(Ops.begin(), SplatUndef);
10310
}
10311
10312
SmallVector<llvm::Type *, 2>
10313
CodeGenFunction::getSVEOverloadTypes(const SVETypeFlags &TypeFlags,
10314
llvm::Type *ResultType,
10315
ArrayRef<Value *> Ops) {
10316
if (TypeFlags.isOverloadNone())
10317
return {};
10318
10319
llvm::Type *DefaultType = getSVEType(TypeFlags);
10320
10321
if (TypeFlags.isOverloadWhileOrMultiVecCvt())
10322
return {DefaultType, Ops[1]->getType()};
10323
10324
if (TypeFlags.isOverloadWhileRW())
10325
return {getSVEPredType(TypeFlags), Ops[0]->getType()};
10326
10327
if (TypeFlags.isOverloadCvt())
10328
return {Ops[0]->getType(), Ops.back()->getType()};
10329
10330
if (TypeFlags.isReductionQV() && !ResultType->isScalableTy() &&
10331
ResultType->isVectorTy())
10332
return {ResultType, Ops[1]->getType()};
10333
10334
assert(TypeFlags.isOverloadDefault() && "Unexpected value for overloads");
10335
return {DefaultType};
10336
}
10337
10338
Value *CodeGenFunction::EmitSVETupleSetOrGet(const SVETypeFlags &TypeFlags,
10339
llvm::Type *Ty,
10340
ArrayRef<Value *> Ops) {
10341
assert((TypeFlags.isTupleSet() || TypeFlags.isTupleGet()) &&
10342
"Expects TypleFlags.isTupleSet() or TypeFlags.isTupleGet()");
10343
10344
unsigned I = cast<ConstantInt>(Ops[1])->getSExtValue();
10345
auto *SingleVecTy = dyn_cast<llvm::ScalableVectorType>(
10346
TypeFlags.isTupleSet() ? Ops[2]->getType() : Ty);
10347
10348
if (!SingleVecTy)
10349
return nullptr;
10350
10351
Value *Idx = ConstantInt::get(CGM.Int64Ty,
10352
I * SingleVecTy->getMinNumElements());
10353
10354
if (TypeFlags.isTupleSet())
10355
return Builder.CreateInsertVector(Ty, Ops[0], Ops[2], Idx);
10356
return Builder.CreateExtractVector(Ty, Ops[0], Idx);
10357
}
10358
10359
Value *CodeGenFunction::EmitSVETupleCreate(const SVETypeFlags &TypeFlags,
10360
llvm::Type *Ty,
10361
ArrayRef<Value *> Ops) {
10362
assert(TypeFlags.isTupleCreate() && "Expects TypleFlag isTupleCreate");
10363
10364
auto *SrcTy = dyn_cast<llvm::ScalableVectorType>(Ops[0]->getType());
10365
10366
if (!SrcTy)
10367
return nullptr;
10368
10369
unsigned MinElts = SrcTy->getMinNumElements();
10370
Value *Call = llvm::PoisonValue::get(Ty);
10371
for (unsigned I = 0; I < Ops.size(); I++) {
10372
Value *Idx = ConstantInt::get(CGM.Int64Ty, I * MinElts);
10373
Call = Builder.CreateInsertVector(Ty, Call, Ops[I], Idx);
10374
}
10375
10376
return Call;
10377
}
10378
10379
Value *CodeGenFunction::FormSVEBuiltinResult(Value *Call) {
10380
// Multi-vector results should be broken up into a single (wide) result
10381
// vector.
10382
auto *StructTy = dyn_cast<StructType>(Call->getType());
10383
if (!StructTy)
10384
return Call;
10385
10386
auto *VTy = dyn_cast<ScalableVectorType>(StructTy->getTypeAtIndex(0U));
10387
if (!VTy)
10388
return Call;
10389
unsigned N = StructTy->getNumElements();
10390
10391
// We may need to emit a cast to a svbool_t
10392
bool IsPredTy = VTy->getElementType()->isIntegerTy(1);
10393
unsigned MinElts = IsPredTy ? 16 : VTy->getMinNumElements();
10394
10395
ScalableVectorType *WideVTy =
10396
ScalableVectorType::get(VTy->getElementType(), MinElts * N);
10397
Value *Ret = llvm::PoisonValue::get(WideVTy);
10398
for (unsigned I = 0; I < N; ++I) {
10399
Value *SRet = Builder.CreateExtractValue(Call, I);
10400
assert(SRet->getType() == VTy && "Unexpected type for result value");
10401
Value *Idx = ConstantInt::get(CGM.Int64Ty, I * MinElts);
10402
10403
if (IsPredTy)
10404
SRet = EmitSVEPredicateCast(
10405
SRet, ScalableVectorType::get(Builder.getInt1Ty(), 16));
10406
10407
Ret = Builder.CreateInsertVector(WideVTy, Ret, SRet, Idx);
10408
}
10409
Call = Ret;
10410
10411
return Call;
10412
}
10413
10414
void CodeGenFunction::GetAArch64SVEProcessedOperands(
10415
unsigned BuiltinID, const CallExpr *E, SmallVectorImpl<Value *> &Ops,
10416
SVETypeFlags TypeFlags) {
10417
// Find out if any arguments are required to be integer constant expressions.
10418
unsigned ICEArguments = 0;
10419
ASTContext::GetBuiltinTypeError Error;
10420
getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
10421
assert(Error == ASTContext::GE_None && "Should not codegen an error");
10422
10423
// Tuple set/get only requires one insert/extract vector, which is
10424
// created by EmitSVETupleSetOrGet.
10425
bool IsTupleGetOrSet = TypeFlags.isTupleSet() || TypeFlags.isTupleGet();
10426
10427
for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
10428
bool IsICE = ICEArguments & (1 << i);
10429
Value *Arg = EmitScalarExpr(E->getArg(i));
10430
10431
if (IsICE) {
10432
// If this is required to be a constant, constant fold it so that we know
10433
// that the generated intrinsic gets a ConstantInt.
10434
std::optional<llvm::APSInt> Result =
10435
E->getArg(i)->getIntegerConstantExpr(getContext());
10436
assert(Result && "Expected argument to be a constant");
10437
10438
// Immediates for SVE llvm intrinsics are always 32bit. We can safely
10439
// truncate because the immediate has been range checked and no valid
10440
// immediate requires more than a handful of bits.
10441
*Result = Result->extOrTrunc(32);
10442
Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), *Result));
10443
continue;
10444
}
10445
10446
if (IsTupleGetOrSet || !isa<ScalableVectorType>(Arg->getType())) {
10447
Ops.push_back(Arg);
10448
continue;
10449
}
10450
10451
auto *VTy = cast<ScalableVectorType>(Arg->getType());
10452
unsigned MinElts = VTy->getMinNumElements();
10453
bool IsPred = VTy->getElementType()->isIntegerTy(1);
10454
unsigned N = (MinElts * VTy->getScalarSizeInBits()) / (IsPred ? 16 : 128);
10455
10456
if (N == 1) {
10457
Ops.push_back(Arg);
10458
continue;
10459
}
10460
10461
for (unsigned I = 0; I < N; ++I) {
10462
Value *Idx = ConstantInt::get(CGM.Int64Ty, (I * MinElts) / N);
10463
auto *NewVTy =
10464
ScalableVectorType::get(VTy->getElementType(), MinElts / N);
10465
Ops.push_back(Builder.CreateExtractVector(NewVTy, Arg, Idx));
10466
}
10467
}
10468
}
10469
10470
Value *CodeGenFunction::EmitAArch64SVEBuiltinExpr(unsigned BuiltinID,
10471
const CallExpr *E) {
10472
llvm::Type *Ty = ConvertType(E->getType());
10473
if (BuiltinID >= SVE::BI__builtin_sve_reinterpret_s8_s8 &&
10474
BuiltinID <= SVE::BI__builtin_sve_reinterpret_f64_f64_x4) {
10475
Value *Val = EmitScalarExpr(E->getArg(0));
10476
return EmitSVEReinterpret(Val, Ty);
10477
}
10478
10479
auto *Builtin = findARMVectorIntrinsicInMap(AArch64SVEIntrinsicMap, BuiltinID,
10480
AArch64SVEIntrinsicsProvenSorted);
10481
10482
llvm::SmallVector<Value *, 4> Ops;
10483
SVETypeFlags TypeFlags(Builtin->TypeModifier);
10484
GetAArch64SVEProcessedOperands(BuiltinID, E, Ops, TypeFlags);
10485
10486
if (TypeFlags.isLoad())
10487
return EmitSVEMaskedLoad(E, Ty, Ops, Builtin->LLVMIntrinsic,
10488
TypeFlags.isZExtReturn());
10489
else if (TypeFlags.isStore())
10490
return EmitSVEMaskedStore(E, Ops, Builtin->LLVMIntrinsic);
10491
else if (TypeFlags.isGatherLoad())
10492
return EmitSVEGatherLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10493
else if (TypeFlags.isScatterStore())
10494
return EmitSVEScatterStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10495
else if (TypeFlags.isPrefetch())
10496
return EmitSVEPrefetchLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10497
else if (TypeFlags.isGatherPrefetch())
10498
return EmitSVEGatherPrefetch(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10499
else if (TypeFlags.isStructLoad())
10500
return EmitSVEStructLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10501
else if (TypeFlags.isStructStore())
10502
return EmitSVEStructStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10503
else if (TypeFlags.isTupleSet() || TypeFlags.isTupleGet())
10504
return EmitSVETupleSetOrGet(TypeFlags, Ty, Ops);
10505
else if (TypeFlags.isTupleCreate())
10506
return EmitSVETupleCreate(TypeFlags, Ty, Ops);
10507
else if (TypeFlags.isUndef())
10508
return UndefValue::get(Ty);
10509
else if (Builtin->LLVMIntrinsic != 0) {
10510
if (TypeFlags.getMergeType() == SVETypeFlags::MergeZeroExp)
10511
InsertExplicitZeroOperand(Builder, Ty, Ops);
10512
10513
if (TypeFlags.getMergeType() == SVETypeFlags::MergeAnyExp)
10514
InsertExplicitUndefOperand(Builder, Ty, Ops);
10515
10516
// Some ACLE builtins leave out the argument to specify the predicate
10517
// pattern, which is expected to be expanded to an SV_ALL pattern.
10518
if (TypeFlags.isAppendSVALL())
10519
Ops.push_back(Builder.getInt32(/*SV_ALL*/ 31));
10520
if (TypeFlags.isInsertOp1SVALL())
10521
Ops.insert(&Ops[1], Builder.getInt32(/*SV_ALL*/ 31));
10522
10523
// Predicates must match the main datatype.
10524
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
10525
if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType()))
10526
if (PredTy->getElementType()->isIntegerTy(1))
10527
Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags));
10528
10529
// Splat scalar operand to vector (intrinsics with _n infix)
10530
if (TypeFlags.hasSplatOperand()) {
10531
unsigned OpNo = TypeFlags.getSplatOperand();
10532
Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
10533
}
10534
10535
if (TypeFlags.isReverseCompare())
10536
std::swap(Ops[1], Ops[2]);
10537
else if (TypeFlags.isReverseUSDOT())
10538
std::swap(Ops[1], Ops[2]);
10539
else if (TypeFlags.isReverseMergeAnyBinOp() &&
10540
TypeFlags.getMergeType() == SVETypeFlags::MergeAny)
10541
std::swap(Ops[1], Ops[2]);
10542
else if (TypeFlags.isReverseMergeAnyAccOp() &&
10543
TypeFlags.getMergeType() == SVETypeFlags::MergeAny)
10544
std::swap(Ops[1], Ops[3]);
10545
10546
// Predicated intrinsics with _z suffix need a select w/ zeroinitializer.
10547
if (TypeFlags.getMergeType() == SVETypeFlags::MergeZero) {
10548
llvm::Type *OpndTy = Ops[1]->getType();
10549
auto *SplatZero = Constant::getNullValue(OpndTy);
10550
Ops[1] = Builder.CreateSelect(Ops[0], Ops[1], SplatZero);
10551
}
10552
10553
Function *F = CGM.getIntrinsic(Builtin->LLVMIntrinsic,
10554
getSVEOverloadTypes(TypeFlags, Ty, Ops));
10555
Value *Call = Builder.CreateCall(F, Ops);
10556
10557
// Predicate results must be converted to svbool_t.
10558
if (auto PredTy = dyn_cast<llvm::VectorType>(Call->getType()))
10559
if (PredTy->getScalarType()->isIntegerTy(1))
10560
Call = EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
10561
10562
return FormSVEBuiltinResult(Call);
10563
}
10564
10565
switch (BuiltinID) {
10566
default:
10567
return nullptr;
10568
10569
case SVE::BI__builtin_sve_svreinterpret_b: {
10570
auto SVCountTy =
10571
llvm::TargetExtType::get(getLLVMContext(), "aarch64.svcount");
10572
Function *CastFromSVCountF =
10573
CGM.getIntrinsic(Intrinsic::aarch64_sve_convert_to_svbool, SVCountTy);
10574
return Builder.CreateCall(CastFromSVCountF, Ops[0]);
10575
}
10576
case SVE::BI__builtin_sve_svreinterpret_c: {
10577
auto SVCountTy =
10578
llvm::TargetExtType::get(getLLVMContext(), "aarch64.svcount");
10579
Function *CastToSVCountF =
10580
CGM.getIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool, SVCountTy);
10581
return Builder.CreateCall(CastToSVCountF, Ops[0]);
10582
}
10583
10584
case SVE::BI__builtin_sve_svpsel_lane_b8:
10585
case SVE::BI__builtin_sve_svpsel_lane_b16:
10586
case SVE::BI__builtin_sve_svpsel_lane_b32:
10587
case SVE::BI__builtin_sve_svpsel_lane_b64:
10588
case SVE::BI__builtin_sve_svpsel_lane_c8:
10589
case SVE::BI__builtin_sve_svpsel_lane_c16:
10590
case SVE::BI__builtin_sve_svpsel_lane_c32:
10591
case SVE::BI__builtin_sve_svpsel_lane_c64: {
10592
bool IsSVCount = isa<TargetExtType>(Ops[0]->getType());
10593
assert(((!IsSVCount || cast<TargetExtType>(Ops[0]->getType())->getName() ==
10594
"aarch64.svcount")) &&
10595
"Unexpected TargetExtType");
10596
auto SVCountTy =
10597
llvm::TargetExtType::get(getLLVMContext(), "aarch64.svcount");
10598
Function *CastFromSVCountF =
10599
CGM.getIntrinsic(Intrinsic::aarch64_sve_convert_to_svbool, SVCountTy);
10600
Function *CastToSVCountF =
10601
CGM.getIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool, SVCountTy);
10602
10603
auto OverloadedTy = getSVEType(SVETypeFlags(Builtin->TypeModifier));
10604
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_psel, OverloadedTy);
10605
llvm::Value *Ops0 =
10606
IsSVCount ? Builder.CreateCall(CastFromSVCountF, Ops[0]) : Ops[0];
10607
llvm::Value *Ops1 = EmitSVEPredicateCast(Ops[1], OverloadedTy);
10608
llvm::Value *PSel = Builder.CreateCall(F, {Ops0, Ops1, Ops[2]});
10609
return IsSVCount ? Builder.CreateCall(CastToSVCountF, PSel) : PSel;
10610
}
10611
case SVE::BI__builtin_sve_svmov_b_z: {
10612
// svmov_b_z(pg, op) <=> svand_b_z(pg, op, op)
10613
SVETypeFlags TypeFlags(Builtin->TypeModifier);
10614
llvm::Type* OverloadedTy = getSVEType(TypeFlags);
10615
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_and_z, OverloadedTy);
10616
return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[1]});
10617
}
10618
10619
case SVE::BI__builtin_sve_svnot_b_z: {
10620
// svnot_b_z(pg, op) <=> sveor_b_z(pg, op, pg)
10621
SVETypeFlags TypeFlags(Builtin->TypeModifier);
10622
llvm::Type* OverloadedTy = getSVEType(TypeFlags);
10623
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_eor_z, OverloadedTy);
10624
return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[0]});
10625
}
10626
10627
case SVE::BI__builtin_sve_svmovlb_u16:
10628
case SVE::BI__builtin_sve_svmovlb_u32:
10629
case SVE::BI__builtin_sve_svmovlb_u64:
10630
return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllb);
10631
10632
case SVE::BI__builtin_sve_svmovlb_s16:
10633
case SVE::BI__builtin_sve_svmovlb_s32:
10634
case SVE::BI__builtin_sve_svmovlb_s64:
10635
return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllb);
10636
10637
case SVE::BI__builtin_sve_svmovlt_u16:
10638
case SVE::BI__builtin_sve_svmovlt_u32:
10639
case SVE::BI__builtin_sve_svmovlt_u64:
10640
return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllt);
10641
10642
case SVE::BI__builtin_sve_svmovlt_s16:
10643
case SVE::BI__builtin_sve_svmovlt_s32:
10644
case SVE::BI__builtin_sve_svmovlt_s64:
10645
return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllt);
10646
10647
case SVE::BI__builtin_sve_svpmullt_u16:
10648
case SVE::BI__builtin_sve_svpmullt_u64:
10649
case SVE::BI__builtin_sve_svpmullt_n_u16:
10650
case SVE::BI__builtin_sve_svpmullt_n_u64:
10651
return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullt_pair);
10652
10653
case SVE::BI__builtin_sve_svpmullb_u16:
10654
case SVE::BI__builtin_sve_svpmullb_u64:
10655
case SVE::BI__builtin_sve_svpmullb_n_u16:
10656
case SVE::BI__builtin_sve_svpmullb_n_u64:
10657
return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullb_pair);
10658
10659
case SVE::BI__builtin_sve_svdup_n_b8:
10660
case SVE::BI__builtin_sve_svdup_n_b16:
10661
case SVE::BI__builtin_sve_svdup_n_b32:
10662
case SVE::BI__builtin_sve_svdup_n_b64: {
10663
Value *CmpNE =
10664
Builder.CreateICmpNE(Ops[0], Constant::getNullValue(Ops[0]->getType()));
10665
llvm::ScalableVectorType *OverloadedTy = getSVEType(TypeFlags);
10666
Value *Dup = EmitSVEDupX(CmpNE, OverloadedTy);
10667
return EmitSVEPredicateCast(Dup, cast<llvm::ScalableVectorType>(Ty));
10668
}
10669
10670
case SVE::BI__builtin_sve_svdupq_n_b8:
10671
case SVE::BI__builtin_sve_svdupq_n_b16:
10672
case SVE::BI__builtin_sve_svdupq_n_b32:
10673
case SVE::BI__builtin_sve_svdupq_n_b64:
10674
case SVE::BI__builtin_sve_svdupq_n_u8:
10675
case SVE::BI__builtin_sve_svdupq_n_s8:
10676
case SVE::BI__builtin_sve_svdupq_n_u64:
10677
case SVE::BI__builtin_sve_svdupq_n_f64:
10678
case SVE::BI__builtin_sve_svdupq_n_s64:
10679
case SVE::BI__builtin_sve_svdupq_n_u16:
10680
case SVE::BI__builtin_sve_svdupq_n_f16:
10681
case SVE::BI__builtin_sve_svdupq_n_bf16:
10682
case SVE::BI__builtin_sve_svdupq_n_s16:
10683
case SVE::BI__builtin_sve_svdupq_n_u32:
10684
case SVE::BI__builtin_sve_svdupq_n_f32:
10685
case SVE::BI__builtin_sve_svdupq_n_s32: {
10686
// These builtins are implemented by storing each element to an array and using
10687
// ld1rq to materialize a vector.
10688
unsigned NumOpnds = Ops.size();
10689
10690
bool IsBoolTy =
10691
cast<llvm::VectorType>(Ty)->getElementType()->isIntegerTy(1);
10692
10693
// For svdupq_n_b* the element type of is an integer of type 128/numelts,
10694
// so that the compare can use the width that is natural for the expected
10695
// number of predicate lanes.
10696
llvm::Type *EltTy = Ops[0]->getType();
10697
if (IsBoolTy)
10698
EltTy = IntegerType::get(getLLVMContext(), SVEBitsPerBlock / NumOpnds);
10699
10700
SmallVector<llvm::Value *, 16> VecOps;
10701
for (unsigned I = 0; I < NumOpnds; ++I)
10702
VecOps.push_back(Builder.CreateZExt(Ops[I], EltTy));
10703
Value *Vec = BuildVector(VecOps);
10704
10705
llvm::Type *OverloadedTy = getSVEVectorForElementType(EltTy);
10706
Value *InsertSubVec = Builder.CreateInsertVector(
10707
OverloadedTy, PoisonValue::get(OverloadedTy), Vec, Builder.getInt64(0));
10708
10709
Function *F =
10710
CGM.getIntrinsic(Intrinsic::aarch64_sve_dupq_lane, OverloadedTy);
10711
Value *DupQLane =
10712
Builder.CreateCall(F, {InsertSubVec, Builder.getInt64(0)});
10713
10714
if (!IsBoolTy)
10715
return DupQLane;
10716
10717
SVETypeFlags TypeFlags(Builtin->TypeModifier);
10718
Value *Pred = EmitSVEAllTruePred(TypeFlags);
10719
10720
// For svdupq_n_b* we need to add an additional 'cmpne' with '0'.
10721
F = CGM.getIntrinsic(NumOpnds == 2 ? Intrinsic::aarch64_sve_cmpne
10722
: Intrinsic::aarch64_sve_cmpne_wide,
10723
OverloadedTy);
10724
Value *Call = Builder.CreateCall(
10725
F, {Pred, DupQLane, EmitSVEDupX(Builder.getInt64(0))});
10726
return EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
10727
}
10728
10729
case SVE::BI__builtin_sve_svpfalse_b:
10730
return ConstantInt::getFalse(Ty);
10731
10732
case SVE::BI__builtin_sve_svpfalse_c: {
10733
auto SVBoolTy = ScalableVectorType::get(Builder.getInt1Ty(), 16);
10734
Function *CastToSVCountF =
10735
CGM.getIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool, Ty);
10736
return Builder.CreateCall(CastToSVCountF, ConstantInt::getFalse(SVBoolTy));
10737
}
10738
10739
case SVE::BI__builtin_sve_svlen_bf16:
10740
case SVE::BI__builtin_sve_svlen_f16:
10741
case SVE::BI__builtin_sve_svlen_f32:
10742
case SVE::BI__builtin_sve_svlen_f64:
10743
case SVE::BI__builtin_sve_svlen_s8:
10744
case SVE::BI__builtin_sve_svlen_s16:
10745
case SVE::BI__builtin_sve_svlen_s32:
10746
case SVE::BI__builtin_sve_svlen_s64:
10747
case SVE::BI__builtin_sve_svlen_u8:
10748
case SVE::BI__builtin_sve_svlen_u16:
10749
case SVE::BI__builtin_sve_svlen_u32:
10750
case SVE::BI__builtin_sve_svlen_u64: {
10751
SVETypeFlags TF(Builtin->TypeModifier);
10752
auto VTy = cast<llvm::VectorType>(getSVEType(TF));
10753
auto *NumEls =
10754
llvm::ConstantInt::get(Ty, VTy->getElementCount().getKnownMinValue());
10755
10756
Function *F = CGM.getIntrinsic(Intrinsic::vscale, Ty);
10757
return Builder.CreateMul(NumEls, Builder.CreateCall(F));
10758
}
10759
10760
case SVE::BI__builtin_sve_svtbl2_u8:
10761
case SVE::BI__builtin_sve_svtbl2_s8:
10762
case SVE::BI__builtin_sve_svtbl2_u16:
10763
case SVE::BI__builtin_sve_svtbl2_s16:
10764
case SVE::BI__builtin_sve_svtbl2_u32:
10765
case SVE::BI__builtin_sve_svtbl2_s32:
10766
case SVE::BI__builtin_sve_svtbl2_u64:
10767
case SVE::BI__builtin_sve_svtbl2_s64:
10768
case SVE::BI__builtin_sve_svtbl2_f16:
10769
case SVE::BI__builtin_sve_svtbl2_bf16:
10770
case SVE::BI__builtin_sve_svtbl2_f32:
10771
case SVE::BI__builtin_sve_svtbl2_f64: {
10772
SVETypeFlags TF(Builtin->TypeModifier);
10773
auto VTy = cast<llvm::ScalableVectorType>(getSVEType(TF));
10774
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_tbl2, VTy);
10775
return Builder.CreateCall(F, Ops);
10776
}
10777
10778
case SVE::BI__builtin_sve_svset_neonq_s8:
10779
case SVE::BI__builtin_sve_svset_neonq_s16:
10780
case SVE::BI__builtin_sve_svset_neonq_s32:
10781
case SVE::BI__builtin_sve_svset_neonq_s64:
10782
case SVE::BI__builtin_sve_svset_neonq_u8:
10783
case SVE::BI__builtin_sve_svset_neonq_u16:
10784
case SVE::BI__builtin_sve_svset_neonq_u32:
10785
case SVE::BI__builtin_sve_svset_neonq_u64:
10786
case SVE::BI__builtin_sve_svset_neonq_f16:
10787
case SVE::BI__builtin_sve_svset_neonq_f32:
10788
case SVE::BI__builtin_sve_svset_neonq_f64:
10789
case SVE::BI__builtin_sve_svset_neonq_bf16: {
10790
return Builder.CreateInsertVector(Ty, Ops[0], Ops[1], Builder.getInt64(0));
10791
}
10792
10793
case SVE::BI__builtin_sve_svget_neonq_s8:
10794
case SVE::BI__builtin_sve_svget_neonq_s16:
10795
case SVE::BI__builtin_sve_svget_neonq_s32:
10796
case SVE::BI__builtin_sve_svget_neonq_s64:
10797
case SVE::BI__builtin_sve_svget_neonq_u8:
10798
case SVE::BI__builtin_sve_svget_neonq_u16:
10799
case SVE::BI__builtin_sve_svget_neonq_u32:
10800
case SVE::BI__builtin_sve_svget_neonq_u64:
10801
case SVE::BI__builtin_sve_svget_neonq_f16:
10802
case SVE::BI__builtin_sve_svget_neonq_f32:
10803
case SVE::BI__builtin_sve_svget_neonq_f64:
10804
case SVE::BI__builtin_sve_svget_neonq_bf16: {
10805
return Builder.CreateExtractVector(Ty, Ops[0], Builder.getInt64(0));
10806
}
10807
10808
case SVE::BI__builtin_sve_svdup_neonq_s8:
10809
case SVE::BI__builtin_sve_svdup_neonq_s16:
10810
case SVE::BI__builtin_sve_svdup_neonq_s32:
10811
case SVE::BI__builtin_sve_svdup_neonq_s64:
10812
case SVE::BI__builtin_sve_svdup_neonq_u8:
10813
case SVE::BI__builtin_sve_svdup_neonq_u16:
10814
case SVE::BI__builtin_sve_svdup_neonq_u32:
10815
case SVE::BI__builtin_sve_svdup_neonq_u64:
10816
case SVE::BI__builtin_sve_svdup_neonq_f16:
10817
case SVE::BI__builtin_sve_svdup_neonq_f32:
10818
case SVE::BI__builtin_sve_svdup_neonq_f64:
10819
case SVE::BI__builtin_sve_svdup_neonq_bf16: {
10820
Value *Insert = Builder.CreateInsertVector(Ty, PoisonValue::get(Ty), Ops[0],
10821
Builder.getInt64(0));
10822
return Builder.CreateIntrinsic(Intrinsic::aarch64_sve_dupq_lane, {Ty},
10823
{Insert, Builder.getInt64(0)});
10824
}
10825
}
10826
10827
/// Should not happen
10828
return nullptr;
10829
}
10830
10831
static void swapCommutativeSMEOperands(unsigned BuiltinID,
10832
SmallVectorImpl<Value *> &Ops) {
10833
unsigned MultiVec;
10834
switch (BuiltinID) {
10835
default:
10836
return;
10837
case SME::BI__builtin_sme_svsumla_za32_s8_vg4x1:
10838
MultiVec = 1;
10839
break;
10840
case SME::BI__builtin_sme_svsumla_za32_s8_vg4x2:
10841
case SME::BI__builtin_sme_svsudot_za32_s8_vg1x2:
10842
MultiVec = 2;
10843
break;
10844
case SME::BI__builtin_sme_svsudot_za32_s8_vg1x4:
10845
case SME::BI__builtin_sme_svsumla_za32_s8_vg4x4:
10846
MultiVec = 4;
10847
break;
10848
}
10849
10850
if (MultiVec > 0)
10851
for (unsigned I = 0; I < MultiVec; ++I)
10852
std::swap(Ops[I + 1], Ops[I + 1 + MultiVec]);
10853
}
10854
10855
Value *CodeGenFunction::EmitAArch64SMEBuiltinExpr(unsigned BuiltinID,
10856
const CallExpr *E) {
10857
auto *Builtin = findARMVectorIntrinsicInMap(AArch64SMEIntrinsicMap, BuiltinID,
10858
AArch64SMEIntrinsicsProvenSorted);
10859
10860
llvm::SmallVector<Value *, 4> Ops;
10861
SVETypeFlags TypeFlags(Builtin->TypeModifier);
10862
GetAArch64SVEProcessedOperands(BuiltinID, E, Ops, TypeFlags);
10863
10864
if (TypeFlags.isLoad() || TypeFlags.isStore())
10865
return EmitSMELd1St1(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10866
else if (TypeFlags.isReadZA() || TypeFlags.isWriteZA())
10867
return EmitSMEReadWrite(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10868
else if (BuiltinID == SME::BI__builtin_sme_svzero_mask_za ||
10869
BuiltinID == SME::BI__builtin_sme_svzero_za)
10870
return EmitSMEZero(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10871
else if (BuiltinID == SME::BI__builtin_sme_svldr_vnum_za ||
10872
BuiltinID == SME::BI__builtin_sme_svstr_vnum_za ||
10873
BuiltinID == SME::BI__builtin_sme_svldr_za ||
10874
BuiltinID == SME::BI__builtin_sme_svstr_za)
10875
return EmitSMELdrStr(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10876
10877
// Handle builtins which require their multi-vector operands to be swapped
10878
swapCommutativeSMEOperands(BuiltinID, Ops);
10879
10880
// Should not happen!
10881
if (Builtin->LLVMIntrinsic == 0)
10882
return nullptr;
10883
10884
// Predicates must match the main datatype.
10885
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
10886
if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType()))
10887
if (PredTy->getElementType()->isIntegerTy(1))
10888
Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags));
10889
10890
Function *F =
10891
TypeFlags.isOverloadNone()
10892
? CGM.getIntrinsic(Builtin->LLVMIntrinsic)
10893
: CGM.getIntrinsic(Builtin->LLVMIntrinsic, {getSVEType(TypeFlags)});
10894
Value *Call = Builder.CreateCall(F, Ops);
10895
10896
return FormSVEBuiltinResult(Call);
10897
}
10898
10899
Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
10900
const CallExpr *E,
10901
llvm::Triple::ArchType Arch) {
10902
if (BuiltinID >= clang::AArch64::FirstSVEBuiltin &&
10903
BuiltinID <= clang::AArch64::LastSVEBuiltin)
10904
return EmitAArch64SVEBuiltinExpr(BuiltinID, E);
10905
10906
if (BuiltinID >= clang::AArch64::FirstSMEBuiltin &&
10907
BuiltinID <= clang::AArch64::LastSMEBuiltin)
10908
return EmitAArch64SMEBuiltinExpr(BuiltinID, E);
10909
10910
if (BuiltinID == Builtin::BI__builtin_cpu_supports)
10911
return EmitAArch64CpuSupports(E);
10912
10913
unsigned HintID = static_cast<unsigned>(-1);
10914
switch (BuiltinID) {
10915
default: break;
10916
case clang::AArch64::BI__builtin_arm_nop:
10917
HintID = 0;
10918
break;
10919
case clang::AArch64::BI__builtin_arm_yield:
10920
case clang::AArch64::BI__yield:
10921
HintID = 1;
10922
break;
10923
case clang::AArch64::BI__builtin_arm_wfe:
10924
case clang::AArch64::BI__wfe:
10925
HintID = 2;
10926
break;
10927
case clang::AArch64::BI__builtin_arm_wfi:
10928
case clang::AArch64::BI__wfi:
10929
HintID = 3;
10930
break;
10931
case clang::AArch64::BI__builtin_arm_sev:
10932
case clang::AArch64::BI__sev:
10933
HintID = 4;
10934
break;
10935
case clang::AArch64::BI__builtin_arm_sevl:
10936
case clang::AArch64::BI__sevl:
10937
HintID = 5;
10938
break;
10939
}
10940
10941
if (HintID != static_cast<unsigned>(-1)) {
10942
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
10943
return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
10944
}
10945
10946
if (BuiltinID == clang::AArch64::BI__builtin_arm_trap) {
10947
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_break);
10948
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
10949
return Builder.CreateCall(F, Builder.CreateZExt(Arg, CGM.Int32Ty));
10950
}
10951
10952
if (BuiltinID == clang::AArch64::BI__builtin_arm_get_sme_state) {
10953
// Create call to __arm_sme_state and store the results to the two pointers.
10954
CallInst *CI = EmitRuntimeCall(CGM.CreateRuntimeFunction(
10955
llvm::FunctionType::get(StructType::get(CGM.Int64Ty, CGM.Int64Ty), {},
10956
false),
10957
"__arm_sme_state"));
10958
auto Attrs = AttributeList().addFnAttribute(getLLVMContext(),
10959
"aarch64_pstate_sm_compatible");
10960
CI->setAttributes(Attrs);
10961
CI->setCallingConv(
10962
llvm::CallingConv::
10963
AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2);
10964
Builder.CreateStore(Builder.CreateExtractValue(CI, 0),
10965
EmitPointerWithAlignment(E->getArg(0)));
10966
return Builder.CreateStore(Builder.CreateExtractValue(CI, 1),
10967
EmitPointerWithAlignment(E->getArg(1)));
10968
}
10969
10970
if (BuiltinID == clang::AArch64::BI__builtin_arm_rbit) {
10971
assert((getContext().getTypeSize(E->getType()) == 32) &&
10972
"rbit of unusual size!");
10973
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
10974
return Builder.CreateCall(
10975
CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
10976
}
10977
if (BuiltinID == clang::AArch64::BI__builtin_arm_rbit64) {
10978
assert((getContext().getTypeSize(E->getType()) == 64) &&
10979
"rbit of unusual size!");
10980
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
10981
return Builder.CreateCall(
10982
CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
10983
}
10984
10985
if (BuiltinID == clang::AArch64::BI__builtin_arm_clz ||
10986
BuiltinID == clang::AArch64::BI__builtin_arm_clz64) {
10987
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
10988
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Arg->getType());
10989
Value *Res = Builder.CreateCall(F, {Arg, Builder.getInt1(false)});
10990
if (BuiltinID == clang::AArch64::BI__builtin_arm_clz64)
10991
Res = Builder.CreateTrunc(Res, Builder.getInt32Ty());
10992
return Res;
10993
}
10994
10995
if (BuiltinID == clang::AArch64::BI__builtin_arm_cls) {
10996
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
10997
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg,
10998
"cls");
10999
}
11000
if (BuiltinID == clang::AArch64::BI__builtin_arm_cls64) {
11001
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
11002
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg,
11003
"cls");
11004
}
11005
11006
if (BuiltinID == clang::AArch64::BI__builtin_arm_rint32zf ||
11007
BuiltinID == clang::AArch64::BI__builtin_arm_rint32z) {
11008
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
11009
llvm::Type *Ty = Arg->getType();
11010
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32z, Ty),
11011
Arg, "frint32z");
11012
}
11013
11014
if (BuiltinID == clang::AArch64::BI__builtin_arm_rint64zf ||
11015
BuiltinID == clang::AArch64::BI__builtin_arm_rint64z) {
11016
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
11017
llvm::Type *Ty = Arg->getType();
11018
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64z, Ty),
11019
Arg, "frint64z");
11020
}
11021
11022
if (BuiltinID == clang::AArch64::BI__builtin_arm_rint32xf ||
11023
BuiltinID == clang::AArch64::BI__builtin_arm_rint32x) {
11024
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
11025
llvm::Type *Ty = Arg->getType();
11026
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32x, Ty),
11027
Arg, "frint32x");
11028
}
11029
11030
if (BuiltinID == clang::AArch64::BI__builtin_arm_rint64xf ||
11031
BuiltinID == clang::AArch64::BI__builtin_arm_rint64x) {
11032
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
11033
llvm::Type *Ty = Arg->getType();
11034
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64x, Ty),
11035
Arg, "frint64x");
11036
}
11037
11038
if (BuiltinID == clang::AArch64::BI__builtin_arm_jcvt) {
11039
assert((getContext().getTypeSize(E->getType()) == 32) &&
11040
"__jcvt of unusual size!");
11041
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
11042
return Builder.CreateCall(
11043
CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg);
11044
}
11045
11046
if (BuiltinID == clang::AArch64::BI__builtin_arm_ld64b ||
11047
BuiltinID == clang::AArch64::BI__builtin_arm_st64b ||
11048
BuiltinID == clang::AArch64::BI__builtin_arm_st64bv ||
11049
BuiltinID == clang::AArch64::BI__builtin_arm_st64bv0) {
11050
llvm::Value *MemAddr = EmitScalarExpr(E->getArg(0));
11051
llvm::Value *ValPtr = EmitScalarExpr(E->getArg(1));
11052
11053
if (BuiltinID == clang::AArch64::BI__builtin_arm_ld64b) {
11054
// Load from the address via an LLVM intrinsic, receiving a
11055
// tuple of 8 i64 words, and store each one to ValPtr.
11056
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_ld64b);
11057
llvm::Value *Val = Builder.CreateCall(F, MemAddr);
11058
llvm::Value *ToRet;
11059
for (size_t i = 0; i < 8; i++) {
11060
llvm::Value *ValOffsetPtr =
11061
Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i));
11062
Address Addr =
11063
Address(ValOffsetPtr, Int64Ty, CharUnits::fromQuantity(8));
11064
ToRet = Builder.CreateStore(Builder.CreateExtractValue(Val, i), Addr);
11065
}
11066
return ToRet;
11067
} else {
11068
// Load 8 i64 words from ValPtr, and store them to the address
11069
// via an LLVM intrinsic.
11070
SmallVector<llvm::Value *, 9> Args;
11071
Args.push_back(MemAddr);
11072
for (size_t i = 0; i < 8; i++) {
11073
llvm::Value *ValOffsetPtr =
11074
Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i));
11075
Address Addr =
11076
Address(ValOffsetPtr, Int64Ty, CharUnits::fromQuantity(8));
11077
Args.push_back(Builder.CreateLoad(Addr));
11078
}
11079
11080
auto Intr = (BuiltinID == clang::AArch64::BI__builtin_arm_st64b
11081
? Intrinsic::aarch64_st64b
11082
: BuiltinID == clang::AArch64::BI__builtin_arm_st64bv
11083
? Intrinsic::aarch64_st64bv
11084
: Intrinsic::aarch64_st64bv0);
11085
Function *F = CGM.getIntrinsic(Intr);
11086
return Builder.CreateCall(F, Args);
11087
}
11088
}
11089
11090
if (BuiltinID == clang::AArch64::BI__builtin_arm_rndr ||
11091
BuiltinID == clang::AArch64::BI__builtin_arm_rndrrs) {
11092
11093
auto Intr = (BuiltinID == clang::AArch64::BI__builtin_arm_rndr
11094
? Intrinsic::aarch64_rndr
11095
: Intrinsic::aarch64_rndrrs);
11096
Function *F = CGM.getIntrinsic(Intr);
11097
llvm::Value *Val = Builder.CreateCall(F);
11098
Value *RandomValue = Builder.CreateExtractValue(Val, 0);
11099
Value *Status = Builder.CreateExtractValue(Val, 1);
11100
11101
Address MemAddress = EmitPointerWithAlignment(E->getArg(0));
11102
Builder.CreateStore(RandomValue, MemAddress);
11103
Status = Builder.CreateZExt(Status, Int32Ty);
11104
return Status;
11105
}
11106
11107
if (BuiltinID == clang::AArch64::BI__clear_cache) {
11108
assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
11109
const FunctionDecl *FD = E->getDirectCallee();
11110
Value *Ops[2];
11111
for (unsigned i = 0; i < 2; i++)
11112
Ops[i] = EmitScalarExpr(E->getArg(i));
11113
llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
11114
llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
11115
StringRef Name = FD->getName();
11116
return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
11117
}
11118
11119
if ((BuiltinID == clang::AArch64::BI__builtin_arm_ldrex ||
11120
BuiltinID == clang::AArch64::BI__builtin_arm_ldaex) &&
11121
getContext().getTypeSize(E->getType()) == 128) {
11122
Function *F =
11123
CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_ldaex
11124
? Intrinsic::aarch64_ldaxp
11125
: Intrinsic::aarch64_ldxp);
11126
11127
Value *LdPtr = EmitScalarExpr(E->getArg(0));
11128
Value *Val = Builder.CreateCall(F, LdPtr, "ldxp");
11129
11130
Value *Val0 = Builder.CreateExtractValue(Val, 1);
11131
Value *Val1 = Builder.CreateExtractValue(Val, 0);
11132
llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
11133
Val0 = Builder.CreateZExt(Val0, Int128Ty);
11134
Val1 = Builder.CreateZExt(Val1, Int128Ty);
11135
11136
Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
11137
Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
11138
Val = Builder.CreateOr(Val, Val1);
11139
return Builder.CreateBitCast(Val, ConvertType(E->getType()));
11140
} else if (BuiltinID == clang::AArch64::BI__builtin_arm_ldrex ||
11141
BuiltinID == clang::AArch64::BI__builtin_arm_ldaex) {
11142
Value *LoadAddr = EmitScalarExpr(E->getArg(0));
11143
11144
QualType Ty = E->getType();
11145
llvm::Type *RealResTy = ConvertType(Ty);
11146
llvm::Type *IntTy =
11147
llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty));
11148
11149
Function *F =
11150
CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_ldaex
11151
? Intrinsic::aarch64_ldaxr
11152
: Intrinsic::aarch64_ldxr,
11153
UnqualPtrTy);
11154
CallInst *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
11155
Val->addParamAttr(
11156
0, Attribute::get(getLLVMContext(), Attribute::ElementType, IntTy));
11157
11158
if (RealResTy->isPointerTy())
11159
return Builder.CreateIntToPtr(Val, RealResTy);
11160
11161
llvm::Type *IntResTy = llvm::IntegerType::get(
11162
getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
11163
return Builder.CreateBitCast(Builder.CreateTruncOrBitCast(Val, IntResTy),
11164
RealResTy);
11165
}
11166
11167
if ((BuiltinID == clang::AArch64::BI__builtin_arm_strex ||
11168
BuiltinID == clang::AArch64::BI__builtin_arm_stlex) &&
11169
getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
11170
Function *F =
11171
CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_stlex
11172
? Intrinsic::aarch64_stlxp
11173
: Intrinsic::aarch64_stxp);
11174
llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
11175
11176
Address Tmp = CreateMemTemp(E->getArg(0)->getType());
11177
EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
11178
11179
Tmp = Tmp.withElementType(STy);
11180
llvm::Value *Val = Builder.CreateLoad(Tmp);
11181
11182
Value *Arg0 = Builder.CreateExtractValue(Val, 0);
11183
Value *Arg1 = Builder.CreateExtractValue(Val, 1);
11184
Value *StPtr = EmitScalarExpr(E->getArg(1));
11185
return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
11186
}
11187
11188
if (BuiltinID == clang::AArch64::BI__builtin_arm_strex ||
11189
BuiltinID == clang::AArch64::BI__builtin_arm_stlex) {
11190
Value *StoreVal = EmitScalarExpr(E->getArg(0));
11191
Value *StoreAddr = EmitScalarExpr(E->getArg(1));
11192
11193
QualType Ty = E->getArg(0)->getType();
11194
llvm::Type *StoreTy =
11195
llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty));
11196
11197
if (StoreVal->getType()->isPointerTy())
11198
StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
11199
else {
11200
llvm::Type *IntTy = llvm::IntegerType::get(
11201
getLLVMContext(),
11202
CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
11203
StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
11204
StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
11205
}
11206
11207
Function *F =
11208
CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_stlex
11209
? Intrinsic::aarch64_stlxr
11210
: Intrinsic::aarch64_stxr,
11211
StoreAddr->getType());
11212
CallInst *CI = Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
11213
CI->addParamAttr(
11214
1, Attribute::get(getLLVMContext(), Attribute::ElementType, StoreTy));
11215
return CI;
11216
}
11217
11218
if (BuiltinID == clang::AArch64::BI__getReg) {
11219
Expr::EvalResult Result;
11220
if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
11221
llvm_unreachable("Sema will ensure that the parameter is constant");
11222
11223
llvm::APSInt Value = Result.Val.getInt();
11224
LLVMContext &Context = CGM.getLLVMContext();
11225
std::string Reg = Value == 31 ? "sp" : "x" + toString(Value, 10);
11226
11227
llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
11228
llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
11229
llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
11230
11231
llvm::Function *F =
11232
CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
11233
return Builder.CreateCall(F, Metadata);
11234
}
11235
11236
if (BuiltinID == clang::AArch64::BI__break) {
11237
Expr::EvalResult Result;
11238
if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
11239
llvm_unreachable("Sema will ensure that the parameter is constant");
11240
11241
llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::aarch64_break);
11242
return Builder.CreateCall(F, {EmitScalarExpr(E->getArg(0))});
11243
}
11244
11245
if (BuiltinID == clang::AArch64::BI__builtin_arm_clrex) {
11246
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
11247
return Builder.CreateCall(F);
11248
}
11249
11250
if (BuiltinID == clang::AArch64::BI_ReadWriteBarrier)
11251
return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
11252
llvm::SyncScope::SingleThread);
11253
11254
// CRC32
11255
Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
11256
switch (BuiltinID) {
11257
case clang::AArch64::BI__builtin_arm_crc32b:
11258
CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
11259
case clang::AArch64::BI__builtin_arm_crc32cb:
11260
CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
11261
case clang::AArch64::BI__builtin_arm_crc32h:
11262
CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
11263
case clang::AArch64::BI__builtin_arm_crc32ch:
11264
CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
11265
case clang::AArch64::BI__builtin_arm_crc32w:
11266
CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
11267
case clang::AArch64::BI__builtin_arm_crc32cw:
11268
CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
11269
case clang::AArch64::BI__builtin_arm_crc32d:
11270
CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
11271
case clang::AArch64::BI__builtin_arm_crc32cd:
11272
CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
11273
}
11274
11275
if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
11276
Value *Arg0 = EmitScalarExpr(E->getArg(0));
11277
Value *Arg1 = EmitScalarExpr(E->getArg(1));
11278
Function *F = CGM.getIntrinsic(CRCIntrinsicID);
11279
11280
llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
11281
Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
11282
11283
return Builder.CreateCall(F, {Arg0, Arg1});
11284
}
11285
11286
// Memory Operations (MOPS)
11287
if (BuiltinID == AArch64::BI__builtin_arm_mops_memset_tag) {
11288
Value *Dst = EmitScalarExpr(E->getArg(0));
11289
Value *Val = EmitScalarExpr(E->getArg(1));
11290
Value *Size = EmitScalarExpr(E->getArg(2));
11291
Dst = Builder.CreatePointerCast(Dst, Int8PtrTy);
11292
Val = Builder.CreateTrunc(Val, Int8Ty);
11293
Size = Builder.CreateIntCast(Size, Int64Ty, false);
11294
return Builder.CreateCall(
11295
CGM.getIntrinsic(Intrinsic::aarch64_mops_memset_tag), {Dst, Val, Size});
11296
}
11297
11298
// Memory Tagging Extensions (MTE) Intrinsics
11299
Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic;
11300
switch (BuiltinID) {
11301
case clang::AArch64::BI__builtin_arm_irg:
11302
MTEIntrinsicID = Intrinsic::aarch64_irg; break;
11303
case clang::AArch64::BI__builtin_arm_addg:
11304
MTEIntrinsicID = Intrinsic::aarch64_addg; break;
11305
case clang::AArch64::BI__builtin_arm_gmi:
11306
MTEIntrinsicID = Intrinsic::aarch64_gmi; break;
11307
case clang::AArch64::BI__builtin_arm_ldg:
11308
MTEIntrinsicID = Intrinsic::aarch64_ldg; break;
11309
case clang::AArch64::BI__builtin_arm_stg:
11310
MTEIntrinsicID = Intrinsic::aarch64_stg; break;
11311
case clang::AArch64::BI__builtin_arm_subp:
11312
MTEIntrinsicID = Intrinsic::aarch64_subp; break;
11313
}
11314
11315
if (MTEIntrinsicID != Intrinsic::not_intrinsic) {
11316
llvm::Type *T = ConvertType(E->getType());
11317
11318
if (MTEIntrinsicID == Intrinsic::aarch64_irg) {
11319
Value *Pointer = EmitScalarExpr(E->getArg(0));
11320
Value *Mask = EmitScalarExpr(E->getArg(1));
11321
11322
Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
11323
Mask = Builder.CreateZExt(Mask, Int64Ty);
11324
Value *RV = Builder.CreateCall(
11325
CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask});
11326
return Builder.CreatePointerCast(RV, T);
11327
}
11328
if (MTEIntrinsicID == Intrinsic::aarch64_addg) {
11329
Value *Pointer = EmitScalarExpr(E->getArg(0));
11330
Value *TagOffset = EmitScalarExpr(E->getArg(1));
11331
11332
Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
11333
TagOffset = Builder.CreateZExt(TagOffset, Int64Ty);
11334
Value *RV = Builder.CreateCall(
11335
CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset});
11336
return Builder.CreatePointerCast(RV, T);
11337
}
11338
if (MTEIntrinsicID == Intrinsic::aarch64_gmi) {
11339
Value *Pointer = EmitScalarExpr(E->getArg(0));
11340
Value *ExcludedMask = EmitScalarExpr(E->getArg(1));
11341
11342
ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty);
11343
Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
11344
return Builder.CreateCall(
11345
CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask});
11346
}
11347
// Although it is possible to supply a different return
11348
// address (first arg) to this intrinsic, for now we set
11349
// return address same as input address.
11350
if (MTEIntrinsicID == Intrinsic::aarch64_ldg) {
11351
Value *TagAddress = EmitScalarExpr(E->getArg(0));
11352
TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
11353
Value *RV = Builder.CreateCall(
11354
CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
11355
return Builder.CreatePointerCast(RV, T);
11356
}
11357
// Although it is possible to supply a different tag (to set)
11358
// to this intrinsic (as first arg), for now we supply
11359
// the tag that is in input address arg (common use case).
11360
if (MTEIntrinsicID == Intrinsic::aarch64_stg) {
11361
Value *TagAddress = EmitScalarExpr(E->getArg(0));
11362
TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
11363
return Builder.CreateCall(
11364
CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
11365
}
11366
if (MTEIntrinsicID == Intrinsic::aarch64_subp) {
11367
Value *PointerA = EmitScalarExpr(E->getArg(0));
11368
Value *PointerB = EmitScalarExpr(E->getArg(1));
11369
PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy);
11370
PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy);
11371
return Builder.CreateCall(
11372
CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB});
11373
}
11374
}
11375
11376
if (BuiltinID == clang::AArch64::BI__builtin_arm_rsr ||
11377
BuiltinID == clang::AArch64::BI__builtin_arm_rsr64 ||
11378
BuiltinID == clang::AArch64::BI__builtin_arm_rsr128 ||
11379
BuiltinID == clang::AArch64::BI__builtin_arm_rsrp ||
11380
BuiltinID == clang::AArch64::BI__builtin_arm_wsr ||
11381
BuiltinID == clang::AArch64::BI__builtin_arm_wsr64 ||
11382
BuiltinID == clang::AArch64::BI__builtin_arm_wsr128 ||
11383
BuiltinID == clang::AArch64::BI__builtin_arm_wsrp) {
11384
11385
SpecialRegisterAccessKind AccessKind = Write;
11386
if (BuiltinID == clang::AArch64::BI__builtin_arm_rsr ||
11387
BuiltinID == clang::AArch64::BI__builtin_arm_rsr64 ||
11388
BuiltinID == clang::AArch64::BI__builtin_arm_rsr128 ||
11389
BuiltinID == clang::AArch64::BI__builtin_arm_rsrp)
11390
AccessKind = VolatileRead;
11391
11392
bool IsPointerBuiltin = BuiltinID == clang::AArch64::BI__builtin_arm_rsrp ||
11393
BuiltinID == clang::AArch64::BI__builtin_arm_wsrp;
11394
11395
bool Is32Bit = BuiltinID == clang::AArch64::BI__builtin_arm_rsr ||
11396
BuiltinID == clang::AArch64::BI__builtin_arm_wsr;
11397
11398
bool Is128Bit = BuiltinID == clang::AArch64::BI__builtin_arm_rsr128 ||
11399
BuiltinID == clang::AArch64::BI__builtin_arm_wsr128;
11400
11401
llvm::Type *ValueType;
11402
llvm::Type *RegisterType = Int64Ty;
11403
if (Is32Bit) {
11404
ValueType = Int32Ty;
11405
} else if (Is128Bit) {
11406
llvm::Type *Int128Ty =
11407
llvm::IntegerType::getInt128Ty(CGM.getLLVMContext());
11408
ValueType = Int128Ty;
11409
RegisterType = Int128Ty;
11410
} else if (IsPointerBuiltin) {
11411
ValueType = VoidPtrTy;
11412
} else {
11413
ValueType = Int64Ty;
11414
};
11415
11416
return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
11417
AccessKind);
11418
}
11419
11420
if (BuiltinID == clang::AArch64::BI_ReadStatusReg ||
11421
BuiltinID == clang::AArch64::BI_WriteStatusReg) {
11422
LLVMContext &Context = CGM.getLLVMContext();
11423
11424
unsigned SysReg =
11425
E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
11426
11427
std::string SysRegStr;
11428
llvm::raw_string_ostream(SysRegStr) <<
11429
((1 << 1) | ((SysReg >> 14) & 1)) << ":" <<
11430
((SysReg >> 11) & 7) << ":" <<
11431
((SysReg >> 7) & 15) << ":" <<
11432
((SysReg >> 3) & 15) << ":" <<
11433
( SysReg & 7);
11434
11435
llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
11436
llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
11437
llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
11438
11439
llvm::Type *RegisterType = Int64Ty;
11440
llvm::Type *Types[] = { RegisterType };
11441
11442
if (BuiltinID == clang::AArch64::BI_ReadStatusReg) {
11443
llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
11444
11445
return Builder.CreateCall(F, Metadata);
11446
}
11447
11448
llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
11449
llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
11450
11451
return Builder.CreateCall(F, { Metadata, ArgValue });
11452
}
11453
11454
if (BuiltinID == clang::AArch64::BI_AddressOfReturnAddress) {
11455
llvm::Function *F =
11456
CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
11457
return Builder.CreateCall(F);
11458
}
11459
11460
if (BuiltinID == clang::AArch64::BI__builtin_sponentry) {
11461
llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
11462
return Builder.CreateCall(F);
11463
}
11464
11465
if (BuiltinID == clang::AArch64::BI__mulh ||
11466
BuiltinID == clang::AArch64::BI__umulh) {
11467
llvm::Type *ResType = ConvertType(E->getType());
11468
llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
11469
11470
bool IsSigned = BuiltinID == clang::AArch64::BI__mulh;
11471
Value *LHS =
11472
Builder.CreateIntCast(EmitScalarExpr(E->getArg(0)), Int128Ty, IsSigned);
11473
Value *RHS =
11474
Builder.CreateIntCast(EmitScalarExpr(E->getArg(1)), Int128Ty, IsSigned);
11475
11476
Value *MulResult, *HigherBits;
11477
if (IsSigned) {
11478
MulResult = Builder.CreateNSWMul(LHS, RHS);
11479
HigherBits = Builder.CreateAShr(MulResult, 64);
11480
} else {
11481
MulResult = Builder.CreateNUWMul(LHS, RHS);
11482
HigherBits = Builder.CreateLShr(MulResult, 64);
11483
}
11484
HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
11485
11486
return HigherBits;
11487
}
11488
11489
if (BuiltinID == AArch64::BI__writex18byte ||
11490
BuiltinID == AArch64::BI__writex18word ||
11491
BuiltinID == AArch64::BI__writex18dword ||
11492
BuiltinID == AArch64::BI__writex18qword) {
11493
// Read x18 as i8*
11494
LLVMContext &Context = CGM.getLLVMContext();
11495
llvm::Metadata *Ops[] = {llvm::MDString::get(Context, "x18")};
11496
llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
11497
llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
11498
llvm::Function *F =
11499
CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
11500
llvm::Value *X18 = Builder.CreateCall(F, Metadata);
11501
X18 = Builder.CreateIntToPtr(X18, Int8PtrTy);
11502
11503
// Store val at x18 + offset
11504
Value *Offset = Builder.CreateZExt(EmitScalarExpr(E->getArg(0)), Int64Ty);
11505
Value *Ptr = Builder.CreateGEP(Int8Ty, X18, Offset);
11506
Value *Val = EmitScalarExpr(E->getArg(1));
11507
StoreInst *Store = Builder.CreateAlignedStore(Val, Ptr, CharUnits::One());
11508
return Store;
11509
}
11510
11511
if (BuiltinID == AArch64::BI__readx18byte ||
11512
BuiltinID == AArch64::BI__readx18word ||
11513
BuiltinID == AArch64::BI__readx18dword ||
11514
BuiltinID == AArch64::BI__readx18qword) {
11515
llvm::Type *IntTy = ConvertType(E->getType());
11516
11517
// Read x18 as i8*
11518
LLVMContext &Context = CGM.getLLVMContext();
11519
llvm::Metadata *Ops[] = {llvm::MDString::get(Context, "x18")};
11520
llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
11521
llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
11522
llvm::Function *F =
11523
CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
11524
llvm::Value *X18 = Builder.CreateCall(F, Metadata);
11525
X18 = Builder.CreateIntToPtr(X18, Int8PtrTy);
11526
11527
// Load x18 + offset
11528
Value *Offset = Builder.CreateZExt(EmitScalarExpr(E->getArg(0)), Int64Ty);
11529
Value *Ptr = Builder.CreateGEP(Int8Ty, X18, Offset);
11530
LoadInst *Load = Builder.CreateAlignedLoad(IntTy, Ptr, CharUnits::One());
11531
return Load;
11532
}
11533
11534
if (BuiltinID == AArch64::BI_CopyDoubleFromInt64 ||
11535
BuiltinID == AArch64::BI_CopyFloatFromInt32 ||
11536
BuiltinID == AArch64::BI_CopyInt32FromFloat ||
11537
BuiltinID == AArch64::BI_CopyInt64FromDouble) {
11538
Value *Arg = EmitScalarExpr(E->getArg(0));
11539
llvm::Type *RetTy = ConvertType(E->getType());
11540
return Builder.CreateBitCast(Arg, RetTy);
11541
}
11542
11543
if (BuiltinID == AArch64::BI_CountLeadingOnes ||
11544
BuiltinID == AArch64::BI_CountLeadingOnes64 ||
11545
BuiltinID == AArch64::BI_CountLeadingZeros ||
11546
BuiltinID == AArch64::BI_CountLeadingZeros64) {
11547
Value *Arg = EmitScalarExpr(E->getArg(0));
11548
llvm::Type *ArgType = Arg->getType();
11549
11550
if (BuiltinID == AArch64::BI_CountLeadingOnes ||
11551
BuiltinID == AArch64::BI_CountLeadingOnes64)
11552
Arg = Builder.CreateXor(Arg, Constant::getAllOnesValue(ArgType));
11553
11554
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
11555
Value *Result = Builder.CreateCall(F, {Arg, Builder.getInt1(false)});
11556
11557
if (BuiltinID == AArch64::BI_CountLeadingOnes64 ||
11558
BuiltinID == AArch64::BI_CountLeadingZeros64)
11559
Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11560
return Result;
11561
}
11562
11563
if (BuiltinID == AArch64::BI_CountLeadingSigns ||
11564
BuiltinID == AArch64::BI_CountLeadingSigns64) {
11565
Value *Arg = EmitScalarExpr(E->getArg(0));
11566
11567
Function *F = (BuiltinID == AArch64::BI_CountLeadingSigns)
11568
? CGM.getIntrinsic(Intrinsic::aarch64_cls)
11569
: CGM.getIntrinsic(Intrinsic::aarch64_cls64);
11570
11571
Value *Result = Builder.CreateCall(F, Arg, "cls");
11572
if (BuiltinID == AArch64::BI_CountLeadingSigns64)
11573
Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11574
return Result;
11575
}
11576
11577
if (BuiltinID == AArch64::BI_CountOneBits ||
11578
BuiltinID == AArch64::BI_CountOneBits64) {
11579
Value *ArgValue = EmitScalarExpr(E->getArg(0));
11580
llvm::Type *ArgType = ArgValue->getType();
11581
Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
11582
11583
Value *Result = Builder.CreateCall(F, ArgValue);
11584
if (BuiltinID == AArch64::BI_CountOneBits64)
11585
Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11586
return Result;
11587
}
11588
11589
if (BuiltinID == AArch64::BI__prefetch) {
11590
Value *Address = EmitScalarExpr(E->getArg(0));
11591
Value *RW = llvm::ConstantInt::get(Int32Ty, 0);
11592
Value *Locality = ConstantInt::get(Int32Ty, 3);
11593
Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
11594
Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
11595
return Builder.CreateCall(F, {Address, RW, Locality, Data});
11596
}
11597
11598
if (BuiltinID == AArch64::BI__hlt) {
11599
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hlt);
11600
Builder.CreateCall(F, {EmitScalarExpr(E->getArg(0))});
11601
11602
// Return 0 for convenience, even though MSVC returns some other undefined
11603
// value.
11604
return ConstantInt::get(Builder.getInt32Ty(), 0);
11605
}
11606
11607
// Handle MSVC intrinsics before argument evaluation to prevent double
11608
// evaluation.
11609
if (std::optional<MSVCIntrin> MsvcIntId =
11610
translateAarch64ToMsvcIntrin(BuiltinID))
11611
return EmitMSVCBuiltinExpr(*MsvcIntId, E);
11612
11613
// Some intrinsics are equivalent - if they are use the base intrinsic ID.
11614
auto It = llvm::find_if(NEONEquivalentIntrinsicMap, [BuiltinID](auto &P) {
11615
return P.first == BuiltinID;
11616
});
11617
if (It != end(NEONEquivalentIntrinsicMap))
11618
BuiltinID = It->second;
11619
11620
// Find out if any arguments are required to be integer constant
11621
// expressions.
11622
unsigned ICEArguments = 0;
11623
ASTContext::GetBuiltinTypeError Error;
11624
getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
11625
assert(Error == ASTContext::GE_None && "Should not codegen an error");
11626
11627
llvm::SmallVector<Value*, 4> Ops;
11628
Address PtrOp0 = Address::invalid();
11629
for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
11630
if (i == 0) {
11631
switch (BuiltinID) {
11632
case NEON::BI__builtin_neon_vld1_v:
11633
case NEON::BI__builtin_neon_vld1q_v:
11634
case NEON::BI__builtin_neon_vld1_dup_v:
11635
case NEON::BI__builtin_neon_vld1q_dup_v:
11636
case NEON::BI__builtin_neon_vld1_lane_v:
11637
case NEON::BI__builtin_neon_vld1q_lane_v:
11638
case NEON::BI__builtin_neon_vst1_v:
11639
case NEON::BI__builtin_neon_vst1q_v:
11640
case NEON::BI__builtin_neon_vst1_lane_v:
11641
case NEON::BI__builtin_neon_vst1q_lane_v:
11642
case NEON::BI__builtin_neon_vldap1_lane_s64:
11643
case NEON::BI__builtin_neon_vldap1q_lane_s64:
11644
case NEON::BI__builtin_neon_vstl1_lane_s64:
11645
case NEON::BI__builtin_neon_vstl1q_lane_s64:
11646
// Get the alignment for the argument in addition to the value;
11647
// we'll use it later.
11648
PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
11649
Ops.push_back(PtrOp0.emitRawPointer(*this));
11650
continue;
11651
}
11652
}
11653
Ops.push_back(EmitScalarOrConstFoldImmArg(ICEArguments, i, E));
11654
}
11655
11656
auto SISDMap = ArrayRef(AArch64SISDIntrinsicMap);
11657
const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
11658
SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
11659
11660
if (Builtin) {
11661
Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
11662
Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
11663
assert(Result && "SISD intrinsic should have been handled");
11664
return Result;
11665
}
11666
11667
const Expr *Arg = E->getArg(E->getNumArgs()-1);
11668
NeonTypeFlags Type(0);
11669
if (std::optional<llvm::APSInt> Result =
11670
Arg->getIntegerConstantExpr(getContext()))
11671
// Determine the type of this overloaded NEON intrinsic.
11672
Type = NeonTypeFlags(Result->getZExtValue());
11673
11674
bool usgn = Type.isUnsigned();
11675
bool quad = Type.isQuad();
11676
11677
// Handle non-overloaded intrinsics first.
11678
switch (BuiltinID) {
11679
default: break;
11680
case NEON::BI__builtin_neon_vabsh_f16:
11681
Ops.push_back(EmitScalarExpr(E->getArg(0)));
11682
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
11683
case NEON::BI__builtin_neon_vaddq_p128: {
11684
llvm::Type *Ty = GetNeonType(this, NeonTypeFlags::Poly128);
11685
Ops.push_back(EmitScalarExpr(E->getArg(1)));
11686
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11687
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11688
Ops[0] = Builder.CreateXor(Ops[0], Ops[1]);
11689
llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
11690
return Builder.CreateBitCast(Ops[0], Int128Ty);
11691
}
11692
case NEON::BI__builtin_neon_vldrq_p128: {
11693
llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
11694
Value *Ptr = EmitScalarExpr(E->getArg(0));
11695
return Builder.CreateAlignedLoad(Int128Ty, Ptr,
11696
CharUnits::fromQuantity(16));
11697
}
11698
case NEON::BI__builtin_neon_vstrq_p128: {
11699
Value *Ptr = Ops[0];
11700
return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
11701
}
11702
case NEON::BI__builtin_neon_vcvts_f32_u32:
11703
case NEON::BI__builtin_neon_vcvtd_f64_u64:
11704
usgn = true;
11705
[[fallthrough]];
11706
case NEON::BI__builtin_neon_vcvts_f32_s32:
11707
case NEON::BI__builtin_neon_vcvtd_f64_s64: {
11708
Ops.push_back(EmitScalarExpr(E->getArg(0)));
11709
bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
11710
llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
11711
llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
11712
Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
11713
if (usgn)
11714
return Builder.CreateUIToFP(Ops[0], FTy);
11715
return Builder.CreateSIToFP(Ops[0], FTy);
11716
}
11717
case NEON::BI__builtin_neon_vcvth_f16_u16:
11718
case NEON::BI__builtin_neon_vcvth_f16_u32:
11719
case NEON::BI__builtin_neon_vcvth_f16_u64:
11720
usgn = true;
11721
[[fallthrough]];
11722
case NEON::BI__builtin_neon_vcvth_f16_s16:
11723
case NEON::BI__builtin_neon_vcvth_f16_s32:
11724
case NEON::BI__builtin_neon_vcvth_f16_s64: {
11725
Ops.push_back(EmitScalarExpr(E->getArg(0)));
11726
llvm::Type *FTy = HalfTy;
11727
llvm::Type *InTy;
11728
if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
11729
InTy = Int64Ty;
11730
else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
11731
InTy = Int32Ty;
11732
else
11733
InTy = Int16Ty;
11734
Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
11735
if (usgn)
11736
return Builder.CreateUIToFP(Ops[0], FTy);
11737
return Builder.CreateSIToFP(Ops[0], FTy);
11738
}
11739
case NEON::BI__builtin_neon_vcvtah_u16_f16:
11740
case NEON::BI__builtin_neon_vcvtmh_u16_f16:
11741
case NEON::BI__builtin_neon_vcvtnh_u16_f16:
11742
case NEON::BI__builtin_neon_vcvtph_u16_f16:
11743
case NEON::BI__builtin_neon_vcvth_u16_f16:
11744
case NEON::BI__builtin_neon_vcvtah_s16_f16:
11745
case NEON::BI__builtin_neon_vcvtmh_s16_f16:
11746
case NEON::BI__builtin_neon_vcvtnh_s16_f16:
11747
case NEON::BI__builtin_neon_vcvtph_s16_f16:
11748
case NEON::BI__builtin_neon_vcvth_s16_f16: {
11749
unsigned Int;
11750
llvm::Type* InTy = Int32Ty;
11751
llvm::Type* FTy = HalfTy;
11752
llvm::Type *Tys[2] = {InTy, FTy};
11753
Ops.push_back(EmitScalarExpr(E->getArg(0)));
11754
switch (BuiltinID) {
11755
default: llvm_unreachable("missing builtin ID in switch!");
11756
case NEON::BI__builtin_neon_vcvtah_u16_f16:
11757
Int = Intrinsic::aarch64_neon_fcvtau; break;
11758
case NEON::BI__builtin_neon_vcvtmh_u16_f16:
11759
Int = Intrinsic::aarch64_neon_fcvtmu; break;
11760
case NEON::BI__builtin_neon_vcvtnh_u16_f16:
11761
Int = Intrinsic::aarch64_neon_fcvtnu; break;
11762
case NEON::BI__builtin_neon_vcvtph_u16_f16:
11763
Int = Intrinsic::aarch64_neon_fcvtpu; break;
11764
case NEON::BI__builtin_neon_vcvth_u16_f16:
11765
Int = Intrinsic::aarch64_neon_fcvtzu; break;
11766
case NEON::BI__builtin_neon_vcvtah_s16_f16:
11767
Int = Intrinsic::aarch64_neon_fcvtas; break;
11768
case NEON::BI__builtin_neon_vcvtmh_s16_f16:
11769
Int = Intrinsic::aarch64_neon_fcvtms; break;
11770
case NEON::BI__builtin_neon_vcvtnh_s16_f16:
11771
Int = Intrinsic::aarch64_neon_fcvtns; break;
11772
case NEON::BI__builtin_neon_vcvtph_s16_f16:
11773
Int = Intrinsic::aarch64_neon_fcvtps; break;
11774
case NEON::BI__builtin_neon_vcvth_s16_f16:
11775
Int = Intrinsic::aarch64_neon_fcvtzs; break;
11776
}
11777
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
11778
return Builder.CreateTrunc(Ops[0], Int16Ty);
11779
}
11780
case NEON::BI__builtin_neon_vcaleh_f16:
11781
case NEON::BI__builtin_neon_vcalth_f16:
11782
case NEON::BI__builtin_neon_vcageh_f16:
11783
case NEON::BI__builtin_neon_vcagth_f16: {
11784
unsigned Int;
11785
llvm::Type* InTy = Int32Ty;
11786
llvm::Type* FTy = HalfTy;
11787
llvm::Type *Tys[2] = {InTy, FTy};
11788
Ops.push_back(EmitScalarExpr(E->getArg(1)));
11789
switch (BuiltinID) {
11790
default: llvm_unreachable("missing builtin ID in switch!");
11791
case NEON::BI__builtin_neon_vcageh_f16:
11792
Int = Intrinsic::aarch64_neon_facge; break;
11793
case NEON::BI__builtin_neon_vcagth_f16:
11794
Int = Intrinsic::aarch64_neon_facgt; break;
11795
case NEON::BI__builtin_neon_vcaleh_f16:
11796
Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
11797
case NEON::BI__builtin_neon_vcalth_f16:
11798
Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
11799
}
11800
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
11801
return Builder.CreateTrunc(Ops[0], Int16Ty);
11802
}
11803
case NEON::BI__builtin_neon_vcvth_n_s16_f16:
11804
case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
11805
unsigned Int;
11806
llvm::Type* InTy = Int32Ty;
11807
llvm::Type* FTy = HalfTy;
11808
llvm::Type *Tys[2] = {InTy, FTy};
11809
Ops.push_back(EmitScalarExpr(E->getArg(1)));
11810
switch (BuiltinID) {
11811
default: llvm_unreachable("missing builtin ID in switch!");
11812
case NEON::BI__builtin_neon_vcvth_n_s16_f16:
11813
Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
11814
case NEON::BI__builtin_neon_vcvth_n_u16_f16:
11815
Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
11816
}
11817
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
11818
return Builder.CreateTrunc(Ops[0], Int16Ty);
11819
}
11820
case NEON::BI__builtin_neon_vcvth_n_f16_s16:
11821
case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
11822
unsigned Int;
11823
llvm::Type* FTy = HalfTy;
11824
llvm::Type* InTy = Int32Ty;
11825
llvm::Type *Tys[2] = {FTy, InTy};
11826
Ops.push_back(EmitScalarExpr(E->getArg(1)));
11827
switch (BuiltinID) {
11828
default: llvm_unreachable("missing builtin ID in switch!");
11829
case NEON::BI__builtin_neon_vcvth_n_f16_s16:
11830
Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
11831
Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
11832
break;
11833
case NEON::BI__builtin_neon_vcvth_n_f16_u16:
11834
Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
11835
Ops[0] = Builder.CreateZExt(Ops[0], InTy);
11836
break;
11837
}
11838
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
11839
}
11840
case NEON::BI__builtin_neon_vpaddd_s64: {
11841
auto *Ty = llvm::FixedVectorType::get(Int64Ty, 2);
11842
Value *Vec = EmitScalarExpr(E->getArg(0));
11843
// The vector is v2f64, so make sure it's bitcast to that.
11844
Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
11845
llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
11846
llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
11847
Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
11848
Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
11849
// Pairwise addition of a v2f64 into a scalar f64.
11850
return Builder.CreateAdd(Op0, Op1, "vpaddd");
11851
}
11852
case NEON::BI__builtin_neon_vpaddd_f64: {
11853
auto *Ty = llvm::FixedVectorType::get(DoubleTy, 2);
11854
Value *Vec = EmitScalarExpr(E->getArg(0));
11855
// The vector is v2f64, so make sure it's bitcast to that.
11856
Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
11857
llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
11858
llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
11859
Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
11860
Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
11861
// Pairwise addition of a v2f64 into a scalar f64.
11862
return Builder.CreateFAdd(Op0, Op1, "vpaddd");
11863
}
11864
case NEON::BI__builtin_neon_vpadds_f32: {
11865
auto *Ty = llvm::FixedVectorType::get(FloatTy, 2);
11866
Value *Vec = EmitScalarExpr(E->getArg(0));
11867
// The vector is v2f32, so make sure it's bitcast to that.
11868
Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
11869
llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
11870
llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
11871
Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
11872
Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
11873
// Pairwise addition of a v2f32 into a scalar f32.
11874
return Builder.CreateFAdd(Op0, Op1, "vpaddd");
11875
}
11876
case NEON::BI__builtin_neon_vceqzd_s64:
11877
case NEON::BI__builtin_neon_vceqzd_f64:
11878
case NEON::BI__builtin_neon_vceqzs_f32:
11879
case NEON::BI__builtin_neon_vceqzh_f16:
11880
Ops.push_back(EmitScalarExpr(E->getArg(0)));
11881
return EmitAArch64CompareBuiltinExpr(
11882
Ops[0], ConvertType(E->getCallReturnType(getContext())),
11883
ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
11884
case NEON::BI__builtin_neon_vcgezd_s64:
11885
case NEON::BI__builtin_neon_vcgezd_f64:
11886
case NEON::BI__builtin_neon_vcgezs_f32:
11887
case NEON::BI__builtin_neon_vcgezh_f16:
11888
Ops.push_back(EmitScalarExpr(E->getArg(0)));
11889
return EmitAArch64CompareBuiltinExpr(
11890
Ops[0], ConvertType(E->getCallReturnType(getContext())),
11891
ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
11892
case NEON::BI__builtin_neon_vclezd_s64:
11893
case NEON::BI__builtin_neon_vclezd_f64:
11894
case NEON::BI__builtin_neon_vclezs_f32:
11895
case NEON::BI__builtin_neon_vclezh_f16:
11896
Ops.push_back(EmitScalarExpr(E->getArg(0)));
11897
return EmitAArch64CompareBuiltinExpr(
11898
Ops[0], ConvertType(E->getCallReturnType(getContext())),
11899
ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
11900
case NEON::BI__builtin_neon_vcgtzd_s64:
11901
case NEON::BI__builtin_neon_vcgtzd_f64:
11902
case NEON::BI__builtin_neon_vcgtzs_f32:
11903
case NEON::BI__builtin_neon_vcgtzh_f16:
11904
Ops.push_back(EmitScalarExpr(E->getArg(0)));
11905
return EmitAArch64CompareBuiltinExpr(
11906
Ops[0], ConvertType(E->getCallReturnType(getContext())),
11907
ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
11908
case NEON::BI__builtin_neon_vcltzd_s64:
11909
case NEON::BI__builtin_neon_vcltzd_f64:
11910
case NEON::BI__builtin_neon_vcltzs_f32:
11911
case NEON::BI__builtin_neon_vcltzh_f16:
11912
Ops.push_back(EmitScalarExpr(E->getArg(0)));
11913
return EmitAArch64CompareBuiltinExpr(
11914
Ops[0], ConvertType(E->getCallReturnType(getContext())),
11915
ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
11916
11917
case NEON::BI__builtin_neon_vceqzd_u64: {
11918
Ops.push_back(EmitScalarExpr(E->getArg(0)));
11919
Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
11920
Ops[0] =
11921
Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
11922
return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
11923
}
11924
case NEON::BI__builtin_neon_vceqd_f64:
11925
case NEON::BI__builtin_neon_vcled_f64:
11926
case NEON::BI__builtin_neon_vcltd_f64:
11927
case NEON::BI__builtin_neon_vcged_f64:
11928
case NEON::BI__builtin_neon_vcgtd_f64: {
11929
llvm::CmpInst::Predicate P;
11930
switch (BuiltinID) {
11931
default: llvm_unreachable("missing builtin ID in switch!");
11932
case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
11933
case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
11934
case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
11935
case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
11936
case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
11937
}
11938
Ops.push_back(EmitScalarExpr(E->getArg(1)));
11939
Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
11940
Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
11941
if (P == llvm::FCmpInst::FCMP_OEQ)
11942
Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
11943
else
11944
Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
11945
return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
11946
}
11947
case NEON::BI__builtin_neon_vceqs_f32:
11948
case NEON::BI__builtin_neon_vcles_f32:
11949
case NEON::BI__builtin_neon_vclts_f32:
11950
case NEON::BI__builtin_neon_vcges_f32:
11951
case NEON::BI__builtin_neon_vcgts_f32: {
11952
llvm::CmpInst::Predicate P;
11953
switch (BuiltinID) {
11954
default: llvm_unreachable("missing builtin ID in switch!");
11955
case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
11956
case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
11957
case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
11958
case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
11959
case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
11960
}
11961
Ops.push_back(EmitScalarExpr(E->getArg(1)));
11962
Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
11963
Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
11964
if (P == llvm::FCmpInst::FCMP_OEQ)
11965
Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
11966
else
11967
Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
11968
return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
11969
}
11970
case NEON::BI__builtin_neon_vceqh_f16:
11971
case NEON::BI__builtin_neon_vcleh_f16:
11972
case NEON::BI__builtin_neon_vclth_f16:
11973
case NEON::BI__builtin_neon_vcgeh_f16:
11974
case NEON::BI__builtin_neon_vcgth_f16: {
11975
llvm::CmpInst::Predicate P;
11976
switch (BuiltinID) {
11977
default: llvm_unreachable("missing builtin ID in switch!");
11978
case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
11979
case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
11980
case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
11981
case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
11982
case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
11983
}
11984
Ops.push_back(EmitScalarExpr(E->getArg(1)));
11985
Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
11986
Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
11987
if (P == llvm::FCmpInst::FCMP_OEQ)
11988
Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
11989
else
11990
Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
11991
return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
11992
}
11993
case NEON::BI__builtin_neon_vceqd_s64:
11994
case NEON::BI__builtin_neon_vceqd_u64:
11995
case NEON::BI__builtin_neon_vcgtd_s64:
11996
case NEON::BI__builtin_neon_vcgtd_u64:
11997
case NEON::BI__builtin_neon_vcltd_s64:
11998
case NEON::BI__builtin_neon_vcltd_u64:
11999
case NEON::BI__builtin_neon_vcged_u64:
12000
case NEON::BI__builtin_neon_vcged_s64:
12001
case NEON::BI__builtin_neon_vcled_u64:
12002
case NEON::BI__builtin_neon_vcled_s64: {
12003
llvm::CmpInst::Predicate P;
12004
switch (BuiltinID) {
12005
default: llvm_unreachable("missing builtin ID in switch!");
12006
case NEON::BI__builtin_neon_vceqd_s64:
12007
case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
12008
case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
12009
case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
12010
case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
12011
case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
12012
case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
12013
case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
12014
case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
12015
case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
12016
}
12017
Ops.push_back(EmitScalarExpr(E->getArg(1)));
12018
Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
12019
Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
12020
Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
12021
return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
12022
}
12023
case NEON::BI__builtin_neon_vtstd_s64:
12024
case NEON::BI__builtin_neon_vtstd_u64: {
12025
Ops.push_back(EmitScalarExpr(E->getArg(1)));
12026
Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
12027
Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
12028
Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
12029
Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
12030
llvm::Constant::getNullValue(Int64Ty));
12031
return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
12032
}
12033
case NEON::BI__builtin_neon_vset_lane_i8:
12034
case NEON::BI__builtin_neon_vset_lane_i16:
12035
case NEON::BI__builtin_neon_vset_lane_i32:
12036
case NEON::BI__builtin_neon_vset_lane_i64:
12037
case NEON::BI__builtin_neon_vset_lane_bf16:
12038
case NEON::BI__builtin_neon_vset_lane_f32:
12039
case NEON::BI__builtin_neon_vsetq_lane_i8:
12040
case NEON::BI__builtin_neon_vsetq_lane_i16:
12041
case NEON::BI__builtin_neon_vsetq_lane_i32:
12042
case NEON::BI__builtin_neon_vsetq_lane_i64:
12043
case NEON::BI__builtin_neon_vsetq_lane_bf16:
12044
case NEON::BI__builtin_neon_vsetq_lane_f32:
12045
Ops.push_back(EmitScalarExpr(E->getArg(2)));
12046
return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
12047
case NEON::BI__builtin_neon_vset_lane_f64:
12048
// The vector type needs a cast for the v1f64 variant.
12049
Ops[1] =
12050
Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 1));
12051
Ops.push_back(EmitScalarExpr(E->getArg(2)));
12052
return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
12053
case NEON::BI__builtin_neon_vsetq_lane_f64:
12054
// The vector type needs a cast for the v2f64 variant.
12055
Ops[1] =
12056
Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 2));
12057
Ops.push_back(EmitScalarExpr(E->getArg(2)));
12058
return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
12059
12060
case NEON::BI__builtin_neon_vget_lane_i8:
12061
case NEON::BI__builtin_neon_vdupb_lane_i8:
12062
Ops[0] =
12063
Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 8));
12064
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12065
"vget_lane");
12066
case NEON::BI__builtin_neon_vgetq_lane_i8:
12067
case NEON::BI__builtin_neon_vdupb_laneq_i8:
12068
Ops[0] =
12069
Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 16));
12070
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12071
"vgetq_lane");
12072
case NEON::BI__builtin_neon_vget_lane_i16:
12073
case NEON::BI__builtin_neon_vduph_lane_i16:
12074
Ops[0] =
12075
Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 4));
12076
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12077
"vget_lane");
12078
case NEON::BI__builtin_neon_vgetq_lane_i16:
12079
case NEON::BI__builtin_neon_vduph_laneq_i16:
12080
Ops[0] =
12081
Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 8));
12082
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12083
"vgetq_lane");
12084
case NEON::BI__builtin_neon_vget_lane_i32:
12085
case NEON::BI__builtin_neon_vdups_lane_i32:
12086
Ops[0] =
12087
Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 2));
12088
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12089
"vget_lane");
12090
case NEON::BI__builtin_neon_vdups_lane_f32:
12091
Ops[0] =
12092
Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
12093
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12094
"vdups_lane");
12095
case NEON::BI__builtin_neon_vgetq_lane_i32:
12096
case NEON::BI__builtin_neon_vdups_laneq_i32:
12097
Ops[0] =
12098
Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
12099
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12100
"vgetq_lane");
12101
case NEON::BI__builtin_neon_vget_lane_i64:
12102
case NEON::BI__builtin_neon_vdupd_lane_i64:
12103
Ops[0] =
12104
Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 1));
12105
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12106
"vget_lane");
12107
case NEON::BI__builtin_neon_vdupd_lane_f64:
12108
Ops[0] =
12109
Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
12110
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12111
"vdupd_lane");
12112
case NEON::BI__builtin_neon_vgetq_lane_i64:
12113
case NEON::BI__builtin_neon_vdupd_laneq_i64:
12114
Ops[0] =
12115
Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
12116
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12117
"vgetq_lane");
12118
case NEON::BI__builtin_neon_vget_lane_f32:
12119
Ops[0] =
12120
Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
12121
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12122
"vget_lane");
12123
case NEON::BI__builtin_neon_vget_lane_f64:
12124
Ops[0] =
12125
Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
12126
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12127
"vget_lane");
12128
case NEON::BI__builtin_neon_vgetq_lane_f32:
12129
case NEON::BI__builtin_neon_vdups_laneq_f32:
12130
Ops[0] =
12131
Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 4));
12132
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12133
"vgetq_lane");
12134
case NEON::BI__builtin_neon_vgetq_lane_f64:
12135
case NEON::BI__builtin_neon_vdupd_laneq_f64:
12136
Ops[0] =
12137
Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 2));
12138
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12139
"vgetq_lane");
12140
case NEON::BI__builtin_neon_vaddh_f16:
12141
Ops.push_back(EmitScalarExpr(E->getArg(1)));
12142
return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
12143
case NEON::BI__builtin_neon_vsubh_f16:
12144
Ops.push_back(EmitScalarExpr(E->getArg(1)));
12145
return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
12146
case NEON::BI__builtin_neon_vmulh_f16:
12147
Ops.push_back(EmitScalarExpr(E->getArg(1)));
12148
return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
12149
case NEON::BI__builtin_neon_vdivh_f16:
12150
Ops.push_back(EmitScalarExpr(E->getArg(1)));
12151
return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
12152
case NEON::BI__builtin_neon_vfmah_f16:
12153
// NEON intrinsic puts accumulator first, unlike the LLVM fma.
12154
return emitCallMaybeConstrainedFPBuiltin(
12155
*this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
12156
{EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
12157
case NEON::BI__builtin_neon_vfmsh_f16: {
12158
Value* Neg = Builder.CreateFNeg(EmitScalarExpr(E->getArg(1)), "vsubh");
12159
12160
// NEON intrinsic puts accumulator first, unlike the LLVM fma.
12161
return emitCallMaybeConstrainedFPBuiltin(
12162
*this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
12163
{Neg, EmitScalarExpr(E->getArg(2)), Ops[0]});
12164
}
12165
case NEON::BI__builtin_neon_vaddd_s64:
12166
case NEON::BI__builtin_neon_vaddd_u64:
12167
return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
12168
case NEON::BI__builtin_neon_vsubd_s64:
12169
case NEON::BI__builtin_neon_vsubd_u64:
12170
return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
12171
case NEON::BI__builtin_neon_vqdmlalh_s16:
12172
case NEON::BI__builtin_neon_vqdmlslh_s16: {
12173
SmallVector<Value *, 2> ProductOps;
12174
ProductOps.push_back(vectorWrapScalar16(Ops[1]));
12175
ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
12176
auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
12177
Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
12178
ProductOps, "vqdmlXl");
12179
Constant *CI = ConstantInt::get(SizeTy, 0);
12180
Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
12181
12182
unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
12183
? Intrinsic::aarch64_neon_sqadd
12184
: Intrinsic::aarch64_neon_sqsub;
12185
return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
12186
}
12187
case NEON::BI__builtin_neon_vqshlud_n_s64: {
12188
Ops.push_back(EmitScalarExpr(E->getArg(1)));
12189
Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
12190
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
12191
Ops, "vqshlu_n");
12192
}
12193
case NEON::BI__builtin_neon_vqshld_n_u64:
12194
case NEON::BI__builtin_neon_vqshld_n_s64: {
12195
unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
12196
? Intrinsic::aarch64_neon_uqshl
12197
: Intrinsic::aarch64_neon_sqshl;
12198
Ops.push_back(EmitScalarExpr(E->getArg(1)));
12199
Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
12200
return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
12201
}
12202
case NEON::BI__builtin_neon_vrshrd_n_u64:
12203
case NEON::BI__builtin_neon_vrshrd_n_s64: {
12204
unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
12205
? Intrinsic::aarch64_neon_urshl
12206
: Intrinsic::aarch64_neon_srshl;
12207
Ops.push_back(EmitScalarExpr(E->getArg(1)));
12208
int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
12209
Ops[1] = ConstantInt::get(Int64Ty, -SV);
12210
return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
12211
}
12212
case NEON::BI__builtin_neon_vrsrad_n_u64:
12213
case NEON::BI__builtin_neon_vrsrad_n_s64: {
12214
unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
12215
? Intrinsic::aarch64_neon_urshl
12216
: Intrinsic::aarch64_neon_srshl;
12217
Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
12218
Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
12219
Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
12220
{Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
12221
return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
12222
}
12223
case NEON::BI__builtin_neon_vshld_n_s64:
12224
case NEON::BI__builtin_neon_vshld_n_u64: {
12225
llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
12226
return Builder.CreateShl(
12227
Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
12228
}
12229
case NEON::BI__builtin_neon_vshrd_n_s64: {
12230
llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
12231
return Builder.CreateAShr(
12232
Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
12233
Amt->getZExtValue())),
12234
"shrd_n");
12235
}
12236
case NEON::BI__builtin_neon_vshrd_n_u64: {
12237
llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
12238
uint64_t ShiftAmt = Amt->getZExtValue();
12239
// Right-shifting an unsigned value by its size yields 0.
12240
if (ShiftAmt == 64)
12241
return ConstantInt::get(Int64Ty, 0);
12242
return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
12243
"shrd_n");
12244
}
12245
case NEON::BI__builtin_neon_vsrad_n_s64: {
12246
llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
12247
Ops[1] = Builder.CreateAShr(
12248
Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
12249
Amt->getZExtValue())),
12250
"shrd_n");
12251
return Builder.CreateAdd(Ops[0], Ops[1]);
12252
}
12253
case NEON::BI__builtin_neon_vsrad_n_u64: {
12254
llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
12255
uint64_t ShiftAmt = Amt->getZExtValue();
12256
// Right-shifting an unsigned value by its size yields 0.
12257
// As Op + 0 = Op, return Ops[0] directly.
12258
if (ShiftAmt == 64)
12259
return Ops[0];
12260
Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
12261
"shrd_n");
12262
return Builder.CreateAdd(Ops[0], Ops[1]);
12263
}
12264
case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
12265
case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
12266
case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
12267
case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
12268
Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
12269
"lane");
12270
SmallVector<Value *, 2> ProductOps;
12271
ProductOps.push_back(vectorWrapScalar16(Ops[1]));
12272
ProductOps.push_back(vectorWrapScalar16(Ops[2]));
12273
auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
12274
Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
12275
ProductOps, "vqdmlXl");
12276
Constant *CI = ConstantInt::get(SizeTy, 0);
12277
Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
12278
Ops.pop_back();
12279
12280
unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
12281
BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
12282
? Intrinsic::aarch64_neon_sqadd
12283
: Intrinsic::aarch64_neon_sqsub;
12284
return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
12285
}
12286
case NEON::BI__builtin_neon_vqdmlals_s32:
12287
case NEON::BI__builtin_neon_vqdmlsls_s32: {
12288
SmallVector<Value *, 2> ProductOps;
12289
ProductOps.push_back(Ops[1]);
12290
ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
12291
Ops[1] =
12292
EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
12293
ProductOps, "vqdmlXl");
12294
12295
unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
12296
? Intrinsic::aarch64_neon_sqadd
12297
: Intrinsic::aarch64_neon_sqsub;
12298
return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
12299
}
12300
case NEON::BI__builtin_neon_vqdmlals_lane_s32:
12301
case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
12302
case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
12303
case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
12304
Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
12305
"lane");
12306
SmallVector<Value *, 2> ProductOps;
12307
ProductOps.push_back(Ops[1]);
12308
ProductOps.push_back(Ops[2]);
12309
Ops[1] =
12310
EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
12311
ProductOps, "vqdmlXl");
12312
Ops.pop_back();
12313
12314
unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
12315
BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
12316
? Intrinsic::aarch64_neon_sqadd
12317
: Intrinsic::aarch64_neon_sqsub;
12318
return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
12319
}
12320
case NEON::BI__builtin_neon_vget_lane_bf16:
12321
case NEON::BI__builtin_neon_vduph_lane_bf16:
12322
case NEON::BI__builtin_neon_vduph_lane_f16: {
12323
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12324
"vget_lane");
12325
}
12326
case NEON::BI__builtin_neon_vgetq_lane_bf16:
12327
case NEON::BI__builtin_neon_vduph_laneq_bf16:
12328
case NEON::BI__builtin_neon_vduph_laneq_f16: {
12329
return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12330
"vgetq_lane");
12331
}
12332
12333
case clang::AArch64::BI_InterlockedAdd:
12334
case clang::AArch64::BI_InterlockedAdd64: {
12335
Address DestAddr = CheckAtomicAlignment(*this, E);
12336
Value *Val = EmitScalarExpr(E->getArg(1));
12337
AtomicRMWInst *RMWI =
12338
Builder.CreateAtomicRMW(AtomicRMWInst::Add, DestAddr, Val,
12339
llvm::AtomicOrdering::SequentiallyConsistent);
12340
return Builder.CreateAdd(RMWI, Val);
12341
}
12342
}
12343
12344
llvm::FixedVectorType *VTy = GetNeonType(this, Type);
12345
llvm::Type *Ty = VTy;
12346
if (!Ty)
12347
return nullptr;
12348
12349
// Not all intrinsics handled by the common case work for AArch64 yet, so only
12350
// defer to common code if it's been added to our special map.
12351
Builtin = findARMVectorIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
12352
AArch64SIMDIntrinsicsProvenSorted);
12353
12354
if (Builtin)
12355
return EmitCommonNeonBuiltinExpr(
12356
Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
12357
Builtin->NameHint, Builtin->TypeModifier, E, Ops,
12358
/*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
12359
12360
if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
12361
return V;
12362
12363
unsigned Int;
12364
switch (BuiltinID) {
12365
default: return nullptr;
12366
case NEON::BI__builtin_neon_vbsl_v:
12367
case NEON::BI__builtin_neon_vbslq_v: {
12368
llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
12369
Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
12370
Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
12371
Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
12372
12373
Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
12374
Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
12375
Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
12376
return Builder.CreateBitCast(Ops[0], Ty);
12377
}
12378
case NEON::BI__builtin_neon_vfma_lane_v:
12379
case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
12380
// The ARM builtins (and instructions) have the addend as the first
12381
// operand, but the 'fma' intrinsics have it last. Swap it around here.
12382
Value *Addend = Ops[0];
12383
Value *Multiplicand = Ops[1];
12384
Value *LaneSource = Ops[2];
12385
Ops[0] = Multiplicand;
12386
Ops[1] = LaneSource;
12387
Ops[2] = Addend;
12388
12389
// Now adjust things to handle the lane access.
12390
auto *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v
12391
? llvm::FixedVectorType::get(VTy->getElementType(),
12392
VTy->getNumElements() / 2)
12393
: VTy;
12394
llvm::Constant *cst = cast<Constant>(Ops[3]);
12395
Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), cst);
12396
Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
12397
Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
12398
12399
Ops.pop_back();
12400
Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_fma
12401
: Intrinsic::fma;
12402
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
12403
}
12404
case NEON::BI__builtin_neon_vfma_laneq_v: {
12405
auto *VTy = cast<llvm::FixedVectorType>(Ty);
12406
// v1f64 fma should be mapped to Neon scalar f64 fma
12407
if (VTy && VTy->getElementType() == DoubleTy) {
12408
Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
12409
Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
12410
llvm::FixedVectorType *VTy =
12411
GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true));
12412
Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
12413
Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
12414
Value *Result;
12415
Result = emitCallMaybeConstrainedFPBuiltin(
12416
*this, Intrinsic::fma, Intrinsic::experimental_constrained_fma,
12417
DoubleTy, {Ops[1], Ops[2], Ops[0]});
12418
return Builder.CreateBitCast(Result, Ty);
12419
}
12420
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
12421
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
12422
12423
auto *STy = llvm::FixedVectorType::get(VTy->getElementType(),
12424
VTy->getNumElements() * 2);
12425
Ops[2] = Builder.CreateBitCast(Ops[2], STy);
12426
Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(),
12427
cast<ConstantInt>(Ops[3]));
12428
Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
12429
12430
return emitCallMaybeConstrainedFPBuiltin(
12431
*this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
12432
{Ops[2], Ops[1], Ops[0]});
12433
}
12434
case NEON::BI__builtin_neon_vfmaq_laneq_v: {
12435
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
12436
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
12437
12438
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
12439
Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
12440
return emitCallMaybeConstrainedFPBuiltin(
12441
*this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
12442
{Ops[2], Ops[1], Ops[0]});
12443
}
12444
case NEON::BI__builtin_neon_vfmah_lane_f16:
12445
case NEON::BI__builtin_neon_vfmas_lane_f32:
12446
case NEON::BI__builtin_neon_vfmah_laneq_f16:
12447
case NEON::BI__builtin_neon_vfmas_laneq_f32:
12448
case NEON::BI__builtin_neon_vfmad_lane_f64:
12449
case NEON::BI__builtin_neon_vfmad_laneq_f64: {
12450
Ops.push_back(EmitScalarExpr(E->getArg(3)));
12451
llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
12452
Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
12453
return emitCallMaybeConstrainedFPBuiltin(
12454
*this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
12455
{Ops[1], Ops[2], Ops[0]});
12456
}
12457
case NEON::BI__builtin_neon_vmull_v:
12458
// FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
12459
Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
12460
if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
12461
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
12462
case NEON::BI__builtin_neon_vmax_v:
12463
case NEON::BI__builtin_neon_vmaxq_v:
12464
// FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
12465
Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
12466
if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
12467
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
12468
case NEON::BI__builtin_neon_vmaxh_f16: {
12469
Ops.push_back(EmitScalarExpr(E->getArg(1)));
12470
Int = Intrinsic::aarch64_neon_fmax;
12471
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
12472
}
12473
case NEON::BI__builtin_neon_vmin_v:
12474
case NEON::BI__builtin_neon_vminq_v:
12475
// FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
12476
Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
12477
if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
12478
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
12479
case NEON::BI__builtin_neon_vminh_f16: {
12480
Ops.push_back(EmitScalarExpr(E->getArg(1)));
12481
Int = Intrinsic::aarch64_neon_fmin;
12482
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
12483
}
12484
case NEON::BI__builtin_neon_vabd_v:
12485
case NEON::BI__builtin_neon_vabdq_v:
12486
// FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
12487
Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
12488
if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
12489
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
12490
case NEON::BI__builtin_neon_vpadal_v:
12491
case NEON::BI__builtin_neon_vpadalq_v: {
12492
unsigned ArgElts = VTy->getNumElements();
12493
llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
12494
unsigned BitWidth = EltTy->getBitWidth();
12495
auto *ArgTy = llvm::FixedVectorType::get(
12496
llvm::IntegerType::get(getLLVMContext(), BitWidth / 2), 2 * ArgElts);
12497
llvm::Type* Tys[2] = { VTy, ArgTy };
12498
Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
12499
SmallVector<llvm::Value*, 1> TmpOps;
12500
TmpOps.push_back(Ops[1]);
12501
Function *F = CGM.getIntrinsic(Int, Tys);
12502
llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
12503
llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
12504
return Builder.CreateAdd(tmp, addend);
12505
}
12506
case NEON::BI__builtin_neon_vpmin_v:
12507
case NEON::BI__builtin_neon_vpminq_v:
12508
// FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
12509
Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
12510
if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
12511
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
12512
case NEON::BI__builtin_neon_vpmax_v:
12513
case NEON::BI__builtin_neon_vpmaxq_v:
12514
// FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
12515
Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
12516
if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
12517
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
12518
case NEON::BI__builtin_neon_vminnm_v:
12519
case NEON::BI__builtin_neon_vminnmq_v:
12520
Int = Intrinsic::aarch64_neon_fminnm;
12521
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
12522
case NEON::BI__builtin_neon_vminnmh_f16:
12523
Ops.push_back(EmitScalarExpr(E->getArg(1)));
12524
Int = Intrinsic::aarch64_neon_fminnm;
12525
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
12526
case NEON::BI__builtin_neon_vmaxnm_v:
12527
case NEON::BI__builtin_neon_vmaxnmq_v:
12528
Int = Intrinsic::aarch64_neon_fmaxnm;
12529
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
12530
case NEON::BI__builtin_neon_vmaxnmh_f16:
12531
Ops.push_back(EmitScalarExpr(E->getArg(1)));
12532
Int = Intrinsic::aarch64_neon_fmaxnm;
12533
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
12534
case NEON::BI__builtin_neon_vrecpss_f32: {
12535
Ops.push_back(EmitScalarExpr(E->getArg(1)));
12536
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
12537
Ops, "vrecps");
12538
}
12539
case NEON::BI__builtin_neon_vrecpsd_f64:
12540
Ops.push_back(EmitScalarExpr(E->getArg(1)));
12541
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
12542
Ops, "vrecps");
12543
case NEON::BI__builtin_neon_vrecpsh_f16:
12544
Ops.push_back(EmitScalarExpr(E->getArg(1)));
12545
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
12546
Ops, "vrecps");
12547
case NEON::BI__builtin_neon_vqshrun_n_v:
12548
Int = Intrinsic::aarch64_neon_sqshrun;
12549
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
12550
case NEON::BI__builtin_neon_vqrshrun_n_v:
12551
Int = Intrinsic::aarch64_neon_sqrshrun;
12552
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
12553
case NEON::BI__builtin_neon_vqshrn_n_v:
12554
Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
12555
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
12556
case NEON::BI__builtin_neon_vrshrn_n_v:
12557
Int = Intrinsic::aarch64_neon_rshrn;
12558
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
12559
case NEON::BI__builtin_neon_vqrshrn_n_v:
12560
Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
12561
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
12562
case NEON::BI__builtin_neon_vrndah_f16: {
12563
Ops.push_back(EmitScalarExpr(E->getArg(0)));
12564
Int = Builder.getIsFPConstrained()
12565
? Intrinsic::experimental_constrained_round
12566
: Intrinsic::round;
12567
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
12568
}
12569
case NEON::BI__builtin_neon_vrnda_v:
12570
case NEON::BI__builtin_neon_vrndaq_v: {
12571
Int = Builder.getIsFPConstrained()
12572
? Intrinsic::experimental_constrained_round
12573
: Intrinsic::round;
12574
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
12575
}
12576
case NEON::BI__builtin_neon_vrndih_f16: {
12577
Ops.push_back(EmitScalarExpr(E->getArg(0)));
12578
Int = Builder.getIsFPConstrained()
12579
? Intrinsic::experimental_constrained_nearbyint
12580
: Intrinsic::nearbyint;
12581
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
12582
}
12583
case NEON::BI__builtin_neon_vrndmh_f16: {
12584
Ops.push_back(EmitScalarExpr(E->getArg(0)));
12585
Int = Builder.getIsFPConstrained()
12586
? Intrinsic::experimental_constrained_floor
12587
: Intrinsic::floor;
12588
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
12589
}
12590
case NEON::BI__builtin_neon_vrndm_v:
12591
case NEON::BI__builtin_neon_vrndmq_v: {
12592
Int = Builder.getIsFPConstrained()
12593
? Intrinsic::experimental_constrained_floor
12594
: Intrinsic::floor;
12595
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
12596
}
12597
case NEON::BI__builtin_neon_vrndnh_f16: {
12598
Ops.push_back(EmitScalarExpr(E->getArg(0)));
12599
Int = Builder.getIsFPConstrained()
12600
? Intrinsic::experimental_constrained_roundeven
12601
: Intrinsic::roundeven;
12602
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
12603
}
12604
case NEON::BI__builtin_neon_vrndn_v:
12605
case NEON::BI__builtin_neon_vrndnq_v: {
12606
Int = Builder.getIsFPConstrained()
12607
? Intrinsic::experimental_constrained_roundeven
12608
: Intrinsic::roundeven;
12609
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
12610
}
12611
case NEON::BI__builtin_neon_vrndns_f32: {
12612
Ops.push_back(EmitScalarExpr(E->getArg(0)));
12613
Int = Builder.getIsFPConstrained()
12614
? Intrinsic::experimental_constrained_roundeven
12615
: Intrinsic::roundeven;
12616
return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
12617
}
12618
case NEON::BI__builtin_neon_vrndph_f16: {
12619
Ops.push_back(EmitScalarExpr(E->getArg(0)));
12620
Int = Builder.getIsFPConstrained()
12621
? Intrinsic::experimental_constrained_ceil
12622
: Intrinsic::ceil;
12623
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
12624
}
12625
case NEON::BI__builtin_neon_vrndp_v:
12626
case NEON::BI__builtin_neon_vrndpq_v: {
12627
Int = Builder.getIsFPConstrained()
12628
? Intrinsic::experimental_constrained_ceil
12629
: Intrinsic::ceil;
12630
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
12631
}
12632
case NEON::BI__builtin_neon_vrndxh_f16: {
12633
Ops.push_back(EmitScalarExpr(E->getArg(0)));
12634
Int = Builder.getIsFPConstrained()
12635
? Intrinsic::experimental_constrained_rint
12636
: Intrinsic::rint;
12637
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
12638
}
12639
case NEON::BI__builtin_neon_vrndx_v:
12640
case NEON::BI__builtin_neon_vrndxq_v: {
12641
Int = Builder.getIsFPConstrained()
12642
? Intrinsic::experimental_constrained_rint
12643
: Intrinsic::rint;
12644
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
12645
}
12646
case NEON::BI__builtin_neon_vrndh_f16: {
12647
Ops.push_back(EmitScalarExpr(E->getArg(0)));
12648
Int = Builder.getIsFPConstrained()
12649
? Intrinsic::experimental_constrained_trunc
12650
: Intrinsic::trunc;
12651
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
12652
}
12653
case NEON::BI__builtin_neon_vrnd32x_f32:
12654
case NEON::BI__builtin_neon_vrnd32xq_f32:
12655
case NEON::BI__builtin_neon_vrnd32x_f64:
12656
case NEON::BI__builtin_neon_vrnd32xq_f64: {
12657
Ops.push_back(EmitScalarExpr(E->getArg(0)));
12658
Int = Intrinsic::aarch64_neon_frint32x;
12659
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32x");
12660
}
12661
case NEON::BI__builtin_neon_vrnd32z_f32:
12662
case NEON::BI__builtin_neon_vrnd32zq_f32:
12663
case NEON::BI__builtin_neon_vrnd32z_f64:
12664
case NEON::BI__builtin_neon_vrnd32zq_f64: {
12665
Ops.push_back(EmitScalarExpr(E->getArg(0)));
12666
Int = Intrinsic::aarch64_neon_frint32z;
12667
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32z");
12668
}
12669
case NEON::BI__builtin_neon_vrnd64x_f32:
12670
case NEON::BI__builtin_neon_vrnd64xq_f32:
12671
case NEON::BI__builtin_neon_vrnd64x_f64:
12672
case NEON::BI__builtin_neon_vrnd64xq_f64: {
12673
Ops.push_back(EmitScalarExpr(E->getArg(0)));
12674
Int = Intrinsic::aarch64_neon_frint64x;
12675
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64x");
12676
}
12677
case NEON::BI__builtin_neon_vrnd64z_f32:
12678
case NEON::BI__builtin_neon_vrnd64zq_f32:
12679
case NEON::BI__builtin_neon_vrnd64z_f64:
12680
case NEON::BI__builtin_neon_vrnd64zq_f64: {
12681
Ops.push_back(EmitScalarExpr(E->getArg(0)));
12682
Int = Intrinsic::aarch64_neon_frint64z;
12683
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64z");
12684
}
12685
case NEON::BI__builtin_neon_vrnd_v:
12686
case NEON::BI__builtin_neon_vrndq_v: {
12687
Int = Builder.getIsFPConstrained()
12688
? Intrinsic::experimental_constrained_trunc
12689
: Intrinsic::trunc;
12690
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
12691
}
12692
case NEON::BI__builtin_neon_vcvt_f64_v:
12693
case NEON::BI__builtin_neon_vcvtq_f64_v:
12694
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
12695
Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
12696
return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
12697
: Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
12698
case NEON::BI__builtin_neon_vcvt_f64_f32: {
12699
assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&
12700
"unexpected vcvt_f64_f32 builtin");
12701
NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
12702
Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
12703
12704
return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
12705
}
12706
case NEON::BI__builtin_neon_vcvt_f32_f64: {
12707
assert(Type.getEltType() == NeonTypeFlags::Float32 &&
12708
"unexpected vcvt_f32_f64 builtin");
12709
NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
12710
Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
12711
12712
return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
12713
}
12714
case NEON::BI__builtin_neon_vcvt_s32_v:
12715
case NEON::BI__builtin_neon_vcvt_u32_v:
12716
case NEON::BI__builtin_neon_vcvt_s64_v:
12717
case NEON::BI__builtin_neon_vcvt_u64_v:
12718
case NEON::BI__builtin_neon_vcvt_s16_f16:
12719
case NEON::BI__builtin_neon_vcvt_u16_f16:
12720
case NEON::BI__builtin_neon_vcvtq_s32_v:
12721
case NEON::BI__builtin_neon_vcvtq_u32_v:
12722
case NEON::BI__builtin_neon_vcvtq_s64_v:
12723
case NEON::BI__builtin_neon_vcvtq_u64_v:
12724
case NEON::BI__builtin_neon_vcvtq_s16_f16:
12725
case NEON::BI__builtin_neon_vcvtq_u16_f16: {
12726
Int =
12727
usgn ? Intrinsic::aarch64_neon_fcvtzu : Intrinsic::aarch64_neon_fcvtzs;
12728
llvm::Type *Tys[2] = {Ty, GetFloatNeonType(this, Type)};
12729
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtz");
12730
}
12731
case NEON::BI__builtin_neon_vcvta_s16_f16:
12732
case NEON::BI__builtin_neon_vcvta_u16_f16:
12733
case NEON::BI__builtin_neon_vcvta_s32_v:
12734
case NEON::BI__builtin_neon_vcvtaq_s16_f16:
12735
case NEON::BI__builtin_neon_vcvtaq_s32_v:
12736
case NEON::BI__builtin_neon_vcvta_u32_v:
12737
case NEON::BI__builtin_neon_vcvtaq_u16_f16:
12738
case NEON::BI__builtin_neon_vcvtaq_u32_v:
12739
case NEON::BI__builtin_neon_vcvta_s64_v:
12740
case NEON::BI__builtin_neon_vcvtaq_s64_v:
12741
case NEON::BI__builtin_neon_vcvta_u64_v:
12742
case NEON::BI__builtin_neon_vcvtaq_u64_v: {
12743
Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
12744
llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
12745
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
12746
}
12747
case NEON::BI__builtin_neon_vcvtm_s16_f16:
12748
case NEON::BI__builtin_neon_vcvtm_s32_v:
12749
case NEON::BI__builtin_neon_vcvtmq_s16_f16:
12750
case NEON::BI__builtin_neon_vcvtmq_s32_v:
12751
case NEON::BI__builtin_neon_vcvtm_u16_f16:
12752
case NEON::BI__builtin_neon_vcvtm_u32_v:
12753
case NEON::BI__builtin_neon_vcvtmq_u16_f16:
12754
case NEON::BI__builtin_neon_vcvtmq_u32_v:
12755
case NEON::BI__builtin_neon_vcvtm_s64_v:
12756
case NEON::BI__builtin_neon_vcvtmq_s64_v:
12757
case NEON::BI__builtin_neon_vcvtm_u64_v:
12758
case NEON::BI__builtin_neon_vcvtmq_u64_v: {
12759
Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
12760
llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
12761
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
12762
}
12763
case NEON::BI__builtin_neon_vcvtn_s16_f16:
12764
case NEON::BI__builtin_neon_vcvtn_s32_v:
12765
case NEON::BI__builtin_neon_vcvtnq_s16_f16:
12766
case NEON::BI__builtin_neon_vcvtnq_s32_v:
12767
case NEON::BI__builtin_neon_vcvtn_u16_f16:
12768
case NEON::BI__builtin_neon_vcvtn_u32_v:
12769
case NEON::BI__builtin_neon_vcvtnq_u16_f16:
12770
case NEON::BI__builtin_neon_vcvtnq_u32_v:
12771
case NEON::BI__builtin_neon_vcvtn_s64_v:
12772
case NEON::BI__builtin_neon_vcvtnq_s64_v:
12773
case NEON::BI__builtin_neon_vcvtn_u64_v:
12774
case NEON::BI__builtin_neon_vcvtnq_u64_v: {
12775
Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
12776
llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
12777
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
12778
}
12779
case NEON::BI__builtin_neon_vcvtp_s16_f16:
12780
case NEON::BI__builtin_neon_vcvtp_s32_v:
12781
case NEON::BI__builtin_neon_vcvtpq_s16_f16:
12782
case NEON::BI__builtin_neon_vcvtpq_s32_v:
12783
case NEON::BI__builtin_neon_vcvtp_u16_f16:
12784
case NEON::BI__builtin_neon_vcvtp_u32_v:
12785
case NEON::BI__builtin_neon_vcvtpq_u16_f16:
12786
case NEON::BI__builtin_neon_vcvtpq_u32_v:
12787
case NEON::BI__builtin_neon_vcvtp_s64_v:
12788
case NEON::BI__builtin_neon_vcvtpq_s64_v:
12789
case NEON::BI__builtin_neon_vcvtp_u64_v:
12790
case NEON::BI__builtin_neon_vcvtpq_u64_v: {
12791
Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
12792
llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
12793
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
12794
}
12795
case NEON::BI__builtin_neon_vmulx_v:
12796
case NEON::BI__builtin_neon_vmulxq_v: {
12797
Int = Intrinsic::aarch64_neon_fmulx;
12798
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
12799
}
12800
case NEON::BI__builtin_neon_vmulxh_lane_f16:
12801
case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
12802
// vmulx_lane should be mapped to Neon scalar mulx after
12803
// extracting the scalar element
12804
Ops.push_back(EmitScalarExpr(E->getArg(2)));
12805
Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
12806
Ops.pop_back();
12807
Int = Intrinsic::aarch64_neon_fmulx;
12808
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
12809
}
12810
case NEON::BI__builtin_neon_vmul_lane_v:
12811
case NEON::BI__builtin_neon_vmul_laneq_v: {
12812
// v1f64 vmul_lane should be mapped to Neon scalar mul lane
12813
bool Quad = false;
12814
if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
12815
Quad = true;
12816
Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
12817
llvm::FixedVectorType *VTy =
12818
GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
12819
Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
12820
Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
12821
Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
12822
return Builder.CreateBitCast(Result, Ty);
12823
}
12824
case NEON::BI__builtin_neon_vnegd_s64:
12825
return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
12826
case NEON::BI__builtin_neon_vnegh_f16:
12827
return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
12828
case NEON::BI__builtin_neon_vpmaxnm_v:
12829
case NEON::BI__builtin_neon_vpmaxnmq_v: {
12830
Int = Intrinsic::aarch64_neon_fmaxnmp;
12831
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
12832
}
12833
case NEON::BI__builtin_neon_vpminnm_v:
12834
case NEON::BI__builtin_neon_vpminnmq_v: {
12835
Int = Intrinsic::aarch64_neon_fminnmp;
12836
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
12837
}
12838
case NEON::BI__builtin_neon_vsqrth_f16: {
12839
Ops.push_back(EmitScalarExpr(E->getArg(0)));
12840
Int = Builder.getIsFPConstrained()
12841
? Intrinsic::experimental_constrained_sqrt
12842
: Intrinsic::sqrt;
12843
return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
12844
}
12845
case NEON::BI__builtin_neon_vsqrt_v:
12846
case NEON::BI__builtin_neon_vsqrtq_v: {
12847
Int = Builder.getIsFPConstrained()
12848
? Intrinsic::experimental_constrained_sqrt
12849
: Intrinsic::sqrt;
12850
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
12851
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
12852
}
12853
case NEON::BI__builtin_neon_vrbit_v:
12854
case NEON::BI__builtin_neon_vrbitq_v: {
12855
Int = Intrinsic::bitreverse;
12856
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
12857
}
12858
case NEON::BI__builtin_neon_vaddv_u8:
12859
// FIXME: These are handled by the AArch64 scalar code.
12860
usgn = true;
12861
[[fallthrough]];
12862
case NEON::BI__builtin_neon_vaddv_s8: {
12863
Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
12864
Ty = Int32Ty;
12865
VTy = llvm::FixedVectorType::get(Int8Ty, 8);
12866
llvm::Type *Tys[2] = { Ty, VTy };
12867
Ops.push_back(EmitScalarExpr(E->getArg(0)));
12868
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
12869
return Builder.CreateTrunc(Ops[0], Int8Ty);
12870
}
12871
case NEON::BI__builtin_neon_vaddv_u16:
12872
usgn = true;
12873
[[fallthrough]];
12874
case NEON::BI__builtin_neon_vaddv_s16: {
12875
Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
12876
Ty = Int32Ty;
12877
VTy = llvm::FixedVectorType::get(Int16Ty, 4);
12878
llvm::Type *Tys[2] = { Ty, VTy };
12879
Ops.push_back(EmitScalarExpr(E->getArg(0)));
12880
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
12881
return Builder.CreateTrunc(Ops[0], Int16Ty);
12882
}
12883
case NEON::BI__builtin_neon_vaddvq_u8:
12884
usgn = true;
12885
[[fallthrough]];
12886
case NEON::BI__builtin_neon_vaddvq_s8: {
12887
Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
12888
Ty = Int32Ty;
12889
VTy = llvm::FixedVectorType::get(Int8Ty, 16);
12890
llvm::Type *Tys[2] = { Ty, VTy };
12891
Ops.push_back(EmitScalarExpr(E->getArg(0)));
12892
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
12893
return Builder.CreateTrunc(Ops[0], Int8Ty);
12894
}
12895
case NEON::BI__builtin_neon_vaddvq_u16:
12896
usgn = true;
12897
[[fallthrough]];
12898
case NEON::BI__builtin_neon_vaddvq_s16: {
12899
Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
12900
Ty = Int32Ty;
12901
VTy = llvm::FixedVectorType::get(Int16Ty, 8);
12902
llvm::Type *Tys[2] = { Ty, VTy };
12903
Ops.push_back(EmitScalarExpr(E->getArg(0)));
12904
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
12905
return Builder.CreateTrunc(Ops[0], Int16Ty);
12906
}
12907
case NEON::BI__builtin_neon_vmaxv_u8: {
12908
Int = Intrinsic::aarch64_neon_umaxv;
12909
Ty = Int32Ty;
12910
VTy = llvm::FixedVectorType::get(Int8Ty, 8);
12911
llvm::Type *Tys[2] = { Ty, VTy };
12912
Ops.push_back(EmitScalarExpr(E->getArg(0)));
12913
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12914
return Builder.CreateTrunc(Ops[0], Int8Ty);
12915
}
12916
case NEON::BI__builtin_neon_vmaxv_u16: {
12917
Int = Intrinsic::aarch64_neon_umaxv;
12918
Ty = Int32Ty;
12919
VTy = llvm::FixedVectorType::get(Int16Ty, 4);
12920
llvm::Type *Tys[2] = { Ty, VTy };
12921
Ops.push_back(EmitScalarExpr(E->getArg(0)));
12922
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12923
return Builder.CreateTrunc(Ops[0], Int16Ty);
12924
}
12925
case NEON::BI__builtin_neon_vmaxvq_u8: {
12926
Int = Intrinsic::aarch64_neon_umaxv;
12927
Ty = Int32Ty;
12928
VTy = llvm::FixedVectorType::get(Int8Ty, 16);
12929
llvm::Type *Tys[2] = { Ty, VTy };
12930
Ops.push_back(EmitScalarExpr(E->getArg(0)));
12931
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12932
return Builder.CreateTrunc(Ops[0], Int8Ty);
12933
}
12934
case NEON::BI__builtin_neon_vmaxvq_u16: {
12935
Int = Intrinsic::aarch64_neon_umaxv;
12936
Ty = Int32Ty;
12937
VTy = llvm::FixedVectorType::get(Int16Ty, 8);
12938
llvm::Type *Tys[2] = { Ty, VTy };
12939
Ops.push_back(EmitScalarExpr(E->getArg(0)));
12940
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12941
return Builder.CreateTrunc(Ops[0], Int16Ty);
12942
}
12943
case NEON::BI__builtin_neon_vmaxv_s8: {
12944
Int = Intrinsic::aarch64_neon_smaxv;
12945
Ty = Int32Ty;
12946
VTy = llvm::FixedVectorType::get(Int8Ty, 8);
12947
llvm::Type *Tys[2] = { Ty, VTy };
12948
Ops.push_back(EmitScalarExpr(E->getArg(0)));
12949
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12950
return Builder.CreateTrunc(Ops[0], Int8Ty);
12951
}
12952
case NEON::BI__builtin_neon_vmaxv_s16: {
12953
Int = Intrinsic::aarch64_neon_smaxv;
12954
Ty = Int32Ty;
12955
VTy = llvm::FixedVectorType::get(Int16Ty, 4);
12956
llvm::Type *Tys[2] = { Ty, VTy };
12957
Ops.push_back(EmitScalarExpr(E->getArg(0)));
12958
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12959
return Builder.CreateTrunc(Ops[0], Int16Ty);
12960
}
12961
case NEON::BI__builtin_neon_vmaxvq_s8: {
12962
Int = Intrinsic::aarch64_neon_smaxv;
12963
Ty = Int32Ty;
12964
VTy = llvm::FixedVectorType::get(Int8Ty, 16);
12965
llvm::Type *Tys[2] = { Ty, VTy };
12966
Ops.push_back(EmitScalarExpr(E->getArg(0)));
12967
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12968
return Builder.CreateTrunc(Ops[0], Int8Ty);
12969
}
12970
case NEON::BI__builtin_neon_vmaxvq_s16: {
12971
Int = Intrinsic::aarch64_neon_smaxv;
12972
Ty = Int32Ty;
12973
VTy = llvm::FixedVectorType::get(Int16Ty, 8);
12974
llvm::Type *Tys[2] = { Ty, VTy };
12975
Ops.push_back(EmitScalarExpr(E->getArg(0)));
12976
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12977
return Builder.CreateTrunc(Ops[0], Int16Ty);
12978
}
12979
case NEON::BI__builtin_neon_vmaxv_f16: {
12980
Int = Intrinsic::aarch64_neon_fmaxv;
12981
Ty = HalfTy;
12982
VTy = llvm::FixedVectorType::get(HalfTy, 4);
12983
llvm::Type *Tys[2] = { Ty, VTy };
12984
Ops.push_back(EmitScalarExpr(E->getArg(0)));
12985
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12986
return Builder.CreateTrunc(Ops[0], HalfTy);
12987
}
12988
case NEON::BI__builtin_neon_vmaxvq_f16: {
12989
Int = Intrinsic::aarch64_neon_fmaxv;
12990
Ty = HalfTy;
12991
VTy = llvm::FixedVectorType::get(HalfTy, 8);
12992
llvm::Type *Tys[2] = { Ty, VTy };
12993
Ops.push_back(EmitScalarExpr(E->getArg(0)));
12994
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12995
return Builder.CreateTrunc(Ops[0], HalfTy);
12996
}
12997
case NEON::BI__builtin_neon_vminv_u8: {
12998
Int = Intrinsic::aarch64_neon_uminv;
12999
Ty = Int32Ty;
13000
VTy = llvm::FixedVectorType::get(Int8Ty, 8);
13001
llvm::Type *Tys[2] = { Ty, VTy };
13002
Ops.push_back(EmitScalarExpr(E->getArg(0)));
13003
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
13004
return Builder.CreateTrunc(Ops[0], Int8Ty);
13005
}
13006
case NEON::BI__builtin_neon_vminv_u16: {
13007
Int = Intrinsic::aarch64_neon_uminv;
13008
Ty = Int32Ty;
13009
VTy = llvm::FixedVectorType::get(Int16Ty, 4);
13010
llvm::Type *Tys[2] = { Ty, VTy };
13011
Ops.push_back(EmitScalarExpr(E->getArg(0)));
13012
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
13013
return Builder.CreateTrunc(Ops[0], Int16Ty);
13014
}
13015
case NEON::BI__builtin_neon_vminvq_u8: {
13016
Int = Intrinsic::aarch64_neon_uminv;
13017
Ty = Int32Ty;
13018
VTy = llvm::FixedVectorType::get(Int8Ty, 16);
13019
llvm::Type *Tys[2] = { Ty, VTy };
13020
Ops.push_back(EmitScalarExpr(E->getArg(0)));
13021
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
13022
return Builder.CreateTrunc(Ops[0], Int8Ty);
13023
}
13024
case NEON::BI__builtin_neon_vminvq_u16: {
13025
Int = Intrinsic::aarch64_neon_uminv;
13026
Ty = Int32Ty;
13027
VTy = llvm::FixedVectorType::get(Int16Ty, 8);
13028
llvm::Type *Tys[2] = { Ty, VTy };
13029
Ops.push_back(EmitScalarExpr(E->getArg(0)));
13030
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
13031
return Builder.CreateTrunc(Ops[0], Int16Ty);
13032
}
13033
case NEON::BI__builtin_neon_vminv_s8: {
13034
Int = Intrinsic::aarch64_neon_sminv;
13035
Ty = Int32Ty;
13036
VTy = llvm::FixedVectorType::get(Int8Ty, 8);
13037
llvm::Type *Tys[2] = { Ty, VTy };
13038
Ops.push_back(EmitScalarExpr(E->getArg(0)));
13039
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
13040
return Builder.CreateTrunc(Ops[0], Int8Ty);
13041
}
13042
case NEON::BI__builtin_neon_vminv_s16: {
13043
Int = Intrinsic::aarch64_neon_sminv;
13044
Ty = Int32Ty;
13045
VTy = llvm::FixedVectorType::get(Int16Ty, 4);
13046
llvm::Type *Tys[2] = { Ty, VTy };
13047
Ops.push_back(EmitScalarExpr(E->getArg(0)));
13048
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
13049
return Builder.CreateTrunc(Ops[0], Int16Ty);
13050
}
13051
case NEON::BI__builtin_neon_vminvq_s8: {
13052
Int = Intrinsic::aarch64_neon_sminv;
13053
Ty = Int32Ty;
13054
VTy = llvm::FixedVectorType::get(Int8Ty, 16);
13055
llvm::Type *Tys[2] = { Ty, VTy };
13056
Ops.push_back(EmitScalarExpr(E->getArg(0)));
13057
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
13058
return Builder.CreateTrunc(Ops[0], Int8Ty);
13059
}
13060
case NEON::BI__builtin_neon_vminvq_s16: {
13061
Int = Intrinsic::aarch64_neon_sminv;
13062
Ty = Int32Ty;
13063
VTy = llvm::FixedVectorType::get(Int16Ty, 8);
13064
llvm::Type *Tys[2] = { Ty, VTy };
13065
Ops.push_back(EmitScalarExpr(E->getArg(0)));
13066
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
13067
return Builder.CreateTrunc(Ops[0], Int16Ty);
13068
}
13069
case NEON::BI__builtin_neon_vminv_f16: {
13070
Int = Intrinsic::aarch64_neon_fminv;
13071
Ty = HalfTy;
13072
VTy = llvm::FixedVectorType::get(HalfTy, 4);
13073
llvm::Type *Tys[2] = { Ty, VTy };
13074
Ops.push_back(EmitScalarExpr(E->getArg(0)));
13075
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
13076
return Builder.CreateTrunc(Ops[0], HalfTy);
13077
}
13078
case NEON::BI__builtin_neon_vminvq_f16: {
13079
Int = Intrinsic::aarch64_neon_fminv;
13080
Ty = HalfTy;
13081
VTy = llvm::FixedVectorType::get(HalfTy, 8);
13082
llvm::Type *Tys[2] = { Ty, VTy };
13083
Ops.push_back(EmitScalarExpr(E->getArg(0)));
13084
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
13085
return Builder.CreateTrunc(Ops[0], HalfTy);
13086
}
13087
case NEON::BI__builtin_neon_vmaxnmv_f16: {
13088
Int = Intrinsic::aarch64_neon_fmaxnmv;
13089
Ty = HalfTy;
13090
VTy = llvm::FixedVectorType::get(HalfTy, 4);
13091
llvm::Type *Tys[2] = { Ty, VTy };
13092
Ops.push_back(EmitScalarExpr(E->getArg(0)));
13093
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
13094
return Builder.CreateTrunc(Ops[0], HalfTy);
13095
}
13096
case NEON::BI__builtin_neon_vmaxnmvq_f16: {
13097
Int = Intrinsic::aarch64_neon_fmaxnmv;
13098
Ty = HalfTy;
13099
VTy = llvm::FixedVectorType::get(HalfTy, 8);
13100
llvm::Type *Tys[2] = { Ty, VTy };
13101
Ops.push_back(EmitScalarExpr(E->getArg(0)));
13102
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
13103
return Builder.CreateTrunc(Ops[0], HalfTy);
13104
}
13105
case NEON::BI__builtin_neon_vminnmv_f16: {
13106
Int = Intrinsic::aarch64_neon_fminnmv;
13107
Ty = HalfTy;
13108
VTy = llvm::FixedVectorType::get(HalfTy, 4);
13109
llvm::Type *Tys[2] = { Ty, VTy };
13110
Ops.push_back(EmitScalarExpr(E->getArg(0)));
13111
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
13112
return Builder.CreateTrunc(Ops[0], HalfTy);
13113
}
13114
case NEON::BI__builtin_neon_vminnmvq_f16: {
13115
Int = Intrinsic::aarch64_neon_fminnmv;
13116
Ty = HalfTy;
13117
VTy = llvm::FixedVectorType::get(HalfTy, 8);
13118
llvm::Type *Tys[2] = { Ty, VTy };
13119
Ops.push_back(EmitScalarExpr(E->getArg(0)));
13120
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
13121
return Builder.CreateTrunc(Ops[0], HalfTy);
13122
}
13123
case NEON::BI__builtin_neon_vmul_n_f64: {
13124
Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
13125
Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
13126
return Builder.CreateFMul(Ops[0], RHS);
13127
}
13128
case NEON::BI__builtin_neon_vaddlv_u8: {
13129
Int = Intrinsic::aarch64_neon_uaddlv;
13130
Ty = Int32Ty;
13131
VTy = llvm::FixedVectorType::get(Int8Ty, 8);
13132
llvm::Type *Tys[2] = { Ty, VTy };
13133
Ops.push_back(EmitScalarExpr(E->getArg(0)));
13134
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
13135
return Builder.CreateTrunc(Ops[0], Int16Ty);
13136
}
13137
case NEON::BI__builtin_neon_vaddlv_u16: {
13138
Int = Intrinsic::aarch64_neon_uaddlv;
13139
Ty = Int32Ty;
13140
VTy = llvm::FixedVectorType::get(Int16Ty, 4);
13141
llvm::Type *Tys[2] = { Ty, VTy };
13142
Ops.push_back(EmitScalarExpr(E->getArg(0)));
13143
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
13144
}
13145
case NEON::BI__builtin_neon_vaddlvq_u8: {
13146
Int = Intrinsic::aarch64_neon_uaddlv;
13147
Ty = Int32Ty;
13148
VTy = llvm::FixedVectorType::get(Int8Ty, 16);
13149
llvm::Type *Tys[2] = { Ty, VTy };
13150
Ops.push_back(EmitScalarExpr(E->getArg(0)));
13151
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
13152
return Builder.CreateTrunc(Ops[0], Int16Ty);
13153
}
13154
case NEON::BI__builtin_neon_vaddlvq_u16: {
13155
Int = Intrinsic::aarch64_neon_uaddlv;
13156
Ty = Int32Ty;
13157
VTy = llvm::FixedVectorType::get(Int16Ty, 8);
13158
llvm::Type *Tys[2] = { Ty, VTy };
13159
Ops.push_back(EmitScalarExpr(E->getArg(0)));
13160
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
13161
}
13162
case NEON::BI__builtin_neon_vaddlv_s8: {
13163
Int = Intrinsic::aarch64_neon_saddlv;
13164
Ty = Int32Ty;
13165
VTy = llvm::FixedVectorType::get(Int8Ty, 8);
13166
llvm::Type *Tys[2] = { Ty, VTy };
13167
Ops.push_back(EmitScalarExpr(E->getArg(0)));
13168
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
13169
return Builder.CreateTrunc(Ops[0], Int16Ty);
13170
}
13171
case NEON::BI__builtin_neon_vaddlv_s16: {
13172
Int = Intrinsic::aarch64_neon_saddlv;
13173
Ty = Int32Ty;
13174
VTy = llvm::FixedVectorType::get(Int16Ty, 4);
13175
llvm::Type *Tys[2] = { Ty, VTy };
13176
Ops.push_back(EmitScalarExpr(E->getArg(0)));
13177
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
13178
}
13179
case NEON::BI__builtin_neon_vaddlvq_s8: {
13180
Int = Intrinsic::aarch64_neon_saddlv;
13181
Ty = Int32Ty;
13182
VTy = llvm::FixedVectorType::get(Int8Ty, 16);
13183
llvm::Type *Tys[2] = { Ty, VTy };
13184
Ops.push_back(EmitScalarExpr(E->getArg(0)));
13185
Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
13186
return Builder.CreateTrunc(Ops[0], Int16Ty);
13187
}
13188
case NEON::BI__builtin_neon_vaddlvq_s16: {
13189
Int = Intrinsic::aarch64_neon_saddlv;
13190
Ty = Int32Ty;
13191
VTy = llvm::FixedVectorType::get(Int16Ty, 8);
13192
llvm::Type *Tys[2] = { Ty, VTy };
13193
Ops.push_back(EmitScalarExpr(E->getArg(0)));
13194
return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
13195
}
13196
case NEON::BI__builtin_neon_vsri_n_v:
13197
case NEON::BI__builtin_neon_vsriq_n_v: {
13198
Int = Intrinsic::aarch64_neon_vsri;
13199
llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
13200
return EmitNeonCall(Intrin, Ops, "vsri_n");
13201
}
13202
case NEON::BI__builtin_neon_vsli_n_v:
13203
case NEON::BI__builtin_neon_vsliq_n_v: {
13204
Int = Intrinsic::aarch64_neon_vsli;
13205
llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
13206
return EmitNeonCall(Intrin, Ops, "vsli_n");
13207
}
13208
case NEON::BI__builtin_neon_vsra_n_v:
13209
case NEON::BI__builtin_neon_vsraq_n_v:
13210
Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
13211
Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
13212
return Builder.CreateAdd(Ops[0], Ops[1]);
13213
case NEON::BI__builtin_neon_vrsra_n_v:
13214
case NEON::BI__builtin_neon_vrsraq_n_v: {
13215
Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
13216
SmallVector<llvm::Value*,2> TmpOps;
13217
TmpOps.push_back(Ops[1]);
13218
TmpOps.push_back(Ops[2]);
13219
Function* F = CGM.getIntrinsic(Int, Ty);
13220
llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
13221
Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
13222
return Builder.CreateAdd(Ops[0], tmp);
13223
}
13224
case NEON::BI__builtin_neon_vld1_v:
13225
case NEON::BI__builtin_neon_vld1q_v: {
13226
return Builder.CreateAlignedLoad(VTy, Ops[0], PtrOp0.getAlignment());
13227
}
13228
case NEON::BI__builtin_neon_vst1_v:
13229
case NEON::BI__builtin_neon_vst1q_v:
13230
Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
13231
return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment());
13232
case NEON::BI__builtin_neon_vld1_lane_v:
13233
case NEON::BI__builtin_neon_vld1q_lane_v: {
13234
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13235
Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
13236
PtrOp0.getAlignment());
13237
return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
13238
}
13239
case NEON::BI__builtin_neon_vldap1_lane_s64:
13240
case NEON::BI__builtin_neon_vldap1q_lane_s64: {
13241
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13242
llvm::LoadInst *LI = Builder.CreateAlignedLoad(
13243
VTy->getElementType(), Ops[0], PtrOp0.getAlignment());
13244
LI->setAtomic(llvm::AtomicOrdering::Acquire);
13245
Ops[0] = LI;
13246
return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vldap1_lane");
13247
}
13248
case NEON::BI__builtin_neon_vld1_dup_v:
13249
case NEON::BI__builtin_neon_vld1q_dup_v: {
13250
Value *V = PoisonValue::get(Ty);
13251
Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
13252
PtrOp0.getAlignment());
13253
llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
13254
Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
13255
return EmitNeonSplat(Ops[0], CI);
13256
}
13257
case NEON::BI__builtin_neon_vst1_lane_v:
13258
case NEON::BI__builtin_neon_vst1q_lane_v:
13259
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13260
Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
13261
return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment());
13262
case NEON::BI__builtin_neon_vstl1_lane_s64:
13263
case NEON::BI__builtin_neon_vstl1q_lane_s64: {
13264
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13265
Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
13266
llvm::StoreInst *SI =
13267
Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment());
13268
SI->setAtomic(llvm::AtomicOrdering::Release);
13269
return SI;
13270
}
13271
case NEON::BI__builtin_neon_vld2_v:
13272
case NEON::BI__builtin_neon_vld2q_v: {
13273
llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
13274
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
13275
Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
13276
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13277
}
13278
case NEON::BI__builtin_neon_vld3_v:
13279
case NEON::BI__builtin_neon_vld3q_v: {
13280
llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
13281
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
13282
Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
13283
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13284
}
13285
case NEON::BI__builtin_neon_vld4_v:
13286
case NEON::BI__builtin_neon_vld4q_v: {
13287
llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
13288
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
13289
Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
13290
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13291
}
13292
case NEON::BI__builtin_neon_vld2_dup_v:
13293
case NEON::BI__builtin_neon_vld2q_dup_v: {
13294
llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
13295
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
13296
Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
13297
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13298
}
13299
case NEON::BI__builtin_neon_vld3_dup_v:
13300
case NEON::BI__builtin_neon_vld3q_dup_v: {
13301
llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
13302
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
13303
Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
13304
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13305
}
13306
case NEON::BI__builtin_neon_vld4_dup_v:
13307
case NEON::BI__builtin_neon_vld4q_dup_v: {
13308
llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
13309
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
13310
Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
13311
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13312
}
13313
case NEON::BI__builtin_neon_vld2_lane_v:
13314
case NEON::BI__builtin_neon_vld2q_lane_v: {
13315
llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
13316
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
13317
std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
13318
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13319
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
13320
Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
13321
Ops[1] = Builder.CreateCall(F, ArrayRef(Ops).slice(1), "vld2_lane");
13322
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13323
}
13324
case NEON::BI__builtin_neon_vld3_lane_v:
13325
case NEON::BI__builtin_neon_vld3q_lane_v: {
13326
llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
13327
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
13328
std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
13329
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13330
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
13331
Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
13332
Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
13333
Ops[1] = Builder.CreateCall(F, ArrayRef(Ops).slice(1), "vld3_lane");
13334
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13335
}
13336
case NEON::BI__builtin_neon_vld4_lane_v:
13337
case NEON::BI__builtin_neon_vld4q_lane_v: {
13338
llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
13339
Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
13340
std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
13341
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13342
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
13343
Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
13344
Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
13345
Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
13346
Ops[1] = Builder.CreateCall(F, ArrayRef(Ops).slice(1), "vld4_lane");
13347
return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13348
}
13349
case NEON::BI__builtin_neon_vst2_v:
13350
case NEON::BI__builtin_neon_vst2q_v: {
13351
std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
13352
llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
13353
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
13354
Ops, "");
13355
}
13356
case NEON::BI__builtin_neon_vst2_lane_v:
13357
case NEON::BI__builtin_neon_vst2q_lane_v: {
13358
std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
13359
Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
13360
llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
13361
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
13362
Ops, "");
13363
}
13364
case NEON::BI__builtin_neon_vst3_v:
13365
case NEON::BI__builtin_neon_vst3q_v: {
13366
std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
13367
llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
13368
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
13369
Ops, "");
13370
}
13371
case NEON::BI__builtin_neon_vst3_lane_v:
13372
case NEON::BI__builtin_neon_vst3q_lane_v: {
13373
std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
13374
Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
13375
llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
13376
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
13377
Ops, "");
13378
}
13379
case NEON::BI__builtin_neon_vst4_v:
13380
case NEON::BI__builtin_neon_vst4q_v: {
13381
std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
13382
llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
13383
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
13384
Ops, "");
13385
}
13386
case NEON::BI__builtin_neon_vst4_lane_v:
13387
case NEON::BI__builtin_neon_vst4q_lane_v: {
13388
std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
13389
Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
13390
llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
13391
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
13392
Ops, "");
13393
}
13394
case NEON::BI__builtin_neon_vtrn_v:
13395
case NEON::BI__builtin_neon_vtrnq_v: {
13396
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13397
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
13398
Value *SV = nullptr;
13399
13400
for (unsigned vi = 0; vi != 2; ++vi) {
13401
SmallVector<int, 16> Indices;
13402
for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
13403
Indices.push_back(i+vi);
13404
Indices.push_back(i+e+vi);
13405
}
13406
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
13407
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
13408
SV = Builder.CreateDefaultAlignedStore(SV, Addr);
13409
}
13410
return SV;
13411
}
13412
case NEON::BI__builtin_neon_vuzp_v:
13413
case NEON::BI__builtin_neon_vuzpq_v: {
13414
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13415
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
13416
Value *SV = nullptr;
13417
13418
for (unsigned vi = 0; vi != 2; ++vi) {
13419
SmallVector<int, 16> Indices;
13420
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
13421
Indices.push_back(2*i+vi);
13422
13423
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
13424
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
13425
SV = Builder.CreateDefaultAlignedStore(SV, Addr);
13426
}
13427
return SV;
13428
}
13429
case NEON::BI__builtin_neon_vzip_v:
13430
case NEON::BI__builtin_neon_vzipq_v: {
13431
Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13432
Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
13433
Value *SV = nullptr;
13434
13435
for (unsigned vi = 0; vi != 2; ++vi) {
13436
SmallVector<int, 16> Indices;
13437
for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
13438
Indices.push_back((i + vi*e) >> 1);
13439
Indices.push_back(((i + vi*e) >> 1)+e);
13440
}
13441
Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
13442
SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
13443
SV = Builder.CreateDefaultAlignedStore(SV, Addr);
13444
}
13445
return SV;
13446
}
13447
case NEON::BI__builtin_neon_vqtbl1q_v: {
13448
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
13449
Ops, "vtbl1");
13450
}
13451
case NEON::BI__builtin_neon_vqtbl2q_v: {
13452
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
13453
Ops, "vtbl2");
13454
}
13455
case NEON::BI__builtin_neon_vqtbl3q_v: {
13456
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
13457
Ops, "vtbl3");
13458
}
13459
case NEON::BI__builtin_neon_vqtbl4q_v: {
13460
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
13461
Ops, "vtbl4");
13462
}
13463
case NEON::BI__builtin_neon_vqtbx1q_v: {
13464
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
13465
Ops, "vtbx1");
13466
}
13467
case NEON::BI__builtin_neon_vqtbx2q_v: {
13468
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
13469
Ops, "vtbx2");
13470
}
13471
case NEON::BI__builtin_neon_vqtbx3q_v: {
13472
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
13473
Ops, "vtbx3");
13474
}
13475
case NEON::BI__builtin_neon_vqtbx4q_v: {
13476
return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
13477
Ops, "vtbx4");
13478
}
13479
case NEON::BI__builtin_neon_vsqadd_v:
13480
case NEON::BI__builtin_neon_vsqaddq_v: {
13481
Int = Intrinsic::aarch64_neon_usqadd;
13482
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
13483
}
13484
case NEON::BI__builtin_neon_vuqadd_v:
13485
case NEON::BI__builtin_neon_vuqaddq_v: {
13486
Int = Intrinsic::aarch64_neon_suqadd;
13487
return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
13488
}
13489
}
13490
}
13491
13492
Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID,
13493
const CallExpr *E) {
13494
assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||
13495
BuiltinID == BPF::BI__builtin_btf_type_id ||
13496
BuiltinID == BPF::BI__builtin_preserve_type_info ||
13497
BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
13498
"unexpected BPF builtin");
13499
13500
// A sequence number, injected into IR builtin functions, to
13501
// prevent CSE given the only difference of the function
13502
// may just be the debuginfo metadata.
13503
static uint32_t BuiltinSeqNum;
13504
13505
switch (BuiltinID) {
13506
default:
13507
llvm_unreachable("Unexpected BPF builtin");
13508
case BPF::BI__builtin_preserve_field_info: {
13509
const Expr *Arg = E->getArg(0);
13510
bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField;
13511
13512
if (!getDebugInfo()) {
13513
CGM.Error(E->getExprLoc(),
13514
"using __builtin_preserve_field_info() without -g");
13515
return IsBitField ? EmitLValue(Arg).getRawBitFieldPointer(*this)
13516
: EmitLValue(Arg).emitRawPointer(*this);
13517
}
13518
13519
// Enable underlying preserve_*_access_index() generation.
13520
bool OldIsInPreservedAIRegion = IsInPreservedAIRegion;
13521
IsInPreservedAIRegion = true;
13522
Value *FieldAddr = IsBitField ? EmitLValue(Arg).getRawBitFieldPointer(*this)
13523
: EmitLValue(Arg).emitRawPointer(*this);
13524
IsInPreservedAIRegion = OldIsInPreservedAIRegion;
13525
13526
ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
13527
Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue());
13528
13529
// Built the IR for the preserve_field_info intrinsic.
13530
llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration(
13531
&CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info,
13532
{FieldAddr->getType()});
13533
return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind});
13534
}
13535
case BPF::BI__builtin_btf_type_id:
13536
case BPF::BI__builtin_preserve_type_info: {
13537
if (!getDebugInfo()) {
13538
CGM.Error(E->getExprLoc(), "using builtin function without -g");
13539
return nullptr;
13540
}
13541
13542
const Expr *Arg0 = E->getArg(0);
13543
llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
13544
Arg0->getType(), Arg0->getExprLoc());
13545
13546
ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
13547
Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
13548
Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
13549
13550
llvm::Function *FnDecl;
13551
if (BuiltinID == BPF::BI__builtin_btf_type_id)
13552
FnDecl = llvm::Intrinsic::getDeclaration(
13553
&CGM.getModule(), llvm::Intrinsic::bpf_btf_type_id, {});
13554
else
13555
FnDecl = llvm::Intrinsic::getDeclaration(
13556
&CGM.getModule(), llvm::Intrinsic::bpf_preserve_type_info, {});
13557
CallInst *Fn = Builder.CreateCall(FnDecl, {SeqNumVal, FlagValue});
13558
Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
13559
return Fn;
13560
}
13561
case BPF::BI__builtin_preserve_enum_value: {
13562
if (!getDebugInfo()) {
13563
CGM.Error(E->getExprLoc(), "using builtin function without -g");
13564
return nullptr;
13565
}
13566
13567
const Expr *Arg0 = E->getArg(0);
13568
llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
13569
Arg0->getType(), Arg0->getExprLoc());
13570
13571
// Find enumerator
13572
const auto *UO = cast<UnaryOperator>(Arg0->IgnoreParens());
13573
const auto *CE = cast<CStyleCastExpr>(UO->getSubExpr());
13574
const auto *DR = cast<DeclRefExpr>(CE->getSubExpr());
13575
const auto *Enumerator = cast<EnumConstantDecl>(DR->getDecl());
13576
13577
auto InitVal = Enumerator->getInitVal();
13578
std::string InitValStr;
13579
if (InitVal.isNegative() || InitVal > uint64_t(INT64_MAX))
13580
InitValStr = std::to_string(InitVal.getSExtValue());
13581
else
13582
InitValStr = std::to_string(InitVal.getZExtValue());
13583
std::string EnumStr = Enumerator->getNameAsString() + ":" + InitValStr;
13584
Value *EnumStrVal = Builder.CreateGlobalStringPtr(EnumStr);
13585
13586
ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
13587
Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
13588
Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
13589
13590
llvm::Function *IntrinsicFn = llvm::Intrinsic::getDeclaration(
13591
&CGM.getModule(), llvm::Intrinsic::bpf_preserve_enum_value, {});
13592
CallInst *Fn =
13593
Builder.CreateCall(IntrinsicFn, {SeqNumVal, EnumStrVal, FlagValue});
13594
Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
13595
return Fn;
13596
}
13597
}
13598
}
13599
13600
llvm::Value *CodeGenFunction::
13601
BuildVector(ArrayRef<llvm::Value*> Ops) {
13602
assert((Ops.size() & (Ops.size() - 1)) == 0 &&
13603
"Not a power-of-two sized vector!");
13604
bool AllConstants = true;
13605
for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
13606
AllConstants &= isa<Constant>(Ops[i]);
13607
13608
// If this is a constant vector, create a ConstantVector.
13609
if (AllConstants) {
13610
SmallVector<llvm::Constant*, 16> CstOps;
13611
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
13612
CstOps.push_back(cast<Constant>(Ops[i]));
13613
return llvm::ConstantVector::get(CstOps);
13614
}
13615
13616
// Otherwise, insertelement the values to build the vector.
13617
Value *Result = llvm::PoisonValue::get(
13618
llvm::FixedVectorType::get(Ops[0]->getType(), Ops.size()));
13619
13620
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
13621
Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt64(i));
13622
13623
return Result;
13624
}
13625
13626
// Convert the mask from an integer type to a vector of i1.
13627
static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
13628
unsigned NumElts) {
13629
13630
auto *MaskTy = llvm::FixedVectorType::get(
13631
CGF.Builder.getInt1Ty(),
13632
cast<IntegerType>(Mask->getType())->getBitWidth());
13633
Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
13634
13635
// If we have less than 8 elements, then the starting mask was an i8 and
13636
// we need to extract down to the right number of elements.
13637
if (NumElts < 8) {
13638
int Indices[4];
13639
for (unsigned i = 0; i != NumElts; ++i)
13640
Indices[i] = i;
13641
MaskVec = CGF.Builder.CreateShuffleVector(
13642
MaskVec, MaskVec, ArrayRef(Indices, NumElts), "extract");
13643
}
13644
return MaskVec;
13645
}
13646
13647
static Value *EmitX86MaskedStore(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
13648
Align Alignment) {
13649
Value *Ptr = Ops[0];
13650
13651
Value *MaskVec = getMaskVecValue(
13652
CGF, Ops[2],
13653
cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements());
13654
13655
return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Alignment, MaskVec);
13656
}
13657
13658
static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
13659
Align Alignment) {
13660
llvm::Type *Ty = Ops[1]->getType();
13661
Value *Ptr = Ops[0];
13662
13663
Value *MaskVec = getMaskVecValue(
13664
CGF, Ops[2], cast<llvm::FixedVectorType>(Ty)->getNumElements());
13665
13666
return CGF.Builder.CreateMaskedLoad(Ty, Ptr, Alignment, MaskVec, Ops[1]);
13667
}
13668
13669
static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
13670
ArrayRef<Value *> Ops) {
13671
auto *ResultTy = cast<llvm::VectorType>(Ops[1]->getType());
13672
Value *Ptr = Ops[0];
13673
13674
Value *MaskVec = getMaskVecValue(
13675
CGF, Ops[2], cast<FixedVectorType>(ResultTy)->getNumElements());
13676
13677
llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
13678
ResultTy);
13679
return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
13680
}
13681
13682
static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
13683
ArrayRef<Value *> Ops,
13684
bool IsCompress) {
13685
auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
13686
13687
Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
13688
13689
Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
13690
: Intrinsic::x86_avx512_mask_expand;
13691
llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy);
13692
return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec });
13693
}
13694
13695
static Value *EmitX86CompressStore(CodeGenFunction &CGF,
13696
ArrayRef<Value *> Ops) {
13697
auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
13698
Value *Ptr = Ops[0];
13699
13700
Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
13701
13702
llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
13703
ResultTy);
13704
return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
13705
}
13706
13707
static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
13708
ArrayRef<Value *> Ops,
13709
bool InvertLHS = false) {
13710
unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13711
Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
13712
Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
13713
13714
if (InvertLHS)
13715
LHS = CGF.Builder.CreateNot(LHS);
13716
13717
return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
13718
Ops[0]->getType());
13719
}
13720
13721
static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
13722
Value *Amt, bool IsRight) {
13723
llvm::Type *Ty = Op0->getType();
13724
13725
// Amount may be scalar immediate, in which case create a splat vector.
13726
// Funnel shifts amounts are treated as modulo and types are all power-of-2 so
13727
// we only care about the lowest log2 bits anyway.
13728
if (Amt->getType() != Ty) {
13729
unsigned NumElts = cast<llvm::FixedVectorType>(Ty)->getNumElements();
13730
Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
13731
Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
13732
}
13733
13734
unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
13735
Function *F = CGF.CGM.getIntrinsic(IID, Ty);
13736
return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
13737
}
13738
13739
static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
13740
bool IsSigned) {
13741
Value *Op0 = Ops[0];
13742
Value *Op1 = Ops[1];
13743
llvm::Type *Ty = Op0->getType();
13744
uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
13745
13746
CmpInst::Predicate Pred;
13747
switch (Imm) {
13748
case 0x0:
13749
Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
13750
break;
13751
case 0x1:
13752
Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
13753
break;
13754
case 0x2:
13755
Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
13756
break;
13757
case 0x3:
13758
Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
13759
break;
13760
case 0x4:
13761
Pred = ICmpInst::ICMP_EQ;
13762
break;
13763
case 0x5:
13764
Pred = ICmpInst::ICMP_NE;
13765
break;
13766
case 0x6:
13767
return llvm::Constant::getNullValue(Ty); // FALSE
13768
case 0x7:
13769
return llvm::Constant::getAllOnesValue(Ty); // TRUE
13770
default:
13771
llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate");
13772
}
13773
13774
Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1);
13775
Value *Res = CGF.Builder.CreateSExt(Cmp, Ty);
13776
return Res;
13777
}
13778
13779
static Value *EmitX86Select(CodeGenFunction &CGF,
13780
Value *Mask, Value *Op0, Value *Op1) {
13781
13782
// If the mask is all ones just return first argument.
13783
if (const auto *C = dyn_cast<Constant>(Mask))
13784
if (C->isAllOnesValue())
13785
return Op0;
13786
13787
Mask = getMaskVecValue(
13788
CGF, Mask, cast<llvm::FixedVectorType>(Op0->getType())->getNumElements());
13789
13790
return CGF.Builder.CreateSelect(Mask, Op0, Op1);
13791
}
13792
13793
static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
13794
Value *Mask, Value *Op0, Value *Op1) {
13795
// If the mask is all ones just return first argument.
13796
if (const auto *C = dyn_cast<Constant>(Mask))
13797
if (C->isAllOnesValue())
13798
return Op0;
13799
13800
auto *MaskTy = llvm::FixedVectorType::get(
13801
CGF.Builder.getInt1Ty(), Mask->getType()->getIntegerBitWidth());
13802
Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
13803
Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
13804
return CGF.Builder.CreateSelect(Mask, Op0, Op1);
13805
}
13806
13807
static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
13808
unsigned NumElts, Value *MaskIn) {
13809
if (MaskIn) {
13810
const auto *C = dyn_cast<Constant>(MaskIn);
13811
if (!C || !C->isAllOnesValue())
13812
Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
13813
}
13814
13815
if (NumElts < 8) {
13816
int Indices[8];
13817
for (unsigned i = 0; i != NumElts; ++i)
13818
Indices[i] = i;
13819
for (unsigned i = NumElts; i != 8; ++i)
13820
Indices[i] = i % NumElts + NumElts;
13821
Cmp = CGF.Builder.CreateShuffleVector(
13822
Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
13823
}
13824
13825
return CGF.Builder.CreateBitCast(Cmp,
13826
IntegerType::get(CGF.getLLVMContext(),
13827
std::max(NumElts, 8U)));
13828
}
13829
13830
static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
13831
bool Signed, ArrayRef<Value *> Ops) {
13832
assert((Ops.size() == 2 || Ops.size() == 4) &&
13833
"Unexpected number of arguments");
13834
unsigned NumElts =
13835
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13836
Value *Cmp;
13837
13838
if (CC == 3) {
13839
Cmp = Constant::getNullValue(
13840
llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
13841
} else if (CC == 7) {
13842
Cmp = Constant::getAllOnesValue(
13843
llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
13844
} else {
13845
ICmpInst::Predicate Pred;
13846
switch (CC) {
13847
default: llvm_unreachable("Unknown condition code");
13848
case 0: Pred = ICmpInst::ICMP_EQ; break;
13849
case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
13850
case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
13851
case 4: Pred = ICmpInst::ICMP_NE; break;
13852
case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
13853
case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
13854
}
13855
Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
13856
}
13857
13858
Value *MaskIn = nullptr;
13859
if (Ops.size() == 4)
13860
MaskIn = Ops[3];
13861
13862
return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
13863
}
13864
13865
static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
13866
Value *Zero = Constant::getNullValue(In->getType());
13867
return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
13868
}
13869
13870
static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF, const CallExpr *E,
13871
ArrayRef<Value *> Ops, bool IsSigned) {
13872
unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue();
13873
llvm::Type *Ty = Ops[1]->getType();
13874
13875
Value *Res;
13876
if (Rnd != 4) {
13877
Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
13878
: Intrinsic::x86_avx512_uitofp_round;
13879
Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() });
13880
Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] });
13881
} else {
13882
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
13883
Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty)
13884
: CGF.Builder.CreateUIToFP(Ops[0], Ty);
13885
}
13886
13887
return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
13888
}
13889
13890
// Lowers X86 FMA intrinsics to IR.
13891
static Value *EmitX86FMAExpr(CodeGenFunction &CGF, const CallExpr *E,
13892
ArrayRef<Value *> Ops, unsigned BuiltinID,
13893
bool IsAddSub) {
13894
13895
bool Subtract = false;
13896
Intrinsic::ID IID = Intrinsic::not_intrinsic;
13897
switch (BuiltinID) {
13898
default: break;
13899
case clang::X86::BI__builtin_ia32_vfmsubph512_mask3:
13900
Subtract = true;
13901
[[fallthrough]];
13902
case clang::X86::BI__builtin_ia32_vfmaddph512_mask:
13903
case clang::X86::BI__builtin_ia32_vfmaddph512_maskz:
13904
case clang::X86::BI__builtin_ia32_vfmaddph512_mask3:
13905
IID = llvm::Intrinsic::x86_avx512fp16_vfmadd_ph_512;
13906
break;
13907
case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3:
13908
Subtract = true;
13909
[[fallthrough]];
13910
case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask:
13911
case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz:
13912
case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3:
13913
IID = llvm::Intrinsic::x86_avx512fp16_vfmaddsub_ph_512;
13914
break;
13915
case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
13916
Subtract = true;
13917
[[fallthrough]];
13918
case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
13919
case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
13920
case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
13921
IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
13922
case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
13923
Subtract = true;
13924
[[fallthrough]];
13925
case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
13926
case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
13927
case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
13928
IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
13929
case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
13930
Subtract = true;
13931
[[fallthrough]];
13932
case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
13933
case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
13934
case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
13935
IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
13936
break;
13937
case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
13938
Subtract = true;
13939
[[fallthrough]];
13940
case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
13941
case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
13942
case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
13943
IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
13944
break;
13945
}
13946
13947
Value *A = Ops[0];
13948
Value *B = Ops[1];
13949
Value *C = Ops[2];
13950
13951
if (Subtract)
13952
C = CGF.Builder.CreateFNeg(C);
13953
13954
Value *Res;
13955
13956
// Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
13957
if (IID != Intrinsic::not_intrinsic &&
13958
(cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4 ||
13959
IsAddSub)) {
13960
Function *Intr = CGF.CGM.getIntrinsic(IID);
13961
Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
13962
} else {
13963
llvm::Type *Ty = A->getType();
13964
Function *FMA;
13965
if (CGF.Builder.getIsFPConstrained()) {
13966
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
13967
FMA = CGF.CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, Ty);
13968
Res = CGF.Builder.CreateConstrainedFPCall(FMA, {A, B, C});
13969
} else {
13970
FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
13971
Res = CGF.Builder.CreateCall(FMA, {A, B, C});
13972
}
13973
}
13974
13975
// Handle any required masking.
13976
Value *MaskFalseVal = nullptr;
13977
switch (BuiltinID) {
13978
case clang::X86::BI__builtin_ia32_vfmaddph512_mask:
13979
case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
13980
case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
13981
case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask:
13982
case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
13983
case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
13984
MaskFalseVal = Ops[0];
13985
break;
13986
case clang::X86::BI__builtin_ia32_vfmaddph512_maskz:
13987
case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
13988
case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
13989
case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz:
13990
case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
13991
case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
13992
MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
13993
break;
13994
case clang::X86::BI__builtin_ia32_vfmsubph512_mask3:
13995
case clang::X86::BI__builtin_ia32_vfmaddph512_mask3:
13996
case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
13997
case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
13998
case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
13999
case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
14000
case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3:
14001
case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3:
14002
case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
14003
case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
14004
case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
14005
case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
14006
MaskFalseVal = Ops[2];
14007
break;
14008
}
14009
14010
if (MaskFalseVal)
14011
return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
14012
14013
return Res;
14014
}
14015
14016
static Value *EmitScalarFMAExpr(CodeGenFunction &CGF, const CallExpr *E,
14017
MutableArrayRef<Value *> Ops, Value *Upper,
14018
bool ZeroMask = false, unsigned PTIdx = 0,
14019
bool NegAcc = false) {
14020
unsigned Rnd = 4;
14021
if (Ops.size() > 4)
14022
Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
14023
14024
if (NegAcc)
14025
Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
14026
14027
Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
14028
Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
14029
Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
14030
Value *Res;
14031
if (Rnd != 4) {
14032
Intrinsic::ID IID;
14033
14034
switch (Ops[0]->getType()->getPrimitiveSizeInBits()) {
14035
case 16:
14036
IID = Intrinsic::x86_avx512fp16_vfmadd_f16;
14037
break;
14038
case 32:
14039
IID = Intrinsic::x86_avx512_vfmadd_f32;
14040
break;
14041
case 64:
14042
IID = Intrinsic::x86_avx512_vfmadd_f64;
14043
break;
14044
default:
14045
llvm_unreachable("Unexpected size");
14046
}
14047
Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
14048
{Ops[0], Ops[1], Ops[2], Ops[4]});
14049
} else if (CGF.Builder.getIsFPConstrained()) {
14050
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
14051
Function *FMA = CGF.CGM.getIntrinsic(
14052
Intrinsic::experimental_constrained_fma, Ops[0]->getType());
14053
Res = CGF.Builder.CreateConstrainedFPCall(FMA, Ops.slice(0, 3));
14054
} else {
14055
Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
14056
Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
14057
}
14058
// If we have more than 3 arguments, we need to do masking.
14059
if (Ops.size() > 3) {
14060
Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
14061
: Ops[PTIdx];
14062
14063
// If we negated the accumulator and the its the PassThru value we need to
14064
// bypass the negate. Conveniently Upper should be the same thing in this
14065
// case.
14066
if (NegAcc && PTIdx == 2)
14067
PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
14068
14069
Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
14070
}
14071
return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
14072
}
14073
14074
static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
14075
ArrayRef<Value *> Ops) {
14076
llvm::Type *Ty = Ops[0]->getType();
14077
// Arguments have a vXi32 type so cast to vXi64.
14078
Ty = llvm::FixedVectorType::get(CGF.Int64Ty,
14079
Ty->getPrimitiveSizeInBits() / 64);
14080
Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
14081
Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
14082
14083
if (IsSigned) {
14084
// Shift left then arithmetic shift right.
14085
Constant *ShiftAmt = ConstantInt::get(Ty, 32);
14086
LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
14087
LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
14088
RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
14089
RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
14090
} else {
14091
// Clear the upper bits.
14092
Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
14093
LHS = CGF.Builder.CreateAnd(LHS, Mask);
14094
RHS = CGF.Builder.CreateAnd(RHS, Mask);
14095
}
14096
14097
return CGF.Builder.CreateMul(LHS, RHS);
14098
}
14099
14100
// Emit a masked pternlog intrinsic. This only exists because the header has to
14101
// use a macro and we aren't able to pass the input argument to a pternlog
14102
// builtin and a select builtin without evaluating it twice.
14103
static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
14104
ArrayRef<Value *> Ops) {
14105
llvm::Type *Ty = Ops[0]->getType();
14106
14107
unsigned VecWidth = Ty->getPrimitiveSizeInBits();
14108
unsigned EltWidth = Ty->getScalarSizeInBits();
14109
Intrinsic::ID IID;
14110
if (VecWidth == 128 && EltWidth == 32)
14111
IID = Intrinsic::x86_avx512_pternlog_d_128;
14112
else if (VecWidth == 256 && EltWidth == 32)
14113
IID = Intrinsic::x86_avx512_pternlog_d_256;
14114
else if (VecWidth == 512 && EltWidth == 32)
14115
IID = Intrinsic::x86_avx512_pternlog_d_512;
14116
else if (VecWidth == 128 && EltWidth == 64)
14117
IID = Intrinsic::x86_avx512_pternlog_q_128;
14118
else if (VecWidth == 256 && EltWidth == 64)
14119
IID = Intrinsic::x86_avx512_pternlog_q_256;
14120
else if (VecWidth == 512 && EltWidth == 64)
14121
IID = Intrinsic::x86_avx512_pternlog_q_512;
14122
else
14123
llvm_unreachable("Unexpected intrinsic");
14124
14125
Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
14126
Ops.drop_back());
14127
Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
14128
return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
14129
}
14130
14131
static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
14132
llvm::Type *DstTy) {
14133
unsigned NumberOfElements =
14134
cast<llvm::FixedVectorType>(DstTy)->getNumElements();
14135
Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
14136
return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
14137
}
14138
14139
Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
14140
const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
14141
StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
14142
return EmitX86CpuIs(CPUStr);
14143
}
14144
14145
// Convert F16 halfs to floats.
14146
static Value *EmitX86CvtF16ToFloatExpr(CodeGenFunction &CGF,
14147
ArrayRef<Value *> Ops,
14148
llvm::Type *DstTy) {
14149
assert((Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) &&
14150
"Unknown cvtph2ps intrinsic");
14151
14152
// If the SAE intrinsic doesn't use default rounding then we can't upgrade.
14153
if (Ops.size() == 4 && cast<llvm::ConstantInt>(Ops[3])->getZExtValue() != 4) {
14154
Function *F =
14155
CGF.CGM.getIntrinsic(Intrinsic::x86_avx512_mask_vcvtph2ps_512);
14156
return CGF.Builder.CreateCall(F, {Ops[0], Ops[1], Ops[2], Ops[3]});
14157
}
14158
14159
unsigned NumDstElts = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
14160
Value *Src = Ops[0];
14161
14162
// Extract the subvector.
14163
if (NumDstElts !=
14164
cast<llvm::FixedVectorType>(Src->getType())->getNumElements()) {
14165
assert(NumDstElts == 4 && "Unexpected vector size");
14166
Src = CGF.Builder.CreateShuffleVector(Src, ArrayRef<int>{0, 1, 2, 3});
14167
}
14168
14169
// Bitcast from vXi16 to vXf16.
14170
auto *HalfTy = llvm::FixedVectorType::get(
14171
llvm::Type::getHalfTy(CGF.getLLVMContext()), NumDstElts);
14172
Src = CGF.Builder.CreateBitCast(Src, HalfTy);
14173
14174
// Perform the fp-extension.
14175
Value *Res = CGF.Builder.CreateFPExt(Src, DstTy, "cvtph2ps");
14176
14177
if (Ops.size() >= 3)
14178
Res = EmitX86Select(CGF, Ops[2], Res, Ops[1]);
14179
return Res;
14180
}
14181
14182
Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
14183
14184
llvm::Type *Int32Ty = Builder.getInt32Ty();
14185
14186
// Matching the struct layout from the compiler-rt/libgcc structure that is
14187
// filled in:
14188
// unsigned int __cpu_vendor;
14189
// unsigned int __cpu_type;
14190
// unsigned int __cpu_subtype;
14191
// unsigned int __cpu_features[1];
14192
llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
14193
llvm::ArrayType::get(Int32Ty, 1));
14194
14195
// Grab the global __cpu_model.
14196
llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
14197
cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
14198
14199
// Calculate the index needed to access the correct field based on the
14200
// range. Also adjust the expected value.
14201
unsigned Index;
14202
unsigned Value;
14203
std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
14204
#define X86_VENDOR(ENUM, STRING) \
14205
.Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
14206
#define X86_CPU_TYPE_ALIAS(ENUM, ALIAS) \
14207
.Case(ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
14208
#define X86_CPU_TYPE(ENUM, STR) \
14209
.Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
14210
#define X86_CPU_SUBTYPE_ALIAS(ENUM, ALIAS) \
14211
.Case(ALIAS, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
14212
#define X86_CPU_SUBTYPE(ENUM, STR) \
14213
.Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
14214
#include "llvm/TargetParser/X86TargetParser.def"
14215
.Default({0, 0});
14216
assert(Value != 0 && "Invalid CPUStr passed to CpuIs");
14217
14218
// Grab the appropriate field from __cpu_model.
14219
llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
14220
ConstantInt::get(Int32Ty, Index)};
14221
llvm::Value *CpuValue = Builder.CreateInBoundsGEP(STy, CpuModel, Idxs);
14222
CpuValue = Builder.CreateAlignedLoad(Int32Ty, CpuValue,
14223
CharUnits::fromQuantity(4));
14224
14225
// Check the value of the field against the requested value.
14226
return Builder.CreateICmpEQ(CpuValue,
14227
llvm::ConstantInt::get(Int32Ty, Value));
14228
}
14229
14230
Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
14231
const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
14232
StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
14233
if (!getContext().getTargetInfo().validateCpuSupports(FeatureStr))
14234
return Builder.getFalse();
14235
return EmitX86CpuSupports(FeatureStr);
14236
}
14237
14238
Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
14239
return EmitX86CpuSupports(llvm::X86::getCpuSupportsMask(FeatureStrs));
14240
}
14241
14242
llvm::Value *
14243
CodeGenFunction::EmitX86CpuSupports(std::array<uint32_t, 4> FeatureMask) {
14244
Value *Result = Builder.getTrue();
14245
if (FeatureMask[0] != 0) {
14246
// Matching the struct layout from the compiler-rt/libgcc structure that is
14247
// filled in:
14248
// unsigned int __cpu_vendor;
14249
// unsigned int __cpu_type;
14250
// unsigned int __cpu_subtype;
14251
// unsigned int __cpu_features[1];
14252
llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
14253
llvm::ArrayType::get(Int32Ty, 1));
14254
14255
// Grab the global __cpu_model.
14256
llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
14257
cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
14258
14259
// Grab the first (0th) element from the field __cpu_features off of the
14260
// global in the struct STy.
14261
Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
14262
Builder.getInt32(0)};
14263
Value *CpuFeatures = Builder.CreateInBoundsGEP(STy, CpuModel, Idxs);
14264
Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures,
14265
CharUnits::fromQuantity(4));
14266
14267
// Check the value of the bit corresponding to the feature requested.
14268
Value *Mask = Builder.getInt32(FeatureMask[0]);
14269
Value *Bitset = Builder.CreateAnd(Features, Mask);
14270
Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
14271
Result = Builder.CreateAnd(Result, Cmp);
14272
}
14273
14274
llvm::Type *ATy = llvm::ArrayType::get(Int32Ty, 3);
14275
llvm::Constant *CpuFeatures2 =
14276
CGM.CreateRuntimeVariable(ATy, "__cpu_features2");
14277
cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
14278
for (int i = 1; i != 4; ++i) {
14279
const uint32_t M = FeatureMask[i];
14280
if (!M)
14281
continue;
14282
Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(i - 1)};
14283
Value *Features = Builder.CreateAlignedLoad(
14284
Int32Ty, Builder.CreateInBoundsGEP(ATy, CpuFeatures2, Idxs),
14285
CharUnits::fromQuantity(4));
14286
// Check the value of the bit corresponding to the feature requested.
14287
Value *Mask = Builder.getInt32(M);
14288
Value *Bitset = Builder.CreateAnd(Features, Mask);
14289
Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
14290
Result = Builder.CreateAnd(Result, Cmp);
14291
}
14292
14293
return Result;
14294
}
14295
14296
Value *CodeGenFunction::EmitAArch64CpuInit() {
14297
llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
14298
llvm::FunctionCallee Func =
14299
CGM.CreateRuntimeFunction(FTy, "__init_cpu_features_resolver");
14300
cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
14301
cast<llvm::GlobalValue>(Func.getCallee())
14302
->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
14303
return Builder.CreateCall(Func);
14304
}
14305
14306
Value *CodeGenFunction::EmitX86CpuInit() {
14307
llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
14308
/*Variadic*/ false);
14309
llvm::FunctionCallee Func =
14310
CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
14311
cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
14312
cast<llvm::GlobalValue>(Func.getCallee())
14313
->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
14314
return Builder.CreateCall(Func);
14315
}
14316
14317
Value *CodeGenFunction::EmitAArch64CpuSupports(const CallExpr *E) {
14318
const Expr *ArgExpr = E->getArg(0)->IgnoreParenCasts();
14319
StringRef ArgStr = cast<StringLiteral>(ArgExpr)->getString();
14320
llvm::SmallVector<StringRef, 8> Features;
14321
ArgStr.split(Features, "+");
14322
for (auto &Feature : Features) {
14323
Feature = Feature.trim();
14324
if (!llvm::AArch64::parseFMVExtension(Feature))
14325
return Builder.getFalse();
14326
if (Feature != "default")
14327
Features.push_back(Feature);
14328
}
14329
return EmitAArch64CpuSupports(Features);
14330
}
14331
14332
llvm::Value *
14333
CodeGenFunction::EmitAArch64CpuSupports(ArrayRef<StringRef> FeaturesStrs) {
14334
uint64_t FeaturesMask = llvm::AArch64::getCpuSupportsMask(FeaturesStrs);
14335
Value *Result = Builder.getTrue();
14336
if (FeaturesMask != 0) {
14337
// Get features from structure in runtime library
14338
// struct {
14339
// unsigned long long features;
14340
// } __aarch64_cpu_features;
14341
llvm::Type *STy = llvm::StructType::get(Int64Ty);
14342
llvm::Constant *AArch64CPUFeatures =
14343
CGM.CreateRuntimeVariable(STy, "__aarch64_cpu_features");
14344
cast<llvm::GlobalValue>(AArch64CPUFeatures)->setDSOLocal(true);
14345
llvm::Value *CpuFeatures = Builder.CreateGEP(
14346
STy, AArch64CPUFeatures,
14347
{ConstantInt::get(Int32Ty, 0), ConstantInt::get(Int32Ty, 0)});
14348
Value *Features = Builder.CreateAlignedLoad(Int64Ty, CpuFeatures,
14349
CharUnits::fromQuantity(8));
14350
Value *Mask = Builder.getInt64(FeaturesMask);
14351
Value *Bitset = Builder.CreateAnd(Features, Mask);
14352
Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
14353
Result = Builder.CreateAnd(Result, Cmp);
14354
}
14355
return Result;
14356
}
14357
14358
Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
14359
const CallExpr *E) {
14360
if (BuiltinID == Builtin::BI__builtin_cpu_is)
14361
return EmitX86CpuIs(E);
14362
if (BuiltinID == Builtin::BI__builtin_cpu_supports)
14363
return EmitX86CpuSupports(E);
14364
if (BuiltinID == Builtin::BI__builtin_cpu_init)
14365
return EmitX86CpuInit();
14366
14367
// Handle MSVC intrinsics before argument evaluation to prevent double
14368
// evaluation.
14369
if (std::optional<MSVCIntrin> MsvcIntId = translateX86ToMsvcIntrin(BuiltinID))
14370
return EmitMSVCBuiltinExpr(*MsvcIntId, E);
14371
14372
SmallVector<Value*, 4> Ops;
14373
bool IsMaskFCmp = false;
14374
bool IsConjFMA = false;
14375
14376
// Find out if any arguments are required to be integer constant expressions.
14377
unsigned ICEArguments = 0;
14378
ASTContext::GetBuiltinTypeError Error;
14379
getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
14380
assert(Error == ASTContext::GE_None && "Should not codegen an error");
14381
14382
for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
14383
Ops.push_back(EmitScalarOrConstFoldImmArg(ICEArguments, i, E));
14384
}
14385
14386
// These exist so that the builtin that takes an immediate can be bounds
14387
// checked by clang to avoid passing bad immediates to the backend. Since
14388
// AVX has a larger immediate than SSE we would need separate builtins to
14389
// do the different bounds checking. Rather than create a clang specific
14390
// SSE only builtin, this implements eight separate builtins to match gcc
14391
// implementation.
14392
auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
14393
Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
14394
llvm::Function *F = CGM.getIntrinsic(ID);
14395
return Builder.CreateCall(F, Ops);
14396
};
14397
14398
// For the vector forms of FP comparisons, translate the builtins directly to
14399
// IR.
14400
// TODO: The builtins could be removed if the SSE header files used vector
14401
// extension comparisons directly (vector ordered/unordered may need
14402
// additional support via __builtin_isnan()).
14403
auto getVectorFCmpIR = [this, &Ops, E](CmpInst::Predicate Pred,
14404
bool IsSignaling) {
14405
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14406
Value *Cmp;
14407
if (IsSignaling)
14408
Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
14409
else
14410
Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
14411
llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
14412
llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
14413
Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
14414
return Builder.CreateBitCast(Sext, FPVecTy);
14415
};
14416
14417
switch (BuiltinID) {
14418
default: return nullptr;
14419
case X86::BI_mm_prefetch: {
14420
Value *Address = Ops[0];
14421
ConstantInt *C = cast<ConstantInt>(Ops[1]);
14422
Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
14423
Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
14424
Value *Data = ConstantInt::get(Int32Ty, 1);
14425
Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
14426
return Builder.CreateCall(F, {Address, RW, Locality, Data});
14427
}
14428
case X86::BI_mm_clflush: {
14429
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
14430
Ops[0]);
14431
}
14432
case X86::BI_mm_lfence: {
14433
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
14434
}
14435
case X86::BI_mm_mfence: {
14436
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
14437
}
14438
case X86::BI_mm_sfence: {
14439
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
14440
}
14441
case X86::BI_mm_pause: {
14442
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
14443
}
14444
case X86::BI__rdtsc: {
14445
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
14446
}
14447
case X86::BI__builtin_ia32_rdtscp: {
14448
Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
14449
Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
14450
Ops[0]);
14451
return Builder.CreateExtractValue(Call, 0);
14452
}
14453
case X86::BI__builtin_ia32_lzcnt_u16:
14454
case X86::BI__builtin_ia32_lzcnt_u32:
14455
case X86::BI__builtin_ia32_lzcnt_u64: {
14456
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
14457
return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
14458
}
14459
case X86::BI__builtin_ia32_tzcnt_u16:
14460
case X86::BI__builtin_ia32_tzcnt_u32:
14461
case X86::BI__builtin_ia32_tzcnt_u64: {
14462
Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
14463
return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
14464
}
14465
case X86::BI__builtin_ia32_undef128:
14466
case X86::BI__builtin_ia32_undef256:
14467
case X86::BI__builtin_ia32_undef512:
14468
// The x86 definition of "undef" is not the same as the LLVM definition
14469
// (PR32176). We leave optimizing away an unnecessary zero constant to the
14470
// IR optimizer and backend.
14471
// TODO: If we had a "freeze" IR instruction to generate a fixed undef
14472
// value, we should use that here instead of a zero.
14473
return llvm::Constant::getNullValue(ConvertType(E->getType()));
14474
case X86::BI__builtin_ia32_vec_init_v8qi:
14475
case X86::BI__builtin_ia32_vec_init_v4hi:
14476
case X86::BI__builtin_ia32_vec_init_v2si:
14477
return Builder.CreateBitCast(BuildVector(Ops),
14478
llvm::Type::getX86_MMXTy(getLLVMContext()));
14479
case X86::BI__builtin_ia32_vec_ext_v2si:
14480
case X86::BI__builtin_ia32_vec_ext_v16qi:
14481
case X86::BI__builtin_ia32_vec_ext_v8hi:
14482
case X86::BI__builtin_ia32_vec_ext_v4si:
14483
case X86::BI__builtin_ia32_vec_ext_v4sf:
14484
case X86::BI__builtin_ia32_vec_ext_v2di:
14485
case X86::BI__builtin_ia32_vec_ext_v32qi:
14486
case X86::BI__builtin_ia32_vec_ext_v16hi:
14487
case X86::BI__builtin_ia32_vec_ext_v8si:
14488
case X86::BI__builtin_ia32_vec_ext_v4di: {
14489
unsigned NumElts =
14490
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14491
uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
14492
Index &= NumElts - 1;
14493
// These builtins exist so we can ensure the index is an ICE and in range.
14494
// Otherwise we could just do this in the header file.
14495
return Builder.CreateExtractElement(Ops[0], Index);
14496
}
14497
case X86::BI__builtin_ia32_vec_set_v16qi:
14498
case X86::BI__builtin_ia32_vec_set_v8hi:
14499
case X86::BI__builtin_ia32_vec_set_v4si:
14500
case X86::BI__builtin_ia32_vec_set_v2di:
14501
case X86::BI__builtin_ia32_vec_set_v32qi:
14502
case X86::BI__builtin_ia32_vec_set_v16hi:
14503
case X86::BI__builtin_ia32_vec_set_v8si:
14504
case X86::BI__builtin_ia32_vec_set_v4di: {
14505
unsigned NumElts =
14506
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14507
unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
14508
Index &= NumElts - 1;
14509
// These builtins exist so we can ensure the index is an ICE and in range.
14510
// Otherwise we could just do this in the header file.
14511
return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
14512
}
14513
case X86::BI_mm_setcsr:
14514
case X86::BI__builtin_ia32_ldmxcsr: {
14515
RawAddress Tmp = CreateMemTemp(E->getArg(0)->getType());
14516
Builder.CreateStore(Ops[0], Tmp);
14517
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
14518
Tmp.getPointer());
14519
}
14520
case X86::BI_mm_getcsr:
14521
case X86::BI__builtin_ia32_stmxcsr: {
14522
RawAddress Tmp = CreateMemTemp(E->getType());
14523
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
14524
Tmp.getPointer());
14525
return Builder.CreateLoad(Tmp, "stmxcsr");
14526
}
14527
case X86::BI__builtin_ia32_xsave:
14528
case X86::BI__builtin_ia32_xsave64:
14529
case X86::BI__builtin_ia32_xrstor:
14530
case X86::BI__builtin_ia32_xrstor64:
14531
case X86::BI__builtin_ia32_xsaveopt:
14532
case X86::BI__builtin_ia32_xsaveopt64:
14533
case X86::BI__builtin_ia32_xrstors:
14534
case X86::BI__builtin_ia32_xrstors64:
14535
case X86::BI__builtin_ia32_xsavec:
14536
case X86::BI__builtin_ia32_xsavec64:
14537
case X86::BI__builtin_ia32_xsaves:
14538
case X86::BI__builtin_ia32_xsaves64:
14539
case X86::BI__builtin_ia32_xsetbv:
14540
case X86::BI_xsetbv: {
14541
Intrinsic::ID ID;
14542
#define INTRINSIC_X86_XSAVE_ID(NAME) \
14543
case X86::BI__builtin_ia32_##NAME: \
14544
ID = Intrinsic::x86_##NAME; \
14545
break
14546
switch (BuiltinID) {
14547
default: llvm_unreachable("Unsupported intrinsic!");
14548
INTRINSIC_X86_XSAVE_ID(xsave);
14549
INTRINSIC_X86_XSAVE_ID(xsave64);
14550
INTRINSIC_X86_XSAVE_ID(xrstor);
14551
INTRINSIC_X86_XSAVE_ID(xrstor64);
14552
INTRINSIC_X86_XSAVE_ID(xsaveopt);
14553
INTRINSIC_X86_XSAVE_ID(xsaveopt64);
14554
INTRINSIC_X86_XSAVE_ID(xrstors);
14555
INTRINSIC_X86_XSAVE_ID(xrstors64);
14556
INTRINSIC_X86_XSAVE_ID(xsavec);
14557
INTRINSIC_X86_XSAVE_ID(xsavec64);
14558
INTRINSIC_X86_XSAVE_ID(xsaves);
14559
INTRINSIC_X86_XSAVE_ID(xsaves64);
14560
INTRINSIC_X86_XSAVE_ID(xsetbv);
14561
case X86::BI_xsetbv:
14562
ID = Intrinsic::x86_xsetbv;
14563
break;
14564
}
14565
#undef INTRINSIC_X86_XSAVE_ID
14566
Value *Mhi = Builder.CreateTrunc(
14567
Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
14568
Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
14569
Ops[1] = Mhi;
14570
Ops.push_back(Mlo);
14571
return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14572
}
14573
case X86::BI__builtin_ia32_xgetbv:
14574
case X86::BI_xgetbv:
14575
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops);
14576
case X86::BI__builtin_ia32_storedqudi128_mask:
14577
case X86::BI__builtin_ia32_storedqusi128_mask:
14578
case X86::BI__builtin_ia32_storedquhi128_mask:
14579
case X86::BI__builtin_ia32_storedquqi128_mask:
14580
case X86::BI__builtin_ia32_storeupd128_mask:
14581
case X86::BI__builtin_ia32_storeups128_mask:
14582
case X86::BI__builtin_ia32_storedqudi256_mask:
14583
case X86::BI__builtin_ia32_storedqusi256_mask:
14584
case X86::BI__builtin_ia32_storedquhi256_mask:
14585
case X86::BI__builtin_ia32_storedquqi256_mask:
14586
case X86::BI__builtin_ia32_storeupd256_mask:
14587
case X86::BI__builtin_ia32_storeups256_mask:
14588
case X86::BI__builtin_ia32_storedqudi512_mask:
14589
case X86::BI__builtin_ia32_storedqusi512_mask:
14590
case X86::BI__builtin_ia32_storedquhi512_mask:
14591
case X86::BI__builtin_ia32_storedquqi512_mask:
14592
case X86::BI__builtin_ia32_storeupd512_mask:
14593
case X86::BI__builtin_ia32_storeups512_mask:
14594
return EmitX86MaskedStore(*this, Ops, Align(1));
14595
14596
case X86::BI__builtin_ia32_storesh128_mask:
14597
case X86::BI__builtin_ia32_storess128_mask:
14598
case X86::BI__builtin_ia32_storesd128_mask:
14599
return EmitX86MaskedStore(*this, Ops, Align(1));
14600
14601
case X86::BI__builtin_ia32_vpopcntb_128:
14602
case X86::BI__builtin_ia32_vpopcntd_128:
14603
case X86::BI__builtin_ia32_vpopcntq_128:
14604
case X86::BI__builtin_ia32_vpopcntw_128:
14605
case X86::BI__builtin_ia32_vpopcntb_256:
14606
case X86::BI__builtin_ia32_vpopcntd_256:
14607
case X86::BI__builtin_ia32_vpopcntq_256:
14608
case X86::BI__builtin_ia32_vpopcntw_256:
14609
case X86::BI__builtin_ia32_vpopcntb_512:
14610
case X86::BI__builtin_ia32_vpopcntd_512:
14611
case X86::BI__builtin_ia32_vpopcntq_512:
14612
case X86::BI__builtin_ia32_vpopcntw_512: {
14613
llvm::Type *ResultType = ConvertType(E->getType());
14614
llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
14615
return Builder.CreateCall(F, Ops);
14616
}
14617
case X86::BI__builtin_ia32_cvtmask2b128:
14618
case X86::BI__builtin_ia32_cvtmask2b256:
14619
case X86::BI__builtin_ia32_cvtmask2b512:
14620
case X86::BI__builtin_ia32_cvtmask2w128:
14621
case X86::BI__builtin_ia32_cvtmask2w256:
14622
case X86::BI__builtin_ia32_cvtmask2w512:
14623
case X86::BI__builtin_ia32_cvtmask2d128:
14624
case X86::BI__builtin_ia32_cvtmask2d256:
14625
case X86::BI__builtin_ia32_cvtmask2d512:
14626
case X86::BI__builtin_ia32_cvtmask2q128:
14627
case X86::BI__builtin_ia32_cvtmask2q256:
14628
case X86::BI__builtin_ia32_cvtmask2q512:
14629
return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
14630
14631
case X86::BI__builtin_ia32_cvtb2mask128:
14632
case X86::BI__builtin_ia32_cvtb2mask256:
14633
case X86::BI__builtin_ia32_cvtb2mask512:
14634
case X86::BI__builtin_ia32_cvtw2mask128:
14635
case X86::BI__builtin_ia32_cvtw2mask256:
14636
case X86::BI__builtin_ia32_cvtw2mask512:
14637
case X86::BI__builtin_ia32_cvtd2mask128:
14638
case X86::BI__builtin_ia32_cvtd2mask256:
14639
case X86::BI__builtin_ia32_cvtd2mask512:
14640
case X86::BI__builtin_ia32_cvtq2mask128:
14641
case X86::BI__builtin_ia32_cvtq2mask256:
14642
case X86::BI__builtin_ia32_cvtq2mask512:
14643
return EmitX86ConvertToMask(*this, Ops[0]);
14644
14645
case X86::BI__builtin_ia32_cvtdq2ps512_mask:
14646
case X86::BI__builtin_ia32_cvtqq2ps512_mask:
14647
case X86::BI__builtin_ia32_cvtqq2pd512_mask:
14648
case X86::BI__builtin_ia32_vcvtw2ph512_mask:
14649
case X86::BI__builtin_ia32_vcvtdq2ph512_mask:
14650
case X86::BI__builtin_ia32_vcvtqq2ph512_mask:
14651
return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ true);
14652
case X86::BI__builtin_ia32_cvtudq2ps512_mask:
14653
case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
14654
case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
14655
case X86::BI__builtin_ia32_vcvtuw2ph512_mask:
14656
case X86::BI__builtin_ia32_vcvtudq2ph512_mask:
14657
case X86::BI__builtin_ia32_vcvtuqq2ph512_mask:
14658
return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ false);
14659
14660
case X86::BI__builtin_ia32_vfmaddss3:
14661
case X86::BI__builtin_ia32_vfmaddsd3:
14662
case X86::BI__builtin_ia32_vfmaddsh3_mask:
14663
case X86::BI__builtin_ia32_vfmaddss3_mask:
14664
case X86::BI__builtin_ia32_vfmaddsd3_mask:
14665
return EmitScalarFMAExpr(*this, E, Ops, Ops[0]);
14666
case X86::BI__builtin_ia32_vfmaddss:
14667
case X86::BI__builtin_ia32_vfmaddsd:
14668
return EmitScalarFMAExpr(*this, E, Ops,
14669
Constant::getNullValue(Ops[0]->getType()));
14670
case X86::BI__builtin_ia32_vfmaddsh3_maskz:
14671
case X86::BI__builtin_ia32_vfmaddss3_maskz:
14672
case X86::BI__builtin_ia32_vfmaddsd3_maskz:
14673
return EmitScalarFMAExpr(*this, E, Ops, Ops[0], /*ZeroMask*/ true);
14674
case X86::BI__builtin_ia32_vfmaddsh3_mask3:
14675
case X86::BI__builtin_ia32_vfmaddss3_mask3:
14676
case X86::BI__builtin_ia32_vfmaddsd3_mask3:
14677
return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2);
14678
case X86::BI__builtin_ia32_vfmsubsh3_mask3:
14679
case X86::BI__builtin_ia32_vfmsubss3_mask3:
14680
case X86::BI__builtin_ia32_vfmsubsd3_mask3:
14681
return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2,
14682
/*NegAcc*/ true);
14683
case X86::BI__builtin_ia32_vfmaddph:
14684
case X86::BI__builtin_ia32_vfmaddps:
14685
case X86::BI__builtin_ia32_vfmaddpd:
14686
case X86::BI__builtin_ia32_vfmaddph256:
14687
case X86::BI__builtin_ia32_vfmaddps256:
14688
case X86::BI__builtin_ia32_vfmaddpd256:
14689
case X86::BI__builtin_ia32_vfmaddph512_mask:
14690
case X86::BI__builtin_ia32_vfmaddph512_maskz:
14691
case X86::BI__builtin_ia32_vfmaddph512_mask3:
14692
case X86::BI__builtin_ia32_vfmaddps512_mask:
14693
case X86::BI__builtin_ia32_vfmaddps512_maskz:
14694
case X86::BI__builtin_ia32_vfmaddps512_mask3:
14695
case X86::BI__builtin_ia32_vfmsubps512_mask3:
14696
case X86::BI__builtin_ia32_vfmaddpd512_mask:
14697
case X86::BI__builtin_ia32_vfmaddpd512_maskz:
14698
case X86::BI__builtin_ia32_vfmaddpd512_mask3:
14699
case X86::BI__builtin_ia32_vfmsubpd512_mask3:
14700
case X86::BI__builtin_ia32_vfmsubph512_mask3:
14701
return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ false);
14702
case X86::BI__builtin_ia32_vfmaddsubph512_mask:
14703
case X86::BI__builtin_ia32_vfmaddsubph512_maskz:
14704
case X86::BI__builtin_ia32_vfmaddsubph512_mask3:
14705
case X86::BI__builtin_ia32_vfmsubaddph512_mask3:
14706
case X86::BI__builtin_ia32_vfmaddsubps512_mask:
14707
case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
14708
case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
14709
case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
14710
case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
14711
case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
14712
case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
14713
case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
14714
return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ true);
14715
14716
case X86::BI__builtin_ia32_movdqa32store128_mask:
14717
case X86::BI__builtin_ia32_movdqa64store128_mask:
14718
case X86::BI__builtin_ia32_storeaps128_mask:
14719
case X86::BI__builtin_ia32_storeapd128_mask:
14720
case X86::BI__builtin_ia32_movdqa32store256_mask:
14721
case X86::BI__builtin_ia32_movdqa64store256_mask:
14722
case X86::BI__builtin_ia32_storeaps256_mask:
14723
case X86::BI__builtin_ia32_storeapd256_mask:
14724
case X86::BI__builtin_ia32_movdqa32store512_mask:
14725
case X86::BI__builtin_ia32_movdqa64store512_mask:
14726
case X86::BI__builtin_ia32_storeaps512_mask:
14727
case X86::BI__builtin_ia32_storeapd512_mask:
14728
return EmitX86MaskedStore(
14729
*this, Ops,
14730
getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
14731
14732
case X86::BI__builtin_ia32_loadups128_mask:
14733
case X86::BI__builtin_ia32_loadups256_mask:
14734
case X86::BI__builtin_ia32_loadups512_mask:
14735
case X86::BI__builtin_ia32_loadupd128_mask:
14736
case X86::BI__builtin_ia32_loadupd256_mask:
14737
case X86::BI__builtin_ia32_loadupd512_mask:
14738
case X86::BI__builtin_ia32_loaddquqi128_mask:
14739
case X86::BI__builtin_ia32_loaddquqi256_mask:
14740
case X86::BI__builtin_ia32_loaddquqi512_mask:
14741
case X86::BI__builtin_ia32_loaddquhi128_mask:
14742
case X86::BI__builtin_ia32_loaddquhi256_mask:
14743
case X86::BI__builtin_ia32_loaddquhi512_mask:
14744
case X86::BI__builtin_ia32_loaddqusi128_mask:
14745
case X86::BI__builtin_ia32_loaddqusi256_mask:
14746
case X86::BI__builtin_ia32_loaddqusi512_mask:
14747
case X86::BI__builtin_ia32_loaddqudi128_mask:
14748
case X86::BI__builtin_ia32_loaddqudi256_mask:
14749
case X86::BI__builtin_ia32_loaddqudi512_mask:
14750
return EmitX86MaskedLoad(*this, Ops, Align(1));
14751
14752
case X86::BI__builtin_ia32_loadsh128_mask:
14753
case X86::BI__builtin_ia32_loadss128_mask:
14754
case X86::BI__builtin_ia32_loadsd128_mask:
14755
return EmitX86MaskedLoad(*this, Ops, Align(1));
14756
14757
case X86::BI__builtin_ia32_loadaps128_mask:
14758
case X86::BI__builtin_ia32_loadaps256_mask:
14759
case X86::BI__builtin_ia32_loadaps512_mask:
14760
case X86::BI__builtin_ia32_loadapd128_mask:
14761
case X86::BI__builtin_ia32_loadapd256_mask:
14762
case X86::BI__builtin_ia32_loadapd512_mask:
14763
case X86::BI__builtin_ia32_movdqa32load128_mask:
14764
case X86::BI__builtin_ia32_movdqa32load256_mask:
14765
case X86::BI__builtin_ia32_movdqa32load512_mask:
14766
case X86::BI__builtin_ia32_movdqa64load128_mask:
14767
case X86::BI__builtin_ia32_movdqa64load256_mask:
14768
case X86::BI__builtin_ia32_movdqa64load512_mask:
14769
return EmitX86MaskedLoad(
14770
*this, Ops,
14771
getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
14772
14773
case X86::BI__builtin_ia32_expandloaddf128_mask:
14774
case X86::BI__builtin_ia32_expandloaddf256_mask:
14775
case X86::BI__builtin_ia32_expandloaddf512_mask:
14776
case X86::BI__builtin_ia32_expandloadsf128_mask:
14777
case X86::BI__builtin_ia32_expandloadsf256_mask:
14778
case X86::BI__builtin_ia32_expandloadsf512_mask:
14779
case X86::BI__builtin_ia32_expandloaddi128_mask:
14780
case X86::BI__builtin_ia32_expandloaddi256_mask:
14781
case X86::BI__builtin_ia32_expandloaddi512_mask:
14782
case X86::BI__builtin_ia32_expandloadsi128_mask:
14783
case X86::BI__builtin_ia32_expandloadsi256_mask:
14784
case X86::BI__builtin_ia32_expandloadsi512_mask:
14785
case X86::BI__builtin_ia32_expandloadhi128_mask:
14786
case X86::BI__builtin_ia32_expandloadhi256_mask:
14787
case X86::BI__builtin_ia32_expandloadhi512_mask:
14788
case X86::BI__builtin_ia32_expandloadqi128_mask:
14789
case X86::BI__builtin_ia32_expandloadqi256_mask:
14790
case X86::BI__builtin_ia32_expandloadqi512_mask:
14791
return EmitX86ExpandLoad(*this, Ops);
14792
14793
case X86::BI__builtin_ia32_compressstoredf128_mask:
14794
case X86::BI__builtin_ia32_compressstoredf256_mask:
14795
case X86::BI__builtin_ia32_compressstoredf512_mask:
14796
case X86::BI__builtin_ia32_compressstoresf128_mask:
14797
case X86::BI__builtin_ia32_compressstoresf256_mask:
14798
case X86::BI__builtin_ia32_compressstoresf512_mask:
14799
case X86::BI__builtin_ia32_compressstoredi128_mask:
14800
case X86::BI__builtin_ia32_compressstoredi256_mask:
14801
case X86::BI__builtin_ia32_compressstoredi512_mask:
14802
case X86::BI__builtin_ia32_compressstoresi128_mask:
14803
case X86::BI__builtin_ia32_compressstoresi256_mask:
14804
case X86::BI__builtin_ia32_compressstoresi512_mask:
14805
case X86::BI__builtin_ia32_compressstorehi128_mask:
14806
case X86::BI__builtin_ia32_compressstorehi256_mask:
14807
case X86::BI__builtin_ia32_compressstorehi512_mask:
14808
case X86::BI__builtin_ia32_compressstoreqi128_mask:
14809
case X86::BI__builtin_ia32_compressstoreqi256_mask:
14810
case X86::BI__builtin_ia32_compressstoreqi512_mask:
14811
return EmitX86CompressStore(*this, Ops);
14812
14813
case X86::BI__builtin_ia32_expanddf128_mask:
14814
case X86::BI__builtin_ia32_expanddf256_mask:
14815
case X86::BI__builtin_ia32_expanddf512_mask:
14816
case X86::BI__builtin_ia32_expandsf128_mask:
14817
case X86::BI__builtin_ia32_expandsf256_mask:
14818
case X86::BI__builtin_ia32_expandsf512_mask:
14819
case X86::BI__builtin_ia32_expanddi128_mask:
14820
case X86::BI__builtin_ia32_expanddi256_mask:
14821
case X86::BI__builtin_ia32_expanddi512_mask:
14822
case X86::BI__builtin_ia32_expandsi128_mask:
14823
case X86::BI__builtin_ia32_expandsi256_mask:
14824
case X86::BI__builtin_ia32_expandsi512_mask:
14825
case X86::BI__builtin_ia32_expandhi128_mask:
14826
case X86::BI__builtin_ia32_expandhi256_mask:
14827
case X86::BI__builtin_ia32_expandhi512_mask:
14828
case X86::BI__builtin_ia32_expandqi128_mask:
14829
case X86::BI__builtin_ia32_expandqi256_mask:
14830
case X86::BI__builtin_ia32_expandqi512_mask:
14831
return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false);
14832
14833
case X86::BI__builtin_ia32_compressdf128_mask:
14834
case X86::BI__builtin_ia32_compressdf256_mask:
14835
case X86::BI__builtin_ia32_compressdf512_mask:
14836
case X86::BI__builtin_ia32_compresssf128_mask:
14837
case X86::BI__builtin_ia32_compresssf256_mask:
14838
case X86::BI__builtin_ia32_compresssf512_mask:
14839
case X86::BI__builtin_ia32_compressdi128_mask:
14840
case X86::BI__builtin_ia32_compressdi256_mask:
14841
case X86::BI__builtin_ia32_compressdi512_mask:
14842
case X86::BI__builtin_ia32_compresssi128_mask:
14843
case X86::BI__builtin_ia32_compresssi256_mask:
14844
case X86::BI__builtin_ia32_compresssi512_mask:
14845
case X86::BI__builtin_ia32_compresshi128_mask:
14846
case X86::BI__builtin_ia32_compresshi256_mask:
14847
case X86::BI__builtin_ia32_compresshi512_mask:
14848
case X86::BI__builtin_ia32_compressqi128_mask:
14849
case X86::BI__builtin_ia32_compressqi256_mask:
14850
case X86::BI__builtin_ia32_compressqi512_mask:
14851
return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true);
14852
14853
case X86::BI__builtin_ia32_gather3div2df:
14854
case X86::BI__builtin_ia32_gather3div2di:
14855
case X86::BI__builtin_ia32_gather3div4df:
14856
case X86::BI__builtin_ia32_gather3div4di:
14857
case X86::BI__builtin_ia32_gather3div4sf:
14858
case X86::BI__builtin_ia32_gather3div4si:
14859
case X86::BI__builtin_ia32_gather3div8sf:
14860
case X86::BI__builtin_ia32_gather3div8si:
14861
case X86::BI__builtin_ia32_gather3siv2df:
14862
case X86::BI__builtin_ia32_gather3siv2di:
14863
case X86::BI__builtin_ia32_gather3siv4df:
14864
case X86::BI__builtin_ia32_gather3siv4di:
14865
case X86::BI__builtin_ia32_gather3siv4sf:
14866
case X86::BI__builtin_ia32_gather3siv4si:
14867
case X86::BI__builtin_ia32_gather3siv8sf:
14868
case X86::BI__builtin_ia32_gather3siv8si:
14869
case X86::BI__builtin_ia32_gathersiv8df:
14870
case X86::BI__builtin_ia32_gathersiv16sf:
14871
case X86::BI__builtin_ia32_gatherdiv8df:
14872
case X86::BI__builtin_ia32_gatherdiv16sf:
14873
case X86::BI__builtin_ia32_gathersiv8di:
14874
case X86::BI__builtin_ia32_gathersiv16si:
14875
case X86::BI__builtin_ia32_gatherdiv8di:
14876
case X86::BI__builtin_ia32_gatherdiv16si: {
14877
Intrinsic::ID IID;
14878
switch (BuiltinID) {
14879
default: llvm_unreachable("Unexpected builtin");
14880
case X86::BI__builtin_ia32_gather3div2df:
14881
IID = Intrinsic::x86_avx512_mask_gather3div2_df;
14882
break;
14883
case X86::BI__builtin_ia32_gather3div2di:
14884
IID = Intrinsic::x86_avx512_mask_gather3div2_di;
14885
break;
14886
case X86::BI__builtin_ia32_gather3div4df:
14887
IID = Intrinsic::x86_avx512_mask_gather3div4_df;
14888
break;
14889
case X86::BI__builtin_ia32_gather3div4di:
14890
IID = Intrinsic::x86_avx512_mask_gather3div4_di;
14891
break;
14892
case X86::BI__builtin_ia32_gather3div4sf:
14893
IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
14894
break;
14895
case X86::BI__builtin_ia32_gather3div4si:
14896
IID = Intrinsic::x86_avx512_mask_gather3div4_si;
14897
break;
14898
case X86::BI__builtin_ia32_gather3div8sf:
14899
IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
14900
break;
14901
case X86::BI__builtin_ia32_gather3div8si:
14902
IID = Intrinsic::x86_avx512_mask_gather3div8_si;
14903
break;
14904
case X86::BI__builtin_ia32_gather3siv2df:
14905
IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
14906
break;
14907
case X86::BI__builtin_ia32_gather3siv2di:
14908
IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
14909
break;
14910
case X86::BI__builtin_ia32_gather3siv4df:
14911
IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
14912
break;
14913
case X86::BI__builtin_ia32_gather3siv4di:
14914
IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
14915
break;
14916
case X86::BI__builtin_ia32_gather3siv4sf:
14917
IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
14918
break;
14919
case X86::BI__builtin_ia32_gather3siv4si:
14920
IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
14921
break;
14922
case X86::BI__builtin_ia32_gather3siv8sf:
14923
IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
14924
break;
14925
case X86::BI__builtin_ia32_gather3siv8si:
14926
IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
14927
break;
14928
case X86::BI__builtin_ia32_gathersiv8df:
14929
IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
14930
break;
14931
case X86::BI__builtin_ia32_gathersiv16sf:
14932
IID = Intrinsic::x86_avx512_mask_gather_dps_512;
14933
break;
14934
case X86::BI__builtin_ia32_gatherdiv8df:
14935
IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
14936
break;
14937
case X86::BI__builtin_ia32_gatherdiv16sf:
14938
IID = Intrinsic::x86_avx512_mask_gather_qps_512;
14939
break;
14940
case X86::BI__builtin_ia32_gathersiv8di:
14941
IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
14942
break;
14943
case X86::BI__builtin_ia32_gathersiv16si:
14944
IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
14945
break;
14946
case X86::BI__builtin_ia32_gatherdiv8di:
14947
IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
14948
break;
14949
case X86::BI__builtin_ia32_gatherdiv16si:
14950
IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
14951
break;
14952
}
14953
14954
unsigned MinElts = std::min(
14955
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(),
14956
cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements());
14957
Ops[3] = getMaskVecValue(*this, Ops[3], MinElts);
14958
Function *Intr = CGM.getIntrinsic(IID);
14959
return Builder.CreateCall(Intr, Ops);
14960
}
14961
14962
case X86::BI__builtin_ia32_scattersiv8df:
14963
case X86::BI__builtin_ia32_scattersiv16sf:
14964
case X86::BI__builtin_ia32_scatterdiv8df:
14965
case X86::BI__builtin_ia32_scatterdiv16sf:
14966
case X86::BI__builtin_ia32_scattersiv8di:
14967
case X86::BI__builtin_ia32_scattersiv16si:
14968
case X86::BI__builtin_ia32_scatterdiv8di:
14969
case X86::BI__builtin_ia32_scatterdiv16si:
14970
case X86::BI__builtin_ia32_scatterdiv2df:
14971
case X86::BI__builtin_ia32_scatterdiv2di:
14972
case X86::BI__builtin_ia32_scatterdiv4df:
14973
case X86::BI__builtin_ia32_scatterdiv4di:
14974
case X86::BI__builtin_ia32_scatterdiv4sf:
14975
case X86::BI__builtin_ia32_scatterdiv4si:
14976
case X86::BI__builtin_ia32_scatterdiv8sf:
14977
case X86::BI__builtin_ia32_scatterdiv8si:
14978
case X86::BI__builtin_ia32_scattersiv2df:
14979
case X86::BI__builtin_ia32_scattersiv2di:
14980
case X86::BI__builtin_ia32_scattersiv4df:
14981
case X86::BI__builtin_ia32_scattersiv4di:
14982
case X86::BI__builtin_ia32_scattersiv4sf:
14983
case X86::BI__builtin_ia32_scattersiv4si:
14984
case X86::BI__builtin_ia32_scattersiv8sf:
14985
case X86::BI__builtin_ia32_scattersiv8si: {
14986
Intrinsic::ID IID;
14987
switch (BuiltinID) {
14988
default: llvm_unreachable("Unexpected builtin");
14989
case X86::BI__builtin_ia32_scattersiv8df:
14990
IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
14991
break;
14992
case X86::BI__builtin_ia32_scattersiv16sf:
14993
IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
14994
break;
14995
case X86::BI__builtin_ia32_scatterdiv8df:
14996
IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
14997
break;
14998
case X86::BI__builtin_ia32_scatterdiv16sf:
14999
IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
15000
break;
15001
case X86::BI__builtin_ia32_scattersiv8di:
15002
IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
15003
break;
15004
case X86::BI__builtin_ia32_scattersiv16si:
15005
IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
15006
break;
15007
case X86::BI__builtin_ia32_scatterdiv8di:
15008
IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
15009
break;
15010
case X86::BI__builtin_ia32_scatterdiv16si:
15011
IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
15012
break;
15013
case X86::BI__builtin_ia32_scatterdiv2df:
15014
IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
15015
break;
15016
case X86::BI__builtin_ia32_scatterdiv2di:
15017
IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
15018
break;
15019
case X86::BI__builtin_ia32_scatterdiv4df:
15020
IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
15021
break;
15022
case X86::BI__builtin_ia32_scatterdiv4di:
15023
IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
15024
break;
15025
case X86::BI__builtin_ia32_scatterdiv4sf:
15026
IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
15027
break;
15028
case X86::BI__builtin_ia32_scatterdiv4si:
15029
IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
15030
break;
15031
case X86::BI__builtin_ia32_scatterdiv8sf:
15032
IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
15033
break;
15034
case X86::BI__builtin_ia32_scatterdiv8si:
15035
IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
15036
break;
15037
case X86::BI__builtin_ia32_scattersiv2df:
15038
IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
15039
break;
15040
case X86::BI__builtin_ia32_scattersiv2di:
15041
IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
15042
break;
15043
case X86::BI__builtin_ia32_scattersiv4df:
15044
IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
15045
break;
15046
case X86::BI__builtin_ia32_scattersiv4di:
15047
IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
15048
break;
15049
case X86::BI__builtin_ia32_scattersiv4sf:
15050
IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
15051
break;
15052
case X86::BI__builtin_ia32_scattersiv4si:
15053
IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
15054
break;
15055
case X86::BI__builtin_ia32_scattersiv8sf:
15056
IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
15057
break;
15058
case X86::BI__builtin_ia32_scattersiv8si:
15059
IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
15060
break;
15061
}
15062
15063
unsigned MinElts = std::min(
15064
cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements(),
15065
cast<llvm::FixedVectorType>(Ops[3]->getType())->getNumElements());
15066
Ops[1] = getMaskVecValue(*this, Ops[1], MinElts);
15067
Function *Intr = CGM.getIntrinsic(IID);
15068
return Builder.CreateCall(Intr, Ops);
15069
}
15070
15071
case X86::BI__builtin_ia32_vextractf128_pd256:
15072
case X86::BI__builtin_ia32_vextractf128_ps256:
15073
case X86::BI__builtin_ia32_vextractf128_si256:
15074
case X86::BI__builtin_ia32_extract128i256:
15075
case X86::BI__builtin_ia32_extractf64x4_mask:
15076
case X86::BI__builtin_ia32_extractf32x4_mask:
15077
case X86::BI__builtin_ia32_extracti64x4_mask:
15078
case X86::BI__builtin_ia32_extracti32x4_mask:
15079
case X86::BI__builtin_ia32_extractf32x8_mask:
15080
case X86::BI__builtin_ia32_extracti32x8_mask:
15081
case X86::BI__builtin_ia32_extractf32x4_256_mask:
15082
case X86::BI__builtin_ia32_extracti32x4_256_mask:
15083
case X86::BI__builtin_ia32_extractf64x2_256_mask:
15084
case X86::BI__builtin_ia32_extracti64x2_256_mask:
15085
case X86::BI__builtin_ia32_extractf64x2_512_mask:
15086
case X86::BI__builtin_ia32_extracti64x2_512_mask: {
15087
auto *DstTy = cast<llvm::FixedVectorType>(ConvertType(E->getType()));
15088
unsigned NumElts = DstTy->getNumElements();
15089
unsigned SrcNumElts =
15090
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
15091
unsigned SubVectors = SrcNumElts / NumElts;
15092
unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
15093
assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
15094
Index &= SubVectors - 1; // Remove any extra bits.
15095
Index *= NumElts;
15096
15097
int Indices[16];
15098
for (unsigned i = 0; i != NumElts; ++i)
15099
Indices[i] = i + Index;
15100
15101
Value *Res = Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts),
15102
"extract");
15103
15104
if (Ops.size() == 4)
15105
Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
15106
15107
return Res;
15108
}
15109
case X86::BI__builtin_ia32_vinsertf128_pd256:
15110
case X86::BI__builtin_ia32_vinsertf128_ps256:
15111
case X86::BI__builtin_ia32_vinsertf128_si256:
15112
case X86::BI__builtin_ia32_insert128i256:
15113
case X86::BI__builtin_ia32_insertf64x4:
15114
case X86::BI__builtin_ia32_insertf32x4:
15115
case X86::BI__builtin_ia32_inserti64x4:
15116
case X86::BI__builtin_ia32_inserti32x4:
15117
case X86::BI__builtin_ia32_insertf32x8:
15118
case X86::BI__builtin_ia32_inserti32x8:
15119
case X86::BI__builtin_ia32_insertf32x4_256:
15120
case X86::BI__builtin_ia32_inserti32x4_256:
15121
case X86::BI__builtin_ia32_insertf64x2_256:
15122
case X86::BI__builtin_ia32_inserti64x2_256:
15123
case X86::BI__builtin_ia32_insertf64x2_512:
15124
case X86::BI__builtin_ia32_inserti64x2_512: {
15125
unsigned DstNumElts =
15126
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
15127
unsigned SrcNumElts =
15128
cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements();
15129
unsigned SubVectors = DstNumElts / SrcNumElts;
15130
unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
15131
assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
15132
Index &= SubVectors - 1; // Remove any extra bits.
15133
Index *= SrcNumElts;
15134
15135
int Indices[16];
15136
for (unsigned i = 0; i != DstNumElts; ++i)
15137
Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
15138
15139
Value *Op1 = Builder.CreateShuffleVector(
15140
Ops[1], ArrayRef(Indices, DstNumElts), "widen");
15141
15142
for (unsigned i = 0; i != DstNumElts; ++i) {
15143
if (i >= Index && i < (Index + SrcNumElts))
15144
Indices[i] = (i - Index) + DstNumElts;
15145
else
15146
Indices[i] = i;
15147
}
15148
15149
return Builder.CreateShuffleVector(Ops[0], Op1,
15150
ArrayRef(Indices, DstNumElts), "insert");
15151
}
15152
case X86::BI__builtin_ia32_pmovqd512_mask:
15153
case X86::BI__builtin_ia32_pmovwb512_mask: {
15154
Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
15155
return EmitX86Select(*this, Ops[2], Res, Ops[1]);
15156
}
15157
case X86::BI__builtin_ia32_pmovdb512_mask:
15158
case X86::BI__builtin_ia32_pmovdw512_mask:
15159
case X86::BI__builtin_ia32_pmovqw512_mask: {
15160
if (const auto *C = dyn_cast<Constant>(Ops[2]))
15161
if (C->isAllOnesValue())
15162
return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
15163
15164
Intrinsic::ID IID;
15165
switch (BuiltinID) {
15166
default: llvm_unreachable("Unsupported intrinsic!");
15167
case X86::BI__builtin_ia32_pmovdb512_mask:
15168
IID = Intrinsic::x86_avx512_mask_pmov_db_512;
15169
break;
15170
case X86::BI__builtin_ia32_pmovdw512_mask:
15171
IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
15172
break;
15173
case X86::BI__builtin_ia32_pmovqw512_mask:
15174
IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
15175
break;
15176
}
15177
15178
Function *Intr = CGM.getIntrinsic(IID);
15179
return Builder.CreateCall(Intr, Ops);
15180
}
15181
case X86::BI__builtin_ia32_pblendw128:
15182
case X86::BI__builtin_ia32_blendpd:
15183
case X86::BI__builtin_ia32_blendps:
15184
case X86::BI__builtin_ia32_blendpd256:
15185
case X86::BI__builtin_ia32_blendps256:
15186
case X86::BI__builtin_ia32_pblendw256:
15187
case X86::BI__builtin_ia32_pblendd128:
15188
case X86::BI__builtin_ia32_pblendd256: {
15189
unsigned NumElts =
15190
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
15191
unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
15192
15193
int Indices[16];
15194
// If there are more than 8 elements, the immediate is used twice so make
15195
// sure we handle that.
15196
for (unsigned i = 0; i != NumElts; ++i)
15197
Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
15198
15199
return Builder.CreateShuffleVector(Ops[0], Ops[1],
15200
ArrayRef(Indices, NumElts), "blend");
15201
}
15202
case X86::BI__builtin_ia32_pshuflw:
15203
case X86::BI__builtin_ia32_pshuflw256:
15204
case X86::BI__builtin_ia32_pshuflw512: {
15205
uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
15206
auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
15207
unsigned NumElts = Ty->getNumElements();
15208
15209
// Splat the 8-bits of immediate 4 times to help the loop wrap around.
15210
Imm = (Imm & 0xff) * 0x01010101;
15211
15212
int Indices[32];
15213
for (unsigned l = 0; l != NumElts; l += 8) {
15214
for (unsigned i = 0; i != 4; ++i) {
15215
Indices[l + i] = l + (Imm & 3);
15216
Imm >>= 2;
15217
}
15218
for (unsigned i = 4; i != 8; ++i)
15219
Indices[l + i] = l + i;
15220
}
15221
15222
return Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts),
15223
"pshuflw");
15224
}
15225
case X86::BI__builtin_ia32_pshufhw:
15226
case X86::BI__builtin_ia32_pshufhw256:
15227
case X86::BI__builtin_ia32_pshufhw512: {
15228
uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
15229
auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
15230
unsigned NumElts = Ty->getNumElements();
15231
15232
// Splat the 8-bits of immediate 4 times to help the loop wrap around.
15233
Imm = (Imm & 0xff) * 0x01010101;
15234
15235
int Indices[32];
15236
for (unsigned l = 0; l != NumElts; l += 8) {
15237
for (unsigned i = 0; i != 4; ++i)
15238
Indices[l + i] = l + i;
15239
for (unsigned i = 4; i != 8; ++i) {
15240
Indices[l + i] = l + 4 + (Imm & 3);
15241
Imm >>= 2;
15242
}
15243
}
15244
15245
return Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts),
15246
"pshufhw");
15247
}
15248
case X86::BI__builtin_ia32_pshufd:
15249
case X86::BI__builtin_ia32_pshufd256:
15250
case X86::BI__builtin_ia32_pshufd512:
15251
case X86::BI__builtin_ia32_vpermilpd:
15252
case X86::BI__builtin_ia32_vpermilps:
15253
case X86::BI__builtin_ia32_vpermilpd256:
15254
case X86::BI__builtin_ia32_vpermilps256:
15255
case X86::BI__builtin_ia32_vpermilpd512:
15256
case X86::BI__builtin_ia32_vpermilps512: {
15257
uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
15258
auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
15259
unsigned NumElts = Ty->getNumElements();
15260
unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
15261
unsigned NumLaneElts = NumElts / NumLanes;
15262
15263
// Splat the 8-bits of immediate 4 times to help the loop wrap around.
15264
Imm = (Imm & 0xff) * 0x01010101;
15265
15266
int Indices[16];
15267
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
15268
for (unsigned i = 0; i != NumLaneElts; ++i) {
15269
Indices[i + l] = (Imm % NumLaneElts) + l;
15270
Imm /= NumLaneElts;
15271
}
15272
}
15273
15274
return Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts),
15275
"permil");
15276
}
15277
case X86::BI__builtin_ia32_shufpd:
15278
case X86::BI__builtin_ia32_shufpd256:
15279
case X86::BI__builtin_ia32_shufpd512:
15280
case X86::BI__builtin_ia32_shufps:
15281
case X86::BI__builtin_ia32_shufps256:
15282
case X86::BI__builtin_ia32_shufps512: {
15283
uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
15284
auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
15285
unsigned NumElts = Ty->getNumElements();
15286
unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
15287
unsigned NumLaneElts = NumElts / NumLanes;
15288
15289
// Splat the 8-bits of immediate 4 times to help the loop wrap around.
15290
Imm = (Imm & 0xff) * 0x01010101;
15291
15292
int Indices[16];
15293
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
15294
for (unsigned i = 0; i != NumLaneElts; ++i) {
15295
unsigned Index = Imm % NumLaneElts;
15296
Imm /= NumLaneElts;
15297
if (i >= (NumLaneElts / 2))
15298
Index += NumElts;
15299
Indices[l + i] = l + Index;
15300
}
15301
}
15302
15303
return Builder.CreateShuffleVector(Ops[0], Ops[1],
15304
ArrayRef(Indices, NumElts), "shufp");
15305
}
15306
case X86::BI__builtin_ia32_permdi256:
15307
case X86::BI__builtin_ia32_permdf256:
15308
case X86::BI__builtin_ia32_permdi512:
15309
case X86::BI__builtin_ia32_permdf512: {
15310
unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
15311
auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
15312
unsigned NumElts = Ty->getNumElements();
15313
15314
// These intrinsics operate on 256-bit lanes of four 64-bit elements.
15315
int Indices[8];
15316
for (unsigned l = 0; l != NumElts; l += 4)
15317
for (unsigned i = 0; i != 4; ++i)
15318
Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
15319
15320
return Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts),
15321
"perm");
15322
}
15323
case X86::BI__builtin_ia32_palignr128:
15324
case X86::BI__builtin_ia32_palignr256:
15325
case X86::BI__builtin_ia32_palignr512: {
15326
unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
15327
15328
unsigned NumElts =
15329
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
15330
assert(NumElts % 16 == 0);
15331
15332
// If palignr is shifting the pair of vectors more than the size of two
15333
// lanes, emit zero.
15334
if (ShiftVal >= 32)
15335
return llvm::Constant::getNullValue(ConvertType(E->getType()));
15336
15337
// If palignr is shifting the pair of input vectors more than one lane,
15338
// but less than two lanes, convert to shifting in zeroes.
15339
if (ShiftVal > 16) {
15340
ShiftVal -= 16;
15341
Ops[1] = Ops[0];
15342
Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
15343
}
15344
15345
int Indices[64];
15346
// 256-bit palignr operates on 128-bit lanes so we need to handle that
15347
for (unsigned l = 0; l != NumElts; l += 16) {
15348
for (unsigned i = 0; i != 16; ++i) {
15349
unsigned Idx = ShiftVal + i;
15350
if (Idx >= 16)
15351
Idx += NumElts - 16; // End of lane, switch operand.
15352
Indices[l + i] = Idx + l;
15353
}
15354
}
15355
15356
return Builder.CreateShuffleVector(Ops[1], Ops[0],
15357
ArrayRef(Indices, NumElts), "palignr");
15358
}
15359
case X86::BI__builtin_ia32_alignd128:
15360
case X86::BI__builtin_ia32_alignd256:
15361
case X86::BI__builtin_ia32_alignd512:
15362
case X86::BI__builtin_ia32_alignq128:
15363
case X86::BI__builtin_ia32_alignq256:
15364
case X86::BI__builtin_ia32_alignq512: {
15365
unsigned NumElts =
15366
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
15367
unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
15368
15369
// Mask the shift amount to width of a vector.
15370
ShiftVal &= NumElts - 1;
15371
15372
int Indices[16];
15373
for (unsigned i = 0; i != NumElts; ++i)
15374
Indices[i] = i + ShiftVal;
15375
15376
return Builder.CreateShuffleVector(Ops[1], Ops[0],
15377
ArrayRef(Indices, NumElts), "valign");
15378
}
15379
case X86::BI__builtin_ia32_shuf_f32x4_256:
15380
case X86::BI__builtin_ia32_shuf_f64x2_256:
15381
case X86::BI__builtin_ia32_shuf_i32x4_256:
15382
case X86::BI__builtin_ia32_shuf_i64x2_256:
15383
case X86::BI__builtin_ia32_shuf_f32x4:
15384
case X86::BI__builtin_ia32_shuf_f64x2:
15385
case X86::BI__builtin_ia32_shuf_i32x4:
15386
case X86::BI__builtin_ia32_shuf_i64x2: {
15387
unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
15388
auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
15389
unsigned NumElts = Ty->getNumElements();
15390
unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
15391
unsigned NumLaneElts = NumElts / NumLanes;
15392
15393
int Indices[16];
15394
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
15395
unsigned Index = (Imm % NumLanes) * NumLaneElts;
15396
Imm /= NumLanes; // Discard the bits we just used.
15397
if (l >= (NumElts / 2))
15398
Index += NumElts; // Switch to other source.
15399
for (unsigned i = 0; i != NumLaneElts; ++i) {
15400
Indices[l + i] = Index + i;
15401
}
15402
}
15403
15404
return Builder.CreateShuffleVector(Ops[0], Ops[1],
15405
ArrayRef(Indices, NumElts), "shuf");
15406
}
15407
15408
case X86::BI__builtin_ia32_vperm2f128_pd256:
15409
case X86::BI__builtin_ia32_vperm2f128_ps256:
15410
case X86::BI__builtin_ia32_vperm2f128_si256:
15411
case X86::BI__builtin_ia32_permti256: {
15412
unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
15413
unsigned NumElts =
15414
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
15415
15416
// This takes a very simple approach since there are two lanes and a
15417
// shuffle can have 2 inputs. So we reserve the first input for the first
15418
// lane and the second input for the second lane. This may result in
15419
// duplicate sources, but this can be dealt with in the backend.
15420
15421
Value *OutOps[2];
15422
int Indices[8];
15423
for (unsigned l = 0; l != 2; ++l) {
15424
// Determine the source for this lane.
15425
if (Imm & (1 << ((l * 4) + 3)))
15426
OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
15427
else if (Imm & (1 << ((l * 4) + 1)))
15428
OutOps[l] = Ops[1];
15429
else
15430
OutOps[l] = Ops[0];
15431
15432
for (unsigned i = 0; i != NumElts/2; ++i) {
15433
// Start with ith element of the source for this lane.
15434
unsigned Idx = (l * NumElts) + i;
15435
// If bit 0 of the immediate half is set, switch to the high half of
15436
// the source.
15437
if (Imm & (1 << (l * 4)))
15438
Idx += NumElts/2;
15439
Indices[(l * (NumElts/2)) + i] = Idx;
15440
}
15441
}
15442
15443
return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
15444
ArrayRef(Indices, NumElts), "vperm");
15445
}
15446
15447
case X86::BI__builtin_ia32_pslldqi128_byteshift:
15448
case X86::BI__builtin_ia32_pslldqi256_byteshift:
15449
case X86::BI__builtin_ia32_pslldqi512_byteshift: {
15450
unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
15451
auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
15452
// Builtin type is vXi64 so multiply by 8 to get bytes.
15453
unsigned NumElts = ResultType->getNumElements() * 8;
15454
15455
// If pslldq is shifting the vector more than 15 bytes, emit zero.
15456
if (ShiftVal >= 16)
15457
return llvm::Constant::getNullValue(ResultType);
15458
15459
int Indices[64];
15460
// 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
15461
for (unsigned l = 0; l != NumElts; l += 16) {
15462
for (unsigned i = 0; i != 16; ++i) {
15463
unsigned Idx = NumElts + i - ShiftVal;
15464
if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
15465
Indices[l + i] = Idx + l;
15466
}
15467
}
15468
15469
auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
15470
Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
15471
Value *Zero = llvm::Constant::getNullValue(VecTy);
15472
Value *SV = Builder.CreateShuffleVector(
15473
Zero, Cast, ArrayRef(Indices, NumElts), "pslldq");
15474
return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
15475
}
15476
case X86::BI__builtin_ia32_psrldqi128_byteshift:
15477
case X86::BI__builtin_ia32_psrldqi256_byteshift:
15478
case X86::BI__builtin_ia32_psrldqi512_byteshift: {
15479
unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
15480
auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
15481
// Builtin type is vXi64 so multiply by 8 to get bytes.
15482
unsigned NumElts = ResultType->getNumElements() * 8;
15483
15484
// If psrldq is shifting the vector more than 15 bytes, emit zero.
15485
if (ShiftVal >= 16)
15486
return llvm::Constant::getNullValue(ResultType);
15487
15488
int Indices[64];
15489
// 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
15490
for (unsigned l = 0; l != NumElts; l += 16) {
15491
for (unsigned i = 0; i != 16; ++i) {
15492
unsigned Idx = i + ShiftVal;
15493
if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
15494
Indices[l + i] = Idx + l;
15495
}
15496
}
15497
15498
auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
15499
Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
15500
Value *Zero = llvm::Constant::getNullValue(VecTy);
15501
Value *SV = Builder.CreateShuffleVector(
15502
Cast, Zero, ArrayRef(Indices, NumElts), "psrldq");
15503
return Builder.CreateBitCast(SV, ResultType, "cast");
15504
}
15505
case X86::BI__builtin_ia32_kshiftliqi:
15506
case X86::BI__builtin_ia32_kshiftlihi:
15507
case X86::BI__builtin_ia32_kshiftlisi:
15508
case X86::BI__builtin_ia32_kshiftlidi: {
15509
unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
15510
unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
15511
15512
if (ShiftVal >= NumElts)
15513
return llvm::Constant::getNullValue(Ops[0]->getType());
15514
15515
Value *In = getMaskVecValue(*this, Ops[0], NumElts);
15516
15517
int Indices[64];
15518
for (unsigned i = 0; i != NumElts; ++i)
15519
Indices[i] = NumElts + i - ShiftVal;
15520
15521
Value *Zero = llvm::Constant::getNullValue(In->getType());
15522
Value *SV = Builder.CreateShuffleVector(
15523
Zero, In, ArrayRef(Indices, NumElts), "kshiftl");
15524
return Builder.CreateBitCast(SV, Ops[0]->getType());
15525
}
15526
case X86::BI__builtin_ia32_kshiftriqi:
15527
case X86::BI__builtin_ia32_kshiftrihi:
15528
case X86::BI__builtin_ia32_kshiftrisi:
15529
case X86::BI__builtin_ia32_kshiftridi: {
15530
unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
15531
unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
15532
15533
if (ShiftVal >= NumElts)
15534
return llvm::Constant::getNullValue(Ops[0]->getType());
15535
15536
Value *In = getMaskVecValue(*this, Ops[0], NumElts);
15537
15538
int Indices[64];
15539
for (unsigned i = 0; i != NumElts; ++i)
15540
Indices[i] = i + ShiftVal;
15541
15542
Value *Zero = llvm::Constant::getNullValue(In->getType());
15543
Value *SV = Builder.CreateShuffleVector(
15544
In, Zero, ArrayRef(Indices, NumElts), "kshiftr");
15545
return Builder.CreateBitCast(SV, Ops[0]->getType());
15546
}
15547
case X86::BI__builtin_ia32_movnti:
15548
case X86::BI__builtin_ia32_movnti64:
15549
case X86::BI__builtin_ia32_movntsd:
15550
case X86::BI__builtin_ia32_movntss: {
15551
llvm::MDNode *Node = llvm::MDNode::get(
15552
getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
15553
15554
Value *Ptr = Ops[0];
15555
Value *Src = Ops[1];
15556
15557
// Extract the 0'th element of the source vector.
15558
if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
15559
BuiltinID == X86::BI__builtin_ia32_movntss)
15560
Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
15561
15562
// Unaligned nontemporal store of the scalar value.
15563
StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, Ptr);
15564
SI->setMetadata(llvm::LLVMContext::MD_nontemporal, Node);
15565
SI->setAlignment(llvm::Align(1));
15566
return SI;
15567
}
15568
// Rotate is a special case of funnel shift - 1st 2 args are the same.
15569
case X86::BI__builtin_ia32_vprotb:
15570
case X86::BI__builtin_ia32_vprotw:
15571
case X86::BI__builtin_ia32_vprotd:
15572
case X86::BI__builtin_ia32_vprotq:
15573
case X86::BI__builtin_ia32_vprotbi:
15574
case X86::BI__builtin_ia32_vprotwi:
15575
case X86::BI__builtin_ia32_vprotdi:
15576
case X86::BI__builtin_ia32_vprotqi:
15577
case X86::BI__builtin_ia32_prold128:
15578
case X86::BI__builtin_ia32_prold256:
15579
case X86::BI__builtin_ia32_prold512:
15580
case X86::BI__builtin_ia32_prolq128:
15581
case X86::BI__builtin_ia32_prolq256:
15582
case X86::BI__builtin_ia32_prolq512:
15583
case X86::BI__builtin_ia32_prolvd128:
15584
case X86::BI__builtin_ia32_prolvd256:
15585
case X86::BI__builtin_ia32_prolvd512:
15586
case X86::BI__builtin_ia32_prolvq128:
15587
case X86::BI__builtin_ia32_prolvq256:
15588
case X86::BI__builtin_ia32_prolvq512:
15589
return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
15590
case X86::BI__builtin_ia32_prord128:
15591
case X86::BI__builtin_ia32_prord256:
15592
case X86::BI__builtin_ia32_prord512:
15593
case X86::BI__builtin_ia32_prorq128:
15594
case X86::BI__builtin_ia32_prorq256:
15595
case X86::BI__builtin_ia32_prorq512:
15596
case X86::BI__builtin_ia32_prorvd128:
15597
case X86::BI__builtin_ia32_prorvd256:
15598
case X86::BI__builtin_ia32_prorvd512:
15599
case X86::BI__builtin_ia32_prorvq128:
15600
case X86::BI__builtin_ia32_prorvq256:
15601
case X86::BI__builtin_ia32_prorvq512:
15602
return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
15603
case X86::BI__builtin_ia32_selectb_128:
15604
case X86::BI__builtin_ia32_selectb_256:
15605
case X86::BI__builtin_ia32_selectb_512:
15606
case X86::BI__builtin_ia32_selectw_128:
15607
case X86::BI__builtin_ia32_selectw_256:
15608
case X86::BI__builtin_ia32_selectw_512:
15609
case X86::BI__builtin_ia32_selectd_128:
15610
case X86::BI__builtin_ia32_selectd_256:
15611
case X86::BI__builtin_ia32_selectd_512:
15612
case X86::BI__builtin_ia32_selectq_128:
15613
case X86::BI__builtin_ia32_selectq_256:
15614
case X86::BI__builtin_ia32_selectq_512:
15615
case X86::BI__builtin_ia32_selectph_128:
15616
case X86::BI__builtin_ia32_selectph_256:
15617
case X86::BI__builtin_ia32_selectph_512:
15618
case X86::BI__builtin_ia32_selectpbf_128:
15619
case X86::BI__builtin_ia32_selectpbf_256:
15620
case X86::BI__builtin_ia32_selectpbf_512:
15621
case X86::BI__builtin_ia32_selectps_128:
15622
case X86::BI__builtin_ia32_selectps_256:
15623
case X86::BI__builtin_ia32_selectps_512:
15624
case X86::BI__builtin_ia32_selectpd_128:
15625
case X86::BI__builtin_ia32_selectpd_256:
15626
case X86::BI__builtin_ia32_selectpd_512:
15627
return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
15628
case X86::BI__builtin_ia32_selectsh_128:
15629
case X86::BI__builtin_ia32_selectsbf_128:
15630
case X86::BI__builtin_ia32_selectss_128:
15631
case X86::BI__builtin_ia32_selectsd_128: {
15632
Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
15633
Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
15634
A = EmitX86ScalarSelect(*this, Ops[0], A, B);
15635
return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
15636
}
15637
case X86::BI__builtin_ia32_cmpb128_mask:
15638
case X86::BI__builtin_ia32_cmpb256_mask:
15639
case X86::BI__builtin_ia32_cmpb512_mask:
15640
case X86::BI__builtin_ia32_cmpw128_mask:
15641
case X86::BI__builtin_ia32_cmpw256_mask:
15642
case X86::BI__builtin_ia32_cmpw512_mask:
15643
case X86::BI__builtin_ia32_cmpd128_mask:
15644
case X86::BI__builtin_ia32_cmpd256_mask:
15645
case X86::BI__builtin_ia32_cmpd512_mask:
15646
case X86::BI__builtin_ia32_cmpq128_mask:
15647
case X86::BI__builtin_ia32_cmpq256_mask:
15648
case X86::BI__builtin_ia32_cmpq512_mask: {
15649
unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
15650
return EmitX86MaskedCompare(*this, CC, true, Ops);
15651
}
15652
case X86::BI__builtin_ia32_ucmpb128_mask:
15653
case X86::BI__builtin_ia32_ucmpb256_mask:
15654
case X86::BI__builtin_ia32_ucmpb512_mask:
15655
case X86::BI__builtin_ia32_ucmpw128_mask:
15656
case X86::BI__builtin_ia32_ucmpw256_mask:
15657
case X86::BI__builtin_ia32_ucmpw512_mask:
15658
case X86::BI__builtin_ia32_ucmpd128_mask:
15659
case X86::BI__builtin_ia32_ucmpd256_mask:
15660
case X86::BI__builtin_ia32_ucmpd512_mask:
15661
case X86::BI__builtin_ia32_ucmpq128_mask:
15662
case X86::BI__builtin_ia32_ucmpq256_mask:
15663
case X86::BI__builtin_ia32_ucmpq512_mask: {
15664
unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
15665
return EmitX86MaskedCompare(*this, CC, false, Ops);
15666
}
15667
case X86::BI__builtin_ia32_vpcomb:
15668
case X86::BI__builtin_ia32_vpcomw:
15669
case X86::BI__builtin_ia32_vpcomd:
15670
case X86::BI__builtin_ia32_vpcomq:
15671
return EmitX86vpcom(*this, Ops, true);
15672
case X86::BI__builtin_ia32_vpcomub:
15673
case X86::BI__builtin_ia32_vpcomuw:
15674
case X86::BI__builtin_ia32_vpcomud:
15675
case X86::BI__builtin_ia32_vpcomuq:
15676
return EmitX86vpcom(*this, Ops, false);
15677
15678
case X86::BI__builtin_ia32_kortestcqi:
15679
case X86::BI__builtin_ia32_kortestchi:
15680
case X86::BI__builtin_ia32_kortestcsi:
15681
case X86::BI__builtin_ia32_kortestcdi: {
15682
Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
15683
Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
15684
Value *Cmp = Builder.CreateICmpEQ(Or, C);
15685
return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
15686
}
15687
case X86::BI__builtin_ia32_kortestzqi:
15688
case X86::BI__builtin_ia32_kortestzhi:
15689
case X86::BI__builtin_ia32_kortestzsi:
15690
case X86::BI__builtin_ia32_kortestzdi: {
15691
Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
15692
Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
15693
Value *Cmp = Builder.CreateICmpEQ(Or, C);
15694
return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
15695
}
15696
15697
case X86::BI__builtin_ia32_ktestcqi:
15698
case X86::BI__builtin_ia32_ktestzqi:
15699
case X86::BI__builtin_ia32_ktestchi:
15700
case X86::BI__builtin_ia32_ktestzhi:
15701
case X86::BI__builtin_ia32_ktestcsi:
15702
case X86::BI__builtin_ia32_ktestzsi:
15703
case X86::BI__builtin_ia32_ktestcdi:
15704
case X86::BI__builtin_ia32_ktestzdi: {
15705
Intrinsic::ID IID;
15706
switch (BuiltinID) {
15707
default: llvm_unreachable("Unsupported intrinsic!");
15708
case X86::BI__builtin_ia32_ktestcqi:
15709
IID = Intrinsic::x86_avx512_ktestc_b;
15710
break;
15711
case X86::BI__builtin_ia32_ktestzqi:
15712
IID = Intrinsic::x86_avx512_ktestz_b;
15713
break;
15714
case X86::BI__builtin_ia32_ktestchi:
15715
IID = Intrinsic::x86_avx512_ktestc_w;
15716
break;
15717
case X86::BI__builtin_ia32_ktestzhi:
15718
IID = Intrinsic::x86_avx512_ktestz_w;
15719
break;
15720
case X86::BI__builtin_ia32_ktestcsi:
15721
IID = Intrinsic::x86_avx512_ktestc_d;
15722
break;
15723
case X86::BI__builtin_ia32_ktestzsi:
15724
IID = Intrinsic::x86_avx512_ktestz_d;
15725
break;
15726
case X86::BI__builtin_ia32_ktestcdi:
15727
IID = Intrinsic::x86_avx512_ktestc_q;
15728
break;
15729
case X86::BI__builtin_ia32_ktestzdi:
15730
IID = Intrinsic::x86_avx512_ktestz_q;
15731
break;
15732
}
15733
15734
unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
15735
Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
15736
Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
15737
Function *Intr = CGM.getIntrinsic(IID);
15738
return Builder.CreateCall(Intr, {LHS, RHS});
15739
}
15740
15741
case X86::BI__builtin_ia32_kaddqi:
15742
case X86::BI__builtin_ia32_kaddhi:
15743
case X86::BI__builtin_ia32_kaddsi:
15744
case X86::BI__builtin_ia32_kadddi: {
15745
Intrinsic::ID IID;
15746
switch (BuiltinID) {
15747
default: llvm_unreachable("Unsupported intrinsic!");
15748
case X86::BI__builtin_ia32_kaddqi:
15749
IID = Intrinsic::x86_avx512_kadd_b;
15750
break;
15751
case X86::BI__builtin_ia32_kaddhi:
15752
IID = Intrinsic::x86_avx512_kadd_w;
15753
break;
15754
case X86::BI__builtin_ia32_kaddsi:
15755
IID = Intrinsic::x86_avx512_kadd_d;
15756
break;
15757
case X86::BI__builtin_ia32_kadddi:
15758
IID = Intrinsic::x86_avx512_kadd_q;
15759
break;
15760
}
15761
15762
unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
15763
Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
15764
Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
15765
Function *Intr = CGM.getIntrinsic(IID);
15766
Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
15767
return Builder.CreateBitCast(Res, Ops[0]->getType());
15768
}
15769
case X86::BI__builtin_ia32_kandqi:
15770
case X86::BI__builtin_ia32_kandhi:
15771
case X86::BI__builtin_ia32_kandsi:
15772
case X86::BI__builtin_ia32_kanddi:
15773
return EmitX86MaskLogic(*this, Instruction::And, Ops);
15774
case X86::BI__builtin_ia32_kandnqi:
15775
case X86::BI__builtin_ia32_kandnhi:
15776
case X86::BI__builtin_ia32_kandnsi:
15777
case X86::BI__builtin_ia32_kandndi:
15778
return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
15779
case X86::BI__builtin_ia32_korqi:
15780
case X86::BI__builtin_ia32_korhi:
15781
case X86::BI__builtin_ia32_korsi:
15782
case X86::BI__builtin_ia32_kordi:
15783
return EmitX86MaskLogic(*this, Instruction::Or, Ops);
15784
case X86::BI__builtin_ia32_kxnorqi:
15785
case X86::BI__builtin_ia32_kxnorhi:
15786
case X86::BI__builtin_ia32_kxnorsi:
15787
case X86::BI__builtin_ia32_kxnordi:
15788
return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
15789
case X86::BI__builtin_ia32_kxorqi:
15790
case X86::BI__builtin_ia32_kxorhi:
15791
case X86::BI__builtin_ia32_kxorsi:
15792
case X86::BI__builtin_ia32_kxordi:
15793
return EmitX86MaskLogic(*this, Instruction::Xor, Ops);
15794
case X86::BI__builtin_ia32_knotqi:
15795
case X86::BI__builtin_ia32_knothi:
15796
case X86::BI__builtin_ia32_knotsi:
15797
case X86::BI__builtin_ia32_knotdi: {
15798
unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
15799
Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
15800
return Builder.CreateBitCast(Builder.CreateNot(Res),
15801
Ops[0]->getType());
15802
}
15803
case X86::BI__builtin_ia32_kmovb:
15804
case X86::BI__builtin_ia32_kmovw:
15805
case X86::BI__builtin_ia32_kmovd:
15806
case X86::BI__builtin_ia32_kmovq: {
15807
// Bitcast to vXi1 type and then back to integer. This gets the mask
15808
// register type into the IR, but might be optimized out depending on
15809
// what's around it.
15810
unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
15811
Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
15812
return Builder.CreateBitCast(Res, Ops[0]->getType());
15813
}
15814
15815
case X86::BI__builtin_ia32_kunpckdi:
15816
case X86::BI__builtin_ia32_kunpcksi:
15817
case X86::BI__builtin_ia32_kunpckhi: {
15818
unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
15819
Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
15820
Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
15821
int Indices[64];
15822
for (unsigned i = 0; i != NumElts; ++i)
15823
Indices[i] = i;
15824
15825
// First extract half of each vector. This gives better codegen than
15826
// doing it in a single shuffle.
15827
LHS = Builder.CreateShuffleVector(LHS, LHS, ArrayRef(Indices, NumElts / 2));
15828
RHS = Builder.CreateShuffleVector(RHS, RHS, ArrayRef(Indices, NumElts / 2));
15829
// Concat the vectors.
15830
// NOTE: Operands are swapped to match the intrinsic definition.
15831
Value *Res =
15832
Builder.CreateShuffleVector(RHS, LHS, ArrayRef(Indices, NumElts));
15833
return Builder.CreateBitCast(Res, Ops[0]->getType());
15834
}
15835
15836
case X86::BI__builtin_ia32_vplzcntd_128:
15837
case X86::BI__builtin_ia32_vplzcntd_256:
15838
case X86::BI__builtin_ia32_vplzcntd_512:
15839
case X86::BI__builtin_ia32_vplzcntq_128:
15840
case X86::BI__builtin_ia32_vplzcntq_256:
15841
case X86::BI__builtin_ia32_vplzcntq_512: {
15842
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
15843
return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
15844
}
15845
case X86::BI__builtin_ia32_sqrtss:
15846
case X86::BI__builtin_ia32_sqrtsd: {
15847
Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
15848
Function *F;
15849
if (Builder.getIsFPConstrained()) {
15850
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
15851
F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
15852
A->getType());
15853
A = Builder.CreateConstrainedFPCall(F, {A});
15854
} else {
15855
F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
15856
A = Builder.CreateCall(F, {A});
15857
}
15858
return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
15859
}
15860
case X86::BI__builtin_ia32_sqrtsh_round_mask:
15861
case X86::BI__builtin_ia32_sqrtsd_round_mask:
15862
case X86::BI__builtin_ia32_sqrtss_round_mask: {
15863
unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
15864
// Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
15865
// otherwise keep the intrinsic.
15866
if (CC != 4) {
15867
Intrinsic::ID IID;
15868
15869
switch (BuiltinID) {
15870
default:
15871
llvm_unreachable("Unsupported intrinsic!");
15872
case X86::BI__builtin_ia32_sqrtsh_round_mask:
15873
IID = Intrinsic::x86_avx512fp16_mask_sqrt_sh;
15874
break;
15875
case X86::BI__builtin_ia32_sqrtsd_round_mask:
15876
IID = Intrinsic::x86_avx512_mask_sqrt_sd;
15877
break;
15878
case X86::BI__builtin_ia32_sqrtss_round_mask:
15879
IID = Intrinsic::x86_avx512_mask_sqrt_ss;
15880
break;
15881
}
15882
return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
15883
}
15884
Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
15885
Function *F;
15886
if (Builder.getIsFPConstrained()) {
15887
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
15888
F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
15889
A->getType());
15890
A = Builder.CreateConstrainedFPCall(F, A);
15891
} else {
15892
F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
15893
A = Builder.CreateCall(F, A);
15894
}
15895
Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
15896
A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
15897
return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
15898
}
15899
case X86::BI__builtin_ia32_sqrtpd256:
15900
case X86::BI__builtin_ia32_sqrtpd:
15901
case X86::BI__builtin_ia32_sqrtps256:
15902
case X86::BI__builtin_ia32_sqrtps:
15903
case X86::BI__builtin_ia32_sqrtph256:
15904
case X86::BI__builtin_ia32_sqrtph:
15905
case X86::BI__builtin_ia32_sqrtph512:
15906
case X86::BI__builtin_ia32_sqrtps512:
15907
case X86::BI__builtin_ia32_sqrtpd512: {
15908
if (Ops.size() == 2) {
15909
unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
15910
// Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
15911
// otherwise keep the intrinsic.
15912
if (CC != 4) {
15913
Intrinsic::ID IID;
15914
15915
switch (BuiltinID) {
15916
default:
15917
llvm_unreachable("Unsupported intrinsic!");
15918
case X86::BI__builtin_ia32_sqrtph512:
15919
IID = Intrinsic::x86_avx512fp16_sqrt_ph_512;
15920
break;
15921
case X86::BI__builtin_ia32_sqrtps512:
15922
IID = Intrinsic::x86_avx512_sqrt_ps_512;
15923
break;
15924
case X86::BI__builtin_ia32_sqrtpd512:
15925
IID = Intrinsic::x86_avx512_sqrt_pd_512;
15926
break;
15927
}
15928
return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
15929
}
15930
}
15931
if (Builder.getIsFPConstrained()) {
15932
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
15933
Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
15934
Ops[0]->getType());
15935
return Builder.CreateConstrainedFPCall(F, Ops[0]);
15936
} else {
15937
Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
15938
return Builder.CreateCall(F, Ops[0]);
15939
}
15940
}
15941
15942
case X86::BI__builtin_ia32_pmuludq128:
15943
case X86::BI__builtin_ia32_pmuludq256:
15944
case X86::BI__builtin_ia32_pmuludq512:
15945
return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
15946
15947
case X86::BI__builtin_ia32_pmuldq128:
15948
case X86::BI__builtin_ia32_pmuldq256:
15949
case X86::BI__builtin_ia32_pmuldq512:
15950
return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
15951
15952
case X86::BI__builtin_ia32_pternlogd512_mask:
15953
case X86::BI__builtin_ia32_pternlogq512_mask:
15954
case X86::BI__builtin_ia32_pternlogd128_mask:
15955
case X86::BI__builtin_ia32_pternlogd256_mask:
15956
case X86::BI__builtin_ia32_pternlogq128_mask:
15957
case X86::BI__builtin_ia32_pternlogq256_mask:
15958
return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
15959
15960
case X86::BI__builtin_ia32_pternlogd512_maskz:
15961
case X86::BI__builtin_ia32_pternlogq512_maskz:
15962
case X86::BI__builtin_ia32_pternlogd128_maskz:
15963
case X86::BI__builtin_ia32_pternlogd256_maskz:
15964
case X86::BI__builtin_ia32_pternlogq128_maskz:
15965
case X86::BI__builtin_ia32_pternlogq256_maskz:
15966
return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
15967
15968
case X86::BI__builtin_ia32_vpshldd128:
15969
case X86::BI__builtin_ia32_vpshldd256:
15970
case X86::BI__builtin_ia32_vpshldd512:
15971
case X86::BI__builtin_ia32_vpshldq128:
15972
case X86::BI__builtin_ia32_vpshldq256:
15973
case X86::BI__builtin_ia32_vpshldq512:
15974
case X86::BI__builtin_ia32_vpshldw128:
15975
case X86::BI__builtin_ia32_vpshldw256:
15976
case X86::BI__builtin_ia32_vpshldw512:
15977
return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
15978
15979
case X86::BI__builtin_ia32_vpshrdd128:
15980
case X86::BI__builtin_ia32_vpshrdd256:
15981
case X86::BI__builtin_ia32_vpshrdd512:
15982
case X86::BI__builtin_ia32_vpshrdq128:
15983
case X86::BI__builtin_ia32_vpshrdq256:
15984
case X86::BI__builtin_ia32_vpshrdq512:
15985
case X86::BI__builtin_ia32_vpshrdw128:
15986
case X86::BI__builtin_ia32_vpshrdw256:
15987
case X86::BI__builtin_ia32_vpshrdw512:
15988
// Ops 0 and 1 are swapped.
15989
return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
15990
15991
case X86::BI__builtin_ia32_vpshldvd128:
15992
case X86::BI__builtin_ia32_vpshldvd256:
15993
case X86::BI__builtin_ia32_vpshldvd512:
15994
case X86::BI__builtin_ia32_vpshldvq128:
15995
case X86::BI__builtin_ia32_vpshldvq256:
15996
case X86::BI__builtin_ia32_vpshldvq512:
15997
case X86::BI__builtin_ia32_vpshldvw128:
15998
case X86::BI__builtin_ia32_vpshldvw256:
15999
case X86::BI__builtin_ia32_vpshldvw512:
16000
return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
16001
16002
case X86::BI__builtin_ia32_vpshrdvd128:
16003
case X86::BI__builtin_ia32_vpshrdvd256:
16004
case X86::BI__builtin_ia32_vpshrdvd512:
16005
case X86::BI__builtin_ia32_vpshrdvq128:
16006
case X86::BI__builtin_ia32_vpshrdvq256:
16007
case X86::BI__builtin_ia32_vpshrdvq512:
16008
case X86::BI__builtin_ia32_vpshrdvw128:
16009
case X86::BI__builtin_ia32_vpshrdvw256:
16010
case X86::BI__builtin_ia32_vpshrdvw512:
16011
// Ops 0 and 1 are swapped.
16012
return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
16013
16014
// Reductions
16015
case X86::BI__builtin_ia32_reduce_fadd_pd512:
16016
case X86::BI__builtin_ia32_reduce_fadd_ps512:
16017
case X86::BI__builtin_ia32_reduce_fadd_ph512:
16018
case X86::BI__builtin_ia32_reduce_fadd_ph256:
16019
case X86::BI__builtin_ia32_reduce_fadd_ph128: {
16020
Function *F =
16021
CGM.getIntrinsic(Intrinsic::vector_reduce_fadd, Ops[1]->getType());
16022
IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
16023
Builder.getFastMathFlags().setAllowReassoc();
16024
return Builder.CreateCall(F, {Ops[0], Ops[1]});
16025
}
16026
case X86::BI__builtin_ia32_reduce_fmul_pd512:
16027
case X86::BI__builtin_ia32_reduce_fmul_ps512:
16028
case X86::BI__builtin_ia32_reduce_fmul_ph512:
16029
case X86::BI__builtin_ia32_reduce_fmul_ph256:
16030
case X86::BI__builtin_ia32_reduce_fmul_ph128: {
16031
Function *F =
16032
CGM.getIntrinsic(Intrinsic::vector_reduce_fmul, Ops[1]->getType());
16033
IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
16034
Builder.getFastMathFlags().setAllowReassoc();
16035
return Builder.CreateCall(F, {Ops[0], Ops[1]});
16036
}
16037
case X86::BI__builtin_ia32_reduce_fmax_pd512:
16038
case X86::BI__builtin_ia32_reduce_fmax_ps512:
16039
case X86::BI__builtin_ia32_reduce_fmax_ph512:
16040
case X86::BI__builtin_ia32_reduce_fmax_ph256:
16041
case X86::BI__builtin_ia32_reduce_fmax_ph128: {
16042
Function *F =
16043
CGM.getIntrinsic(Intrinsic::vector_reduce_fmax, Ops[0]->getType());
16044
IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
16045
Builder.getFastMathFlags().setNoNaNs();
16046
return Builder.CreateCall(F, {Ops[0]});
16047
}
16048
case X86::BI__builtin_ia32_reduce_fmin_pd512:
16049
case X86::BI__builtin_ia32_reduce_fmin_ps512:
16050
case X86::BI__builtin_ia32_reduce_fmin_ph512:
16051
case X86::BI__builtin_ia32_reduce_fmin_ph256:
16052
case X86::BI__builtin_ia32_reduce_fmin_ph128: {
16053
Function *F =
16054
CGM.getIntrinsic(Intrinsic::vector_reduce_fmin, Ops[0]->getType());
16055
IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
16056
Builder.getFastMathFlags().setNoNaNs();
16057
return Builder.CreateCall(F, {Ops[0]});
16058
}
16059
16060
case X86::BI__builtin_ia32_rdrand16_step:
16061
case X86::BI__builtin_ia32_rdrand32_step:
16062
case X86::BI__builtin_ia32_rdrand64_step:
16063
case X86::BI__builtin_ia32_rdseed16_step:
16064
case X86::BI__builtin_ia32_rdseed32_step:
16065
case X86::BI__builtin_ia32_rdseed64_step: {
16066
Intrinsic::ID ID;
16067
switch (BuiltinID) {
16068
default: llvm_unreachable("Unsupported intrinsic!");
16069
case X86::BI__builtin_ia32_rdrand16_step:
16070
ID = Intrinsic::x86_rdrand_16;
16071
break;
16072
case X86::BI__builtin_ia32_rdrand32_step:
16073
ID = Intrinsic::x86_rdrand_32;
16074
break;
16075
case X86::BI__builtin_ia32_rdrand64_step:
16076
ID = Intrinsic::x86_rdrand_64;
16077
break;
16078
case X86::BI__builtin_ia32_rdseed16_step:
16079
ID = Intrinsic::x86_rdseed_16;
16080
break;
16081
case X86::BI__builtin_ia32_rdseed32_step:
16082
ID = Intrinsic::x86_rdseed_32;
16083
break;
16084
case X86::BI__builtin_ia32_rdseed64_step:
16085
ID = Intrinsic::x86_rdseed_64;
16086
break;
16087
}
16088
16089
Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
16090
Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
16091
Ops[0]);
16092
return Builder.CreateExtractValue(Call, 1);
16093
}
16094
case X86::BI__builtin_ia32_addcarryx_u32:
16095
case X86::BI__builtin_ia32_addcarryx_u64:
16096
case X86::BI__builtin_ia32_subborrow_u32:
16097
case X86::BI__builtin_ia32_subborrow_u64: {
16098
Intrinsic::ID IID;
16099
switch (BuiltinID) {
16100
default: llvm_unreachable("Unsupported intrinsic!");
16101
case X86::BI__builtin_ia32_addcarryx_u32:
16102
IID = Intrinsic::x86_addcarry_32;
16103
break;
16104
case X86::BI__builtin_ia32_addcarryx_u64:
16105
IID = Intrinsic::x86_addcarry_64;
16106
break;
16107
case X86::BI__builtin_ia32_subborrow_u32:
16108
IID = Intrinsic::x86_subborrow_32;
16109
break;
16110
case X86::BI__builtin_ia32_subborrow_u64:
16111
IID = Intrinsic::x86_subborrow_64;
16112
break;
16113
}
16114
16115
Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
16116
{ Ops[0], Ops[1], Ops[2] });
16117
Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
16118
Ops[3]);
16119
return Builder.CreateExtractValue(Call, 0);
16120
}
16121
16122
case X86::BI__builtin_ia32_fpclassps128_mask:
16123
case X86::BI__builtin_ia32_fpclassps256_mask:
16124
case X86::BI__builtin_ia32_fpclassps512_mask:
16125
case X86::BI__builtin_ia32_fpclassph128_mask:
16126
case X86::BI__builtin_ia32_fpclassph256_mask:
16127
case X86::BI__builtin_ia32_fpclassph512_mask:
16128
case X86::BI__builtin_ia32_fpclasspd128_mask:
16129
case X86::BI__builtin_ia32_fpclasspd256_mask:
16130
case X86::BI__builtin_ia32_fpclasspd512_mask: {
16131
unsigned NumElts =
16132
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
16133
Value *MaskIn = Ops[2];
16134
Ops.erase(&Ops[2]);
16135
16136
Intrinsic::ID ID;
16137
switch (BuiltinID) {
16138
default: llvm_unreachable("Unsupported intrinsic!");
16139
case X86::BI__builtin_ia32_fpclassph128_mask:
16140
ID = Intrinsic::x86_avx512fp16_fpclass_ph_128;
16141
break;
16142
case X86::BI__builtin_ia32_fpclassph256_mask:
16143
ID = Intrinsic::x86_avx512fp16_fpclass_ph_256;
16144
break;
16145
case X86::BI__builtin_ia32_fpclassph512_mask:
16146
ID = Intrinsic::x86_avx512fp16_fpclass_ph_512;
16147
break;
16148
case X86::BI__builtin_ia32_fpclassps128_mask:
16149
ID = Intrinsic::x86_avx512_fpclass_ps_128;
16150
break;
16151
case X86::BI__builtin_ia32_fpclassps256_mask:
16152
ID = Intrinsic::x86_avx512_fpclass_ps_256;
16153
break;
16154
case X86::BI__builtin_ia32_fpclassps512_mask:
16155
ID = Intrinsic::x86_avx512_fpclass_ps_512;
16156
break;
16157
case X86::BI__builtin_ia32_fpclasspd128_mask:
16158
ID = Intrinsic::x86_avx512_fpclass_pd_128;
16159
break;
16160
case X86::BI__builtin_ia32_fpclasspd256_mask:
16161
ID = Intrinsic::x86_avx512_fpclass_pd_256;
16162
break;
16163
case X86::BI__builtin_ia32_fpclasspd512_mask:
16164
ID = Intrinsic::x86_avx512_fpclass_pd_512;
16165
break;
16166
}
16167
16168
Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
16169
return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
16170
}
16171
16172
case X86::BI__builtin_ia32_vp2intersect_q_512:
16173
case X86::BI__builtin_ia32_vp2intersect_q_256:
16174
case X86::BI__builtin_ia32_vp2intersect_q_128:
16175
case X86::BI__builtin_ia32_vp2intersect_d_512:
16176
case X86::BI__builtin_ia32_vp2intersect_d_256:
16177
case X86::BI__builtin_ia32_vp2intersect_d_128: {
16178
unsigned NumElts =
16179
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
16180
Intrinsic::ID ID;
16181
16182
switch (BuiltinID) {
16183
default: llvm_unreachable("Unsupported intrinsic!");
16184
case X86::BI__builtin_ia32_vp2intersect_q_512:
16185
ID = Intrinsic::x86_avx512_vp2intersect_q_512;
16186
break;
16187
case X86::BI__builtin_ia32_vp2intersect_q_256:
16188
ID = Intrinsic::x86_avx512_vp2intersect_q_256;
16189
break;
16190
case X86::BI__builtin_ia32_vp2intersect_q_128:
16191
ID = Intrinsic::x86_avx512_vp2intersect_q_128;
16192
break;
16193
case X86::BI__builtin_ia32_vp2intersect_d_512:
16194
ID = Intrinsic::x86_avx512_vp2intersect_d_512;
16195
break;
16196
case X86::BI__builtin_ia32_vp2intersect_d_256:
16197
ID = Intrinsic::x86_avx512_vp2intersect_d_256;
16198
break;
16199
case X86::BI__builtin_ia32_vp2intersect_d_128:
16200
ID = Intrinsic::x86_avx512_vp2intersect_d_128;
16201
break;
16202
}
16203
16204
Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]});
16205
Value *Result = Builder.CreateExtractValue(Call, 0);
16206
Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
16207
Builder.CreateDefaultAlignedStore(Result, Ops[2]);
16208
16209
Result = Builder.CreateExtractValue(Call, 1);
16210
Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
16211
return Builder.CreateDefaultAlignedStore(Result, Ops[3]);
16212
}
16213
16214
case X86::BI__builtin_ia32_vpmultishiftqb128:
16215
case X86::BI__builtin_ia32_vpmultishiftqb256:
16216
case X86::BI__builtin_ia32_vpmultishiftqb512: {
16217
Intrinsic::ID ID;
16218
switch (BuiltinID) {
16219
default: llvm_unreachable("Unsupported intrinsic!");
16220
case X86::BI__builtin_ia32_vpmultishiftqb128:
16221
ID = Intrinsic::x86_avx512_pmultishift_qb_128;
16222
break;
16223
case X86::BI__builtin_ia32_vpmultishiftqb256:
16224
ID = Intrinsic::x86_avx512_pmultishift_qb_256;
16225
break;
16226
case X86::BI__builtin_ia32_vpmultishiftqb512:
16227
ID = Intrinsic::x86_avx512_pmultishift_qb_512;
16228
break;
16229
}
16230
16231
return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
16232
}
16233
16234
case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
16235
case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
16236
case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
16237
unsigned NumElts =
16238
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
16239
Value *MaskIn = Ops[2];
16240
Ops.erase(&Ops[2]);
16241
16242
Intrinsic::ID ID;
16243
switch (BuiltinID) {
16244
default: llvm_unreachable("Unsupported intrinsic!");
16245
case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
16246
ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
16247
break;
16248
case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
16249
ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
16250
break;
16251
case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
16252
ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
16253
break;
16254
}
16255
16256
Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
16257
return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
16258
}
16259
16260
// packed comparison intrinsics
16261
case X86::BI__builtin_ia32_cmpeqps:
16262
case X86::BI__builtin_ia32_cmpeqpd:
16263
return getVectorFCmpIR(CmpInst::FCMP_OEQ, /*IsSignaling*/false);
16264
case X86::BI__builtin_ia32_cmpltps:
16265
case X86::BI__builtin_ia32_cmpltpd:
16266
return getVectorFCmpIR(CmpInst::FCMP_OLT, /*IsSignaling*/true);
16267
case X86::BI__builtin_ia32_cmpleps:
16268
case X86::BI__builtin_ia32_cmplepd:
16269
return getVectorFCmpIR(CmpInst::FCMP_OLE, /*IsSignaling*/true);
16270
case X86::BI__builtin_ia32_cmpunordps:
16271
case X86::BI__builtin_ia32_cmpunordpd:
16272
return getVectorFCmpIR(CmpInst::FCMP_UNO, /*IsSignaling*/false);
16273
case X86::BI__builtin_ia32_cmpneqps:
16274
case X86::BI__builtin_ia32_cmpneqpd:
16275
return getVectorFCmpIR(CmpInst::FCMP_UNE, /*IsSignaling*/false);
16276
case X86::BI__builtin_ia32_cmpnltps:
16277
case X86::BI__builtin_ia32_cmpnltpd:
16278
return getVectorFCmpIR(CmpInst::FCMP_UGE, /*IsSignaling*/true);
16279
case X86::BI__builtin_ia32_cmpnleps:
16280
case X86::BI__builtin_ia32_cmpnlepd:
16281
return getVectorFCmpIR(CmpInst::FCMP_UGT, /*IsSignaling*/true);
16282
case X86::BI__builtin_ia32_cmpordps:
16283
case X86::BI__builtin_ia32_cmpordpd:
16284
return getVectorFCmpIR(CmpInst::FCMP_ORD, /*IsSignaling*/false);
16285
case X86::BI__builtin_ia32_cmpph128_mask:
16286
case X86::BI__builtin_ia32_cmpph256_mask:
16287
case X86::BI__builtin_ia32_cmpph512_mask:
16288
case X86::BI__builtin_ia32_cmpps128_mask:
16289
case X86::BI__builtin_ia32_cmpps256_mask:
16290
case X86::BI__builtin_ia32_cmpps512_mask:
16291
case X86::BI__builtin_ia32_cmppd128_mask:
16292
case X86::BI__builtin_ia32_cmppd256_mask:
16293
case X86::BI__builtin_ia32_cmppd512_mask:
16294
IsMaskFCmp = true;
16295
[[fallthrough]];
16296
case X86::BI__builtin_ia32_cmpps:
16297
case X86::BI__builtin_ia32_cmpps256:
16298
case X86::BI__builtin_ia32_cmppd:
16299
case X86::BI__builtin_ia32_cmppd256: {
16300
// Lowering vector comparisons to fcmp instructions, while
16301
// ignoring signalling behaviour requested
16302
// ignoring rounding mode requested
16303
// This is only possible if fp-model is not strict and FENV_ACCESS is off.
16304
16305
// The third argument is the comparison condition, and integer in the
16306
// range [0, 31]
16307
unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
16308
16309
// Lowering to IR fcmp instruction.
16310
// Ignoring requested signaling behaviour,
16311
// e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
16312
FCmpInst::Predicate Pred;
16313
bool IsSignaling;
16314
// Predicates for 16-31 repeat the 0-15 predicates. Only the signalling
16315
// behavior is inverted. We'll handle that after the switch.
16316
switch (CC & 0xf) {
16317
case 0x00: Pred = FCmpInst::FCMP_OEQ; IsSignaling = false; break;
16318
case 0x01: Pred = FCmpInst::FCMP_OLT; IsSignaling = true; break;
16319
case 0x02: Pred = FCmpInst::FCMP_OLE; IsSignaling = true; break;
16320
case 0x03: Pred = FCmpInst::FCMP_UNO; IsSignaling = false; break;
16321
case 0x04: Pred = FCmpInst::FCMP_UNE; IsSignaling = false; break;
16322
case 0x05: Pred = FCmpInst::FCMP_UGE; IsSignaling = true; break;
16323
case 0x06: Pred = FCmpInst::FCMP_UGT; IsSignaling = true; break;
16324
case 0x07: Pred = FCmpInst::FCMP_ORD; IsSignaling = false; break;
16325
case 0x08: Pred = FCmpInst::FCMP_UEQ; IsSignaling = false; break;
16326
case 0x09: Pred = FCmpInst::FCMP_ULT; IsSignaling = true; break;
16327
case 0x0a: Pred = FCmpInst::FCMP_ULE; IsSignaling = true; break;
16328
case 0x0b: Pred = FCmpInst::FCMP_FALSE; IsSignaling = false; break;
16329
case 0x0c: Pred = FCmpInst::FCMP_ONE; IsSignaling = false; break;
16330
case 0x0d: Pred = FCmpInst::FCMP_OGE; IsSignaling = true; break;
16331
case 0x0e: Pred = FCmpInst::FCMP_OGT; IsSignaling = true; break;
16332
case 0x0f: Pred = FCmpInst::FCMP_TRUE; IsSignaling = false; break;
16333
default: llvm_unreachable("Unhandled CC");
16334
}
16335
16336
// Invert the signalling behavior for 16-31.
16337
if (CC & 0x10)
16338
IsSignaling = !IsSignaling;
16339
16340
// If the predicate is true or false and we're using constrained intrinsics,
16341
// we don't have a compare intrinsic we can use. Just use the legacy X86
16342
// specific intrinsic.
16343
// If the intrinsic is mask enabled and we're using constrained intrinsics,
16344
// use the legacy X86 specific intrinsic.
16345
if (Builder.getIsFPConstrained() &&
16346
(Pred == FCmpInst::FCMP_TRUE || Pred == FCmpInst::FCMP_FALSE ||
16347
IsMaskFCmp)) {
16348
16349
Intrinsic::ID IID;
16350
switch (BuiltinID) {
16351
default: llvm_unreachable("Unexpected builtin");
16352
case X86::BI__builtin_ia32_cmpps:
16353
IID = Intrinsic::x86_sse_cmp_ps;
16354
break;
16355
case X86::BI__builtin_ia32_cmpps256:
16356
IID = Intrinsic::x86_avx_cmp_ps_256;
16357
break;
16358
case X86::BI__builtin_ia32_cmppd:
16359
IID = Intrinsic::x86_sse2_cmp_pd;
16360
break;
16361
case X86::BI__builtin_ia32_cmppd256:
16362
IID = Intrinsic::x86_avx_cmp_pd_256;
16363
break;
16364
case X86::BI__builtin_ia32_cmpph128_mask:
16365
IID = Intrinsic::x86_avx512fp16_mask_cmp_ph_128;
16366
break;
16367
case X86::BI__builtin_ia32_cmpph256_mask:
16368
IID = Intrinsic::x86_avx512fp16_mask_cmp_ph_256;
16369
break;
16370
case X86::BI__builtin_ia32_cmpph512_mask:
16371
IID = Intrinsic::x86_avx512fp16_mask_cmp_ph_512;
16372
break;
16373
case X86::BI__builtin_ia32_cmpps512_mask:
16374
IID = Intrinsic::x86_avx512_mask_cmp_ps_512;
16375
break;
16376
case X86::BI__builtin_ia32_cmppd512_mask:
16377
IID = Intrinsic::x86_avx512_mask_cmp_pd_512;
16378
break;
16379
case X86::BI__builtin_ia32_cmpps128_mask:
16380
IID = Intrinsic::x86_avx512_mask_cmp_ps_128;
16381
break;
16382
case X86::BI__builtin_ia32_cmpps256_mask:
16383
IID = Intrinsic::x86_avx512_mask_cmp_ps_256;
16384
break;
16385
case X86::BI__builtin_ia32_cmppd128_mask:
16386
IID = Intrinsic::x86_avx512_mask_cmp_pd_128;
16387
break;
16388
case X86::BI__builtin_ia32_cmppd256_mask:
16389
IID = Intrinsic::x86_avx512_mask_cmp_pd_256;
16390
break;
16391
}
16392
16393
Function *Intr = CGM.getIntrinsic(IID);
16394
if (IsMaskFCmp) {
16395
unsigned NumElts =
16396
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
16397
Ops[3] = getMaskVecValue(*this, Ops[3], NumElts);
16398
Value *Cmp = Builder.CreateCall(Intr, Ops);
16399
return EmitX86MaskedCompareResult(*this, Cmp, NumElts, nullptr);
16400
}
16401
16402
return Builder.CreateCall(Intr, Ops);
16403
}
16404
16405
// Builtins without the _mask suffix return a vector of integers
16406
// of the same width as the input vectors
16407
if (IsMaskFCmp) {
16408
// We ignore SAE if strict FP is disabled. We only keep precise
16409
// exception behavior under strict FP.
16410
// NOTE: If strict FP does ever go through here a CGFPOptionsRAII
16411
// object will be required.
16412
unsigned NumElts =
16413
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
16414
Value *Cmp;
16415
if (IsSignaling)
16416
Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
16417
else
16418
Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
16419
return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
16420
}
16421
16422
return getVectorFCmpIR(Pred, IsSignaling);
16423
}
16424
16425
// SSE scalar comparison intrinsics
16426
case X86::BI__builtin_ia32_cmpeqss:
16427
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
16428
case X86::BI__builtin_ia32_cmpltss:
16429
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
16430
case X86::BI__builtin_ia32_cmpless:
16431
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
16432
case X86::BI__builtin_ia32_cmpunordss:
16433
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
16434
case X86::BI__builtin_ia32_cmpneqss:
16435
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
16436
case X86::BI__builtin_ia32_cmpnltss:
16437
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
16438
case X86::BI__builtin_ia32_cmpnless:
16439
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
16440
case X86::BI__builtin_ia32_cmpordss:
16441
return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
16442
case X86::BI__builtin_ia32_cmpeqsd:
16443
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
16444
case X86::BI__builtin_ia32_cmpltsd:
16445
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
16446
case X86::BI__builtin_ia32_cmplesd:
16447
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
16448
case X86::BI__builtin_ia32_cmpunordsd:
16449
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
16450
case X86::BI__builtin_ia32_cmpneqsd:
16451
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
16452
case X86::BI__builtin_ia32_cmpnltsd:
16453
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
16454
case X86::BI__builtin_ia32_cmpnlesd:
16455
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
16456
case X86::BI__builtin_ia32_cmpordsd:
16457
return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
16458
16459
// f16c half2float intrinsics
16460
case X86::BI__builtin_ia32_vcvtph2ps:
16461
case X86::BI__builtin_ia32_vcvtph2ps256:
16462
case X86::BI__builtin_ia32_vcvtph2ps_mask:
16463
case X86::BI__builtin_ia32_vcvtph2ps256_mask:
16464
case X86::BI__builtin_ia32_vcvtph2ps512_mask: {
16465
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
16466
return EmitX86CvtF16ToFloatExpr(*this, Ops, ConvertType(E->getType()));
16467
}
16468
16469
// AVX512 bf16 intrinsics
16470
case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
16471
Ops[2] = getMaskVecValue(
16472
*this, Ops[2],
16473
cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements());
16474
Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
16475
return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
16476
}
16477
case X86::BI__builtin_ia32_cvtsbf162ss_32:
16478
return Builder.CreateFPExt(Ops[0], Builder.getFloatTy());
16479
16480
case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
16481
case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
16482
Intrinsic::ID IID;
16483
switch (BuiltinID) {
16484
default: llvm_unreachable("Unsupported intrinsic!");
16485
case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
16486
IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
16487
break;
16488
case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
16489
IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
16490
break;
16491
}
16492
Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]);
16493
return EmitX86Select(*this, Ops[2], Res, Ops[1]);
16494
}
16495
16496
case X86::BI__cpuid:
16497
case X86::BI__cpuidex: {
16498
Value *FuncId = EmitScalarExpr(E->getArg(1));
16499
Value *SubFuncId = BuiltinID == X86::BI__cpuidex
16500
? EmitScalarExpr(E->getArg(2))
16501
: llvm::ConstantInt::get(Int32Ty, 0);
16502
16503
llvm::StructType *CpuidRetTy =
16504
llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, Int32Ty);
16505
llvm::FunctionType *FTy =
16506
llvm::FunctionType::get(CpuidRetTy, {Int32Ty, Int32Ty}, false);
16507
16508
StringRef Asm, Constraints;
16509
if (getTarget().getTriple().getArch() == llvm::Triple::x86) {
16510
Asm = "cpuid";
16511
Constraints = "={ax},={bx},={cx},={dx},{ax},{cx}";
16512
} else {
16513
// x86-64 uses %rbx as the base register, so preserve it.
16514
Asm = "xchgq %rbx, ${1:q}\n"
16515
"cpuid\n"
16516
"xchgq %rbx, ${1:q}";
16517
Constraints = "={ax},=r,={cx},={dx},0,2";
16518
}
16519
16520
llvm::InlineAsm *IA = llvm::InlineAsm::get(FTy, Asm, Constraints,
16521
/*hasSideEffects=*/false);
16522
Value *IACall = Builder.CreateCall(IA, {FuncId, SubFuncId});
16523
Value *BasePtr = EmitScalarExpr(E->getArg(0));
16524
Value *Store = nullptr;
16525
for (unsigned i = 0; i < 4; i++) {
16526
Value *Extracted = Builder.CreateExtractValue(IACall, i);
16527
Value *StorePtr = Builder.CreateConstInBoundsGEP1_32(Int32Ty, BasePtr, i);
16528
Store = Builder.CreateAlignedStore(Extracted, StorePtr, getIntAlign());
16529
}
16530
16531
// Return the last store instruction to signal that we have emitted the
16532
// the intrinsic.
16533
return Store;
16534
}
16535
16536
case X86::BI__emul:
16537
case X86::BI__emulu: {
16538
llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
16539
bool isSigned = (BuiltinID == X86::BI__emul);
16540
Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
16541
Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
16542
return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
16543
}
16544
case X86::BI__mulh:
16545
case X86::BI__umulh:
16546
case X86::BI_mul128:
16547
case X86::BI_umul128: {
16548
llvm::Type *ResType = ConvertType(E->getType());
16549
llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
16550
16551
bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
16552
Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
16553
Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
16554
16555
Value *MulResult, *HigherBits;
16556
if (IsSigned) {
16557
MulResult = Builder.CreateNSWMul(LHS, RHS);
16558
HigherBits = Builder.CreateAShr(MulResult, 64);
16559
} else {
16560
MulResult = Builder.CreateNUWMul(LHS, RHS);
16561
HigherBits = Builder.CreateLShr(MulResult, 64);
16562
}
16563
HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
16564
16565
if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
16566
return HigherBits;
16567
16568
Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
16569
Builder.CreateStore(HigherBits, HighBitsAddress);
16570
return Builder.CreateIntCast(MulResult, ResType, IsSigned);
16571
}
16572
16573
case X86::BI__faststorefence: {
16574
return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
16575
llvm::SyncScope::System);
16576
}
16577
case X86::BI__shiftleft128:
16578
case X86::BI__shiftright128: {
16579
llvm::Function *F = CGM.getIntrinsic(
16580
BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
16581
Int64Ty);
16582
// Flip low/high ops and zero-extend amount to matching type.
16583
// shiftleft128(Low, High, Amt) -> fshl(High, Low, Amt)
16584
// shiftright128(Low, High, Amt) -> fshr(High, Low, Amt)
16585
std::swap(Ops[0], Ops[1]);
16586
Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
16587
return Builder.CreateCall(F, Ops);
16588
}
16589
case X86::BI_ReadWriteBarrier:
16590
case X86::BI_ReadBarrier:
16591
case X86::BI_WriteBarrier: {
16592
return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
16593
llvm::SyncScope::SingleThread);
16594
}
16595
16596
case X86::BI_AddressOfReturnAddress: {
16597
Function *F =
16598
CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
16599
return Builder.CreateCall(F);
16600
}
16601
case X86::BI__stosb: {
16602
// We treat __stosb as a volatile memset - it may not generate "rep stosb"
16603
// instruction, but it will create a memset that won't be optimized away.
16604
return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], Align(1), true);
16605
}
16606
case X86::BI__ud2:
16607
// llvm.trap makes a ud2a instruction on x86.
16608
return EmitTrapCall(Intrinsic::trap);
16609
case X86::BI__int2c: {
16610
// This syscall signals a driver assertion failure in x86 NT kernels.
16611
llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
16612
llvm::InlineAsm *IA =
16613
llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true);
16614
llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
16615
getLLVMContext(), llvm::AttributeList::FunctionIndex,
16616
llvm::Attribute::NoReturn);
16617
llvm::CallInst *CI = Builder.CreateCall(IA);
16618
CI->setAttributes(NoReturnAttr);
16619
return CI;
16620
}
16621
case X86::BI__readfsbyte:
16622
case X86::BI__readfsword:
16623
case X86::BI__readfsdword:
16624
case X86::BI__readfsqword: {
16625
llvm::Type *IntTy = ConvertType(E->getType());
16626
Value *Ptr = Builder.CreateIntToPtr(
16627
Ops[0], llvm::PointerType::get(getLLVMContext(), 257));
16628
LoadInst *Load = Builder.CreateAlignedLoad(
16629
IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
16630
Load->setVolatile(true);
16631
return Load;
16632
}
16633
case X86::BI__readgsbyte:
16634
case X86::BI__readgsword:
16635
case X86::BI__readgsdword:
16636
case X86::BI__readgsqword: {
16637
llvm::Type *IntTy = ConvertType(E->getType());
16638
Value *Ptr = Builder.CreateIntToPtr(
16639
Ops[0], llvm::PointerType::get(getLLVMContext(), 256));
16640
LoadInst *Load = Builder.CreateAlignedLoad(
16641
IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
16642
Load->setVolatile(true);
16643
return Load;
16644
}
16645
case X86::BI__builtin_ia32_encodekey128_u32: {
16646
Intrinsic::ID IID = Intrinsic::x86_encodekey128;
16647
16648
Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1]});
16649
16650
for (int i = 0; i < 3; ++i) {
16651
Value *Extract = Builder.CreateExtractValue(Call, i + 1);
16652
Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[2], i * 16);
16653
Builder.CreateAlignedStore(Extract, Ptr, Align(1));
16654
}
16655
16656
return Builder.CreateExtractValue(Call, 0);
16657
}
16658
case X86::BI__builtin_ia32_encodekey256_u32: {
16659
Intrinsic::ID IID = Intrinsic::x86_encodekey256;
16660
16661
Value *Call =
16662
Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1], Ops[2]});
16663
16664
for (int i = 0; i < 4; ++i) {
16665
Value *Extract = Builder.CreateExtractValue(Call, i + 1);
16666
Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[3], i * 16);
16667
Builder.CreateAlignedStore(Extract, Ptr, Align(1));
16668
}
16669
16670
return Builder.CreateExtractValue(Call, 0);
16671
}
16672
case X86::BI__builtin_ia32_aesenc128kl_u8:
16673
case X86::BI__builtin_ia32_aesdec128kl_u8:
16674
case X86::BI__builtin_ia32_aesenc256kl_u8:
16675
case X86::BI__builtin_ia32_aesdec256kl_u8: {
16676
Intrinsic::ID IID;
16677
StringRef BlockName;
16678
switch (BuiltinID) {
16679
default:
16680
llvm_unreachable("Unexpected builtin");
16681
case X86::BI__builtin_ia32_aesenc128kl_u8:
16682
IID = Intrinsic::x86_aesenc128kl;
16683
BlockName = "aesenc128kl";
16684
break;
16685
case X86::BI__builtin_ia32_aesdec128kl_u8:
16686
IID = Intrinsic::x86_aesdec128kl;
16687
BlockName = "aesdec128kl";
16688
break;
16689
case X86::BI__builtin_ia32_aesenc256kl_u8:
16690
IID = Intrinsic::x86_aesenc256kl;
16691
BlockName = "aesenc256kl";
16692
break;
16693
case X86::BI__builtin_ia32_aesdec256kl_u8:
16694
IID = Intrinsic::x86_aesdec256kl;
16695
BlockName = "aesdec256kl";
16696
break;
16697
}
16698
16699
Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[1], Ops[2]});
16700
16701
BasicBlock *NoError =
16702
createBasicBlock(BlockName + "_no_error", this->CurFn);
16703
BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn);
16704
BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn);
16705
16706
Value *Ret = Builder.CreateExtractValue(Call, 0);
16707
Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty());
16708
Value *Out = Builder.CreateExtractValue(Call, 1);
16709
Builder.CreateCondBr(Succ, NoError, Error);
16710
16711
Builder.SetInsertPoint(NoError);
16712
Builder.CreateDefaultAlignedStore(Out, Ops[0]);
16713
Builder.CreateBr(End);
16714
16715
Builder.SetInsertPoint(Error);
16716
Constant *Zero = llvm::Constant::getNullValue(Out->getType());
16717
Builder.CreateDefaultAlignedStore(Zero, Ops[0]);
16718
Builder.CreateBr(End);
16719
16720
Builder.SetInsertPoint(End);
16721
return Builder.CreateExtractValue(Call, 0);
16722
}
16723
case X86::BI__builtin_ia32_aesencwide128kl_u8:
16724
case X86::BI__builtin_ia32_aesdecwide128kl_u8:
16725
case X86::BI__builtin_ia32_aesencwide256kl_u8:
16726
case X86::BI__builtin_ia32_aesdecwide256kl_u8: {
16727
Intrinsic::ID IID;
16728
StringRef BlockName;
16729
switch (BuiltinID) {
16730
case X86::BI__builtin_ia32_aesencwide128kl_u8:
16731
IID = Intrinsic::x86_aesencwide128kl;
16732
BlockName = "aesencwide128kl";
16733
break;
16734
case X86::BI__builtin_ia32_aesdecwide128kl_u8:
16735
IID = Intrinsic::x86_aesdecwide128kl;
16736
BlockName = "aesdecwide128kl";
16737
break;
16738
case X86::BI__builtin_ia32_aesencwide256kl_u8:
16739
IID = Intrinsic::x86_aesencwide256kl;
16740
BlockName = "aesencwide256kl";
16741
break;
16742
case X86::BI__builtin_ia32_aesdecwide256kl_u8:
16743
IID = Intrinsic::x86_aesdecwide256kl;
16744
BlockName = "aesdecwide256kl";
16745
break;
16746
}
16747
16748
llvm::Type *Ty = FixedVectorType::get(Builder.getInt64Ty(), 2);
16749
Value *InOps[9];
16750
InOps[0] = Ops[2];
16751
for (int i = 0; i != 8; ++i) {
16752
Value *Ptr = Builder.CreateConstGEP1_32(Ty, Ops[1], i);
16753
InOps[i + 1] = Builder.CreateAlignedLoad(Ty, Ptr, Align(16));
16754
}
16755
16756
Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), InOps);
16757
16758
BasicBlock *NoError =
16759
createBasicBlock(BlockName + "_no_error", this->CurFn);
16760
BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn);
16761
BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn);
16762
16763
Value *Ret = Builder.CreateExtractValue(Call, 0);
16764
Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty());
16765
Builder.CreateCondBr(Succ, NoError, Error);
16766
16767
Builder.SetInsertPoint(NoError);
16768
for (int i = 0; i != 8; ++i) {
16769
Value *Extract = Builder.CreateExtractValue(Call, i + 1);
16770
Value *Ptr = Builder.CreateConstGEP1_32(Extract->getType(), Ops[0], i);
16771
Builder.CreateAlignedStore(Extract, Ptr, Align(16));
16772
}
16773
Builder.CreateBr(End);
16774
16775
Builder.SetInsertPoint(Error);
16776
for (int i = 0; i != 8; ++i) {
16777
Value *Out = Builder.CreateExtractValue(Call, i + 1);
16778
Constant *Zero = llvm::Constant::getNullValue(Out->getType());
16779
Value *Ptr = Builder.CreateConstGEP1_32(Out->getType(), Ops[0], i);
16780
Builder.CreateAlignedStore(Zero, Ptr, Align(16));
16781
}
16782
Builder.CreateBr(End);
16783
16784
Builder.SetInsertPoint(End);
16785
return Builder.CreateExtractValue(Call, 0);
16786
}
16787
case X86::BI__builtin_ia32_vfcmaddcph512_mask:
16788
IsConjFMA = true;
16789
[[fallthrough]];
16790
case X86::BI__builtin_ia32_vfmaddcph512_mask: {
16791
Intrinsic::ID IID = IsConjFMA
16792
? Intrinsic::x86_avx512fp16_mask_vfcmadd_cph_512
16793
: Intrinsic::x86_avx512fp16_mask_vfmadd_cph_512;
16794
Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
16795
return EmitX86Select(*this, Ops[3], Call, Ops[0]);
16796
}
16797
case X86::BI__builtin_ia32_vfcmaddcsh_round_mask:
16798
IsConjFMA = true;
16799
[[fallthrough]];
16800
case X86::BI__builtin_ia32_vfmaddcsh_round_mask: {
16801
Intrinsic::ID IID = IsConjFMA ? Intrinsic::x86_avx512fp16_mask_vfcmadd_csh
16802
: Intrinsic::x86_avx512fp16_mask_vfmadd_csh;
16803
Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
16804
Value *And = Builder.CreateAnd(Ops[3], llvm::ConstantInt::get(Int8Ty, 1));
16805
return EmitX86Select(*this, And, Call, Ops[0]);
16806
}
16807
case X86::BI__builtin_ia32_vfcmaddcsh_round_mask3:
16808
IsConjFMA = true;
16809
[[fallthrough]];
16810
case X86::BI__builtin_ia32_vfmaddcsh_round_mask3: {
16811
Intrinsic::ID IID = IsConjFMA ? Intrinsic::x86_avx512fp16_mask_vfcmadd_csh
16812
: Intrinsic::x86_avx512fp16_mask_vfmadd_csh;
16813
Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
16814
static constexpr int Mask[] = {0, 5, 6, 7};
16815
return Builder.CreateShuffleVector(Call, Ops[2], Mask);
16816
}
16817
case X86::BI__builtin_ia32_prefetchi:
16818
return Builder.CreateCall(
16819
CGM.getIntrinsic(Intrinsic::prefetch, Ops[0]->getType()),
16820
{Ops[0], llvm::ConstantInt::get(Int32Ty, 0), Ops[1],
16821
llvm::ConstantInt::get(Int32Ty, 0)});
16822
}
16823
}
16824
16825
Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
16826
const CallExpr *E) {
16827
// Do not emit the builtin arguments in the arguments of a function call,
16828
// because the evaluation order of function arguments is not specified in C++.
16829
// This is important when testing to ensure the arguments are emitted in the
16830
// same order every time. Eg:
16831
// Instead of:
16832
// return Builder.CreateFDiv(EmitScalarExpr(E->getArg(0)),
16833
// EmitScalarExpr(E->getArg(1)), "swdiv");
16834
// Use:
16835
// Value *Op0 = EmitScalarExpr(E->getArg(0));
16836
// Value *Op1 = EmitScalarExpr(E->getArg(1));
16837
// return Builder.CreateFDiv(Op0, Op1, "swdiv")
16838
16839
Intrinsic::ID ID = Intrinsic::not_intrinsic;
16840
16841
#include "llvm/TargetParser/PPCTargetParser.def"
16842
auto GenAIXPPCBuiltinCpuExpr = [&](unsigned SupportMethod, unsigned FieldIdx,
16843
unsigned Mask, CmpInst::Predicate CompOp,
16844
unsigned OpValue) -> Value * {
16845
if (SupportMethod == BUILTIN_PPC_FALSE)
16846
return llvm::ConstantInt::getFalse(ConvertType(E->getType()));
16847
16848
if (SupportMethod == BUILTIN_PPC_TRUE)
16849
return llvm::ConstantInt::getTrue(ConvertType(E->getType()));
16850
16851
assert(SupportMethod <= SYS_CALL && "Invalid value for SupportMethod.");
16852
16853
llvm::Value *FieldValue = nullptr;
16854
if (SupportMethod == USE_SYS_CONF) {
16855
llvm::Type *STy = llvm::StructType::get(PPC_SYSTEMCONFIG_TYPE);
16856
llvm::Constant *SysConf =
16857
CGM.CreateRuntimeVariable(STy, "_system_configuration");
16858
16859
// Grab the appropriate field from _system_configuration.
16860
llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
16861
ConstantInt::get(Int32Ty, FieldIdx)};
16862
16863
FieldValue = Builder.CreateInBoundsGEP(STy, SysConf, Idxs);
16864
FieldValue = Builder.CreateAlignedLoad(Int32Ty, FieldValue,
16865
CharUnits::fromQuantity(4));
16866
} else if (SupportMethod == SYS_CALL) {
16867
llvm::FunctionType *FTy =
16868
llvm::FunctionType::get(Int64Ty, Int32Ty, false);
16869
llvm::FunctionCallee Func =
16870
CGM.CreateRuntimeFunction(FTy, "getsystemcfg");
16871
16872
FieldValue =
16873
Builder.CreateCall(Func, {ConstantInt::get(Int32Ty, FieldIdx)});
16874
}
16875
assert(FieldValue &&
16876
"SupportMethod value is not defined in PPCTargetParser.def.");
16877
16878
if (Mask)
16879
FieldValue = Builder.CreateAnd(FieldValue, Mask);
16880
16881
llvm::Type *ValueType = FieldValue->getType();
16882
bool IsValueType64Bit = ValueType->isIntegerTy(64);
16883
assert(
16884
(IsValueType64Bit || ValueType->isIntegerTy(32)) &&
16885
"Only 32/64-bit integers are supported in GenAIXPPCBuiltinCpuExpr().");
16886
16887
return Builder.CreateICmp(
16888
CompOp, FieldValue,
16889
ConstantInt::get(IsValueType64Bit ? Int64Ty : Int32Ty, OpValue));
16890
};
16891
16892
switch (BuiltinID) {
16893
default: return nullptr;
16894
16895
case Builtin::BI__builtin_cpu_is: {
16896
const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
16897
StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
16898
llvm::Triple Triple = getTarget().getTriple();
16899
16900
unsigned LinuxSupportMethod, LinuxIDValue, AIXSupportMethod, AIXIDValue;
16901
typedef std::tuple<unsigned, unsigned, unsigned, unsigned> CPUInfo;
16902
16903
std::tie(LinuxSupportMethod, LinuxIDValue, AIXSupportMethod, AIXIDValue) =
16904
static_cast<CPUInfo>(StringSwitch<CPUInfo>(CPUStr)
16905
#define PPC_CPU(NAME, Linux_SUPPORT_METHOD, LinuxID, AIX_SUPPORT_METHOD, \
16906
AIXID) \
16907
.Case(NAME, {Linux_SUPPORT_METHOD, LinuxID, AIX_SUPPORT_METHOD, AIXID})
16908
#include "llvm/TargetParser/PPCTargetParser.def"
16909
.Default({BUILTIN_PPC_UNSUPPORTED, 0,
16910
BUILTIN_PPC_UNSUPPORTED, 0}));
16911
16912
if (Triple.isOSAIX()) {
16913
assert((AIXSupportMethod != BUILTIN_PPC_UNSUPPORTED) &&
16914
"Invalid CPU name. Missed by SemaChecking?");
16915
return GenAIXPPCBuiltinCpuExpr(AIXSupportMethod, AIX_SYSCON_IMPL_IDX, 0,
16916
ICmpInst::ICMP_EQ, AIXIDValue);
16917
}
16918
16919
assert(Triple.isOSLinux() &&
16920
"__builtin_cpu_is() is only supported for AIX and Linux.");
16921
16922
assert((LinuxSupportMethod != BUILTIN_PPC_UNSUPPORTED) &&
16923
"Invalid CPU name. Missed by SemaChecking?");
16924
16925
if (LinuxSupportMethod == BUILTIN_PPC_FALSE)
16926
return llvm::ConstantInt::getFalse(ConvertType(E->getType()));
16927
16928
Value *Op0 = llvm::ConstantInt::get(Int32Ty, PPC_FAWORD_CPUID);
16929
llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_fixed_addr_ld);
16930
Value *TheCall = Builder.CreateCall(F, {Op0}, "cpu_is");
16931
return Builder.CreateICmpEQ(TheCall,
16932
llvm::ConstantInt::get(Int32Ty, LinuxIDValue));
16933
}
16934
case Builtin::BI__builtin_cpu_supports: {
16935
llvm::Triple Triple = getTarget().getTriple();
16936
const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
16937
StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
16938
if (Triple.isOSAIX()) {
16939
unsigned SupportMethod, FieldIdx, Mask, Value;
16940
CmpInst::Predicate CompOp;
16941
typedef std::tuple<unsigned, unsigned, unsigned, CmpInst::Predicate,
16942
unsigned>
16943
CPUSupportType;
16944
std::tie(SupportMethod, FieldIdx, Mask, CompOp, Value) =
16945
static_cast<CPUSupportType>(StringSwitch<CPUSupportType>(CPUStr)
16946
#define PPC_AIX_FEATURE(NAME, DESC, SUPPORT_METHOD, INDEX, MASK, COMP_OP, \
16947
VALUE) \
16948
.Case(NAME, {SUPPORT_METHOD, INDEX, MASK, COMP_OP, VALUE})
16949
#include "llvm/TargetParser/PPCTargetParser.def"
16950
.Default({BUILTIN_PPC_FALSE, 0, 0,
16951
CmpInst::Predicate(), 0}));
16952
return GenAIXPPCBuiltinCpuExpr(SupportMethod, FieldIdx, Mask, CompOp,
16953
Value);
16954
}
16955
16956
assert(Triple.isOSLinux() &&
16957
"__builtin_cpu_supports() is only supported for AIX and Linux.");
16958
unsigned FeatureWord;
16959
unsigned BitMask;
16960
std::tie(FeatureWord, BitMask) =
16961
StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
16962
#define PPC_LNX_FEATURE(Name, Description, EnumName, Bitmask, FA_WORD) \
16963
.Case(Name, {FA_WORD, Bitmask})
16964
#include "llvm/TargetParser/PPCTargetParser.def"
16965
.Default({0, 0});
16966
if (!BitMask)
16967
return Builder.getFalse();
16968
Value *Op0 = llvm::ConstantInt::get(Int32Ty, FeatureWord);
16969
llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_fixed_addr_ld);
16970
Value *TheCall = Builder.CreateCall(F, {Op0}, "cpu_supports");
16971
Value *Mask =
16972
Builder.CreateAnd(TheCall, llvm::ConstantInt::get(Int32Ty, BitMask));
16973
return Builder.CreateICmpNE(Mask, llvm::Constant::getNullValue(Int32Ty));
16974
#undef PPC_FAWORD_HWCAP
16975
#undef PPC_FAWORD_HWCAP2
16976
#undef PPC_FAWORD_CPUID
16977
}
16978
16979
// __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
16980
// call __builtin_readcyclecounter.
16981
case PPC::BI__builtin_ppc_get_timebase:
16982
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
16983
16984
// vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
16985
case PPC::BI__builtin_altivec_lvx:
16986
case PPC::BI__builtin_altivec_lvxl:
16987
case PPC::BI__builtin_altivec_lvebx:
16988
case PPC::BI__builtin_altivec_lvehx:
16989
case PPC::BI__builtin_altivec_lvewx:
16990
case PPC::BI__builtin_altivec_lvsl:
16991
case PPC::BI__builtin_altivec_lvsr:
16992
case PPC::BI__builtin_vsx_lxvd2x:
16993
case PPC::BI__builtin_vsx_lxvw4x:
16994
case PPC::BI__builtin_vsx_lxvd2x_be:
16995
case PPC::BI__builtin_vsx_lxvw4x_be:
16996
case PPC::BI__builtin_vsx_lxvl:
16997
case PPC::BI__builtin_vsx_lxvll:
16998
{
16999
SmallVector<Value *, 2> Ops;
17000
Ops.push_back(EmitScalarExpr(E->getArg(0)));
17001
Ops.push_back(EmitScalarExpr(E->getArg(1)));
17002
if (!(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
17003
BuiltinID == PPC::BI__builtin_vsx_lxvll)) {
17004
Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]);
17005
Ops.pop_back();
17006
}
17007
17008
switch (BuiltinID) {
17009
default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
17010
case PPC::BI__builtin_altivec_lvx:
17011
ID = Intrinsic::ppc_altivec_lvx;
17012
break;
17013
case PPC::BI__builtin_altivec_lvxl:
17014
ID = Intrinsic::ppc_altivec_lvxl;
17015
break;
17016
case PPC::BI__builtin_altivec_lvebx:
17017
ID = Intrinsic::ppc_altivec_lvebx;
17018
break;
17019
case PPC::BI__builtin_altivec_lvehx:
17020
ID = Intrinsic::ppc_altivec_lvehx;
17021
break;
17022
case PPC::BI__builtin_altivec_lvewx:
17023
ID = Intrinsic::ppc_altivec_lvewx;
17024
break;
17025
case PPC::BI__builtin_altivec_lvsl:
17026
ID = Intrinsic::ppc_altivec_lvsl;
17027
break;
17028
case PPC::BI__builtin_altivec_lvsr:
17029
ID = Intrinsic::ppc_altivec_lvsr;
17030
break;
17031
case PPC::BI__builtin_vsx_lxvd2x:
17032
ID = Intrinsic::ppc_vsx_lxvd2x;
17033
break;
17034
case PPC::BI__builtin_vsx_lxvw4x:
17035
ID = Intrinsic::ppc_vsx_lxvw4x;
17036
break;
17037
case PPC::BI__builtin_vsx_lxvd2x_be:
17038
ID = Intrinsic::ppc_vsx_lxvd2x_be;
17039
break;
17040
case PPC::BI__builtin_vsx_lxvw4x_be:
17041
ID = Intrinsic::ppc_vsx_lxvw4x_be;
17042
break;
17043
case PPC::BI__builtin_vsx_lxvl:
17044
ID = Intrinsic::ppc_vsx_lxvl;
17045
break;
17046
case PPC::BI__builtin_vsx_lxvll:
17047
ID = Intrinsic::ppc_vsx_lxvll;
17048
break;
17049
}
17050
llvm::Function *F = CGM.getIntrinsic(ID);
17051
return Builder.CreateCall(F, Ops, "");
17052
}
17053
17054
// vec_st, vec_xst_be
17055
case PPC::BI__builtin_altivec_stvx:
17056
case PPC::BI__builtin_altivec_stvxl:
17057
case PPC::BI__builtin_altivec_stvebx:
17058
case PPC::BI__builtin_altivec_stvehx:
17059
case PPC::BI__builtin_altivec_stvewx:
17060
case PPC::BI__builtin_vsx_stxvd2x:
17061
case PPC::BI__builtin_vsx_stxvw4x:
17062
case PPC::BI__builtin_vsx_stxvd2x_be:
17063
case PPC::BI__builtin_vsx_stxvw4x_be:
17064
case PPC::BI__builtin_vsx_stxvl:
17065
case PPC::BI__builtin_vsx_stxvll:
17066
{
17067
SmallVector<Value *, 3> Ops;
17068
Ops.push_back(EmitScalarExpr(E->getArg(0)));
17069
Ops.push_back(EmitScalarExpr(E->getArg(1)));
17070
Ops.push_back(EmitScalarExpr(E->getArg(2)));
17071
if (!(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
17072
BuiltinID == PPC::BI__builtin_vsx_stxvll)) {
17073
Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]);
17074
Ops.pop_back();
17075
}
17076
17077
switch (BuiltinID) {
17078
default: llvm_unreachable("Unsupported st intrinsic!");
17079
case PPC::BI__builtin_altivec_stvx:
17080
ID = Intrinsic::ppc_altivec_stvx;
17081
break;
17082
case PPC::BI__builtin_altivec_stvxl:
17083
ID = Intrinsic::ppc_altivec_stvxl;
17084
break;
17085
case PPC::BI__builtin_altivec_stvebx:
17086
ID = Intrinsic::ppc_altivec_stvebx;
17087
break;
17088
case PPC::BI__builtin_altivec_stvehx:
17089
ID = Intrinsic::ppc_altivec_stvehx;
17090
break;
17091
case PPC::BI__builtin_altivec_stvewx:
17092
ID = Intrinsic::ppc_altivec_stvewx;
17093
break;
17094
case PPC::BI__builtin_vsx_stxvd2x:
17095
ID = Intrinsic::ppc_vsx_stxvd2x;
17096
break;
17097
case PPC::BI__builtin_vsx_stxvw4x:
17098
ID = Intrinsic::ppc_vsx_stxvw4x;
17099
break;
17100
case PPC::BI__builtin_vsx_stxvd2x_be:
17101
ID = Intrinsic::ppc_vsx_stxvd2x_be;
17102
break;
17103
case PPC::BI__builtin_vsx_stxvw4x_be:
17104
ID = Intrinsic::ppc_vsx_stxvw4x_be;
17105
break;
17106
case PPC::BI__builtin_vsx_stxvl:
17107
ID = Intrinsic::ppc_vsx_stxvl;
17108
break;
17109
case PPC::BI__builtin_vsx_stxvll:
17110
ID = Intrinsic::ppc_vsx_stxvll;
17111
break;
17112
}
17113
llvm::Function *F = CGM.getIntrinsic(ID);
17114
return Builder.CreateCall(F, Ops, "");
17115
}
17116
case PPC::BI__builtin_vsx_ldrmb: {
17117
// Essentially boils down to performing an unaligned VMX load sequence so
17118
// as to avoid crossing a page boundary and then shuffling the elements
17119
// into the right side of the vector register.
17120
Value *Op0 = EmitScalarExpr(E->getArg(0));
17121
Value *Op1 = EmitScalarExpr(E->getArg(1));
17122
int64_t NumBytes = cast<ConstantInt>(Op1)->getZExtValue();
17123
llvm::Type *ResTy = ConvertType(E->getType());
17124
bool IsLE = getTarget().isLittleEndian();
17125
17126
// If the user wants the entire vector, just load the entire vector.
17127
if (NumBytes == 16) {
17128
Value *LD =
17129
Builder.CreateLoad(Address(Op0, ResTy, CharUnits::fromQuantity(1)));
17130
if (!IsLE)
17131
return LD;
17132
17133
// Reverse the bytes on LE.
17134
SmallVector<int, 16> RevMask;
17135
for (int Idx = 0; Idx < 16; Idx++)
17136
RevMask.push_back(15 - Idx);
17137
return Builder.CreateShuffleVector(LD, LD, RevMask);
17138
}
17139
17140
llvm::Function *Lvx = CGM.getIntrinsic(Intrinsic::ppc_altivec_lvx);
17141
llvm::Function *Lvs = CGM.getIntrinsic(IsLE ? Intrinsic::ppc_altivec_lvsr
17142
: Intrinsic::ppc_altivec_lvsl);
17143
llvm::Function *Vperm = CGM.getIntrinsic(Intrinsic::ppc_altivec_vperm);
17144
Value *HiMem = Builder.CreateGEP(
17145
Int8Ty, Op0, ConstantInt::get(Op1->getType(), NumBytes - 1));
17146
Value *LoLd = Builder.CreateCall(Lvx, Op0, "ld.lo");
17147
Value *HiLd = Builder.CreateCall(Lvx, HiMem, "ld.hi");
17148
Value *Mask1 = Builder.CreateCall(Lvs, Op0, "mask1");
17149
17150
Op0 = IsLE ? HiLd : LoLd;
17151
Op1 = IsLE ? LoLd : HiLd;
17152
Value *AllElts = Builder.CreateCall(Vperm, {Op0, Op1, Mask1}, "shuffle1");
17153
Constant *Zero = llvm::Constant::getNullValue(IsLE ? ResTy : AllElts->getType());
17154
17155
if (IsLE) {
17156
SmallVector<int, 16> Consts;
17157
for (int Idx = 0; Idx < 16; Idx++) {
17158
int Val = (NumBytes - Idx - 1 >= 0) ? (NumBytes - Idx - 1)
17159
: 16 - (NumBytes - Idx);
17160
Consts.push_back(Val);
17161
}
17162
return Builder.CreateShuffleVector(Builder.CreateBitCast(AllElts, ResTy),
17163
Zero, Consts);
17164
}
17165
SmallVector<Constant *, 16> Consts;
17166
for (int Idx = 0; Idx < 16; Idx++)
17167
Consts.push_back(Builder.getInt8(NumBytes + Idx));
17168
Value *Mask2 = ConstantVector::get(Consts);
17169
return Builder.CreateBitCast(
17170
Builder.CreateCall(Vperm, {Zero, AllElts, Mask2}, "shuffle2"), ResTy);
17171
}
17172
case PPC::BI__builtin_vsx_strmb: {
17173
Value *Op0 = EmitScalarExpr(E->getArg(0));
17174
Value *Op1 = EmitScalarExpr(E->getArg(1));
17175
Value *Op2 = EmitScalarExpr(E->getArg(2));
17176
int64_t NumBytes = cast<ConstantInt>(Op1)->getZExtValue();
17177
bool IsLE = getTarget().isLittleEndian();
17178
auto StoreSubVec = [&](unsigned Width, unsigned Offset, unsigned EltNo) {
17179
// Storing the whole vector, simply store it on BE and reverse bytes and
17180
// store on LE.
17181
if (Width == 16) {
17182
Value *StVec = Op2;
17183
if (IsLE) {
17184
SmallVector<int, 16> RevMask;
17185
for (int Idx = 0; Idx < 16; Idx++)
17186
RevMask.push_back(15 - Idx);
17187
StVec = Builder.CreateShuffleVector(Op2, Op2, RevMask);
17188
}
17189
return Builder.CreateStore(
17190
StVec, Address(Op0, Op2->getType(), CharUnits::fromQuantity(1)));
17191
}
17192
auto *ConvTy = Int64Ty;
17193
unsigned NumElts = 0;
17194
switch (Width) {
17195
default:
17196
llvm_unreachable("width for stores must be a power of 2");
17197
case 8:
17198
ConvTy = Int64Ty;
17199
NumElts = 2;
17200
break;
17201
case 4:
17202
ConvTy = Int32Ty;
17203
NumElts = 4;
17204
break;
17205
case 2:
17206
ConvTy = Int16Ty;
17207
NumElts = 8;
17208
break;
17209
case 1:
17210
ConvTy = Int8Ty;
17211
NumElts = 16;
17212
break;
17213
}
17214
Value *Vec = Builder.CreateBitCast(
17215
Op2, llvm::FixedVectorType::get(ConvTy, NumElts));
17216
Value *Ptr =
17217
Builder.CreateGEP(Int8Ty, Op0, ConstantInt::get(Int64Ty, Offset));
17218
Value *Elt = Builder.CreateExtractElement(Vec, EltNo);
17219
if (IsLE && Width > 1) {
17220
Function *F = CGM.getIntrinsic(Intrinsic::bswap, ConvTy);
17221
Elt = Builder.CreateCall(F, Elt);
17222
}
17223
return Builder.CreateStore(
17224
Elt, Address(Ptr, ConvTy, CharUnits::fromQuantity(1)));
17225
};
17226
unsigned Stored = 0;
17227
unsigned RemainingBytes = NumBytes;
17228
Value *Result;
17229
if (NumBytes == 16)
17230
return StoreSubVec(16, 0, 0);
17231
if (NumBytes >= 8) {
17232
Result = StoreSubVec(8, NumBytes - 8, IsLE ? 0 : 1);
17233
RemainingBytes -= 8;
17234
Stored += 8;
17235
}
17236
if (RemainingBytes >= 4) {
17237
Result = StoreSubVec(4, NumBytes - Stored - 4,
17238
IsLE ? (Stored >> 2) : 3 - (Stored >> 2));
17239
RemainingBytes -= 4;
17240
Stored += 4;
17241
}
17242
if (RemainingBytes >= 2) {
17243
Result = StoreSubVec(2, NumBytes - Stored - 2,
17244
IsLE ? (Stored >> 1) : 7 - (Stored >> 1));
17245
RemainingBytes -= 2;
17246
Stored += 2;
17247
}
17248
if (RemainingBytes)
17249
Result =
17250
StoreSubVec(1, NumBytes - Stored - 1, IsLE ? Stored : 15 - Stored);
17251
return Result;
17252
}
17253
// Square root
17254
case PPC::BI__builtin_vsx_xvsqrtsp:
17255
case PPC::BI__builtin_vsx_xvsqrtdp: {
17256
llvm::Type *ResultType = ConvertType(E->getType());
17257
Value *X = EmitScalarExpr(E->getArg(0));
17258
if (Builder.getIsFPConstrained()) {
17259
llvm::Function *F = CGM.getIntrinsic(
17260
Intrinsic::experimental_constrained_sqrt, ResultType);
17261
return Builder.CreateConstrainedFPCall(F, X);
17262
} else {
17263
llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
17264
return Builder.CreateCall(F, X);
17265
}
17266
}
17267
// Count leading zeros
17268
case PPC::BI__builtin_altivec_vclzb:
17269
case PPC::BI__builtin_altivec_vclzh:
17270
case PPC::BI__builtin_altivec_vclzw:
17271
case PPC::BI__builtin_altivec_vclzd: {
17272
llvm::Type *ResultType = ConvertType(E->getType());
17273
Value *X = EmitScalarExpr(E->getArg(0));
17274
Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
17275
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
17276
return Builder.CreateCall(F, {X, Undef});
17277
}
17278
case PPC::BI__builtin_altivec_vctzb:
17279
case PPC::BI__builtin_altivec_vctzh:
17280
case PPC::BI__builtin_altivec_vctzw:
17281
case PPC::BI__builtin_altivec_vctzd: {
17282
llvm::Type *ResultType = ConvertType(E->getType());
17283
Value *X = EmitScalarExpr(E->getArg(0));
17284
Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
17285
Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
17286
return Builder.CreateCall(F, {X, Undef});
17287
}
17288
case PPC::BI__builtin_altivec_vinsd:
17289
case PPC::BI__builtin_altivec_vinsw:
17290
case PPC::BI__builtin_altivec_vinsd_elt:
17291
case PPC::BI__builtin_altivec_vinsw_elt: {
17292
llvm::Type *ResultType = ConvertType(E->getType());
17293
Value *Op0 = EmitScalarExpr(E->getArg(0));
17294
Value *Op1 = EmitScalarExpr(E->getArg(1));
17295
Value *Op2 = EmitScalarExpr(E->getArg(2));
17296
17297
bool IsUnaligned = (BuiltinID == PPC::BI__builtin_altivec_vinsw ||
17298
BuiltinID == PPC::BI__builtin_altivec_vinsd);
17299
17300
bool Is32bit = (BuiltinID == PPC::BI__builtin_altivec_vinsw ||
17301
BuiltinID == PPC::BI__builtin_altivec_vinsw_elt);
17302
17303
// The third argument must be a compile time constant.
17304
ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
17305
assert(ArgCI &&
17306
"Third Arg to vinsw/vinsd intrinsic must be a constant integer!");
17307
17308
// Valid value for the third argument is dependent on the input type and
17309
// builtin called.
17310
int ValidMaxValue = 0;
17311
if (IsUnaligned)
17312
ValidMaxValue = (Is32bit) ? 12 : 8;
17313
else
17314
ValidMaxValue = (Is32bit) ? 3 : 1;
17315
17316
// Get value of third argument.
17317
int64_t ConstArg = ArgCI->getSExtValue();
17318
17319
// Compose range checking error message.
17320
std::string RangeErrMsg = IsUnaligned ? "byte" : "element";
17321
RangeErrMsg += " number " + llvm::to_string(ConstArg);
17322
RangeErrMsg += " is outside of the valid range [0, ";
17323
RangeErrMsg += llvm::to_string(ValidMaxValue) + "]";
17324
17325
// Issue error if third argument is not within the valid range.
17326
if (ConstArg < 0 || ConstArg > ValidMaxValue)
17327
CGM.Error(E->getExprLoc(), RangeErrMsg);
17328
17329
// Input to vec_replace_elt is an element index, convert to byte index.
17330
if (!IsUnaligned) {
17331
ConstArg *= Is32bit ? 4 : 8;
17332
// Fix the constant according to endianess.
17333
if (getTarget().isLittleEndian())
17334
ConstArg = (Is32bit ? 12 : 8) - ConstArg;
17335
}
17336
17337
ID = Is32bit ? Intrinsic::ppc_altivec_vinsw : Intrinsic::ppc_altivec_vinsd;
17338
Op2 = ConstantInt::getSigned(Int32Ty, ConstArg);
17339
// Casting input to vector int as per intrinsic definition.
17340
Op0 =
17341
Is32bit
17342
? Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4))
17343
: Builder.CreateBitCast(Op0,
17344
llvm::FixedVectorType::get(Int64Ty, 2));
17345
return Builder.CreateBitCast(
17346
Builder.CreateCall(CGM.getIntrinsic(ID), {Op0, Op1, Op2}), ResultType);
17347
}
17348
case PPC::BI__builtin_altivec_vpopcntb:
17349
case PPC::BI__builtin_altivec_vpopcnth:
17350
case PPC::BI__builtin_altivec_vpopcntw:
17351
case PPC::BI__builtin_altivec_vpopcntd: {
17352
llvm::Type *ResultType = ConvertType(E->getType());
17353
Value *X = EmitScalarExpr(E->getArg(0));
17354
llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
17355
return Builder.CreateCall(F, X);
17356
}
17357
case PPC::BI__builtin_altivec_vadduqm:
17358
case PPC::BI__builtin_altivec_vsubuqm: {
17359
Value *Op0 = EmitScalarExpr(E->getArg(0));
17360
Value *Op1 = EmitScalarExpr(E->getArg(1));
17361
llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
17362
Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int128Ty, 1));
17363
Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int128Ty, 1));
17364
if (BuiltinID == PPC::BI__builtin_altivec_vadduqm)
17365
return Builder.CreateAdd(Op0, Op1, "vadduqm");
17366
else
17367
return Builder.CreateSub(Op0, Op1, "vsubuqm");
17368
}
17369
case PPC::BI__builtin_altivec_vaddcuq_c:
17370
case PPC::BI__builtin_altivec_vsubcuq_c: {
17371
SmallVector<Value *, 2> Ops;
17372
Value *Op0 = EmitScalarExpr(E->getArg(0));
17373
Value *Op1 = EmitScalarExpr(E->getArg(1));
17374
llvm::Type *V1I128Ty = llvm::FixedVectorType::get(
17375
llvm::IntegerType::get(getLLVMContext(), 128), 1);
17376
Ops.push_back(Builder.CreateBitCast(Op0, V1I128Ty));
17377
Ops.push_back(Builder.CreateBitCast(Op1, V1I128Ty));
17378
ID = (BuiltinID == PPC::BI__builtin_altivec_vaddcuq_c)
17379
? Intrinsic::ppc_altivec_vaddcuq
17380
: Intrinsic::ppc_altivec_vsubcuq;
17381
return Builder.CreateCall(CGM.getIntrinsic(ID), Ops, "");
17382
}
17383
case PPC::BI__builtin_altivec_vaddeuqm_c:
17384
case PPC::BI__builtin_altivec_vaddecuq_c:
17385
case PPC::BI__builtin_altivec_vsubeuqm_c:
17386
case PPC::BI__builtin_altivec_vsubecuq_c: {
17387
SmallVector<Value *, 3> Ops;
17388
Value *Op0 = EmitScalarExpr(E->getArg(0));
17389
Value *Op1 = EmitScalarExpr(E->getArg(1));
17390
Value *Op2 = EmitScalarExpr(E->getArg(2));
17391
llvm::Type *V1I128Ty = llvm::FixedVectorType::get(
17392
llvm::IntegerType::get(getLLVMContext(), 128), 1);
17393
Ops.push_back(Builder.CreateBitCast(Op0, V1I128Ty));
17394
Ops.push_back(Builder.CreateBitCast(Op1, V1I128Ty));
17395
Ops.push_back(Builder.CreateBitCast(Op2, V1I128Ty));
17396
switch (BuiltinID) {
17397
default:
17398
llvm_unreachable("Unsupported intrinsic!");
17399
case PPC::BI__builtin_altivec_vaddeuqm_c:
17400
ID = Intrinsic::ppc_altivec_vaddeuqm;
17401
break;
17402
case PPC::BI__builtin_altivec_vaddecuq_c:
17403
ID = Intrinsic::ppc_altivec_vaddecuq;
17404
break;
17405
case PPC::BI__builtin_altivec_vsubeuqm_c:
17406
ID = Intrinsic::ppc_altivec_vsubeuqm;
17407
break;
17408
case PPC::BI__builtin_altivec_vsubecuq_c:
17409
ID = Intrinsic::ppc_altivec_vsubecuq;
17410
break;
17411
}
17412
return Builder.CreateCall(CGM.getIntrinsic(ID), Ops, "");
17413
}
17414
case PPC::BI__builtin_ppc_rldimi:
17415
case PPC::BI__builtin_ppc_rlwimi: {
17416
Value *Op0 = EmitScalarExpr(E->getArg(0));
17417
Value *Op1 = EmitScalarExpr(E->getArg(1));
17418
Value *Op2 = EmitScalarExpr(E->getArg(2));
17419
Value *Op3 = EmitScalarExpr(E->getArg(3));
17420
// rldimi is 64-bit instruction, expand the intrinsic before isel to
17421
// leverage peephole and avoid legalization efforts.
17422
if (BuiltinID == PPC::BI__builtin_ppc_rldimi &&
17423
!getTarget().getTriple().isPPC64()) {
17424
Function *F = CGM.getIntrinsic(Intrinsic::fshl, Op0->getType());
17425
Op2 = Builder.CreateZExt(Op2, Int64Ty);
17426
Value *Shift = Builder.CreateCall(F, {Op0, Op0, Op2});
17427
return Builder.CreateOr(Builder.CreateAnd(Shift, Op3),
17428
Builder.CreateAnd(Op1, Builder.CreateNot(Op3)));
17429
}
17430
return Builder.CreateCall(
17431
CGM.getIntrinsic(BuiltinID == PPC::BI__builtin_ppc_rldimi
17432
? Intrinsic::ppc_rldimi
17433
: Intrinsic::ppc_rlwimi),
17434
{Op0, Op1, Op2, Op3});
17435
}
17436
case PPC::BI__builtin_ppc_rlwnm: {
17437
Value *Op0 = EmitScalarExpr(E->getArg(0));
17438
Value *Op1 = EmitScalarExpr(E->getArg(1));
17439
Value *Op2 = EmitScalarExpr(E->getArg(2));
17440
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_rlwnm),
17441
{Op0, Op1, Op2});
17442
}
17443
case PPC::BI__builtin_ppc_poppar4:
17444
case PPC::BI__builtin_ppc_poppar8: {
17445
Value *Op0 = EmitScalarExpr(E->getArg(0));
17446
llvm::Type *ArgType = Op0->getType();
17447
Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
17448
Value *Tmp = Builder.CreateCall(F, Op0);
17449
17450
llvm::Type *ResultType = ConvertType(E->getType());
17451
Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
17452
if (Result->getType() != ResultType)
17453
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
17454
"cast");
17455
return Result;
17456
}
17457
case PPC::BI__builtin_ppc_cmpb: {
17458
Value *Op0 = EmitScalarExpr(E->getArg(0));
17459
Value *Op1 = EmitScalarExpr(E->getArg(1));
17460
if (getTarget().getTriple().isPPC64()) {
17461
Function *F =
17462
CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int64Ty, Int64Ty, Int64Ty});
17463
return Builder.CreateCall(F, {Op0, Op1}, "cmpb");
17464
}
17465
// For 32 bit, emit the code as below:
17466
// %conv = trunc i64 %a to i32
17467
// %conv1 = trunc i64 %b to i32
17468
// %shr = lshr i64 %a, 32
17469
// %conv2 = trunc i64 %shr to i32
17470
// %shr3 = lshr i64 %b, 32
17471
// %conv4 = trunc i64 %shr3 to i32
17472
// %0 = tail call i32 @llvm.ppc.cmpb32(i32 %conv, i32 %conv1)
17473
// %conv5 = zext i32 %0 to i64
17474
// %1 = tail call i32 @llvm.ppc.cmpb32(i32 %conv2, i32 %conv4)
17475
// %conv614 = zext i32 %1 to i64
17476
// %shl = shl nuw i64 %conv614, 32
17477
// %or = or i64 %shl, %conv5
17478
// ret i64 %or
17479
Function *F =
17480
CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int32Ty, Int32Ty, Int32Ty});
17481
Value *ArgOneLo = Builder.CreateTrunc(Op0, Int32Ty);
17482
Value *ArgTwoLo = Builder.CreateTrunc(Op1, Int32Ty);
17483
Constant *ShiftAmt = ConstantInt::get(Int64Ty, 32);
17484
Value *ArgOneHi =
17485
Builder.CreateTrunc(Builder.CreateLShr(Op0, ShiftAmt), Int32Ty);
17486
Value *ArgTwoHi =
17487
Builder.CreateTrunc(Builder.CreateLShr(Op1, ShiftAmt), Int32Ty);
17488
Value *ResLo = Builder.CreateZExt(
17489
Builder.CreateCall(F, {ArgOneLo, ArgTwoLo}, "cmpb"), Int64Ty);
17490
Value *ResHiShift = Builder.CreateZExt(
17491
Builder.CreateCall(F, {ArgOneHi, ArgTwoHi}, "cmpb"), Int64Ty);
17492
Value *ResHi = Builder.CreateShl(ResHiShift, ShiftAmt);
17493
return Builder.CreateOr(ResLo, ResHi);
17494
}
17495
// Copy sign
17496
case PPC::BI__builtin_vsx_xvcpsgnsp:
17497
case PPC::BI__builtin_vsx_xvcpsgndp: {
17498
llvm::Type *ResultType = ConvertType(E->getType());
17499
Value *X = EmitScalarExpr(E->getArg(0));
17500
Value *Y = EmitScalarExpr(E->getArg(1));
17501
ID = Intrinsic::copysign;
17502
llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
17503
return Builder.CreateCall(F, {X, Y});
17504
}
17505
// Rounding/truncation
17506
case PPC::BI__builtin_vsx_xvrspip:
17507
case PPC::BI__builtin_vsx_xvrdpip:
17508
case PPC::BI__builtin_vsx_xvrdpim:
17509
case PPC::BI__builtin_vsx_xvrspim:
17510
case PPC::BI__builtin_vsx_xvrdpi:
17511
case PPC::BI__builtin_vsx_xvrspi:
17512
case PPC::BI__builtin_vsx_xvrdpic:
17513
case PPC::BI__builtin_vsx_xvrspic:
17514
case PPC::BI__builtin_vsx_xvrdpiz:
17515
case PPC::BI__builtin_vsx_xvrspiz: {
17516
llvm::Type *ResultType = ConvertType(E->getType());
17517
Value *X = EmitScalarExpr(E->getArg(0));
17518
if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
17519
BuiltinID == PPC::BI__builtin_vsx_xvrspim)
17520
ID = Builder.getIsFPConstrained()
17521
? Intrinsic::experimental_constrained_floor
17522
: Intrinsic::floor;
17523
else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
17524
BuiltinID == PPC::BI__builtin_vsx_xvrspi)
17525
ID = Builder.getIsFPConstrained()
17526
? Intrinsic::experimental_constrained_round
17527
: Intrinsic::round;
17528
else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
17529
BuiltinID == PPC::BI__builtin_vsx_xvrspic)
17530
ID = Builder.getIsFPConstrained()
17531
? Intrinsic::experimental_constrained_rint
17532
: Intrinsic::rint;
17533
else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
17534
BuiltinID == PPC::BI__builtin_vsx_xvrspip)
17535
ID = Builder.getIsFPConstrained()
17536
? Intrinsic::experimental_constrained_ceil
17537
: Intrinsic::ceil;
17538
else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
17539
BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
17540
ID = Builder.getIsFPConstrained()
17541
? Intrinsic::experimental_constrained_trunc
17542
: Intrinsic::trunc;
17543
llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
17544
return Builder.getIsFPConstrained() ? Builder.CreateConstrainedFPCall(F, X)
17545
: Builder.CreateCall(F, X);
17546
}
17547
17548
// Absolute value
17549
case PPC::BI__builtin_vsx_xvabsdp:
17550
case PPC::BI__builtin_vsx_xvabssp: {
17551
llvm::Type *ResultType = ConvertType(E->getType());
17552
Value *X = EmitScalarExpr(E->getArg(0));
17553
llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
17554
return Builder.CreateCall(F, X);
17555
}
17556
17557
// Fastmath by default
17558
case PPC::BI__builtin_ppc_recipdivf:
17559
case PPC::BI__builtin_ppc_recipdivd:
17560
case PPC::BI__builtin_ppc_rsqrtf:
17561
case PPC::BI__builtin_ppc_rsqrtd: {
17562
FastMathFlags FMF = Builder.getFastMathFlags();
17563
Builder.getFastMathFlags().setFast();
17564
llvm::Type *ResultType = ConvertType(E->getType());
17565
Value *X = EmitScalarExpr(E->getArg(0));
17566
17567
if (BuiltinID == PPC::BI__builtin_ppc_recipdivf ||
17568
BuiltinID == PPC::BI__builtin_ppc_recipdivd) {
17569
Value *Y = EmitScalarExpr(E->getArg(1));
17570
Value *FDiv = Builder.CreateFDiv(X, Y, "recipdiv");
17571
Builder.getFastMathFlags() &= (FMF);
17572
return FDiv;
17573
}
17574
auto *One = ConstantFP::get(ResultType, 1.0);
17575
llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
17576
Value *FDiv = Builder.CreateFDiv(One, Builder.CreateCall(F, X), "rsqrt");
17577
Builder.getFastMathFlags() &= (FMF);
17578
return FDiv;
17579
}
17580
case PPC::BI__builtin_ppc_alignx: {
17581
Value *Op0 = EmitScalarExpr(E->getArg(0));
17582
Value *Op1 = EmitScalarExpr(E->getArg(1));
17583
ConstantInt *AlignmentCI = cast<ConstantInt>(Op0);
17584
if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
17585
AlignmentCI = ConstantInt::get(AlignmentCI->getIntegerType(),
17586
llvm::Value::MaximumAlignment);
17587
17588
emitAlignmentAssumption(Op1, E->getArg(1),
17589
/*The expr loc is sufficient.*/ SourceLocation(),
17590
AlignmentCI, nullptr);
17591
return Op1;
17592
}
17593
case PPC::BI__builtin_ppc_rdlam: {
17594
Value *Op0 = EmitScalarExpr(E->getArg(0));
17595
Value *Op1 = EmitScalarExpr(E->getArg(1));
17596
Value *Op2 = EmitScalarExpr(E->getArg(2));
17597
llvm::Type *Ty = Op0->getType();
17598
Value *ShiftAmt = Builder.CreateIntCast(Op1, Ty, false);
17599
Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
17600
Value *Rotate = Builder.CreateCall(F, {Op0, Op0, ShiftAmt});
17601
return Builder.CreateAnd(Rotate, Op2);
17602
}
17603
case PPC::BI__builtin_ppc_load2r: {
17604
Function *F = CGM.getIntrinsic(Intrinsic::ppc_load2r);
17605
Value *Op0 = EmitScalarExpr(E->getArg(0));
17606
Value *LoadIntrinsic = Builder.CreateCall(F, {Op0});
17607
return Builder.CreateTrunc(LoadIntrinsic, Int16Ty);
17608
}
17609
// FMA variations
17610
case PPC::BI__builtin_ppc_fnmsub:
17611
case PPC::BI__builtin_ppc_fnmsubs:
17612
case PPC::BI__builtin_vsx_xvmaddadp:
17613
case PPC::BI__builtin_vsx_xvmaddasp:
17614
case PPC::BI__builtin_vsx_xvnmaddadp:
17615
case PPC::BI__builtin_vsx_xvnmaddasp:
17616
case PPC::BI__builtin_vsx_xvmsubadp:
17617
case PPC::BI__builtin_vsx_xvmsubasp:
17618
case PPC::BI__builtin_vsx_xvnmsubadp:
17619
case PPC::BI__builtin_vsx_xvnmsubasp: {
17620
llvm::Type *ResultType = ConvertType(E->getType());
17621
Value *X = EmitScalarExpr(E->getArg(0));
17622
Value *Y = EmitScalarExpr(E->getArg(1));
17623
Value *Z = EmitScalarExpr(E->getArg(2));
17624
llvm::Function *F;
17625
if (Builder.getIsFPConstrained())
17626
F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
17627
else
17628
F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
17629
switch (BuiltinID) {
17630
case PPC::BI__builtin_vsx_xvmaddadp:
17631
case PPC::BI__builtin_vsx_xvmaddasp:
17632
if (Builder.getIsFPConstrained())
17633
return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
17634
else
17635
return Builder.CreateCall(F, {X, Y, Z});
17636
case PPC::BI__builtin_vsx_xvnmaddadp:
17637
case PPC::BI__builtin_vsx_xvnmaddasp:
17638
if (Builder.getIsFPConstrained())
17639
return Builder.CreateFNeg(
17640
Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
17641
else
17642
return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
17643
case PPC::BI__builtin_vsx_xvmsubadp:
17644
case PPC::BI__builtin_vsx_xvmsubasp:
17645
if (Builder.getIsFPConstrained())
17646
return Builder.CreateConstrainedFPCall(
17647
F, {X, Y, Builder.CreateFNeg(Z, "neg")});
17648
else
17649
return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
17650
case PPC::BI__builtin_ppc_fnmsub:
17651
case PPC::BI__builtin_ppc_fnmsubs:
17652
case PPC::BI__builtin_vsx_xvnmsubadp:
17653
case PPC::BI__builtin_vsx_xvnmsubasp:
17654
if (Builder.getIsFPConstrained())
17655
return Builder.CreateFNeg(
17656
Builder.CreateConstrainedFPCall(
17657
F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
17658
"neg");
17659
else
17660
return Builder.CreateCall(
17661
CGM.getIntrinsic(Intrinsic::ppc_fnmsub, ResultType), {X, Y, Z});
17662
}
17663
llvm_unreachable("Unknown FMA operation");
17664
return nullptr; // Suppress no-return warning
17665
}
17666
17667
case PPC::BI__builtin_vsx_insertword: {
17668
Value *Op0 = EmitScalarExpr(E->getArg(0));
17669
Value *Op1 = EmitScalarExpr(E->getArg(1));
17670
Value *Op2 = EmitScalarExpr(E->getArg(2));
17671
llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
17672
17673
// Third argument is a compile time constant int. It must be clamped to
17674
// to the range [0, 12].
17675
ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
17676
assert(ArgCI &&
17677
"Third arg to xxinsertw intrinsic must be constant integer");
17678
const int64_t MaxIndex = 12;
17679
int64_t Index = std::clamp(ArgCI->getSExtValue(), (int64_t)0, MaxIndex);
17680
17681
// The builtin semantics don't exactly match the xxinsertw instructions
17682
// semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
17683
// word from the first argument, and inserts it in the second argument. The
17684
// instruction extracts the word from its second input register and inserts
17685
// it into its first input register, so swap the first and second arguments.
17686
std::swap(Op0, Op1);
17687
17688
// Need to cast the second argument from a vector of unsigned int to a
17689
// vector of long long.
17690
Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int64Ty, 2));
17691
17692
if (getTarget().isLittleEndian()) {
17693
// Reverse the double words in the vector we will extract from.
17694
Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
17695
Op0 = Builder.CreateShuffleVector(Op0, Op0, ArrayRef<int>{1, 0});
17696
17697
// Reverse the index.
17698
Index = MaxIndex - Index;
17699
}
17700
17701
// Intrinsic expects the first arg to be a vector of int.
17702
Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4));
17703
Op2 = ConstantInt::getSigned(Int32Ty, Index);
17704
return Builder.CreateCall(F, {Op0, Op1, Op2});
17705
}
17706
17707
case PPC::BI__builtin_vsx_extractuword: {
17708
Value *Op0 = EmitScalarExpr(E->getArg(0));
17709
Value *Op1 = EmitScalarExpr(E->getArg(1));
17710
llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
17711
17712
// Intrinsic expects the first argument to be a vector of doublewords.
17713
Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
17714
17715
// The second argument is a compile time constant int that needs to
17716
// be clamped to the range [0, 12].
17717
ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op1);
17718
assert(ArgCI &&
17719
"Second Arg to xxextractuw intrinsic must be a constant integer!");
17720
const int64_t MaxIndex = 12;
17721
int64_t Index = std::clamp(ArgCI->getSExtValue(), (int64_t)0, MaxIndex);
17722
17723
if (getTarget().isLittleEndian()) {
17724
// Reverse the index.
17725
Index = MaxIndex - Index;
17726
Op1 = ConstantInt::getSigned(Int32Ty, Index);
17727
17728
// Emit the call, then reverse the double words of the results vector.
17729
Value *Call = Builder.CreateCall(F, {Op0, Op1});
17730
17731
Value *ShuffleCall =
17732
Builder.CreateShuffleVector(Call, Call, ArrayRef<int>{1, 0});
17733
return ShuffleCall;
17734
} else {
17735
Op1 = ConstantInt::getSigned(Int32Ty, Index);
17736
return Builder.CreateCall(F, {Op0, Op1});
17737
}
17738
}
17739
17740
case PPC::BI__builtin_vsx_xxpermdi: {
17741
Value *Op0 = EmitScalarExpr(E->getArg(0));
17742
Value *Op1 = EmitScalarExpr(E->getArg(1));
17743
Value *Op2 = EmitScalarExpr(E->getArg(2));
17744
ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
17745
assert(ArgCI && "Third arg must be constant integer!");
17746
17747
unsigned Index = ArgCI->getZExtValue();
17748
Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
17749
Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int64Ty, 2));
17750
17751
// Account for endianness by treating this as just a shuffle. So we use the
17752
// same indices for both LE and BE in order to produce expected results in
17753
// both cases.
17754
int ElemIdx0 = (Index & 2) >> 1;
17755
int ElemIdx1 = 2 + (Index & 1);
17756
17757
int ShuffleElts[2] = {ElemIdx0, ElemIdx1};
17758
Value *ShuffleCall = Builder.CreateShuffleVector(Op0, Op1, ShuffleElts);
17759
QualType BIRetType = E->getType();
17760
auto RetTy = ConvertType(BIRetType);
17761
return Builder.CreateBitCast(ShuffleCall, RetTy);
17762
}
17763
17764
case PPC::BI__builtin_vsx_xxsldwi: {
17765
Value *Op0 = EmitScalarExpr(E->getArg(0));
17766
Value *Op1 = EmitScalarExpr(E->getArg(1));
17767
Value *Op2 = EmitScalarExpr(E->getArg(2));
17768
ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
17769
assert(ArgCI && "Third argument must be a compile time constant");
17770
unsigned Index = ArgCI->getZExtValue() & 0x3;
17771
Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4));
17772
Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int32Ty, 4));
17773
17774
// Create a shuffle mask
17775
int ElemIdx0;
17776
int ElemIdx1;
17777
int ElemIdx2;
17778
int ElemIdx3;
17779
if (getTarget().isLittleEndian()) {
17780
// Little endian element N comes from element 8+N-Index of the
17781
// concatenated wide vector (of course, using modulo arithmetic on
17782
// the total number of elements).
17783
ElemIdx0 = (8 - Index) % 8;
17784
ElemIdx1 = (9 - Index) % 8;
17785
ElemIdx2 = (10 - Index) % 8;
17786
ElemIdx3 = (11 - Index) % 8;
17787
} else {
17788
// Big endian ElemIdx<N> = Index + N
17789
ElemIdx0 = Index;
17790
ElemIdx1 = Index + 1;
17791
ElemIdx2 = Index + 2;
17792
ElemIdx3 = Index + 3;
17793
}
17794
17795
int ShuffleElts[4] = {ElemIdx0, ElemIdx1, ElemIdx2, ElemIdx3};
17796
Value *ShuffleCall = Builder.CreateShuffleVector(Op0, Op1, ShuffleElts);
17797
QualType BIRetType = E->getType();
17798
auto RetTy = ConvertType(BIRetType);
17799
return Builder.CreateBitCast(ShuffleCall, RetTy);
17800
}
17801
17802
case PPC::BI__builtin_pack_vector_int128: {
17803
Value *Op0 = EmitScalarExpr(E->getArg(0));
17804
Value *Op1 = EmitScalarExpr(E->getArg(1));
17805
bool isLittleEndian = getTarget().isLittleEndian();
17806
Value *PoisonValue =
17807
llvm::PoisonValue::get(llvm::FixedVectorType::get(Op0->getType(), 2));
17808
Value *Res = Builder.CreateInsertElement(
17809
PoisonValue, Op0, (uint64_t)(isLittleEndian ? 1 : 0));
17810
Res = Builder.CreateInsertElement(Res, Op1,
17811
(uint64_t)(isLittleEndian ? 0 : 1));
17812
return Builder.CreateBitCast(Res, ConvertType(E->getType()));
17813
}
17814
17815
case PPC::BI__builtin_unpack_vector_int128: {
17816
Value *Op0 = EmitScalarExpr(E->getArg(0));
17817
Value *Op1 = EmitScalarExpr(E->getArg(1));
17818
ConstantInt *Index = cast<ConstantInt>(Op1);
17819
Value *Unpacked = Builder.CreateBitCast(
17820
Op0, llvm::FixedVectorType::get(ConvertType(E->getType()), 2));
17821
17822
if (getTarget().isLittleEndian())
17823
Index =
17824
ConstantInt::get(Index->getIntegerType(), 1 - Index->getZExtValue());
17825
17826
return Builder.CreateExtractElement(Unpacked, Index);
17827
}
17828
17829
case PPC::BI__builtin_ppc_sthcx: {
17830
llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_sthcx);
17831
Value *Op0 = EmitScalarExpr(E->getArg(0));
17832
Value *Op1 = Builder.CreateSExt(EmitScalarExpr(E->getArg(1)), Int32Ty);
17833
return Builder.CreateCall(F, {Op0, Op1});
17834
}
17835
17836
// The PPC MMA builtins take a pointer to a __vector_quad as an argument.
17837
// Some of the MMA instructions accumulate their result into an existing
17838
// accumulator whereas the others generate a new accumulator. So we need to
17839
// use custom code generation to expand a builtin call with a pointer to a
17840
// load (if the corresponding instruction accumulates its result) followed by
17841
// the call to the intrinsic and a store of the result.
17842
#define CUSTOM_BUILTIN(Name, Intr, Types, Accumulate, Feature) \
17843
case PPC::BI__builtin_##Name:
17844
#include "clang/Basic/BuiltinsPPC.def"
17845
{
17846
SmallVector<Value *, 4> Ops;
17847
for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
17848
if (E->getArg(i)->getType()->isArrayType())
17849
Ops.push_back(
17850
EmitArrayToPointerDecay(E->getArg(i)).emitRawPointer(*this));
17851
else
17852
Ops.push_back(EmitScalarExpr(E->getArg(i)));
17853
// The first argument of these two builtins is a pointer used to store their
17854
// result. However, the llvm intrinsics return their result in multiple
17855
// return values. So, here we emit code extracting these values from the
17856
// intrinsic results and storing them using that pointer.
17857
if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc ||
17858
BuiltinID == PPC::BI__builtin_vsx_disassemble_pair ||
17859
BuiltinID == PPC::BI__builtin_mma_disassemble_pair) {
17860
unsigned NumVecs = 2;
17861
auto Intrinsic = Intrinsic::ppc_vsx_disassemble_pair;
17862
if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc) {
17863
NumVecs = 4;
17864
Intrinsic = Intrinsic::ppc_mma_disassemble_acc;
17865
}
17866
llvm::Function *F = CGM.getIntrinsic(Intrinsic);
17867
Address Addr = EmitPointerWithAlignment(E->getArg(1));
17868
Value *Vec = Builder.CreateLoad(Addr);
17869
Value *Call = Builder.CreateCall(F, {Vec});
17870
llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, 16);
17871
Value *Ptr = Ops[0];
17872
for (unsigned i=0; i<NumVecs; i++) {
17873
Value *Vec = Builder.CreateExtractValue(Call, i);
17874
llvm::ConstantInt* Index = llvm::ConstantInt::get(IntTy, i);
17875
Value *GEP = Builder.CreateInBoundsGEP(VTy, Ptr, Index);
17876
Builder.CreateAlignedStore(Vec, GEP, MaybeAlign(16));
17877
}
17878
return Call;
17879
}
17880
if (BuiltinID == PPC::BI__builtin_vsx_build_pair ||
17881
BuiltinID == PPC::BI__builtin_mma_build_acc) {
17882
// Reverse the order of the operands for LE, so the
17883
// same builtin call can be used on both LE and BE
17884
// without the need for the programmer to swap operands.
17885
// The operands are reversed starting from the second argument,
17886
// the first operand is the pointer to the pair/accumulator
17887
// that is being built.
17888
if (getTarget().isLittleEndian())
17889
std::reverse(Ops.begin() + 1, Ops.end());
17890
}
17891
bool Accumulate;
17892
switch (BuiltinID) {
17893
#define CUSTOM_BUILTIN(Name, Intr, Types, Acc, Feature) \
17894
case PPC::BI__builtin_##Name: \
17895
ID = Intrinsic::ppc_##Intr; \
17896
Accumulate = Acc; \
17897
break;
17898
#include "clang/Basic/BuiltinsPPC.def"
17899
}
17900
if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
17901
BuiltinID == PPC::BI__builtin_vsx_stxvp ||
17902
BuiltinID == PPC::BI__builtin_mma_lxvp ||
17903
BuiltinID == PPC::BI__builtin_mma_stxvp) {
17904
if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
17905
BuiltinID == PPC::BI__builtin_mma_lxvp) {
17906
Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]);
17907
} else {
17908
Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]);
17909
}
17910
Ops.pop_back();
17911
llvm::Function *F = CGM.getIntrinsic(ID);
17912
return Builder.CreateCall(F, Ops, "");
17913
}
17914
SmallVector<Value*, 4> CallOps;
17915
if (Accumulate) {
17916
Address Addr = EmitPointerWithAlignment(E->getArg(0));
17917
Value *Acc = Builder.CreateLoad(Addr);
17918
CallOps.push_back(Acc);
17919
}
17920
for (unsigned i=1; i<Ops.size(); i++)
17921
CallOps.push_back(Ops[i]);
17922
llvm::Function *F = CGM.getIntrinsic(ID);
17923
Value *Call = Builder.CreateCall(F, CallOps);
17924
return Builder.CreateAlignedStore(Call, Ops[0], MaybeAlign(64));
17925
}
17926
17927
case PPC::BI__builtin_ppc_compare_and_swap:
17928
case PPC::BI__builtin_ppc_compare_and_swaplp: {
17929
Address Addr = EmitPointerWithAlignment(E->getArg(0));
17930
Address OldValAddr = EmitPointerWithAlignment(E->getArg(1));
17931
Value *OldVal = Builder.CreateLoad(OldValAddr);
17932
QualType AtomicTy = E->getArg(0)->getType()->getPointeeType();
17933
LValue LV = MakeAddrLValue(Addr, AtomicTy);
17934
Value *Op2 = EmitScalarExpr(E->getArg(2));
17935
auto Pair = EmitAtomicCompareExchange(
17936
LV, RValue::get(OldVal), RValue::get(Op2), E->getExprLoc(),
17937
llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Monotonic, true);
17938
// Unlike c11's atomic_compare_exchange, according to
17939
// https://www.ibm.com/docs/en/xl-c-and-cpp-aix/16.1?topic=functions-compare-swap-compare-swaplp
17940
// > In either case, the contents of the memory location specified by addr
17941
// > are copied into the memory location specified by old_val_addr.
17942
// But it hasn't specified storing to OldValAddr is atomic or not and
17943
// which order to use. Now following XL's codegen, treat it as a normal
17944
// store.
17945
Value *LoadedVal = Pair.first.getScalarVal();
17946
Builder.CreateStore(LoadedVal, OldValAddr);
17947
return Builder.CreateZExt(Pair.second, Builder.getInt32Ty());
17948
}
17949
case PPC::BI__builtin_ppc_fetch_and_add:
17950
case PPC::BI__builtin_ppc_fetch_and_addlp: {
17951
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
17952
llvm::AtomicOrdering::Monotonic);
17953
}
17954
case PPC::BI__builtin_ppc_fetch_and_and:
17955
case PPC::BI__builtin_ppc_fetch_and_andlp: {
17956
return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
17957
llvm::AtomicOrdering::Monotonic);
17958
}
17959
17960
case PPC::BI__builtin_ppc_fetch_and_or:
17961
case PPC::BI__builtin_ppc_fetch_and_orlp: {
17962
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
17963
llvm::AtomicOrdering::Monotonic);
17964
}
17965
case PPC::BI__builtin_ppc_fetch_and_swap:
17966
case PPC::BI__builtin_ppc_fetch_and_swaplp: {
17967
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
17968
llvm::AtomicOrdering::Monotonic);
17969
}
17970
case PPC::BI__builtin_ppc_ldarx:
17971
case PPC::BI__builtin_ppc_lwarx:
17972
case PPC::BI__builtin_ppc_lharx:
17973
case PPC::BI__builtin_ppc_lbarx:
17974
return emitPPCLoadReserveIntrinsic(*this, BuiltinID, E);
17975
case PPC::BI__builtin_ppc_mfspr: {
17976
Value *Op0 = EmitScalarExpr(E->getArg(0));
17977
llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32
17978
? Int32Ty
17979
: Int64Ty;
17980
Function *F = CGM.getIntrinsic(Intrinsic::ppc_mfspr, RetType);
17981
return Builder.CreateCall(F, {Op0});
17982
}
17983
case PPC::BI__builtin_ppc_mtspr: {
17984
Value *Op0 = EmitScalarExpr(E->getArg(0));
17985
Value *Op1 = EmitScalarExpr(E->getArg(1));
17986
llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32
17987
? Int32Ty
17988
: Int64Ty;
17989
Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtspr, RetType);
17990
return Builder.CreateCall(F, {Op0, Op1});
17991
}
17992
case PPC::BI__builtin_ppc_popcntb: {
17993
Value *ArgValue = EmitScalarExpr(E->getArg(0));
17994
llvm::Type *ArgType = ArgValue->getType();
17995
Function *F = CGM.getIntrinsic(Intrinsic::ppc_popcntb, {ArgType, ArgType});
17996
return Builder.CreateCall(F, {ArgValue}, "popcntb");
17997
}
17998
case PPC::BI__builtin_ppc_mtfsf: {
17999
// The builtin takes a uint32 that needs to be cast to an
18000
// f64 to be passed to the intrinsic.
18001
Value *Op0 = EmitScalarExpr(E->getArg(0));
18002
Value *Op1 = EmitScalarExpr(E->getArg(1));
18003
Value *Cast = Builder.CreateUIToFP(Op1, DoubleTy);
18004
llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtfsf);
18005
return Builder.CreateCall(F, {Op0, Cast}, "");
18006
}
18007
18008
case PPC::BI__builtin_ppc_swdiv_nochk:
18009
case PPC::BI__builtin_ppc_swdivs_nochk: {
18010
Value *Op0 = EmitScalarExpr(E->getArg(0));
18011
Value *Op1 = EmitScalarExpr(E->getArg(1));
18012
FastMathFlags FMF = Builder.getFastMathFlags();
18013
Builder.getFastMathFlags().setFast();
18014
Value *FDiv = Builder.CreateFDiv(Op0, Op1, "swdiv_nochk");
18015
Builder.getFastMathFlags() &= (FMF);
18016
return FDiv;
18017
}
18018
case PPC::BI__builtin_ppc_fric:
18019
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
18020
*this, E, Intrinsic::rint,
18021
Intrinsic::experimental_constrained_rint))
18022
.getScalarVal();
18023
case PPC::BI__builtin_ppc_frim:
18024
case PPC::BI__builtin_ppc_frims:
18025
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
18026
*this, E, Intrinsic::floor,
18027
Intrinsic::experimental_constrained_floor))
18028
.getScalarVal();
18029
case PPC::BI__builtin_ppc_frin:
18030
case PPC::BI__builtin_ppc_frins:
18031
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
18032
*this, E, Intrinsic::round,
18033
Intrinsic::experimental_constrained_round))
18034
.getScalarVal();
18035
case PPC::BI__builtin_ppc_frip:
18036
case PPC::BI__builtin_ppc_frips:
18037
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
18038
*this, E, Intrinsic::ceil,
18039
Intrinsic::experimental_constrained_ceil))
18040
.getScalarVal();
18041
case PPC::BI__builtin_ppc_friz:
18042
case PPC::BI__builtin_ppc_frizs:
18043
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
18044
*this, E, Intrinsic::trunc,
18045
Intrinsic::experimental_constrained_trunc))
18046
.getScalarVal();
18047
case PPC::BI__builtin_ppc_fsqrt:
18048
case PPC::BI__builtin_ppc_fsqrts:
18049
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
18050
*this, E, Intrinsic::sqrt,
18051
Intrinsic::experimental_constrained_sqrt))
18052
.getScalarVal();
18053
case PPC::BI__builtin_ppc_test_data_class: {
18054
Value *Op0 = EmitScalarExpr(E->getArg(0));
18055
Value *Op1 = EmitScalarExpr(E->getArg(1));
18056
return Builder.CreateCall(
18057
CGM.getIntrinsic(Intrinsic::ppc_test_data_class, Op0->getType()),
18058
{Op0, Op1}, "test_data_class");
18059
}
18060
case PPC::BI__builtin_ppc_maxfe: {
18061
Value *Op0 = EmitScalarExpr(E->getArg(0));
18062
Value *Op1 = EmitScalarExpr(E->getArg(1));
18063
Value *Op2 = EmitScalarExpr(E->getArg(2));
18064
Value *Op3 = EmitScalarExpr(E->getArg(3));
18065
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfe),
18066
{Op0, Op1, Op2, Op3});
18067
}
18068
case PPC::BI__builtin_ppc_maxfl: {
18069
Value *Op0 = EmitScalarExpr(E->getArg(0));
18070
Value *Op1 = EmitScalarExpr(E->getArg(1));
18071
Value *Op2 = EmitScalarExpr(E->getArg(2));
18072
Value *Op3 = EmitScalarExpr(E->getArg(3));
18073
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfl),
18074
{Op0, Op1, Op2, Op3});
18075
}
18076
case PPC::BI__builtin_ppc_maxfs: {
18077
Value *Op0 = EmitScalarExpr(E->getArg(0));
18078
Value *Op1 = EmitScalarExpr(E->getArg(1));
18079
Value *Op2 = EmitScalarExpr(E->getArg(2));
18080
Value *Op3 = EmitScalarExpr(E->getArg(3));
18081
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfs),
18082
{Op0, Op1, Op2, Op3});
18083
}
18084
case PPC::BI__builtin_ppc_minfe: {
18085
Value *Op0 = EmitScalarExpr(E->getArg(0));
18086
Value *Op1 = EmitScalarExpr(E->getArg(1));
18087
Value *Op2 = EmitScalarExpr(E->getArg(2));
18088
Value *Op3 = EmitScalarExpr(E->getArg(3));
18089
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfe),
18090
{Op0, Op1, Op2, Op3});
18091
}
18092
case PPC::BI__builtin_ppc_minfl: {
18093
Value *Op0 = EmitScalarExpr(E->getArg(0));
18094
Value *Op1 = EmitScalarExpr(E->getArg(1));
18095
Value *Op2 = EmitScalarExpr(E->getArg(2));
18096
Value *Op3 = EmitScalarExpr(E->getArg(3));
18097
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfl),
18098
{Op0, Op1, Op2, Op3});
18099
}
18100
case PPC::BI__builtin_ppc_minfs: {
18101
Value *Op0 = EmitScalarExpr(E->getArg(0));
18102
Value *Op1 = EmitScalarExpr(E->getArg(1));
18103
Value *Op2 = EmitScalarExpr(E->getArg(2));
18104
Value *Op3 = EmitScalarExpr(E->getArg(3));
18105
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfs),
18106
{Op0, Op1, Op2, Op3});
18107
}
18108
case PPC::BI__builtin_ppc_swdiv:
18109
case PPC::BI__builtin_ppc_swdivs: {
18110
Value *Op0 = EmitScalarExpr(E->getArg(0));
18111
Value *Op1 = EmitScalarExpr(E->getArg(1));
18112
return Builder.CreateFDiv(Op0, Op1, "swdiv");
18113
}
18114
case PPC::BI__builtin_ppc_set_fpscr_rn:
18115
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_setrnd),
18116
{EmitScalarExpr(E->getArg(0))});
18117
case PPC::BI__builtin_ppc_mffs:
18118
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_readflm));
18119
}
18120
}
18121
18122
namespace {
18123
// If \p E is not null pointer, insert address space cast to match return
18124
// type of \p E if necessary.
18125
Value *EmitAMDGPUDispatchPtr(CodeGenFunction &CGF,
18126
const CallExpr *E = nullptr) {
18127
auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_dispatch_ptr);
18128
auto *Call = CGF.Builder.CreateCall(F);
18129
Call->addRetAttr(
18130
Attribute::getWithDereferenceableBytes(Call->getContext(), 64));
18131
Call->addRetAttr(Attribute::getWithAlignment(Call->getContext(), Align(4)));
18132
if (!E)
18133
return Call;
18134
QualType BuiltinRetType = E->getType();
18135
auto *RetTy = cast<llvm::PointerType>(CGF.ConvertType(BuiltinRetType));
18136
if (RetTy == Call->getType())
18137
return Call;
18138
return CGF.Builder.CreateAddrSpaceCast(Call, RetTy);
18139
}
18140
18141
Value *EmitAMDGPUImplicitArgPtr(CodeGenFunction &CGF) {
18142
auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_implicitarg_ptr);
18143
auto *Call = CGF.Builder.CreateCall(F);
18144
Call->addRetAttr(
18145
Attribute::getWithDereferenceableBytes(Call->getContext(), 256));
18146
Call->addRetAttr(Attribute::getWithAlignment(Call->getContext(), Align(8)));
18147
return Call;
18148
}
18149
18150
// \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
18151
/// Emit code based on Code Object ABI version.
18152
/// COV_4 : Emit code to use dispatch ptr
18153
/// COV_5+ : Emit code to use implicitarg ptr
18154
/// COV_NONE : Emit code to load a global variable "__oclc_ABI_version"
18155
/// and use its value for COV_4 or COV_5+ approach. It is used for
18156
/// compiling device libraries in an ABI-agnostic way.
18157
///
18158
/// Note: "__oclc_ABI_version" is supposed to be emitted and intialized by
18159
/// clang during compilation of user code.
18160
Value *EmitAMDGPUWorkGroupSize(CodeGenFunction &CGF, unsigned Index) {
18161
llvm::LoadInst *LD;
18162
18163
auto Cov = CGF.getTarget().getTargetOpts().CodeObjectVersion;
18164
18165
if (Cov == CodeObjectVersionKind::COV_None) {
18166
StringRef Name = "__oclc_ABI_version";
18167
auto *ABIVersionC = CGF.CGM.getModule().getNamedGlobal(Name);
18168
if (!ABIVersionC)
18169
ABIVersionC = new llvm::GlobalVariable(
18170
CGF.CGM.getModule(), CGF.Int32Ty, false,
18171
llvm::GlobalValue::ExternalLinkage, nullptr, Name, nullptr,
18172
llvm::GlobalVariable::NotThreadLocal,
18173
CGF.CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant));
18174
18175
// This load will be eliminated by the IPSCCP because it is constant
18176
// weak_odr without externally_initialized. Either changing it to weak or
18177
// adding externally_initialized will keep the load.
18178
Value *ABIVersion = CGF.Builder.CreateAlignedLoad(CGF.Int32Ty, ABIVersionC,
18179
CGF.CGM.getIntAlign());
18180
18181
Value *IsCOV5 = CGF.Builder.CreateICmpSGE(
18182
ABIVersion,
18183
llvm::ConstantInt::get(CGF.Int32Ty, CodeObjectVersionKind::COV_5));
18184
18185
// Indexing the implicit kernarg segment.
18186
Value *ImplicitGEP = CGF.Builder.CreateConstGEP1_32(
18187
CGF.Int8Ty, EmitAMDGPUImplicitArgPtr(CGF), 12 + Index * 2);
18188
18189
// Indexing the HSA kernel_dispatch_packet struct.
18190
Value *DispatchGEP = CGF.Builder.CreateConstGEP1_32(
18191
CGF.Int8Ty, EmitAMDGPUDispatchPtr(CGF), 4 + Index * 2);
18192
18193
auto Result = CGF.Builder.CreateSelect(IsCOV5, ImplicitGEP, DispatchGEP);
18194
LD = CGF.Builder.CreateLoad(
18195
Address(Result, CGF.Int16Ty, CharUnits::fromQuantity(2)));
18196
} else {
18197
Value *GEP = nullptr;
18198
if (Cov >= CodeObjectVersionKind::COV_5) {
18199
// Indexing the implicit kernarg segment.
18200
GEP = CGF.Builder.CreateConstGEP1_32(
18201
CGF.Int8Ty, EmitAMDGPUImplicitArgPtr(CGF), 12 + Index * 2);
18202
} else {
18203
// Indexing the HSA kernel_dispatch_packet struct.
18204
GEP = CGF.Builder.CreateConstGEP1_32(
18205
CGF.Int8Ty, EmitAMDGPUDispatchPtr(CGF), 4 + Index * 2);
18206
}
18207
LD = CGF.Builder.CreateLoad(
18208
Address(GEP, CGF.Int16Ty, CharUnits::fromQuantity(2)));
18209
}
18210
18211
llvm::MDBuilder MDHelper(CGF.getLLVMContext());
18212
llvm::MDNode *RNode = MDHelper.createRange(APInt(16, 1),
18213
APInt(16, CGF.getTarget().getMaxOpenCLWorkGroupSize() + 1));
18214
LD->setMetadata(llvm::LLVMContext::MD_range, RNode);
18215
LD->setMetadata(llvm::LLVMContext::MD_noundef,
18216
llvm::MDNode::get(CGF.getLLVMContext(), std::nullopt));
18217
LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
18218
llvm::MDNode::get(CGF.getLLVMContext(), std::nullopt));
18219
return LD;
18220
}
18221
18222
// \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
18223
Value *EmitAMDGPUGridSize(CodeGenFunction &CGF, unsigned Index) {
18224
const unsigned XOffset = 12;
18225
auto *DP = EmitAMDGPUDispatchPtr(CGF);
18226
// Indexing the HSA kernel_dispatch_packet struct.
18227
auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 4);
18228
auto *GEP = CGF.Builder.CreateGEP(CGF.Int8Ty, DP, Offset);
18229
auto *LD = CGF.Builder.CreateLoad(
18230
Address(GEP, CGF.Int32Ty, CharUnits::fromQuantity(4)));
18231
LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
18232
llvm::MDNode::get(CGF.getLLVMContext(), std::nullopt));
18233
return LD;
18234
}
18235
} // namespace
18236
18237
// For processing memory ordering and memory scope arguments of various
18238
// amdgcn builtins.
18239
// \p Order takes a C++11 comptabile memory-ordering specifier and converts
18240
// it into LLVM's memory ordering specifier using atomic C ABI, and writes
18241
// to \p AO. \p Scope takes a const char * and converts it into AMDGCN
18242
// specific SyncScopeID and writes it to \p SSID.
18243
void CodeGenFunction::ProcessOrderScopeAMDGCN(Value *Order, Value *Scope,
18244
llvm::AtomicOrdering &AO,
18245
llvm::SyncScope::ID &SSID) {
18246
int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
18247
18248
// Map C11/C++11 memory ordering to LLVM memory ordering
18249
assert(llvm::isValidAtomicOrderingCABI(ord));
18250
switch (static_cast<llvm::AtomicOrderingCABI>(ord)) {
18251
case llvm::AtomicOrderingCABI::acquire:
18252
case llvm::AtomicOrderingCABI::consume:
18253
AO = llvm::AtomicOrdering::Acquire;
18254
break;
18255
case llvm::AtomicOrderingCABI::release:
18256
AO = llvm::AtomicOrdering::Release;
18257
break;
18258
case llvm::AtomicOrderingCABI::acq_rel:
18259
AO = llvm::AtomicOrdering::AcquireRelease;
18260
break;
18261
case llvm::AtomicOrderingCABI::seq_cst:
18262
AO = llvm::AtomicOrdering::SequentiallyConsistent;
18263
break;
18264
case llvm::AtomicOrderingCABI::relaxed:
18265
AO = llvm::AtomicOrdering::Monotonic;
18266
break;
18267
}
18268
18269
// Some of the atomic builtins take the scope as a string name.
18270
StringRef scp;
18271
if (llvm::getConstantStringInfo(Scope, scp)) {
18272
SSID = getLLVMContext().getOrInsertSyncScopeID(scp);
18273
return;
18274
}
18275
18276
// Older builtins had an enum argument for the memory scope.
18277
int scope = cast<llvm::ConstantInt>(Scope)->getZExtValue();
18278
switch (scope) {
18279
case 0: // __MEMORY_SCOPE_SYSTEM
18280
SSID = llvm::SyncScope::System;
18281
break;
18282
case 1: // __MEMORY_SCOPE_DEVICE
18283
SSID = getLLVMContext().getOrInsertSyncScopeID("agent");
18284
break;
18285
case 2: // __MEMORY_SCOPE_WRKGRP
18286
SSID = getLLVMContext().getOrInsertSyncScopeID("workgroup");
18287
break;
18288
case 3: // __MEMORY_SCOPE_WVFRNT
18289
SSID = getLLVMContext().getOrInsertSyncScopeID("wavefront");
18290
break;
18291
case 4: // __MEMORY_SCOPE_SINGLE
18292
SSID = llvm::SyncScope::SingleThread;
18293
break;
18294
default:
18295
SSID = llvm::SyncScope::System;
18296
break;
18297
}
18298
}
18299
18300
llvm::Value *CodeGenFunction::EmitScalarOrConstFoldImmArg(unsigned ICEArguments,
18301
unsigned Idx,
18302
const CallExpr *E) {
18303
llvm::Value *Arg = nullptr;
18304
if ((ICEArguments & (1 << Idx)) == 0) {
18305
Arg = EmitScalarExpr(E->getArg(Idx));
18306
} else {
18307
// If this is required to be a constant, constant fold it so that we
18308
// know that the generated intrinsic gets a ConstantInt.
18309
std::optional<llvm::APSInt> Result =
18310
E->getArg(Idx)->getIntegerConstantExpr(getContext());
18311
assert(Result && "Expected argument to be a constant");
18312
Arg = llvm::ConstantInt::get(getLLVMContext(), *Result);
18313
}
18314
return Arg;
18315
}
18316
18317
Intrinsic::ID getDotProductIntrinsic(QualType QT, int elementCount) {
18318
if (QT->hasFloatingRepresentation()) {
18319
switch (elementCount) {
18320
case 2:
18321
return Intrinsic::dx_dot2;
18322
case 3:
18323
return Intrinsic::dx_dot3;
18324
case 4:
18325
return Intrinsic::dx_dot4;
18326
}
18327
}
18328
if (QT->hasSignedIntegerRepresentation())
18329
return Intrinsic::dx_sdot;
18330
18331
assert(QT->hasUnsignedIntegerRepresentation());
18332
return Intrinsic::dx_udot;
18333
}
18334
18335
Value *CodeGenFunction::EmitHLSLBuiltinExpr(unsigned BuiltinID,
18336
const CallExpr *E) {
18337
if (!getLangOpts().HLSL)
18338
return nullptr;
18339
18340
switch (BuiltinID) {
18341
case Builtin::BI__builtin_hlsl_elementwise_all: {
18342
Value *Op0 = EmitScalarExpr(E->getArg(0));
18343
return Builder.CreateIntrinsic(
18344
/*ReturnType=*/llvm::Type::getInt1Ty(getLLVMContext()),
18345
CGM.getHLSLRuntime().getAllIntrinsic(), ArrayRef<Value *>{Op0}, nullptr,
18346
"hlsl.all");
18347
}
18348
case Builtin::BI__builtin_hlsl_elementwise_any: {
18349
Value *Op0 = EmitScalarExpr(E->getArg(0));
18350
return Builder.CreateIntrinsic(
18351
/*ReturnType=*/llvm::Type::getInt1Ty(getLLVMContext()),
18352
CGM.getHLSLRuntime().getAnyIntrinsic(), ArrayRef<Value *>{Op0}, nullptr,
18353
"hlsl.any");
18354
}
18355
case Builtin::BI__builtin_hlsl_elementwise_clamp: {
18356
Value *OpX = EmitScalarExpr(E->getArg(0));
18357
Value *OpMin = EmitScalarExpr(E->getArg(1));
18358
Value *OpMax = EmitScalarExpr(E->getArg(2));
18359
18360
QualType Ty = E->getArg(0)->getType();
18361
bool IsUnsigned = false;
18362
if (auto *VecTy = Ty->getAs<VectorType>())
18363
Ty = VecTy->getElementType();
18364
IsUnsigned = Ty->isUnsignedIntegerType();
18365
return Builder.CreateIntrinsic(
18366
/*ReturnType=*/OpX->getType(),
18367
IsUnsigned ? Intrinsic::dx_uclamp : Intrinsic::dx_clamp,
18368
ArrayRef<Value *>{OpX, OpMin, OpMax}, nullptr, "dx.clamp");
18369
}
18370
case Builtin::BI__builtin_hlsl_dot: {
18371
Value *Op0 = EmitScalarExpr(E->getArg(0));
18372
Value *Op1 = EmitScalarExpr(E->getArg(1));
18373
llvm::Type *T0 = Op0->getType();
18374
llvm::Type *T1 = Op1->getType();
18375
if (!T0->isVectorTy() && !T1->isVectorTy()) {
18376
if (T0->isFloatingPointTy())
18377
return Builder.CreateFMul(Op0, Op1, "dx.dot");
18378
18379
if (T0->isIntegerTy())
18380
return Builder.CreateMul(Op0, Op1, "dx.dot");
18381
18382
// Bools should have been promoted
18383
llvm_unreachable(
18384
"Scalar dot product is only supported on ints and floats.");
18385
}
18386
// A VectorSplat should have happened
18387
assert(T0->isVectorTy() && T1->isVectorTy() &&
18388
"Dot product of vector and scalar is not supported.");
18389
18390
// A vector sext or sitofp should have happened
18391
assert(T0->getScalarType() == T1->getScalarType() &&
18392
"Dot product of vectors need the same element types.");
18393
18394
auto *VecTy0 = E->getArg(0)->getType()->getAs<VectorType>();
18395
[[maybe_unused]] auto *VecTy1 =
18396
E->getArg(1)->getType()->getAs<VectorType>();
18397
// A HLSLVectorTruncation should have happend
18398
assert(VecTy0->getNumElements() == VecTy1->getNumElements() &&
18399
"Dot product requires vectors to be of the same size.");
18400
18401
return Builder.CreateIntrinsic(
18402
/*ReturnType=*/T0->getScalarType(),
18403
getDotProductIntrinsic(E->getArg(0)->getType(),
18404
VecTy0->getNumElements()),
18405
ArrayRef<Value *>{Op0, Op1}, nullptr, "dx.dot");
18406
} break;
18407
case Builtin::BI__builtin_hlsl_lerp: {
18408
Value *X = EmitScalarExpr(E->getArg(0));
18409
Value *Y = EmitScalarExpr(E->getArg(1));
18410
Value *S = EmitScalarExpr(E->getArg(2));
18411
if (!E->getArg(0)->getType()->hasFloatingRepresentation())
18412
llvm_unreachable("lerp operand must have a float representation");
18413
return Builder.CreateIntrinsic(
18414
/*ReturnType=*/X->getType(), CGM.getHLSLRuntime().getLerpIntrinsic(),
18415
ArrayRef<Value *>{X, Y, S}, nullptr, "hlsl.lerp");
18416
}
18417
case Builtin::BI__builtin_hlsl_elementwise_frac: {
18418
Value *Op0 = EmitScalarExpr(E->getArg(0));
18419
if (!E->getArg(0)->getType()->hasFloatingRepresentation())
18420
llvm_unreachable("frac operand must have a float representation");
18421
return Builder.CreateIntrinsic(
18422
/*ReturnType=*/Op0->getType(), Intrinsic::dx_frac,
18423
ArrayRef<Value *>{Op0}, nullptr, "dx.frac");
18424
}
18425
case Builtin::BI__builtin_hlsl_elementwise_isinf: {
18426
Value *Op0 = EmitScalarExpr(E->getArg(0));
18427
llvm::Type *Xty = Op0->getType();
18428
llvm::Type *retType = llvm::Type::getInt1Ty(this->getLLVMContext());
18429
if (Xty->isVectorTy()) {
18430
auto *XVecTy = E->getArg(0)->getType()->getAs<VectorType>();
18431
retType = llvm::VectorType::get(
18432
retType, ElementCount::getFixed(XVecTy->getNumElements()));
18433
}
18434
if (!E->getArg(0)->getType()->hasFloatingRepresentation())
18435
llvm_unreachable("isinf operand must have a float representation");
18436
return Builder.CreateIntrinsic(retType, Intrinsic::dx_isinf,
18437
ArrayRef<Value *>{Op0}, nullptr, "dx.isinf");
18438
}
18439
case Builtin::BI__builtin_hlsl_mad: {
18440
Value *M = EmitScalarExpr(E->getArg(0));
18441
Value *A = EmitScalarExpr(E->getArg(1));
18442
Value *B = EmitScalarExpr(E->getArg(2));
18443
if (E->getArg(0)->getType()->hasFloatingRepresentation())
18444
return Builder.CreateIntrinsic(
18445
/*ReturnType*/ M->getType(), Intrinsic::fmuladd,
18446
ArrayRef<Value *>{M, A, B}, nullptr, "hlsl.fmad");
18447
18448
if (E->getArg(0)->getType()->hasSignedIntegerRepresentation()) {
18449
if (CGM.getTarget().getTriple().getArch() == llvm::Triple::dxil)
18450
return Builder.CreateIntrinsic(
18451
/*ReturnType*/ M->getType(), Intrinsic::dx_imad,
18452
ArrayRef<Value *>{M, A, B}, nullptr, "dx.imad");
18453
18454
Value *Mul = Builder.CreateNSWMul(M, A);
18455
return Builder.CreateNSWAdd(Mul, B);
18456
}
18457
assert(E->getArg(0)->getType()->hasUnsignedIntegerRepresentation());
18458
if (CGM.getTarget().getTriple().getArch() == llvm::Triple::dxil)
18459
return Builder.CreateIntrinsic(
18460
/*ReturnType=*/M->getType(), Intrinsic::dx_umad,
18461
ArrayRef<Value *>{M, A, B}, nullptr, "dx.umad");
18462
18463
Value *Mul = Builder.CreateNUWMul(M, A);
18464
return Builder.CreateNUWAdd(Mul, B);
18465
}
18466
case Builtin::BI__builtin_hlsl_elementwise_rcp: {
18467
Value *Op0 = EmitScalarExpr(E->getArg(0));
18468
if (!E->getArg(0)->getType()->hasFloatingRepresentation())
18469
llvm_unreachable("rcp operand must have a float representation");
18470
llvm::Type *Ty = Op0->getType();
18471
llvm::Type *EltTy = Ty->getScalarType();
18472
Constant *One = Ty->isVectorTy()
18473
? ConstantVector::getSplat(
18474
ElementCount::getFixed(
18475
cast<FixedVectorType>(Ty)->getNumElements()),
18476
ConstantFP::get(EltTy, 1.0))
18477
: ConstantFP::get(EltTy, 1.0);
18478
return Builder.CreateFDiv(One, Op0, "hlsl.rcp");
18479
}
18480
case Builtin::BI__builtin_hlsl_elementwise_rsqrt: {
18481
Value *Op0 = EmitScalarExpr(E->getArg(0));
18482
if (!E->getArg(0)->getType()->hasFloatingRepresentation())
18483
llvm_unreachable("rsqrt operand must have a float representation");
18484
return Builder.CreateIntrinsic(
18485
/*ReturnType=*/Op0->getType(), CGM.getHLSLRuntime().getRsqrtIntrinsic(),
18486
ArrayRef<Value *>{Op0}, nullptr, "hlsl.rsqrt");
18487
}
18488
case Builtin::BI__builtin_hlsl_wave_get_lane_index: {
18489
return EmitRuntimeCall(CGM.CreateRuntimeFunction(
18490
llvm::FunctionType::get(IntTy, {}, false), "__hlsl_wave_get_lane_index",
18491
{}, false, true));
18492
}
18493
}
18494
return nullptr;
18495
}
18496
18497
void CodeGenFunction::AddAMDGPUFenceAddressSpaceMMRA(llvm::Instruction *Inst,
18498
const CallExpr *E) {
18499
constexpr const char *Tag = "amdgpu-as";
18500
18501
LLVMContext &Ctx = Inst->getContext();
18502
SmallVector<MMRAMetadata::TagT, 3> MMRAs;
18503
for (unsigned K = 2; K < E->getNumArgs(); ++K) {
18504
llvm::Value *V = EmitScalarExpr(E->getArg(K));
18505
StringRef AS;
18506
if (llvm::getConstantStringInfo(V, AS)) {
18507
MMRAs.push_back({Tag, AS});
18508
// TODO: Delete the resulting unused constant?
18509
continue;
18510
}
18511
CGM.Error(E->getExprLoc(),
18512
"expected an address space name as a string literal");
18513
}
18514
18515
llvm::sort(MMRAs);
18516
MMRAs.erase(llvm::unique(MMRAs), MMRAs.end());
18517
Inst->setMetadata(LLVMContext::MD_mmra, MMRAMetadata::getMD(Ctx, MMRAs));
18518
}
18519
18520
Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
18521
const CallExpr *E) {
18522
llvm::AtomicOrdering AO = llvm::AtomicOrdering::SequentiallyConsistent;
18523
llvm::SyncScope::ID SSID;
18524
switch (BuiltinID) {
18525
case AMDGPU::BI__builtin_amdgcn_div_scale:
18526
case AMDGPU::BI__builtin_amdgcn_div_scalef: {
18527
// Translate from the intrinsics's struct return to the builtin's out
18528
// argument.
18529
18530
Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
18531
18532
llvm::Value *X = EmitScalarExpr(E->getArg(0));
18533
llvm::Value *Y = EmitScalarExpr(E->getArg(1));
18534
llvm::Value *Z = EmitScalarExpr(E->getArg(2));
18535
18536
llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
18537
X->getType());
18538
18539
llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
18540
18541
llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
18542
llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
18543
18544
llvm::Type *RealFlagType = FlagOutPtr.getElementType();
18545
18546
llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
18547
Builder.CreateStore(FlagExt, FlagOutPtr);
18548
return Result;
18549
}
18550
case AMDGPU::BI__builtin_amdgcn_div_fmas:
18551
case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
18552
llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
18553
llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
18554
llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
18555
llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
18556
18557
llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
18558
Src0->getType());
18559
llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
18560
return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
18561
}
18562
18563
case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
18564
return emitBuiltinWithOneOverloadedType<2>(*this, E,
18565
Intrinsic::amdgcn_ds_swizzle);
18566
case AMDGPU::BI__builtin_amdgcn_mov_dpp8:
18567
return emitBuiltinWithOneOverloadedType<2>(*this, E,
18568
Intrinsic::amdgcn_mov_dpp8);
18569
case AMDGPU::BI__builtin_amdgcn_mov_dpp:
18570
case AMDGPU::BI__builtin_amdgcn_update_dpp: {
18571
llvm::SmallVector<llvm::Value *, 6> Args;
18572
// Find out if any arguments are required to be integer constant
18573
// expressions.
18574
unsigned ICEArguments = 0;
18575
ASTContext::GetBuiltinTypeError Error;
18576
getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
18577
assert(Error == ASTContext::GE_None && "Should not codegen an error");
18578
for (unsigned I = 0; I != E->getNumArgs(); ++I) {
18579
Args.push_back(EmitScalarOrConstFoldImmArg(ICEArguments, I, E));
18580
}
18581
assert(Args.size() == 5 || Args.size() == 6);
18582
if (Args.size() == 5)
18583
Args.insert(Args.begin(), llvm::PoisonValue::get(Args[0]->getType()));
18584
Function *F =
18585
CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
18586
return Builder.CreateCall(F, Args);
18587
}
18588
case AMDGPU::BI__builtin_amdgcn_permlane16:
18589
case AMDGPU::BI__builtin_amdgcn_permlanex16:
18590
return emitBuiltinWithOneOverloadedType<6>(
18591
*this, E,
18592
BuiltinID == AMDGPU::BI__builtin_amdgcn_permlane16
18593
? Intrinsic::amdgcn_permlane16
18594
: Intrinsic::amdgcn_permlanex16);
18595
case AMDGPU::BI__builtin_amdgcn_permlane64:
18596
return emitBuiltinWithOneOverloadedType<1>(*this, E,
18597
Intrinsic::amdgcn_permlane64);
18598
case AMDGPU::BI__builtin_amdgcn_readlane:
18599
return emitBuiltinWithOneOverloadedType<2>(*this, E,
18600
Intrinsic::amdgcn_readlane);
18601
case AMDGPU::BI__builtin_amdgcn_readfirstlane:
18602
return emitBuiltinWithOneOverloadedType<1>(*this, E,
18603
Intrinsic::amdgcn_readfirstlane);
18604
case AMDGPU::BI__builtin_amdgcn_div_fixup:
18605
case AMDGPU::BI__builtin_amdgcn_div_fixupf:
18606
case AMDGPU::BI__builtin_amdgcn_div_fixuph:
18607
return emitBuiltinWithOneOverloadedType<3>(*this, E,
18608
Intrinsic::amdgcn_div_fixup);
18609
case AMDGPU::BI__builtin_amdgcn_trig_preop:
18610
case AMDGPU::BI__builtin_amdgcn_trig_preopf:
18611
return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
18612
case AMDGPU::BI__builtin_amdgcn_rcp:
18613
case AMDGPU::BI__builtin_amdgcn_rcpf:
18614
case AMDGPU::BI__builtin_amdgcn_rcph:
18615
return emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::amdgcn_rcp);
18616
case AMDGPU::BI__builtin_amdgcn_sqrt:
18617
case AMDGPU::BI__builtin_amdgcn_sqrtf:
18618
case AMDGPU::BI__builtin_amdgcn_sqrth:
18619
return emitBuiltinWithOneOverloadedType<1>(*this, E,
18620
Intrinsic::amdgcn_sqrt);
18621
case AMDGPU::BI__builtin_amdgcn_rsq:
18622
case AMDGPU::BI__builtin_amdgcn_rsqf:
18623
case AMDGPU::BI__builtin_amdgcn_rsqh:
18624
return emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::amdgcn_rsq);
18625
case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
18626
case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
18627
return emitBuiltinWithOneOverloadedType<1>(*this, E,
18628
Intrinsic::amdgcn_rsq_clamp);
18629
case AMDGPU::BI__builtin_amdgcn_sinf:
18630
case AMDGPU::BI__builtin_amdgcn_sinh:
18631
return emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::amdgcn_sin);
18632
case AMDGPU::BI__builtin_amdgcn_cosf:
18633
case AMDGPU::BI__builtin_amdgcn_cosh:
18634
return emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::amdgcn_cos);
18635
case AMDGPU::BI__builtin_amdgcn_dispatch_ptr:
18636
return EmitAMDGPUDispatchPtr(*this, E);
18637
case AMDGPU::BI__builtin_amdgcn_logf:
18638
return emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::amdgcn_log);
18639
case AMDGPU::BI__builtin_amdgcn_exp2f:
18640
return emitBuiltinWithOneOverloadedType<1>(*this, E,
18641
Intrinsic::amdgcn_exp2);
18642
case AMDGPU::BI__builtin_amdgcn_log_clampf:
18643
return emitBuiltinWithOneOverloadedType<1>(*this, E,
18644
Intrinsic::amdgcn_log_clamp);
18645
case AMDGPU::BI__builtin_amdgcn_ldexp:
18646
case AMDGPU::BI__builtin_amdgcn_ldexpf: {
18647
llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
18648
llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
18649
llvm::Function *F =
18650
CGM.getIntrinsic(Intrinsic::ldexp, {Src0->getType(), Src1->getType()});
18651
return Builder.CreateCall(F, {Src0, Src1});
18652
}
18653
case AMDGPU::BI__builtin_amdgcn_ldexph: {
18654
// The raw instruction has a different behavior for out of bounds exponent
18655
// values (implicit truncation instead of saturate to short_min/short_max).
18656
llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
18657
llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
18658
llvm::Function *F =
18659
CGM.getIntrinsic(Intrinsic::ldexp, {Src0->getType(), Int16Ty});
18660
return Builder.CreateCall(F, {Src0, Builder.CreateTrunc(Src1, Int16Ty)});
18661
}
18662
case AMDGPU::BI__builtin_amdgcn_frexp_mant:
18663
case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
18664
case AMDGPU::BI__builtin_amdgcn_frexp_manth:
18665
return emitBuiltinWithOneOverloadedType<1>(*this, E,
18666
Intrinsic::amdgcn_frexp_mant);
18667
case AMDGPU::BI__builtin_amdgcn_frexp_exp:
18668
case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
18669
Value *Src0 = EmitScalarExpr(E->getArg(0));
18670
Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
18671
{ Builder.getInt32Ty(), Src0->getType() });
18672
return Builder.CreateCall(F, Src0);
18673
}
18674
case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
18675
Value *Src0 = EmitScalarExpr(E->getArg(0));
18676
Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
18677
{ Builder.getInt16Ty(), Src0->getType() });
18678
return Builder.CreateCall(F, Src0);
18679
}
18680
case AMDGPU::BI__builtin_amdgcn_fract:
18681
case AMDGPU::BI__builtin_amdgcn_fractf:
18682
case AMDGPU::BI__builtin_amdgcn_fracth:
18683
return emitBuiltinWithOneOverloadedType<1>(*this, E,
18684
Intrinsic::amdgcn_fract);
18685
case AMDGPU::BI__builtin_amdgcn_lerp:
18686
return emitBuiltinWithOneOverloadedType<3>(*this, E,
18687
Intrinsic::amdgcn_lerp);
18688
case AMDGPU::BI__builtin_amdgcn_ubfe:
18689
return emitBuiltinWithOneOverloadedType<3>(*this, E,
18690
Intrinsic::amdgcn_ubfe);
18691
case AMDGPU::BI__builtin_amdgcn_sbfe:
18692
return emitBuiltinWithOneOverloadedType<3>(*this, E,
18693
Intrinsic::amdgcn_sbfe);
18694
case AMDGPU::BI__builtin_amdgcn_ballot_w32:
18695
case AMDGPU::BI__builtin_amdgcn_ballot_w64: {
18696
llvm::Type *ResultType = ConvertType(E->getType());
18697
llvm::Value *Src = EmitScalarExpr(E->getArg(0));
18698
Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_ballot, { ResultType });
18699
return Builder.CreateCall(F, { Src });
18700
}
18701
case AMDGPU::BI__builtin_amdgcn_uicmp:
18702
case AMDGPU::BI__builtin_amdgcn_uicmpl:
18703
case AMDGPU::BI__builtin_amdgcn_sicmp:
18704
case AMDGPU::BI__builtin_amdgcn_sicmpl: {
18705
llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
18706
llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
18707
llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
18708
18709
// FIXME-GFX10: How should 32 bit mask be handled?
18710
Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp,
18711
{ Builder.getInt64Ty(), Src0->getType() });
18712
return Builder.CreateCall(F, { Src0, Src1, Src2 });
18713
}
18714
case AMDGPU::BI__builtin_amdgcn_fcmp:
18715
case AMDGPU::BI__builtin_amdgcn_fcmpf: {
18716
llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
18717
llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
18718
llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
18719
18720
// FIXME-GFX10: How should 32 bit mask be handled?
18721
Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp,
18722
{ Builder.getInt64Ty(), Src0->getType() });
18723
return Builder.CreateCall(F, { Src0, Src1, Src2 });
18724
}
18725
case AMDGPU::BI__builtin_amdgcn_class:
18726
case AMDGPU::BI__builtin_amdgcn_classf:
18727
case AMDGPU::BI__builtin_amdgcn_classh:
18728
return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
18729
case AMDGPU::BI__builtin_amdgcn_fmed3f:
18730
case AMDGPU::BI__builtin_amdgcn_fmed3h:
18731
return emitBuiltinWithOneOverloadedType<3>(*this, E,
18732
Intrinsic::amdgcn_fmed3);
18733
case AMDGPU::BI__builtin_amdgcn_ds_append:
18734
case AMDGPU::BI__builtin_amdgcn_ds_consume: {
18735
Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ?
18736
Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume;
18737
Value *Src0 = EmitScalarExpr(E->getArg(0));
18738
Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() });
18739
return Builder.CreateCall(F, { Src0, Builder.getFalse() });
18740
}
18741
case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64:
18742
case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32:
18743
case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16:
18744
case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64:
18745
case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64:
18746
case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64:
18747
case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64:
18748
case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64:
18749
case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f32:
18750
case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2f16: {
18751
Intrinsic::ID IID;
18752
llvm::Type *ArgTy = llvm::Type::getDoubleTy(getLLVMContext());
18753
switch (BuiltinID) {
18754
case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32:
18755
ArgTy = llvm::Type::getFloatTy(getLLVMContext());
18756
IID = Intrinsic::amdgcn_global_atomic_fadd;
18757
break;
18758
case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16:
18759
ArgTy = llvm::FixedVectorType::get(
18760
llvm::Type::getHalfTy(getLLVMContext()), 2);
18761
IID = Intrinsic::amdgcn_global_atomic_fadd;
18762
break;
18763
case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64:
18764
IID = Intrinsic::amdgcn_global_atomic_fadd;
18765
break;
18766
case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64:
18767
IID = Intrinsic::amdgcn_global_atomic_fmin;
18768
break;
18769
case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64:
18770
IID = Intrinsic::amdgcn_global_atomic_fmax;
18771
break;
18772
case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64:
18773
IID = Intrinsic::amdgcn_flat_atomic_fadd;
18774
break;
18775
case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64:
18776
IID = Intrinsic::amdgcn_flat_atomic_fmin;
18777
break;
18778
case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64:
18779
IID = Intrinsic::amdgcn_flat_atomic_fmax;
18780
break;
18781
case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f32:
18782
ArgTy = llvm::Type::getFloatTy(getLLVMContext());
18783
IID = Intrinsic::amdgcn_flat_atomic_fadd;
18784
break;
18785
case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2f16:
18786
ArgTy = llvm::FixedVectorType::get(
18787
llvm::Type::getHalfTy(getLLVMContext()), 2);
18788
IID = Intrinsic::amdgcn_flat_atomic_fadd;
18789
break;
18790
}
18791
llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
18792
llvm::Value *Val = EmitScalarExpr(E->getArg(1));
18793
llvm::Function *F =
18794
CGM.getIntrinsic(IID, {ArgTy, Addr->getType(), Val->getType()});
18795
return Builder.CreateCall(F, {Addr, Val});
18796
}
18797
case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2bf16:
18798
case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2bf16: {
18799
Intrinsic::ID IID;
18800
switch (BuiltinID) {
18801
case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2bf16:
18802
IID = Intrinsic::amdgcn_global_atomic_fadd_v2bf16;
18803
break;
18804
case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2bf16:
18805
IID = Intrinsic::amdgcn_flat_atomic_fadd_v2bf16;
18806
break;
18807
}
18808
llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
18809
llvm::Value *Val = EmitScalarExpr(E->getArg(1));
18810
llvm::Function *F = CGM.getIntrinsic(IID, {Addr->getType()});
18811
return Builder.CreateCall(F, {Addr, Val});
18812
}
18813
case AMDGPU::BI__builtin_amdgcn_global_load_tr_b64_i32:
18814
case AMDGPU::BI__builtin_amdgcn_global_load_tr_b64_v2i32:
18815
case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v4i16:
18816
case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v4f16:
18817
case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v4bf16:
18818
case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v8i16:
18819
case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v8f16:
18820
case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v8bf16: {
18821
18822
Intrinsic::ID IID;
18823
switch (BuiltinID) {
18824
case AMDGPU::BI__builtin_amdgcn_global_load_tr_b64_i32:
18825
case AMDGPU::BI__builtin_amdgcn_global_load_tr_b64_v2i32:
18826
IID = Intrinsic::amdgcn_global_load_tr_b64;
18827
break;
18828
case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v4i16:
18829
case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v4f16:
18830
case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v4bf16:
18831
case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v8i16:
18832
case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v8f16:
18833
case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v8bf16:
18834
IID = Intrinsic::amdgcn_global_load_tr_b128;
18835
break;
18836
}
18837
llvm::Type *LoadTy = ConvertType(E->getType());
18838
llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
18839
llvm::Function *F = CGM.getIntrinsic(IID, {LoadTy});
18840
return Builder.CreateCall(F, {Addr});
18841
}
18842
case AMDGPU::BI__builtin_amdgcn_get_fpenv: {
18843
Function *F = CGM.getIntrinsic(Intrinsic::get_fpenv,
18844
{llvm::Type::getInt64Ty(getLLVMContext())});
18845
return Builder.CreateCall(F);
18846
}
18847
case AMDGPU::BI__builtin_amdgcn_set_fpenv: {
18848
Function *F = CGM.getIntrinsic(Intrinsic::set_fpenv,
18849
{llvm::Type::getInt64Ty(getLLVMContext())});
18850
llvm::Value *Env = EmitScalarExpr(E->getArg(0));
18851
return Builder.CreateCall(F, {Env});
18852
}
18853
case AMDGPU::BI__builtin_amdgcn_read_exec:
18854
return EmitAMDGCNBallotForExec(*this, E, Int64Ty, Int64Ty, false);
18855
case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
18856
return EmitAMDGCNBallotForExec(*this, E, Int32Ty, Int32Ty, false);
18857
case AMDGPU::BI__builtin_amdgcn_read_exec_hi:
18858
return EmitAMDGCNBallotForExec(*this, E, Int64Ty, Int64Ty, true);
18859
case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray:
18860
case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_h:
18861
case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_l:
18862
case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_lh: {
18863
llvm::Value *NodePtr = EmitScalarExpr(E->getArg(0));
18864
llvm::Value *RayExtent = EmitScalarExpr(E->getArg(1));
18865
llvm::Value *RayOrigin = EmitScalarExpr(E->getArg(2));
18866
llvm::Value *RayDir = EmitScalarExpr(E->getArg(3));
18867
llvm::Value *RayInverseDir = EmitScalarExpr(E->getArg(4));
18868
llvm::Value *TextureDescr = EmitScalarExpr(E->getArg(5));
18869
18870
// The builtins take these arguments as vec4 where the last element is
18871
// ignored. The intrinsic takes them as vec3.
18872
RayOrigin = Builder.CreateShuffleVector(RayOrigin, RayOrigin,
18873
ArrayRef<int>{0, 1, 2});
18874
RayDir =
18875
Builder.CreateShuffleVector(RayDir, RayDir, ArrayRef<int>{0, 1, 2});
18876
RayInverseDir = Builder.CreateShuffleVector(RayInverseDir, RayInverseDir,
18877
ArrayRef<int>{0, 1, 2});
18878
18879
Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_image_bvh_intersect_ray,
18880
{NodePtr->getType(), RayDir->getType()});
18881
return Builder.CreateCall(F, {NodePtr, RayExtent, RayOrigin, RayDir,
18882
RayInverseDir, TextureDescr});
18883
}
18884
18885
case AMDGPU::BI__builtin_amdgcn_ds_bvh_stack_rtn: {
18886
SmallVector<Value *, 4> Args;
18887
for (int i = 0, e = E->getNumArgs(); i != e; ++i)
18888
Args.push_back(EmitScalarExpr(E->getArg(i)));
18889
18890
Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_ds_bvh_stack_rtn);
18891
Value *Call = Builder.CreateCall(F, Args);
18892
Value *Rtn = Builder.CreateExtractValue(Call, 0);
18893
Value *A = Builder.CreateExtractValue(Call, 1);
18894
llvm::Type *RetTy = ConvertType(E->getType());
18895
Value *I0 = Builder.CreateInsertElement(PoisonValue::get(RetTy), Rtn,
18896
(uint64_t)0);
18897
return Builder.CreateInsertElement(I0, A, 1);
18898
}
18899
18900
case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32:
18901
case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_tied_w32:
18902
case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64:
18903
case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_tied_w64:
18904
case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w32:
18905
case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_tied_w32:
18906
case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w64:
18907
case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_tied_w64:
18908
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32:
18909
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64:
18910
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w32:
18911
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w64:
18912
case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w32:
18913
case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w64:
18914
case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32:
18915
case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64:
18916
case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32_gfx12:
18917
case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64_gfx12:
18918
case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w32_gfx12:
18919
case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w64_gfx12:
18920
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32_gfx12:
18921
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64_gfx12:
18922
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w32_gfx12:
18923
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w64_gfx12:
18924
case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w32_gfx12:
18925
case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w64_gfx12:
18926
case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32_gfx12:
18927
case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64_gfx12:
18928
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_fp8_w32_gfx12:
18929
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_fp8_w64_gfx12:
18930
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_bf8_w32_gfx12:
18931
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_bf8_w64_gfx12:
18932
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_fp8_w32_gfx12:
18933
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_fp8_w64_gfx12:
18934
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_bf8_w32_gfx12:
18935
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_bf8_w64_gfx12:
18936
case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x32_iu4_w32_gfx12:
18937
case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x32_iu4_w64_gfx12:
18938
case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_f16_w32:
18939
case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_f16_w64:
18940
case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf16_w32:
18941
case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf16_w64:
18942
case AMDGPU::BI__builtin_amdgcn_swmmac_f16_16x16x32_f16_w32:
18943
case AMDGPU::BI__builtin_amdgcn_swmmac_f16_16x16x32_f16_w64:
18944
case AMDGPU::BI__builtin_amdgcn_swmmac_bf16_16x16x32_bf16_w32:
18945
case AMDGPU::BI__builtin_amdgcn_swmmac_bf16_16x16x32_bf16_w64:
18946
case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu8_w32:
18947
case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu8_w64:
18948
case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu4_w32:
18949
case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu4_w64:
18950
case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x64_iu4_w32:
18951
case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x64_iu4_w64:
18952
case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_fp8_w32:
18953
case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_fp8_w64:
18954
case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_bf8_w32:
18955
case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_bf8_w64:
18956
case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_fp8_w32:
18957
case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_fp8_w64:
18958
case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_bf8_w32:
18959
case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_bf8_w64: {
18960
18961
// These operations perform a matrix multiplication and accumulation of
18962
// the form:
18963
// D = A * B + C
18964
// We need to specify one type for matrices AB and one for matrices CD.
18965
// Sparse matrix operations can have different types for A and B as well as
18966
// an additional type for sparsity index.
18967
// Destination type should be put before types used for source operands.
18968
SmallVector<unsigned, 2> ArgsForMatchingMatrixTypes;
18969
// On GFX12, the intrinsics with 16-bit accumulator use a packed layout.
18970
// There is no need for the variable opsel argument, so always set it to
18971
// "false".
18972
bool AppendFalseForOpselArg = false;
18973
unsigned BuiltinWMMAOp;
18974
18975
switch (BuiltinID) {
18976
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w32:
18977
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w64:
18978
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w32_gfx12:
18979
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w64_gfx12:
18980
ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
18981
BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_f16;
18982
break;
18983
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32:
18984
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64:
18985
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32_gfx12:
18986
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64_gfx12:
18987
ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
18988
BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_bf16;
18989
break;
18990
case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w32_gfx12:
18991
case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w64_gfx12:
18992
AppendFalseForOpselArg = true;
18993
[[fallthrough]];
18994
case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w32:
18995
case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w64:
18996
ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
18997
BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f16_16x16x16_f16;
18998
break;
18999
case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32_gfx12:
19000
case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64_gfx12:
19001
AppendFalseForOpselArg = true;
19002
[[fallthrough]];
19003
case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32:
19004
case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64:
19005
ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
19006
BuiltinWMMAOp = Intrinsic::amdgcn_wmma_bf16_16x16x16_bf16;
19007
break;
19008
case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_tied_w32:
19009
case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_tied_w64:
19010
ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
19011
BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f16_16x16x16_f16_tied;
19012
break;
19013
case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_tied_w32:
19014
case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_tied_w64:
19015
ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
19016
BuiltinWMMAOp = Intrinsic::amdgcn_wmma_bf16_16x16x16_bf16_tied;
19017
break;
19018
case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32:
19019
case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64:
19020
case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32_gfx12:
19021
case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64_gfx12:
19022
ArgsForMatchingMatrixTypes = {4, 1}; // CD, AB
19023
BuiltinWMMAOp = Intrinsic::amdgcn_wmma_i32_16x16x16_iu8;
19024
break;
19025
case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w32:
19026
case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w64:
19027
case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w32_gfx12:
19028
case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w64_gfx12:
19029
ArgsForMatchingMatrixTypes = {4, 1}; // CD, AB
19030
BuiltinWMMAOp = Intrinsic::amdgcn_wmma_i32_16x16x16_iu4;
19031
break;
19032
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_fp8_w32_gfx12:
19033
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_fp8_w64_gfx12:
19034
ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
19035
BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_fp8_fp8;
19036
break;
19037
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_bf8_w32_gfx12:
19038
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_bf8_w64_gfx12:
19039
ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
19040
BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_fp8_bf8;
19041
break;
19042
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_fp8_w32_gfx12:
19043
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_fp8_w64_gfx12:
19044
ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
19045
BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_bf8_fp8;
19046
break;
19047
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_bf8_w32_gfx12:
19048
case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_bf8_w64_gfx12:
19049
ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
19050
BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_bf8_bf8;
19051
break;
19052
case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x32_iu4_w32_gfx12:
19053
case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x32_iu4_w64_gfx12:
19054
ArgsForMatchingMatrixTypes = {4, 1}; // CD, AB
19055
BuiltinWMMAOp = Intrinsic::amdgcn_wmma_i32_16x16x32_iu4;
19056
break;
19057
case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_f16_w32:
19058
case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_f16_w64:
19059
ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
19060
BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f32_16x16x32_f16;
19061
break;
19062
case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf16_w32:
19063
case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf16_w64:
19064
ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
19065
BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f32_16x16x32_bf16;
19066
break;
19067
case AMDGPU::BI__builtin_amdgcn_swmmac_f16_16x16x32_f16_w32:
19068
case AMDGPU::BI__builtin_amdgcn_swmmac_f16_16x16x32_f16_w64:
19069
ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
19070
BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f16_16x16x32_f16;
19071
break;
19072
case AMDGPU::BI__builtin_amdgcn_swmmac_bf16_16x16x32_bf16_w32:
19073
case AMDGPU::BI__builtin_amdgcn_swmmac_bf16_16x16x32_bf16_w64:
19074
ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
19075
BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_bf16_16x16x32_bf16;
19076
break;
19077
case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu8_w32:
19078
case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu8_w64:
19079
ArgsForMatchingMatrixTypes = {4, 1, 3, 5}; // CD, A, B, Index
19080
BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_i32_16x16x32_iu8;
19081
break;
19082
case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu4_w32:
19083
case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu4_w64:
19084
ArgsForMatchingMatrixTypes = {4, 1, 3, 5}; // CD, A, B, Index
19085
BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_i32_16x16x32_iu4;
19086
break;
19087
case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x64_iu4_w32:
19088
case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x64_iu4_w64:
19089
ArgsForMatchingMatrixTypes = {4, 1, 3, 5}; // CD, A, B, Index
19090
BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_i32_16x16x64_iu4;
19091
break;
19092
case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_fp8_w32:
19093
case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_fp8_w64:
19094
ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
19095
BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_fp8;
19096
break;
19097
case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_bf8_w32:
19098
case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_bf8_w64:
19099
ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
19100
BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_bf8;
19101
break;
19102
case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_fp8_w32:
19103
case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_fp8_w64:
19104
ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
19105
BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_fp8;
19106
break;
19107
case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_bf8_w32:
19108
case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_bf8_w64:
19109
ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
19110
BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_bf8;
19111
break;
19112
}
19113
19114
SmallVector<Value *, 6> Args;
19115
for (int i = 0, e = E->getNumArgs(); i != e; ++i)
19116
Args.push_back(EmitScalarExpr(E->getArg(i)));
19117
if (AppendFalseForOpselArg)
19118
Args.push_back(Builder.getFalse());
19119
19120
SmallVector<llvm::Type *, 6> ArgTypes;
19121
for (auto ArgIdx : ArgsForMatchingMatrixTypes)
19122
ArgTypes.push_back(Args[ArgIdx]->getType());
19123
19124
Function *F = CGM.getIntrinsic(BuiltinWMMAOp, ArgTypes);
19125
return Builder.CreateCall(F, Args);
19126
}
19127
19128
// amdgcn workitem
19129
case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
19130
return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
19131
case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
19132
return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
19133
case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
19134
return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
19135
19136
// amdgcn workgroup size
19137
case AMDGPU::BI__builtin_amdgcn_workgroup_size_x:
19138
return EmitAMDGPUWorkGroupSize(*this, 0);
19139
case AMDGPU::BI__builtin_amdgcn_workgroup_size_y:
19140
return EmitAMDGPUWorkGroupSize(*this, 1);
19141
case AMDGPU::BI__builtin_amdgcn_workgroup_size_z:
19142
return EmitAMDGPUWorkGroupSize(*this, 2);
19143
19144
// amdgcn grid size
19145
case AMDGPU::BI__builtin_amdgcn_grid_size_x:
19146
return EmitAMDGPUGridSize(*this, 0);
19147
case AMDGPU::BI__builtin_amdgcn_grid_size_y:
19148
return EmitAMDGPUGridSize(*this, 1);
19149
case AMDGPU::BI__builtin_amdgcn_grid_size_z:
19150
return EmitAMDGPUGridSize(*this, 2);
19151
19152
// r600 intrinsics
19153
case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
19154
case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
19155
return emitBuiltinWithOneOverloadedType<1>(*this, E,
19156
Intrinsic::r600_recipsqrt_ieee);
19157
case AMDGPU::BI__builtin_r600_read_tidig_x:
19158
return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
19159
case AMDGPU::BI__builtin_r600_read_tidig_y:
19160
return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
19161
case AMDGPU::BI__builtin_r600_read_tidig_z:
19162
return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
19163
case AMDGPU::BI__builtin_amdgcn_alignbit: {
19164
llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
19165
llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
19166
llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
19167
Function *F = CGM.getIntrinsic(Intrinsic::fshr, Src0->getType());
19168
return Builder.CreateCall(F, { Src0, Src1, Src2 });
19169
}
19170
case AMDGPU::BI__builtin_amdgcn_fence: {
19171
ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(0)),
19172
EmitScalarExpr(E->getArg(1)), AO, SSID);
19173
FenceInst *Fence = Builder.CreateFence(AO, SSID);
19174
if (E->getNumArgs() > 2)
19175
AddAMDGPUFenceAddressSpaceMMRA(Fence, E);
19176
return Fence;
19177
}
19178
case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
19179
case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
19180
case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
19181
case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
19182
case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64:
19183
case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32:
19184
case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_v2f16:
19185
case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_v2bf16:
19186
case AMDGPU::BI__builtin_amdgcn_ds_faddf:
19187
case AMDGPU::BI__builtin_amdgcn_ds_fminf:
19188
case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: {
19189
llvm::AtomicRMWInst::BinOp BinOp;
19190
switch (BuiltinID) {
19191
case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
19192
case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
19193
BinOp = llvm::AtomicRMWInst::UIncWrap;
19194
break;
19195
case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
19196
case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
19197
BinOp = llvm::AtomicRMWInst::UDecWrap;
19198
break;
19199
case AMDGPU::BI__builtin_amdgcn_ds_faddf:
19200
case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64:
19201
case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32:
19202
case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_v2f16:
19203
case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_v2bf16:
19204
BinOp = llvm::AtomicRMWInst::FAdd;
19205
break;
19206
case AMDGPU::BI__builtin_amdgcn_ds_fminf:
19207
BinOp = llvm::AtomicRMWInst::FMin;
19208
break;
19209
case AMDGPU::BI__builtin_amdgcn_ds_fmaxf:
19210
BinOp = llvm::AtomicRMWInst::FMax;
19211
break;
19212
}
19213
19214
Address Ptr = CheckAtomicAlignment(*this, E);
19215
Value *Val = EmitScalarExpr(E->getArg(1));
19216
llvm::Type *OrigTy = Val->getType();
19217
QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
19218
19219
bool Volatile;
19220
19221
if (BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_faddf ||
19222
BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_fminf ||
19223
BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_fmaxf) {
19224
// __builtin_amdgcn_ds_faddf/fminf/fmaxf has an explicit volatile argument
19225
Volatile =
19226
cast<ConstantInt>(EmitScalarExpr(E->getArg(4)))->getZExtValue();
19227
} else {
19228
// Infer volatile from the passed type.
19229
Volatile =
19230
PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
19231
}
19232
19233
if (E->getNumArgs() >= 4) {
19234
// Some of the builtins have explicit ordering and scope arguments.
19235
ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(2)),
19236
EmitScalarExpr(E->getArg(3)), AO, SSID);
19237
} else {
19238
// The ds_atomic_fadd_* builtins do not have syncscope/order arguments.
19239
SSID = llvm::SyncScope::System;
19240
AO = AtomicOrdering::SequentiallyConsistent;
19241
19242
// The v2bf16 builtin uses i16 instead of a natural bfloat type.
19243
if (BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_v2bf16) {
19244
llvm::Type *V2BF16Ty = FixedVectorType::get(
19245
llvm::Type::getBFloatTy(Builder.getContext()), 2);
19246
Val = Builder.CreateBitCast(Val, V2BF16Ty);
19247
}
19248
}
19249
19250
llvm::AtomicRMWInst *RMW =
19251
Builder.CreateAtomicRMW(BinOp, Ptr, Val, AO, SSID);
19252
if (Volatile)
19253
RMW->setVolatile(true);
19254
return Builder.CreateBitCast(RMW, OrigTy);
19255
}
19256
case AMDGPU::BI__builtin_amdgcn_s_sendmsg_rtn:
19257
case AMDGPU::BI__builtin_amdgcn_s_sendmsg_rtnl: {
19258
llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
19259
llvm::Type *ResultType = ConvertType(E->getType());
19260
// s_sendmsg_rtn is mangled using return type only.
19261
Function *F =
19262
CGM.getIntrinsic(Intrinsic::amdgcn_s_sendmsg_rtn, {ResultType});
19263
return Builder.CreateCall(F, {Arg});
19264
}
19265
case AMDGPU::BI__builtin_amdgcn_make_buffer_rsrc:
19266
return emitBuiltinWithOneOverloadedType<4>(
19267
*this, E, Intrinsic::amdgcn_make_buffer_rsrc);
19268
case AMDGPU::BI__builtin_amdgcn_raw_buffer_store_b8:
19269
case AMDGPU::BI__builtin_amdgcn_raw_buffer_store_b16:
19270
case AMDGPU::BI__builtin_amdgcn_raw_buffer_store_b32:
19271
case AMDGPU::BI__builtin_amdgcn_raw_buffer_store_b64:
19272
case AMDGPU::BI__builtin_amdgcn_raw_buffer_store_b96:
19273
case AMDGPU::BI__builtin_amdgcn_raw_buffer_store_b128:
19274
return emitBuiltinWithOneOverloadedType<5>(
19275
*this, E, Intrinsic::amdgcn_raw_ptr_buffer_store);
19276
case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b8:
19277
case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b16:
19278
case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b32:
19279
case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b64:
19280
case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b96:
19281
case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b128: {
19282
llvm::Type *RetTy = nullptr;
19283
switch (BuiltinID) {
19284
case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b8:
19285
RetTy = Int8Ty;
19286
break;
19287
case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b16:
19288
RetTy = Int16Ty;
19289
break;
19290
case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b32:
19291
RetTy = Int32Ty;
19292
break;
19293
case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b64:
19294
RetTy = llvm::FixedVectorType::get(Int32Ty, /*NumElements=*/2);
19295
break;
19296
case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b96:
19297
RetTy = llvm::FixedVectorType::get(Int32Ty, /*NumElements=*/3);
19298
break;
19299
case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b128:
19300
RetTy = llvm::FixedVectorType::get(Int32Ty, /*NumElements=*/4);
19301
break;
19302
}
19303
Function *F =
19304
CGM.getIntrinsic(Intrinsic::amdgcn_raw_ptr_buffer_load, RetTy);
19305
return Builder.CreateCall(
19306
F, {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)),
19307
EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3))});
19308
}
19309
default:
19310
return nullptr;
19311
}
19312
}
19313
19314
/// Handle a SystemZ function in which the final argument is a pointer
19315
/// to an int that receives the post-instruction CC value. At the LLVM level
19316
/// this is represented as a function that returns a {result, cc} pair.
19317
static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
19318
unsigned IntrinsicID,
19319
const CallExpr *E) {
19320
unsigned NumArgs = E->getNumArgs() - 1;
19321
SmallVector<Value *, 8> Args(NumArgs);
19322
for (unsigned I = 0; I < NumArgs; ++I)
19323
Args[I] = CGF.EmitScalarExpr(E->getArg(I));
19324
Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
19325
Function *F = CGF.CGM.getIntrinsic(IntrinsicID);
19326
Value *Call = CGF.Builder.CreateCall(F, Args);
19327
Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
19328
CGF.Builder.CreateStore(CC, CCPtr);
19329
return CGF.Builder.CreateExtractValue(Call, 0);
19330
}
19331
19332
Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
19333
const CallExpr *E) {
19334
switch (BuiltinID) {
19335
case SystemZ::BI__builtin_tbegin: {
19336
Value *TDB = EmitScalarExpr(E->getArg(0));
19337
Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
19338
Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
19339
return Builder.CreateCall(F, {TDB, Control});
19340
}
19341
case SystemZ::BI__builtin_tbegin_nofloat: {
19342
Value *TDB = EmitScalarExpr(E->getArg(0));
19343
Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
19344
Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
19345
return Builder.CreateCall(F, {TDB, Control});
19346
}
19347
case SystemZ::BI__builtin_tbeginc: {
19348
Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
19349
Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
19350
Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
19351
return Builder.CreateCall(F, {TDB, Control});
19352
}
19353
case SystemZ::BI__builtin_tabort: {
19354
Value *Data = EmitScalarExpr(E->getArg(0));
19355
Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
19356
return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
19357
}
19358
case SystemZ::BI__builtin_non_tx_store: {
19359
Value *Address = EmitScalarExpr(E->getArg(0));
19360
Value *Data = EmitScalarExpr(E->getArg(1));
19361
Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
19362
return Builder.CreateCall(F, {Data, Address});
19363
}
19364
19365
// Vector builtins. Note that most vector builtins are mapped automatically
19366
// to target-specific LLVM intrinsics. The ones handled specially here can
19367
// be represented via standard LLVM IR, which is preferable to enable common
19368
// LLVM optimizations.
19369
19370
case SystemZ::BI__builtin_s390_vpopctb:
19371
case SystemZ::BI__builtin_s390_vpopcth:
19372
case SystemZ::BI__builtin_s390_vpopctf:
19373
case SystemZ::BI__builtin_s390_vpopctg: {
19374
llvm::Type *ResultType = ConvertType(E->getType());
19375
Value *X = EmitScalarExpr(E->getArg(0));
19376
Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
19377
return Builder.CreateCall(F, X);
19378
}
19379
19380
case SystemZ::BI__builtin_s390_vclzb:
19381
case SystemZ::BI__builtin_s390_vclzh:
19382
case SystemZ::BI__builtin_s390_vclzf:
19383
case SystemZ::BI__builtin_s390_vclzg: {
19384
llvm::Type *ResultType = ConvertType(E->getType());
19385
Value *X = EmitScalarExpr(E->getArg(0));
19386
Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
19387
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
19388
return Builder.CreateCall(F, {X, Undef});
19389
}
19390
19391
case SystemZ::BI__builtin_s390_vctzb:
19392
case SystemZ::BI__builtin_s390_vctzh:
19393
case SystemZ::BI__builtin_s390_vctzf:
19394
case SystemZ::BI__builtin_s390_vctzg: {
19395
llvm::Type *ResultType = ConvertType(E->getType());
19396
Value *X = EmitScalarExpr(E->getArg(0));
19397
Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
19398
Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
19399
return Builder.CreateCall(F, {X, Undef});
19400
}
19401
19402
case SystemZ::BI__builtin_s390_verllb:
19403
case SystemZ::BI__builtin_s390_verllh:
19404
case SystemZ::BI__builtin_s390_verllf:
19405
case SystemZ::BI__builtin_s390_verllg: {
19406
llvm::Type *ResultType = ConvertType(E->getType());
19407
llvm::Value *Src = EmitScalarExpr(E->getArg(0));
19408
llvm::Value *Amt = EmitScalarExpr(E->getArg(1));
19409
// Splat scalar rotate amount to vector type.
19410
unsigned NumElts = cast<llvm::FixedVectorType>(ResultType)->getNumElements();
19411
Amt = Builder.CreateIntCast(Amt, ResultType->getScalarType(), false);
19412
Amt = Builder.CreateVectorSplat(NumElts, Amt);
19413
Function *F = CGM.getIntrinsic(Intrinsic::fshl, ResultType);
19414
return Builder.CreateCall(F, { Src, Src, Amt });
19415
}
19416
19417
case SystemZ::BI__builtin_s390_verllvb:
19418
case SystemZ::BI__builtin_s390_verllvh:
19419
case SystemZ::BI__builtin_s390_verllvf:
19420
case SystemZ::BI__builtin_s390_verllvg: {
19421
llvm::Type *ResultType = ConvertType(E->getType());
19422
llvm::Value *Src = EmitScalarExpr(E->getArg(0));
19423
llvm::Value *Amt = EmitScalarExpr(E->getArg(1));
19424
Function *F = CGM.getIntrinsic(Intrinsic::fshl, ResultType);
19425
return Builder.CreateCall(F, { Src, Src, Amt });
19426
}
19427
19428
case SystemZ::BI__builtin_s390_vfsqsb:
19429
case SystemZ::BI__builtin_s390_vfsqdb: {
19430
llvm::Type *ResultType = ConvertType(E->getType());
19431
Value *X = EmitScalarExpr(E->getArg(0));
19432
if (Builder.getIsFPConstrained()) {
19433
Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, ResultType);
19434
return Builder.CreateConstrainedFPCall(F, { X });
19435
} else {
19436
Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
19437
return Builder.CreateCall(F, X);
19438
}
19439
}
19440
case SystemZ::BI__builtin_s390_vfmasb:
19441
case SystemZ::BI__builtin_s390_vfmadb: {
19442
llvm::Type *ResultType = ConvertType(E->getType());
19443
Value *X = EmitScalarExpr(E->getArg(0));
19444
Value *Y = EmitScalarExpr(E->getArg(1));
19445
Value *Z = EmitScalarExpr(E->getArg(2));
19446
if (Builder.getIsFPConstrained()) {
19447
Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
19448
return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
19449
} else {
19450
Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
19451
return Builder.CreateCall(F, {X, Y, Z});
19452
}
19453
}
19454
case SystemZ::BI__builtin_s390_vfmssb:
19455
case SystemZ::BI__builtin_s390_vfmsdb: {
19456
llvm::Type *ResultType = ConvertType(E->getType());
19457
Value *X = EmitScalarExpr(E->getArg(0));
19458
Value *Y = EmitScalarExpr(E->getArg(1));
19459
Value *Z = EmitScalarExpr(E->getArg(2));
19460
if (Builder.getIsFPConstrained()) {
19461
Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
19462
return Builder.CreateConstrainedFPCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
19463
} else {
19464
Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
19465
return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
19466
}
19467
}
19468
case SystemZ::BI__builtin_s390_vfnmasb:
19469
case SystemZ::BI__builtin_s390_vfnmadb: {
19470
llvm::Type *ResultType = ConvertType(E->getType());
19471
Value *X = EmitScalarExpr(E->getArg(0));
19472
Value *Y = EmitScalarExpr(E->getArg(1));
19473
Value *Z = EmitScalarExpr(E->getArg(2));
19474
if (Builder.getIsFPConstrained()) {
19475
Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
19476
return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
19477
} else {
19478
Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
19479
return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
19480
}
19481
}
19482
case SystemZ::BI__builtin_s390_vfnmssb:
19483
case SystemZ::BI__builtin_s390_vfnmsdb: {
19484
llvm::Type *ResultType = ConvertType(E->getType());
19485
Value *X = EmitScalarExpr(E->getArg(0));
19486
Value *Y = EmitScalarExpr(E->getArg(1));
19487
Value *Z = EmitScalarExpr(E->getArg(2));
19488
if (Builder.getIsFPConstrained()) {
19489
Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
19490
Value *NegZ = Builder.CreateFNeg(Z, "sub");
19491
return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, NegZ}));
19492
} else {
19493
Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
19494
Value *NegZ = Builder.CreateFNeg(Z, "neg");
19495
return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, NegZ}));
19496
}
19497
}
19498
case SystemZ::BI__builtin_s390_vflpsb:
19499
case SystemZ::BI__builtin_s390_vflpdb: {
19500
llvm::Type *ResultType = ConvertType(E->getType());
19501
Value *X = EmitScalarExpr(E->getArg(0));
19502
Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
19503
return Builder.CreateCall(F, X);
19504
}
19505
case SystemZ::BI__builtin_s390_vflnsb:
19506
case SystemZ::BI__builtin_s390_vflndb: {
19507
llvm::Type *ResultType = ConvertType(E->getType());
19508
Value *X = EmitScalarExpr(E->getArg(0));
19509
Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
19510
return Builder.CreateFNeg(Builder.CreateCall(F, X), "neg");
19511
}
19512
case SystemZ::BI__builtin_s390_vfisb:
19513
case SystemZ::BI__builtin_s390_vfidb: {
19514
llvm::Type *ResultType = ConvertType(E->getType());
19515
Value *X = EmitScalarExpr(E->getArg(0));
19516
// Constant-fold the M4 and M5 mask arguments.
19517
llvm::APSInt M4 = *E->getArg(1)->getIntegerConstantExpr(getContext());
19518
llvm::APSInt M5 = *E->getArg(2)->getIntegerConstantExpr(getContext());
19519
// Check whether this instance can be represented via a LLVM standard
19520
// intrinsic. We only support some combinations of M4 and M5.
19521
Intrinsic::ID ID = Intrinsic::not_intrinsic;
19522
Intrinsic::ID CI;
19523
switch (M4.getZExtValue()) {
19524
default: break;
19525
case 0: // IEEE-inexact exception allowed
19526
switch (M5.getZExtValue()) {
19527
default: break;
19528
case 0: ID = Intrinsic::rint;
19529
CI = Intrinsic::experimental_constrained_rint; break;
19530
}
19531
break;
19532
case 4: // IEEE-inexact exception suppressed
19533
switch (M5.getZExtValue()) {
19534
default: break;
19535
case 0: ID = Intrinsic::nearbyint;
19536
CI = Intrinsic::experimental_constrained_nearbyint; break;
19537
case 1: ID = Intrinsic::round;
19538
CI = Intrinsic::experimental_constrained_round; break;
19539
case 5: ID = Intrinsic::trunc;
19540
CI = Intrinsic::experimental_constrained_trunc; break;
19541
case 6: ID = Intrinsic::ceil;
19542
CI = Intrinsic::experimental_constrained_ceil; break;
19543
case 7: ID = Intrinsic::floor;
19544
CI = Intrinsic::experimental_constrained_floor; break;
19545
}
19546
break;
19547
}
19548
if (ID != Intrinsic::not_intrinsic) {
19549
if (Builder.getIsFPConstrained()) {
19550
Function *F = CGM.getIntrinsic(CI, ResultType);
19551
return Builder.CreateConstrainedFPCall(F, X);
19552
} else {
19553
Function *F = CGM.getIntrinsic(ID, ResultType);
19554
return Builder.CreateCall(F, X);
19555
}
19556
}
19557
switch (BuiltinID) { // FIXME: constrained version?
19558
case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
19559
case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
19560
default: llvm_unreachable("Unknown BuiltinID");
19561
}
19562
Function *F = CGM.getIntrinsic(ID);
19563
Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
19564
Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
19565
return Builder.CreateCall(F, {X, M4Value, M5Value});
19566
}
19567
case SystemZ::BI__builtin_s390_vfmaxsb:
19568
case SystemZ::BI__builtin_s390_vfmaxdb: {
19569
llvm::Type *ResultType = ConvertType(E->getType());
19570
Value *X = EmitScalarExpr(E->getArg(0));
19571
Value *Y = EmitScalarExpr(E->getArg(1));
19572
// Constant-fold the M4 mask argument.
19573
llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
19574
// Check whether this instance can be represented via a LLVM standard
19575
// intrinsic. We only support some values of M4.
19576
Intrinsic::ID ID = Intrinsic::not_intrinsic;
19577
Intrinsic::ID CI;
19578
switch (M4.getZExtValue()) {
19579
default: break;
19580
case 4: ID = Intrinsic::maxnum;
19581
CI = Intrinsic::experimental_constrained_maxnum; break;
19582
}
19583
if (ID != Intrinsic::not_intrinsic) {
19584
if (Builder.getIsFPConstrained()) {
19585
Function *F = CGM.getIntrinsic(CI, ResultType);
19586
return Builder.CreateConstrainedFPCall(F, {X, Y});
19587
} else {
19588
Function *F = CGM.getIntrinsic(ID, ResultType);
19589
return Builder.CreateCall(F, {X, Y});
19590
}
19591
}
19592
switch (BuiltinID) {
19593
case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
19594
case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
19595
default: llvm_unreachable("Unknown BuiltinID");
19596
}
19597
Function *F = CGM.getIntrinsic(ID);
19598
Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
19599
return Builder.CreateCall(F, {X, Y, M4Value});
19600
}
19601
case SystemZ::BI__builtin_s390_vfminsb:
19602
case SystemZ::BI__builtin_s390_vfmindb: {
19603
llvm::Type *ResultType = ConvertType(E->getType());
19604
Value *X = EmitScalarExpr(E->getArg(0));
19605
Value *Y = EmitScalarExpr(E->getArg(1));
19606
// Constant-fold the M4 mask argument.
19607
llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
19608
// Check whether this instance can be represented via a LLVM standard
19609
// intrinsic. We only support some values of M4.
19610
Intrinsic::ID ID = Intrinsic::not_intrinsic;
19611
Intrinsic::ID CI;
19612
switch (M4.getZExtValue()) {
19613
default: break;
19614
case 4: ID = Intrinsic::minnum;
19615
CI = Intrinsic::experimental_constrained_minnum; break;
19616
}
19617
if (ID != Intrinsic::not_intrinsic) {
19618
if (Builder.getIsFPConstrained()) {
19619
Function *F = CGM.getIntrinsic(CI, ResultType);
19620
return Builder.CreateConstrainedFPCall(F, {X, Y});
19621
} else {
19622
Function *F = CGM.getIntrinsic(ID, ResultType);
19623
return Builder.CreateCall(F, {X, Y});
19624
}
19625
}
19626
switch (BuiltinID) {
19627
case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
19628
case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
19629
default: llvm_unreachable("Unknown BuiltinID");
19630
}
19631
Function *F = CGM.getIntrinsic(ID);
19632
Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
19633
return Builder.CreateCall(F, {X, Y, M4Value});
19634
}
19635
19636
case SystemZ::BI__builtin_s390_vlbrh:
19637
case SystemZ::BI__builtin_s390_vlbrf:
19638
case SystemZ::BI__builtin_s390_vlbrg: {
19639
llvm::Type *ResultType = ConvertType(E->getType());
19640
Value *X = EmitScalarExpr(E->getArg(0));
19641
Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType);
19642
return Builder.CreateCall(F, X);
19643
}
19644
19645
// Vector intrinsics that output the post-instruction CC value.
19646
19647
#define INTRINSIC_WITH_CC(NAME) \
19648
case SystemZ::BI__builtin_##NAME: \
19649
return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
19650
19651
INTRINSIC_WITH_CC(s390_vpkshs);
19652
INTRINSIC_WITH_CC(s390_vpksfs);
19653
INTRINSIC_WITH_CC(s390_vpksgs);
19654
19655
INTRINSIC_WITH_CC(s390_vpklshs);
19656
INTRINSIC_WITH_CC(s390_vpklsfs);
19657
INTRINSIC_WITH_CC(s390_vpklsgs);
19658
19659
INTRINSIC_WITH_CC(s390_vceqbs);
19660
INTRINSIC_WITH_CC(s390_vceqhs);
19661
INTRINSIC_WITH_CC(s390_vceqfs);
19662
INTRINSIC_WITH_CC(s390_vceqgs);
19663
19664
INTRINSIC_WITH_CC(s390_vchbs);
19665
INTRINSIC_WITH_CC(s390_vchhs);
19666
INTRINSIC_WITH_CC(s390_vchfs);
19667
INTRINSIC_WITH_CC(s390_vchgs);
19668
19669
INTRINSIC_WITH_CC(s390_vchlbs);
19670
INTRINSIC_WITH_CC(s390_vchlhs);
19671
INTRINSIC_WITH_CC(s390_vchlfs);
19672
INTRINSIC_WITH_CC(s390_vchlgs);
19673
19674
INTRINSIC_WITH_CC(s390_vfaebs);
19675
INTRINSIC_WITH_CC(s390_vfaehs);
19676
INTRINSIC_WITH_CC(s390_vfaefs);
19677
19678
INTRINSIC_WITH_CC(s390_vfaezbs);
19679
INTRINSIC_WITH_CC(s390_vfaezhs);
19680
INTRINSIC_WITH_CC(s390_vfaezfs);
19681
19682
INTRINSIC_WITH_CC(s390_vfeebs);
19683
INTRINSIC_WITH_CC(s390_vfeehs);
19684
INTRINSIC_WITH_CC(s390_vfeefs);
19685
19686
INTRINSIC_WITH_CC(s390_vfeezbs);
19687
INTRINSIC_WITH_CC(s390_vfeezhs);
19688
INTRINSIC_WITH_CC(s390_vfeezfs);
19689
19690
INTRINSIC_WITH_CC(s390_vfenebs);
19691
INTRINSIC_WITH_CC(s390_vfenehs);
19692
INTRINSIC_WITH_CC(s390_vfenefs);
19693
19694
INTRINSIC_WITH_CC(s390_vfenezbs);
19695
INTRINSIC_WITH_CC(s390_vfenezhs);
19696
INTRINSIC_WITH_CC(s390_vfenezfs);
19697
19698
INTRINSIC_WITH_CC(s390_vistrbs);
19699
INTRINSIC_WITH_CC(s390_vistrhs);
19700
INTRINSIC_WITH_CC(s390_vistrfs);
19701
19702
INTRINSIC_WITH_CC(s390_vstrcbs);
19703
INTRINSIC_WITH_CC(s390_vstrchs);
19704
INTRINSIC_WITH_CC(s390_vstrcfs);
19705
19706
INTRINSIC_WITH_CC(s390_vstrczbs);
19707
INTRINSIC_WITH_CC(s390_vstrczhs);
19708
INTRINSIC_WITH_CC(s390_vstrczfs);
19709
19710
INTRINSIC_WITH_CC(s390_vfcesbs);
19711
INTRINSIC_WITH_CC(s390_vfcedbs);
19712
INTRINSIC_WITH_CC(s390_vfchsbs);
19713
INTRINSIC_WITH_CC(s390_vfchdbs);
19714
INTRINSIC_WITH_CC(s390_vfchesbs);
19715
INTRINSIC_WITH_CC(s390_vfchedbs);
19716
19717
INTRINSIC_WITH_CC(s390_vftcisb);
19718
INTRINSIC_WITH_CC(s390_vftcidb);
19719
19720
INTRINSIC_WITH_CC(s390_vstrsb);
19721
INTRINSIC_WITH_CC(s390_vstrsh);
19722
INTRINSIC_WITH_CC(s390_vstrsf);
19723
19724
INTRINSIC_WITH_CC(s390_vstrszb);
19725
INTRINSIC_WITH_CC(s390_vstrszh);
19726
INTRINSIC_WITH_CC(s390_vstrszf);
19727
19728
#undef INTRINSIC_WITH_CC
19729
19730
default:
19731
return nullptr;
19732
}
19733
}
19734
19735
namespace {
19736
// Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
19737
struct NVPTXMmaLdstInfo {
19738
unsigned NumResults; // Number of elements to load/store
19739
// Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
19740
unsigned IID_col;
19741
unsigned IID_row;
19742
};
19743
19744
#define MMA_INTR(geom_op_type, layout) \
19745
Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
19746
#define MMA_LDST(n, geom_op_type) \
19747
{ n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
19748
19749
static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) {
19750
switch (BuiltinID) {
19751
// FP MMA loads
19752
case NVPTX::BI__hmma_m16n16k16_ld_a:
19753
return MMA_LDST(8, m16n16k16_load_a_f16);
19754
case NVPTX::BI__hmma_m16n16k16_ld_b:
19755
return MMA_LDST(8, m16n16k16_load_b_f16);
19756
case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
19757
return MMA_LDST(4, m16n16k16_load_c_f16);
19758
case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
19759
return MMA_LDST(8, m16n16k16_load_c_f32);
19760
case NVPTX::BI__hmma_m32n8k16_ld_a:
19761
return MMA_LDST(8, m32n8k16_load_a_f16);
19762
case NVPTX::BI__hmma_m32n8k16_ld_b:
19763
return MMA_LDST(8, m32n8k16_load_b_f16);
19764
case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
19765
return MMA_LDST(4, m32n8k16_load_c_f16);
19766
case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
19767
return MMA_LDST(8, m32n8k16_load_c_f32);
19768
case NVPTX::BI__hmma_m8n32k16_ld_a:
19769
return MMA_LDST(8, m8n32k16_load_a_f16);
19770
case NVPTX::BI__hmma_m8n32k16_ld_b:
19771
return MMA_LDST(8, m8n32k16_load_b_f16);
19772
case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
19773
return MMA_LDST(4, m8n32k16_load_c_f16);
19774
case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
19775
return MMA_LDST(8, m8n32k16_load_c_f32);
19776
19777
// Integer MMA loads
19778
case NVPTX::BI__imma_m16n16k16_ld_a_s8:
19779
return MMA_LDST(2, m16n16k16_load_a_s8);
19780
case NVPTX::BI__imma_m16n16k16_ld_a_u8:
19781
return MMA_LDST(2, m16n16k16_load_a_u8);
19782
case NVPTX::BI__imma_m16n16k16_ld_b_s8:
19783
return MMA_LDST(2, m16n16k16_load_b_s8);
19784
case NVPTX::BI__imma_m16n16k16_ld_b_u8:
19785
return MMA_LDST(2, m16n16k16_load_b_u8);
19786
case NVPTX::BI__imma_m16n16k16_ld_c:
19787
return MMA_LDST(8, m16n16k16_load_c_s32);
19788
case NVPTX::BI__imma_m32n8k16_ld_a_s8:
19789
return MMA_LDST(4, m32n8k16_load_a_s8);
19790
case NVPTX::BI__imma_m32n8k16_ld_a_u8:
19791
return MMA_LDST(4, m32n8k16_load_a_u8);
19792
case NVPTX::BI__imma_m32n8k16_ld_b_s8:
19793
return MMA_LDST(1, m32n8k16_load_b_s8);
19794
case NVPTX::BI__imma_m32n8k16_ld_b_u8:
19795
return MMA_LDST(1, m32n8k16_load_b_u8);
19796
case NVPTX::BI__imma_m32n8k16_ld_c:
19797
return MMA_LDST(8, m32n8k16_load_c_s32);
19798
case NVPTX::BI__imma_m8n32k16_ld_a_s8:
19799
return MMA_LDST(1, m8n32k16_load_a_s8);
19800
case NVPTX::BI__imma_m8n32k16_ld_a_u8:
19801
return MMA_LDST(1, m8n32k16_load_a_u8);
19802
case NVPTX::BI__imma_m8n32k16_ld_b_s8:
19803
return MMA_LDST(4, m8n32k16_load_b_s8);
19804
case NVPTX::BI__imma_m8n32k16_ld_b_u8:
19805
return MMA_LDST(4, m8n32k16_load_b_u8);
19806
case NVPTX::BI__imma_m8n32k16_ld_c:
19807
return MMA_LDST(8, m8n32k16_load_c_s32);
19808
19809
// Sub-integer MMA loads.
19810
// Only row/col layout is supported by A/B fragments.
19811
case NVPTX::BI__imma_m8n8k32_ld_a_s4:
19812
return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)};
19813
case NVPTX::BI__imma_m8n8k32_ld_a_u4:
19814
return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)};
19815
case NVPTX::BI__imma_m8n8k32_ld_b_s4:
19816
return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0};
19817
case NVPTX::BI__imma_m8n8k32_ld_b_u4:
19818
return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0};
19819
case NVPTX::BI__imma_m8n8k32_ld_c:
19820
return MMA_LDST(2, m8n8k32_load_c_s32);
19821
case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
19822
return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)};
19823
case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
19824
return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0};
19825
case NVPTX::BI__bmma_m8n8k128_ld_c:
19826
return MMA_LDST(2, m8n8k128_load_c_s32);
19827
19828
// Double MMA loads
19829
case NVPTX::BI__dmma_m8n8k4_ld_a:
19830
return MMA_LDST(1, m8n8k4_load_a_f64);
19831
case NVPTX::BI__dmma_m8n8k4_ld_b:
19832
return MMA_LDST(1, m8n8k4_load_b_f64);
19833
case NVPTX::BI__dmma_m8n8k4_ld_c:
19834
return MMA_LDST(2, m8n8k4_load_c_f64);
19835
19836
// Alternate float MMA loads
19837
case NVPTX::BI__mma_bf16_m16n16k16_ld_a:
19838
return MMA_LDST(4, m16n16k16_load_a_bf16);
19839
case NVPTX::BI__mma_bf16_m16n16k16_ld_b:
19840
return MMA_LDST(4, m16n16k16_load_b_bf16);
19841
case NVPTX::BI__mma_bf16_m8n32k16_ld_a:
19842
return MMA_LDST(2, m8n32k16_load_a_bf16);
19843
case NVPTX::BI__mma_bf16_m8n32k16_ld_b:
19844
return MMA_LDST(8, m8n32k16_load_b_bf16);
19845
case NVPTX::BI__mma_bf16_m32n8k16_ld_a:
19846
return MMA_LDST(8, m32n8k16_load_a_bf16);
19847
case NVPTX::BI__mma_bf16_m32n8k16_ld_b:
19848
return MMA_LDST(2, m32n8k16_load_b_bf16);
19849
case NVPTX::BI__mma_tf32_m16n16k8_ld_a:
19850
return MMA_LDST(4, m16n16k8_load_a_tf32);
19851
case NVPTX::BI__mma_tf32_m16n16k8_ld_b:
19852
return MMA_LDST(4, m16n16k8_load_b_tf32);
19853
case NVPTX::BI__mma_tf32_m16n16k8_ld_c:
19854
return MMA_LDST(8, m16n16k8_load_c_f32);
19855
19856
// NOTE: We need to follow inconsitent naming scheme used by NVCC. Unlike
19857
// PTX and LLVM IR where stores always use fragment D, NVCC builtins always
19858
// use fragment C for both loads and stores.
19859
// FP MMA stores.
19860
case NVPTX::BI__hmma_m16n16k16_st_c_f16:
19861
return MMA_LDST(4, m16n16k16_store_d_f16);
19862
case NVPTX::BI__hmma_m16n16k16_st_c_f32:
19863
return MMA_LDST(8, m16n16k16_store_d_f32);
19864
case NVPTX::BI__hmma_m32n8k16_st_c_f16:
19865
return MMA_LDST(4, m32n8k16_store_d_f16);
19866
case NVPTX::BI__hmma_m32n8k16_st_c_f32:
19867
return MMA_LDST(8, m32n8k16_store_d_f32);
19868
case NVPTX::BI__hmma_m8n32k16_st_c_f16:
19869
return MMA_LDST(4, m8n32k16_store_d_f16);
19870
case NVPTX::BI__hmma_m8n32k16_st_c_f32:
19871
return MMA_LDST(8, m8n32k16_store_d_f32);
19872
19873
// Integer and sub-integer MMA stores.
19874
// Another naming quirk. Unlike other MMA builtins that use PTX types in the
19875
// name, integer loads/stores use LLVM's i32.
19876
case NVPTX::BI__imma_m16n16k16_st_c_i32:
19877
return MMA_LDST(8, m16n16k16_store_d_s32);
19878
case NVPTX::BI__imma_m32n8k16_st_c_i32:
19879
return MMA_LDST(8, m32n8k16_store_d_s32);
19880
case NVPTX::BI__imma_m8n32k16_st_c_i32:
19881
return MMA_LDST(8, m8n32k16_store_d_s32);
19882
case NVPTX::BI__imma_m8n8k32_st_c_i32:
19883
return MMA_LDST(2, m8n8k32_store_d_s32);
19884
case NVPTX::BI__bmma_m8n8k128_st_c_i32:
19885
return MMA_LDST(2, m8n8k128_store_d_s32);
19886
19887
// Double MMA store
19888
case NVPTX::BI__dmma_m8n8k4_st_c_f64:
19889
return MMA_LDST(2, m8n8k4_store_d_f64);
19890
19891
// Alternate float MMA store
19892
case NVPTX::BI__mma_m16n16k8_st_c_f32:
19893
return MMA_LDST(8, m16n16k8_store_d_f32);
19894
19895
default:
19896
llvm_unreachable("Unknown MMA builtin");
19897
}
19898
}
19899
#undef MMA_LDST
19900
#undef MMA_INTR
19901
19902
19903
struct NVPTXMmaInfo {
19904
unsigned NumEltsA;
19905
unsigned NumEltsB;
19906
unsigned NumEltsC;
19907
unsigned NumEltsD;
19908
19909
// Variants are ordered by layout-A/layout-B/satf, where 'row' has priority
19910
// over 'col' for layout. The index of non-satf variants is expected to match
19911
// the undocumented layout constants used by CUDA's mma.hpp.
19912
std::array<unsigned, 8> Variants;
19913
19914
unsigned getMMAIntrinsic(int Layout, bool Satf) {
19915
unsigned Index = Layout + 4 * Satf;
19916
if (Index >= Variants.size())
19917
return 0;
19918
return Variants[Index];
19919
}
19920
};
19921
19922
// Returns an intrinsic that matches Layout and Satf for valid combinations of
19923
// Layout and Satf, 0 otherwise.
19924
static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) {
19925
// clang-format off
19926
#define MMA_VARIANTS(geom, type) \
19927
Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type, \
19928
Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
19929
Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type, \
19930
Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type
19931
#define MMA_SATF_VARIANTS(geom, type) \
19932
MMA_VARIANTS(geom, type), \
19933
Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
19934
Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
19935
Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
19936
Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite
19937
// Sub-integer MMA only supports row.col layout.
19938
#define MMA_VARIANTS_I4(geom, type) \
19939
0, \
19940
Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
19941
0, \
19942
0, \
19943
0, \
19944
Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
19945
0, \
19946
0
19947
// b1 MMA does not support .satfinite.
19948
#define MMA_VARIANTS_B1_XOR(geom, type) \
19949
0, \
19950
Intrinsic::nvvm_wmma_##geom##_mma_xor_popc_row_col_##type, \
19951
0, \
19952
0, \
19953
0, \
19954
0, \
19955
0, \
19956
0
19957
#define MMA_VARIANTS_B1_AND(geom, type) \
19958
0, \
19959
Intrinsic::nvvm_wmma_##geom##_mma_and_popc_row_col_##type, \
19960
0, \
19961
0, \
19962
0, \
19963
0, \
19964
0, \
19965
0
19966
// clang-format on
19967
switch (BuiltinID) {
19968
// FP MMA
19969
// Note that 'type' argument of MMA_SATF_VARIANTS uses D_C notation, while
19970
// NumEltsN of return value are ordered as A,B,C,D.
19971
case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
19972
return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f16)}}};
19973
case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
19974
return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f16)}}};
19975
case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
19976
return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f32)}}};
19977
case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
19978
return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f32)}}};
19979
case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
19980
return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f16)}}};
19981
case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
19982
return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f16)}}};
19983
case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
19984
return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f32)}}};
19985
case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
19986
return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f32)}}};
19987
case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
19988
return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f16)}}};
19989
case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
19990
return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f16)}}};
19991
case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
19992
return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f32)}}};
19993
case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
19994
return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f32)}}};
19995
19996
// Integer MMA
19997
case NVPTX::BI__imma_m16n16k16_mma_s8:
19998
return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, s8)}}};
19999
case NVPTX::BI__imma_m16n16k16_mma_u8:
20000
return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, u8)}}};
20001
case NVPTX::BI__imma_m32n8k16_mma_s8:
20002
return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, s8)}}};
20003
case NVPTX::BI__imma_m32n8k16_mma_u8:
20004
return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, u8)}}};
20005
case NVPTX::BI__imma_m8n32k16_mma_s8:
20006
return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, s8)}}};
20007
case NVPTX::BI__imma_m8n32k16_mma_u8:
20008
return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, u8)}}};
20009
20010
// Sub-integer MMA
20011
case NVPTX::BI__imma_m8n8k32_mma_s4:
20012
return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, s4)}}};
20013
case NVPTX::BI__imma_m8n8k32_mma_u4:
20014
return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, u4)}}};
20015
case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
20016
return {1, 1, 2, 2, {{MMA_VARIANTS_B1_XOR(m8n8k128, b1)}}};
20017
case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1:
20018
return {1, 1, 2, 2, {{MMA_VARIANTS_B1_AND(m8n8k128, b1)}}};
20019
20020
// Double MMA
20021
case NVPTX::BI__dmma_m8n8k4_mma_f64:
20022
return {1, 1, 2, 2, {{MMA_VARIANTS(m8n8k4, f64)}}};
20023
20024
// Alternate FP MMA
20025
case NVPTX::BI__mma_bf16_m16n16k16_mma_f32:
20026
return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k16, bf16)}}};
20027
case NVPTX::BI__mma_bf16_m8n32k16_mma_f32:
20028
return {2, 8, 8, 8, {{MMA_VARIANTS(m8n32k16, bf16)}}};
20029
case NVPTX::BI__mma_bf16_m32n8k16_mma_f32:
20030
return {8, 2, 8, 8, {{MMA_VARIANTS(m32n8k16, bf16)}}};
20031
case NVPTX::BI__mma_tf32_m16n16k8_mma_f32:
20032
return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k8, tf32)}}};
20033
default:
20034
llvm_unreachable("Unexpected builtin ID.");
20035
}
20036
#undef MMA_VARIANTS
20037
#undef MMA_SATF_VARIANTS
20038
#undef MMA_VARIANTS_I4
20039
#undef MMA_VARIANTS_B1_AND
20040
#undef MMA_VARIANTS_B1_XOR
20041
}
20042
20043
static Value *MakeLdgLdu(unsigned IntrinsicID, CodeGenFunction &CGF,
20044
const CallExpr *E) {
20045
Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
20046
QualType ArgType = E->getArg(0)->getType();
20047
clang::CharUnits Align = CGF.CGM.getNaturalPointeeTypeAlignment(ArgType);
20048
llvm::Type *ElemTy = CGF.ConvertTypeForMem(ArgType->getPointeeType());
20049
return CGF.Builder.CreateCall(
20050
CGF.CGM.getIntrinsic(IntrinsicID, {ElemTy, Ptr->getType()}),
20051
{Ptr, ConstantInt::get(CGF.Builder.getInt32Ty(), Align.getQuantity())});
20052
}
20053
20054
static Value *MakeScopedAtomic(unsigned IntrinsicID, CodeGenFunction &CGF,
20055
const CallExpr *E) {
20056
Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
20057
llvm::Type *ElemTy =
20058
CGF.ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType());
20059
return CGF.Builder.CreateCall(
20060
CGF.CGM.getIntrinsic(IntrinsicID, {ElemTy, Ptr->getType()}),
20061
{Ptr, CGF.EmitScalarExpr(E->getArg(1))});
20062
}
20063
20064
static Value *MakeCpAsync(unsigned IntrinsicID, unsigned IntrinsicIDS,
20065
CodeGenFunction &CGF, const CallExpr *E,
20066
int SrcSize) {
20067
return E->getNumArgs() == 3
20068
? CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IntrinsicIDS),
20069
{CGF.EmitScalarExpr(E->getArg(0)),
20070
CGF.EmitScalarExpr(E->getArg(1)),
20071
CGF.EmitScalarExpr(E->getArg(2))})
20072
: CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IntrinsicID),
20073
{CGF.EmitScalarExpr(E->getArg(0)),
20074
CGF.EmitScalarExpr(E->getArg(1))});
20075
}
20076
20077
static Value *MakeHalfType(unsigned IntrinsicID, unsigned BuiltinID,
20078
const CallExpr *E, CodeGenFunction &CGF) {
20079
auto &C = CGF.CGM.getContext();
20080
if (!(C.getLangOpts().NativeHalfType ||
20081
!C.getTargetInfo().useFP16ConversionIntrinsics())) {
20082
CGF.CGM.Error(E->getExprLoc(), C.BuiltinInfo.getName(BuiltinID).str() +
20083
" requires native half type support.");
20084
return nullptr;
20085
}
20086
20087
if (IntrinsicID == Intrinsic::nvvm_ldg_global_f ||
20088
IntrinsicID == Intrinsic::nvvm_ldu_global_f)
20089
return MakeLdgLdu(IntrinsicID, CGF, E);
20090
20091
SmallVector<Value *, 16> Args;
20092
auto *F = CGF.CGM.getIntrinsic(IntrinsicID);
20093
auto *FTy = F->getFunctionType();
20094
unsigned ICEArguments = 0;
20095
ASTContext::GetBuiltinTypeError Error;
20096
C.GetBuiltinType(BuiltinID, Error, &ICEArguments);
20097
assert(Error == ASTContext::GE_None && "Should not codegen an error");
20098
for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
20099
assert((ICEArguments & (1 << i)) == 0);
20100
auto *ArgValue = CGF.EmitScalarExpr(E->getArg(i));
20101
auto *PTy = FTy->getParamType(i);
20102
if (PTy != ArgValue->getType())
20103
ArgValue = CGF.Builder.CreateBitCast(ArgValue, PTy);
20104
Args.push_back(ArgValue);
20105
}
20106
20107
return CGF.Builder.CreateCall(F, Args);
20108
}
20109
} // namespace
20110
20111
Value *CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID,
20112
const CallExpr *E) {
20113
switch (BuiltinID) {
20114
case NVPTX::BI__nvvm_atom_add_gen_i:
20115
case NVPTX::BI__nvvm_atom_add_gen_l:
20116
case NVPTX::BI__nvvm_atom_add_gen_ll:
20117
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
20118
20119
case NVPTX::BI__nvvm_atom_sub_gen_i:
20120
case NVPTX::BI__nvvm_atom_sub_gen_l:
20121
case NVPTX::BI__nvvm_atom_sub_gen_ll:
20122
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
20123
20124
case NVPTX::BI__nvvm_atom_and_gen_i:
20125
case NVPTX::BI__nvvm_atom_and_gen_l:
20126
case NVPTX::BI__nvvm_atom_and_gen_ll:
20127
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
20128
20129
case NVPTX::BI__nvvm_atom_or_gen_i:
20130
case NVPTX::BI__nvvm_atom_or_gen_l:
20131
case NVPTX::BI__nvvm_atom_or_gen_ll:
20132
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
20133
20134
case NVPTX::BI__nvvm_atom_xor_gen_i:
20135
case NVPTX::BI__nvvm_atom_xor_gen_l:
20136
case NVPTX::BI__nvvm_atom_xor_gen_ll:
20137
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
20138
20139
case NVPTX::BI__nvvm_atom_xchg_gen_i:
20140
case NVPTX::BI__nvvm_atom_xchg_gen_l:
20141
case NVPTX::BI__nvvm_atom_xchg_gen_ll:
20142
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
20143
20144
case NVPTX::BI__nvvm_atom_max_gen_i:
20145
case NVPTX::BI__nvvm_atom_max_gen_l:
20146
case NVPTX::BI__nvvm_atom_max_gen_ll:
20147
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
20148
20149
case NVPTX::BI__nvvm_atom_max_gen_ui:
20150
case NVPTX::BI__nvvm_atom_max_gen_ul:
20151
case NVPTX::BI__nvvm_atom_max_gen_ull:
20152
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
20153
20154
case NVPTX::BI__nvvm_atom_min_gen_i:
20155
case NVPTX::BI__nvvm_atom_min_gen_l:
20156
case NVPTX::BI__nvvm_atom_min_gen_ll:
20157
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
20158
20159
case NVPTX::BI__nvvm_atom_min_gen_ui:
20160
case NVPTX::BI__nvvm_atom_min_gen_ul:
20161
case NVPTX::BI__nvvm_atom_min_gen_ull:
20162
return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
20163
20164
case NVPTX::BI__nvvm_atom_cas_gen_i:
20165
case NVPTX::BI__nvvm_atom_cas_gen_l:
20166
case NVPTX::BI__nvvm_atom_cas_gen_ll:
20167
// __nvvm_atom_cas_gen_* should return the old value rather than the
20168
// success flag.
20169
return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
20170
20171
case NVPTX::BI__nvvm_atom_add_gen_f:
20172
case NVPTX::BI__nvvm_atom_add_gen_d: {
20173
Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
20174
Value *Val = EmitScalarExpr(E->getArg(1));
20175
20176
return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, DestAddr, Val,
20177
AtomicOrdering::SequentiallyConsistent);
20178
}
20179
20180
case NVPTX::BI__nvvm_atom_inc_gen_ui: {
20181
Value *Ptr = EmitScalarExpr(E->getArg(0));
20182
Value *Val = EmitScalarExpr(E->getArg(1));
20183
Function *FnALI32 =
20184
CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
20185
return Builder.CreateCall(FnALI32, {Ptr, Val});
20186
}
20187
20188
case NVPTX::BI__nvvm_atom_dec_gen_ui: {
20189
Value *Ptr = EmitScalarExpr(E->getArg(0));
20190
Value *Val = EmitScalarExpr(E->getArg(1));
20191
Function *FnALD32 =
20192
CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
20193
return Builder.CreateCall(FnALD32, {Ptr, Val});
20194
}
20195
20196
case NVPTX::BI__nvvm_ldg_c:
20197
case NVPTX::BI__nvvm_ldg_sc:
20198
case NVPTX::BI__nvvm_ldg_c2:
20199
case NVPTX::BI__nvvm_ldg_sc2:
20200
case NVPTX::BI__nvvm_ldg_c4:
20201
case NVPTX::BI__nvvm_ldg_sc4:
20202
case NVPTX::BI__nvvm_ldg_s:
20203
case NVPTX::BI__nvvm_ldg_s2:
20204
case NVPTX::BI__nvvm_ldg_s4:
20205
case NVPTX::BI__nvvm_ldg_i:
20206
case NVPTX::BI__nvvm_ldg_i2:
20207
case NVPTX::BI__nvvm_ldg_i4:
20208
case NVPTX::BI__nvvm_ldg_l:
20209
case NVPTX::BI__nvvm_ldg_l2:
20210
case NVPTX::BI__nvvm_ldg_ll:
20211
case NVPTX::BI__nvvm_ldg_ll2:
20212
case NVPTX::BI__nvvm_ldg_uc:
20213
case NVPTX::BI__nvvm_ldg_uc2:
20214
case NVPTX::BI__nvvm_ldg_uc4:
20215
case NVPTX::BI__nvvm_ldg_us:
20216
case NVPTX::BI__nvvm_ldg_us2:
20217
case NVPTX::BI__nvvm_ldg_us4:
20218
case NVPTX::BI__nvvm_ldg_ui:
20219
case NVPTX::BI__nvvm_ldg_ui2:
20220
case NVPTX::BI__nvvm_ldg_ui4:
20221
case NVPTX::BI__nvvm_ldg_ul:
20222
case NVPTX::BI__nvvm_ldg_ul2:
20223
case NVPTX::BI__nvvm_ldg_ull:
20224
case NVPTX::BI__nvvm_ldg_ull2:
20225
// PTX Interoperability section 2.2: "For a vector with an even number of
20226
// elements, its alignment is set to number of elements times the alignment
20227
// of its member: n*alignof(t)."
20228
return MakeLdgLdu(Intrinsic::nvvm_ldg_global_i, *this, E);
20229
case NVPTX::BI__nvvm_ldg_f:
20230
case NVPTX::BI__nvvm_ldg_f2:
20231
case NVPTX::BI__nvvm_ldg_f4:
20232
case NVPTX::BI__nvvm_ldg_d:
20233
case NVPTX::BI__nvvm_ldg_d2:
20234
return MakeLdgLdu(Intrinsic::nvvm_ldg_global_f, *this, E);
20235
20236
case NVPTX::BI__nvvm_ldu_c:
20237
case NVPTX::BI__nvvm_ldu_sc:
20238
case NVPTX::BI__nvvm_ldu_c2:
20239
case NVPTX::BI__nvvm_ldu_sc2:
20240
case NVPTX::BI__nvvm_ldu_c4:
20241
case NVPTX::BI__nvvm_ldu_sc4:
20242
case NVPTX::BI__nvvm_ldu_s:
20243
case NVPTX::BI__nvvm_ldu_s2:
20244
case NVPTX::BI__nvvm_ldu_s4:
20245
case NVPTX::BI__nvvm_ldu_i:
20246
case NVPTX::BI__nvvm_ldu_i2:
20247
case NVPTX::BI__nvvm_ldu_i4:
20248
case NVPTX::BI__nvvm_ldu_l:
20249
case NVPTX::BI__nvvm_ldu_l2:
20250
case NVPTX::BI__nvvm_ldu_ll:
20251
case NVPTX::BI__nvvm_ldu_ll2:
20252
case NVPTX::BI__nvvm_ldu_uc:
20253
case NVPTX::BI__nvvm_ldu_uc2:
20254
case NVPTX::BI__nvvm_ldu_uc4:
20255
case NVPTX::BI__nvvm_ldu_us:
20256
case NVPTX::BI__nvvm_ldu_us2:
20257
case NVPTX::BI__nvvm_ldu_us4:
20258
case NVPTX::BI__nvvm_ldu_ui:
20259
case NVPTX::BI__nvvm_ldu_ui2:
20260
case NVPTX::BI__nvvm_ldu_ui4:
20261
case NVPTX::BI__nvvm_ldu_ul:
20262
case NVPTX::BI__nvvm_ldu_ul2:
20263
case NVPTX::BI__nvvm_ldu_ull:
20264
case NVPTX::BI__nvvm_ldu_ull2:
20265
return MakeLdgLdu(Intrinsic::nvvm_ldu_global_i, *this, E);
20266
case NVPTX::BI__nvvm_ldu_f:
20267
case NVPTX::BI__nvvm_ldu_f2:
20268
case NVPTX::BI__nvvm_ldu_f4:
20269
case NVPTX::BI__nvvm_ldu_d:
20270
case NVPTX::BI__nvvm_ldu_d2:
20271
return MakeLdgLdu(Intrinsic::nvvm_ldu_global_f, *this, E);
20272
20273
case NVPTX::BI__nvvm_atom_cta_add_gen_i:
20274
case NVPTX::BI__nvvm_atom_cta_add_gen_l:
20275
case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
20276
return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta, *this, E);
20277
case NVPTX::BI__nvvm_atom_sys_add_gen_i:
20278
case NVPTX::BI__nvvm_atom_sys_add_gen_l:
20279
case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
20280
return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys, *this, E);
20281
case NVPTX::BI__nvvm_atom_cta_add_gen_f:
20282
case NVPTX::BI__nvvm_atom_cta_add_gen_d:
20283
return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta, *this, E);
20284
case NVPTX::BI__nvvm_atom_sys_add_gen_f:
20285
case NVPTX::BI__nvvm_atom_sys_add_gen_d:
20286
return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys, *this, E);
20287
case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
20288
case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
20289
case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
20290
return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta, *this, E);
20291
case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
20292
case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
20293
case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
20294
return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys, *this, E);
20295
case NVPTX::BI__nvvm_atom_cta_max_gen_i:
20296
case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
20297
case NVPTX::BI__nvvm_atom_cta_max_gen_l:
20298
case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
20299
case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
20300
case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
20301
return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta, *this, E);
20302
case NVPTX::BI__nvvm_atom_sys_max_gen_i:
20303
case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
20304
case NVPTX::BI__nvvm_atom_sys_max_gen_l:
20305
case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
20306
case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
20307
case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
20308
return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys, *this, E);
20309
case NVPTX::BI__nvvm_atom_cta_min_gen_i:
20310
case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
20311
case NVPTX::BI__nvvm_atom_cta_min_gen_l:
20312
case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
20313
case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
20314
case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
20315
return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta, *this, E);
20316
case NVPTX::BI__nvvm_atom_sys_min_gen_i:
20317
case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
20318
case NVPTX::BI__nvvm_atom_sys_min_gen_l:
20319
case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
20320
case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
20321
case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
20322
return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys, *this, E);
20323
case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
20324
return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta, *this, E);
20325
case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
20326
return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta, *this, E);
20327
case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
20328
return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys, *this, E);
20329
case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
20330
return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys, *this, E);
20331
case NVPTX::BI__nvvm_atom_cta_and_gen_i:
20332
case NVPTX::BI__nvvm_atom_cta_and_gen_l:
20333
case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
20334
return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta, *this, E);
20335
case NVPTX::BI__nvvm_atom_sys_and_gen_i:
20336
case NVPTX::BI__nvvm_atom_sys_and_gen_l:
20337
case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
20338
return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys, *this, E);
20339
case NVPTX::BI__nvvm_atom_cta_or_gen_i:
20340
case NVPTX::BI__nvvm_atom_cta_or_gen_l:
20341
case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
20342
return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta, *this, E);
20343
case NVPTX::BI__nvvm_atom_sys_or_gen_i:
20344
case NVPTX::BI__nvvm_atom_sys_or_gen_l:
20345
case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
20346
return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys, *this, E);
20347
case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
20348
case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
20349
case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
20350
return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta, *this, E);
20351
case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
20352
case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
20353
case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
20354
return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys, *this, E);
20355
case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
20356
case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
20357
case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
20358
Value *Ptr = EmitScalarExpr(E->getArg(0));
20359
llvm::Type *ElemTy =
20360
ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType());
20361
return Builder.CreateCall(
20362
CGM.getIntrinsic(
20363
Intrinsic::nvvm_atomic_cas_gen_i_cta, {ElemTy, Ptr->getType()}),
20364
{Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
20365
}
20366
case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
20367
case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
20368
case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
20369
Value *Ptr = EmitScalarExpr(E->getArg(0));
20370
llvm::Type *ElemTy =
20371
ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType());
20372
return Builder.CreateCall(
20373
CGM.getIntrinsic(
20374
Intrinsic::nvvm_atomic_cas_gen_i_sys, {ElemTy, Ptr->getType()}),
20375
{Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
20376
}
20377
case NVPTX::BI__nvvm_match_all_sync_i32p:
20378
case NVPTX::BI__nvvm_match_all_sync_i64p: {
20379
Value *Mask = EmitScalarExpr(E->getArg(0));
20380
Value *Val = EmitScalarExpr(E->getArg(1));
20381
Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
20382
Value *ResultPair = Builder.CreateCall(
20383
CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
20384
? Intrinsic::nvvm_match_all_sync_i32p
20385
: Intrinsic::nvvm_match_all_sync_i64p),
20386
{Mask, Val});
20387
Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
20388
PredOutPtr.getElementType());
20389
Builder.CreateStore(Pred, PredOutPtr);
20390
return Builder.CreateExtractValue(ResultPair, 0);
20391
}
20392
20393
// FP MMA loads
20394
case NVPTX::BI__hmma_m16n16k16_ld_a:
20395
case NVPTX::BI__hmma_m16n16k16_ld_b:
20396
case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
20397
case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
20398
case NVPTX::BI__hmma_m32n8k16_ld_a:
20399
case NVPTX::BI__hmma_m32n8k16_ld_b:
20400
case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
20401
case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
20402
case NVPTX::BI__hmma_m8n32k16_ld_a:
20403
case NVPTX::BI__hmma_m8n32k16_ld_b:
20404
case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
20405
case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
20406
// Integer MMA loads.
20407
case NVPTX::BI__imma_m16n16k16_ld_a_s8:
20408
case NVPTX::BI__imma_m16n16k16_ld_a_u8:
20409
case NVPTX::BI__imma_m16n16k16_ld_b_s8:
20410
case NVPTX::BI__imma_m16n16k16_ld_b_u8:
20411
case NVPTX::BI__imma_m16n16k16_ld_c:
20412
case NVPTX::BI__imma_m32n8k16_ld_a_s8:
20413
case NVPTX::BI__imma_m32n8k16_ld_a_u8:
20414
case NVPTX::BI__imma_m32n8k16_ld_b_s8:
20415
case NVPTX::BI__imma_m32n8k16_ld_b_u8:
20416
case NVPTX::BI__imma_m32n8k16_ld_c:
20417
case NVPTX::BI__imma_m8n32k16_ld_a_s8:
20418
case NVPTX::BI__imma_m8n32k16_ld_a_u8:
20419
case NVPTX::BI__imma_m8n32k16_ld_b_s8:
20420
case NVPTX::BI__imma_m8n32k16_ld_b_u8:
20421
case NVPTX::BI__imma_m8n32k16_ld_c:
20422
// Sub-integer MMA loads.
20423
case NVPTX::BI__imma_m8n8k32_ld_a_s4:
20424
case NVPTX::BI__imma_m8n8k32_ld_a_u4:
20425
case NVPTX::BI__imma_m8n8k32_ld_b_s4:
20426
case NVPTX::BI__imma_m8n8k32_ld_b_u4:
20427
case NVPTX::BI__imma_m8n8k32_ld_c:
20428
case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
20429
case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
20430
case NVPTX::BI__bmma_m8n8k128_ld_c:
20431
// Double MMA loads.
20432
case NVPTX::BI__dmma_m8n8k4_ld_a:
20433
case NVPTX::BI__dmma_m8n8k4_ld_b:
20434
case NVPTX::BI__dmma_m8n8k4_ld_c:
20435
// Alternate float MMA loads.
20436
case NVPTX::BI__mma_bf16_m16n16k16_ld_a:
20437
case NVPTX::BI__mma_bf16_m16n16k16_ld_b:
20438
case NVPTX::BI__mma_bf16_m8n32k16_ld_a:
20439
case NVPTX::BI__mma_bf16_m8n32k16_ld_b:
20440
case NVPTX::BI__mma_bf16_m32n8k16_ld_a:
20441
case NVPTX::BI__mma_bf16_m32n8k16_ld_b:
20442
case NVPTX::BI__mma_tf32_m16n16k8_ld_a:
20443
case NVPTX::BI__mma_tf32_m16n16k8_ld_b:
20444
case NVPTX::BI__mma_tf32_m16n16k8_ld_c: {
20445
Address Dst = EmitPointerWithAlignment(E->getArg(0));
20446
Value *Src = EmitScalarExpr(E->getArg(1));
20447
Value *Ldm = EmitScalarExpr(E->getArg(2));
20448
std::optional<llvm::APSInt> isColMajorArg =
20449
E->getArg(3)->getIntegerConstantExpr(getContext());
20450
if (!isColMajorArg)
20451
return nullptr;
20452
bool isColMajor = isColMajorArg->getSExtValue();
20453
NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
20454
unsigned IID = isColMajor ? II.IID_col : II.IID_row;
20455
if (IID == 0)
20456
return nullptr;
20457
20458
Value *Result =
20459
Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
20460
20461
// Save returned values.
20462
assert(II.NumResults);
20463
if (II.NumResults == 1) {
20464
Builder.CreateAlignedStore(Result, Dst.emitRawPointer(*this),
20465
CharUnits::fromQuantity(4));
20466
} else {
20467
for (unsigned i = 0; i < II.NumResults; ++i) {
20468
Builder.CreateAlignedStore(
20469
Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
20470
Dst.getElementType()),
20471
Builder.CreateGEP(Dst.getElementType(), Dst.emitRawPointer(*this),
20472
llvm::ConstantInt::get(IntTy, i)),
20473
CharUnits::fromQuantity(4));
20474
}
20475
}
20476
return Result;
20477
}
20478
20479
case NVPTX::BI__hmma_m16n16k16_st_c_f16:
20480
case NVPTX::BI__hmma_m16n16k16_st_c_f32:
20481
case NVPTX::BI__hmma_m32n8k16_st_c_f16:
20482
case NVPTX::BI__hmma_m32n8k16_st_c_f32:
20483
case NVPTX::BI__hmma_m8n32k16_st_c_f16:
20484
case NVPTX::BI__hmma_m8n32k16_st_c_f32:
20485
case NVPTX::BI__imma_m16n16k16_st_c_i32:
20486
case NVPTX::BI__imma_m32n8k16_st_c_i32:
20487
case NVPTX::BI__imma_m8n32k16_st_c_i32:
20488
case NVPTX::BI__imma_m8n8k32_st_c_i32:
20489
case NVPTX::BI__bmma_m8n8k128_st_c_i32:
20490
case NVPTX::BI__dmma_m8n8k4_st_c_f64:
20491
case NVPTX::BI__mma_m16n16k8_st_c_f32: {
20492
Value *Dst = EmitScalarExpr(E->getArg(0));
20493
Address Src = EmitPointerWithAlignment(E->getArg(1));
20494
Value *Ldm = EmitScalarExpr(E->getArg(2));
20495
std::optional<llvm::APSInt> isColMajorArg =
20496
E->getArg(3)->getIntegerConstantExpr(getContext());
20497
if (!isColMajorArg)
20498
return nullptr;
20499
bool isColMajor = isColMajorArg->getSExtValue();
20500
NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
20501
unsigned IID = isColMajor ? II.IID_col : II.IID_row;
20502
if (IID == 0)
20503
return nullptr;
20504
Function *Intrinsic =
20505
CGM.getIntrinsic(IID, Dst->getType());
20506
llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
20507
SmallVector<Value *, 10> Values = {Dst};
20508
for (unsigned i = 0; i < II.NumResults; ++i) {
20509
Value *V = Builder.CreateAlignedLoad(
20510
Src.getElementType(),
20511
Builder.CreateGEP(Src.getElementType(), Src.emitRawPointer(*this),
20512
llvm::ConstantInt::get(IntTy, i)),
20513
CharUnits::fromQuantity(4));
20514
Values.push_back(Builder.CreateBitCast(V, ParamType));
20515
}
20516
Values.push_back(Ldm);
20517
Value *Result = Builder.CreateCall(Intrinsic, Values);
20518
return Result;
20519
}
20520
20521
// BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
20522
// Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
20523
case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
20524
case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
20525
case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
20526
case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
20527
case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
20528
case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
20529
case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
20530
case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
20531
case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
20532
case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
20533
case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
20534
case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
20535
case NVPTX::BI__imma_m16n16k16_mma_s8:
20536
case NVPTX::BI__imma_m16n16k16_mma_u8:
20537
case NVPTX::BI__imma_m32n8k16_mma_s8:
20538
case NVPTX::BI__imma_m32n8k16_mma_u8:
20539
case NVPTX::BI__imma_m8n32k16_mma_s8:
20540
case NVPTX::BI__imma_m8n32k16_mma_u8:
20541
case NVPTX::BI__imma_m8n8k32_mma_s4:
20542
case NVPTX::BI__imma_m8n8k32_mma_u4:
20543
case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
20544
case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1:
20545
case NVPTX::BI__dmma_m8n8k4_mma_f64:
20546
case NVPTX::BI__mma_bf16_m16n16k16_mma_f32:
20547
case NVPTX::BI__mma_bf16_m8n32k16_mma_f32:
20548
case NVPTX::BI__mma_bf16_m32n8k16_mma_f32:
20549
case NVPTX::BI__mma_tf32_m16n16k8_mma_f32: {
20550
Address Dst = EmitPointerWithAlignment(E->getArg(0));
20551
Address SrcA = EmitPointerWithAlignment(E->getArg(1));
20552
Address SrcB = EmitPointerWithAlignment(E->getArg(2));
20553
Address SrcC = EmitPointerWithAlignment(E->getArg(3));
20554
std::optional<llvm::APSInt> LayoutArg =
20555
E->getArg(4)->getIntegerConstantExpr(getContext());
20556
if (!LayoutArg)
20557
return nullptr;
20558
int Layout = LayoutArg->getSExtValue();
20559
if (Layout < 0 || Layout > 3)
20560
return nullptr;
20561
llvm::APSInt SatfArg;
20562
if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1 ||
20563
BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1)
20564
SatfArg = 0; // .b1 does not have satf argument.
20565
else if (std::optional<llvm::APSInt> OptSatfArg =
20566
E->getArg(5)->getIntegerConstantExpr(getContext()))
20567
SatfArg = *OptSatfArg;
20568
else
20569
return nullptr;
20570
bool Satf = SatfArg.getSExtValue();
20571
NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID);
20572
unsigned IID = MI.getMMAIntrinsic(Layout, Satf);
20573
if (IID == 0) // Unsupported combination of Layout/Satf.
20574
return nullptr;
20575
20576
SmallVector<Value *, 24> Values;
20577
Function *Intrinsic = CGM.getIntrinsic(IID);
20578
llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0);
20579
// Load A
20580
for (unsigned i = 0; i < MI.NumEltsA; ++i) {
20581
Value *V = Builder.CreateAlignedLoad(
20582
SrcA.getElementType(),
20583
Builder.CreateGEP(SrcA.getElementType(), SrcA.emitRawPointer(*this),
20584
llvm::ConstantInt::get(IntTy, i)),
20585
CharUnits::fromQuantity(4));
20586
Values.push_back(Builder.CreateBitCast(V, AType));
20587
}
20588
// Load B
20589
llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA);
20590
for (unsigned i = 0; i < MI.NumEltsB; ++i) {
20591
Value *V = Builder.CreateAlignedLoad(
20592
SrcB.getElementType(),
20593
Builder.CreateGEP(SrcB.getElementType(), SrcB.emitRawPointer(*this),
20594
llvm::ConstantInt::get(IntTy, i)),
20595
CharUnits::fromQuantity(4));
20596
Values.push_back(Builder.CreateBitCast(V, BType));
20597
}
20598
// Load C
20599
llvm::Type *CType =
20600
Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB);
20601
for (unsigned i = 0; i < MI.NumEltsC; ++i) {
20602
Value *V = Builder.CreateAlignedLoad(
20603
SrcC.getElementType(),
20604
Builder.CreateGEP(SrcC.getElementType(), SrcC.emitRawPointer(*this),
20605
llvm::ConstantInt::get(IntTy, i)),
20606
CharUnits::fromQuantity(4));
20607
Values.push_back(Builder.CreateBitCast(V, CType));
20608
}
20609
Value *Result = Builder.CreateCall(Intrinsic, Values);
20610
llvm::Type *DType = Dst.getElementType();
20611
for (unsigned i = 0; i < MI.NumEltsD; ++i)
20612
Builder.CreateAlignedStore(
20613
Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
20614
Builder.CreateGEP(Dst.getElementType(), Dst.emitRawPointer(*this),
20615
llvm::ConstantInt::get(IntTy, i)),
20616
CharUnits::fromQuantity(4));
20617
return Result;
20618
}
20619
// The following builtins require half type support
20620
case NVPTX::BI__nvvm_ex2_approx_f16:
20621
return MakeHalfType(Intrinsic::nvvm_ex2_approx_f16, BuiltinID, E, *this);
20622
case NVPTX::BI__nvvm_ex2_approx_f16x2:
20623
return MakeHalfType(Intrinsic::nvvm_ex2_approx_f16x2, BuiltinID, E, *this);
20624
case NVPTX::BI__nvvm_ff2f16x2_rn:
20625
return MakeHalfType(Intrinsic::nvvm_ff2f16x2_rn, BuiltinID, E, *this);
20626
case NVPTX::BI__nvvm_ff2f16x2_rn_relu:
20627
return MakeHalfType(Intrinsic::nvvm_ff2f16x2_rn_relu, BuiltinID, E, *this);
20628
case NVPTX::BI__nvvm_ff2f16x2_rz:
20629
return MakeHalfType(Intrinsic::nvvm_ff2f16x2_rz, BuiltinID, E, *this);
20630
case NVPTX::BI__nvvm_ff2f16x2_rz_relu:
20631
return MakeHalfType(Intrinsic::nvvm_ff2f16x2_rz_relu, BuiltinID, E, *this);
20632
case NVPTX::BI__nvvm_fma_rn_f16:
20633
return MakeHalfType(Intrinsic::nvvm_fma_rn_f16, BuiltinID, E, *this);
20634
case NVPTX::BI__nvvm_fma_rn_f16x2:
20635
return MakeHalfType(Intrinsic::nvvm_fma_rn_f16x2, BuiltinID, E, *this);
20636
case NVPTX::BI__nvvm_fma_rn_ftz_f16:
20637
return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_f16, BuiltinID, E, *this);
20638
case NVPTX::BI__nvvm_fma_rn_ftz_f16x2:
20639
return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_f16x2, BuiltinID, E, *this);
20640
case NVPTX::BI__nvvm_fma_rn_ftz_relu_f16:
20641
return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_relu_f16, BuiltinID, E,
20642
*this);
20643
case NVPTX::BI__nvvm_fma_rn_ftz_relu_f16x2:
20644
return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_relu_f16x2, BuiltinID, E,
20645
*this);
20646
case NVPTX::BI__nvvm_fma_rn_ftz_sat_f16:
20647
return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_sat_f16, BuiltinID, E,
20648
*this);
20649
case NVPTX::BI__nvvm_fma_rn_ftz_sat_f16x2:
20650
return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_sat_f16x2, BuiltinID, E,
20651
*this);
20652
case NVPTX::BI__nvvm_fma_rn_relu_f16:
20653
return MakeHalfType(Intrinsic::nvvm_fma_rn_relu_f16, BuiltinID, E, *this);
20654
case NVPTX::BI__nvvm_fma_rn_relu_f16x2:
20655
return MakeHalfType(Intrinsic::nvvm_fma_rn_relu_f16x2, BuiltinID, E, *this);
20656
case NVPTX::BI__nvvm_fma_rn_sat_f16:
20657
return MakeHalfType(Intrinsic::nvvm_fma_rn_sat_f16, BuiltinID, E, *this);
20658
case NVPTX::BI__nvvm_fma_rn_sat_f16x2:
20659
return MakeHalfType(Intrinsic::nvvm_fma_rn_sat_f16x2, BuiltinID, E, *this);
20660
case NVPTX::BI__nvvm_fmax_f16:
20661
return MakeHalfType(Intrinsic::nvvm_fmax_f16, BuiltinID, E, *this);
20662
case NVPTX::BI__nvvm_fmax_f16x2:
20663
return MakeHalfType(Intrinsic::nvvm_fmax_f16x2, BuiltinID, E, *this);
20664
case NVPTX::BI__nvvm_fmax_ftz_f16:
20665
return MakeHalfType(Intrinsic::nvvm_fmax_ftz_f16, BuiltinID, E, *this);
20666
case NVPTX::BI__nvvm_fmax_ftz_f16x2:
20667
return MakeHalfType(Intrinsic::nvvm_fmax_ftz_f16x2, BuiltinID, E, *this);
20668
case NVPTX::BI__nvvm_fmax_ftz_nan_f16:
20669
return MakeHalfType(Intrinsic::nvvm_fmax_ftz_nan_f16, BuiltinID, E, *this);
20670
case NVPTX::BI__nvvm_fmax_ftz_nan_f16x2:
20671
return MakeHalfType(Intrinsic::nvvm_fmax_ftz_nan_f16x2, BuiltinID, E,
20672
*this);
20673
case NVPTX::BI__nvvm_fmax_ftz_nan_xorsign_abs_f16:
20674
return MakeHalfType(Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f16, BuiltinID,
20675
E, *this);
20676
case NVPTX::BI__nvvm_fmax_ftz_nan_xorsign_abs_f16x2:
20677
return MakeHalfType(Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f16x2,
20678
BuiltinID, E, *this);
20679
case NVPTX::BI__nvvm_fmax_ftz_xorsign_abs_f16:
20680
return MakeHalfType(Intrinsic::nvvm_fmax_ftz_xorsign_abs_f16, BuiltinID, E,
20681
*this);
20682
case NVPTX::BI__nvvm_fmax_ftz_xorsign_abs_f16x2:
20683
return MakeHalfType(Intrinsic::nvvm_fmax_ftz_xorsign_abs_f16x2, BuiltinID,
20684
E, *this);
20685
case NVPTX::BI__nvvm_fmax_nan_f16:
20686
return MakeHalfType(Intrinsic::nvvm_fmax_nan_f16, BuiltinID, E, *this);
20687
case NVPTX::BI__nvvm_fmax_nan_f16x2:
20688
return MakeHalfType(Intrinsic::nvvm_fmax_nan_f16x2, BuiltinID, E, *this);
20689
case NVPTX::BI__nvvm_fmax_nan_xorsign_abs_f16:
20690
return MakeHalfType(Intrinsic::nvvm_fmax_nan_xorsign_abs_f16, BuiltinID, E,
20691
*this);
20692
case NVPTX::BI__nvvm_fmax_nan_xorsign_abs_f16x2:
20693
return MakeHalfType(Intrinsic::nvvm_fmax_nan_xorsign_abs_f16x2, BuiltinID,
20694
E, *this);
20695
case NVPTX::BI__nvvm_fmax_xorsign_abs_f16:
20696
return MakeHalfType(Intrinsic::nvvm_fmax_xorsign_abs_f16, BuiltinID, E,
20697
*this);
20698
case NVPTX::BI__nvvm_fmax_xorsign_abs_f16x2:
20699
return MakeHalfType(Intrinsic::nvvm_fmax_xorsign_abs_f16x2, BuiltinID, E,
20700
*this);
20701
case NVPTX::BI__nvvm_fmin_f16:
20702
return MakeHalfType(Intrinsic::nvvm_fmin_f16, BuiltinID, E, *this);
20703
case NVPTX::BI__nvvm_fmin_f16x2:
20704
return MakeHalfType(Intrinsic::nvvm_fmin_f16x2, BuiltinID, E, *this);
20705
case NVPTX::BI__nvvm_fmin_ftz_f16:
20706
return MakeHalfType(Intrinsic::nvvm_fmin_ftz_f16, BuiltinID, E, *this);
20707
case NVPTX::BI__nvvm_fmin_ftz_f16x2:
20708
return MakeHalfType(Intrinsic::nvvm_fmin_ftz_f16x2, BuiltinID, E, *this);
20709
case NVPTX::BI__nvvm_fmin_ftz_nan_f16:
20710
return MakeHalfType(Intrinsic::nvvm_fmin_ftz_nan_f16, BuiltinID, E, *this);
20711
case NVPTX::BI__nvvm_fmin_ftz_nan_f16x2:
20712
return MakeHalfType(Intrinsic::nvvm_fmin_ftz_nan_f16x2, BuiltinID, E,
20713
*this);
20714
case NVPTX::BI__nvvm_fmin_ftz_nan_xorsign_abs_f16:
20715
return MakeHalfType(Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f16, BuiltinID,
20716
E, *this);
20717
case NVPTX::BI__nvvm_fmin_ftz_nan_xorsign_abs_f16x2:
20718
return MakeHalfType(Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f16x2,
20719
BuiltinID, E, *this);
20720
case NVPTX::BI__nvvm_fmin_ftz_xorsign_abs_f16:
20721
return MakeHalfType(Intrinsic::nvvm_fmin_ftz_xorsign_abs_f16, BuiltinID, E,
20722
*this);
20723
case NVPTX::BI__nvvm_fmin_ftz_xorsign_abs_f16x2:
20724
return MakeHalfType(Intrinsic::nvvm_fmin_ftz_xorsign_abs_f16x2, BuiltinID,
20725
E, *this);
20726
case NVPTX::BI__nvvm_fmin_nan_f16:
20727
return MakeHalfType(Intrinsic::nvvm_fmin_nan_f16, BuiltinID, E, *this);
20728
case NVPTX::BI__nvvm_fmin_nan_f16x2:
20729
return MakeHalfType(Intrinsic::nvvm_fmin_nan_f16x2, BuiltinID, E, *this);
20730
case NVPTX::BI__nvvm_fmin_nan_xorsign_abs_f16:
20731
return MakeHalfType(Intrinsic::nvvm_fmin_nan_xorsign_abs_f16, BuiltinID, E,
20732
*this);
20733
case NVPTX::BI__nvvm_fmin_nan_xorsign_abs_f16x2:
20734
return MakeHalfType(Intrinsic::nvvm_fmin_nan_xorsign_abs_f16x2, BuiltinID,
20735
E, *this);
20736
case NVPTX::BI__nvvm_fmin_xorsign_abs_f16:
20737
return MakeHalfType(Intrinsic::nvvm_fmin_xorsign_abs_f16, BuiltinID, E,
20738
*this);
20739
case NVPTX::BI__nvvm_fmin_xorsign_abs_f16x2:
20740
return MakeHalfType(Intrinsic::nvvm_fmin_xorsign_abs_f16x2, BuiltinID, E,
20741
*this);
20742
case NVPTX::BI__nvvm_ldg_h:
20743
return MakeHalfType(Intrinsic::nvvm_ldg_global_f, BuiltinID, E, *this);
20744
case NVPTX::BI__nvvm_ldg_h2:
20745
return MakeHalfType(Intrinsic::nvvm_ldg_global_f, BuiltinID, E, *this);
20746
case NVPTX::BI__nvvm_ldu_h:
20747
return MakeHalfType(Intrinsic::nvvm_ldu_global_f, BuiltinID, E, *this);
20748
case NVPTX::BI__nvvm_ldu_h2: {
20749
return MakeHalfType(Intrinsic::nvvm_ldu_global_f, BuiltinID, E, *this);
20750
}
20751
case NVPTX::BI__nvvm_cp_async_ca_shared_global_4:
20752
return MakeCpAsync(Intrinsic::nvvm_cp_async_ca_shared_global_4,
20753
Intrinsic::nvvm_cp_async_ca_shared_global_4_s, *this, E,
20754
4);
20755
case NVPTX::BI__nvvm_cp_async_ca_shared_global_8:
20756
return MakeCpAsync(Intrinsic::nvvm_cp_async_ca_shared_global_8,
20757
Intrinsic::nvvm_cp_async_ca_shared_global_8_s, *this, E,
20758
8);
20759
case NVPTX::BI__nvvm_cp_async_ca_shared_global_16:
20760
return MakeCpAsync(Intrinsic::nvvm_cp_async_ca_shared_global_16,
20761
Intrinsic::nvvm_cp_async_ca_shared_global_16_s, *this, E,
20762
16);
20763
case NVPTX::BI__nvvm_cp_async_cg_shared_global_16:
20764
return MakeCpAsync(Intrinsic::nvvm_cp_async_cg_shared_global_16,
20765
Intrinsic::nvvm_cp_async_cg_shared_global_16_s, *this, E,
20766
16);
20767
case NVPTX::BI__nvvm_read_ptx_sreg_clusterid_x:
20768
return Builder.CreateCall(
20769
CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_clusterid_x));
20770
case NVPTX::BI__nvvm_read_ptx_sreg_clusterid_y:
20771
return Builder.CreateCall(
20772
CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_clusterid_y));
20773
case NVPTX::BI__nvvm_read_ptx_sreg_clusterid_z:
20774
return Builder.CreateCall(
20775
CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_clusterid_z));
20776
case NVPTX::BI__nvvm_read_ptx_sreg_clusterid_w:
20777
return Builder.CreateCall(
20778
CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_clusterid_w));
20779
case NVPTX::BI__nvvm_read_ptx_sreg_nclusterid_x:
20780
return Builder.CreateCall(
20781
CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_nclusterid_x));
20782
case NVPTX::BI__nvvm_read_ptx_sreg_nclusterid_y:
20783
return Builder.CreateCall(
20784
CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_nclusterid_y));
20785
case NVPTX::BI__nvvm_read_ptx_sreg_nclusterid_z:
20786
return Builder.CreateCall(
20787
CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_nclusterid_z));
20788
case NVPTX::BI__nvvm_read_ptx_sreg_nclusterid_w:
20789
return Builder.CreateCall(
20790
CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_nclusterid_w));
20791
case NVPTX::BI__nvvm_read_ptx_sreg_cluster_ctaid_x:
20792
return Builder.CreateCall(
20793
CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_ctaid_x));
20794
case NVPTX::BI__nvvm_read_ptx_sreg_cluster_ctaid_y:
20795
return Builder.CreateCall(
20796
CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_ctaid_y));
20797
case NVPTX::BI__nvvm_read_ptx_sreg_cluster_ctaid_z:
20798
return Builder.CreateCall(
20799
CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_ctaid_z));
20800
case NVPTX::BI__nvvm_read_ptx_sreg_cluster_ctaid_w:
20801
return Builder.CreateCall(
20802
CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_ctaid_w));
20803
case NVPTX::BI__nvvm_read_ptx_sreg_cluster_nctaid_x:
20804
return Builder.CreateCall(
20805
CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_nctaid_x));
20806
case NVPTX::BI__nvvm_read_ptx_sreg_cluster_nctaid_y:
20807
return Builder.CreateCall(
20808
CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_nctaid_y));
20809
case NVPTX::BI__nvvm_read_ptx_sreg_cluster_nctaid_z:
20810
return Builder.CreateCall(
20811
CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_nctaid_z));
20812
case NVPTX::BI__nvvm_read_ptx_sreg_cluster_nctaid_w:
20813
return Builder.CreateCall(
20814
CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_nctaid_w));
20815
case NVPTX::BI__nvvm_read_ptx_sreg_cluster_ctarank:
20816
return Builder.CreateCall(
20817
CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_ctarank));
20818
case NVPTX::BI__nvvm_read_ptx_sreg_cluster_nctarank:
20819
return Builder.CreateCall(
20820
CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_nctarank));
20821
case NVPTX::BI__nvvm_is_explicit_cluster:
20822
return Builder.CreateCall(
20823
CGM.getIntrinsic(Intrinsic::nvvm_is_explicit_cluster));
20824
case NVPTX::BI__nvvm_isspacep_shared_cluster:
20825
return Builder.CreateCall(
20826
CGM.getIntrinsic(Intrinsic::nvvm_isspacep_shared_cluster),
20827
EmitScalarExpr(E->getArg(0)));
20828
case NVPTX::BI__nvvm_mapa:
20829
return Builder.CreateCall(
20830
CGM.getIntrinsic(Intrinsic::nvvm_mapa),
20831
{EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1))});
20832
case NVPTX::BI__nvvm_mapa_shared_cluster:
20833
return Builder.CreateCall(
20834
CGM.getIntrinsic(Intrinsic::nvvm_mapa_shared_cluster),
20835
{EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1))});
20836
case NVPTX::BI__nvvm_getctarank:
20837
return Builder.CreateCall(
20838
CGM.getIntrinsic(Intrinsic::nvvm_getctarank),
20839
EmitScalarExpr(E->getArg(0)));
20840
case NVPTX::BI__nvvm_getctarank_shared_cluster:
20841
return Builder.CreateCall(
20842
CGM.getIntrinsic(Intrinsic::nvvm_getctarank_shared_cluster),
20843
EmitScalarExpr(E->getArg(0)));
20844
case NVPTX::BI__nvvm_barrier_cluster_arrive:
20845
return Builder.CreateCall(
20846
CGM.getIntrinsic(Intrinsic::nvvm_barrier_cluster_arrive));
20847
case NVPTX::BI__nvvm_barrier_cluster_arrive_relaxed:
20848
return Builder.CreateCall(
20849
CGM.getIntrinsic(Intrinsic::nvvm_barrier_cluster_arrive_relaxed));
20850
case NVPTX::BI__nvvm_barrier_cluster_wait:
20851
return Builder.CreateCall(
20852
CGM.getIntrinsic(Intrinsic::nvvm_barrier_cluster_wait));
20853
case NVPTX::BI__nvvm_fence_sc_cluster:
20854
return Builder.CreateCall(
20855
CGM.getIntrinsic(Intrinsic::nvvm_fence_sc_cluster));
20856
default:
20857
return nullptr;
20858
}
20859
}
20860
20861
namespace {
20862
struct BuiltinAlignArgs {
20863
llvm::Value *Src = nullptr;
20864
llvm::Type *SrcType = nullptr;
20865
llvm::Value *Alignment = nullptr;
20866
llvm::Value *Mask = nullptr;
20867
llvm::IntegerType *IntType = nullptr;
20868
20869
BuiltinAlignArgs(const CallExpr *E, CodeGenFunction &CGF) {
20870
QualType AstType = E->getArg(0)->getType();
20871
if (AstType->isArrayType())
20872
Src = CGF.EmitArrayToPointerDecay(E->getArg(0)).emitRawPointer(CGF);
20873
else
20874
Src = CGF.EmitScalarExpr(E->getArg(0));
20875
SrcType = Src->getType();
20876
if (SrcType->isPointerTy()) {
20877
IntType = IntegerType::get(
20878
CGF.getLLVMContext(),
20879
CGF.CGM.getDataLayout().getIndexTypeSizeInBits(SrcType));
20880
} else {
20881
assert(SrcType->isIntegerTy());
20882
IntType = cast<llvm::IntegerType>(SrcType);
20883
}
20884
Alignment = CGF.EmitScalarExpr(E->getArg(1));
20885
Alignment = CGF.Builder.CreateZExtOrTrunc(Alignment, IntType, "alignment");
20886
auto *One = llvm::ConstantInt::get(IntType, 1);
20887
Mask = CGF.Builder.CreateSub(Alignment, One, "mask");
20888
}
20889
};
20890
} // namespace
20891
20892
/// Generate (x & (y-1)) == 0.
20893
RValue CodeGenFunction::EmitBuiltinIsAligned(const CallExpr *E) {
20894
BuiltinAlignArgs Args(E, *this);
20895
llvm::Value *SrcAddress = Args.Src;
20896
if (Args.SrcType->isPointerTy())
20897
SrcAddress =
20898
Builder.CreateBitOrPointerCast(Args.Src, Args.IntType, "src_addr");
20899
return RValue::get(Builder.CreateICmpEQ(
20900
Builder.CreateAnd(SrcAddress, Args.Mask, "set_bits"),
20901
llvm::Constant::getNullValue(Args.IntType), "is_aligned"));
20902
}
20903
20904
/// Generate (x & ~(y-1)) to align down or ((x+(y-1)) & ~(y-1)) to align up.
20905
/// Note: For pointer types we can avoid ptrtoint/inttoptr pairs by using the
20906
/// llvm.ptrmask intrinsic (with a GEP before in the align_up case).
20907
RValue CodeGenFunction::EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp) {
20908
BuiltinAlignArgs Args(E, *this);
20909
llvm::Value *SrcForMask = Args.Src;
20910
if (AlignUp) {
20911
// When aligning up we have to first add the mask to ensure we go over the
20912
// next alignment value and then align down to the next valid multiple.
20913
// By adding the mask, we ensure that align_up on an already aligned
20914
// value will not change the value.
20915
if (Args.Src->getType()->isPointerTy()) {
20916
if (getLangOpts().isSignedOverflowDefined())
20917
SrcForMask =
20918
Builder.CreateGEP(Int8Ty, SrcForMask, Args.Mask, "over_boundary");
20919
else
20920
SrcForMask = EmitCheckedInBoundsGEP(Int8Ty, SrcForMask, Args.Mask,
20921
/*SignedIndices=*/true,
20922
/*isSubtraction=*/false,
20923
E->getExprLoc(), "over_boundary");
20924
} else {
20925
SrcForMask = Builder.CreateAdd(SrcForMask, Args.Mask, "over_boundary");
20926
}
20927
}
20928
// Invert the mask to only clear the lower bits.
20929
llvm::Value *InvertedMask = Builder.CreateNot(Args.Mask, "inverted_mask");
20930
llvm::Value *Result = nullptr;
20931
if (Args.Src->getType()->isPointerTy()) {
20932
Result = Builder.CreateIntrinsic(
20933
Intrinsic::ptrmask, {Args.SrcType, Args.IntType},
20934
{SrcForMask, InvertedMask}, nullptr, "aligned_result");
20935
} else {
20936
Result = Builder.CreateAnd(SrcForMask, InvertedMask, "aligned_result");
20937
}
20938
assert(Result->getType() == Args.SrcType);
20939
return RValue::get(Result);
20940
}
20941
20942
Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
20943
const CallExpr *E) {
20944
switch (BuiltinID) {
20945
case WebAssembly::BI__builtin_wasm_memory_size: {
20946
llvm::Type *ResultType = ConvertType(E->getType());
20947
Value *I = EmitScalarExpr(E->getArg(0));
20948
Function *Callee =
20949
CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
20950
return Builder.CreateCall(Callee, I);
20951
}
20952
case WebAssembly::BI__builtin_wasm_memory_grow: {
20953
llvm::Type *ResultType = ConvertType(E->getType());
20954
Value *Args[] = {EmitScalarExpr(E->getArg(0)),
20955
EmitScalarExpr(E->getArg(1))};
20956
Function *Callee =
20957
CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
20958
return Builder.CreateCall(Callee, Args);
20959
}
20960
case WebAssembly::BI__builtin_wasm_tls_size: {
20961
llvm::Type *ResultType = ConvertType(E->getType());
20962
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType);
20963
return Builder.CreateCall(Callee);
20964
}
20965
case WebAssembly::BI__builtin_wasm_tls_align: {
20966
llvm::Type *ResultType = ConvertType(E->getType());
20967
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType);
20968
return Builder.CreateCall(Callee);
20969
}
20970
case WebAssembly::BI__builtin_wasm_tls_base: {
20971
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base);
20972
return Builder.CreateCall(Callee);
20973
}
20974
case WebAssembly::BI__builtin_wasm_throw: {
20975
Value *Tag = EmitScalarExpr(E->getArg(0));
20976
Value *Obj = EmitScalarExpr(E->getArg(1));
20977
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
20978
return Builder.CreateCall(Callee, {Tag, Obj});
20979
}
20980
case WebAssembly::BI__builtin_wasm_rethrow: {
20981
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow);
20982
return Builder.CreateCall(Callee);
20983
}
20984
case WebAssembly::BI__builtin_wasm_memory_atomic_wait32: {
20985
Value *Addr = EmitScalarExpr(E->getArg(0));
20986
Value *Expected = EmitScalarExpr(E->getArg(1));
20987
Value *Timeout = EmitScalarExpr(E->getArg(2));
20988
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait32);
20989
return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
20990
}
20991
case WebAssembly::BI__builtin_wasm_memory_atomic_wait64: {
20992
Value *Addr = EmitScalarExpr(E->getArg(0));
20993
Value *Expected = EmitScalarExpr(E->getArg(1));
20994
Value *Timeout = EmitScalarExpr(E->getArg(2));
20995
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait64);
20996
return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
20997
}
20998
case WebAssembly::BI__builtin_wasm_memory_atomic_notify: {
20999
Value *Addr = EmitScalarExpr(E->getArg(0));
21000
Value *Count = EmitScalarExpr(E->getArg(1));
21001
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_notify);
21002
return Builder.CreateCall(Callee, {Addr, Count});
21003
}
21004
case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32:
21005
case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64:
21006
case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32:
21007
case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: {
21008
Value *Src = EmitScalarExpr(E->getArg(0));
21009
llvm::Type *ResT = ConvertType(E->getType());
21010
Function *Callee =
21011
CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()});
21012
return Builder.CreateCall(Callee, {Src});
21013
}
21014
case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32:
21015
case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64:
21016
case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32:
21017
case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: {
21018
Value *Src = EmitScalarExpr(E->getArg(0));
21019
llvm::Type *ResT = ConvertType(E->getType());
21020
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned,
21021
{ResT, Src->getType()});
21022
return Builder.CreateCall(Callee, {Src});
21023
}
21024
case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
21025
case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
21026
case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
21027
case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
21028
case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4: {
21029
Value *Src = EmitScalarExpr(E->getArg(0));
21030
llvm::Type *ResT = ConvertType(E->getType());
21031
Function *Callee =
21032
CGM.getIntrinsic(Intrinsic::fptosi_sat, {ResT, Src->getType()});
21033
return Builder.CreateCall(Callee, {Src});
21034
}
21035
case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
21036
case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
21037
case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
21038
case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
21039
case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4: {
21040
Value *Src = EmitScalarExpr(E->getArg(0));
21041
llvm::Type *ResT = ConvertType(E->getType());
21042
Function *Callee =
21043
CGM.getIntrinsic(Intrinsic::fptoui_sat, {ResT, Src->getType()});
21044
return Builder.CreateCall(Callee, {Src});
21045
}
21046
case WebAssembly::BI__builtin_wasm_min_f32:
21047
case WebAssembly::BI__builtin_wasm_min_f64:
21048
case WebAssembly::BI__builtin_wasm_min_f16x8:
21049
case WebAssembly::BI__builtin_wasm_min_f32x4:
21050
case WebAssembly::BI__builtin_wasm_min_f64x2: {
21051
Value *LHS = EmitScalarExpr(E->getArg(0));
21052
Value *RHS = EmitScalarExpr(E->getArg(1));
21053
Function *Callee =
21054
CGM.getIntrinsic(Intrinsic::minimum, ConvertType(E->getType()));
21055
return Builder.CreateCall(Callee, {LHS, RHS});
21056
}
21057
case WebAssembly::BI__builtin_wasm_max_f32:
21058
case WebAssembly::BI__builtin_wasm_max_f64:
21059
case WebAssembly::BI__builtin_wasm_max_f16x8:
21060
case WebAssembly::BI__builtin_wasm_max_f32x4:
21061
case WebAssembly::BI__builtin_wasm_max_f64x2: {
21062
Value *LHS = EmitScalarExpr(E->getArg(0));
21063
Value *RHS = EmitScalarExpr(E->getArg(1));
21064
Function *Callee =
21065
CGM.getIntrinsic(Intrinsic::maximum, ConvertType(E->getType()));
21066
return Builder.CreateCall(Callee, {LHS, RHS});
21067
}
21068
case WebAssembly::BI__builtin_wasm_pmin_f16x8:
21069
case WebAssembly::BI__builtin_wasm_pmin_f32x4:
21070
case WebAssembly::BI__builtin_wasm_pmin_f64x2: {
21071
Value *LHS = EmitScalarExpr(E->getArg(0));
21072
Value *RHS = EmitScalarExpr(E->getArg(1));
21073
Function *Callee =
21074
CGM.getIntrinsic(Intrinsic::wasm_pmin, ConvertType(E->getType()));
21075
return Builder.CreateCall(Callee, {LHS, RHS});
21076
}
21077
case WebAssembly::BI__builtin_wasm_pmax_f16x8:
21078
case WebAssembly::BI__builtin_wasm_pmax_f32x4:
21079
case WebAssembly::BI__builtin_wasm_pmax_f64x2: {
21080
Value *LHS = EmitScalarExpr(E->getArg(0));
21081
Value *RHS = EmitScalarExpr(E->getArg(1));
21082
Function *Callee =
21083
CGM.getIntrinsic(Intrinsic::wasm_pmax, ConvertType(E->getType()));
21084
return Builder.CreateCall(Callee, {LHS, RHS});
21085
}
21086
case WebAssembly::BI__builtin_wasm_ceil_f32x4:
21087
case WebAssembly::BI__builtin_wasm_floor_f32x4:
21088
case WebAssembly::BI__builtin_wasm_trunc_f32x4:
21089
case WebAssembly::BI__builtin_wasm_nearest_f32x4:
21090
case WebAssembly::BI__builtin_wasm_ceil_f64x2:
21091
case WebAssembly::BI__builtin_wasm_floor_f64x2:
21092
case WebAssembly::BI__builtin_wasm_trunc_f64x2:
21093
case WebAssembly::BI__builtin_wasm_nearest_f64x2: {
21094
unsigned IntNo;
21095
switch (BuiltinID) {
21096
case WebAssembly::BI__builtin_wasm_ceil_f32x4:
21097
case WebAssembly::BI__builtin_wasm_ceil_f64x2:
21098
IntNo = Intrinsic::ceil;
21099
break;
21100
case WebAssembly::BI__builtin_wasm_floor_f32x4:
21101
case WebAssembly::BI__builtin_wasm_floor_f64x2:
21102
IntNo = Intrinsic::floor;
21103
break;
21104
case WebAssembly::BI__builtin_wasm_trunc_f32x4:
21105
case WebAssembly::BI__builtin_wasm_trunc_f64x2:
21106
IntNo = Intrinsic::trunc;
21107
break;
21108
case WebAssembly::BI__builtin_wasm_nearest_f32x4:
21109
case WebAssembly::BI__builtin_wasm_nearest_f64x2:
21110
IntNo = Intrinsic::nearbyint;
21111
break;
21112
default:
21113
llvm_unreachable("unexpected builtin ID");
21114
}
21115
Value *Value = EmitScalarExpr(E->getArg(0));
21116
Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
21117
return Builder.CreateCall(Callee, Value);
21118
}
21119
case WebAssembly::BI__builtin_wasm_ref_null_extern: {
21120
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_ref_null_extern);
21121
return Builder.CreateCall(Callee);
21122
}
21123
case WebAssembly::BI__builtin_wasm_ref_null_func: {
21124
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_ref_null_func);
21125
return Builder.CreateCall(Callee);
21126
}
21127
case WebAssembly::BI__builtin_wasm_swizzle_i8x16: {
21128
Value *Src = EmitScalarExpr(E->getArg(0));
21129
Value *Indices = EmitScalarExpr(E->getArg(1));
21130
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle);
21131
return Builder.CreateCall(Callee, {Src, Indices});
21132
}
21133
case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
21134
case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
21135
case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
21136
case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
21137
case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
21138
case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
21139
case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
21140
case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8: {
21141
unsigned IntNo;
21142
switch (BuiltinID) {
21143
case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
21144
case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
21145
IntNo = Intrinsic::sadd_sat;
21146
break;
21147
case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
21148
case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
21149
IntNo = Intrinsic::uadd_sat;
21150
break;
21151
case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
21152
case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
21153
IntNo = Intrinsic::wasm_sub_sat_signed;
21154
break;
21155
case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
21156
case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8:
21157
IntNo = Intrinsic::wasm_sub_sat_unsigned;
21158
break;
21159
default:
21160
llvm_unreachable("unexpected builtin ID");
21161
}
21162
Value *LHS = EmitScalarExpr(E->getArg(0));
21163
Value *RHS = EmitScalarExpr(E->getArg(1));
21164
Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
21165
return Builder.CreateCall(Callee, {LHS, RHS});
21166
}
21167
case WebAssembly::BI__builtin_wasm_abs_i8x16:
21168
case WebAssembly::BI__builtin_wasm_abs_i16x8:
21169
case WebAssembly::BI__builtin_wasm_abs_i32x4:
21170
case WebAssembly::BI__builtin_wasm_abs_i64x2: {
21171
Value *Vec = EmitScalarExpr(E->getArg(0));
21172
Value *Neg = Builder.CreateNeg(Vec, "neg");
21173
Constant *Zero = llvm::Constant::getNullValue(Vec->getType());
21174
Value *ICmp = Builder.CreateICmpSLT(Vec, Zero, "abscond");
21175
return Builder.CreateSelect(ICmp, Neg, Vec, "abs");
21176
}
21177
case WebAssembly::BI__builtin_wasm_min_s_i8x16:
21178
case WebAssembly::BI__builtin_wasm_min_u_i8x16:
21179
case WebAssembly::BI__builtin_wasm_max_s_i8x16:
21180
case WebAssembly::BI__builtin_wasm_max_u_i8x16:
21181
case WebAssembly::BI__builtin_wasm_min_s_i16x8:
21182
case WebAssembly::BI__builtin_wasm_min_u_i16x8:
21183
case WebAssembly::BI__builtin_wasm_max_s_i16x8:
21184
case WebAssembly::BI__builtin_wasm_max_u_i16x8:
21185
case WebAssembly::BI__builtin_wasm_min_s_i32x4:
21186
case WebAssembly::BI__builtin_wasm_min_u_i32x4:
21187
case WebAssembly::BI__builtin_wasm_max_s_i32x4:
21188
case WebAssembly::BI__builtin_wasm_max_u_i32x4: {
21189
Value *LHS = EmitScalarExpr(E->getArg(0));
21190
Value *RHS = EmitScalarExpr(E->getArg(1));
21191
Value *ICmp;
21192
switch (BuiltinID) {
21193
case WebAssembly::BI__builtin_wasm_min_s_i8x16:
21194
case WebAssembly::BI__builtin_wasm_min_s_i16x8:
21195
case WebAssembly::BI__builtin_wasm_min_s_i32x4:
21196
ICmp = Builder.CreateICmpSLT(LHS, RHS);
21197
break;
21198
case WebAssembly::BI__builtin_wasm_min_u_i8x16:
21199
case WebAssembly::BI__builtin_wasm_min_u_i16x8:
21200
case WebAssembly::BI__builtin_wasm_min_u_i32x4:
21201
ICmp = Builder.CreateICmpULT(LHS, RHS);
21202
break;
21203
case WebAssembly::BI__builtin_wasm_max_s_i8x16:
21204
case WebAssembly::BI__builtin_wasm_max_s_i16x8:
21205
case WebAssembly::BI__builtin_wasm_max_s_i32x4:
21206
ICmp = Builder.CreateICmpSGT(LHS, RHS);
21207
break;
21208
case WebAssembly::BI__builtin_wasm_max_u_i8x16:
21209
case WebAssembly::BI__builtin_wasm_max_u_i16x8:
21210
case WebAssembly::BI__builtin_wasm_max_u_i32x4:
21211
ICmp = Builder.CreateICmpUGT(LHS, RHS);
21212
break;
21213
default:
21214
llvm_unreachable("unexpected builtin ID");
21215
}
21216
return Builder.CreateSelect(ICmp, LHS, RHS);
21217
}
21218
case WebAssembly::BI__builtin_wasm_avgr_u_i8x16:
21219
case WebAssembly::BI__builtin_wasm_avgr_u_i16x8: {
21220
Value *LHS = EmitScalarExpr(E->getArg(0));
21221
Value *RHS = EmitScalarExpr(E->getArg(1));
21222
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_avgr_unsigned,
21223
ConvertType(E->getType()));
21224
return Builder.CreateCall(Callee, {LHS, RHS});
21225
}
21226
case WebAssembly::BI__builtin_wasm_q15mulr_sat_s_i16x8: {
21227
Value *LHS = EmitScalarExpr(E->getArg(0));
21228
Value *RHS = EmitScalarExpr(E->getArg(1));
21229
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_q15mulr_sat_signed);
21230
return Builder.CreateCall(Callee, {LHS, RHS});
21231
}
21232
case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
21233
case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
21234
case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
21235
case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4: {
21236
Value *Vec = EmitScalarExpr(E->getArg(0));
21237
unsigned IntNo;
21238
switch (BuiltinID) {
21239
case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
21240
case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
21241
IntNo = Intrinsic::wasm_extadd_pairwise_signed;
21242
break;
21243
case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
21244
case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4:
21245
IntNo = Intrinsic::wasm_extadd_pairwise_unsigned;
21246
break;
21247
default:
21248
llvm_unreachable("unexpected builtin ID");
21249
}
21250
21251
Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
21252
return Builder.CreateCall(Callee, Vec);
21253
}
21254
case WebAssembly::BI__builtin_wasm_bitselect: {
21255
Value *V1 = EmitScalarExpr(E->getArg(0));
21256
Value *V2 = EmitScalarExpr(E->getArg(1));
21257
Value *C = EmitScalarExpr(E->getArg(2));
21258
Function *Callee =
21259
CGM.getIntrinsic(Intrinsic::wasm_bitselect, ConvertType(E->getType()));
21260
return Builder.CreateCall(Callee, {V1, V2, C});
21261
}
21262
case WebAssembly::BI__builtin_wasm_dot_s_i32x4_i16x8: {
21263
Value *LHS = EmitScalarExpr(E->getArg(0));
21264
Value *RHS = EmitScalarExpr(E->getArg(1));
21265
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_dot);
21266
return Builder.CreateCall(Callee, {LHS, RHS});
21267
}
21268
case WebAssembly::BI__builtin_wasm_popcnt_i8x16: {
21269
Value *Vec = EmitScalarExpr(E->getArg(0));
21270
Function *Callee =
21271
CGM.getIntrinsic(Intrinsic::ctpop, ConvertType(E->getType()));
21272
return Builder.CreateCall(Callee, {Vec});
21273
}
21274
case WebAssembly::BI__builtin_wasm_any_true_v128:
21275
case WebAssembly::BI__builtin_wasm_all_true_i8x16:
21276
case WebAssembly::BI__builtin_wasm_all_true_i16x8:
21277
case WebAssembly::BI__builtin_wasm_all_true_i32x4:
21278
case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
21279
unsigned IntNo;
21280
switch (BuiltinID) {
21281
case WebAssembly::BI__builtin_wasm_any_true_v128:
21282
IntNo = Intrinsic::wasm_anytrue;
21283
break;
21284
case WebAssembly::BI__builtin_wasm_all_true_i8x16:
21285
case WebAssembly::BI__builtin_wasm_all_true_i16x8:
21286
case WebAssembly::BI__builtin_wasm_all_true_i32x4:
21287
case WebAssembly::BI__builtin_wasm_all_true_i64x2:
21288
IntNo = Intrinsic::wasm_alltrue;
21289
break;
21290
default:
21291
llvm_unreachable("unexpected builtin ID");
21292
}
21293
Value *Vec = EmitScalarExpr(E->getArg(0));
21294
Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
21295
return Builder.CreateCall(Callee, {Vec});
21296
}
21297
case WebAssembly::BI__builtin_wasm_bitmask_i8x16:
21298
case WebAssembly::BI__builtin_wasm_bitmask_i16x8:
21299
case WebAssembly::BI__builtin_wasm_bitmask_i32x4:
21300
case WebAssembly::BI__builtin_wasm_bitmask_i64x2: {
21301
Value *Vec = EmitScalarExpr(E->getArg(0));
21302
Function *Callee =
21303
CGM.getIntrinsic(Intrinsic::wasm_bitmask, Vec->getType());
21304
return Builder.CreateCall(Callee, {Vec});
21305
}
21306
case WebAssembly::BI__builtin_wasm_abs_f32x4:
21307
case WebAssembly::BI__builtin_wasm_abs_f64x2: {
21308
Value *Vec = EmitScalarExpr(E->getArg(0));
21309
Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
21310
return Builder.CreateCall(Callee, {Vec});
21311
}
21312
case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
21313
case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
21314
Value *Vec = EmitScalarExpr(E->getArg(0));
21315
Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
21316
return Builder.CreateCall(Callee, {Vec});
21317
}
21318
case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
21319
case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
21320
case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
21321
case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: {
21322
Value *Low = EmitScalarExpr(E->getArg(0));
21323
Value *High = EmitScalarExpr(E->getArg(1));
21324
unsigned IntNo;
21325
switch (BuiltinID) {
21326
case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
21327
case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
21328
IntNo = Intrinsic::wasm_narrow_signed;
21329
break;
21330
case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
21331
case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4:
21332
IntNo = Intrinsic::wasm_narrow_unsigned;
21333
break;
21334
default:
21335
llvm_unreachable("unexpected builtin ID");
21336
}
21337
Function *Callee =
21338
CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()});
21339
return Builder.CreateCall(Callee, {Low, High});
21340
}
21341
case WebAssembly::BI__builtin_wasm_trunc_sat_s_zero_f64x2_i32x4:
21342
case WebAssembly::BI__builtin_wasm_trunc_sat_u_zero_f64x2_i32x4: {
21343
Value *Vec = EmitScalarExpr(E->getArg(0));
21344
unsigned IntNo;
21345
switch (BuiltinID) {
21346
case WebAssembly::BI__builtin_wasm_trunc_sat_s_zero_f64x2_i32x4:
21347
IntNo = Intrinsic::fptosi_sat;
21348
break;
21349
case WebAssembly::BI__builtin_wasm_trunc_sat_u_zero_f64x2_i32x4:
21350
IntNo = Intrinsic::fptoui_sat;
21351
break;
21352
default:
21353
llvm_unreachable("unexpected builtin ID");
21354
}
21355
llvm::Type *SrcT = Vec->getType();
21356
llvm::Type *TruncT = SrcT->getWithNewType(Builder.getInt32Ty());
21357
Function *Callee = CGM.getIntrinsic(IntNo, {TruncT, SrcT});
21358
Value *Trunc = Builder.CreateCall(Callee, Vec);
21359
Value *Splat = Constant::getNullValue(TruncT);
21360
return Builder.CreateShuffleVector(Trunc, Splat, ArrayRef<int>{0, 1, 2, 3});
21361
}
21362
case WebAssembly::BI__builtin_wasm_shuffle_i8x16: {
21363
Value *Ops[18];
21364
size_t OpIdx = 0;
21365
Ops[OpIdx++] = EmitScalarExpr(E->getArg(0));
21366
Ops[OpIdx++] = EmitScalarExpr(E->getArg(1));
21367
while (OpIdx < 18) {
21368
std::optional<llvm::APSInt> LaneConst =
21369
E->getArg(OpIdx)->getIntegerConstantExpr(getContext());
21370
assert(LaneConst && "Constant arg isn't actually constant?");
21371
Ops[OpIdx++] = llvm::ConstantInt::get(getLLVMContext(), *LaneConst);
21372
}
21373
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_shuffle);
21374
return Builder.CreateCall(Callee, Ops);
21375
}
21376
case WebAssembly::BI__builtin_wasm_relaxed_madd_f16x8:
21377
case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f16x8:
21378
case WebAssembly::BI__builtin_wasm_relaxed_madd_f32x4:
21379
case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f32x4:
21380
case WebAssembly::BI__builtin_wasm_relaxed_madd_f64x2:
21381
case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f64x2: {
21382
Value *A = EmitScalarExpr(E->getArg(0));
21383
Value *B = EmitScalarExpr(E->getArg(1));
21384
Value *C = EmitScalarExpr(E->getArg(2));
21385
unsigned IntNo;
21386
switch (BuiltinID) {
21387
case WebAssembly::BI__builtin_wasm_relaxed_madd_f16x8:
21388
case WebAssembly::BI__builtin_wasm_relaxed_madd_f32x4:
21389
case WebAssembly::BI__builtin_wasm_relaxed_madd_f64x2:
21390
IntNo = Intrinsic::wasm_relaxed_madd;
21391
break;
21392
case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f16x8:
21393
case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f32x4:
21394
case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f64x2:
21395
IntNo = Intrinsic::wasm_relaxed_nmadd;
21396
break;
21397
default:
21398
llvm_unreachable("unexpected builtin ID");
21399
}
21400
Function *Callee = CGM.getIntrinsic(IntNo, A->getType());
21401
return Builder.CreateCall(Callee, {A, B, C});
21402
}
21403
case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i8x16:
21404
case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i16x8:
21405
case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i32x4:
21406
case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i64x2: {
21407
Value *A = EmitScalarExpr(E->getArg(0));
21408
Value *B = EmitScalarExpr(E->getArg(1));
21409
Value *C = EmitScalarExpr(E->getArg(2));
21410
Function *Callee =
21411
CGM.getIntrinsic(Intrinsic::wasm_relaxed_laneselect, A->getType());
21412
return Builder.CreateCall(Callee, {A, B, C});
21413
}
21414
case WebAssembly::BI__builtin_wasm_relaxed_swizzle_i8x16: {
21415
Value *Src = EmitScalarExpr(E->getArg(0));
21416
Value *Indices = EmitScalarExpr(E->getArg(1));
21417
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_relaxed_swizzle);
21418
return Builder.CreateCall(Callee, {Src, Indices});
21419
}
21420
case WebAssembly::BI__builtin_wasm_relaxed_min_f32x4:
21421
case WebAssembly::BI__builtin_wasm_relaxed_max_f32x4:
21422
case WebAssembly::BI__builtin_wasm_relaxed_min_f64x2:
21423
case WebAssembly::BI__builtin_wasm_relaxed_max_f64x2: {
21424
Value *LHS = EmitScalarExpr(E->getArg(0));
21425
Value *RHS = EmitScalarExpr(E->getArg(1));
21426
unsigned IntNo;
21427
switch (BuiltinID) {
21428
case WebAssembly::BI__builtin_wasm_relaxed_min_f32x4:
21429
case WebAssembly::BI__builtin_wasm_relaxed_min_f64x2:
21430
IntNo = Intrinsic::wasm_relaxed_min;
21431
break;
21432
case WebAssembly::BI__builtin_wasm_relaxed_max_f32x4:
21433
case WebAssembly::BI__builtin_wasm_relaxed_max_f64x2:
21434
IntNo = Intrinsic::wasm_relaxed_max;
21435
break;
21436
default:
21437
llvm_unreachable("unexpected builtin ID");
21438
}
21439
Function *Callee = CGM.getIntrinsic(IntNo, LHS->getType());
21440
return Builder.CreateCall(Callee, {LHS, RHS});
21441
}
21442
case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_i32x4_f32x4:
21443
case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_i32x4_f32x4:
21444
case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_zero_i32x4_f64x2:
21445
case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_zero_i32x4_f64x2: {
21446
Value *Vec = EmitScalarExpr(E->getArg(0));
21447
unsigned IntNo;
21448
switch (BuiltinID) {
21449
case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_i32x4_f32x4:
21450
IntNo = Intrinsic::wasm_relaxed_trunc_signed;
21451
break;
21452
case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_i32x4_f32x4:
21453
IntNo = Intrinsic::wasm_relaxed_trunc_unsigned;
21454
break;
21455
case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_zero_i32x4_f64x2:
21456
IntNo = Intrinsic::wasm_relaxed_trunc_signed_zero;
21457
break;
21458
case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_zero_i32x4_f64x2:
21459
IntNo = Intrinsic::wasm_relaxed_trunc_unsigned_zero;
21460
break;
21461
default:
21462
llvm_unreachable("unexpected builtin ID");
21463
}
21464
Function *Callee = CGM.getIntrinsic(IntNo);
21465
return Builder.CreateCall(Callee, {Vec});
21466
}
21467
case WebAssembly::BI__builtin_wasm_relaxed_q15mulr_s_i16x8: {
21468
Value *LHS = EmitScalarExpr(E->getArg(0));
21469
Value *RHS = EmitScalarExpr(E->getArg(1));
21470
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_relaxed_q15mulr_signed);
21471
return Builder.CreateCall(Callee, {LHS, RHS});
21472
}
21473
case WebAssembly::BI__builtin_wasm_relaxed_dot_i8x16_i7x16_s_i16x8: {
21474
Value *LHS = EmitScalarExpr(E->getArg(0));
21475
Value *RHS = EmitScalarExpr(E->getArg(1));
21476
Function *Callee =
21477
CGM.getIntrinsic(Intrinsic::wasm_relaxed_dot_i8x16_i7x16_signed);
21478
return Builder.CreateCall(Callee, {LHS, RHS});
21479
}
21480
case WebAssembly::BI__builtin_wasm_relaxed_dot_i8x16_i7x16_add_s_i32x4: {
21481
Value *LHS = EmitScalarExpr(E->getArg(0));
21482
Value *RHS = EmitScalarExpr(E->getArg(1));
21483
Value *Acc = EmitScalarExpr(E->getArg(2));
21484
Function *Callee =
21485
CGM.getIntrinsic(Intrinsic::wasm_relaxed_dot_i8x16_i7x16_add_signed);
21486
return Builder.CreateCall(Callee, {LHS, RHS, Acc});
21487
}
21488
case WebAssembly::BI__builtin_wasm_relaxed_dot_bf16x8_add_f32_f32x4: {
21489
Value *LHS = EmitScalarExpr(E->getArg(0));
21490
Value *RHS = EmitScalarExpr(E->getArg(1));
21491
Value *Acc = EmitScalarExpr(E->getArg(2));
21492
Function *Callee =
21493
CGM.getIntrinsic(Intrinsic::wasm_relaxed_dot_bf16x8_add_f32);
21494
return Builder.CreateCall(Callee, {LHS, RHS, Acc});
21495
}
21496
case WebAssembly::BI__builtin_wasm_loadf16_f32: {
21497
Value *Addr = EmitScalarExpr(E->getArg(0));
21498
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_loadf16_f32);
21499
return Builder.CreateCall(Callee, {Addr});
21500
}
21501
case WebAssembly::BI__builtin_wasm_storef16_f32: {
21502
Value *Val = EmitScalarExpr(E->getArg(0));
21503
Value *Addr = EmitScalarExpr(E->getArg(1));
21504
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_storef16_f32);
21505
return Builder.CreateCall(Callee, {Val, Addr});
21506
}
21507
case WebAssembly::BI__builtin_wasm_splat_f16x8: {
21508
Value *Val = EmitScalarExpr(E->getArg(0));
21509
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_splat_f16x8);
21510
return Builder.CreateCall(Callee, {Val});
21511
}
21512
case WebAssembly::BI__builtin_wasm_extract_lane_f16x8: {
21513
Value *Vector = EmitScalarExpr(E->getArg(0));
21514
Value *Index = EmitScalarExpr(E->getArg(1));
21515
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_extract_lane_f16x8);
21516
return Builder.CreateCall(Callee, {Vector, Index});
21517
}
21518
case WebAssembly::BI__builtin_wasm_table_get: {
21519
assert(E->getArg(0)->getType()->isArrayType());
21520
Value *Table = EmitArrayToPointerDecay(E->getArg(0)).emitRawPointer(*this);
21521
Value *Index = EmitScalarExpr(E->getArg(1));
21522
Function *Callee;
21523
if (E->getType().isWebAssemblyExternrefType())
21524
Callee = CGM.getIntrinsic(Intrinsic::wasm_table_get_externref);
21525
else if (E->getType().isWebAssemblyFuncrefType())
21526
Callee = CGM.getIntrinsic(Intrinsic::wasm_table_get_funcref);
21527
else
21528
llvm_unreachable(
21529
"Unexpected reference type for __builtin_wasm_table_get");
21530
return Builder.CreateCall(Callee, {Table, Index});
21531
}
21532
case WebAssembly::BI__builtin_wasm_table_set: {
21533
assert(E->getArg(0)->getType()->isArrayType());
21534
Value *Table = EmitArrayToPointerDecay(E->getArg(0)).emitRawPointer(*this);
21535
Value *Index = EmitScalarExpr(E->getArg(1));
21536
Value *Val = EmitScalarExpr(E->getArg(2));
21537
Function *Callee;
21538
if (E->getArg(2)->getType().isWebAssemblyExternrefType())
21539
Callee = CGM.getIntrinsic(Intrinsic::wasm_table_set_externref);
21540
else if (E->getArg(2)->getType().isWebAssemblyFuncrefType())
21541
Callee = CGM.getIntrinsic(Intrinsic::wasm_table_set_funcref);
21542
else
21543
llvm_unreachable(
21544
"Unexpected reference type for __builtin_wasm_table_set");
21545
return Builder.CreateCall(Callee, {Table, Index, Val});
21546
}
21547
case WebAssembly::BI__builtin_wasm_table_size: {
21548
assert(E->getArg(0)->getType()->isArrayType());
21549
Value *Value = EmitArrayToPointerDecay(E->getArg(0)).emitRawPointer(*this);
21550
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_table_size);
21551
return Builder.CreateCall(Callee, Value);
21552
}
21553
case WebAssembly::BI__builtin_wasm_table_grow: {
21554
assert(E->getArg(0)->getType()->isArrayType());
21555
Value *Table = EmitArrayToPointerDecay(E->getArg(0)).emitRawPointer(*this);
21556
Value *Val = EmitScalarExpr(E->getArg(1));
21557
Value *NElems = EmitScalarExpr(E->getArg(2));
21558
21559
Function *Callee;
21560
if (E->getArg(1)->getType().isWebAssemblyExternrefType())
21561
Callee = CGM.getIntrinsic(Intrinsic::wasm_table_grow_externref);
21562
else if (E->getArg(2)->getType().isWebAssemblyFuncrefType())
21563
Callee = CGM.getIntrinsic(Intrinsic::wasm_table_fill_funcref);
21564
else
21565
llvm_unreachable(
21566
"Unexpected reference type for __builtin_wasm_table_grow");
21567
21568
return Builder.CreateCall(Callee, {Table, Val, NElems});
21569
}
21570
case WebAssembly::BI__builtin_wasm_table_fill: {
21571
assert(E->getArg(0)->getType()->isArrayType());
21572
Value *Table = EmitArrayToPointerDecay(E->getArg(0)).emitRawPointer(*this);
21573
Value *Index = EmitScalarExpr(E->getArg(1));
21574
Value *Val = EmitScalarExpr(E->getArg(2));
21575
Value *NElems = EmitScalarExpr(E->getArg(3));
21576
21577
Function *Callee;
21578
if (E->getArg(2)->getType().isWebAssemblyExternrefType())
21579
Callee = CGM.getIntrinsic(Intrinsic::wasm_table_fill_externref);
21580
else if (E->getArg(2)->getType().isWebAssemblyFuncrefType())
21581
Callee = CGM.getIntrinsic(Intrinsic::wasm_table_fill_funcref);
21582
else
21583
llvm_unreachable(
21584
"Unexpected reference type for __builtin_wasm_table_fill");
21585
21586
return Builder.CreateCall(Callee, {Table, Index, Val, NElems});
21587
}
21588
case WebAssembly::BI__builtin_wasm_table_copy: {
21589
assert(E->getArg(0)->getType()->isArrayType());
21590
Value *TableX = EmitArrayToPointerDecay(E->getArg(0)).emitRawPointer(*this);
21591
Value *TableY = EmitArrayToPointerDecay(E->getArg(1)).emitRawPointer(*this);
21592
Value *DstIdx = EmitScalarExpr(E->getArg(2));
21593
Value *SrcIdx = EmitScalarExpr(E->getArg(3));
21594
Value *NElems = EmitScalarExpr(E->getArg(4));
21595
21596
Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_table_copy);
21597
21598
return Builder.CreateCall(Callee, {TableX, TableY, SrcIdx, DstIdx, NElems});
21599
}
21600
default:
21601
return nullptr;
21602
}
21603
}
21604
21605
static std::pair<Intrinsic::ID, unsigned>
21606
getIntrinsicForHexagonNonClangBuiltin(unsigned BuiltinID) {
21607
struct Info {
21608
unsigned BuiltinID;
21609
Intrinsic::ID IntrinsicID;
21610
unsigned VecLen;
21611
};
21612
static Info Infos[] = {
21613
#define CUSTOM_BUILTIN_MAPPING(x,s) \
21614
{ Hexagon::BI__builtin_HEXAGON_##x, Intrinsic::hexagon_##x, s },
21615
CUSTOM_BUILTIN_MAPPING(L2_loadrub_pci, 0)
21616
CUSTOM_BUILTIN_MAPPING(L2_loadrb_pci, 0)
21617
CUSTOM_BUILTIN_MAPPING(L2_loadruh_pci, 0)
21618
CUSTOM_BUILTIN_MAPPING(L2_loadrh_pci, 0)
21619
CUSTOM_BUILTIN_MAPPING(L2_loadri_pci, 0)
21620
CUSTOM_BUILTIN_MAPPING(L2_loadrd_pci, 0)
21621
CUSTOM_BUILTIN_MAPPING(L2_loadrub_pcr, 0)
21622
CUSTOM_BUILTIN_MAPPING(L2_loadrb_pcr, 0)
21623
CUSTOM_BUILTIN_MAPPING(L2_loadruh_pcr, 0)
21624
CUSTOM_BUILTIN_MAPPING(L2_loadrh_pcr, 0)
21625
CUSTOM_BUILTIN_MAPPING(L2_loadri_pcr, 0)
21626
CUSTOM_BUILTIN_MAPPING(L2_loadrd_pcr, 0)
21627
CUSTOM_BUILTIN_MAPPING(S2_storerb_pci, 0)
21628
CUSTOM_BUILTIN_MAPPING(S2_storerh_pci, 0)
21629
CUSTOM_BUILTIN_MAPPING(S2_storerf_pci, 0)
21630
CUSTOM_BUILTIN_MAPPING(S2_storeri_pci, 0)
21631
CUSTOM_BUILTIN_MAPPING(S2_storerd_pci, 0)
21632
CUSTOM_BUILTIN_MAPPING(S2_storerb_pcr, 0)
21633
CUSTOM_BUILTIN_MAPPING(S2_storerh_pcr, 0)
21634
CUSTOM_BUILTIN_MAPPING(S2_storerf_pcr, 0)
21635
CUSTOM_BUILTIN_MAPPING(S2_storeri_pcr, 0)
21636
CUSTOM_BUILTIN_MAPPING(S2_storerd_pcr, 0)
21637
// Legacy builtins that take a vector in place of a vector predicate.
21638
CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq, 64)
21639
CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq, 64)
21640
CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq, 64)
21641
CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq, 64)
21642
CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq_128B, 128)
21643
CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq_128B, 128)
21644
CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq_128B, 128)
21645
CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq_128B, 128)
21646
#include "clang/Basic/BuiltinsHexagonMapCustomDep.def"
21647
#undef CUSTOM_BUILTIN_MAPPING
21648
};
21649
21650
auto CmpInfo = [] (Info A, Info B) { return A.BuiltinID < B.BuiltinID; };
21651
static const bool SortOnce = (llvm::sort(Infos, CmpInfo), true);
21652
(void)SortOnce;
21653
21654
const Info *F = llvm::lower_bound(Infos, Info{BuiltinID, 0, 0}, CmpInfo);
21655
if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
21656
return {Intrinsic::not_intrinsic, 0};
21657
21658
return {F->IntrinsicID, F->VecLen};
21659
}
21660
21661
Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
21662
const CallExpr *E) {
21663
Intrinsic::ID ID;
21664
unsigned VecLen;
21665
std::tie(ID, VecLen) = getIntrinsicForHexagonNonClangBuiltin(BuiltinID);
21666
21667
auto MakeCircOp = [this, E](unsigned IntID, bool IsLoad) {
21668
// The base pointer is passed by address, so it needs to be loaded.
21669
Address A = EmitPointerWithAlignment(E->getArg(0));
21670
Address BP = Address(A.emitRawPointer(*this), Int8PtrTy, A.getAlignment());
21671
llvm::Value *Base = Builder.CreateLoad(BP);
21672
// The treatment of both loads and stores is the same: the arguments for
21673
// the builtin are the same as the arguments for the intrinsic.
21674
// Load:
21675
// builtin(Base, Inc, Mod, Start) -> intr(Base, Inc, Mod, Start)
21676
// builtin(Base, Mod, Start) -> intr(Base, Mod, Start)
21677
// Store:
21678
// builtin(Base, Inc, Mod, Val, Start) -> intr(Base, Inc, Mod, Val, Start)
21679
// builtin(Base, Mod, Val, Start) -> intr(Base, Mod, Val, Start)
21680
SmallVector<llvm::Value*,5> Ops = { Base };
21681
for (unsigned i = 1, e = E->getNumArgs(); i != e; ++i)
21682
Ops.push_back(EmitScalarExpr(E->getArg(i)));
21683
21684
llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
21685
// The load intrinsics generate two results (Value, NewBase), stores
21686
// generate one (NewBase). The new base address needs to be stored.
21687
llvm::Value *NewBase = IsLoad ? Builder.CreateExtractValue(Result, 1)
21688
: Result;
21689
llvm::Value *LV = EmitScalarExpr(E->getArg(0));
21690
Address Dest = EmitPointerWithAlignment(E->getArg(0));
21691
llvm::Value *RetVal =
21692
Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
21693
if (IsLoad)
21694
RetVal = Builder.CreateExtractValue(Result, 0);
21695
return RetVal;
21696
};
21697
21698
// Handle the conversion of bit-reverse load intrinsics to bit code.
21699
// The intrinsic call after this function only reads from memory and the
21700
// write to memory is dealt by the store instruction.
21701
auto MakeBrevLd = [this, E](unsigned IntID, llvm::Type *DestTy) {
21702
// The intrinsic generates one result, which is the new value for the base
21703
// pointer. It needs to be returned. The result of the load instruction is
21704
// passed to intrinsic by address, so the value needs to be stored.
21705
llvm::Value *BaseAddress = EmitScalarExpr(E->getArg(0));
21706
21707
// Expressions like &(*pt++) will be incremented per evaluation.
21708
// EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
21709
// per call.
21710
Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
21711
DestAddr = DestAddr.withElementType(Int8Ty);
21712
llvm::Value *DestAddress = DestAddr.emitRawPointer(*this);
21713
21714
// Operands are Base, Dest, Modifier.
21715
// The intrinsic format in LLVM IR is defined as
21716
// { ValueType, i8* } (i8*, i32).
21717
llvm::Value *Result = Builder.CreateCall(
21718
CGM.getIntrinsic(IntID), {BaseAddress, EmitScalarExpr(E->getArg(2))});
21719
21720
// The value needs to be stored as the variable is passed by reference.
21721
llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
21722
21723
// The store needs to be truncated to fit the destination type.
21724
// While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
21725
// to be handled with stores of respective destination type.
21726
DestVal = Builder.CreateTrunc(DestVal, DestTy);
21727
21728
Builder.CreateAlignedStore(DestVal, DestAddress, DestAddr.getAlignment());
21729
// The updated value of the base pointer is returned.
21730
return Builder.CreateExtractValue(Result, 1);
21731
};
21732
21733
auto V2Q = [this, VecLen] (llvm::Value *Vec) {
21734
Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandvrt_128B
21735
: Intrinsic::hexagon_V6_vandvrt;
21736
return Builder.CreateCall(CGM.getIntrinsic(ID),
21737
{Vec, Builder.getInt32(-1)});
21738
};
21739
auto Q2V = [this, VecLen] (llvm::Value *Pred) {
21740
Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandqrt_128B
21741
: Intrinsic::hexagon_V6_vandqrt;
21742
return Builder.CreateCall(CGM.getIntrinsic(ID),
21743
{Pred, Builder.getInt32(-1)});
21744
};
21745
21746
switch (BuiltinID) {
21747
// These intrinsics return a tuple {Vector, VectorPred} in LLVM IR,
21748
// and the corresponding C/C++ builtins use loads/stores to update
21749
// the predicate.
21750
case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
21751
case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B:
21752
case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
21753
case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
21754
// Get the type from the 0-th argument.
21755
llvm::Type *VecType = ConvertType(E->getArg(0)->getType());
21756
Address PredAddr =
21757
EmitPointerWithAlignment(E->getArg(2)).withElementType(VecType);
21758
llvm::Value *PredIn = V2Q(Builder.CreateLoad(PredAddr));
21759
llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID),
21760
{EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), PredIn});
21761
21762
llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1);
21763
Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.emitRawPointer(*this),
21764
PredAddr.getAlignment());
21765
return Builder.CreateExtractValue(Result, 0);
21766
}
21767
// These are identical to the builtins above, except they don't consume
21768
// input carry, only generate carry-out. Since they still produce two
21769
// outputs, generate the store of the predicate, but no load.
21770
case Hexagon::BI__builtin_HEXAGON_V6_vaddcarryo:
21771
case Hexagon::BI__builtin_HEXAGON_V6_vaddcarryo_128B:
21772
case Hexagon::BI__builtin_HEXAGON_V6_vsubcarryo:
21773
case Hexagon::BI__builtin_HEXAGON_V6_vsubcarryo_128B: {
21774
// Get the type from the 0-th argument.
21775
llvm::Type *VecType = ConvertType(E->getArg(0)->getType());
21776
Address PredAddr =
21777
EmitPointerWithAlignment(E->getArg(2)).withElementType(VecType);
21778
llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID),
21779
{EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1))});
21780
21781
llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1);
21782
Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.emitRawPointer(*this),
21783
PredAddr.getAlignment());
21784
return Builder.CreateExtractValue(Result, 0);
21785
}
21786
21787
case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstoreq:
21788
case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorenq:
21789
case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentq:
21790
case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentnq:
21791
case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstoreq_128B:
21792
case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorenq_128B:
21793
case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentq_128B:
21794
case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentnq_128B: {
21795
SmallVector<llvm::Value*,4> Ops;
21796
const Expr *PredOp = E->getArg(0);
21797
// There will be an implicit cast to a boolean vector. Strip it.
21798
if (auto *Cast = dyn_cast<ImplicitCastExpr>(PredOp)) {
21799
if (Cast->getCastKind() == CK_BitCast)
21800
PredOp = Cast->getSubExpr();
21801
Ops.push_back(V2Q(EmitScalarExpr(PredOp)));
21802
}
21803
for (int i = 1, e = E->getNumArgs(); i != e; ++i)
21804
Ops.push_back(EmitScalarExpr(E->getArg(i)));
21805
return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
21806
}
21807
21808
case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
21809
case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
21810
case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
21811
case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
21812
case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
21813
case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
21814
case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
21815
case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
21816
case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
21817
case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
21818
case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
21819
case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
21820
return MakeCircOp(ID, /*IsLoad=*/true);
21821
case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
21822
case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
21823
case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
21824
case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
21825
case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
21826
case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
21827
case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
21828
case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
21829
case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
21830
case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
21831
return MakeCircOp(ID, /*IsLoad=*/false);
21832
case Hexagon::BI__builtin_brev_ldub:
21833
return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
21834
case Hexagon::BI__builtin_brev_ldb:
21835
return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
21836
case Hexagon::BI__builtin_brev_lduh:
21837
return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
21838
case Hexagon::BI__builtin_brev_ldh:
21839
return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
21840
case Hexagon::BI__builtin_brev_ldw:
21841
return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
21842
case Hexagon::BI__builtin_brev_ldd:
21843
return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
21844
} // switch
21845
21846
return nullptr;
21847
}
21848
21849
Value *CodeGenFunction::EmitRISCVBuiltinExpr(unsigned BuiltinID,
21850
const CallExpr *E,
21851
ReturnValueSlot ReturnValue) {
21852
SmallVector<Value *, 4> Ops;
21853
llvm::Type *ResultType = ConvertType(E->getType());
21854
21855
// Find out if any arguments are required to be integer constant expressions.
21856
unsigned ICEArguments = 0;
21857
ASTContext::GetBuiltinTypeError Error;
21858
getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
21859
if (Error == ASTContext::GE_Missing_type) {
21860
// Vector intrinsics don't have a type string.
21861
assert(BuiltinID >= clang::RISCV::FirstRVVBuiltin &&
21862
BuiltinID <= clang::RISCV::LastRVVBuiltin);
21863
ICEArguments = 0;
21864
if (BuiltinID == RISCVVector::BI__builtin_rvv_vget_v ||
21865
BuiltinID == RISCVVector::BI__builtin_rvv_vset_v)
21866
ICEArguments = 1 << 1;
21867
} else {
21868
assert(Error == ASTContext::GE_None && "Unexpected error");
21869
}
21870
21871
if (BuiltinID == RISCV::BI__builtin_riscv_ntl_load)
21872
ICEArguments |= (1 << 1);
21873
if (BuiltinID == RISCV::BI__builtin_riscv_ntl_store)
21874
ICEArguments |= (1 << 2);
21875
21876
for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
21877
// Handle aggregate argument, namely RVV tuple types in segment load/store
21878
if (hasAggregateEvaluationKind(E->getArg(i)->getType())) {
21879
LValue L = EmitAggExprToLValue(E->getArg(i));
21880
llvm::Value *AggValue = Builder.CreateLoad(L.getAddress());
21881
Ops.push_back(AggValue);
21882
continue;
21883
}
21884
Ops.push_back(EmitScalarOrConstFoldImmArg(ICEArguments, i, E));
21885
}
21886
21887
Intrinsic::ID ID = Intrinsic::not_intrinsic;
21888
unsigned NF = 1;
21889
// The 0th bit simulates the `vta` of RVV
21890
// The 1st bit simulates the `vma` of RVV
21891
constexpr unsigned RVV_VTA = 0x1;
21892
constexpr unsigned RVV_VMA = 0x2;
21893
int PolicyAttrs = 0;
21894
bool IsMasked = false;
21895
21896
// Required for overloaded intrinsics.
21897
llvm::SmallVector<llvm::Type *, 2> IntrinsicTypes;
21898
switch (BuiltinID) {
21899
default: llvm_unreachable("unexpected builtin ID");
21900
case RISCV::BI__builtin_riscv_orc_b_32:
21901
case RISCV::BI__builtin_riscv_orc_b_64:
21902
case RISCV::BI__builtin_riscv_clz_32:
21903
case RISCV::BI__builtin_riscv_clz_64:
21904
case RISCV::BI__builtin_riscv_ctz_32:
21905
case RISCV::BI__builtin_riscv_ctz_64:
21906
case RISCV::BI__builtin_riscv_clmul_32:
21907
case RISCV::BI__builtin_riscv_clmul_64:
21908
case RISCV::BI__builtin_riscv_clmulh_32:
21909
case RISCV::BI__builtin_riscv_clmulh_64:
21910
case RISCV::BI__builtin_riscv_clmulr_32:
21911
case RISCV::BI__builtin_riscv_clmulr_64:
21912
case RISCV::BI__builtin_riscv_xperm4_32:
21913
case RISCV::BI__builtin_riscv_xperm4_64:
21914
case RISCV::BI__builtin_riscv_xperm8_32:
21915
case RISCV::BI__builtin_riscv_xperm8_64:
21916
case RISCV::BI__builtin_riscv_brev8_32:
21917
case RISCV::BI__builtin_riscv_brev8_64:
21918
case RISCV::BI__builtin_riscv_zip_32:
21919
case RISCV::BI__builtin_riscv_unzip_32: {
21920
switch (BuiltinID) {
21921
default: llvm_unreachable("unexpected builtin ID");
21922
// Zbb
21923
case RISCV::BI__builtin_riscv_orc_b_32:
21924
case RISCV::BI__builtin_riscv_orc_b_64:
21925
ID = Intrinsic::riscv_orc_b;
21926
break;
21927
case RISCV::BI__builtin_riscv_clz_32:
21928
case RISCV::BI__builtin_riscv_clz_64: {
21929
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
21930
Value *Result = Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
21931
if (Result->getType() != ResultType)
21932
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
21933
"cast");
21934
return Result;
21935
}
21936
case RISCV::BI__builtin_riscv_ctz_32:
21937
case RISCV::BI__builtin_riscv_ctz_64: {
21938
Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
21939
Value *Result = Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
21940
if (Result->getType() != ResultType)
21941
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
21942
"cast");
21943
return Result;
21944
}
21945
21946
// Zbc
21947
case RISCV::BI__builtin_riscv_clmul_32:
21948
case RISCV::BI__builtin_riscv_clmul_64:
21949
ID = Intrinsic::riscv_clmul;
21950
break;
21951
case RISCV::BI__builtin_riscv_clmulh_32:
21952
case RISCV::BI__builtin_riscv_clmulh_64:
21953
ID = Intrinsic::riscv_clmulh;
21954
break;
21955
case RISCV::BI__builtin_riscv_clmulr_32:
21956
case RISCV::BI__builtin_riscv_clmulr_64:
21957
ID = Intrinsic::riscv_clmulr;
21958
break;
21959
21960
// Zbkx
21961
case RISCV::BI__builtin_riscv_xperm8_32:
21962
case RISCV::BI__builtin_riscv_xperm8_64:
21963
ID = Intrinsic::riscv_xperm8;
21964
break;
21965
case RISCV::BI__builtin_riscv_xperm4_32:
21966
case RISCV::BI__builtin_riscv_xperm4_64:
21967
ID = Intrinsic::riscv_xperm4;
21968
break;
21969
21970
// Zbkb
21971
case RISCV::BI__builtin_riscv_brev8_32:
21972
case RISCV::BI__builtin_riscv_brev8_64:
21973
ID = Intrinsic::riscv_brev8;
21974
break;
21975
case RISCV::BI__builtin_riscv_zip_32:
21976
ID = Intrinsic::riscv_zip;
21977
break;
21978
case RISCV::BI__builtin_riscv_unzip_32:
21979
ID = Intrinsic::riscv_unzip;
21980
break;
21981
}
21982
21983
IntrinsicTypes = {ResultType};
21984
break;
21985
}
21986
21987
// Zk builtins
21988
21989
// Zknh
21990
case RISCV::BI__builtin_riscv_sha256sig0:
21991
ID = Intrinsic::riscv_sha256sig0;
21992
break;
21993
case RISCV::BI__builtin_riscv_sha256sig1:
21994
ID = Intrinsic::riscv_sha256sig1;
21995
break;
21996
case RISCV::BI__builtin_riscv_sha256sum0:
21997
ID = Intrinsic::riscv_sha256sum0;
21998
break;
21999
case RISCV::BI__builtin_riscv_sha256sum1:
22000
ID = Intrinsic::riscv_sha256sum1;
22001
break;
22002
22003
// Zksed
22004
case RISCV::BI__builtin_riscv_sm4ks:
22005
ID = Intrinsic::riscv_sm4ks;
22006
break;
22007
case RISCV::BI__builtin_riscv_sm4ed:
22008
ID = Intrinsic::riscv_sm4ed;
22009
break;
22010
22011
// Zksh
22012
case RISCV::BI__builtin_riscv_sm3p0:
22013
ID = Intrinsic::riscv_sm3p0;
22014
break;
22015
case RISCV::BI__builtin_riscv_sm3p1:
22016
ID = Intrinsic::riscv_sm3p1;
22017
break;
22018
22019
// Zihintntl
22020
case RISCV::BI__builtin_riscv_ntl_load: {
22021
llvm::Type *ResTy = ConvertType(E->getType());
22022
unsigned DomainVal = 5; // Default __RISCV_NTLH_ALL
22023
if (Ops.size() == 2)
22024
DomainVal = cast<ConstantInt>(Ops[1])->getZExtValue();
22025
22026
llvm::MDNode *RISCVDomainNode = llvm::MDNode::get(
22027
getLLVMContext(),
22028
llvm::ConstantAsMetadata::get(Builder.getInt32(DomainVal)));
22029
llvm::MDNode *NontemporalNode = llvm::MDNode::get(
22030
getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
22031
22032
int Width;
22033
if(ResTy->isScalableTy()) {
22034
const ScalableVectorType *SVTy = cast<ScalableVectorType>(ResTy);
22035
llvm::Type *ScalarTy = ResTy->getScalarType();
22036
Width = ScalarTy->getPrimitiveSizeInBits() *
22037
SVTy->getElementCount().getKnownMinValue();
22038
} else
22039
Width = ResTy->getPrimitiveSizeInBits();
22040
LoadInst *Load = Builder.CreateLoad(
22041
Address(Ops[0], ResTy, CharUnits::fromQuantity(Width / 8)));
22042
22043
Load->setMetadata(llvm::LLVMContext::MD_nontemporal, NontemporalNode);
22044
Load->setMetadata(CGM.getModule().getMDKindID("riscv-nontemporal-domain"),
22045
RISCVDomainNode);
22046
22047
return Load;
22048
}
22049
case RISCV::BI__builtin_riscv_ntl_store: {
22050
unsigned DomainVal = 5; // Default __RISCV_NTLH_ALL
22051
if (Ops.size() == 3)
22052
DomainVal = cast<ConstantInt>(Ops[2])->getZExtValue();
22053
22054
llvm::MDNode *RISCVDomainNode = llvm::MDNode::get(
22055
getLLVMContext(),
22056
llvm::ConstantAsMetadata::get(Builder.getInt32(DomainVal)));
22057
llvm::MDNode *NontemporalNode = llvm::MDNode::get(
22058
getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
22059
22060
StoreInst *Store = Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
22061
Store->setMetadata(llvm::LLVMContext::MD_nontemporal, NontemporalNode);
22062
Store->setMetadata(CGM.getModule().getMDKindID("riscv-nontemporal-domain"),
22063
RISCVDomainNode);
22064
22065
return Store;
22066
}
22067
22068
// Vector builtins are handled from here.
22069
#include "clang/Basic/riscv_vector_builtin_cg.inc"
22070
// SiFive Vector builtins are handled from here.
22071
#include "clang/Basic/riscv_sifive_vector_builtin_cg.inc"
22072
}
22073
22074
assert(ID != Intrinsic::not_intrinsic);
22075
22076
llvm::Function *F = CGM.getIntrinsic(ID, IntrinsicTypes);
22077
return Builder.CreateCall(F, Ops, "");
22078
}
22079
22080