Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/clang/lib/CodeGen/CGExprCXX.cpp
35233 views
1
//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This contains code dealing with code generation of C++ expressions
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "CGCUDARuntime.h"
14
#include "CGCXXABI.h"
15
#include "CGDebugInfo.h"
16
#include "CGObjCRuntime.h"
17
#include "CodeGenFunction.h"
18
#include "ConstantEmitter.h"
19
#include "TargetInfo.h"
20
#include "clang/Basic/CodeGenOptions.h"
21
#include "clang/CodeGen/CGFunctionInfo.h"
22
#include "llvm/IR/Intrinsics.h"
23
24
using namespace clang;
25
using namespace CodeGen;
26
27
namespace {
28
struct MemberCallInfo {
29
RequiredArgs ReqArgs;
30
// Number of prefix arguments for the call. Ignores the `this` pointer.
31
unsigned PrefixSize;
32
};
33
}
34
35
static MemberCallInfo
36
commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, GlobalDecl GD,
37
llvm::Value *This, llvm::Value *ImplicitParam,
38
QualType ImplicitParamTy, const CallExpr *CE,
39
CallArgList &Args, CallArgList *RtlArgs) {
40
auto *MD = cast<CXXMethodDecl>(GD.getDecl());
41
42
assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
43
isa<CXXOperatorCallExpr>(CE));
44
assert(MD->isImplicitObjectMemberFunction() &&
45
"Trying to emit a member or operator call expr on a static method!");
46
47
// Push the this ptr.
48
const CXXRecordDecl *RD =
49
CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(GD);
50
Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
51
52
// If there is an implicit parameter (e.g. VTT), emit it.
53
if (ImplicitParam) {
54
Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
55
}
56
57
const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
58
RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
59
unsigned PrefixSize = Args.size() - 1;
60
61
// And the rest of the call args.
62
if (RtlArgs) {
63
// Special case: if the caller emitted the arguments right-to-left already
64
// (prior to emitting the *this argument), we're done. This happens for
65
// assignment operators.
66
Args.addFrom(*RtlArgs);
67
} else if (CE) {
68
// Special case: skip first argument of CXXOperatorCall (it is "this").
69
unsigned ArgsToSkip = 0;
70
if (const auto *Op = dyn_cast<CXXOperatorCallExpr>(CE)) {
71
if (const auto *M = dyn_cast<CXXMethodDecl>(Op->getCalleeDecl()))
72
ArgsToSkip =
73
static_cast<unsigned>(!M->isExplicitObjectMemberFunction());
74
}
75
CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
76
CE->getDirectCallee());
77
} else {
78
assert(
79
FPT->getNumParams() == 0 &&
80
"No CallExpr specified for function with non-zero number of arguments");
81
}
82
return {required, PrefixSize};
83
}
84
85
RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
86
const CXXMethodDecl *MD, const CGCallee &Callee,
87
ReturnValueSlot ReturnValue,
88
llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
89
const CallExpr *CE, CallArgList *RtlArgs) {
90
const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
91
CallArgList Args;
92
MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
93
*this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
94
auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
95
Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
96
return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
97
CE && CE == MustTailCall,
98
CE ? CE->getExprLoc() : SourceLocation());
99
}
100
101
RValue CodeGenFunction::EmitCXXDestructorCall(
102
GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy,
103
llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) {
104
const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl());
105
106
assert(!ThisTy.isNull());
107
assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() &&
108
"Pointer/Object mixup");
109
110
LangAS SrcAS = ThisTy.getAddressSpace();
111
LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace();
112
if (SrcAS != DstAS) {
113
QualType DstTy = DtorDecl->getThisType();
114
llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy);
115
This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS,
116
NewType);
117
}
118
119
CallArgList Args;
120
commonEmitCXXMemberOrOperatorCall(*this, Dtor, This, ImplicitParam,
121
ImplicitParamTy, CE, Args, nullptr);
122
return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
123
ReturnValueSlot(), Args, nullptr, CE && CE == MustTailCall,
124
CE ? CE->getExprLoc() : SourceLocation{});
125
}
126
127
RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
128
const CXXPseudoDestructorExpr *E) {
129
QualType DestroyedType = E->getDestroyedType();
130
if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
131
// Automatic Reference Counting:
132
// If the pseudo-expression names a retainable object with weak or
133
// strong lifetime, the object shall be released.
134
Expr *BaseExpr = E->getBase();
135
Address BaseValue = Address::invalid();
136
Qualifiers BaseQuals;
137
138
// If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
139
if (E->isArrow()) {
140
BaseValue = EmitPointerWithAlignment(BaseExpr);
141
const auto *PTy = BaseExpr->getType()->castAs<PointerType>();
142
BaseQuals = PTy->getPointeeType().getQualifiers();
143
} else {
144
LValue BaseLV = EmitLValue(BaseExpr);
145
BaseValue = BaseLV.getAddress();
146
QualType BaseTy = BaseExpr->getType();
147
BaseQuals = BaseTy.getQualifiers();
148
}
149
150
switch (DestroyedType.getObjCLifetime()) {
151
case Qualifiers::OCL_None:
152
case Qualifiers::OCL_ExplicitNone:
153
case Qualifiers::OCL_Autoreleasing:
154
break;
155
156
case Qualifiers::OCL_Strong:
157
EmitARCRelease(Builder.CreateLoad(BaseValue,
158
DestroyedType.isVolatileQualified()),
159
ARCPreciseLifetime);
160
break;
161
162
case Qualifiers::OCL_Weak:
163
EmitARCDestroyWeak(BaseValue);
164
break;
165
}
166
} else {
167
// C++ [expr.pseudo]p1:
168
// The result shall only be used as the operand for the function call
169
// operator (), and the result of such a call has type void. The only
170
// effect is the evaluation of the postfix-expression before the dot or
171
// arrow.
172
EmitIgnoredExpr(E->getBase());
173
}
174
175
return RValue::get(nullptr);
176
}
177
178
static CXXRecordDecl *getCXXRecord(const Expr *E) {
179
QualType T = E->getType();
180
if (const PointerType *PTy = T->getAs<PointerType>())
181
T = PTy->getPointeeType();
182
const RecordType *Ty = T->castAs<RecordType>();
183
return cast<CXXRecordDecl>(Ty->getDecl());
184
}
185
186
// Note: This function also emit constructor calls to support a MSVC
187
// extensions allowing explicit constructor function call.
188
RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
189
ReturnValueSlot ReturnValue) {
190
const Expr *callee = CE->getCallee()->IgnoreParens();
191
192
if (isa<BinaryOperator>(callee))
193
return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
194
195
const MemberExpr *ME = cast<MemberExpr>(callee);
196
const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
197
198
if (MD->isStatic()) {
199
// The method is static, emit it as we would a regular call.
200
CGCallee callee =
201
CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
202
return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
203
ReturnValue);
204
}
205
206
bool HasQualifier = ME->hasQualifier();
207
NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
208
bool IsArrow = ME->isArrow();
209
const Expr *Base = ME->getBase();
210
211
return EmitCXXMemberOrOperatorMemberCallExpr(
212
CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
213
}
214
215
RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
216
const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
217
bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
218
const Expr *Base) {
219
assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
220
221
// Compute the object pointer.
222
bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
223
224
const CXXMethodDecl *DevirtualizedMethod = nullptr;
225
if (CanUseVirtualCall &&
226
MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
227
const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
228
DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
229
assert(DevirtualizedMethod);
230
const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
231
const Expr *Inner = Base->IgnoreParenBaseCasts();
232
if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
233
MD->getReturnType().getCanonicalType())
234
// If the return types are not the same, this might be a case where more
235
// code needs to run to compensate for it. For example, the derived
236
// method might return a type that inherits form from the return
237
// type of MD and has a prefix.
238
// For now we just avoid devirtualizing these covariant cases.
239
DevirtualizedMethod = nullptr;
240
else if (getCXXRecord(Inner) == DevirtualizedClass)
241
// If the class of the Inner expression is where the dynamic method
242
// is defined, build the this pointer from it.
243
Base = Inner;
244
else if (getCXXRecord(Base) != DevirtualizedClass) {
245
// If the method is defined in a class that is not the best dynamic
246
// one or the one of the full expression, we would have to build
247
// a derived-to-base cast to compute the correct this pointer, but
248
// we don't have support for that yet, so do a virtual call.
249
DevirtualizedMethod = nullptr;
250
}
251
}
252
253
bool TrivialForCodegen =
254
MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion());
255
bool TrivialAssignment =
256
TrivialForCodegen &&
257
(MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
258
!MD->getParent()->mayInsertExtraPadding();
259
260
// C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
261
// operator before the LHS.
262
CallArgList RtlArgStorage;
263
CallArgList *RtlArgs = nullptr;
264
LValue TrivialAssignmentRHS;
265
if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
266
if (OCE->isAssignmentOp()) {
267
if (TrivialAssignment) {
268
TrivialAssignmentRHS = EmitLValue(CE->getArg(1));
269
} else {
270
RtlArgs = &RtlArgStorage;
271
EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
272
drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
273
/*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
274
}
275
}
276
}
277
278
LValue This;
279
if (IsArrow) {
280
LValueBaseInfo BaseInfo;
281
TBAAAccessInfo TBAAInfo;
282
Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
283
This = MakeAddrLValue(ThisValue, Base->getType()->getPointeeType(),
284
BaseInfo, TBAAInfo);
285
} else {
286
This = EmitLValue(Base);
287
}
288
289
if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
290
// This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
291
// constructing a new complete object of type Ctor.
292
assert(!RtlArgs);
293
assert(ReturnValue.isNull() && "Constructor shouldn't have return value");
294
CallArgList Args;
295
commonEmitCXXMemberOrOperatorCall(
296
*this, {Ctor, Ctor_Complete}, This.getPointer(*this),
297
/*ImplicitParam=*/nullptr,
298
/*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
299
300
EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
301
/*Delegating=*/false, This.getAddress(), Args,
302
AggValueSlot::DoesNotOverlap, CE->getExprLoc(),
303
/*NewPointerIsChecked=*/false);
304
return RValue::get(nullptr);
305
}
306
307
if (TrivialForCodegen) {
308
if (isa<CXXDestructorDecl>(MD))
309
return RValue::get(nullptr);
310
311
if (TrivialAssignment) {
312
// We don't like to generate the trivial copy/move assignment operator
313
// when it isn't necessary; just produce the proper effect here.
314
// It's important that we use the result of EmitLValue here rather than
315
// emitting call arguments, in order to preserve TBAA information from
316
// the RHS.
317
LValue RHS = isa<CXXOperatorCallExpr>(CE)
318
? TrivialAssignmentRHS
319
: EmitLValue(*CE->arg_begin());
320
EmitAggregateAssign(This, RHS, CE->getType());
321
return RValue::get(This.getPointer(*this));
322
}
323
324
assert(MD->getParent()->mayInsertExtraPadding() &&
325
"unknown trivial member function");
326
}
327
328
// Compute the function type we're calling.
329
const CXXMethodDecl *CalleeDecl =
330
DevirtualizedMethod ? DevirtualizedMethod : MD;
331
const CGFunctionInfo *FInfo = nullptr;
332
if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
333
FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
334
GlobalDecl(Dtor, Dtor_Complete));
335
else
336
FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
337
338
llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
339
340
// C++11 [class.mfct.non-static]p2:
341
// If a non-static member function of a class X is called for an object that
342
// is not of type X, or of a type derived from X, the behavior is undefined.
343
SourceLocation CallLoc;
344
ASTContext &C = getContext();
345
if (CE)
346
CallLoc = CE->getExprLoc();
347
348
SanitizerSet SkippedChecks;
349
if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
350
auto *IOA = CMCE->getImplicitObjectArgument();
351
bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
352
if (IsImplicitObjectCXXThis)
353
SkippedChecks.set(SanitizerKind::Alignment, true);
354
if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
355
SkippedChecks.set(SanitizerKind::Null, true);
356
}
357
358
if (sanitizePerformTypeCheck())
359
EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc,
360
This.emitRawPointer(*this),
361
C.getRecordType(CalleeDecl->getParent()),
362
/*Alignment=*/CharUnits::Zero(), SkippedChecks);
363
364
// C++ [class.virtual]p12:
365
// Explicit qualification with the scope operator (5.1) suppresses the
366
// virtual call mechanism.
367
//
368
// We also don't emit a virtual call if the base expression has a record type
369
// because then we know what the type is.
370
bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
371
372
if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
373
assert(CE->arg_begin() == CE->arg_end() &&
374
"Destructor shouldn't have explicit parameters");
375
assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
376
if (UseVirtualCall) {
377
CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete,
378
This.getAddress(),
379
cast<CXXMemberCallExpr>(CE));
380
} else {
381
GlobalDecl GD(Dtor, Dtor_Complete);
382
CGCallee Callee;
383
if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
384
Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
385
else if (!DevirtualizedMethod)
386
Callee =
387
CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD);
388
else {
389
Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD);
390
}
391
392
QualType ThisTy =
393
IsArrow ? Base->getType()->getPointeeType() : Base->getType();
394
EmitCXXDestructorCall(GD, Callee, This.getPointer(*this), ThisTy,
395
/*ImplicitParam=*/nullptr,
396
/*ImplicitParamTy=*/QualType(), CE);
397
}
398
return RValue::get(nullptr);
399
}
400
401
// FIXME: Uses of 'MD' past this point need to be audited. We may need to use
402
// 'CalleeDecl' instead.
403
404
CGCallee Callee;
405
if (UseVirtualCall) {
406
Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty);
407
} else {
408
if (SanOpts.has(SanitizerKind::CFINVCall) &&
409
MD->getParent()->isDynamicClass()) {
410
llvm::Value *VTable;
411
const CXXRecordDecl *RD;
412
std::tie(VTable, RD) = CGM.getCXXABI().LoadVTablePtr(
413
*this, This.getAddress(), CalleeDecl->getParent());
414
EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
415
}
416
417
if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
418
Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
419
else if (!DevirtualizedMethod)
420
Callee =
421
CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
422
else {
423
Callee =
424
CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
425
GlobalDecl(DevirtualizedMethod));
426
}
427
}
428
429
if (MD->isVirtual()) {
430
Address NewThisAddr =
431
CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
432
*this, CalleeDecl, This.getAddress(), UseVirtualCall);
433
This.setAddress(NewThisAddr);
434
}
435
436
return EmitCXXMemberOrOperatorCall(
437
CalleeDecl, Callee, ReturnValue, This.getPointer(*this),
438
/*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
439
}
440
441
RValue
442
CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
443
ReturnValueSlot ReturnValue) {
444
const BinaryOperator *BO =
445
cast<BinaryOperator>(E->getCallee()->IgnoreParens());
446
const Expr *BaseExpr = BO->getLHS();
447
const Expr *MemFnExpr = BO->getRHS();
448
449
const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>();
450
const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>();
451
const auto *RD =
452
cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl());
453
454
// Emit the 'this' pointer.
455
Address This = Address::invalid();
456
if (BO->getOpcode() == BO_PtrMemI)
457
This = EmitPointerWithAlignment(BaseExpr, nullptr, nullptr, KnownNonNull);
458
else
459
This = EmitLValue(BaseExpr, KnownNonNull).getAddress();
460
461
EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.emitRawPointer(*this),
462
QualType(MPT->getClass(), 0));
463
464
// Get the member function pointer.
465
llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
466
467
// Ask the ABI to load the callee. Note that This is modified.
468
llvm::Value *ThisPtrForCall = nullptr;
469
CGCallee Callee =
470
CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
471
ThisPtrForCall, MemFnPtr, MPT);
472
473
CallArgList Args;
474
475
QualType ThisType =
476
getContext().getPointerType(getContext().getTagDeclType(RD));
477
478
// Push the this ptr.
479
Args.add(RValue::get(ThisPtrForCall), ThisType);
480
481
RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
482
483
// And the rest of the call args
484
EmitCallArgs(Args, FPT, E->arguments());
485
return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
486
/*PrefixSize=*/0),
487
Callee, ReturnValue, Args, nullptr, E == MustTailCall,
488
E->getExprLoc());
489
}
490
491
RValue
492
CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
493
const CXXMethodDecl *MD,
494
ReturnValueSlot ReturnValue) {
495
assert(MD->isImplicitObjectMemberFunction() &&
496
"Trying to emit a member call expr on a static method!");
497
return EmitCXXMemberOrOperatorMemberCallExpr(
498
E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
499
/*IsArrow=*/false, E->getArg(0));
500
}
501
502
RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
503
ReturnValueSlot ReturnValue) {
504
return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
505
}
506
507
static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
508
Address DestPtr,
509
const CXXRecordDecl *Base) {
510
if (Base->isEmpty())
511
return;
512
513
DestPtr = DestPtr.withElementType(CGF.Int8Ty);
514
515
const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
516
CharUnits NVSize = Layout.getNonVirtualSize();
517
518
// We cannot simply zero-initialize the entire base sub-object if vbptrs are
519
// present, they are initialized by the most derived class before calling the
520
// constructor.
521
SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
522
Stores.emplace_back(CharUnits::Zero(), NVSize);
523
524
// Each store is split by the existence of a vbptr.
525
CharUnits VBPtrWidth = CGF.getPointerSize();
526
std::vector<CharUnits> VBPtrOffsets =
527
CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
528
for (CharUnits VBPtrOffset : VBPtrOffsets) {
529
// Stop before we hit any virtual base pointers located in virtual bases.
530
if (VBPtrOffset >= NVSize)
531
break;
532
std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
533
CharUnits LastStoreOffset = LastStore.first;
534
CharUnits LastStoreSize = LastStore.second;
535
536
CharUnits SplitBeforeOffset = LastStoreOffset;
537
CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
538
assert(!SplitBeforeSize.isNegative() && "negative store size!");
539
if (!SplitBeforeSize.isZero())
540
Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
541
542
CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
543
CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
544
assert(!SplitAfterSize.isNegative() && "negative store size!");
545
if (!SplitAfterSize.isZero())
546
Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
547
}
548
549
// If the type contains a pointer to data member we can't memset it to zero.
550
// Instead, create a null constant and copy it to the destination.
551
// TODO: there are other patterns besides zero that we can usefully memset,
552
// like -1, which happens to be the pattern used by member-pointers.
553
// TODO: isZeroInitializable can be over-conservative in the case where a
554
// virtual base contains a member pointer.
555
llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
556
if (!NullConstantForBase->isNullValue()) {
557
llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
558
CGF.CGM.getModule(), NullConstantForBase->getType(),
559
/*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
560
NullConstantForBase, Twine());
561
562
CharUnits Align =
563
std::max(Layout.getNonVirtualAlignment(), DestPtr.getAlignment());
564
NullVariable->setAlignment(Align.getAsAlign());
565
566
Address SrcPtr(NullVariable, CGF.Int8Ty, Align);
567
568
// Get and call the appropriate llvm.memcpy overload.
569
for (std::pair<CharUnits, CharUnits> Store : Stores) {
570
CharUnits StoreOffset = Store.first;
571
CharUnits StoreSize = Store.second;
572
llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
573
CGF.Builder.CreateMemCpy(
574
CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
575
CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
576
StoreSizeVal);
577
}
578
579
// Otherwise, just memset the whole thing to zero. This is legal
580
// because in LLVM, all default initializers (other than the ones we just
581
// handled above) are guaranteed to have a bit pattern of all zeros.
582
} else {
583
for (std::pair<CharUnits, CharUnits> Store : Stores) {
584
CharUnits StoreOffset = Store.first;
585
CharUnits StoreSize = Store.second;
586
llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
587
CGF.Builder.CreateMemSet(
588
CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
589
CGF.Builder.getInt8(0), StoreSizeVal);
590
}
591
}
592
}
593
594
void
595
CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
596
AggValueSlot Dest) {
597
assert(!Dest.isIgnored() && "Must have a destination!");
598
const CXXConstructorDecl *CD = E->getConstructor();
599
600
// If we require zero initialization before (or instead of) calling the
601
// constructor, as can be the case with a non-user-provided default
602
// constructor, emit the zero initialization now, unless destination is
603
// already zeroed.
604
if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
605
switch (E->getConstructionKind()) {
606
case CXXConstructionKind::Delegating:
607
case CXXConstructionKind::Complete:
608
EmitNullInitialization(Dest.getAddress(), E->getType());
609
break;
610
case CXXConstructionKind::VirtualBase:
611
case CXXConstructionKind::NonVirtualBase:
612
EmitNullBaseClassInitialization(*this, Dest.getAddress(),
613
CD->getParent());
614
break;
615
}
616
}
617
618
// If this is a call to a trivial default constructor, do nothing.
619
if (CD->isTrivial() && CD->isDefaultConstructor())
620
return;
621
622
// Elide the constructor if we're constructing from a temporary.
623
if (getLangOpts().ElideConstructors && E->isElidable()) {
624
// FIXME: This only handles the simplest case, where the source object
625
// is passed directly as the first argument to the constructor.
626
// This should also handle stepping though implicit casts and
627
// conversion sequences which involve two steps, with a
628
// conversion operator followed by a converting constructor.
629
const Expr *SrcObj = E->getArg(0);
630
assert(SrcObj->isTemporaryObject(getContext(), CD->getParent()));
631
assert(
632
getContext().hasSameUnqualifiedType(E->getType(), SrcObj->getType()));
633
EmitAggExpr(SrcObj, Dest);
634
return;
635
}
636
637
if (const ArrayType *arrayType
638
= getContext().getAsArrayType(E->getType())) {
639
EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
640
Dest.isSanitizerChecked());
641
} else {
642
CXXCtorType Type = Ctor_Complete;
643
bool ForVirtualBase = false;
644
bool Delegating = false;
645
646
switch (E->getConstructionKind()) {
647
case CXXConstructionKind::Delegating:
648
// We should be emitting a constructor; GlobalDecl will assert this
649
Type = CurGD.getCtorType();
650
Delegating = true;
651
break;
652
653
case CXXConstructionKind::Complete:
654
Type = Ctor_Complete;
655
break;
656
657
case CXXConstructionKind::VirtualBase:
658
ForVirtualBase = true;
659
[[fallthrough]];
660
661
case CXXConstructionKind::NonVirtualBase:
662
Type = Ctor_Base;
663
}
664
665
// Call the constructor.
666
EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E);
667
}
668
}
669
670
void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
671
const Expr *Exp) {
672
if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
673
Exp = E->getSubExpr();
674
assert(isa<CXXConstructExpr>(Exp) &&
675
"EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
676
const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
677
const CXXConstructorDecl *CD = E->getConstructor();
678
RunCleanupsScope Scope(*this);
679
680
// If we require zero initialization before (or instead of) calling the
681
// constructor, as can be the case with a non-user-provided default
682
// constructor, emit the zero initialization now.
683
// FIXME. Do I still need this for a copy ctor synthesis?
684
if (E->requiresZeroInitialization())
685
EmitNullInitialization(Dest, E->getType());
686
687
assert(!getContext().getAsConstantArrayType(E->getType())
688
&& "EmitSynthesizedCXXCopyCtor - Copied-in Array");
689
EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
690
}
691
692
static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
693
const CXXNewExpr *E) {
694
if (!E->isArray())
695
return CharUnits::Zero();
696
697
// No cookie is required if the operator new[] being used is the
698
// reserved placement operator new[].
699
if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
700
return CharUnits::Zero();
701
702
return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
703
}
704
705
static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
706
const CXXNewExpr *e,
707
unsigned minElements,
708
llvm::Value *&numElements,
709
llvm::Value *&sizeWithoutCookie) {
710
QualType type = e->getAllocatedType();
711
712
if (!e->isArray()) {
713
CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
714
sizeWithoutCookie
715
= llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
716
return sizeWithoutCookie;
717
}
718
719
// The width of size_t.
720
unsigned sizeWidth = CGF.SizeTy->getBitWidth();
721
722
// Figure out the cookie size.
723
llvm::APInt cookieSize(sizeWidth,
724
CalculateCookiePadding(CGF, e).getQuantity());
725
726
// Emit the array size expression.
727
// We multiply the size of all dimensions for NumElements.
728
// e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
729
numElements =
730
ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType());
731
if (!numElements)
732
numElements = CGF.EmitScalarExpr(*e->getArraySize());
733
assert(isa<llvm::IntegerType>(numElements->getType()));
734
735
// The number of elements can be have an arbitrary integer type;
736
// essentially, we need to multiply it by a constant factor, add a
737
// cookie size, and verify that the result is representable as a
738
// size_t. That's just a gloss, though, and it's wrong in one
739
// important way: if the count is negative, it's an error even if
740
// the cookie size would bring the total size >= 0.
741
bool isSigned
742
= (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
743
llvm::IntegerType *numElementsType
744
= cast<llvm::IntegerType>(numElements->getType());
745
unsigned numElementsWidth = numElementsType->getBitWidth();
746
747
// Compute the constant factor.
748
llvm::APInt arraySizeMultiplier(sizeWidth, 1);
749
while (const ConstantArrayType *CAT
750
= CGF.getContext().getAsConstantArrayType(type)) {
751
type = CAT->getElementType();
752
arraySizeMultiplier *= CAT->getSize();
753
}
754
755
CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
756
llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
757
typeSizeMultiplier *= arraySizeMultiplier;
758
759
// This will be a size_t.
760
llvm::Value *size;
761
762
// If someone is doing 'new int[42]' there is no need to do a dynamic check.
763
// Don't bloat the -O0 code.
764
if (llvm::ConstantInt *numElementsC =
765
dyn_cast<llvm::ConstantInt>(numElements)) {
766
const llvm::APInt &count = numElementsC->getValue();
767
768
bool hasAnyOverflow = false;
769
770
// If 'count' was a negative number, it's an overflow.
771
if (isSigned && count.isNegative())
772
hasAnyOverflow = true;
773
774
// We want to do all this arithmetic in size_t. If numElements is
775
// wider than that, check whether it's already too big, and if so,
776
// overflow.
777
else if (numElementsWidth > sizeWidth &&
778
numElementsWidth - sizeWidth > count.countl_zero())
779
hasAnyOverflow = true;
780
781
// Okay, compute a count at the right width.
782
llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
783
784
// If there is a brace-initializer, we cannot allocate fewer elements than
785
// there are initializers. If we do, that's treated like an overflow.
786
if (adjustedCount.ult(minElements))
787
hasAnyOverflow = true;
788
789
// Scale numElements by that. This might overflow, but we don't
790
// care because it only overflows if allocationSize does, too, and
791
// if that overflows then we shouldn't use this.
792
numElements = llvm::ConstantInt::get(CGF.SizeTy,
793
adjustedCount * arraySizeMultiplier);
794
795
// Compute the size before cookie, and track whether it overflowed.
796
bool overflow;
797
llvm::APInt allocationSize
798
= adjustedCount.umul_ov(typeSizeMultiplier, overflow);
799
hasAnyOverflow |= overflow;
800
801
// Add in the cookie, and check whether it's overflowed.
802
if (cookieSize != 0) {
803
// Save the current size without a cookie. This shouldn't be
804
// used if there was overflow.
805
sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
806
807
allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
808
hasAnyOverflow |= overflow;
809
}
810
811
// On overflow, produce a -1 so operator new will fail.
812
if (hasAnyOverflow) {
813
size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
814
} else {
815
size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
816
}
817
818
// Otherwise, we might need to use the overflow intrinsics.
819
} else {
820
// There are up to five conditions we need to test for:
821
// 1) if isSigned, we need to check whether numElements is negative;
822
// 2) if numElementsWidth > sizeWidth, we need to check whether
823
// numElements is larger than something representable in size_t;
824
// 3) if minElements > 0, we need to check whether numElements is smaller
825
// than that.
826
// 4) we need to compute
827
// sizeWithoutCookie := numElements * typeSizeMultiplier
828
// and check whether it overflows; and
829
// 5) if we need a cookie, we need to compute
830
// size := sizeWithoutCookie + cookieSize
831
// and check whether it overflows.
832
833
llvm::Value *hasOverflow = nullptr;
834
835
// If numElementsWidth > sizeWidth, then one way or another, we're
836
// going to have to do a comparison for (2), and this happens to
837
// take care of (1), too.
838
if (numElementsWidth > sizeWidth) {
839
llvm::APInt threshold =
840
llvm::APInt::getOneBitSet(numElementsWidth, sizeWidth);
841
842
llvm::Value *thresholdV
843
= llvm::ConstantInt::get(numElementsType, threshold);
844
845
hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
846
numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
847
848
// Otherwise, if we're signed, we want to sext up to size_t.
849
} else if (isSigned) {
850
if (numElementsWidth < sizeWidth)
851
numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
852
853
// If there's a non-1 type size multiplier, then we can do the
854
// signedness check at the same time as we do the multiply
855
// because a negative number times anything will cause an
856
// unsigned overflow. Otherwise, we have to do it here. But at least
857
// in this case, we can subsume the >= minElements check.
858
if (typeSizeMultiplier == 1)
859
hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
860
llvm::ConstantInt::get(CGF.SizeTy, minElements));
861
862
// Otherwise, zext up to size_t if necessary.
863
} else if (numElementsWidth < sizeWidth) {
864
numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
865
}
866
867
assert(numElements->getType() == CGF.SizeTy);
868
869
if (minElements) {
870
// Don't allow allocation of fewer elements than we have initializers.
871
if (!hasOverflow) {
872
hasOverflow = CGF.Builder.CreateICmpULT(numElements,
873
llvm::ConstantInt::get(CGF.SizeTy, minElements));
874
} else if (numElementsWidth > sizeWidth) {
875
// The other existing overflow subsumes this check.
876
// We do an unsigned comparison, since any signed value < -1 is
877
// taken care of either above or below.
878
hasOverflow = CGF.Builder.CreateOr(hasOverflow,
879
CGF.Builder.CreateICmpULT(numElements,
880
llvm::ConstantInt::get(CGF.SizeTy, minElements)));
881
}
882
}
883
884
size = numElements;
885
886
// Multiply by the type size if necessary. This multiplier
887
// includes all the factors for nested arrays.
888
//
889
// This step also causes numElements to be scaled up by the
890
// nested-array factor if necessary. Overflow on this computation
891
// can be ignored because the result shouldn't be used if
892
// allocation fails.
893
if (typeSizeMultiplier != 1) {
894
llvm::Function *umul_with_overflow
895
= CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
896
897
llvm::Value *tsmV =
898
llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
899
llvm::Value *result =
900
CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
901
902
llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
903
if (hasOverflow)
904
hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
905
else
906
hasOverflow = overflowed;
907
908
size = CGF.Builder.CreateExtractValue(result, 0);
909
910
// Also scale up numElements by the array size multiplier.
911
if (arraySizeMultiplier != 1) {
912
// If the base element type size is 1, then we can re-use the
913
// multiply we just did.
914
if (typeSize.isOne()) {
915
assert(arraySizeMultiplier == typeSizeMultiplier);
916
numElements = size;
917
918
// Otherwise we need a separate multiply.
919
} else {
920
llvm::Value *asmV =
921
llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
922
numElements = CGF.Builder.CreateMul(numElements, asmV);
923
}
924
}
925
} else {
926
// numElements doesn't need to be scaled.
927
assert(arraySizeMultiplier == 1);
928
}
929
930
// Add in the cookie size if necessary.
931
if (cookieSize != 0) {
932
sizeWithoutCookie = size;
933
934
llvm::Function *uadd_with_overflow
935
= CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
936
937
llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
938
llvm::Value *result =
939
CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
940
941
llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
942
if (hasOverflow)
943
hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
944
else
945
hasOverflow = overflowed;
946
947
size = CGF.Builder.CreateExtractValue(result, 0);
948
}
949
950
// If we had any possibility of dynamic overflow, make a select to
951
// overwrite 'size' with an all-ones value, which should cause
952
// operator new to throw.
953
if (hasOverflow)
954
size = CGF.Builder.CreateSelect(hasOverflow,
955
llvm::Constant::getAllOnesValue(CGF.SizeTy),
956
size);
957
}
958
959
if (cookieSize == 0)
960
sizeWithoutCookie = size;
961
else
962
assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
963
964
return size;
965
}
966
967
static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
968
QualType AllocType, Address NewPtr,
969
AggValueSlot::Overlap_t MayOverlap) {
970
// FIXME: Refactor with EmitExprAsInit.
971
switch (CGF.getEvaluationKind(AllocType)) {
972
case TEK_Scalar:
973
CGF.EmitScalarInit(Init, nullptr,
974
CGF.MakeAddrLValue(NewPtr, AllocType), false);
975
return;
976
case TEK_Complex:
977
CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
978
/*isInit*/ true);
979
return;
980
case TEK_Aggregate: {
981
AggValueSlot Slot
982
= AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
983
AggValueSlot::IsDestructed,
984
AggValueSlot::DoesNotNeedGCBarriers,
985
AggValueSlot::IsNotAliased,
986
MayOverlap, AggValueSlot::IsNotZeroed,
987
AggValueSlot::IsSanitizerChecked);
988
CGF.EmitAggExpr(Init, Slot);
989
return;
990
}
991
}
992
llvm_unreachable("bad evaluation kind");
993
}
994
995
void CodeGenFunction::EmitNewArrayInitializer(
996
const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
997
Address BeginPtr, llvm::Value *NumElements,
998
llvm::Value *AllocSizeWithoutCookie) {
999
// If we have a type with trivial initialization and no initializer,
1000
// there's nothing to do.
1001
if (!E->hasInitializer())
1002
return;
1003
1004
Address CurPtr = BeginPtr;
1005
1006
unsigned InitListElements = 0;
1007
1008
const Expr *Init = E->getInitializer();
1009
Address EndOfInit = Address::invalid();
1010
QualType::DestructionKind DtorKind = ElementType.isDestructedType();
1011
CleanupDeactivationScope deactivation(*this);
1012
bool pushedCleanup = false;
1013
1014
CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
1015
CharUnits ElementAlign =
1016
BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
1017
1018
// Attempt to perform zero-initialization using memset.
1019
auto TryMemsetInitialization = [&]() -> bool {
1020
// FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
1021
// we can initialize with a memset to -1.
1022
if (!CGM.getTypes().isZeroInitializable(ElementType))
1023
return false;
1024
1025
// Optimization: since zero initialization will just set the memory
1026
// to all zeroes, generate a single memset to do it in one shot.
1027
1028
// Subtract out the size of any elements we've already initialized.
1029
auto *RemainingSize = AllocSizeWithoutCookie;
1030
if (InitListElements) {
1031
// We know this can't overflow; we check this when doing the allocation.
1032
auto *InitializedSize = llvm::ConstantInt::get(
1033
RemainingSize->getType(),
1034
getContext().getTypeSizeInChars(ElementType).getQuantity() *
1035
InitListElements);
1036
RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
1037
}
1038
1039
// Create the memset.
1040
Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1041
return true;
1042
};
1043
1044
const InitListExpr *ILE = dyn_cast<InitListExpr>(Init);
1045
const CXXParenListInitExpr *CPLIE = nullptr;
1046
const StringLiteral *SL = nullptr;
1047
const ObjCEncodeExpr *OCEE = nullptr;
1048
const Expr *IgnoreParen = nullptr;
1049
if (!ILE) {
1050
IgnoreParen = Init->IgnoreParenImpCasts();
1051
CPLIE = dyn_cast<CXXParenListInitExpr>(IgnoreParen);
1052
SL = dyn_cast<StringLiteral>(IgnoreParen);
1053
OCEE = dyn_cast<ObjCEncodeExpr>(IgnoreParen);
1054
}
1055
1056
// If the initializer is an initializer list, first do the explicit elements.
1057
if (ILE || CPLIE || SL || OCEE) {
1058
// Initializing from a (braced) string literal is a special case; the init
1059
// list element does not initialize a (single) array element.
1060
if ((ILE && ILE->isStringLiteralInit()) || SL || OCEE) {
1061
if (!ILE)
1062
Init = IgnoreParen;
1063
// Initialize the initial portion of length equal to that of the string
1064
// literal. The allocation must be for at least this much; we emitted a
1065
// check for that earlier.
1066
AggValueSlot Slot =
1067
AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1068
AggValueSlot::IsDestructed,
1069
AggValueSlot::DoesNotNeedGCBarriers,
1070
AggValueSlot::IsNotAliased,
1071
AggValueSlot::DoesNotOverlap,
1072
AggValueSlot::IsNotZeroed,
1073
AggValueSlot::IsSanitizerChecked);
1074
EmitAggExpr(ILE ? ILE->getInit(0) : Init, Slot);
1075
1076
// Move past these elements.
1077
InitListElements =
1078
cast<ConstantArrayType>(Init->getType()->getAsArrayTypeUnsafe())
1079
->getZExtSize();
1080
CurPtr = Builder.CreateConstInBoundsGEP(
1081
CurPtr, InitListElements, "string.init.end");
1082
1083
// Zero out the rest, if any remain.
1084
llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1085
if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1086
bool OK = TryMemsetInitialization();
1087
(void)OK;
1088
assert(OK && "couldn't memset character type?");
1089
}
1090
return;
1091
}
1092
1093
ArrayRef<const Expr *> InitExprs =
1094
ILE ? ILE->inits() : CPLIE->getInitExprs();
1095
InitListElements = InitExprs.size();
1096
1097
// If this is a multi-dimensional array new, we will initialize multiple
1098
// elements with each init list element.
1099
QualType AllocType = E->getAllocatedType();
1100
if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1101
AllocType->getAsArrayTypeUnsafe())) {
1102
ElementTy = ConvertTypeForMem(AllocType);
1103
CurPtr = CurPtr.withElementType(ElementTy);
1104
InitListElements *= getContext().getConstantArrayElementCount(CAT);
1105
}
1106
1107
// Enter a partial-destruction Cleanup if necessary.
1108
if (DtorKind) {
1109
AllocaTrackerRAII AllocaTracker(*this);
1110
// In principle we could tell the Cleanup where we are more
1111
// directly, but the control flow can get so varied here that it
1112
// would actually be quite complex. Therefore we go through an
1113
// alloca.
1114
llvm::Instruction *DominatingIP =
1115
Builder.CreateFlagLoad(llvm::ConstantInt::getNullValue(Int8PtrTy));
1116
EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1117
"array.init.end");
1118
pushIrregularPartialArrayCleanup(BeginPtr.emitRawPointer(*this),
1119
EndOfInit, ElementType, ElementAlign,
1120
getDestroyer(DtorKind));
1121
cast<EHCleanupScope>(*EHStack.find(EHStack.stable_begin()))
1122
.AddAuxAllocas(AllocaTracker.Take());
1123
DeferredDeactivationCleanupStack.push_back(
1124
{EHStack.stable_begin(), DominatingIP});
1125
pushedCleanup = true;
1126
}
1127
1128
CharUnits StartAlign = CurPtr.getAlignment();
1129
unsigned i = 0;
1130
for (const Expr *IE : InitExprs) {
1131
// Tell the cleanup that it needs to destroy up to this
1132
// element. TODO: some of these stores can be trivially
1133
// observed to be unnecessary.
1134
if (EndOfInit.isValid()) {
1135
Builder.CreateStore(CurPtr.emitRawPointer(*this), EndOfInit);
1136
}
1137
// FIXME: If the last initializer is an incomplete initializer list for
1138
// an array, and we have an array filler, we can fold together the two
1139
// initialization loops.
1140
StoreAnyExprIntoOneUnit(*this, IE, IE->getType(), CurPtr,
1141
AggValueSlot::DoesNotOverlap);
1142
CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getElementType(),
1143
CurPtr.emitRawPointer(*this),
1144
Builder.getSize(1),
1145
"array.exp.next"),
1146
CurPtr.getElementType(),
1147
StartAlign.alignmentAtOffset((++i) * ElementSize));
1148
}
1149
1150
// The remaining elements are filled with the array filler expression.
1151
Init = ILE ? ILE->getArrayFiller() : CPLIE->getArrayFiller();
1152
1153
// Extract the initializer for the individual array elements by pulling
1154
// out the array filler from all the nested initializer lists. This avoids
1155
// generating a nested loop for the initialization.
1156
while (Init && Init->getType()->isConstantArrayType()) {
1157
auto *SubILE = dyn_cast<InitListExpr>(Init);
1158
if (!SubILE)
1159
break;
1160
assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1161
Init = SubILE->getArrayFiller();
1162
}
1163
1164
// Switch back to initializing one base element at a time.
1165
CurPtr = CurPtr.withElementType(BeginPtr.getElementType());
1166
}
1167
1168
// If all elements have already been initialized, skip any further
1169
// initialization.
1170
llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1171
if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1172
return;
1173
}
1174
1175
assert(Init && "have trailing elements to initialize but no initializer");
1176
1177
// If this is a constructor call, try to optimize it out, and failing that
1178
// emit a single loop to initialize all remaining elements.
1179
if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1180
CXXConstructorDecl *Ctor = CCE->getConstructor();
1181
if (Ctor->isTrivial()) {
1182
// If new expression did not specify value-initialization, then there
1183
// is no initialization.
1184
if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1185
return;
1186
1187
if (TryMemsetInitialization())
1188
return;
1189
}
1190
1191
// Store the new Cleanup position for irregular Cleanups.
1192
//
1193
// FIXME: Share this cleanup with the constructor call emission rather than
1194
// having it create a cleanup of its own.
1195
if (EndOfInit.isValid())
1196
Builder.CreateStore(CurPtr.emitRawPointer(*this), EndOfInit);
1197
1198
// Emit a constructor call loop to initialize the remaining elements.
1199
if (InitListElements)
1200
NumElements = Builder.CreateSub(
1201
NumElements,
1202
llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1203
EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1204
/*NewPointerIsChecked*/true,
1205
CCE->requiresZeroInitialization());
1206
return;
1207
}
1208
1209
// If this is value-initialization, we can usually use memset.
1210
ImplicitValueInitExpr IVIE(ElementType);
1211
if (isa<ImplicitValueInitExpr>(Init)) {
1212
if (TryMemsetInitialization())
1213
return;
1214
1215
// Switch to an ImplicitValueInitExpr for the element type. This handles
1216
// only one case: multidimensional array new of pointers to members. In
1217
// all other cases, we already have an initializer for the array element.
1218
Init = &IVIE;
1219
}
1220
1221
// At this point we should have found an initializer for the individual
1222
// elements of the array.
1223
assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1224
"got wrong type of element to initialize");
1225
1226
// If we have an empty initializer list, we can usually use memset.
1227
if (auto *ILE = dyn_cast<InitListExpr>(Init))
1228
if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1229
return;
1230
1231
// If we have a struct whose every field is value-initialized, we can
1232
// usually use memset.
1233
if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1234
if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1235
if (RType->getDecl()->isStruct()) {
1236
unsigned NumElements = 0;
1237
if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1238
NumElements = CXXRD->getNumBases();
1239
for (auto *Field : RType->getDecl()->fields())
1240
if (!Field->isUnnamedBitField())
1241
++NumElements;
1242
// FIXME: Recurse into nested InitListExprs.
1243
if (ILE->getNumInits() == NumElements)
1244
for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1245
if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1246
--NumElements;
1247
if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1248
return;
1249
}
1250
}
1251
}
1252
1253
// Create the loop blocks.
1254
llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1255
llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1256
llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1257
1258
// Find the end of the array, hoisted out of the loop.
1259
llvm::Value *EndPtr = Builder.CreateInBoundsGEP(
1260
BeginPtr.getElementType(), BeginPtr.emitRawPointer(*this), NumElements,
1261
"array.end");
1262
1263
// If the number of elements isn't constant, we have to now check if there is
1264
// anything left to initialize.
1265
if (!ConstNum) {
1266
llvm::Value *IsEmpty = Builder.CreateICmpEQ(CurPtr.emitRawPointer(*this),
1267
EndPtr, "array.isempty");
1268
Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1269
}
1270
1271
// Enter the loop.
1272
EmitBlock(LoopBB);
1273
1274
// Set up the current-element phi.
1275
llvm::PHINode *CurPtrPhi =
1276
Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1277
CurPtrPhi->addIncoming(CurPtr.emitRawPointer(*this), EntryBB);
1278
1279
CurPtr = Address(CurPtrPhi, CurPtr.getElementType(), ElementAlign);
1280
1281
// Store the new Cleanup position for irregular Cleanups.
1282
if (EndOfInit.isValid())
1283
Builder.CreateStore(CurPtr.emitRawPointer(*this), EndOfInit);
1284
1285
// Enter a partial-destruction Cleanup if necessary.
1286
if (!pushedCleanup && needsEHCleanup(DtorKind)) {
1287
llvm::Instruction *DominatingIP =
1288
Builder.CreateFlagLoad(llvm::ConstantInt::getNullValue(Int8PtrTy));
1289
pushRegularPartialArrayCleanup(BeginPtr.emitRawPointer(*this),
1290
CurPtr.emitRawPointer(*this), ElementType,
1291
ElementAlign, getDestroyer(DtorKind));
1292
DeferredDeactivationCleanupStack.push_back(
1293
{EHStack.stable_begin(), DominatingIP});
1294
}
1295
1296
// Emit the initializer into this element.
1297
StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1298
AggValueSlot::DoesNotOverlap);
1299
1300
// Leave the Cleanup if we entered one.
1301
deactivation.ForceDeactivate();
1302
1303
// Advance to the next element by adjusting the pointer type as necessary.
1304
llvm::Value *NextPtr = Builder.CreateConstInBoundsGEP1_32(
1305
ElementTy, CurPtr.emitRawPointer(*this), 1, "array.next");
1306
1307
// Check whether we've gotten to the end of the array and, if so,
1308
// exit the loop.
1309
llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1310
Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1311
CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1312
1313
EmitBlock(ContBB);
1314
}
1315
1316
static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1317
QualType ElementType, llvm::Type *ElementTy,
1318
Address NewPtr, llvm::Value *NumElements,
1319
llvm::Value *AllocSizeWithoutCookie) {
1320
ApplyDebugLocation DL(CGF, E);
1321
if (E->isArray())
1322
CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1323
AllocSizeWithoutCookie);
1324
else if (const Expr *Init = E->getInitializer())
1325
StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1326
AggValueSlot::DoesNotOverlap);
1327
}
1328
1329
/// Emit a call to an operator new or operator delete function, as implicitly
1330
/// created by new-expressions and delete-expressions.
1331
static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1332
const FunctionDecl *CalleeDecl,
1333
const FunctionProtoType *CalleeType,
1334
const CallArgList &Args) {
1335
llvm::CallBase *CallOrInvoke;
1336
llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1337
CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1338
RValue RV =
1339
CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1340
Args, CalleeType, /*ChainCall=*/false),
1341
Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1342
1343
/// C++1y [expr.new]p10:
1344
/// [In a new-expression,] an implementation is allowed to omit a call
1345
/// to a replaceable global allocation function.
1346
///
1347
/// We model such elidable calls with the 'builtin' attribute.
1348
llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1349
if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1350
Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1351
CallOrInvoke->addFnAttr(llvm::Attribute::Builtin);
1352
}
1353
1354
return RV;
1355
}
1356
1357
RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1358
const CallExpr *TheCall,
1359
bool IsDelete) {
1360
CallArgList Args;
1361
EmitCallArgs(Args, Type, TheCall->arguments());
1362
// Find the allocation or deallocation function that we're calling.
1363
ASTContext &Ctx = getContext();
1364
DeclarationName Name = Ctx.DeclarationNames
1365
.getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1366
1367
for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1368
if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1369
if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1370
return EmitNewDeleteCall(*this, FD, Type, Args);
1371
llvm_unreachable("predeclared global operator new/delete is missing");
1372
}
1373
1374
namespace {
1375
/// The parameters to pass to a usual operator delete.
1376
struct UsualDeleteParams {
1377
bool DestroyingDelete = false;
1378
bool Size = false;
1379
bool Alignment = false;
1380
};
1381
}
1382
1383
static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1384
UsualDeleteParams Params;
1385
1386
const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1387
auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1388
1389
// The first argument is always a void*.
1390
++AI;
1391
1392
// The next parameter may be a std::destroying_delete_t.
1393
if (FD->isDestroyingOperatorDelete()) {
1394
Params.DestroyingDelete = true;
1395
assert(AI != AE);
1396
++AI;
1397
}
1398
1399
// Figure out what other parameters we should be implicitly passing.
1400
if (AI != AE && (*AI)->isIntegerType()) {
1401
Params.Size = true;
1402
++AI;
1403
}
1404
1405
if (AI != AE && (*AI)->isAlignValT()) {
1406
Params.Alignment = true;
1407
++AI;
1408
}
1409
1410
assert(AI == AE && "unexpected usual deallocation function parameter");
1411
return Params;
1412
}
1413
1414
namespace {
1415
/// A cleanup to call the given 'operator delete' function upon abnormal
1416
/// exit from a new expression. Templated on a traits type that deals with
1417
/// ensuring that the arguments dominate the cleanup if necessary.
1418
template<typename Traits>
1419
class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1420
/// Type used to hold llvm::Value*s.
1421
typedef typename Traits::ValueTy ValueTy;
1422
/// Type used to hold RValues.
1423
typedef typename Traits::RValueTy RValueTy;
1424
struct PlacementArg {
1425
RValueTy ArgValue;
1426
QualType ArgType;
1427
};
1428
1429
unsigned NumPlacementArgs : 31;
1430
LLVM_PREFERRED_TYPE(bool)
1431
unsigned PassAlignmentToPlacementDelete : 1;
1432
const FunctionDecl *OperatorDelete;
1433
ValueTy Ptr;
1434
ValueTy AllocSize;
1435
CharUnits AllocAlign;
1436
1437
PlacementArg *getPlacementArgs() {
1438
return reinterpret_cast<PlacementArg *>(this + 1);
1439
}
1440
1441
public:
1442
static size_t getExtraSize(size_t NumPlacementArgs) {
1443
return NumPlacementArgs * sizeof(PlacementArg);
1444
}
1445
1446
CallDeleteDuringNew(size_t NumPlacementArgs,
1447
const FunctionDecl *OperatorDelete, ValueTy Ptr,
1448
ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1449
CharUnits AllocAlign)
1450
: NumPlacementArgs(NumPlacementArgs),
1451
PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1452
OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1453
AllocAlign(AllocAlign) {}
1454
1455
void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1456
assert(I < NumPlacementArgs && "index out of range");
1457
getPlacementArgs()[I] = {Arg, Type};
1458
}
1459
1460
void Emit(CodeGenFunction &CGF, Flags flags) override {
1461
const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>();
1462
CallArgList DeleteArgs;
1463
1464
// The first argument is always a void* (or C* for a destroying operator
1465
// delete for class type C).
1466
DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1467
1468
// Figure out what other parameters we should be implicitly passing.
1469
UsualDeleteParams Params;
1470
if (NumPlacementArgs) {
1471
// A placement deallocation function is implicitly passed an alignment
1472
// if the placement allocation function was, but is never passed a size.
1473
Params.Alignment = PassAlignmentToPlacementDelete;
1474
} else {
1475
// For a non-placement new-expression, 'operator delete' can take a
1476
// size and/or an alignment if it has the right parameters.
1477
Params = getUsualDeleteParams(OperatorDelete);
1478
}
1479
1480
assert(!Params.DestroyingDelete &&
1481
"should not call destroying delete in a new-expression");
1482
1483
// The second argument can be a std::size_t (for non-placement delete).
1484
if (Params.Size)
1485
DeleteArgs.add(Traits::get(CGF, AllocSize),
1486
CGF.getContext().getSizeType());
1487
1488
// The next (second or third) argument can be a std::align_val_t, which
1489
// is an enum whose underlying type is std::size_t.
1490
// FIXME: Use the right type as the parameter type. Note that in a call
1491
// to operator delete(size_t, ...), we may not have it available.
1492
if (Params.Alignment)
1493
DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1494
CGF.SizeTy, AllocAlign.getQuantity())),
1495
CGF.getContext().getSizeType());
1496
1497
// Pass the rest of the arguments, which must match exactly.
1498
for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1499
auto Arg = getPlacementArgs()[I];
1500
DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1501
}
1502
1503
// Call 'operator delete'.
1504
EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1505
}
1506
};
1507
}
1508
1509
/// Enter a cleanup to call 'operator delete' if the initializer in a
1510
/// new-expression throws.
1511
static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1512
const CXXNewExpr *E,
1513
Address NewPtr,
1514
llvm::Value *AllocSize,
1515
CharUnits AllocAlign,
1516
const CallArgList &NewArgs) {
1517
unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1518
1519
// If we're not inside a conditional branch, then the cleanup will
1520
// dominate and we can do the easier (and more efficient) thing.
1521
if (!CGF.isInConditionalBranch()) {
1522
struct DirectCleanupTraits {
1523
typedef llvm::Value *ValueTy;
1524
typedef RValue RValueTy;
1525
static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1526
static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1527
};
1528
1529
typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1530
1531
DirectCleanup *Cleanup = CGF.EHStack.pushCleanupWithExtra<DirectCleanup>(
1532
EHCleanup, E->getNumPlacementArgs(), E->getOperatorDelete(),
1533
NewPtr.emitRawPointer(CGF), AllocSize, E->passAlignment(), AllocAlign);
1534
for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1535
auto &Arg = NewArgs[I + NumNonPlacementArgs];
1536
Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1537
}
1538
1539
return;
1540
}
1541
1542
// Otherwise, we need to save all this stuff.
1543
DominatingValue<RValue>::saved_type SavedNewPtr =
1544
DominatingValue<RValue>::save(CGF, RValue::get(NewPtr, CGF));
1545
DominatingValue<RValue>::saved_type SavedAllocSize =
1546
DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1547
1548
struct ConditionalCleanupTraits {
1549
typedef DominatingValue<RValue>::saved_type ValueTy;
1550
typedef DominatingValue<RValue>::saved_type RValueTy;
1551
static RValue get(CodeGenFunction &CGF, ValueTy V) {
1552
return V.restore(CGF);
1553
}
1554
};
1555
typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1556
1557
ConditionalCleanup *Cleanup = CGF.EHStack
1558
.pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1559
E->getNumPlacementArgs(),
1560
E->getOperatorDelete(),
1561
SavedNewPtr,
1562
SavedAllocSize,
1563
E->passAlignment(),
1564
AllocAlign);
1565
for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1566
auto &Arg = NewArgs[I + NumNonPlacementArgs];
1567
Cleanup->setPlacementArg(
1568
I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1569
}
1570
1571
CGF.initFullExprCleanup();
1572
}
1573
1574
llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1575
// The element type being allocated.
1576
QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1577
1578
// 1. Build a call to the allocation function.
1579
FunctionDecl *allocator = E->getOperatorNew();
1580
1581
// If there is a brace-initializer or C++20 parenthesized initializer, cannot
1582
// allocate fewer elements than inits.
1583
unsigned minElements = 0;
1584
if (E->isArray() && E->hasInitializer()) {
1585
const Expr *Init = E->getInitializer();
1586
const InitListExpr *ILE = dyn_cast<InitListExpr>(Init);
1587
const CXXParenListInitExpr *CPLIE = dyn_cast<CXXParenListInitExpr>(Init);
1588
const Expr *IgnoreParen = Init->IgnoreParenImpCasts();
1589
if ((ILE && ILE->isStringLiteralInit()) ||
1590
isa<StringLiteral>(IgnoreParen) || isa<ObjCEncodeExpr>(IgnoreParen)) {
1591
minElements =
1592
cast<ConstantArrayType>(Init->getType()->getAsArrayTypeUnsafe())
1593
->getZExtSize();
1594
} else if (ILE || CPLIE) {
1595
minElements = ILE ? ILE->getNumInits() : CPLIE->getInitExprs().size();
1596
}
1597
}
1598
1599
llvm::Value *numElements = nullptr;
1600
llvm::Value *allocSizeWithoutCookie = nullptr;
1601
llvm::Value *allocSize =
1602
EmitCXXNewAllocSize(*this, E, minElements, numElements,
1603
allocSizeWithoutCookie);
1604
CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1605
1606
// Emit the allocation call. If the allocator is a global placement
1607
// operator, just "inline" it directly.
1608
Address allocation = Address::invalid();
1609
CallArgList allocatorArgs;
1610
if (allocator->isReservedGlobalPlacementOperator()) {
1611
assert(E->getNumPlacementArgs() == 1);
1612
const Expr *arg = *E->placement_arguments().begin();
1613
1614
LValueBaseInfo BaseInfo;
1615
allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1616
1617
// The pointer expression will, in many cases, be an opaque void*.
1618
// In these cases, discard the computed alignment and use the
1619
// formal alignment of the allocated type.
1620
if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1621
allocation.setAlignment(allocAlign);
1622
1623
// Set up allocatorArgs for the call to operator delete if it's not
1624
// the reserved global operator.
1625
if (E->getOperatorDelete() &&
1626
!E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1627
allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1628
allocatorArgs.add(RValue::get(allocation, *this), arg->getType());
1629
}
1630
1631
} else {
1632
const FunctionProtoType *allocatorType =
1633
allocator->getType()->castAs<FunctionProtoType>();
1634
unsigned ParamsToSkip = 0;
1635
1636
// The allocation size is the first argument.
1637
QualType sizeType = getContext().getSizeType();
1638
allocatorArgs.add(RValue::get(allocSize), sizeType);
1639
++ParamsToSkip;
1640
1641
if (allocSize != allocSizeWithoutCookie) {
1642
CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1643
allocAlign = std::max(allocAlign, cookieAlign);
1644
}
1645
1646
// The allocation alignment may be passed as the second argument.
1647
if (E->passAlignment()) {
1648
QualType AlignValT = sizeType;
1649
if (allocatorType->getNumParams() > 1) {
1650
AlignValT = allocatorType->getParamType(1);
1651
assert(getContext().hasSameUnqualifiedType(
1652
AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1653
sizeType) &&
1654
"wrong type for alignment parameter");
1655
++ParamsToSkip;
1656
} else {
1657
// Corner case, passing alignment to 'operator new(size_t, ...)'.
1658
assert(allocator->isVariadic() && "can't pass alignment to allocator");
1659
}
1660
allocatorArgs.add(
1661
RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1662
AlignValT);
1663
}
1664
1665
// FIXME: Why do we not pass a CalleeDecl here?
1666
EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1667
/*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1668
1669
RValue RV =
1670
EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1671
1672
// Set !heapallocsite metadata on the call to operator new.
1673
if (getDebugInfo())
1674
if (auto *newCall = dyn_cast<llvm::CallBase>(RV.getScalarVal()))
1675
getDebugInfo()->addHeapAllocSiteMetadata(newCall, allocType,
1676
E->getExprLoc());
1677
1678
// If this was a call to a global replaceable allocation function that does
1679
// not take an alignment argument, the allocator is known to produce
1680
// storage that's suitably aligned for any object that fits, up to a known
1681
// threshold. Otherwise assume it's suitably aligned for the allocated type.
1682
CharUnits allocationAlign = allocAlign;
1683
if (!E->passAlignment() &&
1684
allocator->isReplaceableGlobalAllocationFunction()) {
1685
unsigned AllocatorAlign = llvm::bit_floor(std::min<uint64_t>(
1686
Target.getNewAlign(), getContext().getTypeSize(allocType)));
1687
allocationAlign = std::max(
1688
allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1689
}
1690
1691
allocation = Address(RV.getScalarVal(), Int8Ty, allocationAlign);
1692
}
1693
1694
// Emit a null check on the allocation result if the allocation
1695
// function is allowed to return null (because it has a non-throwing
1696
// exception spec or is the reserved placement new) and we have an
1697
// interesting initializer will be running sanitizers on the initialization.
1698
bool nullCheck = E->shouldNullCheckAllocation() &&
1699
(!allocType.isPODType(getContext()) || E->hasInitializer() ||
1700
sanitizePerformTypeCheck());
1701
1702
llvm::BasicBlock *nullCheckBB = nullptr;
1703
llvm::BasicBlock *contBB = nullptr;
1704
1705
// The null-check means that the initializer is conditionally
1706
// evaluated.
1707
ConditionalEvaluation conditional(*this);
1708
1709
if (nullCheck) {
1710
conditional.begin(*this);
1711
1712
nullCheckBB = Builder.GetInsertBlock();
1713
llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1714
contBB = createBasicBlock("new.cont");
1715
1716
llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
1717
Builder.CreateCondBr(isNull, contBB, notNullBB);
1718
EmitBlock(notNullBB);
1719
}
1720
1721
// If there's an operator delete, enter a cleanup to call it if an
1722
// exception is thrown.
1723
EHScopeStack::stable_iterator operatorDeleteCleanup;
1724
llvm::Instruction *cleanupDominator = nullptr;
1725
if (E->getOperatorDelete() &&
1726
!E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1727
EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1728
allocatorArgs);
1729
operatorDeleteCleanup = EHStack.stable_begin();
1730
cleanupDominator = Builder.CreateUnreachable();
1731
}
1732
1733
assert((allocSize == allocSizeWithoutCookie) ==
1734
CalculateCookiePadding(*this, E).isZero());
1735
if (allocSize != allocSizeWithoutCookie) {
1736
assert(E->isArray());
1737
allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1738
numElements,
1739
E, allocType);
1740
}
1741
1742
llvm::Type *elementTy = ConvertTypeForMem(allocType);
1743
Address result = allocation.withElementType(elementTy);
1744
1745
// Passing pointer through launder.invariant.group to avoid propagation of
1746
// vptrs information which may be included in previous type.
1747
// To not break LTO with different optimizations levels, we do it regardless
1748
// of optimization level.
1749
if (CGM.getCodeGenOpts().StrictVTablePointers &&
1750
allocator->isReservedGlobalPlacementOperator())
1751
result = Builder.CreateLaunderInvariantGroup(result);
1752
1753
// Emit sanitizer checks for pointer value now, so that in the case of an
1754
// array it was checked only once and not at each constructor call. We may
1755
// have already checked that the pointer is non-null.
1756
// FIXME: If we have an array cookie and a potentially-throwing allocator,
1757
// we'll null check the wrong pointer here.
1758
SanitizerSet SkippedChecks;
1759
SkippedChecks.set(SanitizerKind::Null, nullCheck);
1760
EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
1761
E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1762
result, allocType, result.getAlignment(), SkippedChecks,
1763
numElements);
1764
1765
EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1766
allocSizeWithoutCookie);
1767
llvm::Value *resultPtr = result.emitRawPointer(*this);
1768
if (E->isArray()) {
1769
// NewPtr is a pointer to the base element type. If we're
1770
// allocating an array of arrays, we'll need to cast back to the
1771
// array pointer type.
1772
llvm::Type *resultType = ConvertTypeForMem(E->getType());
1773
if (resultPtr->getType() != resultType)
1774
resultPtr = Builder.CreateBitCast(resultPtr, resultType);
1775
}
1776
1777
// Deactivate the 'operator delete' cleanup if we finished
1778
// initialization.
1779
if (operatorDeleteCleanup.isValid()) {
1780
DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1781
cleanupDominator->eraseFromParent();
1782
}
1783
1784
if (nullCheck) {
1785
conditional.end(*this);
1786
1787
llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1788
EmitBlock(contBB);
1789
1790
llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1791
PHI->addIncoming(resultPtr, notNullBB);
1792
PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1793
nullCheckBB);
1794
1795
resultPtr = PHI;
1796
}
1797
1798
return resultPtr;
1799
}
1800
1801
void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1802
llvm::Value *Ptr, QualType DeleteTy,
1803
llvm::Value *NumElements,
1804
CharUnits CookieSize) {
1805
assert((!NumElements && CookieSize.isZero()) ||
1806
DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1807
1808
const auto *DeleteFTy = DeleteFD->getType()->castAs<FunctionProtoType>();
1809
CallArgList DeleteArgs;
1810
1811
auto Params = getUsualDeleteParams(DeleteFD);
1812
auto ParamTypeIt = DeleteFTy->param_type_begin();
1813
1814
// Pass the pointer itself.
1815
QualType ArgTy = *ParamTypeIt++;
1816
llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1817
DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1818
1819
// Pass the std::destroying_delete tag if present.
1820
llvm::AllocaInst *DestroyingDeleteTag = nullptr;
1821
if (Params.DestroyingDelete) {
1822
QualType DDTag = *ParamTypeIt++;
1823
llvm::Type *Ty = getTypes().ConvertType(DDTag);
1824
CharUnits Align = CGM.getNaturalTypeAlignment(DDTag);
1825
DestroyingDeleteTag = CreateTempAlloca(Ty, "destroying.delete.tag");
1826
DestroyingDeleteTag->setAlignment(Align.getAsAlign());
1827
DeleteArgs.add(
1828
RValue::getAggregate(Address(DestroyingDeleteTag, Ty, Align)), DDTag);
1829
}
1830
1831
// Pass the size if the delete function has a size_t parameter.
1832
if (Params.Size) {
1833
QualType SizeType = *ParamTypeIt++;
1834
CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1835
llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1836
DeleteTypeSize.getQuantity());
1837
1838
// For array new, multiply by the number of elements.
1839
if (NumElements)
1840
Size = Builder.CreateMul(Size, NumElements);
1841
1842
// If there is a cookie, add the cookie size.
1843
if (!CookieSize.isZero())
1844
Size = Builder.CreateAdd(
1845
Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1846
1847
DeleteArgs.add(RValue::get(Size), SizeType);
1848
}
1849
1850
// Pass the alignment if the delete function has an align_val_t parameter.
1851
if (Params.Alignment) {
1852
QualType AlignValType = *ParamTypeIt++;
1853
CharUnits DeleteTypeAlign =
1854
getContext().toCharUnitsFromBits(getContext().getTypeAlignIfKnown(
1855
DeleteTy, true /* NeedsPreferredAlignment */));
1856
llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1857
DeleteTypeAlign.getQuantity());
1858
DeleteArgs.add(RValue::get(Align), AlignValType);
1859
}
1860
1861
assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1862
"unknown parameter to usual delete function");
1863
1864
// Emit the call to delete.
1865
EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1866
1867
// If call argument lowering didn't use the destroying_delete_t alloca,
1868
// remove it again.
1869
if (DestroyingDeleteTag && DestroyingDeleteTag->use_empty())
1870
DestroyingDeleteTag->eraseFromParent();
1871
}
1872
1873
namespace {
1874
/// Calls the given 'operator delete' on a single object.
1875
struct CallObjectDelete final : EHScopeStack::Cleanup {
1876
llvm::Value *Ptr;
1877
const FunctionDecl *OperatorDelete;
1878
QualType ElementType;
1879
1880
CallObjectDelete(llvm::Value *Ptr,
1881
const FunctionDecl *OperatorDelete,
1882
QualType ElementType)
1883
: Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1884
1885
void Emit(CodeGenFunction &CGF, Flags flags) override {
1886
CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1887
}
1888
};
1889
}
1890
1891
void
1892
CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1893
llvm::Value *CompletePtr,
1894
QualType ElementType) {
1895
EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1896
OperatorDelete, ElementType);
1897
}
1898
1899
/// Emit the code for deleting a single object with a destroying operator
1900
/// delete. If the element type has a non-virtual destructor, Ptr has already
1901
/// been converted to the type of the parameter of 'operator delete'. Otherwise
1902
/// Ptr points to an object of the static type.
1903
static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1904
const CXXDeleteExpr *DE, Address Ptr,
1905
QualType ElementType) {
1906
auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1907
if (Dtor && Dtor->isVirtual())
1908
CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1909
Dtor);
1910
else
1911
CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.emitRawPointer(CGF),
1912
ElementType);
1913
}
1914
1915
/// Emit the code for deleting a single object.
1916
/// \return \c true if we started emitting UnconditionalDeleteBlock, \c false
1917
/// if not.
1918
static bool EmitObjectDelete(CodeGenFunction &CGF,
1919
const CXXDeleteExpr *DE,
1920
Address Ptr,
1921
QualType ElementType,
1922
llvm::BasicBlock *UnconditionalDeleteBlock) {
1923
// C++11 [expr.delete]p3:
1924
// If the static type of the object to be deleted is different from its
1925
// dynamic type, the static type shall be a base class of the dynamic type
1926
// of the object to be deleted and the static type shall have a virtual
1927
// destructor or the behavior is undefined.
1928
CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, DE->getExprLoc(), Ptr,
1929
ElementType);
1930
1931
const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1932
assert(!OperatorDelete->isDestroyingOperatorDelete());
1933
1934
// Find the destructor for the type, if applicable. If the
1935
// destructor is virtual, we'll just emit the vcall and return.
1936
const CXXDestructorDecl *Dtor = nullptr;
1937
if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1938
CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1939
if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1940
Dtor = RD->getDestructor();
1941
1942
if (Dtor->isVirtual()) {
1943
bool UseVirtualCall = true;
1944
const Expr *Base = DE->getArgument();
1945
if (auto *DevirtualizedDtor =
1946
dyn_cast_or_null<const CXXDestructorDecl>(
1947
Dtor->getDevirtualizedMethod(
1948
Base, CGF.CGM.getLangOpts().AppleKext))) {
1949
UseVirtualCall = false;
1950
const CXXRecordDecl *DevirtualizedClass =
1951
DevirtualizedDtor->getParent();
1952
if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) {
1953
// Devirtualized to the class of the base type (the type of the
1954
// whole expression).
1955
Dtor = DevirtualizedDtor;
1956
} else {
1957
// Devirtualized to some other type. Would need to cast the this
1958
// pointer to that type but we don't have support for that yet, so
1959
// do a virtual call. FIXME: handle the case where it is
1960
// devirtualized to the derived type (the type of the inner
1961
// expression) as in EmitCXXMemberOrOperatorMemberCallExpr.
1962
UseVirtualCall = true;
1963
}
1964
}
1965
if (UseVirtualCall) {
1966
CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1967
Dtor);
1968
return false;
1969
}
1970
}
1971
}
1972
}
1973
1974
// Make sure that we call delete even if the dtor throws.
1975
// This doesn't have to a conditional cleanup because we're going
1976
// to pop it off in a second.
1977
CGF.EHStack.pushCleanup<CallObjectDelete>(
1978
NormalAndEHCleanup, Ptr.emitRawPointer(CGF), OperatorDelete, ElementType);
1979
1980
if (Dtor)
1981
CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1982
/*ForVirtualBase=*/false,
1983
/*Delegating=*/false,
1984
Ptr, ElementType);
1985
else if (auto Lifetime = ElementType.getObjCLifetime()) {
1986
switch (Lifetime) {
1987
case Qualifiers::OCL_None:
1988
case Qualifiers::OCL_ExplicitNone:
1989
case Qualifiers::OCL_Autoreleasing:
1990
break;
1991
1992
case Qualifiers::OCL_Strong:
1993
CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1994
break;
1995
1996
case Qualifiers::OCL_Weak:
1997
CGF.EmitARCDestroyWeak(Ptr);
1998
break;
1999
}
2000
}
2001
2002
// When optimizing for size, call 'operator delete' unconditionally.
2003
if (CGF.CGM.getCodeGenOpts().OptimizeSize > 1) {
2004
CGF.EmitBlock(UnconditionalDeleteBlock);
2005
CGF.PopCleanupBlock();
2006
return true;
2007
}
2008
2009
CGF.PopCleanupBlock();
2010
return false;
2011
}
2012
2013
namespace {
2014
/// Calls the given 'operator delete' on an array of objects.
2015
struct CallArrayDelete final : EHScopeStack::Cleanup {
2016
llvm::Value *Ptr;
2017
const FunctionDecl *OperatorDelete;
2018
llvm::Value *NumElements;
2019
QualType ElementType;
2020
CharUnits CookieSize;
2021
2022
CallArrayDelete(llvm::Value *Ptr,
2023
const FunctionDecl *OperatorDelete,
2024
llvm::Value *NumElements,
2025
QualType ElementType,
2026
CharUnits CookieSize)
2027
: Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
2028
ElementType(ElementType), CookieSize(CookieSize) {}
2029
2030
void Emit(CodeGenFunction &CGF, Flags flags) override {
2031
CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
2032
CookieSize);
2033
}
2034
};
2035
}
2036
2037
/// Emit the code for deleting an array of objects.
2038
static void EmitArrayDelete(CodeGenFunction &CGF,
2039
const CXXDeleteExpr *E,
2040
Address deletedPtr,
2041
QualType elementType) {
2042
llvm::Value *numElements = nullptr;
2043
llvm::Value *allocatedPtr = nullptr;
2044
CharUnits cookieSize;
2045
CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
2046
numElements, allocatedPtr, cookieSize);
2047
2048
assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
2049
2050
// Make sure that we call delete even if one of the dtors throws.
2051
const FunctionDecl *operatorDelete = E->getOperatorDelete();
2052
CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
2053
allocatedPtr, operatorDelete,
2054
numElements, elementType,
2055
cookieSize);
2056
2057
// Destroy the elements.
2058
if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
2059
assert(numElements && "no element count for a type with a destructor!");
2060
2061
CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2062
CharUnits elementAlign =
2063
deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
2064
2065
llvm::Value *arrayBegin = deletedPtr.emitRawPointer(CGF);
2066
llvm::Value *arrayEnd = CGF.Builder.CreateInBoundsGEP(
2067
deletedPtr.getElementType(), arrayBegin, numElements, "delete.end");
2068
2069
// Note that it is legal to allocate a zero-length array, and we
2070
// can never fold the check away because the length should always
2071
// come from a cookie.
2072
CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
2073
CGF.getDestroyer(dtorKind),
2074
/*checkZeroLength*/ true,
2075
CGF.needsEHCleanup(dtorKind));
2076
}
2077
2078
// Pop the cleanup block.
2079
CGF.PopCleanupBlock();
2080
}
2081
2082
void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
2083
const Expr *Arg = E->getArgument();
2084
Address Ptr = EmitPointerWithAlignment(Arg);
2085
2086
// Null check the pointer.
2087
//
2088
// We could avoid this null check if we can determine that the object
2089
// destruction is trivial and doesn't require an array cookie; we can
2090
// unconditionally perform the operator delete call in that case. For now, we
2091
// assume that deleted pointers are null rarely enough that it's better to
2092
// keep the branch. This might be worth revisiting for a -O0 code size win.
2093
llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
2094
llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
2095
2096
llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
2097
2098
Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
2099
EmitBlock(DeleteNotNull);
2100
Ptr.setKnownNonNull();
2101
2102
QualType DeleteTy = E->getDestroyedType();
2103
2104
// A destroying operator delete overrides the entire operation of the
2105
// delete expression.
2106
if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
2107
EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2108
EmitBlock(DeleteEnd);
2109
return;
2110
}
2111
2112
// We might be deleting a pointer to array. If so, GEP down to the
2113
// first non-array element.
2114
// (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2115
if (DeleteTy->isConstantArrayType()) {
2116
llvm::Value *Zero = Builder.getInt32(0);
2117
SmallVector<llvm::Value*,8> GEP;
2118
2119
GEP.push_back(Zero); // point at the outermost array
2120
2121
// For each layer of array type we're pointing at:
2122
while (const ConstantArrayType *Arr
2123
= getContext().getAsConstantArrayType(DeleteTy)) {
2124
// 1. Unpeel the array type.
2125
DeleteTy = Arr->getElementType();
2126
2127
// 2. GEP to the first element of the array.
2128
GEP.push_back(Zero);
2129
}
2130
2131
Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, ConvertTypeForMem(DeleteTy),
2132
Ptr.getAlignment(), "del.first");
2133
}
2134
2135
assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2136
2137
if (E->isArrayForm()) {
2138
EmitArrayDelete(*this, E, Ptr, DeleteTy);
2139
EmitBlock(DeleteEnd);
2140
} else {
2141
if (!EmitObjectDelete(*this, E, Ptr, DeleteTy, DeleteEnd))
2142
EmitBlock(DeleteEnd);
2143
}
2144
}
2145
2146
static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2147
llvm::Type *StdTypeInfoPtrTy,
2148
bool HasNullCheck) {
2149
// Get the vtable pointer.
2150
Address ThisPtr = CGF.EmitLValue(E).getAddress();
2151
2152
QualType SrcRecordTy = E->getType();
2153
2154
// C++ [class.cdtor]p4:
2155
// If the operand of typeid refers to the object under construction or
2156
// destruction and the static type of the operand is neither the constructor
2157
// or destructor’s class nor one of its bases, the behavior is undefined.
2158
CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
2159
ThisPtr, SrcRecordTy);
2160
2161
// Whether we need an explicit null pointer check. For example, with the
2162
// Microsoft ABI, if this is a call to __RTtypeid, the null pointer check and
2163
// exception throw is inside the __RTtypeid(nullptr) call
2164
if (HasNullCheck &&
2165
CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(SrcRecordTy)) {
2166
llvm::BasicBlock *BadTypeidBlock =
2167
CGF.createBasicBlock("typeid.bad_typeid");
2168
llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2169
2170
llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
2171
CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2172
2173
CGF.EmitBlock(BadTypeidBlock);
2174
CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2175
CGF.EmitBlock(EndBlock);
2176
}
2177
2178
return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2179
StdTypeInfoPtrTy);
2180
}
2181
2182
llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2183
// Ideally, we would like to use GlobalsInt8PtrTy here, however, we cannot,
2184
// primarily because the result of applying typeid is a value of type
2185
// type_info, which is declared & defined by the standard library
2186
// implementation and expects to operate on the generic (default) AS.
2187
// https://reviews.llvm.org/D157452 has more context, and a possible solution.
2188
llvm::Type *PtrTy = Int8PtrTy;
2189
LangAS GlobAS = CGM.GetGlobalVarAddressSpace(nullptr);
2190
2191
auto MaybeASCast = [=](auto &&TypeInfo) {
2192
if (GlobAS == LangAS::Default)
2193
return TypeInfo;
2194
return getTargetHooks().performAddrSpaceCast(CGM,TypeInfo, GlobAS,
2195
LangAS::Default, PtrTy);
2196
};
2197
2198
if (E->isTypeOperand()) {
2199
llvm::Constant *TypeInfo =
2200
CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2201
return MaybeASCast(TypeInfo);
2202
}
2203
2204
// C++ [expr.typeid]p2:
2205
// When typeid is applied to a glvalue expression whose type is a
2206
// polymorphic class type, the result refers to a std::type_info object
2207
// representing the type of the most derived object (that is, the dynamic
2208
// type) to which the glvalue refers.
2209
// If the operand is already most derived object, no need to look up vtable.
2210
if (E->isPotentiallyEvaluated() && !E->isMostDerived(getContext()))
2211
return EmitTypeidFromVTable(*this, E->getExprOperand(), PtrTy,
2212
E->hasNullCheck());
2213
2214
QualType OperandTy = E->getExprOperand()->getType();
2215
return MaybeASCast(CGM.GetAddrOfRTTIDescriptor(OperandTy));
2216
}
2217
2218
static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2219
QualType DestTy) {
2220
llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2221
if (DestTy->isPointerType())
2222
return llvm::Constant::getNullValue(DestLTy);
2223
2224
/// C++ [expr.dynamic.cast]p9:
2225
/// A failed cast to reference type throws std::bad_cast
2226
if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2227
return nullptr;
2228
2229
CGF.Builder.ClearInsertionPoint();
2230
return llvm::PoisonValue::get(DestLTy);
2231
}
2232
2233
llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2234
const CXXDynamicCastExpr *DCE) {
2235
CGM.EmitExplicitCastExprType(DCE, this);
2236
QualType DestTy = DCE->getTypeAsWritten();
2237
2238
QualType SrcTy = DCE->getSubExpr()->getType();
2239
2240
// C++ [expr.dynamic.cast]p7:
2241
// If T is "pointer to cv void," then the result is a pointer to the most
2242
// derived object pointed to by v.
2243
bool IsDynamicCastToVoid = DestTy->isVoidPointerType();
2244
QualType SrcRecordTy;
2245
QualType DestRecordTy;
2246
if (IsDynamicCastToVoid) {
2247
SrcRecordTy = SrcTy->getPointeeType();
2248
// No DestRecordTy.
2249
} else if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) {
2250
SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2251
DestRecordTy = DestPTy->getPointeeType();
2252
} else {
2253
SrcRecordTy = SrcTy;
2254
DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2255
}
2256
2257
// C++ [class.cdtor]p5:
2258
// If the operand of the dynamic_cast refers to the object under
2259
// construction or destruction and the static type of the operand is not a
2260
// pointer to or object of the constructor or destructor’s own class or one
2261
// of its bases, the dynamic_cast results in undefined behavior.
2262
EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr, SrcRecordTy);
2263
2264
if (DCE->isAlwaysNull()) {
2265
if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) {
2266
// Expression emission is expected to retain a valid insertion point.
2267
if (!Builder.GetInsertBlock())
2268
EmitBlock(createBasicBlock("dynamic_cast.unreachable"));
2269
return T;
2270
}
2271
}
2272
2273
assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2274
2275
// If the destination is effectively final, the cast succeeds if and only
2276
// if the dynamic type of the pointer is exactly the destination type.
2277
bool IsExact = !IsDynamicCastToVoid &&
2278
CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2279
DestRecordTy->getAsCXXRecordDecl()->isEffectivelyFinal() &&
2280
CGM.getCXXABI().shouldEmitExactDynamicCast(DestRecordTy);
2281
2282
// C++ [expr.dynamic.cast]p4:
2283
// If the value of v is a null pointer value in the pointer case, the result
2284
// is the null pointer value of type T.
2285
bool ShouldNullCheckSrcValue =
2286
IsExact || CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(
2287
SrcTy->isPointerType(), SrcRecordTy);
2288
2289
llvm::BasicBlock *CastNull = nullptr;
2290
llvm::BasicBlock *CastNotNull = nullptr;
2291
llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2292
2293
if (ShouldNullCheckSrcValue) {
2294
CastNull = createBasicBlock("dynamic_cast.null");
2295
CastNotNull = createBasicBlock("dynamic_cast.notnull");
2296
2297
llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr);
2298
Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2299
EmitBlock(CastNotNull);
2300
}
2301
2302
llvm::Value *Value;
2303
if (IsDynamicCastToVoid) {
2304
Value = CGM.getCXXABI().emitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy);
2305
} else if (IsExact) {
2306
// If the destination type is effectively final, this pointer points to the
2307
// right type if and only if its vptr has the right value.
2308
Value = CGM.getCXXABI().emitExactDynamicCast(
2309
*this, ThisAddr, SrcRecordTy, DestTy, DestRecordTy, CastEnd, CastNull);
2310
} else {
2311
assert(DestRecordTy->isRecordType() &&
2312
"destination type must be a record type!");
2313
Value = CGM.getCXXABI().emitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2314
DestTy, DestRecordTy, CastEnd);
2315
}
2316
CastNotNull = Builder.GetInsertBlock();
2317
2318
llvm::Value *NullValue = nullptr;
2319
if (ShouldNullCheckSrcValue) {
2320
EmitBranch(CastEnd);
2321
2322
EmitBlock(CastNull);
2323
NullValue = EmitDynamicCastToNull(*this, DestTy);
2324
CastNull = Builder.GetInsertBlock();
2325
2326
EmitBranch(CastEnd);
2327
}
2328
2329
EmitBlock(CastEnd);
2330
2331
if (CastNull) {
2332
llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2333
PHI->addIncoming(Value, CastNotNull);
2334
PHI->addIncoming(NullValue, CastNull);
2335
2336
Value = PHI;
2337
}
2338
2339
return Value;
2340
}
2341
2342