Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/clang/lib/CodeGen/CGExprConstant.cpp
35234 views
1
//===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This contains code to emit Constant Expr nodes as LLVM code.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "ABIInfoImpl.h"
14
#include "CGCXXABI.h"
15
#include "CGObjCRuntime.h"
16
#include "CGRecordLayout.h"
17
#include "CodeGenFunction.h"
18
#include "CodeGenModule.h"
19
#include "ConstantEmitter.h"
20
#include "TargetInfo.h"
21
#include "clang/AST/APValue.h"
22
#include "clang/AST/ASTContext.h"
23
#include "clang/AST/Attr.h"
24
#include "clang/AST/RecordLayout.h"
25
#include "clang/AST/StmtVisitor.h"
26
#include "clang/Basic/Builtins.h"
27
#include "llvm/ADT/STLExtras.h"
28
#include "llvm/ADT/Sequence.h"
29
#include "llvm/Analysis/ConstantFolding.h"
30
#include "llvm/IR/Constants.h"
31
#include "llvm/IR/DataLayout.h"
32
#include "llvm/IR/Function.h"
33
#include "llvm/IR/GlobalVariable.h"
34
#include <optional>
35
using namespace clang;
36
using namespace CodeGen;
37
38
//===----------------------------------------------------------------------===//
39
// ConstantAggregateBuilder
40
//===----------------------------------------------------------------------===//
41
42
namespace {
43
class ConstExprEmitter;
44
45
struct ConstantAggregateBuilderUtils {
46
CodeGenModule &CGM;
47
48
ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {}
49
50
CharUnits getAlignment(const llvm::Constant *C) const {
51
return CharUnits::fromQuantity(
52
CGM.getDataLayout().getABITypeAlign(C->getType()));
53
}
54
55
CharUnits getSize(llvm::Type *Ty) const {
56
return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty));
57
}
58
59
CharUnits getSize(const llvm::Constant *C) const {
60
return getSize(C->getType());
61
}
62
63
llvm::Constant *getPadding(CharUnits PadSize) const {
64
llvm::Type *Ty = CGM.CharTy;
65
if (PadSize > CharUnits::One())
66
Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
67
return llvm::UndefValue::get(Ty);
68
}
69
70
llvm::Constant *getZeroes(CharUnits ZeroSize) const {
71
llvm::Type *Ty = llvm::ArrayType::get(CGM.CharTy, ZeroSize.getQuantity());
72
return llvm::ConstantAggregateZero::get(Ty);
73
}
74
};
75
76
/// Incremental builder for an llvm::Constant* holding a struct or array
77
/// constant.
78
class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils {
79
/// The elements of the constant. These two arrays must have the same size;
80
/// Offsets[i] describes the offset of Elems[i] within the constant. The
81
/// elements are kept in increasing offset order, and we ensure that there
82
/// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]).
83
///
84
/// This may contain explicit padding elements (in order to create a
85
/// natural layout), but need not. Gaps between elements are implicitly
86
/// considered to be filled with undef.
87
llvm::SmallVector<llvm::Constant*, 32> Elems;
88
llvm::SmallVector<CharUnits, 32> Offsets;
89
90
/// The size of the constant (the maximum end offset of any added element).
91
/// May be larger than the end of Elems.back() if we split the last element
92
/// and removed some trailing undefs.
93
CharUnits Size = CharUnits::Zero();
94
95
/// This is true only if laying out Elems in order as the elements of a
96
/// non-packed LLVM struct will give the correct layout.
97
bool NaturalLayout = true;
98
99
bool split(size_t Index, CharUnits Hint);
100
std::optional<size_t> splitAt(CharUnits Pos);
101
102
static llvm::Constant *buildFrom(CodeGenModule &CGM,
103
ArrayRef<llvm::Constant *> Elems,
104
ArrayRef<CharUnits> Offsets,
105
CharUnits StartOffset, CharUnits Size,
106
bool NaturalLayout, llvm::Type *DesiredTy,
107
bool AllowOversized);
108
109
public:
110
ConstantAggregateBuilder(CodeGenModule &CGM)
111
: ConstantAggregateBuilderUtils(CGM) {}
112
113
/// Update or overwrite the value starting at \p Offset with \c C.
114
///
115
/// \param AllowOverwrite If \c true, this constant might overwrite (part of)
116
/// a constant that has already been added. This flag is only used to
117
/// detect bugs.
118
bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite);
119
120
/// Update or overwrite the bits starting at \p OffsetInBits with \p Bits.
121
bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite);
122
123
/// Attempt to condense the value starting at \p Offset to a constant of type
124
/// \p DesiredTy.
125
void condense(CharUnits Offset, llvm::Type *DesiredTy);
126
127
/// Produce a constant representing the entire accumulated value, ideally of
128
/// the specified type. If \p AllowOversized, the constant might be larger
129
/// than implied by \p DesiredTy (eg, if there is a flexible array member).
130
/// Otherwise, the constant will be of exactly the same size as \p DesiredTy
131
/// even if we can't represent it as that type.
132
llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const {
133
return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size,
134
NaturalLayout, DesiredTy, AllowOversized);
135
}
136
};
137
138
template<typename Container, typename Range = std::initializer_list<
139
typename Container::value_type>>
140
static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) {
141
assert(BeginOff <= EndOff && "invalid replacement range");
142
llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals);
143
}
144
145
bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset,
146
bool AllowOverwrite) {
147
// Common case: appending to a layout.
148
if (Offset >= Size) {
149
CharUnits Align = getAlignment(C);
150
CharUnits AlignedSize = Size.alignTo(Align);
151
if (AlignedSize > Offset || Offset.alignTo(Align) != Offset)
152
NaturalLayout = false;
153
else if (AlignedSize < Offset) {
154
Elems.push_back(getPadding(Offset - Size));
155
Offsets.push_back(Size);
156
}
157
Elems.push_back(C);
158
Offsets.push_back(Offset);
159
Size = Offset + getSize(C);
160
return true;
161
}
162
163
// Uncommon case: constant overlaps what we've already created.
164
std::optional<size_t> FirstElemToReplace = splitAt(Offset);
165
if (!FirstElemToReplace)
166
return false;
167
168
CharUnits CSize = getSize(C);
169
std::optional<size_t> LastElemToReplace = splitAt(Offset + CSize);
170
if (!LastElemToReplace)
171
return false;
172
173
assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) &&
174
"unexpectedly overwriting field");
175
176
replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C});
177
replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset});
178
Size = std::max(Size, Offset + CSize);
179
NaturalLayout = false;
180
return true;
181
}
182
183
bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits,
184
bool AllowOverwrite) {
185
const ASTContext &Context = CGM.getContext();
186
const uint64_t CharWidth = CGM.getContext().getCharWidth();
187
188
// Offset of where we want the first bit to go within the bits of the
189
// current char.
190
unsigned OffsetWithinChar = OffsetInBits % CharWidth;
191
192
// We split bit-fields up into individual bytes. Walk over the bytes and
193
// update them.
194
for (CharUnits OffsetInChars =
195
Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar);
196
/**/; ++OffsetInChars) {
197
// Number of bits we want to fill in this char.
198
unsigned WantedBits =
199
std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar);
200
201
// Get a char containing the bits we want in the right places. The other
202
// bits have unspecified values.
203
llvm::APInt BitsThisChar = Bits;
204
if (BitsThisChar.getBitWidth() < CharWidth)
205
BitsThisChar = BitsThisChar.zext(CharWidth);
206
if (CGM.getDataLayout().isBigEndian()) {
207
// Figure out how much to shift by. We may need to left-shift if we have
208
// less than one byte of Bits left.
209
int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar;
210
if (Shift > 0)
211
BitsThisChar.lshrInPlace(Shift);
212
else if (Shift < 0)
213
BitsThisChar = BitsThisChar.shl(-Shift);
214
} else {
215
BitsThisChar = BitsThisChar.shl(OffsetWithinChar);
216
}
217
if (BitsThisChar.getBitWidth() > CharWidth)
218
BitsThisChar = BitsThisChar.trunc(CharWidth);
219
220
if (WantedBits == CharWidth) {
221
// Got a full byte: just add it directly.
222
add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
223
OffsetInChars, AllowOverwrite);
224
} else {
225
// Partial byte: update the existing integer if there is one. If we
226
// can't split out a 1-CharUnit range to update, then we can't add
227
// these bits and fail the entire constant emission.
228
std::optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars);
229
if (!FirstElemToUpdate)
230
return false;
231
std::optional<size_t> LastElemToUpdate =
232
splitAt(OffsetInChars + CharUnits::One());
233
if (!LastElemToUpdate)
234
return false;
235
assert(*LastElemToUpdate - *FirstElemToUpdate < 2 &&
236
"should have at most one element covering one byte");
237
238
// Figure out which bits we want and discard the rest.
239
llvm::APInt UpdateMask(CharWidth, 0);
240
if (CGM.getDataLayout().isBigEndian())
241
UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits,
242
CharWidth - OffsetWithinChar);
243
else
244
UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits);
245
BitsThisChar &= UpdateMask;
246
247
if (*FirstElemToUpdate == *LastElemToUpdate ||
248
Elems[*FirstElemToUpdate]->isNullValue() ||
249
isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) {
250
// All existing bits are either zero or undef.
251
add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
252
OffsetInChars, /*AllowOverwrite*/ true);
253
} else {
254
llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate];
255
// In order to perform a partial update, we need the existing bitwise
256
// value, which we can only extract for a constant int.
257
auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate);
258
if (!CI)
259
return false;
260
// Because this is a 1-CharUnit range, the constant occupying it must
261
// be exactly one CharUnit wide.
262
assert(CI->getBitWidth() == CharWidth && "splitAt failed");
263
assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) &&
264
"unexpectedly overwriting bitfield");
265
BitsThisChar |= (CI->getValue() & ~UpdateMask);
266
ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar);
267
}
268
}
269
270
// Stop if we've added all the bits.
271
if (WantedBits == Bits.getBitWidth())
272
break;
273
274
// Remove the consumed bits from Bits.
275
if (!CGM.getDataLayout().isBigEndian())
276
Bits.lshrInPlace(WantedBits);
277
Bits = Bits.trunc(Bits.getBitWidth() - WantedBits);
278
279
// The remanining bits go at the start of the following bytes.
280
OffsetWithinChar = 0;
281
}
282
283
return true;
284
}
285
286
/// Returns a position within Elems and Offsets such that all elements
287
/// before the returned index end before Pos and all elements at or after
288
/// the returned index begin at or after Pos. Splits elements as necessary
289
/// to ensure this. Returns std::nullopt if we find something we can't split.
290
std::optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) {
291
if (Pos >= Size)
292
return Offsets.size();
293
294
while (true) {
295
auto FirstAfterPos = llvm::upper_bound(Offsets, Pos);
296
if (FirstAfterPos == Offsets.begin())
297
return 0;
298
299
// If we already have an element starting at Pos, we're done.
300
size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1;
301
if (Offsets[LastAtOrBeforePosIndex] == Pos)
302
return LastAtOrBeforePosIndex;
303
304
// We found an element starting before Pos. Check for overlap.
305
if (Offsets[LastAtOrBeforePosIndex] +
306
getSize(Elems[LastAtOrBeforePosIndex]) <= Pos)
307
return LastAtOrBeforePosIndex + 1;
308
309
// Try to decompose it into smaller constants.
310
if (!split(LastAtOrBeforePosIndex, Pos))
311
return std::nullopt;
312
}
313
}
314
315
/// Split the constant at index Index, if possible. Return true if we did.
316
/// Hint indicates the location at which we'd like to split, but may be
317
/// ignored.
318
bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) {
319
NaturalLayout = false;
320
llvm::Constant *C = Elems[Index];
321
CharUnits Offset = Offsets[Index];
322
323
if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) {
324
// Expand the sequence into its contained elements.
325
// FIXME: This assumes vector elements are byte-sized.
326
replace(Elems, Index, Index + 1,
327
llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
328
[&](unsigned Op) { return CA->getOperand(Op); }));
329
if (isa<llvm::ArrayType>(CA->getType()) ||
330
isa<llvm::VectorType>(CA->getType())) {
331
// Array or vector.
332
llvm::Type *ElemTy =
333
llvm::GetElementPtrInst::getTypeAtIndex(CA->getType(), (uint64_t)0);
334
CharUnits ElemSize = getSize(ElemTy);
335
replace(
336
Offsets, Index, Index + 1,
337
llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
338
[&](unsigned Op) { return Offset + Op * ElemSize; }));
339
} else {
340
// Must be a struct.
341
auto *ST = cast<llvm::StructType>(CA->getType());
342
const llvm::StructLayout *Layout =
343
CGM.getDataLayout().getStructLayout(ST);
344
replace(Offsets, Index, Index + 1,
345
llvm::map_range(
346
llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) {
347
return Offset + CharUnits::fromQuantity(
348
Layout->getElementOffset(Op));
349
}));
350
}
351
return true;
352
}
353
354
if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) {
355
// Expand the sequence into its contained elements.
356
// FIXME: This assumes vector elements are byte-sized.
357
// FIXME: If possible, split into two ConstantDataSequentials at Hint.
358
CharUnits ElemSize = getSize(CDS->getElementType());
359
replace(Elems, Index, Index + 1,
360
llvm::map_range(llvm::seq(0u, CDS->getNumElements()),
361
[&](unsigned Elem) {
362
return CDS->getElementAsConstant(Elem);
363
}));
364
replace(Offsets, Index, Index + 1,
365
llvm::map_range(
366
llvm::seq(0u, CDS->getNumElements()),
367
[&](unsigned Elem) { return Offset + Elem * ElemSize; }));
368
return true;
369
}
370
371
if (isa<llvm::ConstantAggregateZero>(C)) {
372
// Split into two zeros at the hinted offset.
373
CharUnits ElemSize = getSize(C);
374
assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split");
375
replace(Elems, Index, Index + 1,
376
{getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)});
377
replace(Offsets, Index, Index + 1, {Offset, Hint});
378
return true;
379
}
380
381
if (isa<llvm::UndefValue>(C)) {
382
// Drop undef; it doesn't contribute to the final layout.
383
replace(Elems, Index, Index + 1, {});
384
replace(Offsets, Index, Index + 1, {});
385
return true;
386
}
387
388
// FIXME: We could split a ConstantInt if the need ever arose.
389
// We don't need to do this to handle bit-fields because we always eagerly
390
// split them into 1-byte chunks.
391
392
return false;
393
}
394
395
static llvm::Constant *
396
EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
397
llvm::Type *CommonElementType, uint64_t ArrayBound,
398
SmallVectorImpl<llvm::Constant *> &Elements,
399
llvm::Constant *Filler);
400
401
llvm::Constant *ConstantAggregateBuilder::buildFrom(
402
CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems,
403
ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size,
404
bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) {
405
ConstantAggregateBuilderUtils Utils(CGM);
406
407
if (Elems.empty())
408
return llvm::UndefValue::get(DesiredTy);
409
410
auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; };
411
412
// If we want an array type, see if all the elements are the same type and
413
// appropriately spaced.
414
if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) {
415
assert(!AllowOversized && "oversized array emission not supported");
416
417
bool CanEmitArray = true;
418
llvm::Type *CommonType = Elems[0]->getType();
419
llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType);
420
CharUnits ElemSize = Utils.getSize(ATy->getElementType());
421
SmallVector<llvm::Constant*, 32> ArrayElements;
422
for (size_t I = 0; I != Elems.size(); ++I) {
423
// Skip zeroes; we'll use a zero value as our array filler.
424
if (Elems[I]->isNullValue())
425
continue;
426
427
// All remaining elements must be the same type.
428
if (Elems[I]->getType() != CommonType ||
429
Offset(I) % ElemSize != 0) {
430
CanEmitArray = false;
431
break;
432
}
433
ArrayElements.resize(Offset(I) / ElemSize + 1, Filler);
434
ArrayElements.back() = Elems[I];
435
}
436
437
if (CanEmitArray) {
438
return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(),
439
ArrayElements, Filler);
440
}
441
442
// Can't emit as an array, carry on to emit as a struct.
443
}
444
445
// The size of the constant we plan to generate. This is usually just
446
// the size of the initialized type, but in AllowOversized mode (i.e.
447
// flexible array init), it can be larger.
448
CharUnits DesiredSize = Utils.getSize(DesiredTy);
449
if (Size > DesiredSize) {
450
assert(AllowOversized && "Elems are oversized");
451
DesiredSize = Size;
452
}
453
454
// The natural alignment of an unpacked LLVM struct with the given elements.
455
CharUnits Align = CharUnits::One();
456
for (llvm::Constant *C : Elems)
457
Align = std::max(Align, Utils.getAlignment(C));
458
459
// The natural size of an unpacked LLVM struct with the given elements.
460
CharUnits AlignedSize = Size.alignTo(Align);
461
462
bool Packed = false;
463
ArrayRef<llvm::Constant*> UnpackedElems = Elems;
464
llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage;
465
if (DesiredSize < AlignedSize || DesiredSize.alignTo(Align) != DesiredSize) {
466
// The natural layout would be too big; force use of a packed layout.
467
NaturalLayout = false;
468
Packed = true;
469
} else if (DesiredSize > AlignedSize) {
470
// The natural layout would be too small. Add padding to fix it. (This
471
// is ignored if we choose a packed layout.)
472
UnpackedElemStorage.assign(Elems.begin(), Elems.end());
473
UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size));
474
UnpackedElems = UnpackedElemStorage;
475
}
476
477
// If we don't have a natural layout, insert padding as necessary.
478
// As we go, double-check to see if we can actually just emit Elems
479
// as a non-packed struct and do so opportunistically if possible.
480
llvm::SmallVector<llvm::Constant*, 32> PackedElems;
481
if (!NaturalLayout) {
482
CharUnits SizeSoFar = CharUnits::Zero();
483
for (size_t I = 0; I != Elems.size(); ++I) {
484
CharUnits Align = Utils.getAlignment(Elems[I]);
485
CharUnits NaturalOffset = SizeSoFar.alignTo(Align);
486
CharUnits DesiredOffset = Offset(I);
487
assert(DesiredOffset >= SizeSoFar && "elements out of order");
488
489
if (DesiredOffset != NaturalOffset)
490
Packed = true;
491
if (DesiredOffset != SizeSoFar)
492
PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar));
493
PackedElems.push_back(Elems[I]);
494
SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]);
495
}
496
// If we're using the packed layout, pad it out to the desired size if
497
// necessary.
498
if (Packed) {
499
assert(SizeSoFar <= DesiredSize &&
500
"requested size is too small for contents");
501
if (SizeSoFar < DesiredSize)
502
PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar));
503
}
504
}
505
506
llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements(
507
CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed);
508
509
// Pick the type to use. If the type is layout identical to the desired
510
// type then use it, otherwise use whatever the builder produced for us.
511
if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) {
512
if (DesiredSTy->isLayoutIdentical(STy))
513
STy = DesiredSTy;
514
}
515
516
return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems);
517
}
518
519
void ConstantAggregateBuilder::condense(CharUnits Offset,
520
llvm::Type *DesiredTy) {
521
CharUnits Size = getSize(DesiredTy);
522
523
std::optional<size_t> FirstElemToReplace = splitAt(Offset);
524
if (!FirstElemToReplace)
525
return;
526
size_t First = *FirstElemToReplace;
527
528
std::optional<size_t> LastElemToReplace = splitAt(Offset + Size);
529
if (!LastElemToReplace)
530
return;
531
size_t Last = *LastElemToReplace;
532
533
size_t Length = Last - First;
534
if (Length == 0)
535
return;
536
537
if (Length == 1 && Offsets[First] == Offset &&
538
getSize(Elems[First]) == Size) {
539
// Re-wrap single element structs if necessary. Otherwise, leave any single
540
// element constant of the right size alone even if it has the wrong type.
541
auto *STy = dyn_cast<llvm::StructType>(DesiredTy);
542
if (STy && STy->getNumElements() == 1 &&
543
STy->getElementType(0) == Elems[First]->getType())
544
Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]);
545
return;
546
}
547
548
llvm::Constant *Replacement = buildFrom(
549
CGM, ArrayRef(Elems).slice(First, Length),
550
ArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy),
551
/*known to have natural layout=*/false, DesiredTy, false);
552
replace(Elems, First, Last, {Replacement});
553
replace(Offsets, First, Last, {Offset});
554
}
555
556
//===----------------------------------------------------------------------===//
557
// ConstStructBuilder
558
//===----------------------------------------------------------------------===//
559
560
class ConstStructBuilder {
561
CodeGenModule &CGM;
562
ConstantEmitter &Emitter;
563
ConstantAggregateBuilder &Builder;
564
CharUnits StartOffset;
565
566
public:
567
static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
568
const InitListExpr *ILE,
569
QualType StructTy);
570
static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
571
const APValue &Value, QualType ValTy);
572
static bool UpdateStruct(ConstantEmitter &Emitter,
573
ConstantAggregateBuilder &Const, CharUnits Offset,
574
const InitListExpr *Updater);
575
576
private:
577
ConstStructBuilder(ConstantEmitter &Emitter,
578
ConstantAggregateBuilder &Builder, CharUnits StartOffset)
579
: CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder),
580
StartOffset(StartOffset) {}
581
582
bool AppendField(const FieldDecl *Field, uint64_t FieldOffset,
583
llvm::Constant *InitExpr, bool AllowOverwrite = false);
584
585
bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst,
586
bool AllowOverwrite = false);
587
588
bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
589
llvm::Constant *InitExpr, bool AllowOverwrite = false);
590
591
bool Build(const InitListExpr *ILE, bool AllowOverwrite);
592
bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
593
const CXXRecordDecl *VTableClass, CharUnits BaseOffset);
594
llvm::Constant *Finalize(QualType Ty);
595
};
596
597
bool ConstStructBuilder::AppendField(
598
const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst,
599
bool AllowOverwrite) {
600
const ASTContext &Context = CGM.getContext();
601
602
CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
603
604
return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite);
605
}
606
607
bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars,
608
llvm::Constant *InitCst,
609
bool AllowOverwrite) {
610
return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite);
611
}
612
613
bool ConstStructBuilder::AppendBitField(const FieldDecl *Field,
614
uint64_t FieldOffset, llvm::Constant *C,
615
bool AllowOverwrite) {
616
617
llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C);
618
if (!CI) {
619
// Constants for long _BitInt types are sometimes split into individual
620
// bytes. Try to fold these back into an integer constant. If that doesn't
621
// work out, then we are trying to initialize a bitfield with a non-trivial
622
// constant, this must require run-time code.
623
llvm::Type *LoadType =
624
CGM.getTypes().convertTypeForLoadStore(Field->getType(), C->getType());
625
llvm::Constant *FoldedConstant = llvm::ConstantFoldLoadFromConst(
626
C, LoadType, llvm::APInt::getZero(32), CGM.getDataLayout());
627
CI = dyn_cast_if_present<llvm::ConstantInt>(FoldedConstant);
628
if (!CI)
629
return false;
630
}
631
632
const CGRecordLayout &RL =
633
CGM.getTypes().getCGRecordLayout(Field->getParent());
634
const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
635
llvm::APInt FieldValue = CI->getValue();
636
637
// Promote the size of FieldValue if necessary
638
// FIXME: This should never occur, but currently it can because initializer
639
// constants are cast to bool, and because clang is not enforcing bitfield
640
// width limits.
641
if (Info.Size > FieldValue.getBitWidth())
642
FieldValue = FieldValue.zext(Info.Size);
643
644
// Truncate the size of FieldValue to the bit field size.
645
if (Info.Size < FieldValue.getBitWidth())
646
FieldValue = FieldValue.trunc(Info.Size);
647
648
return Builder.addBits(FieldValue,
649
CGM.getContext().toBits(StartOffset) + FieldOffset,
650
AllowOverwrite);
651
}
652
653
static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter,
654
ConstantAggregateBuilder &Const,
655
CharUnits Offset, QualType Type,
656
const InitListExpr *Updater) {
657
if (Type->isRecordType())
658
return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater);
659
660
auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type);
661
if (!CAT)
662
return false;
663
QualType ElemType = CAT->getElementType();
664
CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType);
665
llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType);
666
667
llvm::Constant *FillC = nullptr;
668
if (const Expr *Filler = Updater->getArrayFiller()) {
669
if (!isa<NoInitExpr>(Filler)) {
670
FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType);
671
if (!FillC)
672
return false;
673
}
674
}
675
676
unsigned NumElementsToUpdate =
677
FillC ? CAT->getZExtSize() : Updater->getNumInits();
678
for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) {
679
const Expr *Init = nullptr;
680
if (I < Updater->getNumInits())
681
Init = Updater->getInit(I);
682
683
if (!Init && FillC) {
684
if (!Const.add(FillC, Offset, true))
685
return false;
686
} else if (!Init || isa<NoInitExpr>(Init)) {
687
continue;
688
} else if (const auto *ChildILE = dyn_cast<InitListExpr>(Init)) {
689
if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType,
690
ChildILE))
691
return false;
692
// Attempt to reduce the array element to a single constant if necessary.
693
Const.condense(Offset, ElemTy);
694
} else {
695
llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType);
696
if (!Const.add(Val, Offset, true))
697
return false;
698
}
699
}
700
701
return true;
702
}
703
704
bool ConstStructBuilder::Build(const InitListExpr *ILE, bool AllowOverwrite) {
705
RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
706
const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
707
708
unsigned FieldNo = -1;
709
unsigned ElementNo = 0;
710
711
// Bail out if we have base classes. We could support these, but they only
712
// arise in C++1z where we will have already constant folded most interesting
713
// cases. FIXME: There are still a few more cases we can handle this way.
714
if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
715
if (CXXRD->getNumBases())
716
return false;
717
718
for (FieldDecl *Field : RD->fields()) {
719
++FieldNo;
720
721
// If this is a union, skip all the fields that aren't being initialized.
722
if (RD->isUnion() &&
723
!declaresSameEntity(ILE->getInitializedFieldInUnion(), Field))
724
continue;
725
726
// Don't emit anonymous bitfields.
727
if (Field->isUnnamedBitField())
728
continue;
729
730
// Get the initializer. A struct can include fields without initializers,
731
// we just use explicit null values for them.
732
const Expr *Init = nullptr;
733
if (ElementNo < ILE->getNumInits())
734
Init = ILE->getInit(ElementNo++);
735
if (isa_and_nonnull<NoInitExpr>(Init))
736
continue;
737
738
// Zero-sized fields are not emitted, but their initializers may still
739
// prevent emission of this struct as a constant.
740
if (isEmptyFieldForLayout(CGM.getContext(), Field)) {
741
if (Init->HasSideEffects(CGM.getContext()))
742
return false;
743
continue;
744
}
745
746
// When emitting a DesignatedInitUpdateExpr, a nested InitListExpr
747
// represents additional overwriting of our current constant value, and not
748
// a new constant to emit independently.
749
if (AllowOverwrite &&
750
(Field->getType()->isArrayType() || Field->getType()->isRecordType())) {
751
if (auto *SubILE = dyn_cast<InitListExpr>(Init)) {
752
CharUnits Offset = CGM.getContext().toCharUnitsFromBits(
753
Layout.getFieldOffset(FieldNo));
754
if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset,
755
Field->getType(), SubILE))
756
return false;
757
// If we split apart the field's value, try to collapse it down to a
758
// single value now.
759
Builder.condense(StartOffset + Offset,
760
CGM.getTypes().ConvertTypeForMem(Field->getType()));
761
continue;
762
}
763
}
764
765
llvm::Constant *EltInit =
766
Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType())
767
: Emitter.emitNullForMemory(Field->getType());
768
if (!EltInit)
769
return false;
770
771
if (!Field->isBitField()) {
772
// Handle non-bitfield members.
773
if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit,
774
AllowOverwrite))
775
return false;
776
// After emitting a non-empty field with [[no_unique_address]], we may
777
// need to overwrite its tail padding.
778
if (Field->hasAttr<NoUniqueAddressAttr>())
779
AllowOverwrite = true;
780
} else {
781
// Otherwise we have a bitfield.
782
if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), EltInit,
783
AllowOverwrite))
784
return false;
785
}
786
}
787
788
return true;
789
}
790
791
namespace {
792
struct BaseInfo {
793
BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
794
: Decl(Decl), Offset(Offset), Index(Index) {
795
}
796
797
const CXXRecordDecl *Decl;
798
CharUnits Offset;
799
unsigned Index;
800
801
bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
802
};
803
}
804
805
bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
806
bool IsPrimaryBase,
807
const CXXRecordDecl *VTableClass,
808
CharUnits Offset) {
809
const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
810
811
if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
812
// Add a vtable pointer, if we need one and it hasn't already been added.
813
if (Layout.hasOwnVFPtr()) {
814
llvm::Constant *VTableAddressPoint =
815
CGM.getCXXABI().getVTableAddressPoint(BaseSubobject(CD, Offset),
816
VTableClass);
817
if (auto Authentication = CGM.getVTablePointerAuthentication(CD)) {
818
VTableAddressPoint = Emitter.tryEmitConstantSignedPointer(
819
VTableAddressPoint, *Authentication);
820
if (!VTableAddressPoint)
821
return false;
822
}
823
if (!AppendBytes(Offset, VTableAddressPoint))
824
return false;
825
}
826
827
// Accumulate and sort bases, in order to visit them in address order, which
828
// may not be the same as declaration order.
829
SmallVector<BaseInfo, 8> Bases;
830
Bases.reserve(CD->getNumBases());
831
unsigned BaseNo = 0;
832
for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
833
BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
834
assert(!Base->isVirtual() && "should not have virtual bases here");
835
const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
836
CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
837
Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
838
}
839
llvm::stable_sort(Bases);
840
841
for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
842
BaseInfo &Base = Bases[I];
843
844
bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
845
Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
846
VTableClass, Offset + Base.Offset);
847
}
848
}
849
850
unsigned FieldNo = 0;
851
uint64_t OffsetBits = CGM.getContext().toBits(Offset);
852
853
bool AllowOverwrite = false;
854
for (RecordDecl::field_iterator Field = RD->field_begin(),
855
FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
856
// If this is a union, skip all the fields that aren't being initialized.
857
if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field))
858
continue;
859
860
// Don't emit anonymous bitfields or zero-sized fields.
861
if (Field->isUnnamedBitField() ||
862
isEmptyFieldForLayout(CGM.getContext(), *Field))
863
continue;
864
865
// Emit the value of the initializer.
866
const APValue &FieldValue =
867
RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
868
llvm::Constant *EltInit =
869
Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType());
870
if (!EltInit)
871
return false;
872
873
if (!Field->isBitField()) {
874
// Handle non-bitfield members.
875
if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
876
EltInit, AllowOverwrite))
877
return false;
878
// After emitting a non-empty field with [[no_unique_address]], we may
879
// need to overwrite its tail padding.
880
if (Field->hasAttr<NoUniqueAddressAttr>())
881
AllowOverwrite = true;
882
} else {
883
// Otherwise we have a bitfield.
884
if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
885
EltInit, AllowOverwrite))
886
return false;
887
}
888
}
889
890
return true;
891
}
892
893
llvm::Constant *ConstStructBuilder::Finalize(QualType Type) {
894
Type = Type.getNonReferenceType();
895
RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
896
llvm::Type *ValTy = CGM.getTypes().ConvertType(Type);
897
return Builder.build(ValTy, RD->hasFlexibleArrayMember());
898
}
899
900
llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
901
const InitListExpr *ILE,
902
QualType ValTy) {
903
ConstantAggregateBuilder Const(Emitter.CGM);
904
ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
905
906
if (!Builder.Build(ILE, /*AllowOverwrite*/false))
907
return nullptr;
908
909
return Builder.Finalize(ValTy);
910
}
911
912
llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
913
const APValue &Val,
914
QualType ValTy) {
915
ConstantAggregateBuilder Const(Emitter.CGM);
916
ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
917
918
const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
919
const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
920
if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero()))
921
return nullptr;
922
923
return Builder.Finalize(ValTy);
924
}
925
926
bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter,
927
ConstantAggregateBuilder &Const,
928
CharUnits Offset,
929
const InitListExpr *Updater) {
930
return ConstStructBuilder(Emitter, Const, Offset)
931
.Build(Updater, /*AllowOverwrite*/ true);
932
}
933
934
//===----------------------------------------------------------------------===//
935
// ConstExprEmitter
936
//===----------------------------------------------------------------------===//
937
938
static ConstantAddress
939
tryEmitGlobalCompoundLiteral(ConstantEmitter &emitter,
940
const CompoundLiteralExpr *E) {
941
CodeGenModule &CGM = emitter.CGM;
942
CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType());
943
if (llvm::GlobalVariable *Addr =
944
CGM.getAddrOfConstantCompoundLiteralIfEmitted(E))
945
return ConstantAddress(Addr, Addr->getValueType(), Align);
946
947
LangAS addressSpace = E->getType().getAddressSpace();
948
llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(),
949
addressSpace, E->getType());
950
if (!C) {
951
assert(!E->isFileScope() &&
952
"file-scope compound literal did not have constant initializer!");
953
return ConstantAddress::invalid();
954
}
955
956
auto GV = new llvm::GlobalVariable(
957
CGM.getModule(), C->getType(),
958
E->getType().isConstantStorage(CGM.getContext(), true, false),
959
llvm::GlobalValue::InternalLinkage, C, ".compoundliteral", nullptr,
960
llvm::GlobalVariable::NotThreadLocal,
961
CGM.getContext().getTargetAddressSpace(addressSpace));
962
emitter.finalize(GV);
963
GV->setAlignment(Align.getAsAlign());
964
CGM.setAddrOfConstantCompoundLiteral(E, GV);
965
return ConstantAddress(GV, GV->getValueType(), Align);
966
}
967
968
static llvm::Constant *
969
EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
970
llvm::Type *CommonElementType, uint64_t ArrayBound,
971
SmallVectorImpl<llvm::Constant *> &Elements,
972
llvm::Constant *Filler) {
973
// Figure out how long the initial prefix of non-zero elements is.
974
uint64_t NonzeroLength = ArrayBound;
975
if (Elements.size() < NonzeroLength && Filler->isNullValue())
976
NonzeroLength = Elements.size();
977
if (NonzeroLength == Elements.size()) {
978
while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue())
979
--NonzeroLength;
980
}
981
982
if (NonzeroLength == 0)
983
return llvm::ConstantAggregateZero::get(DesiredType);
984
985
// Add a zeroinitializer array filler if we have lots of trailing zeroes.
986
uint64_t TrailingZeroes = ArrayBound - NonzeroLength;
987
if (TrailingZeroes >= 8) {
988
assert(Elements.size() >= NonzeroLength &&
989
"missing initializer for non-zero element");
990
991
// If all the elements had the same type up to the trailing zeroes, emit a
992
// struct of two arrays (the nonzero data and the zeroinitializer).
993
if (CommonElementType && NonzeroLength >= 8) {
994
llvm::Constant *Initial = llvm::ConstantArray::get(
995
llvm::ArrayType::get(CommonElementType, NonzeroLength),
996
ArrayRef(Elements).take_front(NonzeroLength));
997
Elements.resize(2);
998
Elements[0] = Initial;
999
} else {
1000
Elements.resize(NonzeroLength + 1);
1001
}
1002
1003
auto *FillerType =
1004
CommonElementType ? CommonElementType : DesiredType->getElementType();
1005
FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes);
1006
Elements.back() = llvm::ConstantAggregateZero::get(FillerType);
1007
CommonElementType = nullptr;
1008
} else if (Elements.size() != ArrayBound) {
1009
// Otherwise pad to the right size with the filler if necessary.
1010
Elements.resize(ArrayBound, Filler);
1011
if (Filler->getType() != CommonElementType)
1012
CommonElementType = nullptr;
1013
}
1014
1015
// If all elements have the same type, just emit an array constant.
1016
if (CommonElementType)
1017
return llvm::ConstantArray::get(
1018
llvm::ArrayType::get(CommonElementType, ArrayBound), Elements);
1019
1020
// We have mixed types. Use a packed struct.
1021
llvm::SmallVector<llvm::Type *, 16> Types;
1022
Types.reserve(Elements.size());
1023
for (llvm::Constant *Elt : Elements)
1024
Types.push_back(Elt->getType());
1025
llvm::StructType *SType =
1026
llvm::StructType::get(CGM.getLLVMContext(), Types, true);
1027
return llvm::ConstantStruct::get(SType, Elements);
1028
}
1029
1030
// This class only needs to handle arrays, structs and unions. Outside C++11
1031
// mode, we don't currently constant fold those types. All other types are
1032
// handled by constant folding.
1033
//
1034
// Constant folding is currently missing support for a few features supported
1035
// here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr.
1036
class ConstExprEmitter
1037
: public ConstStmtVisitor<ConstExprEmitter, llvm::Constant *, QualType> {
1038
CodeGenModule &CGM;
1039
ConstantEmitter &Emitter;
1040
llvm::LLVMContext &VMContext;
1041
public:
1042
ConstExprEmitter(ConstantEmitter &emitter)
1043
: CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) {
1044
}
1045
1046
//===--------------------------------------------------------------------===//
1047
// Visitor Methods
1048
//===--------------------------------------------------------------------===//
1049
1050
llvm::Constant *VisitStmt(const Stmt *S, QualType T) { return nullptr; }
1051
1052
llvm::Constant *VisitConstantExpr(const ConstantExpr *CE, QualType T) {
1053
if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(CE))
1054
return Result;
1055
return Visit(CE->getSubExpr(), T);
1056
}
1057
1058
llvm::Constant *VisitParenExpr(const ParenExpr *PE, QualType T) {
1059
return Visit(PE->getSubExpr(), T);
1060
}
1061
1062
llvm::Constant *
1063
VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *PE,
1064
QualType T) {
1065
return Visit(PE->getReplacement(), T);
1066
}
1067
1068
llvm::Constant *VisitGenericSelectionExpr(const GenericSelectionExpr *GE,
1069
QualType T) {
1070
return Visit(GE->getResultExpr(), T);
1071
}
1072
1073
llvm::Constant *VisitChooseExpr(const ChooseExpr *CE, QualType T) {
1074
return Visit(CE->getChosenSubExpr(), T);
1075
}
1076
1077
llvm::Constant *VisitCompoundLiteralExpr(const CompoundLiteralExpr *E,
1078
QualType T) {
1079
return Visit(E->getInitializer(), T);
1080
}
1081
1082
llvm::Constant *ProduceIntToIntCast(const Expr *E, QualType DestType) {
1083
QualType FromType = E->getType();
1084
// See also HandleIntToIntCast in ExprConstant.cpp
1085
if (FromType->isIntegerType())
1086
if (llvm::Constant *C = Visit(E, FromType))
1087
if (auto *CI = dyn_cast<llvm::ConstantInt>(C)) {
1088
unsigned SrcWidth = CGM.getContext().getIntWidth(FromType);
1089
unsigned DstWidth = CGM.getContext().getIntWidth(DestType);
1090
if (DstWidth == SrcWidth)
1091
return CI;
1092
llvm::APInt A = FromType->isSignedIntegerType()
1093
? CI->getValue().sextOrTrunc(DstWidth)
1094
: CI->getValue().zextOrTrunc(DstWidth);
1095
return llvm::ConstantInt::get(CGM.getLLVMContext(), A);
1096
}
1097
return nullptr;
1098
}
1099
1100
llvm::Constant *VisitCastExpr(const CastExpr *E, QualType destType) {
1101
if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
1102
CGM.EmitExplicitCastExprType(ECE, Emitter.CGF);
1103
const Expr *subExpr = E->getSubExpr();
1104
1105
switch (E->getCastKind()) {
1106
case CK_ToUnion: {
1107
// GCC cast to union extension
1108
assert(E->getType()->isUnionType() &&
1109
"Destination type is not union type!");
1110
1111
auto field = E->getTargetUnionField();
1112
1113
auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType());
1114
if (!C) return nullptr;
1115
1116
auto destTy = ConvertType(destType);
1117
if (C->getType() == destTy) return C;
1118
1119
// Build a struct with the union sub-element as the first member,
1120
// and padded to the appropriate size.
1121
SmallVector<llvm::Constant*, 2> Elts;
1122
SmallVector<llvm::Type*, 2> Types;
1123
Elts.push_back(C);
1124
Types.push_back(C->getType());
1125
unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
1126
unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy);
1127
1128
assert(CurSize <= TotalSize && "Union size mismatch!");
1129
if (unsigned NumPadBytes = TotalSize - CurSize) {
1130
llvm::Type *Ty = CGM.CharTy;
1131
if (NumPadBytes > 1)
1132
Ty = llvm::ArrayType::get(Ty, NumPadBytes);
1133
1134
Elts.push_back(llvm::UndefValue::get(Ty));
1135
Types.push_back(Ty);
1136
}
1137
1138
llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false);
1139
return llvm::ConstantStruct::get(STy, Elts);
1140
}
1141
1142
case CK_AddressSpaceConversion: {
1143
auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1144
if (!C) return nullptr;
1145
LangAS destAS = E->getType()->getPointeeType().getAddressSpace();
1146
LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace();
1147
llvm::Type *destTy = ConvertType(E->getType());
1148
return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS,
1149
destAS, destTy);
1150
}
1151
1152
case CK_LValueToRValue: {
1153
// We don't really support doing lvalue-to-rvalue conversions here; any
1154
// interesting conversions should be done in Evaluate(). But as a
1155
// special case, allow compound literals to support the gcc extension
1156
// allowing "struct x {int x;} x = (struct x) {};".
1157
if (const auto *E =
1158
dyn_cast<CompoundLiteralExpr>(subExpr->IgnoreParens()))
1159
return Visit(E->getInitializer(), destType);
1160
return nullptr;
1161
}
1162
1163
case CK_AtomicToNonAtomic:
1164
case CK_NonAtomicToAtomic:
1165
case CK_NoOp:
1166
case CK_ConstructorConversion:
1167
return Visit(subExpr, destType);
1168
1169
case CK_ArrayToPointerDecay:
1170
if (const auto *S = dyn_cast<StringLiteral>(subExpr))
1171
return CGM.GetAddrOfConstantStringFromLiteral(S).getPointer();
1172
return nullptr;
1173
case CK_NullToPointer:
1174
if (Visit(subExpr, destType))
1175
return CGM.EmitNullConstant(destType);
1176
return nullptr;
1177
1178
case CK_IntToOCLSampler:
1179
llvm_unreachable("global sampler variables are not generated");
1180
1181
case CK_IntegralCast:
1182
return ProduceIntToIntCast(subExpr, destType);
1183
1184
case CK_Dependent: llvm_unreachable("saw dependent cast!");
1185
1186
case CK_BuiltinFnToFnPtr:
1187
llvm_unreachable("builtin functions are handled elsewhere");
1188
1189
case CK_ReinterpretMemberPointer:
1190
case CK_DerivedToBaseMemberPointer:
1191
case CK_BaseToDerivedMemberPointer: {
1192
auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1193
if (!C) return nullptr;
1194
return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
1195
}
1196
1197
// These will never be supported.
1198
case CK_ObjCObjectLValueCast:
1199
case CK_ARCProduceObject:
1200
case CK_ARCConsumeObject:
1201
case CK_ARCReclaimReturnedObject:
1202
case CK_ARCExtendBlockObject:
1203
case CK_CopyAndAutoreleaseBlockObject:
1204
return nullptr;
1205
1206
// These don't need to be handled here because Evaluate knows how to
1207
// evaluate them in the cases where they can be folded.
1208
case CK_BitCast:
1209
case CK_ToVoid:
1210
case CK_Dynamic:
1211
case CK_LValueBitCast:
1212
case CK_LValueToRValueBitCast:
1213
case CK_NullToMemberPointer:
1214
case CK_UserDefinedConversion:
1215
case CK_CPointerToObjCPointerCast:
1216
case CK_BlockPointerToObjCPointerCast:
1217
case CK_AnyPointerToBlockPointerCast:
1218
case CK_FunctionToPointerDecay:
1219
case CK_BaseToDerived:
1220
case CK_DerivedToBase:
1221
case CK_UncheckedDerivedToBase:
1222
case CK_MemberPointerToBoolean:
1223
case CK_VectorSplat:
1224
case CK_FloatingRealToComplex:
1225
case CK_FloatingComplexToReal:
1226
case CK_FloatingComplexToBoolean:
1227
case CK_FloatingComplexCast:
1228
case CK_FloatingComplexToIntegralComplex:
1229
case CK_IntegralRealToComplex:
1230
case CK_IntegralComplexToReal:
1231
case CK_IntegralComplexToBoolean:
1232
case CK_IntegralComplexCast:
1233
case CK_IntegralComplexToFloatingComplex:
1234
case CK_PointerToIntegral:
1235
case CK_PointerToBoolean:
1236
case CK_BooleanToSignedIntegral:
1237
case CK_IntegralToPointer:
1238
case CK_IntegralToBoolean:
1239
case CK_IntegralToFloating:
1240
case CK_FloatingToIntegral:
1241
case CK_FloatingToBoolean:
1242
case CK_FloatingCast:
1243
case CK_FloatingToFixedPoint:
1244
case CK_FixedPointToFloating:
1245
case CK_FixedPointCast:
1246
case CK_FixedPointToBoolean:
1247
case CK_FixedPointToIntegral:
1248
case CK_IntegralToFixedPoint:
1249
case CK_ZeroToOCLOpaqueType:
1250
case CK_MatrixCast:
1251
case CK_HLSLVectorTruncation:
1252
case CK_HLSLArrayRValue:
1253
return nullptr;
1254
}
1255
llvm_unreachable("Invalid CastKind");
1256
}
1257
1258
llvm::Constant *VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *DIE,
1259
QualType T) {
1260
// No need for a DefaultInitExprScope: we don't handle 'this' in a
1261
// constant expression.
1262
return Visit(DIE->getExpr(), T);
1263
}
1264
1265
llvm::Constant *VisitExprWithCleanups(const ExprWithCleanups *E, QualType T) {
1266
return Visit(E->getSubExpr(), T);
1267
}
1268
1269
llvm::Constant *VisitIntegerLiteral(const IntegerLiteral *I, QualType T) {
1270
return llvm::ConstantInt::get(CGM.getLLVMContext(), I->getValue());
1271
}
1272
1273
static APValue withDestType(ASTContext &Ctx, const Expr *E, QualType SrcType,
1274
QualType DestType, const llvm::APSInt &Value) {
1275
if (!Ctx.hasSameType(SrcType, DestType)) {
1276
if (DestType->isFloatingType()) {
1277
llvm::APFloat Result =
1278
llvm::APFloat(Ctx.getFloatTypeSemantics(DestType), 1);
1279
llvm::RoundingMode RM =
1280
E->getFPFeaturesInEffect(Ctx.getLangOpts()).getRoundingMode();
1281
if (RM == llvm::RoundingMode::Dynamic)
1282
RM = llvm::RoundingMode::NearestTiesToEven;
1283
Result.convertFromAPInt(Value, Value.isSigned(), RM);
1284
return APValue(Result);
1285
}
1286
}
1287
return APValue(Value);
1288
}
1289
1290
llvm::Constant *EmitArrayInitialization(const InitListExpr *ILE, QualType T) {
1291
auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType());
1292
assert(CAT && "can't emit array init for non-constant-bound array");
1293
uint64_t NumInitElements = ILE->getNumInits();
1294
const uint64_t NumElements = CAT->getZExtSize();
1295
for (const auto *Init : ILE->inits()) {
1296
if (const auto *Embed =
1297
dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
1298
NumInitElements += Embed->getDataElementCount() - 1;
1299
if (NumInitElements > NumElements) {
1300
NumInitElements = NumElements;
1301
break;
1302
}
1303
}
1304
}
1305
1306
// Initialising an array requires us to automatically
1307
// initialise any elements that have not been initialised explicitly
1308
uint64_t NumInitableElts = std::min<uint64_t>(NumInitElements, NumElements);
1309
1310
QualType EltType = CAT->getElementType();
1311
1312
// Initialize remaining array elements.
1313
llvm::Constant *fillC = nullptr;
1314
if (const Expr *filler = ILE->getArrayFiller()) {
1315
fillC = Emitter.tryEmitAbstractForMemory(filler, EltType);
1316
if (!fillC)
1317
return nullptr;
1318
}
1319
1320
// Copy initializer elements.
1321
SmallVector<llvm::Constant *, 16> Elts;
1322
if (fillC && fillC->isNullValue())
1323
Elts.reserve(NumInitableElts + 1);
1324
else
1325
Elts.reserve(NumElements);
1326
1327
llvm::Type *CommonElementType = nullptr;
1328
auto Emit = [&](const Expr *Init, unsigned ArrayIndex) {
1329
llvm::Constant *C = nullptr;
1330
C = Emitter.tryEmitPrivateForMemory(Init, EltType);
1331
if (!C)
1332
return false;
1333
if (ArrayIndex == 0)
1334
CommonElementType = C->getType();
1335
else if (C->getType() != CommonElementType)
1336
CommonElementType = nullptr;
1337
Elts.push_back(C);
1338
return true;
1339
};
1340
1341
unsigned ArrayIndex = 0;
1342
QualType DestTy = CAT->getElementType();
1343
for (unsigned i = 0; i < ILE->getNumInits(); ++i) {
1344
const Expr *Init = ILE->getInit(i);
1345
if (auto *EmbedS = dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
1346
StringLiteral *SL = EmbedS->getDataStringLiteral();
1347
llvm::APSInt Value(CGM.getContext().getTypeSize(DestTy),
1348
DestTy->isUnsignedIntegerType());
1349
llvm::Constant *C;
1350
for (unsigned I = EmbedS->getStartingElementPos(),
1351
N = EmbedS->getDataElementCount();
1352
I != EmbedS->getStartingElementPos() + N; ++I) {
1353
Value = SL->getCodeUnit(I);
1354
if (DestTy->isIntegerType()) {
1355
C = llvm::ConstantInt::get(CGM.getLLVMContext(), Value);
1356
} else {
1357
C = Emitter.tryEmitPrivateForMemory(
1358
withDestType(CGM.getContext(), Init, EmbedS->getType(), DestTy,
1359
Value),
1360
EltType);
1361
}
1362
if (!C)
1363
return nullptr;
1364
Elts.push_back(C);
1365
ArrayIndex++;
1366
}
1367
if ((ArrayIndex - EmbedS->getDataElementCount()) == 0)
1368
CommonElementType = C->getType();
1369
else if (C->getType() != CommonElementType)
1370
CommonElementType = nullptr;
1371
} else {
1372
if (!Emit(Init, ArrayIndex))
1373
return nullptr;
1374
ArrayIndex++;
1375
}
1376
}
1377
1378
llvm::ArrayType *Desired =
1379
cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType()));
1380
return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
1381
fillC);
1382
}
1383
1384
llvm::Constant *EmitRecordInitialization(const InitListExpr *ILE,
1385
QualType T) {
1386
return ConstStructBuilder::BuildStruct(Emitter, ILE, T);
1387
}
1388
1389
llvm::Constant *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E,
1390
QualType T) {
1391
return CGM.EmitNullConstant(T);
1392
}
1393
1394
llvm::Constant *VisitInitListExpr(const InitListExpr *ILE, QualType T) {
1395
if (ILE->isTransparent())
1396
return Visit(ILE->getInit(0), T);
1397
1398
if (ILE->getType()->isArrayType())
1399
return EmitArrayInitialization(ILE, T);
1400
1401
if (ILE->getType()->isRecordType())
1402
return EmitRecordInitialization(ILE, T);
1403
1404
return nullptr;
1405
}
1406
1407
llvm::Constant *
1408
VisitDesignatedInitUpdateExpr(const DesignatedInitUpdateExpr *E,
1409
QualType destType) {
1410
auto C = Visit(E->getBase(), destType);
1411
if (!C)
1412
return nullptr;
1413
1414
ConstantAggregateBuilder Const(CGM);
1415
Const.add(C, CharUnits::Zero(), false);
1416
1417
if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType,
1418
E->getUpdater()))
1419
return nullptr;
1420
1421
llvm::Type *ValTy = CGM.getTypes().ConvertType(destType);
1422
bool HasFlexibleArray = false;
1423
if (const auto *RT = destType->getAs<RecordType>())
1424
HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember();
1425
return Const.build(ValTy, HasFlexibleArray);
1426
}
1427
1428
llvm::Constant *VisitCXXConstructExpr(const CXXConstructExpr *E,
1429
QualType Ty) {
1430
if (!E->getConstructor()->isTrivial())
1431
return nullptr;
1432
1433
// Only default and copy/move constructors can be trivial.
1434
if (E->getNumArgs()) {
1435
assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
1436
assert(E->getConstructor()->isCopyOrMoveConstructor() &&
1437
"trivial ctor has argument but isn't a copy/move ctor");
1438
1439
const Expr *Arg = E->getArg(0);
1440
assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
1441
"argument to copy ctor is of wrong type");
1442
1443
// Look through the temporary; it's just converting the value to an
1444
// lvalue to pass it to the constructor.
1445
if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Arg))
1446
return Visit(MTE->getSubExpr(), Ty);
1447
// Don't try to support arbitrary lvalue-to-rvalue conversions for now.
1448
return nullptr;
1449
}
1450
1451
return CGM.EmitNullConstant(Ty);
1452
}
1453
1454
llvm::Constant *VisitStringLiteral(const StringLiteral *E, QualType T) {
1455
// This is a string literal initializing an array in an initializer.
1456
return CGM.GetConstantArrayFromStringLiteral(E);
1457
}
1458
1459
llvm::Constant *VisitObjCEncodeExpr(const ObjCEncodeExpr *E, QualType T) {
1460
// This must be an @encode initializing an array in a static initializer.
1461
// Don't emit it as the address of the string, emit the string data itself
1462
// as an inline array.
1463
std::string Str;
1464
CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1465
const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T);
1466
assert(CAT && "String data not of constant array type!");
1467
1468
// Resize the string to the right size, adding zeros at the end, or
1469
// truncating as needed.
1470
Str.resize(CAT->getZExtSize(), '\0');
1471
return llvm::ConstantDataArray::getString(VMContext, Str, false);
1472
}
1473
1474
llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) {
1475
return Visit(E->getSubExpr(), T);
1476
}
1477
1478
llvm::Constant *VisitUnaryMinus(const UnaryOperator *U, QualType T) {
1479
if (llvm::Constant *C = Visit(U->getSubExpr(), T))
1480
if (auto *CI = dyn_cast<llvm::ConstantInt>(C))
1481
return llvm::ConstantInt::get(CGM.getLLVMContext(), -CI->getValue());
1482
return nullptr;
1483
}
1484
1485
llvm::Constant *VisitPackIndexingExpr(const PackIndexingExpr *E, QualType T) {
1486
return Visit(E->getSelectedExpr(), T);
1487
}
1488
1489
// Utility methods
1490
llvm::Type *ConvertType(QualType T) {
1491
return CGM.getTypes().ConvertType(T);
1492
}
1493
};
1494
1495
} // end anonymous namespace.
1496
1497
llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C,
1498
AbstractState saved) {
1499
Abstract = saved.OldValue;
1500
1501
assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() &&
1502
"created a placeholder while doing an abstract emission?");
1503
1504
// No validation necessary for now.
1505
// No cleanup to do for now.
1506
return C;
1507
}
1508
1509
llvm::Constant *
1510
ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) {
1511
auto state = pushAbstract();
1512
auto C = tryEmitPrivateForVarInit(D);
1513
return validateAndPopAbstract(C, state);
1514
}
1515
1516
llvm::Constant *
1517
ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) {
1518
auto state = pushAbstract();
1519
auto C = tryEmitPrivate(E, destType);
1520
return validateAndPopAbstract(C, state);
1521
}
1522
1523
llvm::Constant *
1524
ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) {
1525
auto state = pushAbstract();
1526
auto C = tryEmitPrivate(value, destType);
1527
return validateAndPopAbstract(C, state);
1528
}
1529
1530
llvm::Constant *ConstantEmitter::tryEmitConstantExpr(const ConstantExpr *CE) {
1531
if (!CE->hasAPValueResult())
1532
return nullptr;
1533
1534
QualType RetType = CE->getType();
1535
if (CE->isGLValue())
1536
RetType = CGM.getContext().getLValueReferenceType(RetType);
1537
1538
return emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), RetType);
1539
}
1540
1541
llvm::Constant *
1542
ConstantEmitter::emitAbstract(const Expr *E, QualType destType) {
1543
auto state = pushAbstract();
1544
auto C = tryEmitPrivate(E, destType);
1545
C = validateAndPopAbstract(C, state);
1546
if (!C) {
1547
CGM.Error(E->getExprLoc(),
1548
"internal error: could not emit constant value \"abstractly\"");
1549
C = CGM.EmitNullConstant(destType);
1550
}
1551
return C;
1552
}
1553
1554
llvm::Constant *
1555
ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value,
1556
QualType destType,
1557
bool EnablePtrAuthFunctionTypeDiscrimination) {
1558
auto state = pushAbstract();
1559
auto C =
1560
tryEmitPrivate(value, destType, EnablePtrAuthFunctionTypeDiscrimination);
1561
C = validateAndPopAbstract(C, state);
1562
if (!C) {
1563
CGM.Error(loc,
1564
"internal error: could not emit constant value \"abstractly\"");
1565
C = CGM.EmitNullConstant(destType);
1566
}
1567
return C;
1568
}
1569
1570
llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) {
1571
initializeNonAbstract(D.getType().getAddressSpace());
1572
return markIfFailed(tryEmitPrivateForVarInit(D));
1573
}
1574
1575
llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E,
1576
LangAS destAddrSpace,
1577
QualType destType) {
1578
initializeNonAbstract(destAddrSpace);
1579
return markIfFailed(tryEmitPrivateForMemory(E, destType));
1580
}
1581
1582
llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value,
1583
LangAS destAddrSpace,
1584
QualType destType) {
1585
initializeNonAbstract(destAddrSpace);
1586
auto C = tryEmitPrivateForMemory(value, destType);
1587
assert(C && "couldn't emit constant value non-abstractly?");
1588
return C;
1589
}
1590
1591
llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() {
1592
assert(!Abstract && "cannot get current address for abstract constant");
1593
1594
1595
1596
// Make an obviously ill-formed global that should blow up compilation
1597
// if it survives.
1598
auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true,
1599
llvm::GlobalValue::PrivateLinkage,
1600
/*init*/ nullptr,
1601
/*name*/ "",
1602
/*before*/ nullptr,
1603
llvm::GlobalVariable::NotThreadLocal,
1604
CGM.getContext().getTargetAddressSpace(DestAddressSpace));
1605
1606
PlaceholderAddresses.push_back(std::make_pair(nullptr, global));
1607
1608
return global;
1609
}
1610
1611
void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal,
1612
llvm::GlobalValue *placeholder) {
1613
assert(!PlaceholderAddresses.empty());
1614
assert(PlaceholderAddresses.back().first == nullptr);
1615
assert(PlaceholderAddresses.back().second == placeholder);
1616
PlaceholderAddresses.back().first = signal;
1617
}
1618
1619
namespace {
1620
struct ReplacePlaceholders {
1621
CodeGenModule &CGM;
1622
1623
/// The base address of the global.
1624
llvm::Constant *Base;
1625
llvm::Type *BaseValueTy = nullptr;
1626
1627
/// The placeholder addresses that were registered during emission.
1628
llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses;
1629
1630
/// The locations of the placeholder signals.
1631
llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations;
1632
1633
/// The current index stack. We use a simple unsigned stack because
1634
/// we assume that placeholders will be relatively sparse in the
1635
/// initializer, but we cache the index values we find just in case.
1636
llvm::SmallVector<unsigned, 8> Indices;
1637
llvm::SmallVector<llvm::Constant*, 8> IndexValues;
1638
1639
ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base,
1640
ArrayRef<std::pair<llvm::Constant*,
1641
llvm::GlobalVariable*>> addresses)
1642
: CGM(CGM), Base(base),
1643
PlaceholderAddresses(addresses.begin(), addresses.end()) {
1644
}
1645
1646
void replaceInInitializer(llvm::Constant *init) {
1647
// Remember the type of the top-most initializer.
1648
BaseValueTy = init->getType();
1649
1650
// Initialize the stack.
1651
Indices.push_back(0);
1652
IndexValues.push_back(nullptr);
1653
1654
// Recurse into the initializer.
1655
findLocations(init);
1656
1657
// Check invariants.
1658
assert(IndexValues.size() == Indices.size() && "mismatch");
1659
assert(Indices.size() == 1 && "didn't pop all indices");
1660
1661
// Do the replacement; this basically invalidates 'init'.
1662
assert(Locations.size() == PlaceholderAddresses.size() &&
1663
"missed a placeholder?");
1664
1665
// We're iterating over a hashtable, so this would be a source of
1666
// non-determinism in compiler output *except* that we're just
1667
// messing around with llvm::Constant structures, which never itself
1668
// does anything that should be visible in compiler output.
1669
for (auto &entry : Locations) {
1670
assert(entry.first->getName() == "" && "not a placeholder!");
1671
entry.first->replaceAllUsesWith(entry.second);
1672
entry.first->eraseFromParent();
1673
}
1674
}
1675
1676
private:
1677
void findLocations(llvm::Constant *init) {
1678
// Recurse into aggregates.
1679
if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) {
1680
for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) {
1681
Indices.push_back(i);
1682
IndexValues.push_back(nullptr);
1683
1684
findLocations(agg->getOperand(i));
1685
1686
IndexValues.pop_back();
1687
Indices.pop_back();
1688
}
1689
return;
1690
}
1691
1692
// Otherwise, check for registered constants.
1693
while (true) {
1694
auto it = PlaceholderAddresses.find(init);
1695
if (it != PlaceholderAddresses.end()) {
1696
setLocation(it->second);
1697
break;
1698
}
1699
1700
// Look through bitcasts or other expressions.
1701
if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) {
1702
init = expr->getOperand(0);
1703
} else {
1704
break;
1705
}
1706
}
1707
}
1708
1709
void setLocation(llvm::GlobalVariable *placeholder) {
1710
assert(!Locations.contains(placeholder) &&
1711
"already found location for placeholder!");
1712
1713
// Lazily fill in IndexValues with the values from Indices.
1714
// We do this in reverse because we should always have a strict
1715
// prefix of indices from the start.
1716
assert(Indices.size() == IndexValues.size());
1717
for (size_t i = Indices.size() - 1; i != size_t(-1); --i) {
1718
if (IndexValues[i]) {
1719
#ifndef NDEBUG
1720
for (size_t j = 0; j != i + 1; ++j) {
1721
assert(IndexValues[j] &&
1722
isa<llvm::ConstantInt>(IndexValues[j]) &&
1723
cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue()
1724
== Indices[j]);
1725
}
1726
#endif
1727
break;
1728
}
1729
1730
IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]);
1731
}
1732
1733
llvm::Constant *location = llvm::ConstantExpr::getInBoundsGetElementPtr(
1734
BaseValueTy, Base, IndexValues);
1735
1736
Locations.insert({placeholder, location});
1737
}
1738
};
1739
}
1740
1741
void ConstantEmitter::finalize(llvm::GlobalVariable *global) {
1742
assert(InitializedNonAbstract &&
1743
"finalizing emitter that was used for abstract emission?");
1744
assert(!Finalized && "finalizing emitter multiple times");
1745
assert(global->getInitializer());
1746
1747
// Note that we might also be Failed.
1748
Finalized = true;
1749
1750
if (!PlaceholderAddresses.empty()) {
1751
ReplacePlaceholders(CGM, global, PlaceholderAddresses)
1752
.replaceInInitializer(global->getInitializer());
1753
PlaceholderAddresses.clear(); // satisfy
1754
}
1755
}
1756
1757
ConstantEmitter::~ConstantEmitter() {
1758
assert((!InitializedNonAbstract || Finalized || Failed) &&
1759
"not finalized after being initialized for non-abstract emission");
1760
assert(PlaceholderAddresses.empty() && "unhandled placeholders");
1761
}
1762
1763
static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) {
1764
if (auto AT = type->getAs<AtomicType>()) {
1765
return CGM.getContext().getQualifiedType(AT->getValueType(),
1766
type.getQualifiers());
1767
}
1768
return type;
1769
}
1770
1771
llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) {
1772
// Make a quick check if variable can be default NULL initialized
1773
// and avoid going through rest of code which may do, for c++11,
1774
// initialization of memory to all NULLs.
1775
if (!D.hasLocalStorage()) {
1776
QualType Ty = CGM.getContext().getBaseElementType(D.getType());
1777
if (Ty->isRecordType())
1778
if (const CXXConstructExpr *E =
1779
dyn_cast_or_null<CXXConstructExpr>(D.getInit())) {
1780
const CXXConstructorDecl *CD = E->getConstructor();
1781
if (CD->isTrivial() && CD->isDefaultConstructor())
1782
return CGM.EmitNullConstant(D.getType());
1783
}
1784
}
1785
InConstantContext = D.hasConstantInitialization();
1786
1787
QualType destType = D.getType();
1788
const Expr *E = D.getInit();
1789
assert(E && "No initializer to emit");
1790
1791
if (!destType->isReferenceType()) {
1792
QualType nonMemoryDestType = getNonMemoryType(CGM, destType);
1793
if (llvm::Constant *C = ConstExprEmitter(*this).Visit(E, nonMemoryDestType))
1794
return emitForMemory(C, destType);
1795
}
1796
1797
// Try to emit the initializer. Note that this can allow some things that
1798
// are not allowed by tryEmitPrivateForMemory alone.
1799
if (APValue *value = D.evaluateValue())
1800
return tryEmitPrivateForMemory(*value, destType);
1801
1802
return nullptr;
1803
}
1804
1805
llvm::Constant *
1806
ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) {
1807
auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1808
auto C = tryEmitAbstract(E, nonMemoryDestType);
1809
return (C ? emitForMemory(C, destType) : nullptr);
1810
}
1811
1812
llvm::Constant *
1813
ConstantEmitter::tryEmitAbstractForMemory(const APValue &value,
1814
QualType destType) {
1815
auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1816
auto C = tryEmitAbstract(value, nonMemoryDestType);
1817
return (C ? emitForMemory(C, destType) : nullptr);
1818
}
1819
1820
llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E,
1821
QualType destType) {
1822
auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1823
llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType);
1824
return (C ? emitForMemory(C, destType) : nullptr);
1825
}
1826
1827
llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value,
1828
QualType destType) {
1829
auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1830
auto C = tryEmitPrivate(value, nonMemoryDestType);
1831
return (C ? emitForMemory(C, destType) : nullptr);
1832
}
1833
1834
/// Try to emit a constant signed pointer, given a raw pointer and the
1835
/// destination ptrauth qualifier.
1836
///
1837
/// This can fail if the qualifier needs address discrimination and the
1838
/// emitter is in an abstract mode.
1839
llvm::Constant *
1840
ConstantEmitter::tryEmitConstantSignedPointer(llvm::Constant *UnsignedPointer,
1841
PointerAuthQualifier Schema) {
1842
assert(Schema && "applying trivial ptrauth schema");
1843
1844
if (Schema.hasKeyNone())
1845
return UnsignedPointer;
1846
1847
unsigned Key = Schema.getKey();
1848
1849
// Create an address placeholder if we're using address discrimination.
1850
llvm::GlobalValue *StorageAddress = nullptr;
1851
if (Schema.isAddressDiscriminated()) {
1852
// We can't do this if the emitter is in an abstract state.
1853
if (isAbstract())
1854
return nullptr;
1855
1856
StorageAddress = getCurrentAddrPrivate();
1857
}
1858
1859
llvm::ConstantInt *Discriminator =
1860
llvm::ConstantInt::get(CGM.IntPtrTy, Schema.getExtraDiscriminator());
1861
1862
llvm::Constant *SignedPointer = CGM.getConstantSignedPointer(
1863
UnsignedPointer, Key, StorageAddress, Discriminator);
1864
1865
if (Schema.isAddressDiscriminated())
1866
registerCurrentAddrPrivate(SignedPointer, StorageAddress);
1867
1868
return SignedPointer;
1869
}
1870
1871
llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM,
1872
llvm::Constant *C,
1873
QualType destType) {
1874
// For an _Atomic-qualified constant, we may need to add tail padding.
1875
if (auto AT = destType->getAs<AtomicType>()) {
1876
QualType destValueType = AT->getValueType();
1877
C = emitForMemory(CGM, C, destValueType);
1878
1879
uint64_t innerSize = CGM.getContext().getTypeSize(destValueType);
1880
uint64_t outerSize = CGM.getContext().getTypeSize(destType);
1881
if (innerSize == outerSize)
1882
return C;
1883
1884
assert(innerSize < outerSize && "emitted over-large constant for atomic");
1885
llvm::Constant *elts[] = {
1886
C,
1887
llvm::ConstantAggregateZero::get(
1888
llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8))
1889
};
1890
return llvm::ConstantStruct::getAnon(elts);
1891
}
1892
1893
// Zero-extend bool.
1894
if (C->getType()->isIntegerTy(1) && !destType->isBitIntType()) {
1895
llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType);
1896
llvm::Constant *Res = llvm::ConstantFoldCastOperand(
1897
llvm::Instruction::ZExt, C, boolTy, CGM.getDataLayout());
1898
assert(Res && "Constant folding must succeed");
1899
return Res;
1900
}
1901
1902
if (destType->isBitIntType()) {
1903
ConstantAggregateBuilder Builder(CGM);
1904
llvm::Type *LoadStoreTy = CGM.getTypes().convertTypeForLoadStore(destType);
1905
// ptrtoint/inttoptr should not involve _BitInt in constant expressions, so
1906
// casting to ConstantInt is safe here.
1907
auto *CI = cast<llvm::ConstantInt>(C);
1908
llvm::Constant *Res = llvm::ConstantFoldCastOperand(
1909
destType->isSignedIntegerOrEnumerationType() ? llvm::Instruction::SExt
1910
: llvm::Instruction::ZExt,
1911
CI, LoadStoreTy, CGM.getDataLayout());
1912
if (CGM.getTypes().typeRequiresSplitIntoByteArray(destType, C->getType())) {
1913
// Long _BitInt has array of bytes as in-memory type.
1914
// So, split constant into individual bytes.
1915
llvm::Type *DesiredTy = CGM.getTypes().ConvertTypeForMem(destType);
1916
llvm::APInt Value = cast<llvm::ConstantInt>(Res)->getValue();
1917
Builder.addBits(Value, /*OffsetInBits=*/0, /*AllowOverwrite=*/false);
1918
return Builder.build(DesiredTy, /*AllowOversized*/ false);
1919
}
1920
return Res;
1921
}
1922
1923
return C;
1924
}
1925
1926
llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E,
1927
QualType destType) {
1928
assert(!destType->isVoidType() && "can't emit a void constant");
1929
1930
if (!destType->isReferenceType())
1931
if (llvm::Constant *C = ConstExprEmitter(*this).Visit(E, destType))
1932
return C;
1933
1934
Expr::EvalResult Result;
1935
1936
bool Success = false;
1937
1938
if (destType->isReferenceType())
1939
Success = E->EvaluateAsLValue(Result, CGM.getContext());
1940
else
1941
Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext);
1942
1943
if (Success && !Result.HasSideEffects)
1944
return tryEmitPrivate(Result.Val, destType);
1945
1946
return nullptr;
1947
}
1948
1949
llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) {
1950
return getTargetCodeGenInfo().getNullPointer(*this, T, QT);
1951
}
1952
1953
namespace {
1954
/// A struct which can be used to peephole certain kinds of finalization
1955
/// that normally happen during l-value emission.
1956
struct ConstantLValue {
1957
llvm::Constant *Value;
1958
bool HasOffsetApplied;
1959
1960
/*implicit*/ ConstantLValue(llvm::Constant *value,
1961
bool hasOffsetApplied = false)
1962
: Value(value), HasOffsetApplied(hasOffsetApplied) {}
1963
1964
/*implicit*/ ConstantLValue(ConstantAddress address)
1965
: ConstantLValue(address.getPointer()) {}
1966
};
1967
1968
/// A helper class for emitting constant l-values.
1969
class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter,
1970
ConstantLValue> {
1971
CodeGenModule &CGM;
1972
ConstantEmitter &Emitter;
1973
const APValue &Value;
1974
QualType DestType;
1975
bool EnablePtrAuthFunctionTypeDiscrimination;
1976
1977
// Befriend StmtVisitorBase so that we don't have to expose Visit*.
1978
friend StmtVisitorBase;
1979
1980
public:
1981
ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value,
1982
QualType destType,
1983
bool EnablePtrAuthFunctionTypeDiscrimination = true)
1984
: CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType),
1985
EnablePtrAuthFunctionTypeDiscrimination(
1986
EnablePtrAuthFunctionTypeDiscrimination) {}
1987
1988
llvm::Constant *tryEmit();
1989
1990
private:
1991
llvm::Constant *tryEmitAbsolute(llvm::Type *destTy);
1992
ConstantLValue tryEmitBase(const APValue::LValueBase &base);
1993
1994
ConstantLValue VisitStmt(const Stmt *S) { return nullptr; }
1995
ConstantLValue VisitConstantExpr(const ConstantExpr *E);
1996
ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
1997
ConstantLValue VisitStringLiteral(const StringLiteral *E);
1998
ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E);
1999
ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
2000
ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E);
2001
ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E);
2002
ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E);
2003
ConstantLValue VisitCallExpr(const CallExpr *E);
2004
ConstantLValue VisitBlockExpr(const BlockExpr *E);
2005
ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E);
2006
ConstantLValue VisitMaterializeTemporaryExpr(
2007
const MaterializeTemporaryExpr *E);
2008
2009
ConstantLValue emitPointerAuthSignConstant(const CallExpr *E);
2010
llvm::Constant *emitPointerAuthPointer(const Expr *E);
2011
unsigned emitPointerAuthKey(const Expr *E);
2012
std::pair<llvm::Constant *, llvm::ConstantInt *>
2013
emitPointerAuthDiscriminator(const Expr *E);
2014
2015
bool hasNonZeroOffset() const {
2016
return !Value.getLValueOffset().isZero();
2017
}
2018
2019
/// Return the value offset.
2020
llvm::Constant *getOffset() {
2021
return llvm::ConstantInt::get(CGM.Int64Ty,
2022
Value.getLValueOffset().getQuantity());
2023
}
2024
2025
/// Apply the value offset to the given constant.
2026
llvm::Constant *applyOffset(llvm::Constant *C) {
2027
if (!hasNonZeroOffset())
2028
return C;
2029
2030
return llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset());
2031
}
2032
};
2033
2034
}
2035
2036
llvm::Constant *ConstantLValueEmitter::tryEmit() {
2037
const APValue::LValueBase &base = Value.getLValueBase();
2038
2039
// The destination type should be a pointer or reference
2040
// type, but it might also be a cast thereof.
2041
//
2042
// FIXME: the chain of casts required should be reflected in the APValue.
2043
// We need this in order to correctly handle things like a ptrtoint of a
2044
// non-zero null pointer and addrspace casts that aren't trivially
2045
// represented in LLVM IR.
2046
auto destTy = CGM.getTypes().ConvertTypeForMem(DestType);
2047
assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy));
2048
2049
// If there's no base at all, this is a null or absolute pointer,
2050
// possibly cast back to an integer type.
2051
if (!base) {
2052
return tryEmitAbsolute(destTy);
2053
}
2054
2055
// Otherwise, try to emit the base.
2056
ConstantLValue result = tryEmitBase(base);
2057
2058
// If that failed, we're done.
2059
llvm::Constant *value = result.Value;
2060
if (!value) return nullptr;
2061
2062
// Apply the offset if necessary and not already done.
2063
if (!result.HasOffsetApplied) {
2064
value = applyOffset(value);
2065
}
2066
2067
// Convert to the appropriate type; this could be an lvalue for
2068
// an integer. FIXME: performAddrSpaceCast
2069
if (isa<llvm::PointerType>(destTy))
2070
return llvm::ConstantExpr::getPointerCast(value, destTy);
2071
2072
return llvm::ConstantExpr::getPtrToInt(value, destTy);
2073
}
2074
2075
/// Try to emit an absolute l-value, such as a null pointer or an integer
2076
/// bitcast to pointer type.
2077
llvm::Constant *
2078
ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) {
2079
// If we're producing a pointer, this is easy.
2080
auto destPtrTy = cast<llvm::PointerType>(destTy);
2081
if (Value.isNullPointer()) {
2082
// FIXME: integer offsets from non-zero null pointers.
2083
return CGM.getNullPointer(destPtrTy, DestType);
2084
}
2085
2086
// Convert the integer to a pointer-sized integer before converting it
2087
// to a pointer.
2088
// FIXME: signedness depends on the original integer type.
2089
auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy);
2090
llvm::Constant *C;
2091
C = llvm::ConstantFoldIntegerCast(getOffset(), intptrTy, /*isSigned*/ false,
2092
CGM.getDataLayout());
2093
assert(C && "Must have folded, as Offset is a ConstantInt");
2094
C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy);
2095
return C;
2096
}
2097
2098
ConstantLValue
2099
ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) {
2100
// Handle values.
2101
if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) {
2102
// The constant always points to the canonical declaration. We want to look
2103
// at properties of the most recent declaration at the point of emission.
2104
D = cast<ValueDecl>(D->getMostRecentDecl());
2105
2106
if (D->hasAttr<WeakRefAttr>())
2107
return CGM.GetWeakRefReference(D).getPointer();
2108
2109
auto PtrAuthSign = [&](llvm::Constant *C) {
2110
CGPointerAuthInfo AuthInfo;
2111
2112
if (EnablePtrAuthFunctionTypeDiscrimination)
2113
AuthInfo = CGM.getFunctionPointerAuthInfo(DestType);
2114
2115
if (AuthInfo) {
2116
if (hasNonZeroOffset())
2117
return ConstantLValue(nullptr);
2118
2119
C = applyOffset(C);
2120
C = CGM.getConstantSignedPointer(
2121
C, AuthInfo.getKey(), nullptr,
2122
cast_or_null<llvm::ConstantInt>(AuthInfo.getDiscriminator()));
2123
return ConstantLValue(C, /*applied offset*/ true);
2124
}
2125
2126
return ConstantLValue(C);
2127
};
2128
2129
if (const auto *FD = dyn_cast<FunctionDecl>(D))
2130
return PtrAuthSign(CGM.getRawFunctionPointer(FD));
2131
2132
if (const auto *VD = dyn_cast<VarDecl>(D)) {
2133
// We can never refer to a variable with local storage.
2134
if (!VD->hasLocalStorage()) {
2135
if (VD->isFileVarDecl() || VD->hasExternalStorage())
2136
return CGM.GetAddrOfGlobalVar(VD);
2137
2138
if (VD->isLocalVarDecl()) {
2139
return CGM.getOrCreateStaticVarDecl(
2140
*VD, CGM.getLLVMLinkageVarDefinition(VD));
2141
}
2142
}
2143
}
2144
2145
if (const auto *GD = dyn_cast<MSGuidDecl>(D))
2146
return CGM.GetAddrOfMSGuidDecl(GD);
2147
2148
if (const auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(D))
2149
return CGM.GetAddrOfUnnamedGlobalConstantDecl(GCD);
2150
2151
if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(D))
2152
return CGM.GetAddrOfTemplateParamObject(TPO);
2153
2154
return nullptr;
2155
}
2156
2157
// Handle typeid(T).
2158
if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>())
2159
return CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0));
2160
2161
// Otherwise, it must be an expression.
2162
return Visit(base.get<const Expr*>());
2163
}
2164
2165
ConstantLValue
2166
ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) {
2167
if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(E))
2168
return Result;
2169
return Visit(E->getSubExpr());
2170
}
2171
2172
ConstantLValue
2173
ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2174
ConstantEmitter CompoundLiteralEmitter(CGM, Emitter.CGF);
2175
CompoundLiteralEmitter.setInConstantContext(Emitter.isInConstantContext());
2176
return tryEmitGlobalCompoundLiteral(CompoundLiteralEmitter, E);
2177
}
2178
2179
ConstantLValue
2180
ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) {
2181
return CGM.GetAddrOfConstantStringFromLiteral(E);
2182
}
2183
2184
ConstantLValue
2185
ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
2186
return CGM.GetAddrOfConstantStringFromObjCEncode(E);
2187
}
2188
2189
static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S,
2190
QualType T,
2191
CodeGenModule &CGM) {
2192
auto C = CGM.getObjCRuntime().GenerateConstantString(S);
2193
return C.withElementType(CGM.getTypes().ConvertTypeForMem(T));
2194
}
2195
2196
ConstantLValue
2197
ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
2198
return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM);
2199
}
2200
2201
ConstantLValue
2202
ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
2203
assert(E->isExpressibleAsConstantInitializer() &&
2204
"this boxed expression can't be emitted as a compile-time constant");
2205
const auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts());
2206
return emitConstantObjCStringLiteral(SL, E->getType(), CGM);
2207
}
2208
2209
ConstantLValue
2210
ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) {
2211
return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName());
2212
}
2213
2214
ConstantLValue
2215
ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) {
2216
assert(Emitter.CGF && "Invalid address of label expression outside function");
2217
llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel());
2218
return Ptr;
2219
}
2220
2221
ConstantLValue
2222
ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) {
2223
unsigned builtin = E->getBuiltinCallee();
2224
if (builtin == Builtin::BI__builtin_function_start)
2225
return CGM.GetFunctionStart(
2226
E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext()));
2227
2228
if (builtin == Builtin::BI__builtin_ptrauth_sign_constant)
2229
return emitPointerAuthSignConstant(E);
2230
2231
if (builtin != Builtin::BI__builtin___CFStringMakeConstantString &&
2232
builtin != Builtin::BI__builtin___NSStringMakeConstantString)
2233
return nullptr;
2234
2235
const auto *Literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts());
2236
if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) {
2237
return CGM.getObjCRuntime().GenerateConstantString(Literal);
2238
} else {
2239
// FIXME: need to deal with UCN conversion issues.
2240
return CGM.GetAddrOfConstantCFString(Literal);
2241
}
2242
}
2243
2244
ConstantLValue
2245
ConstantLValueEmitter::emitPointerAuthSignConstant(const CallExpr *E) {
2246
llvm::Constant *UnsignedPointer = emitPointerAuthPointer(E->getArg(0));
2247
unsigned Key = emitPointerAuthKey(E->getArg(1));
2248
auto [StorageAddress, OtherDiscriminator] =
2249
emitPointerAuthDiscriminator(E->getArg(2));
2250
2251
llvm::Constant *SignedPointer = CGM.getConstantSignedPointer(
2252
UnsignedPointer, Key, StorageAddress, OtherDiscriminator);
2253
return SignedPointer;
2254
}
2255
2256
llvm::Constant *ConstantLValueEmitter::emitPointerAuthPointer(const Expr *E) {
2257
Expr::EvalResult Result;
2258
bool Succeeded = E->EvaluateAsRValue(Result, CGM.getContext());
2259
assert(Succeeded);
2260
(void)Succeeded;
2261
2262
// The assertions here are all checked by Sema.
2263
assert(Result.Val.isLValue());
2264
if (isa<FunctionDecl>(Result.Val.getLValueBase().get<const ValueDecl *>()))
2265
assert(Result.Val.getLValueOffset().isZero());
2266
return ConstantEmitter(CGM, Emitter.CGF)
2267
.emitAbstract(E->getExprLoc(), Result.Val, E->getType(), false);
2268
}
2269
2270
unsigned ConstantLValueEmitter::emitPointerAuthKey(const Expr *E) {
2271
return E->EvaluateKnownConstInt(CGM.getContext()).getZExtValue();
2272
}
2273
2274
std::pair<llvm::Constant *, llvm::ConstantInt *>
2275
ConstantLValueEmitter::emitPointerAuthDiscriminator(const Expr *E) {
2276
E = E->IgnoreParens();
2277
2278
if (const auto *Call = dyn_cast<CallExpr>(E)) {
2279
if (Call->getBuiltinCallee() ==
2280
Builtin::BI__builtin_ptrauth_blend_discriminator) {
2281
llvm::Constant *Pointer = ConstantEmitter(CGM).emitAbstract(
2282
Call->getArg(0), Call->getArg(0)->getType());
2283
auto *Extra = cast<llvm::ConstantInt>(ConstantEmitter(CGM).emitAbstract(
2284
Call->getArg(1), Call->getArg(1)->getType()));
2285
return {Pointer, Extra};
2286
}
2287
}
2288
2289
llvm::Constant *Result = ConstantEmitter(CGM).emitAbstract(E, E->getType());
2290
if (Result->getType()->isPointerTy())
2291
return {Result, nullptr};
2292
return {nullptr, cast<llvm::ConstantInt>(Result)};
2293
}
2294
2295
ConstantLValue
2296
ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) {
2297
StringRef functionName;
2298
if (auto CGF = Emitter.CGF)
2299
functionName = CGF->CurFn->getName();
2300
else
2301
functionName = "global";
2302
2303
return CGM.GetAddrOfGlobalBlock(E, functionName);
2304
}
2305
2306
ConstantLValue
2307
ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
2308
QualType T;
2309
if (E->isTypeOperand())
2310
T = E->getTypeOperand(CGM.getContext());
2311
else
2312
T = E->getExprOperand()->getType();
2313
return CGM.GetAddrOfRTTIDescriptor(T);
2314
}
2315
2316
ConstantLValue
2317
ConstantLValueEmitter::VisitMaterializeTemporaryExpr(
2318
const MaterializeTemporaryExpr *E) {
2319
assert(E->getStorageDuration() == SD_Static);
2320
const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments();
2321
return CGM.GetAddrOfGlobalTemporary(E, Inner);
2322
}
2323
2324
llvm::Constant *
2325
ConstantEmitter::tryEmitPrivate(const APValue &Value, QualType DestType,
2326
bool EnablePtrAuthFunctionTypeDiscrimination) {
2327
switch (Value.getKind()) {
2328
case APValue::None:
2329
case APValue::Indeterminate:
2330
// Out-of-lifetime and indeterminate values can be modeled as 'undef'.
2331
return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType));
2332
case APValue::LValue:
2333
return ConstantLValueEmitter(*this, Value, DestType,
2334
EnablePtrAuthFunctionTypeDiscrimination)
2335
.tryEmit();
2336
case APValue::Int:
2337
return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt());
2338
case APValue::FixedPoint:
2339
return llvm::ConstantInt::get(CGM.getLLVMContext(),
2340
Value.getFixedPoint().getValue());
2341
case APValue::ComplexInt: {
2342
llvm::Constant *Complex[2];
2343
2344
Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2345
Value.getComplexIntReal());
2346
Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2347
Value.getComplexIntImag());
2348
2349
// FIXME: the target may want to specify that this is packed.
2350
llvm::StructType *STy =
2351
llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2352
return llvm::ConstantStruct::get(STy, Complex);
2353
}
2354
case APValue::Float: {
2355
const llvm::APFloat &Init = Value.getFloat();
2356
if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() &&
2357
!CGM.getContext().getLangOpts().NativeHalfType &&
2358
CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics())
2359
return llvm::ConstantInt::get(CGM.getLLVMContext(),
2360
Init.bitcastToAPInt());
2361
else
2362
return llvm::ConstantFP::get(CGM.getLLVMContext(), Init);
2363
}
2364
case APValue::ComplexFloat: {
2365
llvm::Constant *Complex[2];
2366
2367
Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2368
Value.getComplexFloatReal());
2369
Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2370
Value.getComplexFloatImag());
2371
2372
// FIXME: the target may want to specify that this is packed.
2373
llvm::StructType *STy =
2374
llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2375
return llvm::ConstantStruct::get(STy, Complex);
2376
}
2377
case APValue::Vector: {
2378
unsigned NumElts = Value.getVectorLength();
2379
SmallVector<llvm::Constant *, 4> Inits(NumElts);
2380
2381
for (unsigned I = 0; I != NumElts; ++I) {
2382
const APValue &Elt = Value.getVectorElt(I);
2383
if (Elt.isInt())
2384
Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt());
2385
else if (Elt.isFloat())
2386
Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat());
2387
else if (Elt.isIndeterminate())
2388
Inits[I] = llvm::UndefValue::get(CGM.getTypes().ConvertType(
2389
DestType->castAs<VectorType>()->getElementType()));
2390
else
2391
llvm_unreachable("unsupported vector element type");
2392
}
2393
return llvm::ConstantVector::get(Inits);
2394
}
2395
case APValue::AddrLabelDiff: {
2396
const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
2397
const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
2398
llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType());
2399
llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType());
2400
if (!LHS || !RHS) return nullptr;
2401
2402
// Compute difference
2403
llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType);
2404
LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy);
2405
RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy);
2406
llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
2407
2408
// LLVM is a bit sensitive about the exact format of the
2409
// address-of-label difference; make sure to truncate after
2410
// the subtraction.
2411
return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
2412
}
2413
case APValue::Struct:
2414
case APValue::Union:
2415
return ConstStructBuilder::BuildStruct(*this, Value, DestType);
2416
case APValue::Array: {
2417
const ArrayType *ArrayTy = CGM.getContext().getAsArrayType(DestType);
2418
unsigned NumElements = Value.getArraySize();
2419
unsigned NumInitElts = Value.getArrayInitializedElts();
2420
2421
// Emit array filler, if there is one.
2422
llvm::Constant *Filler = nullptr;
2423
if (Value.hasArrayFiller()) {
2424
Filler = tryEmitAbstractForMemory(Value.getArrayFiller(),
2425
ArrayTy->getElementType());
2426
if (!Filler)
2427
return nullptr;
2428
}
2429
2430
// Emit initializer elements.
2431
SmallVector<llvm::Constant*, 16> Elts;
2432
if (Filler && Filler->isNullValue())
2433
Elts.reserve(NumInitElts + 1);
2434
else
2435
Elts.reserve(NumElements);
2436
2437
llvm::Type *CommonElementType = nullptr;
2438
for (unsigned I = 0; I < NumInitElts; ++I) {
2439
llvm::Constant *C = tryEmitPrivateForMemory(
2440
Value.getArrayInitializedElt(I), ArrayTy->getElementType());
2441
if (!C) return nullptr;
2442
2443
if (I == 0)
2444
CommonElementType = C->getType();
2445
else if (C->getType() != CommonElementType)
2446
CommonElementType = nullptr;
2447
Elts.push_back(C);
2448
}
2449
2450
llvm::ArrayType *Desired =
2451
cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType));
2452
2453
// Fix the type of incomplete arrays if the initializer isn't empty.
2454
if (DestType->isIncompleteArrayType() && !Elts.empty())
2455
Desired = llvm::ArrayType::get(Desired->getElementType(), Elts.size());
2456
2457
return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
2458
Filler);
2459
}
2460
case APValue::MemberPointer:
2461
return CGM.getCXXABI().EmitMemberPointer(Value, DestType);
2462
}
2463
llvm_unreachable("Unknown APValue kind");
2464
}
2465
2466
llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted(
2467
const CompoundLiteralExpr *E) {
2468
return EmittedCompoundLiterals.lookup(E);
2469
}
2470
2471
void CodeGenModule::setAddrOfConstantCompoundLiteral(
2472
const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) {
2473
bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second;
2474
(void)Ok;
2475
assert(Ok && "CLE has already been emitted!");
2476
}
2477
2478
ConstantAddress
2479
CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
2480
assert(E->isFileScope() && "not a file-scope compound literal expr");
2481
ConstantEmitter emitter(*this);
2482
return tryEmitGlobalCompoundLiteral(emitter, E);
2483
}
2484
2485
llvm::Constant *
2486
CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
2487
// Member pointer constants always have a very particular form.
2488
const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
2489
const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
2490
2491
// A member function pointer.
2492
if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
2493
return getCXXABI().EmitMemberFunctionPointer(method);
2494
2495
// Otherwise, a member data pointer.
2496
uint64_t fieldOffset = getContext().getFieldOffset(decl);
2497
CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
2498
return getCXXABI().EmitMemberDataPointer(type, chars);
2499
}
2500
2501
static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2502
llvm::Type *baseType,
2503
const CXXRecordDecl *base);
2504
2505
static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
2506
const RecordDecl *record,
2507
bool asCompleteObject) {
2508
const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
2509
llvm::StructType *structure =
2510
(asCompleteObject ? layout.getLLVMType()
2511
: layout.getBaseSubobjectLLVMType());
2512
2513
unsigned numElements = structure->getNumElements();
2514
std::vector<llvm::Constant *> elements(numElements);
2515
2516
auto CXXR = dyn_cast<CXXRecordDecl>(record);
2517
// Fill in all the bases.
2518
if (CXXR) {
2519
for (const auto &I : CXXR->bases()) {
2520
if (I.isVirtual()) {
2521
// Ignore virtual bases; if we're laying out for a complete
2522
// object, we'll lay these out later.
2523
continue;
2524
}
2525
2526
const CXXRecordDecl *base =
2527
cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2528
2529
// Ignore empty bases.
2530
if (isEmptyRecordForLayout(CGM.getContext(), I.getType()) ||
2531
CGM.getContext()
2532
.getASTRecordLayout(base)
2533
.getNonVirtualSize()
2534
.isZero())
2535
continue;
2536
2537
unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
2538
llvm::Type *baseType = structure->getElementType(fieldIndex);
2539
elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2540
}
2541
}
2542
2543
// Fill in all the fields.
2544
for (const auto *Field : record->fields()) {
2545
// Fill in non-bitfields. (Bitfields always use a zero pattern, which we
2546
// will fill in later.)
2547
if (!Field->isBitField() &&
2548
!isEmptyFieldForLayout(CGM.getContext(), Field)) {
2549
unsigned fieldIndex = layout.getLLVMFieldNo(Field);
2550
elements[fieldIndex] = CGM.EmitNullConstant(Field->getType());
2551
}
2552
2553
// For unions, stop after the first named field.
2554
if (record->isUnion()) {
2555
if (Field->getIdentifier())
2556
break;
2557
if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
2558
if (FieldRD->findFirstNamedDataMember())
2559
break;
2560
}
2561
}
2562
2563
// Fill in the virtual bases, if we're working with the complete object.
2564
if (CXXR && asCompleteObject) {
2565
for (const auto &I : CXXR->vbases()) {
2566
const CXXRecordDecl *base =
2567
cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2568
2569
// Ignore empty bases.
2570
if (isEmptyRecordForLayout(CGM.getContext(), I.getType()))
2571
continue;
2572
2573
unsigned fieldIndex = layout.getVirtualBaseIndex(base);
2574
2575
// We might have already laid this field out.
2576
if (elements[fieldIndex]) continue;
2577
2578
llvm::Type *baseType = structure->getElementType(fieldIndex);
2579
elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2580
}
2581
}
2582
2583
// Now go through all other fields and zero them out.
2584
for (unsigned i = 0; i != numElements; ++i) {
2585
if (!elements[i])
2586
elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
2587
}
2588
2589
return llvm::ConstantStruct::get(structure, elements);
2590
}
2591
2592
/// Emit the null constant for a base subobject.
2593
static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2594
llvm::Type *baseType,
2595
const CXXRecordDecl *base) {
2596
const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
2597
2598
// Just zero out bases that don't have any pointer to data members.
2599
if (baseLayout.isZeroInitializableAsBase())
2600
return llvm::Constant::getNullValue(baseType);
2601
2602
// Otherwise, we can just use its null constant.
2603
return EmitNullConstant(CGM, base, /*asCompleteObject=*/false);
2604
}
2605
2606
llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM,
2607
QualType T) {
2608
return emitForMemory(CGM, CGM.EmitNullConstant(T), T);
2609
}
2610
2611
llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
2612
if (T->getAs<PointerType>())
2613
return getNullPointer(
2614
cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T);
2615
2616
if (getTypes().isZeroInitializable(T))
2617
return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
2618
2619
if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
2620
llvm::ArrayType *ATy =
2621
cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
2622
2623
QualType ElementTy = CAT->getElementType();
2624
2625
llvm::Constant *Element =
2626
ConstantEmitter::emitNullForMemory(*this, ElementTy);
2627
unsigned NumElements = CAT->getZExtSize();
2628
SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
2629
return llvm::ConstantArray::get(ATy, Array);
2630
}
2631
2632
if (const RecordType *RT = T->getAs<RecordType>())
2633
return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true);
2634
2635
assert(T->isMemberDataPointerType() &&
2636
"Should only see pointers to data members here!");
2637
2638
return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
2639
}
2640
2641
llvm::Constant *
2642
CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
2643
return ::EmitNullConstant(*this, Record, false);
2644
}
2645
2646