Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/clang/lib/CodeGen/CGExprScalar.cpp
35233 views
1
//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "CGCXXABI.h"
14
#include "CGCleanup.h"
15
#include "CGDebugInfo.h"
16
#include "CGObjCRuntime.h"
17
#include "CGOpenMPRuntime.h"
18
#include "CGRecordLayout.h"
19
#include "CodeGenFunction.h"
20
#include "CodeGenModule.h"
21
#include "ConstantEmitter.h"
22
#include "TargetInfo.h"
23
#include "clang/AST/ASTContext.h"
24
#include "clang/AST/Attr.h"
25
#include "clang/AST/DeclObjC.h"
26
#include "clang/AST/Expr.h"
27
#include "clang/AST/RecordLayout.h"
28
#include "clang/AST/StmtVisitor.h"
29
#include "clang/Basic/CodeGenOptions.h"
30
#include "clang/Basic/TargetInfo.h"
31
#include "llvm/ADT/APFixedPoint.h"
32
#include "llvm/IR/CFG.h"
33
#include "llvm/IR/Constants.h"
34
#include "llvm/IR/DataLayout.h"
35
#include "llvm/IR/DerivedTypes.h"
36
#include "llvm/IR/FixedPointBuilder.h"
37
#include "llvm/IR/Function.h"
38
#include "llvm/IR/GetElementPtrTypeIterator.h"
39
#include "llvm/IR/GlobalVariable.h"
40
#include "llvm/IR/Intrinsics.h"
41
#include "llvm/IR/IntrinsicsPowerPC.h"
42
#include "llvm/IR/MatrixBuilder.h"
43
#include "llvm/IR/Module.h"
44
#include "llvm/Support/TypeSize.h"
45
#include <cstdarg>
46
#include <optional>
47
48
using namespace clang;
49
using namespace CodeGen;
50
using llvm::Value;
51
52
//===----------------------------------------------------------------------===//
53
// Scalar Expression Emitter
54
//===----------------------------------------------------------------------===//
55
56
namespace llvm {
57
extern cl::opt<bool> EnableSingleByteCoverage;
58
} // namespace llvm
59
60
namespace {
61
62
/// Determine whether the given binary operation may overflow.
63
/// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
64
/// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
65
/// the returned overflow check is precise. The returned value is 'true' for
66
/// all other opcodes, to be conservative.
67
bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
68
BinaryOperator::Opcode Opcode, bool Signed,
69
llvm::APInt &Result) {
70
// Assume overflow is possible, unless we can prove otherwise.
71
bool Overflow = true;
72
const auto &LHSAP = LHS->getValue();
73
const auto &RHSAP = RHS->getValue();
74
if (Opcode == BO_Add) {
75
Result = Signed ? LHSAP.sadd_ov(RHSAP, Overflow)
76
: LHSAP.uadd_ov(RHSAP, Overflow);
77
} else if (Opcode == BO_Sub) {
78
Result = Signed ? LHSAP.ssub_ov(RHSAP, Overflow)
79
: LHSAP.usub_ov(RHSAP, Overflow);
80
} else if (Opcode == BO_Mul) {
81
Result = Signed ? LHSAP.smul_ov(RHSAP, Overflow)
82
: LHSAP.umul_ov(RHSAP, Overflow);
83
} else if (Opcode == BO_Div || Opcode == BO_Rem) {
84
if (Signed && !RHS->isZero())
85
Result = LHSAP.sdiv_ov(RHSAP, Overflow);
86
else
87
return false;
88
}
89
return Overflow;
90
}
91
92
struct BinOpInfo {
93
Value *LHS;
94
Value *RHS;
95
QualType Ty; // Computation Type.
96
BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
97
FPOptions FPFeatures;
98
const Expr *E; // Entire expr, for error unsupported. May not be binop.
99
100
/// Check if the binop can result in integer overflow.
101
bool mayHaveIntegerOverflow() const {
102
// Without constant input, we can't rule out overflow.
103
auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
104
auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
105
if (!LHSCI || !RHSCI)
106
return true;
107
108
llvm::APInt Result;
109
return ::mayHaveIntegerOverflow(
110
LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
111
}
112
113
/// Check if the binop computes a division or a remainder.
114
bool isDivremOp() const {
115
return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
116
Opcode == BO_RemAssign;
117
}
118
119
/// Check if the binop can result in an integer division by zero.
120
bool mayHaveIntegerDivisionByZero() const {
121
if (isDivremOp())
122
if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
123
return CI->isZero();
124
return true;
125
}
126
127
/// Check if the binop can result in a float division by zero.
128
bool mayHaveFloatDivisionByZero() const {
129
if (isDivremOp())
130
if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
131
return CFP->isZero();
132
return true;
133
}
134
135
/// Check if at least one operand is a fixed point type. In such cases, this
136
/// operation did not follow usual arithmetic conversion and both operands
137
/// might not be of the same type.
138
bool isFixedPointOp() const {
139
// We cannot simply check the result type since comparison operations return
140
// an int.
141
if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
142
QualType LHSType = BinOp->getLHS()->getType();
143
QualType RHSType = BinOp->getRHS()->getType();
144
return LHSType->isFixedPointType() || RHSType->isFixedPointType();
145
}
146
if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
147
return UnOp->getSubExpr()->getType()->isFixedPointType();
148
return false;
149
}
150
151
/// Check if the RHS has a signed integer representation.
152
bool rhsHasSignedIntegerRepresentation() const {
153
if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
154
QualType RHSType = BinOp->getRHS()->getType();
155
return RHSType->hasSignedIntegerRepresentation();
156
}
157
return false;
158
}
159
};
160
161
static bool MustVisitNullValue(const Expr *E) {
162
// If a null pointer expression's type is the C++0x nullptr_t, then
163
// it's not necessarily a simple constant and it must be evaluated
164
// for its potential side effects.
165
return E->getType()->isNullPtrType();
166
}
167
168
/// If \p E is a widened promoted integer, get its base (unpromoted) type.
169
static std::optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
170
const Expr *E) {
171
const Expr *Base = E->IgnoreImpCasts();
172
if (E == Base)
173
return std::nullopt;
174
175
QualType BaseTy = Base->getType();
176
if (!Ctx.isPromotableIntegerType(BaseTy) ||
177
Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
178
return std::nullopt;
179
180
return BaseTy;
181
}
182
183
/// Check if \p E is a widened promoted integer.
184
static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
185
return getUnwidenedIntegerType(Ctx, E).has_value();
186
}
187
188
/// Check if we can skip the overflow check for \p Op.
189
static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
190
assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
191
"Expected a unary or binary operator");
192
193
// If the binop has constant inputs and we can prove there is no overflow,
194
// we can elide the overflow check.
195
if (!Op.mayHaveIntegerOverflow())
196
return true;
197
198
// If a unary op has a widened operand, the op cannot overflow.
199
if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
200
return !UO->canOverflow();
201
202
// We usually don't need overflow checks for binops with widened operands.
203
// Multiplication with promoted unsigned operands is a special case.
204
const auto *BO = cast<BinaryOperator>(Op.E);
205
auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
206
if (!OptionalLHSTy)
207
return false;
208
209
auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
210
if (!OptionalRHSTy)
211
return false;
212
213
QualType LHSTy = *OptionalLHSTy;
214
QualType RHSTy = *OptionalRHSTy;
215
216
// This is the simple case: binops without unsigned multiplication, and with
217
// widened operands. No overflow check is needed here.
218
if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
219
!LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
220
return true;
221
222
// For unsigned multiplication the overflow check can be elided if either one
223
// of the unpromoted types are less than half the size of the promoted type.
224
unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
225
return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
226
(2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
227
}
228
229
class ScalarExprEmitter
230
: public StmtVisitor<ScalarExprEmitter, Value*> {
231
CodeGenFunction &CGF;
232
CGBuilderTy &Builder;
233
bool IgnoreResultAssign;
234
llvm::LLVMContext &VMContext;
235
public:
236
237
ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
238
: CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
239
VMContext(cgf.getLLVMContext()) {
240
}
241
242
//===--------------------------------------------------------------------===//
243
// Utilities
244
//===--------------------------------------------------------------------===//
245
246
bool TestAndClearIgnoreResultAssign() {
247
bool I = IgnoreResultAssign;
248
IgnoreResultAssign = false;
249
return I;
250
}
251
252
llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
253
LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
254
LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
255
return CGF.EmitCheckedLValue(E, TCK);
256
}
257
258
void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
259
const BinOpInfo &Info);
260
261
Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
262
return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
263
}
264
265
void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
266
const AlignValueAttr *AVAttr = nullptr;
267
if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
268
const ValueDecl *VD = DRE->getDecl();
269
270
if (VD->getType()->isReferenceType()) {
271
if (const auto *TTy =
272
VD->getType().getNonReferenceType()->getAs<TypedefType>())
273
AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
274
} else {
275
// Assumptions for function parameters are emitted at the start of the
276
// function, so there is no need to repeat that here,
277
// unless the alignment-assumption sanitizer is enabled,
278
// then we prefer the assumption over alignment attribute
279
// on IR function param.
280
if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
281
return;
282
283
AVAttr = VD->getAttr<AlignValueAttr>();
284
}
285
}
286
287
if (!AVAttr)
288
if (const auto *TTy = E->getType()->getAs<TypedefType>())
289
AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
290
291
if (!AVAttr)
292
return;
293
294
Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
295
llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
296
CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
297
}
298
299
/// EmitLoadOfLValue - Given an expression with complex type that represents a
300
/// value l-value, this method emits the address of the l-value, then loads
301
/// and returns the result.
302
Value *EmitLoadOfLValue(const Expr *E) {
303
Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
304
E->getExprLoc());
305
306
EmitLValueAlignmentAssumption(E, V);
307
return V;
308
}
309
310
/// EmitConversionToBool - Convert the specified expression value to a
311
/// boolean (i1) truth value. This is equivalent to "Val != 0".
312
Value *EmitConversionToBool(Value *Src, QualType DstTy);
313
314
/// Emit a check that a conversion from a floating-point type does not
315
/// overflow.
316
void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
317
Value *Src, QualType SrcType, QualType DstType,
318
llvm::Type *DstTy, SourceLocation Loc);
319
320
/// Known implicit conversion check kinds.
321
/// This is used for bitfield conversion checks as well.
322
/// Keep in sync with the enum of the same name in ubsan_handlers.h
323
enum ImplicitConversionCheckKind : unsigned char {
324
ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
325
ICCK_UnsignedIntegerTruncation = 1,
326
ICCK_SignedIntegerTruncation = 2,
327
ICCK_IntegerSignChange = 3,
328
ICCK_SignedIntegerTruncationOrSignChange = 4,
329
};
330
331
/// Emit a check that an [implicit] truncation of an integer does not
332
/// discard any bits. It is not UB, so we use the value after truncation.
333
void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
334
QualType DstType, SourceLocation Loc);
335
336
/// Emit a check that an [implicit] conversion of an integer does not change
337
/// the sign of the value. It is not UB, so we use the value after conversion.
338
/// NOTE: Src and Dst may be the exact same value! (point to the same thing)
339
void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
340
QualType DstType, SourceLocation Loc);
341
342
/// Emit a conversion from the specified type to the specified destination
343
/// type, both of which are LLVM scalar types.
344
struct ScalarConversionOpts {
345
bool TreatBooleanAsSigned;
346
bool EmitImplicitIntegerTruncationChecks;
347
bool EmitImplicitIntegerSignChangeChecks;
348
349
ScalarConversionOpts()
350
: TreatBooleanAsSigned(false),
351
EmitImplicitIntegerTruncationChecks(false),
352
EmitImplicitIntegerSignChangeChecks(false) {}
353
354
ScalarConversionOpts(clang::SanitizerSet SanOpts)
355
: TreatBooleanAsSigned(false),
356
EmitImplicitIntegerTruncationChecks(
357
SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
358
EmitImplicitIntegerSignChangeChecks(
359
SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
360
};
361
Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType,
362
llvm::Type *SrcTy, llvm::Type *DstTy,
363
ScalarConversionOpts Opts);
364
Value *
365
EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
366
SourceLocation Loc,
367
ScalarConversionOpts Opts = ScalarConversionOpts());
368
369
/// Convert between either a fixed point and other fixed point or fixed point
370
/// and an integer.
371
Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
372
SourceLocation Loc);
373
374
/// Emit a conversion from the specified complex type to the specified
375
/// destination type, where the destination type is an LLVM scalar type.
376
Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
377
QualType SrcTy, QualType DstTy,
378
SourceLocation Loc);
379
380
/// EmitNullValue - Emit a value that corresponds to null for the given type.
381
Value *EmitNullValue(QualType Ty);
382
383
/// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
384
Value *EmitFloatToBoolConversion(Value *V) {
385
// Compare against 0.0 for fp scalars.
386
llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
387
return Builder.CreateFCmpUNE(V, Zero, "tobool");
388
}
389
390
/// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
391
Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
392
Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
393
394
return Builder.CreateICmpNE(V, Zero, "tobool");
395
}
396
397
Value *EmitIntToBoolConversion(Value *V) {
398
// Because of the type rules of C, we often end up computing a
399
// logical value, then zero extending it to int, then wanting it
400
// as a logical value again. Optimize this common case.
401
if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
402
if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
403
Value *Result = ZI->getOperand(0);
404
// If there aren't any more uses, zap the instruction to save space.
405
// Note that there can be more uses, for example if this
406
// is the result of an assignment.
407
if (ZI->use_empty())
408
ZI->eraseFromParent();
409
return Result;
410
}
411
}
412
413
return Builder.CreateIsNotNull(V, "tobool");
414
}
415
416
//===--------------------------------------------------------------------===//
417
// Visitor Methods
418
//===--------------------------------------------------------------------===//
419
420
Value *Visit(Expr *E) {
421
ApplyDebugLocation DL(CGF, E);
422
return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
423
}
424
425
Value *VisitStmt(Stmt *S) {
426
S->dump(llvm::errs(), CGF.getContext());
427
llvm_unreachable("Stmt can't have complex result type!");
428
}
429
Value *VisitExpr(Expr *S);
430
431
Value *VisitConstantExpr(ConstantExpr *E) {
432
// A constant expression of type 'void' generates no code and produces no
433
// value.
434
if (E->getType()->isVoidType())
435
return nullptr;
436
437
if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
438
if (E->isGLValue())
439
return CGF.EmitLoadOfScalar(
440
Address(Result, CGF.convertTypeForLoadStore(E->getType()),
441
CGF.getContext().getTypeAlignInChars(E->getType())),
442
/*Volatile*/ false, E->getType(), E->getExprLoc());
443
return Result;
444
}
445
return Visit(E->getSubExpr());
446
}
447
Value *VisitParenExpr(ParenExpr *PE) {
448
return Visit(PE->getSubExpr());
449
}
450
Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
451
return Visit(E->getReplacement());
452
}
453
Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
454
return Visit(GE->getResultExpr());
455
}
456
Value *VisitCoawaitExpr(CoawaitExpr *S) {
457
return CGF.EmitCoawaitExpr(*S).getScalarVal();
458
}
459
Value *VisitCoyieldExpr(CoyieldExpr *S) {
460
return CGF.EmitCoyieldExpr(*S).getScalarVal();
461
}
462
Value *VisitUnaryCoawait(const UnaryOperator *E) {
463
return Visit(E->getSubExpr());
464
}
465
466
// Leaves.
467
Value *VisitIntegerLiteral(const IntegerLiteral *E) {
468
return Builder.getInt(E->getValue());
469
}
470
Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
471
return Builder.getInt(E->getValue());
472
}
473
Value *VisitFloatingLiteral(const FloatingLiteral *E) {
474
return llvm::ConstantFP::get(VMContext, E->getValue());
475
}
476
Value *VisitCharacterLiteral(const CharacterLiteral *E) {
477
return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
478
}
479
Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
480
return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
481
}
482
Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
483
return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
484
}
485
Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
486
if (E->getType()->isVoidType())
487
return nullptr;
488
489
return EmitNullValue(E->getType());
490
}
491
Value *VisitGNUNullExpr(const GNUNullExpr *E) {
492
return EmitNullValue(E->getType());
493
}
494
Value *VisitOffsetOfExpr(OffsetOfExpr *E);
495
Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
496
Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
497
llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
498
return Builder.CreateBitCast(V, ConvertType(E->getType()));
499
}
500
501
Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
502
return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
503
}
504
505
Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
506
return CGF.EmitPseudoObjectRValue(E).getScalarVal();
507
}
508
509
Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E);
510
Value *VisitEmbedExpr(EmbedExpr *E);
511
512
Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
513
if (E->isGLValue())
514
return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
515
E->getExprLoc());
516
517
// Otherwise, assume the mapping is the scalar directly.
518
return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
519
}
520
521
// l-values.
522
Value *VisitDeclRefExpr(DeclRefExpr *E) {
523
if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
524
return CGF.emitScalarConstant(Constant, E);
525
return EmitLoadOfLValue(E);
526
}
527
528
Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
529
return CGF.EmitObjCSelectorExpr(E);
530
}
531
Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
532
return CGF.EmitObjCProtocolExpr(E);
533
}
534
Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
535
return EmitLoadOfLValue(E);
536
}
537
Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
538
if (E->getMethodDecl() &&
539
E->getMethodDecl()->getReturnType()->isReferenceType())
540
return EmitLoadOfLValue(E);
541
return CGF.EmitObjCMessageExpr(E).getScalarVal();
542
}
543
544
Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
545
LValue LV = CGF.EmitObjCIsaExpr(E);
546
Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
547
return V;
548
}
549
550
Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
551
VersionTuple Version = E->getVersion();
552
553
// If we're checking for a platform older than our minimum deployment
554
// target, we can fold the check away.
555
if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
556
return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
557
558
return CGF.EmitBuiltinAvailable(Version);
559
}
560
561
Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
562
Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
563
Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
564
Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
565
Value *VisitMemberExpr(MemberExpr *E);
566
Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
567
Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
568
// Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
569
// transitively calls EmitCompoundLiteralLValue, here in C++ since compound
570
// literals aren't l-values in C++. We do so simply because that's the
571
// cleanest way to handle compound literals in C++.
572
// See the discussion here: https://reviews.llvm.org/D64464
573
return EmitLoadOfLValue(E);
574
}
575
576
Value *VisitInitListExpr(InitListExpr *E);
577
578
Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
579
assert(CGF.getArrayInitIndex() &&
580
"ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
581
return CGF.getArrayInitIndex();
582
}
583
584
Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
585
return EmitNullValue(E->getType());
586
}
587
Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
588
CGF.CGM.EmitExplicitCastExprType(E, &CGF);
589
return VisitCastExpr(E);
590
}
591
Value *VisitCastExpr(CastExpr *E);
592
593
Value *VisitCallExpr(const CallExpr *E) {
594
if (E->getCallReturnType(CGF.getContext())->isReferenceType())
595
return EmitLoadOfLValue(E);
596
597
Value *V = CGF.EmitCallExpr(E).getScalarVal();
598
599
EmitLValueAlignmentAssumption(E, V);
600
return V;
601
}
602
603
Value *VisitStmtExpr(const StmtExpr *E);
604
605
// Unary Operators.
606
Value *VisitUnaryPostDec(const UnaryOperator *E) {
607
LValue LV = EmitLValue(E->getSubExpr());
608
return EmitScalarPrePostIncDec(E, LV, false, false);
609
}
610
Value *VisitUnaryPostInc(const UnaryOperator *E) {
611
LValue LV = EmitLValue(E->getSubExpr());
612
return EmitScalarPrePostIncDec(E, LV, true, false);
613
}
614
Value *VisitUnaryPreDec(const UnaryOperator *E) {
615
LValue LV = EmitLValue(E->getSubExpr());
616
return EmitScalarPrePostIncDec(E, LV, false, true);
617
}
618
Value *VisitUnaryPreInc(const UnaryOperator *E) {
619
LValue LV = EmitLValue(E->getSubExpr());
620
return EmitScalarPrePostIncDec(E, LV, true, true);
621
}
622
623
llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
624
llvm::Value *InVal,
625
bool IsInc);
626
627
llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
628
bool isInc, bool isPre);
629
630
631
Value *VisitUnaryAddrOf(const UnaryOperator *E) {
632
if (isa<MemberPointerType>(E->getType())) // never sugared
633
return CGF.CGM.getMemberPointerConstant(E);
634
635
return EmitLValue(E->getSubExpr()).getPointer(CGF);
636
}
637
Value *VisitUnaryDeref(const UnaryOperator *E) {
638
if (E->getType()->isVoidType())
639
return Visit(E->getSubExpr()); // the actual value should be unused
640
return EmitLoadOfLValue(E);
641
}
642
643
Value *VisitUnaryPlus(const UnaryOperator *E,
644
QualType PromotionType = QualType());
645
Value *VisitPlus(const UnaryOperator *E, QualType PromotionType);
646
Value *VisitUnaryMinus(const UnaryOperator *E,
647
QualType PromotionType = QualType());
648
Value *VisitMinus(const UnaryOperator *E, QualType PromotionType);
649
650
Value *VisitUnaryNot (const UnaryOperator *E);
651
Value *VisitUnaryLNot (const UnaryOperator *E);
652
Value *VisitUnaryReal(const UnaryOperator *E,
653
QualType PromotionType = QualType());
654
Value *VisitReal(const UnaryOperator *E, QualType PromotionType);
655
Value *VisitUnaryImag(const UnaryOperator *E,
656
QualType PromotionType = QualType());
657
Value *VisitImag(const UnaryOperator *E, QualType PromotionType);
658
Value *VisitUnaryExtension(const UnaryOperator *E) {
659
return Visit(E->getSubExpr());
660
}
661
662
// C++
663
Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
664
return EmitLoadOfLValue(E);
665
}
666
Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
667
auto &Ctx = CGF.getContext();
668
APValue Evaluated =
669
SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
670
return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
671
SLE->getType());
672
}
673
674
Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
675
CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
676
return Visit(DAE->getExpr());
677
}
678
Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
679
CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
680
return Visit(DIE->getExpr());
681
}
682
Value *VisitCXXThisExpr(CXXThisExpr *TE) {
683
return CGF.LoadCXXThis();
684
}
685
686
Value *VisitExprWithCleanups(ExprWithCleanups *E);
687
Value *VisitCXXNewExpr(const CXXNewExpr *E) {
688
return CGF.EmitCXXNewExpr(E);
689
}
690
Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
691
CGF.EmitCXXDeleteExpr(E);
692
return nullptr;
693
}
694
695
Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
696
return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
697
}
698
699
Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
700
return Builder.getInt1(E->isSatisfied());
701
}
702
703
Value *VisitRequiresExpr(const RequiresExpr *E) {
704
return Builder.getInt1(E->isSatisfied());
705
}
706
707
Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
708
return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
709
}
710
711
Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
712
return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
713
}
714
715
Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
716
// C++ [expr.pseudo]p1:
717
// The result shall only be used as the operand for the function call
718
// operator (), and the result of such a call has type void. The only
719
// effect is the evaluation of the postfix-expression before the dot or
720
// arrow.
721
CGF.EmitScalarExpr(E->getBase());
722
return nullptr;
723
}
724
725
Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
726
return EmitNullValue(E->getType());
727
}
728
729
Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
730
CGF.EmitCXXThrowExpr(E);
731
return nullptr;
732
}
733
734
Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
735
return Builder.getInt1(E->getValue());
736
}
737
738
// Binary Operators.
739
Value *EmitMul(const BinOpInfo &Ops) {
740
if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
741
switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
742
case LangOptions::SOB_Defined:
743
if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
744
return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
745
[[fallthrough]];
746
case LangOptions::SOB_Undefined:
747
if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
748
return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
749
[[fallthrough]];
750
case LangOptions::SOB_Trapping:
751
if (CanElideOverflowCheck(CGF.getContext(), Ops))
752
return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
753
return EmitOverflowCheckedBinOp(Ops);
754
}
755
}
756
757
if (Ops.Ty->isConstantMatrixType()) {
758
llvm::MatrixBuilder MB(Builder);
759
// We need to check the types of the operands of the operator to get the
760
// correct matrix dimensions.
761
auto *BO = cast<BinaryOperator>(Ops.E);
762
auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
763
BO->getLHS()->getType().getCanonicalType());
764
auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
765
BO->getRHS()->getType().getCanonicalType());
766
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
767
if (LHSMatTy && RHSMatTy)
768
return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
769
LHSMatTy->getNumColumns(),
770
RHSMatTy->getNumColumns());
771
return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
772
}
773
774
if (Ops.Ty->isUnsignedIntegerType() &&
775
CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
776
!CanElideOverflowCheck(CGF.getContext(), Ops))
777
return EmitOverflowCheckedBinOp(Ops);
778
779
if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
780
// Preserve the old values
781
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
782
return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
783
}
784
if (Ops.isFixedPointOp())
785
return EmitFixedPointBinOp(Ops);
786
return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
787
}
788
/// Create a binary op that checks for overflow.
789
/// Currently only supports +, - and *.
790
Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
791
792
// Check for undefined division and modulus behaviors.
793
void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
794
llvm::Value *Zero,bool isDiv);
795
// Common helper for getting how wide LHS of shift is.
796
static Value *GetMaximumShiftAmount(Value *LHS, Value *RHS, bool RHSIsSigned);
797
798
// Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
799
// non powers of two.
800
Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
801
802
Value *EmitDiv(const BinOpInfo &Ops);
803
Value *EmitRem(const BinOpInfo &Ops);
804
Value *EmitAdd(const BinOpInfo &Ops);
805
Value *EmitSub(const BinOpInfo &Ops);
806
Value *EmitShl(const BinOpInfo &Ops);
807
Value *EmitShr(const BinOpInfo &Ops);
808
Value *EmitAnd(const BinOpInfo &Ops) {
809
return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
810
}
811
Value *EmitXor(const BinOpInfo &Ops) {
812
return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
813
}
814
Value *EmitOr (const BinOpInfo &Ops) {
815
return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
816
}
817
818
// Helper functions for fixed point binary operations.
819
Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
820
821
BinOpInfo EmitBinOps(const BinaryOperator *E,
822
QualType PromotionTy = QualType());
823
824
Value *EmitPromotedValue(Value *result, QualType PromotionType);
825
Value *EmitUnPromotedValue(Value *result, QualType ExprType);
826
Value *EmitPromoted(const Expr *E, QualType PromotionType);
827
828
LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
829
Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
830
Value *&Result);
831
832
Value *EmitCompoundAssign(const CompoundAssignOperator *E,
833
Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
834
835
QualType getPromotionType(QualType Ty) {
836
const auto &Ctx = CGF.getContext();
837
if (auto *CT = Ty->getAs<ComplexType>()) {
838
QualType ElementType = CT->getElementType();
839
if (ElementType.UseExcessPrecision(Ctx))
840
return Ctx.getComplexType(Ctx.FloatTy);
841
}
842
843
if (Ty.UseExcessPrecision(Ctx)) {
844
if (auto *VT = Ty->getAs<VectorType>()) {
845
unsigned NumElements = VT->getNumElements();
846
return Ctx.getVectorType(Ctx.FloatTy, NumElements, VT->getVectorKind());
847
}
848
return Ctx.FloatTy;
849
}
850
851
return QualType();
852
}
853
854
// Binary operators and binary compound assignment operators.
855
#define HANDLEBINOP(OP) \
856
Value *VisitBin##OP(const BinaryOperator *E) { \
857
QualType promotionTy = getPromotionType(E->getType()); \
858
auto result = Emit##OP(EmitBinOps(E, promotionTy)); \
859
if (result && !promotionTy.isNull()) \
860
result = EmitUnPromotedValue(result, E->getType()); \
861
return result; \
862
} \
863
Value *VisitBin##OP##Assign(const CompoundAssignOperator *E) { \
864
return EmitCompoundAssign(E, &ScalarExprEmitter::Emit##OP); \
865
}
866
HANDLEBINOP(Mul)
867
HANDLEBINOP(Div)
868
HANDLEBINOP(Rem)
869
HANDLEBINOP(Add)
870
HANDLEBINOP(Sub)
871
HANDLEBINOP(Shl)
872
HANDLEBINOP(Shr)
873
HANDLEBINOP(And)
874
HANDLEBINOP(Xor)
875
HANDLEBINOP(Or)
876
#undef HANDLEBINOP
877
878
// Comparisons.
879
Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
880
llvm::CmpInst::Predicate SICmpOpc,
881
llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
882
#define VISITCOMP(CODE, UI, SI, FP, SIG) \
883
Value *VisitBin##CODE(const BinaryOperator *E) { \
884
return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
885
llvm::FCmpInst::FP, SIG); }
886
VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
887
VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
888
VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
889
VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
890
VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
891
VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
892
#undef VISITCOMP
893
894
Value *VisitBinAssign (const BinaryOperator *E);
895
896
Value *VisitBinLAnd (const BinaryOperator *E);
897
Value *VisitBinLOr (const BinaryOperator *E);
898
Value *VisitBinComma (const BinaryOperator *E);
899
900
Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
901
Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
902
903
Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
904
return Visit(E->getSemanticForm());
905
}
906
907
// Other Operators.
908
Value *VisitBlockExpr(const BlockExpr *BE);
909
Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
910
Value *VisitChooseExpr(ChooseExpr *CE);
911
Value *VisitVAArgExpr(VAArgExpr *VE);
912
Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
913
return CGF.EmitObjCStringLiteral(E);
914
}
915
Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
916
return CGF.EmitObjCBoxedExpr(E);
917
}
918
Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
919
return CGF.EmitObjCArrayLiteral(E);
920
}
921
Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
922
return CGF.EmitObjCDictionaryLiteral(E);
923
}
924
Value *VisitAsTypeExpr(AsTypeExpr *CE);
925
Value *VisitAtomicExpr(AtomicExpr *AE);
926
Value *VisitPackIndexingExpr(PackIndexingExpr *E) {
927
return Visit(E->getSelectedExpr());
928
}
929
};
930
} // end anonymous namespace.
931
932
//===----------------------------------------------------------------------===//
933
// Utilities
934
//===----------------------------------------------------------------------===//
935
936
/// EmitConversionToBool - Convert the specified expression value to a
937
/// boolean (i1) truth value. This is equivalent to "Val != 0".
938
Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
939
assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
940
941
if (SrcType->isRealFloatingType())
942
return EmitFloatToBoolConversion(Src);
943
944
if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
945
return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
946
947
assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
948
"Unknown scalar type to convert");
949
950
if (isa<llvm::IntegerType>(Src->getType()))
951
return EmitIntToBoolConversion(Src);
952
953
assert(isa<llvm::PointerType>(Src->getType()));
954
return EmitPointerToBoolConversion(Src, SrcType);
955
}
956
957
void ScalarExprEmitter::EmitFloatConversionCheck(
958
Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
959
QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
960
assert(SrcType->isFloatingType() && "not a conversion from floating point");
961
if (!isa<llvm::IntegerType>(DstTy))
962
return;
963
964
CodeGenFunction::SanitizerScope SanScope(&CGF);
965
using llvm::APFloat;
966
using llvm::APSInt;
967
968
llvm::Value *Check = nullptr;
969
const llvm::fltSemantics &SrcSema =
970
CGF.getContext().getFloatTypeSemantics(OrigSrcType);
971
972
// Floating-point to integer. This has undefined behavior if the source is
973
// +-Inf, NaN, or doesn't fit into the destination type (after truncation
974
// to an integer).
975
unsigned Width = CGF.getContext().getIntWidth(DstType);
976
bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
977
978
APSInt Min = APSInt::getMinValue(Width, Unsigned);
979
APFloat MinSrc(SrcSema, APFloat::uninitialized);
980
if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
981
APFloat::opOverflow)
982
// Don't need an overflow check for lower bound. Just check for
983
// -Inf/NaN.
984
MinSrc = APFloat::getInf(SrcSema, true);
985
else
986
// Find the largest value which is too small to represent (before
987
// truncation toward zero).
988
MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
989
990
APSInt Max = APSInt::getMaxValue(Width, Unsigned);
991
APFloat MaxSrc(SrcSema, APFloat::uninitialized);
992
if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
993
APFloat::opOverflow)
994
// Don't need an overflow check for upper bound. Just check for
995
// +Inf/NaN.
996
MaxSrc = APFloat::getInf(SrcSema, false);
997
else
998
// Find the smallest value which is too large to represent (before
999
// truncation toward zero).
1000
MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
1001
1002
// If we're converting from __half, convert the range to float to match
1003
// the type of src.
1004
if (OrigSrcType->isHalfType()) {
1005
const llvm::fltSemantics &Sema =
1006
CGF.getContext().getFloatTypeSemantics(SrcType);
1007
bool IsInexact;
1008
MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
1009
MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
1010
}
1011
1012
llvm::Value *GE =
1013
Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
1014
llvm::Value *LE =
1015
Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
1016
Check = Builder.CreateAnd(GE, LE);
1017
1018
llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
1019
CGF.EmitCheckTypeDescriptor(OrigSrcType),
1020
CGF.EmitCheckTypeDescriptor(DstType)};
1021
CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
1022
SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
1023
}
1024
1025
// Should be called within CodeGenFunction::SanitizerScope RAII scope.
1026
// Returns 'i1 false' when the truncation Src -> Dst was lossy.
1027
static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1028
std::pair<llvm::Value *, SanitizerMask>>
1029
EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1030
QualType DstType, CGBuilderTy &Builder) {
1031
llvm::Type *SrcTy = Src->getType();
1032
llvm::Type *DstTy = Dst->getType();
1033
(void)DstTy; // Only used in assert()
1034
1035
// This should be truncation of integral types.
1036
assert(Src != Dst);
1037
assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
1038
assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1039
"non-integer llvm type");
1040
1041
bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1042
bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1043
1044
// If both (src and dst) types are unsigned, then it's an unsigned truncation.
1045
// Else, it is a signed truncation.
1046
ScalarExprEmitter::ImplicitConversionCheckKind Kind;
1047
SanitizerMask Mask;
1048
if (!SrcSigned && !DstSigned) {
1049
Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
1050
Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
1051
} else {
1052
Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
1053
Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
1054
}
1055
1056
llvm::Value *Check = nullptr;
1057
// 1. Extend the truncated value back to the same width as the Src.
1058
Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
1059
// 2. Equality-compare with the original source value
1060
Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1061
// If the comparison result is 'i1 false', then the truncation was lossy.
1062
return std::make_pair(Kind, std::make_pair(Check, Mask));
1063
}
1064
1065
static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
1066
QualType SrcType, QualType DstType) {
1067
return SrcType->isIntegerType() && DstType->isIntegerType();
1068
}
1069
1070
void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1071
Value *Dst, QualType DstType,
1072
SourceLocation Loc) {
1073
if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1074
return;
1075
1076
// We only care about int->int conversions here.
1077
// We ignore conversions to/from pointer and/or bool.
1078
if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1079
DstType))
1080
return;
1081
1082
unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1083
unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1084
// This must be truncation. Else we do not care.
1085
if (SrcBits <= DstBits)
1086
return;
1087
1088
assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1089
1090
// If the integer sign change sanitizer is enabled,
1091
// and we are truncating from larger unsigned type to smaller signed type,
1092
// let that next sanitizer deal with it.
1093
bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1094
bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1095
if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1096
(!SrcSigned && DstSigned))
1097
return;
1098
1099
CodeGenFunction::SanitizerScope SanScope(&CGF);
1100
1101
std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1102
std::pair<llvm::Value *, SanitizerMask>>
1103
Check =
1104
EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1105
// If the comparison result is 'i1 false', then the truncation was lossy.
1106
1107
// Do we care about this type of truncation?
1108
if (!CGF.SanOpts.has(Check.second.second))
1109
return;
1110
1111
llvm::Constant *StaticArgs[] = {
1112
CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1113
CGF.EmitCheckTypeDescriptor(DstType),
1114
llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first),
1115
llvm::ConstantInt::get(Builder.getInt32Ty(), 0)};
1116
1117
CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1118
{Src, Dst});
1119
}
1120
1121
static llvm::Value *EmitIsNegativeTestHelper(Value *V, QualType VType,
1122
const char *Name,
1123
CGBuilderTy &Builder) {
1124
bool VSigned = VType->isSignedIntegerOrEnumerationType();
1125
llvm::Type *VTy = V->getType();
1126
if (!VSigned) {
1127
// If the value is unsigned, then it is never negative.
1128
return llvm::ConstantInt::getFalse(VTy->getContext());
1129
}
1130
llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1131
return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1132
llvm::Twine(Name) + "." + V->getName() +
1133
".negativitycheck");
1134
}
1135
1136
// Should be called within CodeGenFunction::SanitizerScope RAII scope.
1137
// Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1138
static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1139
std::pair<llvm::Value *, SanitizerMask>>
1140
EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1141
QualType DstType, CGBuilderTy &Builder) {
1142
llvm::Type *SrcTy = Src->getType();
1143
llvm::Type *DstTy = Dst->getType();
1144
1145
assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1146
"non-integer llvm type");
1147
1148
bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1149
bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1150
(void)SrcSigned; // Only used in assert()
1151
(void)DstSigned; // Only used in assert()
1152
unsigned SrcBits = SrcTy->getScalarSizeInBits();
1153
unsigned DstBits = DstTy->getScalarSizeInBits();
1154
(void)SrcBits; // Only used in assert()
1155
(void)DstBits; // Only used in assert()
1156
1157
assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1158
"either the widths should be different, or the signednesses.");
1159
1160
// 1. Was the old Value negative?
1161
llvm::Value *SrcIsNegative =
1162
EmitIsNegativeTestHelper(Src, SrcType, "src", Builder);
1163
// 2. Is the new Value negative?
1164
llvm::Value *DstIsNegative =
1165
EmitIsNegativeTestHelper(Dst, DstType, "dst", Builder);
1166
// 3. Now, was the 'negativity status' preserved during the conversion?
1167
// NOTE: conversion from negative to zero is considered to change the sign.
1168
// (We want to get 'false' when the conversion changed the sign)
1169
// So we should just equality-compare the negativity statuses.
1170
llvm::Value *Check = nullptr;
1171
Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1172
// If the comparison result is 'false', then the conversion changed the sign.
1173
return std::make_pair(
1174
ScalarExprEmitter::ICCK_IntegerSignChange,
1175
std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1176
}
1177
1178
void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1179
Value *Dst, QualType DstType,
1180
SourceLocation Loc) {
1181
if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1182
return;
1183
1184
llvm::Type *SrcTy = Src->getType();
1185
llvm::Type *DstTy = Dst->getType();
1186
1187
// We only care about int->int conversions here.
1188
// We ignore conversions to/from pointer and/or bool.
1189
if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1190
DstType))
1191
return;
1192
1193
bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1194
bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1195
unsigned SrcBits = SrcTy->getScalarSizeInBits();
1196
unsigned DstBits = DstTy->getScalarSizeInBits();
1197
1198
// Now, we do not need to emit the check in *all* of the cases.
1199
// We can avoid emitting it in some obvious cases where it would have been
1200
// dropped by the opt passes (instcombine) always anyways.
1201
// If it's a cast between effectively the same type, no check.
1202
// NOTE: this is *not* equivalent to checking the canonical types.
1203
if (SrcSigned == DstSigned && SrcBits == DstBits)
1204
return;
1205
// At least one of the values needs to have signed type.
1206
// If both are unsigned, then obviously, neither of them can be negative.
1207
if (!SrcSigned && !DstSigned)
1208
return;
1209
// If the conversion is to *larger* *signed* type, then no check is needed.
1210
// Because either sign-extension happens (so the sign will remain),
1211
// or zero-extension will happen (the sign bit will be zero.)
1212
if ((DstBits > SrcBits) && DstSigned)
1213
return;
1214
if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1215
(SrcBits > DstBits) && SrcSigned) {
1216
// If the signed integer truncation sanitizer is enabled,
1217
// and this is a truncation from signed type, then no check is needed.
1218
// Because here sign change check is interchangeable with truncation check.
1219
return;
1220
}
1221
// That's it. We can't rule out any more cases with the data we have.
1222
1223
CodeGenFunction::SanitizerScope SanScope(&CGF);
1224
1225
std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1226
std::pair<llvm::Value *, SanitizerMask>>
1227
Check;
1228
1229
// Each of these checks needs to return 'false' when an issue was detected.
1230
ImplicitConversionCheckKind CheckKind;
1231
llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1232
// So we can 'and' all the checks together, and still get 'false',
1233
// if at least one of the checks detected an issue.
1234
1235
Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1236
CheckKind = Check.first;
1237
Checks.emplace_back(Check.second);
1238
1239
if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1240
(SrcBits > DstBits) && !SrcSigned && DstSigned) {
1241
// If the signed integer truncation sanitizer was enabled,
1242
// and we are truncating from larger unsigned type to smaller signed type,
1243
// let's handle the case we skipped in that check.
1244
Check =
1245
EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1246
CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1247
Checks.emplace_back(Check.second);
1248
// If the comparison result is 'i1 false', then the truncation was lossy.
1249
}
1250
1251
llvm::Constant *StaticArgs[] = {
1252
CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1253
CGF.EmitCheckTypeDescriptor(DstType),
1254
llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind),
1255
llvm::ConstantInt::get(Builder.getInt32Ty(), 0)};
1256
// EmitCheck() will 'and' all the checks together.
1257
CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1258
{Src, Dst});
1259
}
1260
1261
// Should be called within CodeGenFunction::SanitizerScope RAII scope.
1262
// Returns 'i1 false' when the truncation Src -> Dst was lossy.
1263
static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1264
std::pair<llvm::Value *, SanitizerMask>>
1265
EmitBitfieldTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1266
QualType DstType, CGBuilderTy &Builder) {
1267
bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1268
bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1269
1270
ScalarExprEmitter::ImplicitConversionCheckKind Kind;
1271
if (!SrcSigned && !DstSigned)
1272
Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
1273
else
1274
Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
1275
1276
llvm::Value *Check = nullptr;
1277
// 1. Extend the truncated value back to the same width as the Src.
1278
Check = Builder.CreateIntCast(Dst, Src->getType(), DstSigned, "bf.anyext");
1279
// 2. Equality-compare with the original source value
1280
Check = Builder.CreateICmpEQ(Check, Src, "bf.truncheck");
1281
// If the comparison result is 'i1 false', then the truncation was lossy.
1282
1283
return std::make_pair(
1284
Kind, std::make_pair(Check, SanitizerKind::ImplicitBitfieldConversion));
1285
}
1286
1287
// Should be called within CodeGenFunction::SanitizerScope RAII scope.
1288
// Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1289
static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1290
std::pair<llvm::Value *, SanitizerMask>>
1291
EmitBitfieldSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1292
QualType DstType, CGBuilderTy &Builder) {
1293
// 1. Was the old Value negative?
1294
llvm::Value *SrcIsNegative =
1295
EmitIsNegativeTestHelper(Src, SrcType, "bf.src", Builder);
1296
// 2. Is the new Value negative?
1297
llvm::Value *DstIsNegative =
1298
EmitIsNegativeTestHelper(Dst, DstType, "bf.dst", Builder);
1299
// 3. Now, was the 'negativity status' preserved during the conversion?
1300
// NOTE: conversion from negative to zero is considered to change the sign.
1301
// (We want to get 'false' when the conversion changed the sign)
1302
// So we should just equality-compare the negativity statuses.
1303
llvm::Value *Check = nullptr;
1304
Check =
1305
Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "bf.signchangecheck");
1306
// If the comparison result is 'false', then the conversion changed the sign.
1307
return std::make_pair(
1308
ScalarExprEmitter::ICCK_IntegerSignChange,
1309
std::make_pair(Check, SanitizerKind::ImplicitBitfieldConversion));
1310
}
1311
1312
void CodeGenFunction::EmitBitfieldConversionCheck(Value *Src, QualType SrcType,
1313
Value *Dst, QualType DstType,
1314
const CGBitFieldInfo &Info,
1315
SourceLocation Loc) {
1316
1317
if (!SanOpts.has(SanitizerKind::ImplicitBitfieldConversion))
1318
return;
1319
1320
// We only care about int->int conversions here.
1321
// We ignore conversions to/from pointer and/or bool.
1322
if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1323
DstType))
1324
return;
1325
1326
if (DstType->isBooleanType() || SrcType->isBooleanType())
1327
return;
1328
1329
// This should be truncation of integral types.
1330
assert(isa<llvm::IntegerType>(Src->getType()) &&
1331
isa<llvm::IntegerType>(Dst->getType()) && "non-integer llvm type");
1332
1333
// TODO: Calculate src width to avoid emitting code
1334
// for unecessary cases.
1335
unsigned SrcBits = ConvertType(SrcType)->getScalarSizeInBits();
1336
unsigned DstBits = Info.Size;
1337
1338
bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1339
bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1340
1341
CodeGenFunction::SanitizerScope SanScope(this);
1342
1343
std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1344
std::pair<llvm::Value *, SanitizerMask>>
1345
Check;
1346
1347
// Truncation
1348
bool EmitTruncation = DstBits < SrcBits;
1349
// If Dst is signed and Src unsigned, we want to be more specific
1350
// about the CheckKind we emit, in this case we want to emit
1351
// ICCK_SignedIntegerTruncationOrSignChange.
1352
bool EmitTruncationFromUnsignedToSigned =
1353
EmitTruncation && DstSigned && !SrcSigned;
1354
// Sign change
1355
bool SameTypeSameSize = SrcSigned == DstSigned && SrcBits == DstBits;
1356
bool BothUnsigned = !SrcSigned && !DstSigned;
1357
bool LargerSigned = (DstBits > SrcBits) && DstSigned;
1358
// We can avoid emitting sign change checks in some obvious cases
1359
// 1. If Src and Dst have the same signedness and size
1360
// 2. If both are unsigned sign check is unecessary!
1361
// 3. If Dst is signed and bigger than Src, either
1362
// sign-extension or zero-extension will make sure
1363
// the sign remains.
1364
bool EmitSignChange = !SameTypeSameSize && !BothUnsigned && !LargerSigned;
1365
1366
if (EmitTruncation)
1367
Check =
1368
EmitBitfieldTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1369
else if (EmitSignChange) {
1370
assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1371
"either the widths should be different, or the signednesses.");
1372
Check =
1373
EmitBitfieldSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1374
} else
1375
return;
1376
1377
ScalarExprEmitter::ImplicitConversionCheckKind CheckKind = Check.first;
1378
if (EmitTruncationFromUnsignedToSigned)
1379
CheckKind = ScalarExprEmitter::ICCK_SignedIntegerTruncationOrSignChange;
1380
1381
llvm::Constant *StaticArgs[] = {
1382
EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(SrcType),
1383
EmitCheckTypeDescriptor(DstType),
1384
llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind),
1385
llvm::ConstantInt::get(Builder.getInt32Ty(), Info.Size)};
1386
1387
EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1388
{Src, Dst});
1389
}
1390
1391
Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType,
1392
QualType DstType, llvm::Type *SrcTy,
1393
llvm::Type *DstTy,
1394
ScalarConversionOpts Opts) {
1395
// The Element types determine the type of cast to perform.
1396
llvm::Type *SrcElementTy;
1397
llvm::Type *DstElementTy;
1398
QualType SrcElementType;
1399
QualType DstElementType;
1400
if (SrcType->isMatrixType() && DstType->isMatrixType()) {
1401
SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1402
DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1403
SrcElementType = SrcType->castAs<MatrixType>()->getElementType();
1404
DstElementType = DstType->castAs<MatrixType>()->getElementType();
1405
} else {
1406
assert(!SrcType->isMatrixType() && !DstType->isMatrixType() &&
1407
"cannot cast between matrix and non-matrix types");
1408
SrcElementTy = SrcTy;
1409
DstElementTy = DstTy;
1410
SrcElementType = SrcType;
1411
DstElementType = DstType;
1412
}
1413
1414
if (isa<llvm::IntegerType>(SrcElementTy)) {
1415
bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType();
1416
if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1417
InputSigned = true;
1418
}
1419
1420
if (isa<llvm::IntegerType>(DstElementTy))
1421
return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1422
if (InputSigned)
1423
return Builder.CreateSIToFP(Src, DstTy, "conv");
1424
return Builder.CreateUIToFP(Src, DstTy, "conv");
1425
}
1426
1427
if (isa<llvm::IntegerType>(DstElementTy)) {
1428
assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion");
1429
bool IsSigned = DstElementType->isSignedIntegerOrEnumerationType();
1430
1431
// If we can't recognize overflow as undefined behavior, assume that
1432
// overflow saturates. This protects against normal optimizations if we are
1433
// compiling with non-standard FP semantics.
1434
if (!CGF.CGM.getCodeGenOpts().StrictFloatCastOverflow) {
1435
llvm::Intrinsic::ID IID =
1436
IsSigned ? llvm::Intrinsic::fptosi_sat : llvm::Intrinsic::fptoui_sat;
1437
return Builder.CreateCall(CGF.CGM.getIntrinsic(IID, {DstTy, SrcTy}), Src);
1438
}
1439
1440
if (IsSigned)
1441
return Builder.CreateFPToSI(Src, DstTy, "conv");
1442
return Builder.CreateFPToUI(Src, DstTy, "conv");
1443
}
1444
1445
if (DstElementTy->getTypeID() < SrcElementTy->getTypeID())
1446
return Builder.CreateFPTrunc(Src, DstTy, "conv");
1447
return Builder.CreateFPExt(Src, DstTy, "conv");
1448
}
1449
1450
/// Emit a conversion from the specified type to the specified destination type,
1451
/// both of which are LLVM scalar types.
1452
Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1453
QualType DstType,
1454
SourceLocation Loc,
1455
ScalarConversionOpts Opts) {
1456
// All conversions involving fixed point types should be handled by the
1457
// EmitFixedPoint family functions. This is done to prevent bloating up this
1458
// function more, and although fixed point numbers are represented by
1459
// integers, we do not want to follow any logic that assumes they should be
1460
// treated as integers.
1461
// TODO(leonardchan): When necessary, add another if statement checking for
1462
// conversions to fixed point types from other types.
1463
if (SrcType->isFixedPointType()) {
1464
if (DstType->isBooleanType())
1465
// It is important that we check this before checking if the dest type is
1466
// an integer because booleans are technically integer types.
1467
// We do not need to check the padding bit on unsigned types if unsigned
1468
// padding is enabled because overflow into this bit is undefined
1469
// behavior.
1470
return Builder.CreateIsNotNull(Src, "tobool");
1471
if (DstType->isFixedPointType() || DstType->isIntegerType() ||
1472
DstType->isRealFloatingType())
1473
return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1474
1475
llvm_unreachable(
1476
"Unhandled scalar conversion from a fixed point type to another type.");
1477
} else if (DstType->isFixedPointType()) {
1478
if (SrcType->isIntegerType() || SrcType->isRealFloatingType())
1479
// This also includes converting booleans and enums to fixed point types.
1480
return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1481
1482
llvm_unreachable(
1483
"Unhandled scalar conversion to a fixed point type from another type.");
1484
}
1485
1486
QualType NoncanonicalSrcType = SrcType;
1487
QualType NoncanonicalDstType = DstType;
1488
1489
SrcType = CGF.getContext().getCanonicalType(SrcType);
1490
DstType = CGF.getContext().getCanonicalType(DstType);
1491
if (SrcType == DstType) return Src;
1492
1493
if (DstType->isVoidType()) return nullptr;
1494
1495
llvm::Value *OrigSrc = Src;
1496
QualType OrigSrcType = SrcType;
1497
llvm::Type *SrcTy = Src->getType();
1498
1499
// Handle conversions to bool first, they are special: comparisons against 0.
1500
if (DstType->isBooleanType())
1501
return EmitConversionToBool(Src, SrcType);
1502
1503
llvm::Type *DstTy = ConvertType(DstType);
1504
1505
// Cast from half through float if half isn't a native type.
1506
if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1507
// Cast to FP using the intrinsic if the half type itself isn't supported.
1508
if (DstTy->isFloatingPointTy()) {
1509
if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1510
return Builder.CreateCall(
1511
CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1512
Src);
1513
} else {
1514
// Cast to other types through float, using either the intrinsic or FPExt,
1515
// depending on whether the half type itself is supported
1516
// (as opposed to operations on half, available with NativeHalfType).
1517
if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1518
Src = Builder.CreateCall(
1519
CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1520
CGF.CGM.FloatTy),
1521
Src);
1522
} else {
1523
Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1524
}
1525
SrcType = CGF.getContext().FloatTy;
1526
SrcTy = CGF.FloatTy;
1527
}
1528
}
1529
1530
// Ignore conversions like int -> uint.
1531
if (SrcTy == DstTy) {
1532
if (Opts.EmitImplicitIntegerSignChangeChecks)
1533
EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1534
NoncanonicalDstType, Loc);
1535
1536
return Src;
1537
}
1538
1539
// Handle pointer conversions next: pointers can only be converted to/from
1540
// other pointers and integers. Check for pointer types in terms of LLVM, as
1541
// some native types (like Obj-C id) may map to a pointer type.
1542
if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1543
// The source value may be an integer, or a pointer.
1544
if (isa<llvm::PointerType>(SrcTy))
1545
return Src;
1546
1547
assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1548
// First, convert to the correct width so that we control the kind of
1549
// extension.
1550
llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1551
bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1552
llvm::Value* IntResult =
1553
Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1554
// Then, cast to pointer.
1555
return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1556
}
1557
1558
if (isa<llvm::PointerType>(SrcTy)) {
1559
// Must be an ptr to int cast.
1560
assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1561
return Builder.CreatePtrToInt(Src, DstTy, "conv");
1562
}
1563
1564
// A scalar can be splatted to an extended vector of the same element type
1565
if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1566
// Sema should add casts to make sure that the source expression's type is
1567
// the same as the vector's element type (sans qualifiers)
1568
assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1569
SrcType.getTypePtr() &&
1570
"Splatted expr doesn't match with vector element type?");
1571
1572
// Splat the element across to all elements
1573
unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1574
return Builder.CreateVectorSplat(NumElements, Src, "splat");
1575
}
1576
1577
if (SrcType->isMatrixType() && DstType->isMatrixType())
1578
return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1579
1580
if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1581
// Allow bitcast from vector to integer/fp of the same size.
1582
llvm::TypeSize SrcSize = SrcTy->getPrimitiveSizeInBits();
1583
llvm::TypeSize DstSize = DstTy->getPrimitiveSizeInBits();
1584
if (SrcSize == DstSize)
1585
return Builder.CreateBitCast(Src, DstTy, "conv");
1586
1587
// Conversions between vectors of different sizes are not allowed except
1588
// when vectors of half are involved. Operations on storage-only half
1589
// vectors require promoting half vector operands to float vectors and
1590
// truncating the result, which is either an int or float vector, to a
1591
// short or half vector.
1592
1593
// Source and destination are both expected to be vectors.
1594
llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1595
llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1596
(void)DstElementTy;
1597
1598
assert(((SrcElementTy->isIntegerTy() &&
1599
DstElementTy->isIntegerTy()) ||
1600
(SrcElementTy->isFloatingPointTy() &&
1601
DstElementTy->isFloatingPointTy())) &&
1602
"unexpected conversion between a floating-point vector and an "
1603
"integer vector");
1604
1605
// Truncate an i32 vector to an i16 vector.
1606
if (SrcElementTy->isIntegerTy())
1607
return Builder.CreateIntCast(Src, DstTy, false, "conv");
1608
1609
// Truncate a float vector to a half vector.
1610
if (SrcSize > DstSize)
1611
return Builder.CreateFPTrunc(Src, DstTy, "conv");
1612
1613
// Promote a half vector to a float vector.
1614
return Builder.CreateFPExt(Src, DstTy, "conv");
1615
}
1616
1617
// Finally, we have the arithmetic types: real int/float.
1618
Value *Res = nullptr;
1619
llvm::Type *ResTy = DstTy;
1620
1621
// An overflowing conversion has undefined behavior if either the source type
1622
// or the destination type is a floating-point type. However, we consider the
1623
// range of representable values for all floating-point types to be
1624
// [-inf,+inf], so no overflow can ever happen when the destination type is a
1625
// floating-point type.
1626
if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1627
OrigSrcType->isFloatingType())
1628
EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1629
Loc);
1630
1631
// Cast to half through float if half isn't a native type.
1632
if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1633
// Make sure we cast in a single step if from another FP type.
1634
if (SrcTy->isFloatingPointTy()) {
1635
// Use the intrinsic if the half type itself isn't supported
1636
// (as opposed to operations on half, available with NativeHalfType).
1637
if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1638
return Builder.CreateCall(
1639
CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1640
// If the half type is supported, just use an fptrunc.
1641
return Builder.CreateFPTrunc(Src, DstTy);
1642
}
1643
DstTy = CGF.FloatTy;
1644
}
1645
1646
Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1647
1648
if (DstTy != ResTy) {
1649
if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1650
assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1651
Res = Builder.CreateCall(
1652
CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1653
Res);
1654
} else {
1655
Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1656
}
1657
}
1658
1659
if (Opts.EmitImplicitIntegerTruncationChecks)
1660
EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1661
NoncanonicalDstType, Loc);
1662
1663
if (Opts.EmitImplicitIntegerSignChangeChecks)
1664
EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1665
NoncanonicalDstType, Loc);
1666
1667
return Res;
1668
}
1669
1670
Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1671
QualType DstTy,
1672
SourceLocation Loc) {
1673
llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1674
llvm::Value *Result;
1675
if (SrcTy->isRealFloatingType())
1676
Result = FPBuilder.CreateFloatingToFixed(Src,
1677
CGF.getContext().getFixedPointSemantics(DstTy));
1678
else if (DstTy->isRealFloatingType())
1679
Result = FPBuilder.CreateFixedToFloating(Src,
1680
CGF.getContext().getFixedPointSemantics(SrcTy),
1681
ConvertType(DstTy));
1682
else {
1683
auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1684
auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1685
1686
if (DstTy->isIntegerType())
1687
Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1688
DstFPSema.getWidth(),
1689
DstFPSema.isSigned());
1690
else if (SrcTy->isIntegerType())
1691
Result = FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1692
DstFPSema);
1693
else
1694
Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1695
}
1696
return Result;
1697
}
1698
1699
/// Emit a conversion from the specified complex type to the specified
1700
/// destination type, where the destination type is an LLVM scalar type.
1701
Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1702
CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1703
SourceLocation Loc) {
1704
// Get the source element type.
1705
SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1706
1707
// Handle conversions to bool first, they are special: comparisons against 0.
1708
if (DstTy->isBooleanType()) {
1709
// Complex != 0 -> (Real != 0) | (Imag != 0)
1710
Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1711
Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1712
return Builder.CreateOr(Src.first, Src.second, "tobool");
1713
}
1714
1715
// C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1716
// the imaginary part of the complex value is discarded and the value of the
1717
// real part is converted according to the conversion rules for the
1718
// corresponding real type.
1719
return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1720
}
1721
1722
Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1723
return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1724
}
1725
1726
/// Emit a sanitization check for the given "binary" operation (which
1727
/// might actually be a unary increment which has been lowered to a binary
1728
/// operation). The check passes if all values in \p Checks (which are \c i1),
1729
/// are \c true.
1730
void ScalarExprEmitter::EmitBinOpCheck(
1731
ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1732
assert(CGF.IsSanitizerScope);
1733
SanitizerHandler Check;
1734
SmallVector<llvm::Constant *, 4> StaticData;
1735
SmallVector<llvm::Value *, 2> DynamicData;
1736
1737
BinaryOperatorKind Opcode = Info.Opcode;
1738
if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1739
Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1740
1741
StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1742
const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1743
if (UO && UO->getOpcode() == UO_Minus) {
1744
Check = SanitizerHandler::NegateOverflow;
1745
StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1746
DynamicData.push_back(Info.RHS);
1747
} else {
1748
if (BinaryOperator::isShiftOp(Opcode)) {
1749
// Shift LHS negative or too large, or RHS out of bounds.
1750
Check = SanitizerHandler::ShiftOutOfBounds;
1751
const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1752
StaticData.push_back(
1753
CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1754
StaticData.push_back(
1755
CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1756
} else if (Opcode == BO_Div || Opcode == BO_Rem) {
1757
// Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1758
Check = SanitizerHandler::DivremOverflow;
1759
StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1760
} else {
1761
// Arithmetic overflow (+, -, *).
1762
switch (Opcode) {
1763
case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1764
case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1765
case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1766
default: llvm_unreachable("unexpected opcode for bin op check");
1767
}
1768
StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1769
}
1770
DynamicData.push_back(Info.LHS);
1771
DynamicData.push_back(Info.RHS);
1772
}
1773
1774
CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1775
}
1776
1777
//===----------------------------------------------------------------------===//
1778
// Visitor Methods
1779
//===----------------------------------------------------------------------===//
1780
1781
Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1782
CGF.ErrorUnsupported(E, "scalar expression");
1783
if (E->getType()->isVoidType())
1784
return nullptr;
1785
return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1786
}
1787
1788
Value *
1789
ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) {
1790
ASTContext &Context = CGF.getContext();
1791
unsigned AddrSpace =
1792
Context.getTargetAddressSpace(CGF.CGM.GetGlobalConstantAddressSpace());
1793
llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr(
1794
E->ComputeName(Context), "__usn_str", AddrSpace);
1795
1796
llvm::Type *ExprTy = ConvertType(E->getType());
1797
return Builder.CreatePointerBitCastOrAddrSpaceCast(GlobalConstStr, ExprTy,
1798
"usn_addr_cast");
1799
}
1800
1801
Value *ScalarExprEmitter::VisitEmbedExpr(EmbedExpr *E) {
1802
assert(E->getDataElementCount() == 1);
1803
auto It = E->begin();
1804
return Builder.getInt((*It)->getValue());
1805
}
1806
1807
Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1808
// Vector Mask Case
1809
if (E->getNumSubExprs() == 2) {
1810
Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1811
Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1812
Value *Mask;
1813
1814
auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1815
unsigned LHSElts = LTy->getNumElements();
1816
1817
Mask = RHS;
1818
1819
auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1820
1821
// Mask off the high bits of each shuffle index.
1822
Value *MaskBits =
1823
llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1824
Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1825
1826
// newv = undef
1827
// mask = mask & maskbits
1828
// for each elt
1829
// n = extract mask i
1830
// x = extract val n
1831
// newv = insert newv, x, i
1832
auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1833
MTy->getNumElements());
1834
Value* NewV = llvm::PoisonValue::get(RTy);
1835
for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1836
Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1837
Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1838
1839
Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1840
NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1841
}
1842
return NewV;
1843
}
1844
1845
Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1846
Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1847
1848
SmallVector<int, 32> Indices;
1849
for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1850
llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1851
// Check for -1 and output it as undef in the IR.
1852
if (Idx.isSigned() && Idx.isAllOnes())
1853
Indices.push_back(-1);
1854
else
1855
Indices.push_back(Idx.getZExtValue());
1856
}
1857
1858
return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1859
}
1860
1861
Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1862
QualType SrcType = E->getSrcExpr()->getType(),
1863
DstType = E->getType();
1864
1865
Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
1866
1867
SrcType = CGF.getContext().getCanonicalType(SrcType);
1868
DstType = CGF.getContext().getCanonicalType(DstType);
1869
if (SrcType == DstType) return Src;
1870
1871
assert(SrcType->isVectorType() &&
1872
"ConvertVector source type must be a vector");
1873
assert(DstType->isVectorType() &&
1874
"ConvertVector destination type must be a vector");
1875
1876
llvm::Type *SrcTy = Src->getType();
1877
llvm::Type *DstTy = ConvertType(DstType);
1878
1879
// Ignore conversions like int -> uint.
1880
if (SrcTy == DstTy)
1881
return Src;
1882
1883
QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1884
DstEltType = DstType->castAs<VectorType>()->getElementType();
1885
1886
assert(SrcTy->isVectorTy() &&
1887
"ConvertVector source IR type must be a vector");
1888
assert(DstTy->isVectorTy() &&
1889
"ConvertVector destination IR type must be a vector");
1890
1891
llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1892
*DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1893
1894
if (DstEltType->isBooleanType()) {
1895
assert((SrcEltTy->isFloatingPointTy() ||
1896
isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1897
1898
llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1899
if (SrcEltTy->isFloatingPointTy()) {
1900
return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1901
} else {
1902
return Builder.CreateICmpNE(Src, Zero, "tobool");
1903
}
1904
}
1905
1906
// We have the arithmetic types: real int/float.
1907
Value *Res = nullptr;
1908
1909
if (isa<llvm::IntegerType>(SrcEltTy)) {
1910
bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1911
if (isa<llvm::IntegerType>(DstEltTy))
1912
Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1913
else if (InputSigned)
1914
Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1915
else
1916
Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1917
} else if (isa<llvm::IntegerType>(DstEltTy)) {
1918
assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1919
if (DstEltType->isSignedIntegerOrEnumerationType())
1920
Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1921
else
1922
Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1923
} else {
1924
assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1925
"Unknown real conversion");
1926
if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1927
Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1928
else
1929
Res = Builder.CreateFPExt(Src, DstTy, "conv");
1930
}
1931
1932
return Res;
1933
}
1934
1935
Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1936
if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1937
CGF.EmitIgnoredExpr(E->getBase());
1938
return CGF.emitScalarConstant(Constant, E);
1939
} else {
1940
Expr::EvalResult Result;
1941
if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1942
llvm::APSInt Value = Result.Val.getInt();
1943
CGF.EmitIgnoredExpr(E->getBase());
1944
return Builder.getInt(Value);
1945
}
1946
}
1947
1948
llvm::Value *Result = EmitLoadOfLValue(E);
1949
1950
// If -fdebug-info-for-profiling is specified, emit a pseudo variable and its
1951
// debug info for the pointer, even if there is no variable associated with
1952
// the pointer's expression.
1953
if (CGF.CGM.getCodeGenOpts().DebugInfoForProfiling && CGF.getDebugInfo()) {
1954
if (llvm::LoadInst *Load = dyn_cast<llvm::LoadInst>(Result)) {
1955
if (llvm::GetElementPtrInst *GEP =
1956
dyn_cast<llvm::GetElementPtrInst>(Load->getPointerOperand())) {
1957
if (llvm::Instruction *Pointer =
1958
dyn_cast<llvm::Instruction>(GEP->getPointerOperand())) {
1959
QualType Ty = E->getBase()->getType();
1960
if (!E->isArrow())
1961
Ty = CGF.getContext().getPointerType(Ty);
1962
CGF.getDebugInfo()->EmitPseudoVariable(Builder, Pointer, Ty);
1963
}
1964
}
1965
}
1966
}
1967
return Result;
1968
}
1969
1970
Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1971
TestAndClearIgnoreResultAssign();
1972
1973
// Emit subscript expressions in rvalue context's. For most cases, this just
1974
// loads the lvalue formed by the subscript expr. However, we have to be
1975
// careful, because the base of a vector subscript is occasionally an rvalue,
1976
// so we can't get it as an lvalue.
1977
if (!E->getBase()->getType()->isVectorType() &&
1978
!E->getBase()->getType()->isSveVLSBuiltinType())
1979
return EmitLoadOfLValue(E);
1980
1981
// Handle the vector case. The base must be a vector, the index must be an
1982
// integer value.
1983
Value *Base = Visit(E->getBase());
1984
Value *Idx = Visit(E->getIdx());
1985
QualType IdxTy = E->getIdx()->getType();
1986
1987
if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1988
CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1989
1990
return Builder.CreateExtractElement(Base, Idx, "vecext");
1991
}
1992
1993
Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1994
TestAndClearIgnoreResultAssign();
1995
1996
// Handle the vector case. The base must be a vector, the index must be an
1997
// integer value.
1998
Value *RowIdx = Visit(E->getRowIdx());
1999
Value *ColumnIdx = Visit(E->getColumnIdx());
2000
2001
const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>();
2002
unsigned NumRows = MatrixTy->getNumRows();
2003
llvm::MatrixBuilder MB(Builder);
2004
Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows);
2005
if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0)
2006
MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened());
2007
2008
Value *Matrix = Visit(E->getBase());
2009
2010
// TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
2011
return Builder.CreateExtractElement(Matrix, Idx, "matrixext");
2012
}
2013
2014
static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
2015
unsigned Off) {
2016
int MV = SVI->getMaskValue(Idx);
2017
if (MV == -1)
2018
return -1;
2019
return Off + MV;
2020
}
2021
2022
static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
2023
assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
2024
"Index operand too large for shufflevector mask!");
2025
return C->getZExtValue();
2026
}
2027
2028
Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
2029
bool Ignore = TestAndClearIgnoreResultAssign();
2030
(void)Ignore;
2031
assert (Ignore == false && "init list ignored");
2032
unsigned NumInitElements = E->getNumInits();
2033
2034
if (E->hadArrayRangeDesignator())
2035
CGF.ErrorUnsupported(E, "GNU array range designator extension");
2036
2037
llvm::VectorType *VType =
2038
dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
2039
2040
if (!VType) {
2041
if (NumInitElements == 0) {
2042
// C++11 value-initialization for the scalar.
2043
return EmitNullValue(E->getType());
2044
}
2045
// We have a scalar in braces. Just use the first element.
2046
return Visit(E->getInit(0));
2047
}
2048
2049
if (isa<llvm::ScalableVectorType>(VType)) {
2050
if (NumInitElements == 0) {
2051
// C++11 value-initialization for the vector.
2052
return EmitNullValue(E->getType());
2053
}
2054
2055
if (NumInitElements == 1) {
2056
Expr *InitVector = E->getInit(0);
2057
2058
// Initialize from another scalable vector of the same type.
2059
if (InitVector->getType() == E->getType())
2060
return Visit(InitVector);
2061
}
2062
2063
llvm_unreachable("Unexpected initialization of a scalable vector!");
2064
}
2065
2066
unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
2067
2068
// Loop over initializers collecting the Value for each, and remembering
2069
// whether the source was swizzle (ExtVectorElementExpr). This will allow
2070
// us to fold the shuffle for the swizzle into the shuffle for the vector
2071
// initializer, since LLVM optimizers generally do not want to touch
2072
// shuffles.
2073
unsigned CurIdx = 0;
2074
bool VIsPoisonShuffle = false;
2075
llvm::Value *V = llvm::PoisonValue::get(VType);
2076
for (unsigned i = 0; i != NumInitElements; ++i) {
2077
Expr *IE = E->getInit(i);
2078
Value *Init = Visit(IE);
2079
SmallVector<int, 16> Args;
2080
2081
llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
2082
2083
// Handle scalar elements. If the scalar initializer is actually one
2084
// element of a different vector of the same width, use shuffle instead of
2085
// extract+insert.
2086
if (!VVT) {
2087
if (isa<ExtVectorElementExpr>(IE)) {
2088
llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
2089
2090
if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
2091
->getNumElements() == ResElts) {
2092
llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
2093
Value *LHS = nullptr, *RHS = nullptr;
2094
if (CurIdx == 0) {
2095
// insert into poison -> shuffle (src, poison)
2096
// shufflemask must use an i32
2097
Args.push_back(getAsInt32(C, CGF.Int32Ty));
2098
Args.resize(ResElts, -1);
2099
2100
LHS = EI->getVectorOperand();
2101
RHS = V;
2102
VIsPoisonShuffle = true;
2103
} else if (VIsPoisonShuffle) {
2104
// insert into poison shuffle && size match -> shuffle (v, src)
2105
llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
2106
for (unsigned j = 0; j != CurIdx; ++j)
2107
Args.push_back(getMaskElt(SVV, j, 0));
2108
Args.push_back(ResElts + C->getZExtValue());
2109
Args.resize(ResElts, -1);
2110
2111
LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
2112
RHS = EI->getVectorOperand();
2113
VIsPoisonShuffle = false;
2114
}
2115
if (!Args.empty()) {
2116
V = Builder.CreateShuffleVector(LHS, RHS, Args);
2117
++CurIdx;
2118
continue;
2119
}
2120
}
2121
}
2122
V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
2123
"vecinit");
2124
VIsPoisonShuffle = false;
2125
++CurIdx;
2126
continue;
2127
}
2128
2129
unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
2130
2131
// If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
2132
// input is the same width as the vector being constructed, generate an
2133
// optimized shuffle of the swizzle input into the result.
2134
unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
2135
if (isa<ExtVectorElementExpr>(IE)) {
2136
llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
2137
Value *SVOp = SVI->getOperand(0);
2138
auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
2139
2140
if (OpTy->getNumElements() == ResElts) {
2141
for (unsigned j = 0; j != CurIdx; ++j) {
2142
// If the current vector initializer is a shuffle with poison, merge
2143
// this shuffle directly into it.
2144
if (VIsPoisonShuffle) {
2145
Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
2146
} else {
2147
Args.push_back(j);
2148
}
2149
}
2150
for (unsigned j = 0, je = InitElts; j != je; ++j)
2151
Args.push_back(getMaskElt(SVI, j, Offset));
2152
Args.resize(ResElts, -1);
2153
2154
if (VIsPoisonShuffle)
2155
V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
2156
2157
Init = SVOp;
2158
}
2159
}
2160
2161
// Extend init to result vector length, and then shuffle its contribution
2162
// to the vector initializer into V.
2163
if (Args.empty()) {
2164
for (unsigned j = 0; j != InitElts; ++j)
2165
Args.push_back(j);
2166
Args.resize(ResElts, -1);
2167
Init = Builder.CreateShuffleVector(Init, Args, "vext");
2168
2169
Args.clear();
2170
for (unsigned j = 0; j != CurIdx; ++j)
2171
Args.push_back(j);
2172
for (unsigned j = 0; j != InitElts; ++j)
2173
Args.push_back(j + Offset);
2174
Args.resize(ResElts, -1);
2175
}
2176
2177
// If V is poison, make sure it ends up on the RHS of the shuffle to aid
2178
// merging subsequent shuffles into this one.
2179
if (CurIdx == 0)
2180
std::swap(V, Init);
2181
V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
2182
VIsPoisonShuffle = isa<llvm::PoisonValue>(Init);
2183
CurIdx += InitElts;
2184
}
2185
2186
// FIXME: evaluate codegen vs. shuffling against constant null vector.
2187
// Emit remaining default initializers.
2188
llvm::Type *EltTy = VType->getElementType();
2189
2190
// Emit remaining default initializers
2191
for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
2192
Value *Idx = Builder.getInt32(CurIdx);
2193
llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
2194
V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
2195
}
2196
return V;
2197
}
2198
2199
bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
2200
const Expr *E = CE->getSubExpr();
2201
2202
if (CE->getCastKind() == CK_UncheckedDerivedToBase)
2203
return false;
2204
2205
if (isa<CXXThisExpr>(E->IgnoreParens())) {
2206
// We always assume that 'this' is never null.
2207
return false;
2208
}
2209
2210
if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2211
// And that glvalue casts are never null.
2212
if (ICE->isGLValue())
2213
return false;
2214
}
2215
2216
return true;
2217
}
2218
2219
// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
2220
// have to handle a more broad range of conversions than explicit casts, as they
2221
// handle things like function to ptr-to-function decay etc.
2222
Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
2223
Expr *E = CE->getSubExpr();
2224
QualType DestTy = CE->getType();
2225
CastKind Kind = CE->getCastKind();
2226
CodeGenFunction::CGFPOptionsRAII FPOptions(CGF, CE);
2227
2228
// These cases are generally not written to ignore the result of
2229
// evaluating their sub-expressions, so we clear this now.
2230
bool Ignored = TestAndClearIgnoreResultAssign();
2231
2232
// Since almost all cast kinds apply to scalars, this switch doesn't have
2233
// a default case, so the compiler will warn on a missing case. The cases
2234
// are in the same order as in the CastKind enum.
2235
switch (Kind) {
2236
case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
2237
case CK_BuiltinFnToFnPtr:
2238
llvm_unreachable("builtin functions are handled elsewhere");
2239
2240
case CK_LValueBitCast:
2241
case CK_ObjCObjectLValueCast: {
2242
Address Addr = EmitLValue(E).getAddress();
2243
Addr = Addr.withElementType(CGF.ConvertTypeForMem(DestTy));
2244
LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
2245
return EmitLoadOfLValue(LV, CE->getExprLoc());
2246
}
2247
2248
case CK_LValueToRValueBitCast: {
2249
LValue SourceLVal = CGF.EmitLValue(E);
2250
Address Addr =
2251
SourceLVal.getAddress().withElementType(CGF.ConvertTypeForMem(DestTy));
2252
LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2253
DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2254
return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2255
}
2256
2257
case CK_CPointerToObjCPointerCast:
2258
case CK_BlockPointerToObjCPointerCast:
2259
case CK_AnyPointerToBlockPointerCast:
2260
case CK_BitCast: {
2261
Value *Src = Visit(const_cast<Expr*>(E));
2262
llvm::Type *SrcTy = Src->getType();
2263
llvm::Type *DstTy = ConvertType(DestTy);
2264
assert(
2265
(!SrcTy->isPtrOrPtrVectorTy() || !DstTy->isPtrOrPtrVectorTy() ||
2266
SrcTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace()) &&
2267
"Address-space cast must be used to convert address spaces");
2268
2269
if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2270
if (auto *PT = DestTy->getAs<PointerType>()) {
2271
CGF.EmitVTablePtrCheckForCast(
2272
PT->getPointeeType(),
2273
Address(Src,
2274
CGF.ConvertTypeForMem(
2275
E->getType()->castAs<PointerType>()->getPointeeType()),
2276
CGF.getPointerAlign()),
2277
/*MayBeNull=*/true, CodeGenFunction::CFITCK_UnrelatedCast,
2278
CE->getBeginLoc());
2279
}
2280
}
2281
2282
if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2283
const QualType SrcType = E->getType();
2284
2285
if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2286
// Casting to pointer that could carry dynamic information (provided by
2287
// invariant.group) requires launder.
2288
Src = Builder.CreateLaunderInvariantGroup(Src);
2289
} else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2290
// Casting to pointer that does not carry dynamic information (provided
2291
// by invariant.group) requires stripping it. Note that we don't do it
2292
// if the source could not be dynamic type and destination could be
2293
// dynamic because dynamic information is already laundered. It is
2294
// because launder(strip(src)) == launder(src), so there is no need to
2295
// add extra strip before launder.
2296
Src = Builder.CreateStripInvariantGroup(Src);
2297
}
2298
}
2299
2300
// Update heapallocsite metadata when there is an explicit pointer cast.
2301
if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
2302
if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE) &&
2303
!isa<CastExpr>(E)) {
2304
QualType PointeeType = DestTy->getPointeeType();
2305
if (!PointeeType.isNull())
2306
CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2307
CE->getExprLoc());
2308
}
2309
}
2310
2311
// If Src is a fixed vector and Dst is a scalable vector, and both have the
2312
// same element type, use the llvm.vector.insert intrinsic to perform the
2313
// bitcast.
2314
if (auto *FixedSrcTy = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
2315
if (auto *ScalableDstTy = dyn_cast<llvm::ScalableVectorType>(DstTy)) {
2316
// If we are casting a fixed i8 vector to a scalable i1 predicate
2317
// vector, use a vector insert and bitcast the result.
2318
if (ScalableDstTy->getElementType()->isIntegerTy(1) &&
2319
ScalableDstTy->getElementCount().isKnownMultipleOf(8) &&
2320
FixedSrcTy->getElementType()->isIntegerTy(8)) {
2321
ScalableDstTy = llvm::ScalableVectorType::get(
2322
FixedSrcTy->getElementType(),
2323
ScalableDstTy->getElementCount().getKnownMinValue() / 8);
2324
}
2325
if (FixedSrcTy->getElementType() == ScalableDstTy->getElementType()) {
2326
llvm::Value *UndefVec = llvm::UndefValue::get(ScalableDstTy);
2327
llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2328
llvm::Value *Result = Builder.CreateInsertVector(
2329
ScalableDstTy, UndefVec, Src, Zero, "cast.scalable");
2330
if (Result->getType() != DstTy)
2331
Result = Builder.CreateBitCast(Result, DstTy);
2332
return Result;
2333
}
2334
}
2335
}
2336
2337
// If Src is a scalable vector and Dst is a fixed vector, and both have the
2338
// same element type, use the llvm.vector.extract intrinsic to perform the
2339
// bitcast.
2340
if (auto *ScalableSrcTy = dyn_cast<llvm::ScalableVectorType>(SrcTy)) {
2341
if (auto *FixedDstTy = dyn_cast<llvm::FixedVectorType>(DstTy)) {
2342
// If we are casting a scalable i1 predicate vector to a fixed i8
2343
// vector, bitcast the source and use a vector extract.
2344
if (ScalableSrcTy->getElementType()->isIntegerTy(1) &&
2345
ScalableSrcTy->getElementCount().isKnownMultipleOf(8) &&
2346
FixedDstTy->getElementType()->isIntegerTy(8)) {
2347
ScalableSrcTy = llvm::ScalableVectorType::get(
2348
FixedDstTy->getElementType(),
2349
ScalableSrcTy->getElementCount().getKnownMinValue() / 8);
2350
Src = Builder.CreateBitCast(Src, ScalableSrcTy);
2351
}
2352
if (ScalableSrcTy->getElementType() == FixedDstTy->getElementType()) {
2353
llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2354
return Builder.CreateExtractVector(DstTy, Src, Zero, "cast.fixed");
2355
}
2356
}
2357
}
2358
2359
// Perform VLAT <-> VLST bitcast through memory.
2360
// TODO: since the llvm.vector.{insert,extract} intrinsics
2361
// require the element types of the vectors to be the same, we
2362
// need to keep this around for bitcasts between VLAT <-> VLST where
2363
// the element types of the vectors are not the same, until we figure
2364
// out a better way of doing these casts.
2365
if ((isa<llvm::FixedVectorType>(SrcTy) &&
2366
isa<llvm::ScalableVectorType>(DstTy)) ||
2367
(isa<llvm::ScalableVectorType>(SrcTy) &&
2368
isa<llvm::FixedVectorType>(DstTy))) {
2369
Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value");
2370
LValue LV = CGF.MakeAddrLValue(Addr, E->getType());
2371
CGF.EmitStoreOfScalar(Src, LV);
2372
Addr = Addr.withElementType(CGF.ConvertTypeForMem(DestTy));
2373
LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2374
DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2375
return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2376
}
2377
2378
llvm::Value *Result = Builder.CreateBitCast(Src, DstTy);
2379
return CGF.authPointerToPointerCast(Result, E->getType(), DestTy);
2380
}
2381
case CK_AddressSpaceConversion: {
2382
Expr::EvalResult Result;
2383
if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2384
Result.Val.isNullPointer()) {
2385
// If E has side effect, it is emitted even if its final result is a
2386
// null pointer. In that case, a DCE pass should be able to
2387
// eliminate the useless instructions emitted during translating E.
2388
if (Result.HasSideEffects)
2389
Visit(E);
2390
return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2391
ConvertType(DestTy)), DestTy);
2392
}
2393
// Since target may map different address spaces in AST to the same address
2394
// space, an address space conversion may end up as a bitcast.
2395
return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2396
CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2397
DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2398
}
2399
case CK_AtomicToNonAtomic:
2400
case CK_NonAtomicToAtomic:
2401
case CK_UserDefinedConversion:
2402
return Visit(const_cast<Expr*>(E));
2403
2404
case CK_NoOp: {
2405
return CE->changesVolatileQualification() ? EmitLoadOfLValue(CE)
2406
: Visit(const_cast<Expr *>(E));
2407
}
2408
2409
case CK_BaseToDerived: {
2410
const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2411
assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2412
2413
Address Base = CGF.EmitPointerWithAlignment(E);
2414
Address Derived =
2415
CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2416
CE->path_begin(), CE->path_end(),
2417
CGF.ShouldNullCheckClassCastValue(CE));
2418
2419
// C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2420
// performed and the object is not of the derived type.
2421
if (CGF.sanitizePerformTypeCheck())
2422
CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2423
Derived, DestTy->getPointeeType());
2424
2425
if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2426
CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived,
2427
/*MayBeNull=*/true,
2428
CodeGenFunction::CFITCK_DerivedCast,
2429
CE->getBeginLoc());
2430
2431
return CGF.getAsNaturalPointerTo(Derived, CE->getType()->getPointeeType());
2432
}
2433
case CK_UncheckedDerivedToBase:
2434
case CK_DerivedToBase: {
2435
// The EmitPointerWithAlignment path does this fine; just discard
2436
// the alignment.
2437
return CGF.getAsNaturalPointerTo(CGF.EmitPointerWithAlignment(CE),
2438
CE->getType()->getPointeeType());
2439
}
2440
2441
case CK_Dynamic: {
2442
Address V = CGF.EmitPointerWithAlignment(E);
2443
const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2444
return CGF.EmitDynamicCast(V, DCE);
2445
}
2446
2447
case CK_ArrayToPointerDecay:
2448
return CGF.getAsNaturalPointerTo(CGF.EmitArrayToPointerDecay(E),
2449
CE->getType()->getPointeeType());
2450
case CK_FunctionToPointerDecay:
2451
return EmitLValue(E).getPointer(CGF);
2452
2453
case CK_NullToPointer:
2454
if (MustVisitNullValue(E))
2455
CGF.EmitIgnoredExpr(E);
2456
2457
return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2458
DestTy);
2459
2460
case CK_NullToMemberPointer: {
2461
if (MustVisitNullValue(E))
2462
CGF.EmitIgnoredExpr(E);
2463
2464
const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2465
return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2466
}
2467
2468
case CK_ReinterpretMemberPointer:
2469
case CK_BaseToDerivedMemberPointer:
2470
case CK_DerivedToBaseMemberPointer: {
2471
Value *Src = Visit(E);
2472
2473
// Note that the AST doesn't distinguish between checked and
2474
// unchecked member pointer conversions, so we always have to
2475
// implement checked conversions here. This is inefficient when
2476
// actual control flow may be required in order to perform the
2477
// check, which it is for data member pointers (but not member
2478
// function pointers on Itanium and ARM).
2479
return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2480
}
2481
2482
case CK_ARCProduceObject:
2483
return CGF.EmitARCRetainScalarExpr(E);
2484
case CK_ARCConsumeObject:
2485
return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2486
case CK_ARCReclaimReturnedObject:
2487
return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2488
case CK_ARCExtendBlockObject:
2489
return CGF.EmitARCExtendBlockObject(E);
2490
2491
case CK_CopyAndAutoreleaseBlockObject:
2492
return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2493
2494
case CK_FloatingRealToComplex:
2495
case CK_FloatingComplexCast:
2496
case CK_IntegralRealToComplex:
2497
case CK_IntegralComplexCast:
2498
case CK_IntegralComplexToFloatingComplex:
2499
case CK_FloatingComplexToIntegralComplex:
2500
case CK_ConstructorConversion:
2501
case CK_ToUnion:
2502
case CK_HLSLArrayRValue:
2503
llvm_unreachable("scalar cast to non-scalar value");
2504
2505
case CK_LValueToRValue:
2506
assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2507
assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2508
return Visit(const_cast<Expr*>(E));
2509
2510
case CK_IntegralToPointer: {
2511
Value *Src = Visit(const_cast<Expr*>(E));
2512
2513
// First, convert to the correct width so that we control the kind of
2514
// extension.
2515
auto DestLLVMTy = ConvertType(DestTy);
2516
llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2517
bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2518
llvm::Value* IntResult =
2519
Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2520
2521
auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2522
2523
if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2524
// Going from integer to pointer that could be dynamic requires reloading
2525
// dynamic information from invariant.group.
2526
if (DestTy.mayBeDynamicClass())
2527
IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2528
}
2529
2530
IntToPtr = CGF.authPointerToPointerCast(IntToPtr, E->getType(), DestTy);
2531
return IntToPtr;
2532
}
2533
case CK_PointerToIntegral: {
2534
assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2535
auto *PtrExpr = Visit(E);
2536
2537
if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2538
const QualType SrcType = E->getType();
2539
2540
// Casting to integer requires stripping dynamic information as it does
2541
// not carries it.
2542
if (SrcType.mayBeDynamicClass())
2543
PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2544
}
2545
2546
PtrExpr = CGF.authPointerToPointerCast(PtrExpr, E->getType(), DestTy);
2547
return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2548
}
2549
case CK_ToVoid: {
2550
CGF.EmitIgnoredExpr(E);
2551
return nullptr;
2552
}
2553
case CK_MatrixCast: {
2554
return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2555
CE->getExprLoc());
2556
}
2557
case CK_VectorSplat: {
2558
llvm::Type *DstTy = ConvertType(DestTy);
2559
Value *Elt = Visit(const_cast<Expr *>(E));
2560
// Splat the element across to all elements
2561
llvm::ElementCount NumElements =
2562
cast<llvm::VectorType>(DstTy)->getElementCount();
2563
return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2564
}
2565
2566
case CK_FixedPointCast:
2567
return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2568
CE->getExprLoc());
2569
2570
case CK_FixedPointToBoolean:
2571
assert(E->getType()->isFixedPointType() &&
2572
"Expected src type to be fixed point type");
2573
assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2574
return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2575
CE->getExprLoc());
2576
2577
case CK_FixedPointToIntegral:
2578
assert(E->getType()->isFixedPointType() &&
2579
"Expected src type to be fixed point type");
2580
assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2581
return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2582
CE->getExprLoc());
2583
2584
case CK_IntegralToFixedPoint:
2585
assert(E->getType()->isIntegerType() &&
2586
"Expected src type to be an integer");
2587
assert(DestTy->isFixedPointType() &&
2588
"Expected dest type to be fixed point type");
2589
return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2590
CE->getExprLoc());
2591
2592
case CK_IntegralCast: {
2593
if (E->getType()->isExtVectorType() && DestTy->isExtVectorType()) {
2594
QualType SrcElTy = E->getType()->castAs<VectorType>()->getElementType();
2595
return Builder.CreateIntCast(Visit(E), ConvertType(DestTy),
2596
SrcElTy->isSignedIntegerOrEnumerationType(),
2597
"conv");
2598
}
2599
ScalarConversionOpts Opts;
2600
if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2601
if (!ICE->isPartOfExplicitCast())
2602
Opts = ScalarConversionOpts(CGF.SanOpts);
2603
}
2604
return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2605
CE->getExprLoc(), Opts);
2606
}
2607
case CK_IntegralToFloating: {
2608
if (E->getType()->isVectorType() && DestTy->isVectorType()) {
2609
// TODO: Support constrained FP intrinsics.
2610
QualType SrcElTy = E->getType()->castAs<VectorType>()->getElementType();
2611
if (SrcElTy->isSignedIntegerOrEnumerationType())
2612
return Builder.CreateSIToFP(Visit(E), ConvertType(DestTy), "conv");
2613
return Builder.CreateUIToFP(Visit(E), ConvertType(DestTy), "conv");
2614
}
2615
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2616
return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2617
CE->getExprLoc());
2618
}
2619
case CK_FloatingToIntegral: {
2620
if (E->getType()->isVectorType() && DestTy->isVectorType()) {
2621
// TODO: Support constrained FP intrinsics.
2622
QualType DstElTy = DestTy->castAs<VectorType>()->getElementType();
2623
if (DstElTy->isSignedIntegerOrEnumerationType())
2624
return Builder.CreateFPToSI(Visit(E), ConvertType(DestTy), "conv");
2625
return Builder.CreateFPToUI(Visit(E), ConvertType(DestTy), "conv");
2626
}
2627
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2628
return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2629
CE->getExprLoc());
2630
}
2631
case CK_FloatingCast: {
2632
if (E->getType()->isVectorType() && DestTy->isVectorType()) {
2633
// TODO: Support constrained FP intrinsics.
2634
QualType SrcElTy = E->getType()->castAs<VectorType>()->getElementType();
2635
QualType DstElTy = DestTy->castAs<VectorType>()->getElementType();
2636
if (DstElTy->castAs<BuiltinType>()->getKind() <
2637
SrcElTy->castAs<BuiltinType>()->getKind())
2638
return Builder.CreateFPTrunc(Visit(E), ConvertType(DestTy), "conv");
2639
return Builder.CreateFPExt(Visit(E), ConvertType(DestTy), "conv");
2640
}
2641
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2642
return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2643
CE->getExprLoc());
2644
}
2645
case CK_FixedPointToFloating:
2646
case CK_FloatingToFixedPoint: {
2647
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2648
return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2649
CE->getExprLoc());
2650
}
2651
case CK_BooleanToSignedIntegral: {
2652
ScalarConversionOpts Opts;
2653
Opts.TreatBooleanAsSigned = true;
2654
return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2655
CE->getExprLoc(), Opts);
2656
}
2657
case CK_IntegralToBoolean:
2658
return EmitIntToBoolConversion(Visit(E));
2659
case CK_PointerToBoolean:
2660
return EmitPointerToBoolConversion(Visit(E), E->getType());
2661
case CK_FloatingToBoolean: {
2662
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2663
return EmitFloatToBoolConversion(Visit(E));
2664
}
2665
case CK_MemberPointerToBoolean: {
2666
llvm::Value *MemPtr = Visit(E);
2667
const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2668
return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2669
}
2670
2671
case CK_FloatingComplexToReal:
2672
case CK_IntegralComplexToReal:
2673
return CGF.EmitComplexExpr(E, false, true).first;
2674
2675
case CK_FloatingComplexToBoolean:
2676
case CK_IntegralComplexToBoolean: {
2677
CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2678
2679
// TODO: kill this function off, inline appropriate case here
2680
return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2681
CE->getExprLoc());
2682
}
2683
2684
case CK_ZeroToOCLOpaqueType: {
2685
assert((DestTy->isEventT() || DestTy->isQueueT() ||
2686
DestTy->isOCLIntelSubgroupAVCType()) &&
2687
"CK_ZeroToOCLEvent cast on non-event type");
2688
return llvm::Constant::getNullValue(ConvertType(DestTy));
2689
}
2690
2691
case CK_IntToOCLSampler:
2692
return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2693
2694
case CK_HLSLVectorTruncation: {
2695
assert(DestTy->isVectorType() && "Expected dest type to be vector type");
2696
Value *Vec = Visit(const_cast<Expr *>(E));
2697
SmallVector<int, 16> Mask;
2698
unsigned NumElts = DestTy->castAs<VectorType>()->getNumElements();
2699
for (unsigned I = 0; I != NumElts; ++I)
2700
Mask.push_back(I);
2701
2702
return Builder.CreateShuffleVector(Vec, Mask, "trunc");
2703
}
2704
2705
} // end of switch
2706
2707
llvm_unreachable("unknown scalar cast");
2708
}
2709
2710
Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2711
CodeGenFunction::StmtExprEvaluation eval(CGF);
2712
Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2713
!E->getType()->isVoidType());
2714
if (!RetAlloca.isValid())
2715
return nullptr;
2716
return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2717
E->getExprLoc());
2718
}
2719
2720
Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2721
CodeGenFunction::RunCleanupsScope Scope(CGF);
2722
Value *V = Visit(E->getSubExpr());
2723
// Defend against dominance problems caused by jumps out of expression
2724
// evaluation through the shared cleanup block.
2725
Scope.ForceCleanup({&V});
2726
return V;
2727
}
2728
2729
//===----------------------------------------------------------------------===//
2730
// Unary Operators
2731
//===----------------------------------------------------------------------===//
2732
2733
static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2734
llvm::Value *InVal, bool IsInc,
2735
FPOptions FPFeatures) {
2736
BinOpInfo BinOp;
2737
BinOp.LHS = InVal;
2738
BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2739
BinOp.Ty = E->getType();
2740
BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2741
BinOp.FPFeatures = FPFeatures;
2742
BinOp.E = E;
2743
return BinOp;
2744
}
2745
2746
llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2747
const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2748
llvm::Value *Amount =
2749
llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2750
StringRef Name = IsInc ? "inc" : "dec";
2751
switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2752
case LangOptions::SOB_Defined:
2753
if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2754
return Builder.CreateAdd(InVal, Amount, Name);
2755
[[fallthrough]];
2756
case LangOptions::SOB_Undefined:
2757
if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2758
return Builder.CreateNSWAdd(InVal, Amount, Name);
2759
[[fallthrough]];
2760
case LangOptions::SOB_Trapping:
2761
if (!E->canOverflow())
2762
return Builder.CreateNSWAdd(InVal, Amount, Name);
2763
return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2764
E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2765
}
2766
llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2767
}
2768
2769
namespace {
2770
/// Handles check and update for lastprivate conditional variables.
2771
class OMPLastprivateConditionalUpdateRAII {
2772
private:
2773
CodeGenFunction &CGF;
2774
const UnaryOperator *E;
2775
2776
public:
2777
OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2778
const UnaryOperator *E)
2779
: CGF(CGF), E(E) {}
2780
~OMPLastprivateConditionalUpdateRAII() {
2781
if (CGF.getLangOpts().OpenMP)
2782
CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2783
CGF, E->getSubExpr());
2784
}
2785
};
2786
} // namespace
2787
2788
llvm::Value *
2789
ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2790
bool isInc, bool isPre) {
2791
OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2792
QualType type = E->getSubExpr()->getType();
2793
llvm::PHINode *atomicPHI = nullptr;
2794
llvm::Value *value;
2795
llvm::Value *input;
2796
llvm::Value *Previous = nullptr;
2797
QualType SrcType = E->getType();
2798
2799
int amount = (isInc ? 1 : -1);
2800
bool isSubtraction = !isInc;
2801
2802
if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2803
type = atomicTy->getValueType();
2804
if (isInc && type->isBooleanType()) {
2805
llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2806
if (isPre) {
2807
Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
2808
->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2809
return Builder.getTrue();
2810
}
2811
// For atomic bool increment, we just store true and return it for
2812
// preincrement, do an atomic swap with true for postincrement
2813
return Builder.CreateAtomicRMW(
2814
llvm::AtomicRMWInst::Xchg, LV.getAddress(), True,
2815
llvm::AtomicOrdering::SequentiallyConsistent);
2816
}
2817
// Special case for atomic increment / decrement on integers, emit
2818
// atomicrmw instructions. We skip this if we want to be doing overflow
2819
// checking, and fall into the slow path with the atomic cmpxchg loop.
2820
if (!type->isBooleanType() && type->isIntegerType() &&
2821
!(type->isUnsignedIntegerType() &&
2822
CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2823
CGF.getLangOpts().getSignedOverflowBehavior() !=
2824
LangOptions::SOB_Trapping) {
2825
llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2826
llvm::AtomicRMWInst::Sub;
2827
llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2828
llvm::Instruction::Sub;
2829
llvm::Value *amt = CGF.EmitToMemory(
2830
llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2831
llvm::Value *old =
2832
Builder.CreateAtomicRMW(aop, LV.getAddress(), amt,
2833
llvm::AtomicOrdering::SequentiallyConsistent);
2834
return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2835
}
2836
// Special case for atomic increment/decrement on floats.
2837
// Bail out non-power-of-2-sized floating point types (e.g., x86_fp80).
2838
if (type->isFloatingType()) {
2839
llvm::Type *Ty = ConvertType(type);
2840
if (llvm::has_single_bit(Ty->getScalarSizeInBits())) {
2841
llvm::AtomicRMWInst::BinOp aop =
2842
isInc ? llvm::AtomicRMWInst::FAdd : llvm::AtomicRMWInst::FSub;
2843
llvm::Instruction::BinaryOps op =
2844
isInc ? llvm::Instruction::FAdd : llvm::Instruction::FSub;
2845
llvm::Value *amt = llvm::ConstantFP::get(Ty, 1.0);
2846
llvm::AtomicRMWInst *old = Builder.CreateAtomicRMW(
2847
aop, LV.getAddress(), amt,
2848
llvm::AtomicOrdering::SequentiallyConsistent);
2849
2850
return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2851
}
2852
}
2853
value = EmitLoadOfLValue(LV, E->getExprLoc());
2854
input = value;
2855
// For every other atomic operation, we need to emit a load-op-cmpxchg loop
2856
llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2857
llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2858
value = CGF.EmitToMemory(value, type);
2859
Builder.CreateBr(opBB);
2860
Builder.SetInsertPoint(opBB);
2861
atomicPHI = Builder.CreatePHI(value->getType(), 2);
2862
atomicPHI->addIncoming(value, startBB);
2863
value = atomicPHI;
2864
} else {
2865
value = EmitLoadOfLValue(LV, E->getExprLoc());
2866
input = value;
2867
}
2868
2869
// Special case of integer increment that we have to check first: bool++.
2870
// Due to promotion rules, we get:
2871
// bool++ -> bool = bool + 1
2872
// -> bool = (int)bool + 1
2873
// -> bool = ((int)bool + 1 != 0)
2874
// An interesting aspect of this is that increment is always true.
2875
// Decrement does not have this property.
2876
if (isInc && type->isBooleanType()) {
2877
value = Builder.getTrue();
2878
2879
// Most common case by far: integer increment.
2880
} else if (type->isIntegerType()) {
2881
QualType promotedType;
2882
bool canPerformLossyDemotionCheck = false;
2883
if (CGF.getContext().isPromotableIntegerType(type)) {
2884
promotedType = CGF.getContext().getPromotedIntegerType(type);
2885
assert(promotedType != type && "Shouldn't promote to the same type.");
2886
canPerformLossyDemotionCheck = true;
2887
canPerformLossyDemotionCheck &=
2888
CGF.getContext().getCanonicalType(type) !=
2889
CGF.getContext().getCanonicalType(promotedType);
2890
canPerformLossyDemotionCheck &=
2891
PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2892
type, promotedType);
2893
assert((!canPerformLossyDemotionCheck ||
2894
type->isSignedIntegerOrEnumerationType() ||
2895
promotedType->isSignedIntegerOrEnumerationType() ||
2896
ConvertType(type)->getScalarSizeInBits() ==
2897
ConvertType(promotedType)->getScalarSizeInBits()) &&
2898
"The following check expects that if we do promotion to different "
2899
"underlying canonical type, at least one of the types (either "
2900
"base or promoted) will be signed, or the bitwidths will match.");
2901
}
2902
if (CGF.SanOpts.hasOneOf(
2903
SanitizerKind::ImplicitIntegerArithmeticValueChange |
2904
SanitizerKind::ImplicitBitfieldConversion) &&
2905
canPerformLossyDemotionCheck) {
2906
// While `x += 1` (for `x` with width less than int) is modeled as
2907
// promotion+arithmetics+demotion, and we can catch lossy demotion with
2908
// ease; inc/dec with width less than int can't overflow because of
2909
// promotion rules, so we omit promotion+demotion, which means that we can
2910
// not catch lossy "demotion". Because we still want to catch these cases
2911
// when the sanitizer is enabled, we perform the promotion, then perform
2912
// the increment/decrement in the wider type, and finally
2913
// perform the demotion. This will catch lossy demotions.
2914
2915
// We have a special case for bitfields defined using all the bits of the
2916
// type. In this case we need to do the same trick as for the integer
2917
// sanitizer checks, i.e., promotion -> increment/decrement -> demotion.
2918
2919
value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2920
Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2921
value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2922
// Do pass non-default ScalarConversionOpts so that sanitizer check is
2923
// emitted if LV is not a bitfield, otherwise the bitfield sanitizer
2924
// checks will take care of the conversion.
2925
ScalarConversionOpts Opts;
2926
if (!LV.isBitField())
2927
Opts = ScalarConversionOpts(CGF.SanOpts);
2928
else if (CGF.SanOpts.has(SanitizerKind::ImplicitBitfieldConversion)) {
2929
Previous = value;
2930
SrcType = promotedType;
2931
}
2932
2933
value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2934
Opts);
2935
2936
// Note that signed integer inc/dec with width less than int can't
2937
// overflow because of promotion rules; we're just eliding a few steps
2938
// here.
2939
} else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2940
value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2941
} else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2942
CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2943
value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2944
E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2945
} else {
2946
llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2947
value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2948
}
2949
2950
// Next most common: pointer increment.
2951
} else if (const PointerType *ptr = type->getAs<PointerType>()) {
2952
QualType type = ptr->getPointeeType();
2953
2954
// VLA types don't have constant size.
2955
if (const VariableArrayType *vla
2956
= CGF.getContext().getAsVariableArrayType(type)) {
2957
llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2958
if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2959
llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType());
2960
if (CGF.getLangOpts().isSignedOverflowDefined())
2961
value = Builder.CreateGEP(elemTy, value, numElts, "vla.inc");
2962
else
2963
value = CGF.EmitCheckedInBoundsGEP(
2964
elemTy, value, numElts, /*SignedIndices=*/false, isSubtraction,
2965
E->getExprLoc(), "vla.inc");
2966
2967
// Arithmetic on function pointers (!) is just +-1.
2968
} else if (type->isFunctionType()) {
2969
llvm::Value *amt = Builder.getInt32(amount);
2970
2971
if (CGF.getLangOpts().isSignedOverflowDefined())
2972
value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr");
2973
else
2974
value =
2975
CGF.EmitCheckedInBoundsGEP(CGF.Int8Ty, value, amt,
2976
/*SignedIndices=*/false, isSubtraction,
2977
E->getExprLoc(), "incdec.funcptr");
2978
2979
// For everything else, we can just do a simple increment.
2980
} else {
2981
llvm::Value *amt = Builder.getInt32(amount);
2982
llvm::Type *elemTy = CGF.ConvertTypeForMem(type);
2983
if (CGF.getLangOpts().isSignedOverflowDefined())
2984
value = Builder.CreateGEP(elemTy, value, amt, "incdec.ptr");
2985
else
2986
value = CGF.EmitCheckedInBoundsGEP(
2987
elemTy, value, amt, /*SignedIndices=*/false, isSubtraction,
2988
E->getExprLoc(), "incdec.ptr");
2989
}
2990
2991
// Vector increment/decrement.
2992
} else if (type->isVectorType()) {
2993
if (type->hasIntegerRepresentation()) {
2994
llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2995
2996
value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2997
} else {
2998
value = Builder.CreateFAdd(
2999
value,
3000
llvm::ConstantFP::get(value->getType(), amount),
3001
isInc ? "inc" : "dec");
3002
}
3003
3004
// Floating point.
3005
} else if (type->isRealFloatingType()) {
3006
// Add the inc/dec to the real part.
3007
llvm::Value *amt;
3008
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
3009
3010
if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
3011
// Another special case: half FP increment should be done via float
3012
if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
3013
value = Builder.CreateCall(
3014
CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
3015
CGF.CGM.FloatTy),
3016
input, "incdec.conv");
3017
} else {
3018
value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
3019
}
3020
}
3021
3022
if (value->getType()->isFloatTy())
3023
amt = llvm::ConstantFP::get(VMContext,
3024
llvm::APFloat(static_cast<float>(amount)));
3025
else if (value->getType()->isDoubleTy())
3026
amt = llvm::ConstantFP::get(VMContext,
3027
llvm::APFloat(static_cast<double>(amount)));
3028
else {
3029
// Remaining types are Half, Bfloat16, LongDouble, __ibm128 or __float128.
3030
// Convert from float.
3031
llvm::APFloat F(static_cast<float>(amount));
3032
bool ignored;
3033
const llvm::fltSemantics *FS;
3034
// Don't use getFloatTypeSemantics because Half isn't
3035
// necessarily represented using the "half" LLVM type.
3036
if (value->getType()->isFP128Ty())
3037
FS = &CGF.getTarget().getFloat128Format();
3038
else if (value->getType()->isHalfTy())
3039
FS = &CGF.getTarget().getHalfFormat();
3040
else if (value->getType()->isBFloatTy())
3041
FS = &CGF.getTarget().getBFloat16Format();
3042
else if (value->getType()->isPPC_FP128Ty())
3043
FS = &CGF.getTarget().getIbm128Format();
3044
else
3045
FS = &CGF.getTarget().getLongDoubleFormat();
3046
F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
3047
amt = llvm::ConstantFP::get(VMContext, F);
3048
}
3049
value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
3050
3051
if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
3052
if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
3053
value = Builder.CreateCall(
3054
CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
3055
CGF.CGM.FloatTy),
3056
value, "incdec.conv");
3057
} else {
3058
value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
3059
}
3060
}
3061
3062
// Fixed-point types.
3063
} else if (type->isFixedPointType()) {
3064
// Fixed-point types are tricky. In some cases, it isn't possible to
3065
// represent a 1 or a -1 in the type at all. Piggyback off of
3066
// EmitFixedPointBinOp to avoid having to reimplement saturation.
3067
BinOpInfo Info;
3068
Info.E = E;
3069
Info.Ty = E->getType();
3070
Info.Opcode = isInc ? BO_Add : BO_Sub;
3071
Info.LHS = value;
3072
Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
3073
// If the type is signed, it's better to represent this as +(-1) or -(-1),
3074
// since -1 is guaranteed to be representable.
3075
if (type->isSignedFixedPointType()) {
3076
Info.Opcode = isInc ? BO_Sub : BO_Add;
3077
Info.RHS = Builder.CreateNeg(Info.RHS);
3078
}
3079
// Now, convert from our invented integer literal to the type of the unary
3080
// op. This will upscale and saturate if necessary. This value can become
3081
// undef in some cases.
3082
llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3083
auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
3084
Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
3085
value = EmitFixedPointBinOp(Info);
3086
3087
// Objective-C pointer types.
3088
} else {
3089
const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
3090
3091
CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
3092
if (!isInc) size = -size;
3093
llvm::Value *sizeValue =
3094
llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
3095
3096
if (CGF.getLangOpts().isSignedOverflowDefined())
3097
value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr");
3098
else
3099
value = CGF.EmitCheckedInBoundsGEP(
3100
CGF.Int8Ty, value, sizeValue, /*SignedIndices=*/false, isSubtraction,
3101
E->getExprLoc(), "incdec.objptr");
3102
value = Builder.CreateBitCast(value, input->getType());
3103
}
3104
3105
if (atomicPHI) {
3106
llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3107
llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3108
auto Pair = CGF.EmitAtomicCompareExchange(
3109
LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
3110
llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
3111
llvm::Value *success = Pair.second;
3112
atomicPHI->addIncoming(old, curBlock);
3113
Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3114
Builder.SetInsertPoint(contBB);
3115
return isPre ? value : input;
3116
}
3117
3118
// Store the updated result through the lvalue.
3119
if (LV.isBitField()) {
3120
Value *Src = Previous ? Previous : value;
3121
CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
3122
CGF.EmitBitfieldConversionCheck(Src, SrcType, value, E->getType(),
3123
LV.getBitFieldInfo(), E->getExprLoc());
3124
} else
3125
CGF.EmitStoreThroughLValue(RValue::get(value), LV);
3126
3127
// If this is a postinc, return the value read from memory, otherwise use the
3128
// updated value.
3129
return isPre ? value : input;
3130
}
3131
3132
3133
Value *ScalarExprEmitter::VisitUnaryPlus(const UnaryOperator *E,
3134
QualType PromotionType) {
3135
QualType promotionTy = PromotionType.isNull()
3136
? getPromotionType(E->getSubExpr()->getType())
3137
: PromotionType;
3138
Value *result = VisitPlus(E, promotionTy);
3139
if (result && !promotionTy.isNull())
3140
result = EmitUnPromotedValue(result, E->getType());
3141
return result;
3142
}
3143
3144
Value *ScalarExprEmitter::VisitPlus(const UnaryOperator *E,
3145
QualType PromotionType) {
3146
// This differs from gcc, though, most likely due to a bug in gcc.
3147
TestAndClearIgnoreResultAssign();
3148
if (!PromotionType.isNull())
3149
return CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType);
3150
return Visit(E->getSubExpr());
3151
}
3152
3153
Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E,
3154
QualType PromotionType) {
3155
QualType promotionTy = PromotionType.isNull()
3156
? getPromotionType(E->getSubExpr()->getType())
3157
: PromotionType;
3158
Value *result = VisitMinus(E, promotionTy);
3159
if (result && !promotionTy.isNull())
3160
result = EmitUnPromotedValue(result, E->getType());
3161
return result;
3162
}
3163
3164
Value *ScalarExprEmitter::VisitMinus(const UnaryOperator *E,
3165
QualType PromotionType) {
3166
TestAndClearIgnoreResultAssign();
3167
Value *Op;
3168
if (!PromotionType.isNull())
3169
Op = CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType);
3170
else
3171
Op = Visit(E->getSubExpr());
3172
3173
// Generate a unary FNeg for FP ops.
3174
if (Op->getType()->isFPOrFPVectorTy())
3175
return Builder.CreateFNeg(Op, "fneg");
3176
3177
// Emit unary minus with EmitSub so we handle overflow cases etc.
3178
BinOpInfo BinOp;
3179
BinOp.RHS = Op;
3180
BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
3181
BinOp.Ty = E->getType();
3182
BinOp.Opcode = BO_Sub;
3183
BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3184
BinOp.E = E;
3185
return EmitSub(BinOp);
3186
}
3187
3188
Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
3189
TestAndClearIgnoreResultAssign();
3190
Value *Op = Visit(E->getSubExpr());
3191
return Builder.CreateNot(Op, "not");
3192
}
3193
3194
Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
3195
// Perform vector logical not on comparison with zero vector.
3196
if (E->getType()->isVectorType() &&
3197
E->getType()->castAs<VectorType>()->getVectorKind() ==
3198
VectorKind::Generic) {
3199
Value *Oper = Visit(E->getSubExpr());
3200
Value *Zero = llvm::Constant::getNullValue(Oper->getType());
3201
Value *Result;
3202
if (Oper->getType()->isFPOrFPVectorTy()) {
3203
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
3204
CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
3205
Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
3206
} else
3207
Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
3208
return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3209
}
3210
3211
// Compare operand to zero.
3212
Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
3213
3214
// Invert value.
3215
// TODO: Could dynamically modify easy computations here. For example, if
3216
// the operand is an icmp ne, turn into icmp eq.
3217
BoolVal = Builder.CreateNot(BoolVal, "lnot");
3218
3219
// ZExt result to the expr type.
3220
return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
3221
}
3222
3223
Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
3224
// Try folding the offsetof to a constant.
3225
Expr::EvalResult EVResult;
3226
if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
3227
llvm::APSInt Value = EVResult.Val.getInt();
3228
return Builder.getInt(Value);
3229
}
3230
3231
// Loop over the components of the offsetof to compute the value.
3232
unsigned n = E->getNumComponents();
3233
llvm::Type* ResultType = ConvertType(E->getType());
3234
llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
3235
QualType CurrentType = E->getTypeSourceInfo()->getType();
3236
for (unsigned i = 0; i != n; ++i) {
3237
OffsetOfNode ON = E->getComponent(i);
3238
llvm::Value *Offset = nullptr;
3239
switch (ON.getKind()) {
3240
case OffsetOfNode::Array: {
3241
// Compute the index
3242
Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
3243
llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
3244
bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
3245
Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
3246
3247
// Save the element type
3248
CurrentType =
3249
CGF.getContext().getAsArrayType(CurrentType)->getElementType();
3250
3251
// Compute the element size
3252
llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
3253
CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
3254
3255
// Multiply out to compute the result
3256
Offset = Builder.CreateMul(Idx, ElemSize);
3257
break;
3258
}
3259
3260
case OffsetOfNode::Field: {
3261
FieldDecl *MemberDecl = ON.getField();
3262
RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
3263
const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
3264
3265
// Compute the index of the field in its parent.
3266
unsigned i = 0;
3267
// FIXME: It would be nice if we didn't have to loop here!
3268
for (RecordDecl::field_iterator Field = RD->field_begin(),
3269
FieldEnd = RD->field_end();
3270
Field != FieldEnd; ++Field, ++i) {
3271
if (*Field == MemberDecl)
3272
break;
3273
}
3274
assert(i < RL.getFieldCount() && "offsetof field in wrong type");
3275
3276
// Compute the offset to the field
3277
int64_t OffsetInt = RL.getFieldOffset(i) /
3278
CGF.getContext().getCharWidth();
3279
Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
3280
3281
// Save the element type.
3282
CurrentType = MemberDecl->getType();
3283
break;
3284
}
3285
3286
case OffsetOfNode::Identifier:
3287
llvm_unreachable("dependent __builtin_offsetof");
3288
3289
case OffsetOfNode::Base: {
3290
if (ON.getBase()->isVirtual()) {
3291
CGF.ErrorUnsupported(E, "virtual base in offsetof");
3292
continue;
3293
}
3294
3295
RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
3296
const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
3297
3298
// Save the element type.
3299
CurrentType = ON.getBase()->getType();
3300
3301
// Compute the offset to the base.
3302
auto *BaseRT = CurrentType->castAs<RecordType>();
3303
auto *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
3304
CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
3305
Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
3306
break;
3307
}
3308
}
3309
Result = Builder.CreateAdd(Result, Offset);
3310
}
3311
return Result;
3312
}
3313
3314
/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
3315
/// argument of the sizeof expression as an integer.
3316
Value *
3317
ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
3318
const UnaryExprOrTypeTraitExpr *E) {
3319
QualType TypeToSize = E->getTypeOfArgument();
3320
if (auto Kind = E->getKind();
3321
Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) {
3322
if (const VariableArrayType *VAT =
3323
CGF.getContext().getAsVariableArrayType(TypeToSize)) {
3324
if (E->isArgumentType()) {
3325
// sizeof(type) - make sure to emit the VLA size.
3326
CGF.EmitVariablyModifiedType(TypeToSize);
3327
} else {
3328
// C99 6.5.3.4p2: If the argument is an expression of type
3329
// VLA, it is evaluated.
3330
CGF.EmitIgnoredExpr(E->getArgumentExpr());
3331
}
3332
3333
auto VlaSize = CGF.getVLASize(VAT);
3334
llvm::Value *size = VlaSize.NumElts;
3335
3336
// Scale the number of non-VLA elements by the non-VLA element size.
3337
CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
3338
if (!eltSize.isOne())
3339
size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
3340
3341
return size;
3342
}
3343
} else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
3344
auto Alignment =
3345
CGF.getContext()
3346
.toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
3347
E->getTypeOfArgument()->getPointeeType()))
3348
.getQuantity();
3349
return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
3350
} else if (E->getKind() == UETT_VectorElements) {
3351
auto *VecTy = cast<llvm::VectorType>(ConvertType(E->getTypeOfArgument()));
3352
return Builder.CreateElementCount(CGF.SizeTy, VecTy->getElementCount());
3353
}
3354
3355
// If this isn't sizeof(vla), the result must be constant; use the constant
3356
// folding logic so we don't have to duplicate it here.
3357
return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
3358
}
3359
3360
Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E,
3361
QualType PromotionType) {
3362
QualType promotionTy = PromotionType.isNull()
3363
? getPromotionType(E->getSubExpr()->getType())
3364
: PromotionType;
3365
Value *result = VisitReal(E, promotionTy);
3366
if (result && !promotionTy.isNull())
3367
result = EmitUnPromotedValue(result, E->getType());
3368
return result;
3369
}
3370
3371
Value *ScalarExprEmitter::VisitReal(const UnaryOperator *E,
3372
QualType PromotionType) {
3373
Expr *Op = E->getSubExpr();
3374
if (Op->getType()->isAnyComplexType()) {
3375
// If it's an l-value, load through the appropriate subobject l-value.
3376
// Note that we have to ask E because Op might be an l-value that
3377
// this won't work for, e.g. an Obj-C property.
3378
if (E->isGLValue()) {
3379
if (!PromotionType.isNull()) {
3380
CodeGenFunction::ComplexPairTy result = CGF.EmitComplexExpr(
3381
Op, /*IgnoreReal*/ IgnoreResultAssign, /*IgnoreImag*/ true);
3382
if (result.first)
3383
result.first = CGF.EmitPromotedValue(result, PromotionType).first;
3384
return result.first;
3385
} else {
3386
return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc())
3387
.getScalarVal();
3388
}
3389
}
3390
// Otherwise, calculate and project.
3391
return CGF.EmitComplexExpr(Op, false, true).first;
3392
}
3393
3394
if (!PromotionType.isNull())
3395
return CGF.EmitPromotedScalarExpr(Op, PromotionType);
3396
return Visit(Op);
3397
}
3398
3399
Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E,
3400
QualType PromotionType) {
3401
QualType promotionTy = PromotionType.isNull()
3402
? getPromotionType(E->getSubExpr()->getType())
3403
: PromotionType;
3404
Value *result = VisitImag(E, promotionTy);
3405
if (result && !promotionTy.isNull())
3406
result = EmitUnPromotedValue(result, E->getType());
3407
return result;
3408
}
3409
3410
Value *ScalarExprEmitter::VisitImag(const UnaryOperator *E,
3411
QualType PromotionType) {
3412
Expr *Op = E->getSubExpr();
3413
if (Op->getType()->isAnyComplexType()) {
3414
// If it's an l-value, load through the appropriate subobject l-value.
3415
// Note that we have to ask E because Op might be an l-value that
3416
// this won't work for, e.g. an Obj-C property.
3417
if (Op->isGLValue()) {
3418
if (!PromotionType.isNull()) {
3419
CodeGenFunction::ComplexPairTy result = CGF.EmitComplexExpr(
3420
Op, /*IgnoreReal*/ true, /*IgnoreImag*/ IgnoreResultAssign);
3421
if (result.second)
3422
result.second = CGF.EmitPromotedValue(result, PromotionType).second;
3423
return result.second;
3424
} else {
3425
return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc())
3426
.getScalarVal();
3427
}
3428
}
3429
// Otherwise, calculate and project.
3430
return CGF.EmitComplexExpr(Op, true, false).second;
3431
}
3432
3433
// __imag on a scalar returns zero. Emit the subexpr to ensure side
3434
// effects are evaluated, but not the actual value.
3435
if (Op->isGLValue())
3436
CGF.EmitLValue(Op);
3437
else if (!PromotionType.isNull())
3438
CGF.EmitPromotedScalarExpr(Op, PromotionType);
3439
else
3440
CGF.EmitScalarExpr(Op, true);
3441
if (!PromotionType.isNull())
3442
return llvm::Constant::getNullValue(ConvertType(PromotionType));
3443
return llvm::Constant::getNullValue(ConvertType(E->getType()));
3444
}
3445
3446
//===----------------------------------------------------------------------===//
3447
// Binary Operators
3448
//===----------------------------------------------------------------------===//
3449
3450
Value *ScalarExprEmitter::EmitPromotedValue(Value *result,
3451
QualType PromotionType) {
3452
return CGF.Builder.CreateFPExt(result, ConvertType(PromotionType), "ext");
3453
}
3454
3455
Value *ScalarExprEmitter::EmitUnPromotedValue(Value *result,
3456
QualType ExprType) {
3457
return CGF.Builder.CreateFPTrunc(result, ConvertType(ExprType), "unpromotion");
3458
}
3459
3460
Value *ScalarExprEmitter::EmitPromoted(const Expr *E, QualType PromotionType) {
3461
E = E->IgnoreParens();
3462
if (auto BO = dyn_cast<BinaryOperator>(E)) {
3463
switch (BO->getOpcode()) {
3464
#define HANDLE_BINOP(OP) \
3465
case BO_##OP: \
3466
return Emit##OP(EmitBinOps(BO, PromotionType));
3467
HANDLE_BINOP(Add)
3468
HANDLE_BINOP(Sub)
3469
HANDLE_BINOP(Mul)
3470
HANDLE_BINOP(Div)
3471
#undef HANDLE_BINOP
3472
default:
3473
break;
3474
}
3475
} else if (auto UO = dyn_cast<UnaryOperator>(E)) {
3476
switch (UO->getOpcode()) {
3477
case UO_Imag:
3478
return VisitImag(UO, PromotionType);
3479
case UO_Real:
3480
return VisitReal(UO, PromotionType);
3481
case UO_Minus:
3482
return VisitMinus(UO, PromotionType);
3483
case UO_Plus:
3484
return VisitPlus(UO, PromotionType);
3485
default:
3486
break;
3487
}
3488
}
3489
auto result = Visit(const_cast<Expr *>(E));
3490
if (result) {
3491
if (!PromotionType.isNull())
3492
return EmitPromotedValue(result, PromotionType);
3493
else
3494
return EmitUnPromotedValue(result, E->getType());
3495
}
3496
return result;
3497
}
3498
3499
BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E,
3500
QualType PromotionType) {
3501
TestAndClearIgnoreResultAssign();
3502
BinOpInfo Result;
3503
Result.LHS = CGF.EmitPromotedScalarExpr(E->getLHS(), PromotionType);
3504
Result.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionType);
3505
if (!PromotionType.isNull())
3506
Result.Ty = PromotionType;
3507
else
3508
Result.Ty = E->getType();
3509
Result.Opcode = E->getOpcode();
3510
Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3511
Result.E = E;
3512
return Result;
3513
}
3514
3515
LValue ScalarExprEmitter::EmitCompoundAssignLValue(
3516
const CompoundAssignOperator *E,
3517
Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
3518
Value *&Result) {
3519
QualType LHSTy = E->getLHS()->getType();
3520
BinOpInfo OpInfo;
3521
3522
if (E->getComputationResultType()->isAnyComplexType())
3523
return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
3524
3525
// Emit the RHS first. __block variables need to have the rhs evaluated
3526
// first, plus this should improve codegen a little.
3527
3528
QualType PromotionTypeCR;
3529
PromotionTypeCR = getPromotionType(E->getComputationResultType());
3530
if (PromotionTypeCR.isNull())
3531
PromotionTypeCR = E->getComputationResultType();
3532
QualType PromotionTypeLHS = getPromotionType(E->getComputationLHSType());
3533
QualType PromotionTypeRHS = getPromotionType(E->getRHS()->getType());
3534
if (!PromotionTypeRHS.isNull())
3535
OpInfo.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionTypeRHS);
3536
else
3537
OpInfo.RHS = Visit(E->getRHS());
3538
OpInfo.Ty = PromotionTypeCR;
3539
OpInfo.Opcode = E->getOpcode();
3540
OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3541
OpInfo.E = E;
3542
// Load/convert the LHS.
3543
LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3544
3545
llvm::PHINode *atomicPHI = nullptr;
3546
if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
3547
QualType type = atomicTy->getValueType();
3548
if (!type->isBooleanType() && type->isIntegerType() &&
3549
!(type->isUnsignedIntegerType() &&
3550
CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
3551
CGF.getLangOpts().getSignedOverflowBehavior() !=
3552
LangOptions::SOB_Trapping) {
3553
llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
3554
llvm::Instruction::BinaryOps Op;
3555
switch (OpInfo.Opcode) {
3556
// We don't have atomicrmw operands for *, %, /, <<, >>
3557
case BO_MulAssign: case BO_DivAssign:
3558
case BO_RemAssign:
3559
case BO_ShlAssign:
3560
case BO_ShrAssign:
3561
break;
3562
case BO_AddAssign:
3563
AtomicOp = llvm::AtomicRMWInst::Add;
3564
Op = llvm::Instruction::Add;
3565
break;
3566
case BO_SubAssign:
3567
AtomicOp = llvm::AtomicRMWInst::Sub;
3568
Op = llvm::Instruction::Sub;
3569
break;
3570
case BO_AndAssign:
3571
AtomicOp = llvm::AtomicRMWInst::And;
3572
Op = llvm::Instruction::And;
3573
break;
3574
case BO_XorAssign:
3575
AtomicOp = llvm::AtomicRMWInst::Xor;
3576
Op = llvm::Instruction::Xor;
3577
break;
3578
case BO_OrAssign:
3579
AtomicOp = llvm::AtomicRMWInst::Or;
3580
Op = llvm::Instruction::Or;
3581
break;
3582
default:
3583
llvm_unreachable("Invalid compound assignment type");
3584
}
3585
if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3586
llvm::Value *Amt = CGF.EmitToMemory(
3587
EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
3588
E->getExprLoc()),
3589
LHSTy);
3590
Value *OldVal = Builder.CreateAtomicRMW(
3591
AtomicOp, LHSLV.getAddress(), Amt,
3592
llvm::AtomicOrdering::SequentiallyConsistent);
3593
3594
// Since operation is atomic, the result type is guaranteed to be the
3595
// same as the input in LLVM terms.
3596
Result = Builder.CreateBinOp(Op, OldVal, Amt);
3597
return LHSLV;
3598
}
3599
}
3600
// FIXME: For floating point types, we should be saving and restoring the
3601
// floating point environment in the loop.
3602
llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3603
llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3604
OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3605
OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3606
Builder.CreateBr(opBB);
3607
Builder.SetInsertPoint(opBB);
3608
atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3609
atomicPHI->addIncoming(OpInfo.LHS, startBB);
3610
OpInfo.LHS = atomicPHI;
3611
}
3612
else
3613
OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3614
3615
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
3616
SourceLocation Loc = E->getExprLoc();
3617
if (!PromotionTypeLHS.isNull())
3618
OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, PromotionTypeLHS,
3619
E->getExprLoc());
3620
else
3621
OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
3622
E->getComputationLHSType(), Loc);
3623
3624
// Expand the binary operator.
3625
Result = (this->*Func)(OpInfo);
3626
3627
// Convert the result back to the LHS type,
3628
// potentially with Implicit Conversion sanitizer check.
3629
// If LHSLV is a bitfield, use default ScalarConversionOpts
3630
// to avoid emit any implicit integer checks.
3631
Value *Previous = nullptr;
3632
if (LHSLV.isBitField()) {
3633
Previous = Result;
3634
Result = EmitScalarConversion(Result, PromotionTypeCR, LHSTy, Loc);
3635
} else
3636
Result = EmitScalarConversion(Result, PromotionTypeCR, LHSTy, Loc,
3637
ScalarConversionOpts(CGF.SanOpts));
3638
3639
if (atomicPHI) {
3640
llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3641
llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3642
auto Pair = CGF.EmitAtomicCompareExchange(
3643
LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3644
llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3645
llvm::Value *success = Pair.second;
3646
atomicPHI->addIncoming(old, curBlock);
3647
Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3648
Builder.SetInsertPoint(contBB);
3649
return LHSLV;
3650
}
3651
3652
// Store the result value into the LHS lvalue. Bit-fields are handled
3653
// specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3654
// 'An assignment expression has the value of the left operand after the
3655
// assignment...'.
3656
if (LHSLV.isBitField()) {
3657
Value *Src = Previous ? Previous : Result;
3658
QualType SrcType = E->getRHS()->getType();
3659
QualType DstType = E->getLHS()->getType();
3660
CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3661
CGF.EmitBitfieldConversionCheck(Src, SrcType, Result, DstType,
3662
LHSLV.getBitFieldInfo(), E->getExprLoc());
3663
} else
3664
CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3665
3666
if (CGF.getLangOpts().OpenMP)
3667
CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3668
E->getLHS());
3669
return LHSLV;
3670
}
3671
3672
Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3673
Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3674
bool Ignore = TestAndClearIgnoreResultAssign();
3675
Value *RHS = nullptr;
3676
LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3677
3678
// If the result is clearly ignored, return now.
3679
if (Ignore)
3680
return nullptr;
3681
3682
// The result of an assignment in C is the assigned r-value.
3683
if (!CGF.getLangOpts().CPlusPlus)
3684
return RHS;
3685
3686
// If the lvalue is non-volatile, return the computed value of the assignment.
3687
if (!LHS.isVolatileQualified())
3688
return RHS;
3689
3690
// Otherwise, reload the value.
3691
return EmitLoadOfLValue(LHS, E->getExprLoc());
3692
}
3693
3694
void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3695
const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3696
SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3697
3698
if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3699
Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3700
SanitizerKind::IntegerDivideByZero));
3701
}
3702
3703
const auto *BO = cast<BinaryOperator>(Ops.E);
3704
if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3705
Ops.Ty->hasSignedIntegerRepresentation() &&
3706
!IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3707
Ops.mayHaveIntegerOverflow()) {
3708
llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3709
3710
llvm::Value *IntMin =
3711
Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3712
llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty);
3713
3714
llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3715
llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3716
llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3717
Checks.push_back(
3718
std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3719
}
3720
3721
if (Checks.size() > 0)
3722
EmitBinOpCheck(Checks, Ops);
3723
}
3724
3725
Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3726
{
3727
CodeGenFunction::SanitizerScope SanScope(&CGF);
3728
if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3729
CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3730
Ops.Ty->isIntegerType() &&
3731
(Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3732
llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3733
EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3734
} else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3735
Ops.Ty->isRealFloatingType() &&
3736
Ops.mayHaveFloatDivisionByZero()) {
3737
llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3738
llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3739
EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3740
Ops);
3741
}
3742
}
3743
3744
if (Ops.Ty->isConstantMatrixType()) {
3745
llvm::MatrixBuilder MB(Builder);
3746
// We need to check the types of the operands of the operator to get the
3747
// correct matrix dimensions.
3748
auto *BO = cast<BinaryOperator>(Ops.E);
3749
(void)BO;
3750
assert(
3751
isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) &&
3752
"first operand must be a matrix");
3753
assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() &&
3754
"second operand must be an arithmetic type");
3755
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3756
return MB.CreateScalarDiv(Ops.LHS, Ops.RHS,
3757
Ops.Ty->hasUnsignedIntegerRepresentation());
3758
}
3759
3760
if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3761
llvm::Value *Val;
3762
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3763
Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3764
CGF.SetDivFPAccuracy(Val);
3765
return Val;
3766
}
3767
else if (Ops.isFixedPointOp())
3768
return EmitFixedPointBinOp(Ops);
3769
else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3770
return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3771
else
3772
return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3773
}
3774
3775
Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3776
// Rem in C can't be a floating point type: C99 6.5.5p2.
3777
if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3778
CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3779
Ops.Ty->isIntegerType() &&
3780
(Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3781
CodeGenFunction::SanitizerScope SanScope(&CGF);
3782
llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3783
EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3784
}
3785
3786
if (Ops.Ty->hasUnsignedIntegerRepresentation())
3787
return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3788
else
3789
return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3790
}
3791
3792
Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3793
unsigned IID;
3794
unsigned OpID = 0;
3795
SanitizerHandler OverflowKind;
3796
3797
bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3798
switch (Ops.Opcode) {
3799
case BO_Add:
3800
case BO_AddAssign:
3801
OpID = 1;
3802
IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3803
llvm::Intrinsic::uadd_with_overflow;
3804
OverflowKind = SanitizerHandler::AddOverflow;
3805
break;
3806
case BO_Sub:
3807
case BO_SubAssign:
3808
OpID = 2;
3809
IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3810
llvm::Intrinsic::usub_with_overflow;
3811
OverflowKind = SanitizerHandler::SubOverflow;
3812
break;
3813
case BO_Mul:
3814
case BO_MulAssign:
3815
OpID = 3;
3816
IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3817
llvm::Intrinsic::umul_with_overflow;
3818
OverflowKind = SanitizerHandler::MulOverflow;
3819
break;
3820
default:
3821
llvm_unreachable("Unsupported operation for overflow detection");
3822
}
3823
OpID <<= 1;
3824
if (isSigned)
3825
OpID |= 1;
3826
3827
CodeGenFunction::SanitizerScope SanScope(&CGF);
3828
llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3829
3830
llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3831
3832
Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3833
Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3834
Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3835
3836
// Handle overflow with llvm.trap if no custom handler has been specified.
3837
const std::string *handlerName =
3838
&CGF.getLangOpts().OverflowHandler;
3839
if (handlerName->empty()) {
3840
// If the signed-integer-overflow sanitizer is enabled, emit a call to its
3841
// runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3842
if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3843
llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3844
SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3845
: SanitizerKind::UnsignedIntegerOverflow;
3846
EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3847
} else
3848
CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
3849
return result;
3850
}
3851
3852
// Branch in case of overflow.
3853
llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3854
llvm::BasicBlock *continueBB =
3855
CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3856
llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3857
3858
Builder.CreateCondBr(overflow, overflowBB, continueBB);
3859
3860
// If an overflow handler is set, then we want to call it and then use its
3861
// result, if it returns.
3862
Builder.SetInsertPoint(overflowBB);
3863
3864
// Get the overflow handler.
3865
llvm::Type *Int8Ty = CGF.Int8Ty;
3866
llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3867
llvm::FunctionType *handlerTy =
3868
llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3869
llvm::FunctionCallee handler =
3870
CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3871
3872
// Sign extend the args to 64-bit, so that we can use the same handler for
3873
// all types of overflow.
3874
llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3875
llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3876
3877
// Call the handler with the two arguments, the operation, and the size of
3878
// the result.
3879
llvm::Value *handlerArgs[] = {
3880
lhs,
3881
rhs,
3882
Builder.getInt8(OpID),
3883
Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3884
};
3885
llvm::Value *handlerResult =
3886
CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3887
3888
// Truncate the result back to the desired size.
3889
handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3890
Builder.CreateBr(continueBB);
3891
3892
Builder.SetInsertPoint(continueBB);
3893
llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3894
phi->addIncoming(result, initialBB);
3895
phi->addIncoming(handlerResult, overflowBB);
3896
3897
return phi;
3898
}
3899
3900
/// Emit pointer + index arithmetic.
3901
static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3902
const BinOpInfo &op,
3903
bool isSubtraction) {
3904
// Must have binary (not unary) expr here. Unary pointer
3905
// increment/decrement doesn't use this path.
3906
const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3907
3908
Value *pointer = op.LHS;
3909
Expr *pointerOperand = expr->getLHS();
3910
Value *index = op.RHS;
3911
Expr *indexOperand = expr->getRHS();
3912
3913
// In a subtraction, the LHS is always the pointer.
3914
if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3915
std::swap(pointer, index);
3916
std::swap(pointerOperand, indexOperand);
3917
}
3918
3919
bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3920
3921
unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3922
auto &DL = CGF.CGM.getDataLayout();
3923
auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3924
3925
// Some versions of glibc and gcc use idioms (particularly in their malloc
3926
// routines) that add a pointer-sized integer (known to be a pointer value)
3927
// to a null pointer in order to cast the value back to an integer or as
3928
// part of a pointer alignment algorithm. This is undefined behavior, but
3929
// we'd like to be able to compile programs that use it.
3930
//
3931
// Normally, we'd generate a GEP with a null-pointer base here in response
3932
// to that code, but it's also UB to dereference a pointer created that
3933
// way. Instead (as an acknowledged hack to tolerate the idiom) we will
3934
// generate a direct cast of the integer value to a pointer.
3935
//
3936
// The idiom (p = nullptr + N) is not met if any of the following are true:
3937
//
3938
// The operation is subtraction.
3939
// The index is not pointer-sized.
3940
// The pointer type is not byte-sized.
3941
//
3942
if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3943
op.Opcode,
3944
expr->getLHS(),
3945
expr->getRHS()))
3946
return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3947
3948
if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3949
// Zero-extend or sign-extend the pointer value according to
3950
// whether the index is signed or not.
3951
index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3952
"idx.ext");
3953
}
3954
3955
// If this is subtraction, negate the index.
3956
if (isSubtraction)
3957
index = CGF.Builder.CreateNeg(index, "idx.neg");
3958
3959
if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3960
CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3961
/*Accessed*/ false);
3962
3963
const PointerType *pointerType
3964
= pointerOperand->getType()->getAs<PointerType>();
3965
if (!pointerType) {
3966
QualType objectType = pointerOperand->getType()
3967
->castAs<ObjCObjectPointerType>()
3968
->getPointeeType();
3969
llvm::Value *objectSize
3970
= CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3971
3972
index = CGF.Builder.CreateMul(index, objectSize);
3973
3974
Value *result =
3975
CGF.Builder.CreateGEP(CGF.Int8Ty, pointer, index, "add.ptr");
3976
return CGF.Builder.CreateBitCast(result, pointer->getType());
3977
}
3978
3979
QualType elementType = pointerType->getPointeeType();
3980
if (const VariableArrayType *vla
3981
= CGF.getContext().getAsVariableArrayType(elementType)) {
3982
// The element count here is the total number of non-VLA elements.
3983
llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3984
3985
// Effectively, the multiply by the VLA size is part of the GEP.
3986
// GEP indexes are signed, and scaling an index isn't permitted to
3987
// signed-overflow, so we use the same semantics for our explicit
3988
// multiply. We suppress this if overflow is not undefined behavior.
3989
llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType());
3990
if (CGF.getLangOpts().isSignedOverflowDefined()) {
3991
index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3992
pointer = CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
3993
} else {
3994
index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3995
pointer = CGF.EmitCheckedInBoundsGEP(
3996
elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
3997
"add.ptr");
3998
}
3999
return pointer;
4000
}
4001
4002
// Explicitly handle GNU void* and function pointer arithmetic extensions. The
4003
// GNU void* casts amount to no-ops since our void* type is i8*, but this is
4004
// future proof.
4005
llvm::Type *elemTy;
4006
if (elementType->isVoidType() || elementType->isFunctionType())
4007
elemTy = CGF.Int8Ty;
4008
else
4009
elemTy = CGF.ConvertTypeForMem(elementType);
4010
4011
if (CGF.getLangOpts().isSignedOverflowDefined())
4012
return CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
4013
4014
return CGF.EmitCheckedInBoundsGEP(
4015
elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
4016
"add.ptr");
4017
}
4018
4019
// Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
4020
// Addend. Use negMul and negAdd to negate the first operand of the Mul or
4021
// the add operand respectively. This allows fmuladd to represent a*b-c, or
4022
// c-a*b. Patterns in LLVM should catch the negated forms and translate them to
4023
// efficient operations.
4024
static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
4025
const CodeGenFunction &CGF, CGBuilderTy &Builder,
4026
bool negMul, bool negAdd) {
4027
Value *MulOp0 = MulOp->getOperand(0);
4028
Value *MulOp1 = MulOp->getOperand(1);
4029
if (negMul)
4030
MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
4031
if (negAdd)
4032
Addend = Builder.CreateFNeg(Addend, "neg");
4033
4034
Value *FMulAdd = nullptr;
4035
if (Builder.getIsFPConstrained()) {
4036
assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
4037
"Only constrained operation should be created when Builder is in FP "
4038
"constrained mode");
4039
FMulAdd = Builder.CreateConstrainedFPCall(
4040
CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
4041
Addend->getType()),
4042
{MulOp0, MulOp1, Addend});
4043
} else {
4044
FMulAdd = Builder.CreateCall(
4045
CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
4046
{MulOp0, MulOp1, Addend});
4047
}
4048
MulOp->eraseFromParent();
4049
4050
return FMulAdd;
4051
}
4052
4053
// Check whether it would be legal to emit an fmuladd intrinsic call to
4054
// represent op and if so, build the fmuladd.
4055
//
4056
// Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
4057
// Does NOT check the type of the operation - it's assumed that this function
4058
// will be called from contexts where it's known that the type is contractable.
4059
static Value* tryEmitFMulAdd(const BinOpInfo &op,
4060
const CodeGenFunction &CGF, CGBuilderTy &Builder,
4061
bool isSub=false) {
4062
4063
assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
4064
op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
4065
"Only fadd/fsub can be the root of an fmuladd.");
4066
4067
// Check whether this op is marked as fusable.
4068
if (!op.FPFeatures.allowFPContractWithinStatement())
4069
return nullptr;
4070
4071
Value *LHS = op.LHS;
4072
Value *RHS = op.RHS;
4073
4074
// Peek through fneg to look for fmul. Make sure fneg has no users, and that
4075
// it is the only use of its operand.
4076
bool NegLHS = false;
4077
if (auto *LHSUnOp = dyn_cast<llvm::UnaryOperator>(LHS)) {
4078
if (LHSUnOp->getOpcode() == llvm::Instruction::FNeg &&
4079
LHSUnOp->use_empty() && LHSUnOp->getOperand(0)->hasOneUse()) {
4080
LHS = LHSUnOp->getOperand(0);
4081
NegLHS = true;
4082
}
4083
}
4084
4085
bool NegRHS = false;
4086
if (auto *RHSUnOp = dyn_cast<llvm::UnaryOperator>(RHS)) {
4087
if (RHSUnOp->getOpcode() == llvm::Instruction::FNeg &&
4088
RHSUnOp->use_empty() && RHSUnOp->getOperand(0)->hasOneUse()) {
4089
RHS = RHSUnOp->getOperand(0);
4090
NegRHS = true;
4091
}
4092
}
4093
4094
// We have a potentially fusable op. Look for a mul on one of the operands.
4095
// Also, make sure that the mul result isn't used directly. In that case,
4096
// there's no point creating a muladd operation.
4097
if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(LHS)) {
4098
if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
4099
(LHSBinOp->use_empty() || NegLHS)) {
4100
// If we looked through fneg, erase it.
4101
if (NegLHS)
4102
cast<llvm::Instruction>(op.LHS)->eraseFromParent();
4103
return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, NegLHS, isSub);
4104
}
4105
}
4106
if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(RHS)) {
4107
if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
4108
(RHSBinOp->use_empty() || NegRHS)) {
4109
// If we looked through fneg, erase it.
4110
if (NegRHS)
4111
cast<llvm::Instruction>(op.RHS)->eraseFromParent();
4112
return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub ^ NegRHS, false);
4113
}
4114
}
4115
4116
if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(LHS)) {
4117
if (LHSBinOp->getIntrinsicID() ==
4118
llvm::Intrinsic::experimental_constrained_fmul &&
4119
(LHSBinOp->use_empty() || NegLHS)) {
4120
// If we looked through fneg, erase it.
4121
if (NegLHS)
4122
cast<llvm::Instruction>(op.LHS)->eraseFromParent();
4123
return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, NegLHS, isSub);
4124
}
4125
}
4126
if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(RHS)) {
4127
if (RHSBinOp->getIntrinsicID() ==
4128
llvm::Intrinsic::experimental_constrained_fmul &&
4129
(RHSBinOp->use_empty() || NegRHS)) {
4130
// If we looked through fneg, erase it.
4131
if (NegRHS)
4132
cast<llvm::Instruction>(op.RHS)->eraseFromParent();
4133
return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub ^ NegRHS, false);
4134
}
4135
}
4136
4137
return nullptr;
4138
}
4139
4140
Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
4141
if (op.LHS->getType()->isPointerTy() ||
4142
op.RHS->getType()->isPointerTy())
4143
return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
4144
4145
if (op.Ty->isSignedIntegerOrEnumerationType()) {
4146
switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
4147
case LangOptions::SOB_Defined:
4148
if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
4149
return Builder.CreateAdd(op.LHS, op.RHS, "add");
4150
[[fallthrough]];
4151
case LangOptions::SOB_Undefined:
4152
if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
4153
return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
4154
[[fallthrough]];
4155
case LangOptions::SOB_Trapping:
4156
if (CanElideOverflowCheck(CGF.getContext(), op))
4157
return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
4158
return EmitOverflowCheckedBinOp(op);
4159
}
4160
}
4161
4162
// For vector and matrix adds, try to fold into a fmuladd.
4163
if (op.LHS->getType()->isFPOrFPVectorTy()) {
4164
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4165
// Try to form an fmuladd.
4166
if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
4167
return FMulAdd;
4168
}
4169
4170
if (op.Ty->isConstantMatrixType()) {
4171
llvm::MatrixBuilder MB(Builder);
4172
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4173
return MB.CreateAdd(op.LHS, op.RHS);
4174
}
4175
4176
if (op.Ty->isUnsignedIntegerType() &&
4177
CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
4178
!CanElideOverflowCheck(CGF.getContext(), op))
4179
return EmitOverflowCheckedBinOp(op);
4180
4181
if (op.LHS->getType()->isFPOrFPVectorTy()) {
4182
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4183
return Builder.CreateFAdd(op.LHS, op.RHS, "add");
4184
}
4185
4186
if (op.isFixedPointOp())
4187
return EmitFixedPointBinOp(op);
4188
4189
return Builder.CreateAdd(op.LHS, op.RHS, "add");
4190
}
4191
4192
/// The resulting value must be calculated with exact precision, so the operands
4193
/// may not be the same type.
4194
Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
4195
using llvm::APSInt;
4196
using llvm::ConstantInt;
4197
4198
// This is either a binary operation where at least one of the operands is
4199
// a fixed-point type, or a unary operation where the operand is a fixed-point
4200
// type. The result type of a binary operation is determined by
4201
// Sema::handleFixedPointConversions().
4202
QualType ResultTy = op.Ty;
4203
QualType LHSTy, RHSTy;
4204
if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
4205
RHSTy = BinOp->getRHS()->getType();
4206
if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
4207
// For compound assignment, the effective type of the LHS at this point
4208
// is the computation LHS type, not the actual LHS type, and the final
4209
// result type is not the type of the expression but rather the
4210
// computation result type.
4211
LHSTy = CAO->getComputationLHSType();
4212
ResultTy = CAO->getComputationResultType();
4213
} else
4214
LHSTy = BinOp->getLHS()->getType();
4215
} else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
4216
LHSTy = UnOp->getSubExpr()->getType();
4217
RHSTy = UnOp->getSubExpr()->getType();
4218
}
4219
ASTContext &Ctx = CGF.getContext();
4220
Value *LHS = op.LHS;
4221
Value *RHS = op.RHS;
4222
4223
auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
4224
auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
4225
auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
4226
auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
4227
4228
// Perform the actual operation.
4229
Value *Result;
4230
llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
4231
switch (op.Opcode) {
4232
case BO_AddAssign:
4233
case BO_Add:
4234
Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
4235
break;
4236
case BO_SubAssign:
4237
case BO_Sub:
4238
Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
4239
break;
4240
case BO_MulAssign:
4241
case BO_Mul:
4242
Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
4243
break;
4244
case BO_DivAssign:
4245
case BO_Div:
4246
Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
4247
break;
4248
case BO_ShlAssign:
4249
case BO_Shl:
4250
Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
4251
break;
4252
case BO_ShrAssign:
4253
case BO_Shr:
4254
Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
4255
break;
4256
case BO_LT:
4257
return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
4258
case BO_GT:
4259
return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
4260
case BO_LE:
4261
return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
4262
case BO_GE:
4263
return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
4264
case BO_EQ:
4265
// For equality operations, we assume any padding bits on unsigned types are
4266
// zero'd out. They could be overwritten through non-saturating operations
4267
// that cause overflow, but this leads to undefined behavior.
4268
return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
4269
case BO_NE:
4270
return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
4271
case BO_Cmp:
4272
case BO_LAnd:
4273
case BO_LOr:
4274
llvm_unreachable("Found unimplemented fixed point binary operation");
4275
case BO_PtrMemD:
4276
case BO_PtrMemI:
4277
case BO_Rem:
4278
case BO_Xor:
4279
case BO_And:
4280
case BO_Or:
4281
case BO_Assign:
4282
case BO_RemAssign:
4283
case BO_AndAssign:
4284
case BO_XorAssign:
4285
case BO_OrAssign:
4286
case BO_Comma:
4287
llvm_unreachable("Found unsupported binary operation for fixed point types.");
4288
}
4289
4290
bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
4291
BinaryOperator::isShiftAssignOp(op.Opcode);
4292
// Convert to the result type.
4293
return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
4294
: CommonFixedSema,
4295
ResultFixedSema);
4296
}
4297
4298
Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
4299
// The LHS is always a pointer if either side is.
4300
if (!op.LHS->getType()->isPointerTy()) {
4301
if (op.Ty->isSignedIntegerOrEnumerationType()) {
4302
switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
4303
case LangOptions::SOB_Defined:
4304
if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
4305
return Builder.CreateSub(op.LHS, op.RHS, "sub");
4306
[[fallthrough]];
4307
case LangOptions::SOB_Undefined:
4308
if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
4309
return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
4310
[[fallthrough]];
4311
case LangOptions::SOB_Trapping:
4312
if (CanElideOverflowCheck(CGF.getContext(), op))
4313
return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
4314
return EmitOverflowCheckedBinOp(op);
4315
}
4316
}
4317
4318
// For vector and matrix subs, try to fold into a fmuladd.
4319
if (op.LHS->getType()->isFPOrFPVectorTy()) {
4320
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4321
// Try to form an fmuladd.
4322
if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
4323
return FMulAdd;
4324
}
4325
4326
if (op.Ty->isConstantMatrixType()) {
4327
llvm::MatrixBuilder MB(Builder);
4328
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4329
return MB.CreateSub(op.LHS, op.RHS);
4330
}
4331
4332
if (op.Ty->isUnsignedIntegerType() &&
4333
CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
4334
!CanElideOverflowCheck(CGF.getContext(), op))
4335
return EmitOverflowCheckedBinOp(op);
4336
4337
if (op.LHS->getType()->isFPOrFPVectorTy()) {
4338
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4339
return Builder.CreateFSub(op.LHS, op.RHS, "sub");
4340
}
4341
4342
if (op.isFixedPointOp())
4343
return EmitFixedPointBinOp(op);
4344
4345
return Builder.CreateSub(op.LHS, op.RHS, "sub");
4346
}
4347
4348
// If the RHS is not a pointer, then we have normal pointer
4349
// arithmetic.
4350
if (!op.RHS->getType()->isPointerTy())
4351
return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
4352
4353
// Otherwise, this is a pointer subtraction.
4354
4355
// Do the raw subtraction part.
4356
llvm::Value *LHS
4357
= Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
4358
llvm::Value *RHS
4359
= Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
4360
Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
4361
4362
// Okay, figure out the element size.
4363
const BinaryOperator *expr = cast<BinaryOperator>(op.E);
4364
QualType elementType = expr->getLHS()->getType()->getPointeeType();
4365
4366
llvm::Value *divisor = nullptr;
4367
4368
// For a variable-length array, this is going to be non-constant.
4369
if (const VariableArrayType *vla
4370
= CGF.getContext().getAsVariableArrayType(elementType)) {
4371
auto VlaSize = CGF.getVLASize(vla);
4372
elementType = VlaSize.Type;
4373
divisor = VlaSize.NumElts;
4374
4375
// Scale the number of non-VLA elements by the non-VLA element size.
4376
CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
4377
if (!eltSize.isOne())
4378
divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
4379
4380
// For everything elese, we can just compute it, safe in the
4381
// assumption that Sema won't let anything through that we can't
4382
// safely compute the size of.
4383
} else {
4384
CharUnits elementSize;
4385
// Handle GCC extension for pointer arithmetic on void* and
4386
// function pointer types.
4387
if (elementType->isVoidType() || elementType->isFunctionType())
4388
elementSize = CharUnits::One();
4389
else
4390
elementSize = CGF.getContext().getTypeSizeInChars(elementType);
4391
4392
// Don't even emit the divide for element size of 1.
4393
if (elementSize.isOne())
4394
return diffInChars;
4395
4396
divisor = CGF.CGM.getSize(elementSize);
4397
}
4398
4399
// Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
4400
// pointer difference in C is only defined in the case where both operands
4401
// are pointing to elements of an array.
4402
return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
4403
}
4404
4405
Value *ScalarExprEmitter::GetMaximumShiftAmount(Value *LHS, Value *RHS,
4406
bool RHSIsSigned) {
4407
llvm::IntegerType *Ty;
4408
if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
4409
Ty = cast<llvm::IntegerType>(VT->getElementType());
4410
else
4411
Ty = cast<llvm::IntegerType>(LHS->getType());
4412
// For a given type of LHS the maximum shift amount is width(LHS)-1, however
4413
// it can occur that width(LHS)-1 > range(RHS). Since there is no check for
4414
// this in ConstantInt::get, this results in the value getting truncated.
4415
// Constrain the return value to be max(RHS) in this case.
4416
llvm::Type *RHSTy = RHS->getType();
4417
llvm::APInt RHSMax =
4418
RHSIsSigned ? llvm::APInt::getSignedMaxValue(RHSTy->getScalarSizeInBits())
4419
: llvm::APInt::getMaxValue(RHSTy->getScalarSizeInBits());
4420
if (RHSMax.ult(Ty->getBitWidth()))
4421
return llvm::ConstantInt::get(RHSTy, RHSMax);
4422
return llvm::ConstantInt::get(RHSTy, Ty->getBitWidth() - 1);
4423
}
4424
4425
Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
4426
const Twine &Name) {
4427
llvm::IntegerType *Ty;
4428
if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
4429
Ty = cast<llvm::IntegerType>(VT->getElementType());
4430
else
4431
Ty = cast<llvm::IntegerType>(LHS->getType());
4432
4433
if (llvm::isPowerOf2_64(Ty->getBitWidth()))
4434
return Builder.CreateAnd(RHS, GetMaximumShiftAmount(LHS, RHS, false), Name);
4435
4436
return Builder.CreateURem(
4437
RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
4438
}
4439
4440
Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
4441
// TODO: This misses out on the sanitizer check below.
4442
if (Ops.isFixedPointOp())
4443
return EmitFixedPointBinOp(Ops);
4444
4445
// LLVM requires the LHS and RHS to be the same type: promote or truncate the
4446
// RHS to the same size as the LHS.
4447
Value *RHS = Ops.RHS;
4448
if (Ops.LHS->getType() != RHS->getType())
4449
RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
4450
4451
bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
4452
Ops.Ty->hasSignedIntegerRepresentation() &&
4453
!CGF.getLangOpts().isSignedOverflowDefined() &&
4454
!CGF.getLangOpts().CPlusPlus20;
4455
bool SanitizeUnsignedBase =
4456
CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
4457
Ops.Ty->hasUnsignedIntegerRepresentation();
4458
bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
4459
bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
4460
// OpenCL 6.3j: shift values are effectively % word size of LHS.
4461
if (CGF.getLangOpts().OpenCL || CGF.getLangOpts().HLSL)
4462
RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
4463
else if ((SanitizeBase || SanitizeExponent) &&
4464
isa<llvm::IntegerType>(Ops.LHS->getType())) {
4465
CodeGenFunction::SanitizerScope SanScope(&CGF);
4466
SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
4467
bool RHSIsSigned = Ops.rhsHasSignedIntegerRepresentation();
4468
llvm::Value *WidthMinusOne =
4469
GetMaximumShiftAmount(Ops.LHS, Ops.RHS, RHSIsSigned);
4470
llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
4471
4472
if (SanitizeExponent) {
4473
Checks.push_back(
4474
std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
4475
}
4476
4477
if (SanitizeBase) {
4478
// Check whether we are shifting any non-zero bits off the top of the
4479
// integer. We only emit this check if exponent is valid - otherwise
4480
// instructions below will have undefined behavior themselves.
4481
llvm::BasicBlock *Orig = Builder.GetInsertBlock();
4482
llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4483
llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
4484
Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
4485
llvm::Value *PromotedWidthMinusOne =
4486
(RHS == Ops.RHS) ? WidthMinusOne
4487
: GetMaximumShiftAmount(Ops.LHS, RHS, RHSIsSigned);
4488
CGF.EmitBlock(CheckShiftBase);
4489
llvm::Value *BitsShiftedOff = Builder.CreateLShr(
4490
Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
4491
/*NUW*/ true, /*NSW*/ true),
4492
"shl.check");
4493
if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
4494
// In C99, we are not permitted to shift a 1 bit into the sign bit.
4495
// Under C++11's rules, shifting a 1 bit into the sign bit is
4496
// OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
4497
// define signed left shifts, so we use the C99 and C++11 rules there).
4498
// Unsigned shifts can always shift into the top bit.
4499
llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
4500
BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
4501
}
4502
llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
4503
llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
4504
CGF.EmitBlock(Cont);
4505
llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
4506
BaseCheck->addIncoming(Builder.getTrue(), Orig);
4507
BaseCheck->addIncoming(ValidBase, CheckShiftBase);
4508
Checks.push_back(std::make_pair(
4509
BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
4510
: SanitizerKind::UnsignedShiftBase));
4511
}
4512
4513
assert(!Checks.empty());
4514
EmitBinOpCheck(Checks, Ops);
4515
}
4516
4517
return Builder.CreateShl(Ops.LHS, RHS, "shl");
4518
}
4519
4520
Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
4521
// TODO: This misses out on the sanitizer check below.
4522
if (Ops.isFixedPointOp())
4523
return EmitFixedPointBinOp(Ops);
4524
4525
// LLVM requires the LHS and RHS to be the same type: promote or truncate the
4526
// RHS to the same size as the LHS.
4527
Value *RHS = Ops.RHS;
4528
if (Ops.LHS->getType() != RHS->getType())
4529
RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
4530
4531
// OpenCL 6.3j: shift values are effectively % word size of LHS.
4532
if (CGF.getLangOpts().OpenCL || CGF.getLangOpts().HLSL)
4533
RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
4534
else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
4535
isa<llvm::IntegerType>(Ops.LHS->getType())) {
4536
CodeGenFunction::SanitizerScope SanScope(&CGF);
4537
bool RHSIsSigned = Ops.rhsHasSignedIntegerRepresentation();
4538
llvm::Value *Valid = Builder.CreateICmpULE(
4539
Ops.RHS, GetMaximumShiftAmount(Ops.LHS, Ops.RHS, RHSIsSigned));
4540
EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
4541
}
4542
4543
if (Ops.Ty->hasUnsignedIntegerRepresentation())
4544
return Builder.CreateLShr(Ops.LHS, RHS, "shr");
4545
return Builder.CreateAShr(Ops.LHS, RHS, "shr");
4546
}
4547
4548
enum IntrinsicType { VCMPEQ, VCMPGT };
4549
// return corresponding comparison intrinsic for given vector type
4550
static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
4551
BuiltinType::Kind ElemKind) {
4552
switch (ElemKind) {
4553
default: llvm_unreachable("unexpected element type");
4554
case BuiltinType::Char_U:
4555
case BuiltinType::UChar:
4556
return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4557
llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
4558
case BuiltinType::Char_S:
4559
case BuiltinType::SChar:
4560
return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4561
llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
4562
case BuiltinType::UShort:
4563
return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4564
llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
4565
case BuiltinType::Short:
4566
return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4567
llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
4568
case BuiltinType::UInt:
4569
return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4570
llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
4571
case BuiltinType::Int:
4572
return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4573
llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
4574
case BuiltinType::ULong:
4575
case BuiltinType::ULongLong:
4576
return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4577
llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
4578
case BuiltinType::Long:
4579
case BuiltinType::LongLong:
4580
return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4581
llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
4582
case BuiltinType::Float:
4583
return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
4584
llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
4585
case BuiltinType::Double:
4586
return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
4587
llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
4588
case BuiltinType::UInt128:
4589
return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4590
: llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
4591
case BuiltinType::Int128:
4592
return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4593
: llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
4594
}
4595
}
4596
4597
Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
4598
llvm::CmpInst::Predicate UICmpOpc,
4599
llvm::CmpInst::Predicate SICmpOpc,
4600
llvm::CmpInst::Predicate FCmpOpc,
4601
bool IsSignaling) {
4602
TestAndClearIgnoreResultAssign();
4603
Value *Result;
4604
QualType LHSTy = E->getLHS()->getType();
4605
QualType RHSTy = E->getRHS()->getType();
4606
if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
4607
assert(E->getOpcode() == BO_EQ ||
4608
E->getOpcode() == BO_NE);
4609
Value *LHS = CGF.EmitScalarExpr(E->getLHS());
4610
Value *RHS = CGF.EmitScalarExpr(E->getRHS());
4611
Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
4612
CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
4613
} else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
4614
BinOpInfo BOInfo = EmitBinOps(E);
4615
Value *LHS = BOInfo.LHS;
4616
Value *RHS = BOInfo.RHS;
4617
4618
// If AltiVec, the comparison results in a numeric type, so we use
4619
// intrinsics comparing vectors and giving 0 or 1 as a result
4620
if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
4621
// constants for mapping CR6 register bits to predicate result
4622
enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
4623
4624
llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
4625
4626
// in several cases vector arguments order will be reversed
4627
Value *FirstVecArg = LHS,
4628
*SecondVecArg = RHS;
4629
4630
QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
4631
BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
4632
4633
switch(E->getOpcode()) {
4634
default: llvm_unreachable("is not a comparison operation");
4635
case BO_EQ:
4636
CR6 = CR6_LT;
4637
ID = GetIntrinsic(VCMPEQ, ElementKind);
4638
break;
4639
case BO_NE:
4640
CR6 = CR6_EQ;
4641
ID = GetIntrinsic(VCMPEQ, ElementKind);
4642
break;
4643
case BO_LT:
4644
CR6 = CR6_LT;
4645
ID = GetIntrinsic(VCMPGT, ElementKind);
4646
std::swap(FirstVecArg, SecondVecArg);
4647
break;
4648
case BO_GT:
4649
CR6 = CR6_LT;
4650
ID = GetIntrinsic(VCMPGT, ElementKind);
4651
break;
4652
case BO_LE:
4653
if (ElementKind == BuiltinType::Float) {
4654
CR6 = CR6_LT;
4655
ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4656
std::swap(FirstVecArg, SecondVecArg);
4657
}
4658
else {
4659
CR6 = CR6_EQ;
4660
ID = GetIntrinsic(VCMPGT, ElementKind);
4661
}
4662
break;
4663
case BO_GE:
4664
if (ElementKind == BuiltinType::Float) {
4665
CR6 = CR6_LT;
4666
ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4667
}
4668
else {
4669
CR6 = CR6_EQ;
4670
ID = GetIntrinsic(VCMPGT, ElementKind);
4671
std::swap(FirstVecArg, SecondVecArg);
4672
}
4673
break;
4674
}
4675
4676
Value *CR6Param = Builder.getInt32(CR6);
4677
llvm::Function *F = CGF.CGM.getIntrinsic(ID);
4678
Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4679
4680
// The result type of intrinsic may not be same as E->getType().
4681
// If E->getType() is not BoolTy, EmitScalarConversion will do the
4682
// conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4683
// do nothing, if ResultTy is not i1 at the same time, it will cause
4684
// crash later.
4685
llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4686
if (ResultTy->getBitWidth() > 1 &&
4687
E->getType() == CGF.getContext().BoolTy)
4688
Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4689
return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4690
E->getExprLoc());
4691
}
4692
4693
if (BOInfo.isFixedPointOp()) {
4694
Result = EmitFixedPointBinOp(BOInfo);
4695
} else if (LHS->getType()->isFPOrFPVectorTy()) {
4696
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
4697
if (!IsSignaling)
4698
Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4699
else
4700
Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4701
} else if (LHSTy->hasSignedIntegerRepresentation()) {
4702
Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4703
} else {
4704
// Unsigned integers and pointers.
4705
4706
if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4707
!isa<llvm::ConstantPointerNull>(LHS) &&
4708
!isa<llvm::ConstantPointerNull>(RHS)) {
4709
4710
// Dynamic information is required to be stripped for comparisons,
4711
// because it could leak the dynamic information. Based on comparisons
4712
// of pointers to dynamic objects, the optimizer can replace one pointer
4713
// with another, which might be incorrect in presence of invariant
4714
// groups. Comparison with null is safe because null does not carry any
4715
// dynamic information.
4716
if (LHSTy.mayBeDynamicClass())
4717
LHS = Builder.CreateStripInvariantGroup(LHS);
4718
if (RHSTy.mayBeDynamicClass())
4719
RHS = Builder.CreateStripInvariantGroup(RHS);
4720
}
4721
4722
Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4723
}
4724
4725
// If this is a vector comparison, sign extend the result to the appropriate
4726
// vector integer type and return it (don't convert to bool).
4727
if (LHSTy->isVectorType())
4728
return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4729
4730
} else {
4731
// Complex Comparison: can only be an equality comparison.
4732
CodeGenFunction::ComplexPairTy LHS, RHS;
4733
QualType CETy;
4734
if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4735
LHS = CGF.EmitComplexExpr(E->getLHS());
4736
CETy = CTy->getElementType();
4737
} else {
4738
LHS.first = Visit(E->getLHS());
4739
LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4740
CETy = LHSTy;
4741
}
4742
if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4743
RHS = CGF.EmitComplexExpr(E->getRHS());
4744
assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4745
CTy->getElementType()) &&
4746
"The element types must always match.");
4747
(void)CTy;
4748
} else {
4749
RHS.first = Visit(E->getRHS());
4750
RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4751
assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4752
"The element types must always match.");
4753
}
4754
4755
Value *ResultR, *ResultI;
4756
if (CETy->isRealFloatingType()) {
4757
// As complex comparisons can only be equality comparisons, they
4758
// are never signaling comparisons.
4759
ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4760
ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4761
} else {
4762
// Complex comparisons can only be equality comparisons. As such, signed
4763
// and unsigned opcodes are the same.
4764
ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4765
ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4766
}
4767
4768
if (E->getOpcode() == BO_EQ) {
4769
Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4770
} else {
4771
assert(E->getOpcode() == BO_NE &&
4772
"Complex comparison other than == or != ?");
4773
Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4774
}
4775
}
4776
4777
return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4778
E->getExprLoc());
4779
}
4780
4781
llvm::Value *CodeGenFunction::EmitWithOriginalRHSBitfieldAssignment(
4782
const BinaryOperator *E, Value **Previous, QualType *SrcType) {
4783
// In case we have the integer or bitfield sanitizer checks enabled
4784
// we want to get the expression before scalar conversion.
4785
if (auto *ICE = dyn_cast<ImplicitCastExpr>(E->getRHS())) {
4786
CastKind Kind = ICE->getCastKind();
4787
if (Kind == CK_IntegralCast || Kind == CK_LValueToRValue) {
4788
*SrcType = ICE->getSubExpr()->getType();
4789
*Previous = EmitScalarExpr(ICE->getSubExpr());
4790
// Pass default ScalarConversionOpts to avoid emitting
4791
// integer sanitizer checks as E refers to bitfield.
4792
return EmitScalarConversion(*Previous, *SrcType, ICE->getType(),
4793
ICE->getExprLoc());
4794
}
4795
}
4796
return EmitScalarExpr(E->getRHS());
4797
}
4798
4799
Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4800
bool Ignore = TestAndClearIgnoreResultAssign();
4801
4802
Value *RHS;
4803
LValue LHS;
4804
4805
switch (E->getLHS()->getType().getObjCLifetime()) {
4806
case Qualifiers::OCL_Strong:
4807
std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4808
break;
4809
4810
case Qualifiers::OCL_Autoreleasing:
4811
std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4812
break;
4813
4814
case Qualifiers::OCL_ExplicitNone:
4815
std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4816
break;
4817
4818
case Qualifiers::OCL_Weak:
4819
RHS = Visit(E->getRHS());
4820
LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4821
RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
4822
break;
4823
4824
case Qualifiers::OCL_None:
4825
// __block variables need to have the rhs evaluated first, plus
4826
// this should improve codegen just a little.
4827
Value *Previous = nullptr;
4828
QualType SrcType = E->getRHS()->getType();
4829
// Check if LHS is a bitfield, if RHS contains an implicit cast expression
4830
// we want to extract that value and potentially (if the bitfield sanitizer
4831
// is enabled) use it to check for an implicit conversion.
4832
if (E->getLHS()->refersToBitField())
4833
RHS = CGF.EmitWithOriginalRHSBitfieldAssignment(E, &Previous, &SrcType);
4834
else
4835
RHS = Visit(E->getRHS());
4836
4837
LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4838
4839
// Store the value into the LHS. Bit-fields are handled specially
4840
// because the result is altered by the store, i.e., [C99 6.5.16p1]
4841
// 'An assignment expression has the value of the left operand after
4842
// the assignment...'.
4843
if (LHS.isBitField()) {
4844
CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4845
// If the expression contained an implicit conversion, make sure
4846
// to use the value before the scalar conversion.
4847
Value *Src = Previous ? Previous : RHS;
4848
QualType DstType = E->getLHS()->getType();
4849
CGF.EmitBitfieldConversionCheck(Src, SrcType, RHS, DstType,
4850
LHS.getBitFieldInfo(), E->getExprLoc());
4851
} else {
4852
CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4853
CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4854
}
4855
}
4856
4857
// If the result is clearly ignored, return now.
4858
if (Ignore)
4859
return nullptr;
4860
4861
// The result of an assignment in C is the assigned r-value.
4862
if (!CGF.getLangOpts().CPlusPlus)
4863
return RHS;
4864
4865
// If the lvalue is non-volatile, return the computed value of the assignment.
4866
if (!LHS.isVolatileQualified())
4867
return RHS;
4868
4869
// Otherwise, reload the value.
4870
return EmitLoadOfLValue(LHS, E->getExprLoc());
4871
}
4872
4873
Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4874
// Perform vector logical and on comparisons with zero vectors.
4875
if (E->getType()->isVectorType()) {
4876
CGF.incrementProfileCounter(E);
4877
4878
Value *LHS = Visit(E->getLHS());
4879
Value *RHS = Visit(E->getRHS());
4880
Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4881
if (LHS->getType()->isFPOrFPVectorTy()) {
4882
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4883
CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4884
LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4885
RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4886
} else {
4887
LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4888
RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4889
}
4890
Value *And = Builder.CreateAnd(LHS, RHS);
4891
return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4892
}
4893
4894
bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4895
llvm::Type *ResTy = ConvertType(E->getType());
4896
4897
// If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4898
// If we have 1 && X, just emit X without inserting the control flow.
4899
bool LHSCondVal;
4900
if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4901
if (LHSCondVal) { // If we have 1 && X, just emit X.
4902
CGF.incrementProfileCounter(E);
4903
4904
// If the top of the logical operator nest, reset the MCDC temp to 0.
4905
if (CGF.MCDCLogOpStack.empty())
4906
CGF.maybeResetMCDCCondBitmap(E);
4907
4908
CGF.MCDCLogOpStack.push_back(E);
4909
4910
Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4911
4912
// If we're generating for profiling or coverage, generate a branch to a
4913
// block that increments the RHS counter needed to track branch condition
4914
// coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4915
// "FalseBlock" after the increment is done.
4916
if (InstrumentRegions &&
4917
CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4918
CGF.maybeUpdateMCDCCondBitmap(E->getRHS(), RHSCond);
4919
llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end");
4920
llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4921
Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock);
4922
CGF.EmitBlock(RHSBlockCnt);
4923
CGF.incrementProfileCounter(E->getRHS());
4924
CGF.EmitBranch(FBlock);
4925
CGF.EmitBlock(FBlock);
4926
}
4927
4928
CGF.MCDCLogOpStack.pop_back();
4929
// If the top of the logical operator nest, update the MCDC bitmap.
4930
if (CGF.MCDCLogOpStack.empty())
4931
CGF.maybeUpdateMCDCTestVectorBitmap(E);
4932
4933
// ZExt result to int or bool.
4934
return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4935
}
4936
4937
// 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4938
if (!CGF.ContainsLabel(E->getRHS()))
4939
return llvm::Constant::getNullValue(ResTy);
4940
}
4941
4942
// If the top of the logical operator nest, reset the MCDC temp to 0.
4943
if (CGF.MCDCLogOpStack.empty())
4944
CGF.maybeResetMCDCCondBitmap(E);
4945
4946
CGF.MCDCLogOpStack.push_back(E);
4947
4948
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4949
llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
4950
4951
CodeGenFunction::ConditionalEvaluation eval(CGF);
4952
4953
// Branch on the LHS first. If it is false, go to the failure (cont) block.
4954
CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4955
CGF.getProfileCount(E->getRHS()));
4956
4957
// Any edges into the ContBlock are now from an (indeterminate number of)
4958
// edges from this first condition. All of these values will be false. Start
4959
// setting up the PHI node in the Cont Block for this.
4960
llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4961
"", ContBlock);
4962
for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4963
PI != PE; ++PI)
4964
PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4965
4966
eval.begin(CGF);
4967
CGF.EmitBlock(RHSBlock);
4968
CGF.incrementProfileCounter(E);
4969
Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4970
eval.end(CGF);
4971
4972
// Reaquire the RHS block, as there may be subblocks inserted.
4973
RHSBlock = Builder.GetInsertBlock();
4974
4975
// If we're generating for profiling or coverage, generate a branch on the
4976
// RHS to a block that increments the RHS true counter needed to track branch
4977
// condition coverage.
4978
if (InstrumentRegions &&
4979
CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4980
CGF.maybeUpdateMCDCCondBitmap(E->getRHS(), RHSCond);
4981
llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4982
Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock);
4983
CGF.EmitBlock(RHSBlockCnt);
4984
CGF.incrementProfileCounter(E->getRHS());
4985
CGF.EmitBranch(ContBlock);
4986
PN->addIncoming(RHSCond, RHSBlockCnt);
4987
}
4988
4989
// Emit an unconditional branch from this block to ContBlock.
4990
{
4991
// There is no need to emit line number for unconditional branch.
4992
auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4993
CGF.EmitBlock(ContBlock);
4994
}
4995
// Insert an entry into the phi node for the edge with the value of RHSCond.
4996
PN->addIncoming(RHSCond, RHSBlock);
4997
4998
CGF.MCDCLogOpStack.pop_back();
4999
// If the top of the logical operator nest, update the MCDC bitmap.
5000
if (CGF.MCDCLogOpStack.empty())
5001
CGF.maybeUpdateMCDCTestVectorBitmap(E);
5002
5003
// Artificial location to preserve the scope information
5004
{
5005
auto NL = ApplyDebugLocation::CreateArtificial(CGF);
5006
PN->setDebugLoc(Builder.getCurrentDebugLocation());
5007
}
5008
5009
// ZExt result to int.
5010
return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
5011
}
5012
5013
Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
5014
// Perform vector logical or on comparisons with zero vectors.
5015
if (E->getType()->isVectorType()) {
5016
CGF.incrementProfileCounter(E);
5017
5018
Value *LHS = Visit(E->getLHS());
5019
Value *RHS = Visit(E->getRHS());
5020
Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
5021
if (LHS->getType()->isFPOrFPVectorTy()) {
5022
CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
5023
CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
5024
LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
5025
RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
5026
} else {
5027
LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
5028
RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
5029
}
5030
Value *Or = Builder.CreateOr(LHS, RHS);
5031
return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
5032
}
5033
5034
bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
5035
llvm::Type *ResTy = ConvertType(E->getType());
5036
5037
// If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
5038
// If we have 0 || X, just emit X without inserting the control flow.
5039
bool LHSCondVal;
5040
if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
5041
if (!LHSCondVal) { // If we have 0 || X, just emit X.
5042
CGF.incrementProfileCounter(E);
5043
5044
// If the top of the logical operator nest, reset the MCDC temp to 0.
5045
if (CGF.MCDCLogOpStack.empty())
5046
CGF.maybeResetMCDCCondBitmap(E);
5047
5048
CGF.MCDCLogOpStack.push_back(E);
5049
5050
Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
5051
5052
// If we're generating for profiling or coverage, generate a branch to a
5053
// block that increments the RHS counter need to track branch condition
5054
// coverage. In this case, use "FBlock" as both the final "TrueBlock" and
5055
// "FalseBlock" after the increment is done.
5056
if (InstrumentRegions &&
5057
CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
5058
CGF.maybeUpdateMCDCCondBitmap(E->getRHS(), RHSCond);
5059
llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end");
5060
llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
5061
Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt);
5062
CGF.EmitBlock(RHSBlockCnt);
5063
CGF.incrementProfileCounter(E->getRHS());
5064
CGF.EmitBranch(FBlock);
5065
CGF.EmitBlock(FBlock);
5066
}
5067
5068
CGF.MCDCLogOpStack.pop_back();
5069
// If the top of the logical operator nest, update the MCDC bitmap.
5070
if (CGF.MCDCLogOpStack.empty())
5071
CGF.maybeUpdateMCDCTestVectorBitmap(E);
5072
5073
// ZExt result to int or bool.
5074
return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
5075
}
5076
5077
// 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
5078
if (!CGF.ContainsLabel(E->getRHS()))
5079
return llvm::ConstantInt::get(ResTy, 1);
5080
}
5081
5082
// If the top of the logical operator nest, reset the MCDC temp to 0.
5083
if (CGF.MCDCLogOpStack.empty())
5084
CGF.maybeResetMCDCCondBitmap(E);
5085
5086
CGF.MCDCLogOpStack.push_back(E);
5087
5088
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
5089
llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
5090
5091
CodeGenFunction::ConditionalEvaluation eval(CGF);
5092
5093
// Branch on the LHS first. If it is true, go to the success (cont) block.
5094
CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
5095
CGF.getCurrentProfileCount() -
5096
CGF.getProfileCount(E->getRHS()));
5097
5098
// Any edges into the ContBlock are now from an (indeterminate number of)
5099
// edges from this first condition. All of these values will be true. Start
5100
// setting up the PHI node in the Cont Block for this.
5101
llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
5102
"", ContBlock);
5103
for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
5104
PI != PE; ++PI)
5105
PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
5106
5107
eval.begin(CGF);
5108
5109
// Emit the RHS condition as a bool value.
5110
CGF.EmitBlock(RHSBlock);
5111
CGF.incrementProfileCounter(E);
5112
Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
5113
5114
eval.end(CGF);
5115
5116
// Reaquire the RHS block, as there may be subblocks inserted.
5117
RHSBlock = Builder.GetInsertBlock();
5118
5119
// If we're generating for profiling or coverage, generate a branch on the
5120
// RHS to a block that increments the RHS true counter needed to track branch
5121
// condition coverage.
5122
if (InstrumentRegions &&
5123
CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
5124
CGF.maybeUpdateMCDCCondBitmap(E->getRHS(), RHSCond);
5125
llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
5126
Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt);
5127
CGF.EmitBlock(RHSBlockCnt);
5128
CGF.incrementProfileCounter(E->getRHS());
5129
CGF.EmitBranch(ContBlock);
5130
PN->addIncoming(RHSCond, RHSBlockCnt);
5131
}
5132
5133
// Emit an unconditional branch from this block to ContBlock. Insert an entry
5134
// into the phi node for the edge with the value of RHSCond.
5135
CGF.EmitBlock(ContBlock);
5136
PN->addIncoming(RHSCond, RHSBlock);
5137
5138
CGF.MCDCLogOpStack.pop_back();
5139
// If the top of the logical operator nest, update the MCDC bitmap.
5140
if (CGF.MCDCLogOpStack.empty())
5141
CGF.maybeUpdateMCDCTestVectorBitmap(E);
5142
5143
// ZExt result to int.
5144
return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
5145
}
5146
5147
Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
5148
CGF.EmitIgnoredExpr(E->getLHS());
5149
CGF.EnsureInsertPoint();
5150
return Visit(E->getRHS());
5151
}
5152
5153
//===----------------------------------------------------------------------===//
5154
// Other Operators
5155
//===----------------------------------------------------------------------===//
5156
5157
/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
5158
/// expression is cheap enough and side-effect-free enough to evaluate
5159
/// unconditionally instead of conditionally. This is used to convert control
5160
/// flow into selects in some cases.
5161
static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
5162
CodeGenFunction &CGF) {
5163
// Anything that is an integer or floating point constant is fine.
5164
return E->IgnoreParens()->isEvaluatable(CGF.getContext());
5165
5166
// Even non-volatile automatic variables can't be evaluated unconditionally.
5167
// Referencing a thread_local may cause non-trivial initialization work to
5168
// occur. If we're inside a lambda and one of the variables is from the scope
5169
// outside the lambda, that function may have returned already. Reading its
5170
// locals is a bad idea. Also, these reads may introduce races there didn't
5171
// exist in the source-level program.
5172
}
5173
5174
5175
Value *ScalarExprEmitter::
5176
VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
5177
TestAndClearIgnoreResultAssign();
5178
5179
// Bind the common expression if necessary.
5180
CodeGenFunction::OpaqueValueMapping binding(CGF, E);
5181
5182
Expr *condExpr = E->getCond();
5183
Expr *lhsExpr = E->getTrueExpr();
5184
Expr *rhsExpr = E->getFalseExpr();
5185
5186
// If the condition constant folds and can be elided, try to avoid emitting
5187
// the condition and the dead arm.
5188
bool CondExprBool;
5189
if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
5190
Expr *live = lhsExpr, *dead = rhsExpr;
5191
if (!CondExprBool) std::swap(live, dead);
5192
5193
// If the dead side doesn't have labels we need, just emit the Live part.
5194
if (!CGF.ContainsLabel(dead)) {
5195
if (CondExprBool) {
5196
if (llvm::EnableSingleByteCoverage) {
5197
CGF.incrementProfileCounter(lhsExpr);
5198
CGF.incrementProfileCounter(rhsExpr);
5199
}
5200
CGF.incrementProfileCounter(E);
5201
}
5202
Value *Result = Visit(live);
5203
5204
// If the live part is a throw expression, it acts like it has a void
5205
// type, so evaluating it returns a null Value*. However, a conditional
5206
// with non-void type must return a non-null Value*.
5207
if (!Result && !E->getType()->isVoidType())
5208
Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
5209
5210
return Result;
5211
}
5212
}
5213
5214
// OpenCL: If the condition is a vector, we can treat this condition like
5215
// the select function.
5216
if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
5217
condExpr->getType()->isExtVectorType()) {
5218
CGF.incrementProfileCounter(E);
5219
5220
llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
5221
llvm::Value *LHS = Visit(lhsExpr);
5222
llvm::Value *RHS = Visit(rhsExpr);
5223
5224
llvm::Type *condType = ConvertType(condExpr->getType());
5225
auto *vecTy = cast<llvm::FixedVectorType>(condType);
5226
5227
unsigned numElem = vecTy->getNumElements();
5228
llvm::Type *elemType = vecTy->getElementType();
5229
5230
llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
5231
llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
5232
llvm::Value *tmp = Builder.CreateSExt(
5233
TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
5234
llvm::Value *tmp2 = Builder.CreateNot(tmp);
5235
5236
// Cast float to int to perform ANDs if necessary.
5237
llvm::Value *RHSTmp = RHS;
5238
llvm::Value *LHSTmp = LHS;
5239
bool wasCast = false;
5240
llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
5241
if (rhsVTy->getElementType()->isFloatingPointTy()) {
5242
RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
5243
LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
5244
wasCast = true;
5245
}
5246
5247
llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
5248
llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
5249
llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
5250
if (wasCast)
5251
tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
5252
5253
return tmp5;
5254
}
5255
5256
if (condExpr->getType()->isVectorType() ||
5257
condExpr->getType()->isSveVLSBuiltinType()) {
5258
CGF.incrementProfileCounter(E);
5259
5260
llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
5261
llvm::Value *LHS = Visit(lhsExpr);
5262
llvm::Value *RHS = Visit(rhsExpr);
5263
5264
llvm::Type *CondType = ConvertType(condExpr->getType());
5265
auto *VecTy = cast<llvm::VectorType>(CondType);
5266
llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
5267
5268
CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
5269
return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
5270
}
5271
5272
// If this is a really simple expression (like x ? 4 : 5), emit this as a
5273
// select instead of as control flow. We can only do this if it is cheap and
5274
// safe to evaluate the LHS and RHS unconditionally.
5275
if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
5276
isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
5277
llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
5278
llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
5279
5280
if (llvm::EnableSingleByteCoverage) {
5281
CGF.incrementProfileCounter(lhsExpr);
5282
CGF.incrementProfileCounter(rhsExpr);
5283
CGF.incrementProfileCounter(E);
5284
} else
5285
CGF.incrementProfileCounter(E, StepV);
5286
5287
llvm::Value *LHS = Visit(lhsExpr);
5288
llvm::Value *RHS = Visit(rhsExpr);
5289
if (!LHS) {
5290
// If the conditional has void type, make sure we return a null Value*.
5291
assert(!RHS && "LHS and RHS types must match");
5292
return nullptr;
5293
}
5294
return Builder.CreateSelect(CondV, LHS, RHS, "cond");
5295
}
5296
5297
// If the top of the logical operator nest, reset the MCDC temp to 0.
5298
if (CGF.MCDCLogOpStack.empty())
5299
CGF.maybeResetMCDCCondBitmap(condExpr);
5300
5301
llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
5302
llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
5303
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
5304
5305
CodeGenFunction::ConditionalEvaluation eval(CGF);
5306
CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
5307
CGF.getProfileCount(lhsExpr));
5308
5309
CGF.EmitBlock(LHSBlock);
5310
5311
// If the top of the logical operator nest, update the MCDC bitmap for the
5312
// ConditionalOperator prior to visiting its LHS and RHS blocks, since they
5313
// may also contain a boolean expression.
5314
if (CGF.MCDCLogOpStack.empty())
5315
CGF.maybeUpdateMCDCTestVectorBitmap(condExpr);
5316
5317
if (llvm::EnableSingleByteCoverage)
5318
CGF.incrementProfileCounter(lhsExpr);
5319
else
5320
CGF.incrementProfileCounter(E);
5321
5322
eval.begin(CGF);
5323
Value *LHS = Visit(lhsExpr);
5324
eval.end(CGF);
5325
5326
LHSBlock = Builder.GetInsertBlock();
5327
Builder.CreateBr(ContBlock);
5328
5329
CGF.EmitBlock(RHSBlock);
5330
5331
// If the top of the logical operator nest, update the MCDC bitmap for the
5332
// ConditionalOperator prior to visiting its LHS and RHS blocks, since they
5333
// may also contain a boolean expression.
5334
if (CGF.MCDCLogOpStack.empty())
5335
CGF.maybeUpdateMCDCTestVectorBitmap(condExpr);
5336
5337
if (llvm::EnableSingleByteCoverage)
5338
CGF.incrementProfileCounter(rhsExpr);
5339
5340
eval.begin(CGF);
5341
Value *RHS = Visit(rhsExpr);
5342
eval.end(CGF);
5343
5344
RHSBlock = Builder.GetInsertBlock();
5345
CGF.EmitBlock(ContBlock);
5346
5347
// If the LHS or RHS is a throw expression, it will be legitimately null.
5348
if (!LHS)
5349
return RHS;
5350
if (!RHS)
5351
return LHS;
5352
5353
// Create a PHI node for the real part.
5354
llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
5355
PN->addIncoming(LHS, LHSBlock);
5356
PN->addIncoming(RHS, RHSBlock);
5357
5358
// When single byte coverage mode is enabled, add a counter to continuation
5359
// block.
5360
if (llvm::EnableSingleByteCoverage)
5361
CGF.incrementProfileCounter(E);
5362
5363
return PN;
5364
}
5365
5366
Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
5367
return Visit(E->getChosenSubExpr());
5368
}
5369
5370
Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
5371
QualType Ty = VE->getType();
5372
5373
if (Ty->isVariablyModifiedType())
5374
CGF.EmitVariablyModifiedType(Ty);
5375
5376
Address ArgValue = Address::invalid();
5377
RValue ArgPtr = CGF.EmitVAArg(VE, ArgValue);
5378
5379
return ArgPtr.getScalarVal();
5380
}
5381
5382
Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
5383
return CGF.EmitBlockLiteral(block);
5384
}
5385
5386
// Convert a vec3 to vec4, or vice versa.
5387
static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
5388
Value *Src, unsigned NumElementsDst) {
5389
static constexpr int Mask[] = {0, 1, 2, -1};
5390
return Builder.CreateShuffleVector(Src, llvm::ArrayRef(Mask, NumElementsDst));
5391
}
5392
5393
// Create cast instructions for converting LLVM value \p Src to LLVM type \p
5394
// DstTy. \p Src has the same size as \p DstTy. Both are single value types
5395
// but could be scalar or vectors of different lengths, and either can be
5396
// pointer.
5397
// There are 4 cases:
5398
// 1. non-pointer -> non-pointer : needs 1 bitcast
5399
// 2. pointer -> pointer : needs 1 bitcast or addrspacecast
5400
// 3. pointer -> non-pointer
5401
// a) pointer -> intptr_t : needs 1 ptrtoint
5402
// b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast
5403
// 4. non-pointer -> pointer
5404
// a) intptr_t -> pointer : needs 1 inttoptr
5405
// b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr
5406
// Note: for cases 3b and 4b two casts are required since LLVM casts do not
5407
// allow casting directly between pointer types and non-integer non-pointer
5408
// types.
5409
static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
5410
const llvm::DataLayout &DL,
5411
Value *Src, llvm::Type *DstTy,
5412
StringRef Name = "") {
5413
auto SrcTy = Src->getType();
5414
5415
// Case 1.
5416
if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
5417
return Builder.CreateBitCast(Src, DstTy, Name);
5418
5419
// Case 2.
5420
if (SrcTy->isPointerTy() && DstTy->isPointerTy())
5421
return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
5422
5423
// Case 3.
5424
if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
5425
// Case 3b.
5426
if (!DstTy->isIntegerTy())
5427
Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
5428
// Cases 3a and 3b.
5429
return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
5430
}
5431
5432
// Case 4b.
5433
if (!SrcTy->isIntegerTy())
5434
Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
5435
// Cases 4a and 4b.
5436
return Builder.CreateIntToPtr(Src, DstTy, Name);
5437
}
5438
5439
Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
5440
Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
5441
llvm::Type *DstTy = ConvertType(E->getType());
5442
5443
llvm::Type *SrcTy = Src->getType();
5444
unsigned NumElementsSrc =
5445
isa<llvm::VectorType>(SrcTy)
5446
? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
5447
: 0;
5448
unsigned NumElementsDst =
5449
isa<llvm::VectorType>(DstTy)
5450
? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
5451
: 0;
5452
5453
// Use bit vector expansion for ext_vector_type boolean vectors.
5454
if (E->getType()->isExtVectorBoolType())
5455
return CGF.emitBoolVecConversion(Src, NumElementsDst, "astype");
5456
5457
// Going from vec3 to non-vec3 is a special case and requires a shuffle
5458
// vector to get a vec4, then a bitcast if the target type is different.
5459
if (NumElementsSrc == 3 && NumElementsDst != 3) {
5460
Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
5461
Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
5462
DstTy);
5463
5464
Src->setName("astype");
5465
return Src;
5466
}
5467
5468
// Going from non-vec3 to vec3 is a special case and requires a bitcast
5469
// to vec4 if the original type is not vec4, then a shuffle vector to
5470
// get a vec3.
5471
if (NumElementsSrc != 3 && NumElementsDst == 3) {
5472
auto *Vec4Ty = llvm::FixedVectorType::get(
5473
cast<llvm::VectorType>(DstTy)->getElementType(), 4);
5474
Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
5475
Vec4Ty);
5476
5477
Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
5478
Src->setName("astype");
5479
return Src;
5480
}
5481
5482
return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
5483
Src, DstTy, "astype");
5484
}
5485
5486
Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
5487
return CGF.EmitAtomicExpr(E).getScalarVal();
5488
}
5489
5490
//===----------------------------------------------------------------------===//
5491
// Entry Point into this File
5492
//===----------------------------------------------------------------------===//
5493
5494
/// Emit the computation of the specified expression of scalar type, ignoring
5495
/// the result.
5496
Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
5497
assert(E && hasScalarEvaluationKind(E->getType()) &&
5498
"Invalid scalar expression to emit");
5499
5500
return ScalarExprEmitter(*this, IgnoreResultAssign)
5501
.Visit(const_cast<Expr *>(E));
5502
}
5503
5504
/// Emit a conversion from the specified type to the specified destination type,
5505
/// both of which are LLVM scalar types.
5506
Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
5507
QualType DstTy,
5508
SourceLocation Loc) {
5509
assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
5510
"Invalid scalar expression to emit");
5511
return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
5512
}
5513
5514
/// Emit a conversion from the specified complex type to the specified
5515
/// destination type, where the destination type is an LLVM scalar type.
5516
Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
5517
QualType SrcTy,
5518
QualType DstTy,
5519
SourceLocation Loc) {
5520
assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
5521
"Invalid complex -> scalar conversion");
5522
return ScalarExprEmitter(*this)
5523
.EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
5524
}
5525
5526
5527
Value *
5528
CodeGenFunction::EmitPromotedScalarExpr(const Expr *E,
5529
QualType PromotionType) {
5530
if (!PromotionType.isNull())
5531
return ScalarExprEmitter(*this).EmitPromoted(E, PromotionType);
5532
else
5533
return ScalarExprEmitter(*this).Visit(const_cast<Expr *>(E));
5534
}
5535
5536
5537
llvm::Value *CodeGenFunction::
5538
EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
5539
bool isInc, bool isPre) {
5540
return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
5541
}
5542
5543
LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
5544
// object->isa or (*object).isa
5545
// Generate code as for: *(Class*)object
5546
5547
Expr *BaseExpr = E->getBase();
5548
Address Addr = Address::invalid();
5549
if (BaseExpr->isPRValue()) {
5550
llvm::Type *BaseTy =
5551
ConvertTypeForMem(BaseExpr->getType()->getPointeeType());
5552
Addr = Address(EmitScalarExpr(BaseExpr), BaseTy, getPointerAlign());
5553
} else {
5554
Addr = EmitLValue(BaseExpr).getAddress();
5555
}
5556
5557
// Cast the address to Class*.
5558
Addr = Addr.withElementType(ConvertType(E->getType()));
5559
return MakeAddrLValue(Addr, E->getType());
5560
}
5561
5562
5563
LValue CodeGenFunction::EmitCompoundAssignmentLValue(
5564
const CompoundAssignOperator *E) {
5565
ScalarExprEmitter Scalar(*this);
5566
Value *Result = nullptr;
5567
switch (E->getOpcode()) {
5568
#define COMPOUND_OP(Op) \
5569
case BO_##Op##Assign: \
5570
return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
5571
Result)
5572
COMPOUND_OP(Mul);
5573
COMPOUND_OP(Div);
5574
COMPOUND_OP(Rem);
5575
COMPOUND_OP(Add);
5576
COMPOUND_OP(Sub);
5577
COMPOUND_OP(Shl);
5578
COMPOUND_OP(Shr);
5579
COMPOUND_OP(And);
5580
COMPOUND_OP(Xor);
5581
COMPOUND_OP(Or);
5582
#undef COMPOUND_OP
5583
5584
case BO_PtrMemD:
5585
case BO_PtrMemI:
5586
case BO_Mul:
5587
case BO_Div:
5588
case BO_Rem:
5589
case BO_Add:
5590
case BO_Sub:
5591
case BO_Shl:
5592
case BO_Shr:
5593
case BO_LT:
5594
case BO_GT:
5595
case BO_LE:
5596
case BO_GE:
5597
case BO_EQ:
5598
case BO_NE:
5599
case BO_Cmp:
5600
case BO_And:
5601
case BO_Xor:
5602
case BO_Or:
5603
case BO_LAnd:
5604
case BO_LOr:
5605
case BO_Assign:
5606
case BO_Comma:
5607
llvm_unreachable("Not valid compound assignment operators");
5608
}
5609
5610
llvm_unreachable("Unhandled compound assignment operator");
5611
}
5612
5613
struct GEPOffsetAndOverflow {
5614
// The total (signed) byte offset for the GEP.
5615
llvm::Value *TotalOffset;
5616
// The offset overflow flag - true if the total offset overflows.
5617
llvm::Value *OffsetOverflows;
5618
};
5619
5620
/// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
5621
/// and compute the total offset it applies from it's base pointer BasePtr.
5622
/// Returns offset in bytes and a boolean flag whether an overflow happened
5623
/// during evaluation.
5624
static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
5625
llvm::LLVMContext &VMContext,
5626
CodeGenModule &CGM,
5627
CGBuilderTy &Builder) {
5628
const auto &DL = CGM.getDataLayout();
5629
5630
// The total (signed) byte offset for the GEP.
5631
llvm::Value *TotalOffset = nullptr;
5632
5633
// Was the GEP already reduced to a constant?
5634
if (isa<llvm::Constant>(GEPVal)) {
5635
// Compute the offset by casting both pointers to integers and subtracting:
5636
// GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
5637
Value *BasePtr_int =
5638
Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
5639
Value *GEPVal_int =
5640
Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
5641
TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
5642
return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
5643
}
5644
5645
auto *GEP = cast<llvm::GEPOperator>(GEPVal);
5646
assert(GEP->getPointerOperand() == BasePtr &&
5647
"BasePtr must be the base of the GEP.");
5648
assert(GEP->isInBounds() && "Expected inbounds GEP");
5649
5650
auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
5651
5652
// Grab references to the signed add/mul overflow intrinsics for intptr_t.
5653
auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5654
auto *SAddIntrinsic =
5655
CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
5656
auto *SMulIntrinsic =
5657
CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
5658
5659
// The offset overflow flag - true if the total offset overflows.
5660
llvm::Value *OffsetOverflows = Builder.getFalse();
5661
5662
/// Return the result of the given binary operation.
5663
auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
5664
llvm::Value *RHS) -> llvm::Value * {
5665
assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
5666
5667
// If the operands are constants, return a constant result.
5668
if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
5669
if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
5670
llvm::APInt N;
5671
bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
5672
/*Signed=*/true, N);
5673
if (HasOverflow)
5674
OffsetOverflows = Builder.getTrue();
5675
return llvm::ConstantInt::get(VMContext, N);
5676
}
5677
}
5678
5679
// Otherwise, compute the result with checked arithmetic.
5680
auto *ResultAndOverflow = Builder.CreateCall(
5681
(Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
5682
OffsetOverflows = Builder.CreateOr(
5683
Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
5684
return Builder.CreateExtractValue(ResultAndOverflow, 0);
5685
};
5686
5687
// Determine the total byte offset by looking at each GEP operand.
5688
for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
5689
GTI != GTE; ++GTI) {
5690
llvm::Value *LocalOffset;
5691
auto *Index = GTI.getOperand();
5692
// Compute the local offset contributed by this indexing step:
5693
if (auto *STy = GTI.getStructTypeOrNull()) {
5694
// For struct indexing, the local offset is the byte position of the
5695
// specified field.
5696
unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
5697
LocalOffset = llvm::ConstantInt::get(
5698
IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
5699
} else {
5700
// Otherwise this is array-like indexing. The local offset is the index
5701
// multiplied by the element size.
5702
auto *ElementSize =
5703
llvm::ConstantInt::get(IntPtrTy, GTI.getSequentialElementStride(DL));
5704
auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
5705
LocalOffset = eval(BO_Mul, ElementSize, IndexS);
5706
}
5707
5708
// If this is the first offset, set it as the total offset. Otherwise, add
5709
// the local offset into the running total.
5710
if (!TotalOffset || TotalOffset == Zero)
5711
TotalOffset = LocalOffset;
5712
else
5713
TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
5714
}
5715
5716
return {TotalOffset, OffsetOverflows};
5717
}
5718
5719
Value *
5720
CodeGenFunction::EmitCheckedInBoundsGEP(llvm::Type *ElemTy, Value *Ptr,
5721
ArrayRef<Value *> IdxList,
5722
bool SignedIndices, bool IsSubtraction,
5723
SourceLocation Loc, const Twine &Name) {
5724
llvm::Type *PtrTy = Ptr->getType();
5725
Value *GEPVal = Builder.CreateInBoundsGEP(ElemTy, Ptr, IdxList, Name);
5726
5727
// If the pointer overflow sanitizer isn't enabled, do nothing.
5728
if (!SanOpts.has(SanitizerKind::PointerOverflow))
5729
return GEPVal;
5730
5731
// Perform nullptr-and-offset check unless the nullptr is defined.
5732
bool PerformNullCheck = !NullPointerIsDefined(
5733
Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
5734
// Check for overflows unless the GEP got constant-folded,
5735
// and only in the default address space
5736
bool PerformOverflowCheck =
5737
!isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
5738
5739
if (!(PerformNullCheck || PerformOverflowCheck))
5740
return GEPVal;
5741
5742
const auto &DL = CGM.getDataLayout();
5743
5744
SanitizerScope SanScope(this);
5745
llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
5746
5747
GEPOffsetAndOverflow EvaluatedGEP =
5748
EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
5749
5750
assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
5751
EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
5752
"If the offset got constant-folded, we don't expect that there was an "
5753
"overflow.");
5754
5755
auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5756
5757
// Common case: if the total offset is zero, and we are using C++ semantics,
5758
// where nullptr+0 is defined, don't emit a check.
5759
if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
5760
return GEPVal;
5761
5762
// Now that we've computed the total offset, add it to the base pointer (with
5763
// wrapping semantics).
5764
auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
5765
auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
5766
5767
llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
5768
5769
if (PerformNullCheck) {
5770
// In C++, if the base pointer evaluates to a null pointer value,
5771
// the only valid pointer this inbounds GEP can produce is also
5772
// a null pointer, so the offset must also evaluate to zero.
5773
// Likewise, if we have non-zero base pointer, we can not get null pointer
5774
// as a result, so the offset can not be -intptr_t(BasePtr).
5775
// In other words, both pointers are either null, or both are non-null,
5776
// or the behaviour is undefined.
5777
//
5778
// C, however, is more strict in this regard, and gives more
5779
// optimization opportunities: in C, additionally, nullptr+0 is undefined.
5780
// So both the input to the 'gep inbounds' AND the output must not be null.
5781
auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
5782
auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
5783
auto *Valid =
5784
CGM.getLangOpts().CPlusPlus
5785
? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
5786
: Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
5787
Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
5788
}
5789
5790
if (PerformOverflowCheck) {
5791
// The GEP is valid if:
5792
// 1) The total offset doesn't overflow, and
5793
// 2) The sign of the difference between the computed address and the base
5794
// pointer matches the sign of the total offset.
5795
llvm::Value *ValidGEP;
5796
auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
5797
if (SignedIndices) {
5798
// GEP is computed as `unsigned base + signed offset`, therefore:
5799
// * If offset was positive, then the computed pointer can not be
5800
// [unsigned] less than the base pointer, unless it overflowed.
5801
// * If offset was negative, then the computed pointer can not be
5802
// [unsigned] greater than the bas pointere, unless it overflowed.
5803
auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5804
auto *PosOrZeroOffset =
5805
Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
5806
llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
5807
ValidGEP =
5808
Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
5809
} else if (!IsSubtraction) {
5810
// GEP is computed as `unsigned base + unsigned offset`, therefore the
5811
// computed pointer can not be [unsigned] less than base pointer,
5812
// unless there was an overflow.
5813
// Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
5814
ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5815
} else {
5816
// GEP is computed as `unsigned base - unsigned offset`, therefore the
5817
// computed pointer can not be [unsigned] greater than base pointer,
5818
// unless there was an overflow.
5819
// Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
5820
ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
5821
}
5822
ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
5823
Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
5824
}
5825
5826
assert(!Checks.empty() && "Should have produced some checks.");
5827
5828
llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
5829
// Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
5830
llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
5831
EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
5832
5833
return GEPVal;
5834
}
5835
5836
Address CodeGenFunction::EmitCheckedInBoundsGEP(
5837
Address Addr, ArrayRef<Value *> IdxList, llvm::Type *elementType,
5838
bool SignedIndices, bool IsSubtraction, SourceLocation Loc, CharUnits Align,
5839
const Twine &Name) {
5840
if (!SanOpts.has(SanitizerKind::PointerOverflow))
5841
return Builder.CreateInBoundsGEP(Addr, IdxList, elementType, Align, Name);
5842
5843
return RawAddress(
5844
EmitCheckedInBoundsGEP(Addr.getElementType(), Addr.emitRawPointer(*this),
5845
IdxList, SignedIndices, IsSubtraction, Loc, Name),
5846
elementType, Align);
5847
}
5848
5849