Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/clang/lib/CodeGen/CGObjC.cpp
35233 views
1
//===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This contains code to emit Objective-C code as LLVM code.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "CGDebugInfo.h"
14
#include "CGObjCRuntime.h"
15
#include "CodeGenFunction.h"
16
#include "CodeGenModule.h"
17
#include "ConstantEmitter.h"
18
#include "TargetInfo.h"
19
#include "clang/AST/ASTContext.h"
20
#include "clang/AST/Attr.h"
21
#include "clang/AST/DeclObjC.h"
22
#include "clang/AST/StmtObjC.h"
23
#include "clang/Basic/Diagnostic.h"
24
#include "clang/CodeGen/CGFunctionInfo.h"
25
#include "clang/CodeGen/CodeGenABITypes.h"
26
#include "llvm/ADT/STLExtras.h"
27
#include "llvm/Analysis/ObjCARCUtil.h"
28
#include "llvm/BinaryFormat/MachO.h"
29
#include "llvm/IR/Constants.h"
30
#include "llvm/IR/DataLayout.h"
31
#include "llvm/IR/InlineAsm.h"
32
#include <optional>
33
using namespace clang;
34
using namespace CodeGen;
35
36
typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
37
static TryEmitResult
38
tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
39
static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
40
QualType ET,
41
RValue Result);
42
43
/// Given the address of a variable of pointer type, find the correct
44
/// null to store into it.
45
static llvm::Constant *getNullForVariable(Address addr) {
46
llvm::Type *type = addr.getElementType();
47
return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
48
}
49
50
/// Emits an instance of NSConstantString representing the object.
51
llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
52
{
53
llvm::Constant *C =
54
CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
55
return C;
56
}
57
58
/// EmitObjCBoxedExpr - This routine generates code to call
59
/// the appropriate expression boxing method. This will either be
60
/// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
61
/// or [NSValue valueWithBytes:objCType:].
62
///
63
llvm::Value *
64
CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
65
// Generate the correct selector for this literal's concrete type.
66
// Get the method.
67
const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
68
const Expr *SubExpr = E->getSubExpr();
69
70
if (E->isExpressibleAsConstantInitializer()) {
71
ConstantEmitter ConstEmitter(CGM);
72
return ConstEmitter.tryEmitAbstract(E, E->getType());
73
}
74
75
assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
76
Selector Sel = BoxingMethod->getSelector();
77
78
// Generate a reference to the class pointer, which will be the receiver.
79
// Assumes that the method was introduced in the class that should be
80
// messaged (avoids pulling it out of the result type).
81
CGObjCRuntime &Runtime = CGM.getObjCRuntime();
82
const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
83
llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
84
85
CallArgList Args;
86
const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
87
QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
88
89
// ObjCBoxedExpr supports boxing of structs and unions
90
// via [NSValue valueWithBytes:objCType:]
91
const QualType ValueType(SubExpr->getType().getCanonicalType());
92
if (ValueType->isObjCBoxableRecordType()) {
93
// Emit CodeGen for first parameter
94
// and cast value to correct type
95
Address Temporary = CreateMemTemp(SubExpr->getType());
96
EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
97
llvm::Value *BitCast = Builder.CreateBitCast(
98
Temporary.emitRawPointer(*this), ConvertType(ArgQT));
99
Args.add(RValue::get(BitCast), ArgQT);
100
101
// Create char array to store type encoding
102
std::string Str;
103
getContext().getObjCEncodingForType(ValueType, Str);
104
llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
105
106
// Cast type encoding to correct type
107
const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
108
QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
109
llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
110
111
Args.add(RValue::get(Cast), EncodingQT);
112
} else {
113
Args.add(EmitAnyExpr(SubExpr), ArgQT);
114
}
115
116
RValue result = Runtime.GenerateMessageSend(
117
*this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
118
Args, ClassDecl, BoxingMethod);
119
return Builder.CreateBitCast(result.getScalarVal(),
120
ConvertType(E->getType()));
121
}
122
123
llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
124
const ObjCMethodDecl *MethodWithObjects) {
125
ASTContext &Context = CGM.getContext();
126
const ObjCDictionaryLiteral *DLE = nullptr;
127
const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
128
if (!ALE)
129
DLE = cast<ObjCDictionaryLiteral>(E);
130
131
// Optimize empty collections by referencing constants, when available.
132
uint64_t NumElements =
133
ALE ? ALE->getNumElements() : DLE->getNumElements();
134
if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
135
StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
136
QualType IdTy(CGM.getContext().getObjCIdType());
137
llvm::Constant *Constant =
138
CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
139
LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
140
llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
141
cast<llvm::LoadInst>(Ptr)->setMetadata(
142
llvm::LLVMContext::MD_invariant_load,
143
llvm::MDNode::get(getLLVMContext(), std::nullopt));
144
return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
145
}
146
147
// Compute the type of the array we're initializing.
148
llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
149
NumElements);
150
QualType ElementType = Context.getObjCIdType().withConst();
151
QualType ElementArrayType = Context.getConstantArrayType(
152
ElementType, APNumElements, nullptr, ArraySizeModifier::Normal,
153
/*IndexTypeQuals=*/0);
154
155
// Allocate the temporary array(s).
156
Address Objects = CreateMemTemp(ElementArrayType, "objects");
157
Address Keys = Address::invalid();
158
if (DLE)
159
Keys = CreateMemTemp(ElementArrayType, "keys");
160
161
// In ARC, we may need to do extra work to keep all the keys and
162
// values alive until after the call.
163
SmallVector<llvm::Value *, 16> NeededObjects;
164
bool TrackNeededObjects =
165
(getLangOpts().ObjCAutoRefCount &&
166
CGM.getCodeGenOpts().OptimizationLevel != 0);
167
168
// Perform the actual initialialization of the array(s).
169
for (uint64_t i = 0; i < NumElements; i++) {
170
if (ALE) {
171
// Emit the element and store it to the appropriate array slot.
172
const Expr *Rhs = ALE->getElement(i);
173
LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
174
ElementType, AlignmentSource::Decl);
175
176
llvm::Value *value = EmitScalarExpr(Rhs);
177
EmitStoreThroughLValue(RValue::get(value), LV, true);
178
if (TrackNeededObjects) {
179
NeededObjects.push_back(value);
180
}
181
} else {
182
// Emit the key and store it to the appropriate array slot.
183
const Expr *Key = DLE->getKeyValueElement(i).Key;
184
LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i),
185
ElementType, AlignmentSource::Decl);
186
llvm::Value *keyValue = EmitScalarExpr(Key);
187
EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
188
189
// Emit the value and store it to the appropriate array slot.
190
const Expr *Value = DLE->getKeyValueElement(i).Value;
191
LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
192
ElementType, AlignmentSource::Decl);
193
llvm::Value *valueValue = EmitScalarExpr(Value);
194
EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
195
if (TrackNeededObjects) {
196
NeededObjects.push_back(keyValue);
197
NeededObjects.push_back(valueValue);
198
}
199
}
200
}
201
202
// Generate the argument list.
203
CallArgList Args;
204
ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
205
const ParmVarDecl *argDecl = *PI++;
206
QualType ArgQT = argDecl->getType().getUnqualifiedType();
207
Args.add(RValue::get(Objects, *this), ArgQT);
208
if (DLE) {
209
argDecl = *PI++;
210
ArgQT = argDecl->getType().getUnqualifiedType();
211
Args.add(RValue::get(Keys, *this), ArgQT);
212
}
213
argDecl = *PI;
214
ArgQT = argDecl->getType().getUnqualifiedType();
215
llvm::Value *Count =
216
llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
217
Args.add(RValue::get(Count), ArgQT);
218
219
// Generate a reference to the class pointer, which will be the receiver.
220
Selector Sel = MethodWithObjects->getSelector();
221
QualType ResultType = E->getType();
222
const ObjCObjectPointerType *InterfacePointerType
223
= ResultType->getAsObjCInterfacePointerType();
224
assert(InterfacePointerType && "Unexpected InterfacePointerType - null");
225
ObjCInterfaceDecl *Class
226
= InterfacePointerType->getObjectType()->getInterface();
227
CGObjCRuntime &Runtime = CGM.getObjCRuntime();
228
llvm::Value *Receiver = Runtime.GetClass(*this, Class);
229
230
// Generate the message send.
231
RValue result = Runtime.GenerateMessageSend(
232
*this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
233
Receiver, Args, Class, MethodWithObjects);
234
235
// The above message send needs these objects, but in ARC they are
236
// passed in a buffer that is essentially __unsafe_unretained.
237
// Therefore we must prevent the optimizer from releasing them until
238
// after the call.
239
if (TrackNeededObjects) {
240
EmitARCIntrinsicUse(NeededObjects);
241
}
242
243
return Builder.CreateBitCast(result.getScalarVal(),
244
ConvertType(E->getType()));
245
}
246
247
llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
248
return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
249
}
250
251
llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
252
const ObjCDictionaryLiteral *E) {
253
return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
254
}
255
256
/// Emit a selector.
257
llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
258
// Untyped selector.
259
// Note that this implementation allows for non-constant strings to be passed
260
// as arguments to @selector(). Currently, the only thing preventing this
261
// behaviour is the type checking in the front end.
262
return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
263
}
264
265
llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
266
// FIXME: This should pass the Decl not the name.
267
return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
268
}
269
270
/// Adjust the type of an Objective-C object that doesn't match up due
271
/// to type erasure at various points, e.g., related result types or the use
272
/// of parameterized classes.
273
static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
274
RValue Result) {
275
if (!ExpT->isObjCRetainableType())
276
return Result;
277
278
// If the converted types are the same, we're done.
279
llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
280
if (ExpLLVMTy == Result.getScalarVal()->getType())
281
return Result;
282
283
// We have applied a substitution. Cast the rvalue appropriately.
284
return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
285
ExpLLVMTy));
286
}
287
288
/// Decide whether to extend the lifetime of the receiver of a
289
/// returns-inner-pointer message.
290
static bool
291
shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
292
switch (message->getReceiverKind()) {
293
294
// For a normal instance message, we should extend unless the
295
// receiver is loaded from a variable with precise lifetime.
296
case ObjCMessageExpr::Instance: {
297
const Expr *receiver = message->getInstanceReceiver();
298
299
// Look through OVEs.
300
if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
301
if (opaque->getSourceExpr())
302
receiver = opaque->getSourceExpr()->IgnoreParens();
303
}
304
305
const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
306
if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
307
receiver = ice->getSubExpr()->IgnoreParens();
308
309
// Look through OVEs.
310
if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
311
if (opaque->getSourceExpr())
312
receiver = opaque->getSourceExpr()->IgnoreParens();
313
}
314
315
// Only __strong variables.
316
if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
317
return true;
318
319
// All ivars and fields have precise lifetime.
320
if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
321
return false;
322
323
// Otherwise, check for variables.
324
const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
325
if (!declRef) return true;
326
const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
327
if (!var) return true;
328
329
// All variables have precise lifetime except local variables with
330
// automatic storage duration that aren't specially marked.
331
return (var->hasLocalStorage() &&
332
!var->hasAttr<ObjCPreciseLifetimeAttr>());
333
}
334
335
case ObjCMessageExpr::Class:
336
case ObjCMessageExpr::SuperClass:
337
// It's never necessary for class objects.
338
return false;
339
340
case ObjCMessageExpr::SuperInstance:
341
// We generally assume that 'self' lives throughout a method call.
342
return false;
343
}
344
345
llvm_unreachable("invalid receiver kind");
346
}
347
348
/// Given an expression of ObjC pointer type, check whether it was
349
/// immediately loaded from an ARC __weak l-value.
350
static const Expr *findWeakLValue(const Expr *E) {
351
assert(E->getType()->isObjCRetainableType());
352
E = E->IgnoreParens();
353
if (auto CE = dyn_cast<CastExpr>(E)) {
354
if (CE->getCastKind() == CK_LValueToRValue) {
355
if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
356
return CE->getSubExpr();
357
}
358
}
359
360
return nullptr;
361
}
362
363
/// The ObjC runtime may provide entrypoints that are likely to be faster
364
/// than an ordinary message send of the appropriate selector.
365
///
366
/// The entrypoints are guaranteed to be equivalent to just sending the
367
/// corresponding message. If the entrypoint is implemented naively as just a
368
/// message send, using it is a trade-off: it sacrifices a few cycles of
369
/// overhead to save a small amount of code. However, it's possible for
370
/// runtimes to detect and special-case classes that use "standard"
371
/// behavior; if that's dynamically a large proportion of all objects, using
372
/// the entrypoint will also be faster than using a message send.
373
///
374
/// If the runtime does support a required entrypoint, then this method will
375
/// generate a call and return the resulting value. Otherwise it will return
376
/// std::nullopt and the caller can generate a msgSend instead.
377
static std::optional<llvm::Value *> tryGenerateSpecializedMessageSend(
378
CodeGenFunction &CGF, QualType ResultType, llvm::Value *Receiver,
379
const CallArgList &Args, Selector Sel, const ObjCMethodDecl *method,
380
bool isClassMessage) {
381
auto &CGM = CGF.CGM;
382
if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
383
return std::nullopt;
384
385
auto &Runtime = CGM.getLangOpts().ObjCRuntime;
386
switch (Sel.getMethodFamily()) {
387
case OMF_alloc:
388
if (isClassMessage &&
389
Runtime.shouldUseRuntimeFunctionsForAlloc() &&
390
ResultType->isObjCObjectPointerType()) {
391
// [Foo alloc] -> objc_alloc(Foo) or
392
// [self alloc] -> objc_alloc(self)
393
if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc")
394
return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType));
395
// [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
396
// [self allocWithZone:nil] -> objc_allocWithZone(self)
397
if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
398
Args.size() == 1 && Args.front().getType()->isPointerType() &&
399
Sel.getNameForSlot(0) == "allocWithZone") {
400
const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
401
if (isa<llvm::ConstantPointerNull>(arg))
402
return CGF.EmitObjCAllocWithZone(Receiver,
403
CGF.ConvertType(ResultType));
404
return std::nullopt;
405
}
406
}
407
break;
408
409
case OMF_autorelease:
410
if (ResultType->isObjCObjectPointerType() &&
411
CGM.getLangOpts().getGC() == LangOptions::NonGC &&
412
Runtime.shouldUseARCFunctionsForRetainRelease())
413
return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType));
414
break;
415
416
case OMF_retain:
417
if (ResultType->isObjCObjectPointerType() &&
418
CGM.getLangOpts().getGC() == LangOptions::NonGC &&
419
Runtime.shouldUseARCFunctionsForRetainRelease())
420
return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType));
421
break;
422
423
case OMF_release:
424
if (ResultType->isVoidType() &&
425
CGM.getLangOpts().getGC() == LangOptions::NonGC &&
426
Runtime.shouldUseARCFunctionsForRetainRelease()) {
427
CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime);
428
return nullptr;
429
}
430
break;
431
432
default:
433
break;
434
}
435
return std::nullopt;
436
}
437
438
CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend(
439
CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType,
440
Selector Sel, llvm::Value *Receiver, const CallArgList &Args,
441
const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method,
442
bool isClassMessage) {
443
if (std::optional<llvm::Value *> SpecializedResult =
444
tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args,
445
Sel, Method, isClassMessage)) {
446
return RValue::get(*SpecializedResult);
447
}
448
return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID,
449
Method);
450
}
451
452
static void AppendFirstImpliedRuntimeProtocols(
453
const ObjCProtocolDecl *PD,
454
llvm::UniqueVector<const ObjCProtocolDecl *> &PDs) {
455
if (!PD->isNonRuntimeProtocol()) {
456
const auto *Can = PD->getCanonicalDecl();
457
PDs.insert(Can);
458
return;
459
}
460
461
for (const auto *ParentPD : PD->protocols())
462
AppendFirstImpliedRuntimeProtocols(ParentPD, PDs);
463
}
464
465
std::vector<const ObjCProtocolDecl *>
466
CGObjCRuntime::GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin,
467
ObjCProtocolDecl::protocol_iterator end) {
468
std::vector<const ObjCProtocolDecl *> RuntimePds;
469
llvm::DenseSet<const ObjCProtocolDecl *> NonRuntimePDs;
470
471
for (; begin != end; ++begin) {
472
const auto *It = *begin;
473
const auto *Can = It->getCanonicalDecl();
474
if (Can->isNonRuntimeProtocol())
475
NonRuntimePDs.insert(Can);
476
else
477
RuntimePds.push_back(Can);
478
}
479
480
// If there are no non-runtime protocols then we can just stop now.
481
if (NonRuntimePDs.empty())
482
return RuntimePds;
483
484
// Else we have to search through the non-runtime protocol's inheritancy
485
// hierarchy DAG stopping whenever a branch either finds a runtime protocol or
486
// a non-runtime protocol without any parents. These are the "first-implied"
487
// protocols from a non-runtime protocol.
488
llvm::UniqueVector<const ObjCProtocolDecl *> FirstImpliedProtos;
489
for (const auto *PD : NonRuntimePDs)
490
AppendFirstImpliedRuntimeProtocols(PD, FirstImpliedProtos);
491
492
// Walk the Runtime list to get all protocols implied via the inclusion of
493
// this protocol, e.g. all protocols it inherits from including itself.
494
llvm::DenseSet<const ObjCProtocolDecl *> AllImpliedProtocols;
495
for (const auto *PD : RuntimePds) {
496
const auto *Can = PD->getCanonicalDecl();
497
AllImpliedProtocols.insert(Can);
498
Can->getImpliedProtocols(AllImpliedProtocols);
499
}
500
501
// Similar to above, walk the list of first-implied protocols to find the set
502
// all the protocols implied excluding the listed protocols themselves since
503
// they are not yet a part of the `RuntimePds` list.
504
for (const auto *PD : FirstImpliedProtos) {
505
PD->getImpliedProtocols(AllImpliedProtocols);
506
}
507
508
// From the first-implied list we have to finish building the final protocol
509
// list. If a protocol in the first-implied list was already implied via some
510
// inheritance path through some other protocols then it would be redundant to
511
// add it here and so we skip over it.
512
for (const auto *PD : FirstImpliedProtos) {
513
if (!AllImpliedProtocols.contains(PD)) {
514
RuntimePds.push_back(PD);
515
}
516
}
517
518
return RuntimePds;
519
}
520
521
/// Instead of '[[MyClass alloc] init]', try to generate
522
/// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
523
/// caller side, as well as the optimized objc_alloc.
524
static std::optional<llvm::Value *>
525
tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) {
526
auto &Runtime = CGF.getLangOpts().ObjCRuntime;
527
if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
528
return std::nullopt;
529
530
// Match the exact pattern '[[MyClass alloc] init]'.
531
Selector Sel = OME->getSelector();
532
if (OME->getReceiverKind() != ObjCMessageExpr::Instance ||
533
!OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
534
Sel.getNameForSlot(0) != "init")
535
return std::nullopt;
536
537
// Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'
538
// with 'cls' a Class.
539
auto *SubOME =
540
dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts());
541
if (!SubOME)
542
return std::nullopt;
543
Selector SubSel = SubOME->getSelector();
544
545
if (!SubOME->getType()->isObjCObjectPointerType() ||
546
!SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc")
547
return std::nullopt;
548
549
llvm::Value *Receiver = nullptr;
550
switch (SubOME->getReceiverKind()) {
551
case ObjCMessageExpr::Instance:
552
if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType())
553
return std::nullopt;
554
Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver());
555
break;
556
557
case ObjCMessageExpr::Class: {
558
QualType ReceiverType = SubOME->getClassReceiver();
559
const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>();
560
const ObjCInterfaceDecl *ID = ObjTy->getInterface();
561
assert(ID && "null interface should be impossible here");
562
Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID);
563
break;
564
}
565
case ObjCMessageExpr::SuperInstance:
566
case ObjCMessageExpr::SuperClass:
567
return std::nullopt;
568
}
569
570
return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType()));
571
}
572
573
RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
574
ReturnValueSlot Return) {
575
// Only the lookup mechanism and first two arguments of the method
576
// implementation vary between runtimes. We can get the receiver and
577
// arguments in generic code.
578
579
bool isDelegateInit = E->isDelegateInitCall();
580
581
const ObjCMethodDecl *method = E->getMethodDecl();
582
583
// If the method is -retain, and the receiver's being loaded from
584
// a __weak variable, peephole the entire operation to objc_loadWeakRetained.
585
if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
586
method->getMethodFamily() == OMF_retain) {
587
if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
588
LValue lvalue = EmitLValue(lvalueExpr);
589
llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress());
590
return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
591
}
592
}
593
594
if (std::optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E))
595
return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val));
596
597
// We don't retain the receiver in delegate init calls, and this is
598
// safe because the receiver value is always loaded from 'self',
599
// which we zero out. We don't want to Block_copy block receivers,
600
// though.
601
bool retainSelf =
602
(!isDelegateInit &&
603
CGM.getLangOpts().ObjCAutoRefCount &&
604
method &&
605
method->hasAttr<NSConsumesSelfAttr>());
606
607
CGObjCRuntime &Runtime = CGM.getObjCRuntime();
608
bool isSuperMessage = false;
609
bool isClassMessage = false;
610
ObjCInterfaceDecl *OID = nullptr;
611
// Find the receiver
612
QualType ReceiverType;
613
llvm::Value *Receiver = nullptr;
614
switch (E->getReceiverKind()) {
615
case ObjCMessageExpr::Instance:
616
ReceiverType = E->getInstanceReceiver()->getType();
617
isClassMessage = ReceiverType->isObjCClassType();
618
if (retainSelf) {
619
TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
620
E->getInstanceReceiver());
621
Receiver = ter.getPointer();
622
if (ter.getInt()) retainSelf = false;
623
} else
624
Receiver = EmitScalarExpr(E->getInstanceReceiver());
625
break;
626
627
case ObjCMessageExpr::Class: {
628
ReceiverType = E->getClassReceiver();
629
OID = ReceiverType->castAs<ObjCObjectType>()->getInterface();
630
assert(OID && "Invalid Objective-C class message send");
631
Receiver = Runtime.GetClass(*this, OID);
632
isClassMessage = true;
633
break;
634
}
635
636
case ObjCMessageExpr::SuperInstance:
637
ReceiverType = E->getSuperType();
638
Receiver = LoadObjCSelf();
639
isSuperMessage = true;
640
break;
641
642
case ObjCMessageExpr::SuperClass:
643
ReceiverType = E->getSuperType();
644
Receiver = LoadObjCSelf();
645
isSuperMessage = true;
646
isClassMessage = true;
647
break;
648
}
649
650
if (retainSelf)
651
Receiver = EmitARCRetainNonBlock(Receiver);
652
653
// In ARC, we sometimes want to "extend the lifetime"
654
// (i.e. retain+autorelease) of receivers of returns-inner-pointer
655
// messages.
656
if (getLangOpts().ObjCAutoRefCount && method &&
657
method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
658
shouldExtendReceiverForInnerPointerMessage(E))
659
Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
660
661
QualType ResultType = method ? method->getReturnType() : E->getType();
662
663
CallArgList Args;
664
EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
665
666
// For delegate init calls in ARC, do an unsafe store of null into
667
// self. This represents the call taking direct ownership of that
668
// value. We have to do this after emitting the other call
669
// arguments because they might also reference self, but we don't
670
// have to worry about any of them modifying self because that would
671
// be an undefined read and write of an object in unordered
672
// expressions.
673
if (isDelegateInit) {
674
assert(getLangOpts().ObjCAutoRefCount &&
675
"delegate init calls should only be marked in ARC");
676
677
// Do an unsafe store of null into self.
678
Address selfAddr =
679
GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
680
Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
681
}
682
683
RValue result;
684
if (isSuperMessage) {
685
// super is only valid in an Objective-C method
686
const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
687
bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
688
result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
689
E->getSelector(),
690
OMD->getClassInterface(),
691
isCategoryImpl,
692
Receiver,
693
isClassMessage,
694
Args,
695
method);
696
} else {
697
// Call runtime methods directly if we can.
698
result = Runtime.GeneratePossiblySpecializedMessageSend(
699
*this, Return, ResultType, E->getSelector(), Receiver, Args, OID,
700
method, isClassMessage);
701
}
702
703
// For delegate init calls in ARC, implicitly store the result of
704
// the call back into self. This takes ownership of the value.
705
if (isDelegateInit) {
706
Address selfAddr =
707
GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
708
llvm::Value *newSelf = result.getScalarVal();
709
710
// The delegate return type isn't necessarily a matching type; in
711
// fact, it's quite likely to be 'id'.
712
llvm::Type *selfTy = selfAddr.getElementType();
713
newSelf = Builder.CreateBitCast(newSelf, selfTy);
714
715
Builder.CreateStore(newSelf, selfAddr);
716
}
717
718
return AdjustObjCObjectType(*this, E->getType(), result);
719
}
720
721
namespace {
722
struct FinishARCDealloc final : EHScopeStack::Cleanup {
723
void Emit(CodeGenFunction &CGF, Flags flags) override {
724
const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
725
726
const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
727
const ObjCInterfaceDecl *iface = impl->getClassInterface();
728
if (!iface->getSuperClass()) return;
729
730
bool isCategory = isa<ObjCCategoryImplDecl>(impl);
731
732
// Call [super dealloc] if we have a superclass.
733
llvm::Value *self = CGF.LoadObjCSelf();
734
735
CallArgList args;
736
CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
737
CGF.getContext().VoidTy,
738
method->getSelector(),
739
iface,
740
isCategory,
741
self,
742
/*is class msg*/ false,
743
args,
744
method);
745
}
746
};
747
}
748
749
/// StartObjCMethod - Begin emission of an ObjCMethod. This generates
750
/// the LLVM function and sets the other context used by
751
/// CodeGenFunction.
752
void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
753
const ObjCContainerDecl *CD) {
754
SourceLocation StartLoc = OMD->getBeginLoc();
755
FunctionArgList args;
756
// Check if we should generate debug info for this method.
757
if (OMD->hasAttr<NoDebugAttr>())
758
DebugInfo = nullptr; // disable debug info indefinitely for this function
759
760
llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
761
762
const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
763
if (OMD->isDirectMethod()) {
764
Fn->setVisibility(llvm::Function::HiddenVisibility);
765
CGM.SetLLVMFunctionAttributes(OMD, FI, Fn, /*IsThunk=*/false);
766
CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn);
767
} else {
768
CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
769
}
770
771
args.push_back(OMD->getSelfDecl());
772
if (!OMD->isDirectMethod())
773
args.push_back(OMD->getCmdDecl());
774
775
args.append(OMD->param_begin(), OMD->param_end());
776
777
CurGD = OMD;
778
CurEHLocation = OMD->getEndLoc();
779
780
StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
781
OMD->getLocation(), StartLoc);
782
783
if (OMD->isDirectMethod()) {
784
// This function is a direct call, it has to implement a nil check
785
// on entry.
786
//
787
// TODO: possibly have several entry points to elide the check
788
CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD);
789
}
790
791
// In ARC, certain methods get an extra cleanup.
792
if (CGM.getLangOpts().ObjCAutoRefCount &&
793
OMD->isInstanceMethod() &&
794
OMD->getSelector().isUnarySelector()) {
795
const IdentifierInfo *ident =
796
OMD->getSelector().getIdentifierInfoForSlot(0);
797
if (ident->isStr("dealloc"))
798
EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
799
}
800
}
801
802
static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
803
LValue lvalue, QualType type);
804
805
/// Generate an Objective-C method. An Objective-C method is a C function with
806
/// its pointer, name, and types registered in the class structure.
807
void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
808
StartObjCMethod(OMD, OMD->getClassInterface());
809
PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
810
assert(isa<CompoundStmt>(OMD->getBody()));
811
incrementProfileCounter(OMD->getBody());
812
EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
813
FinishFunction(OMD->getBodyRBrace());
814
}
815
816
/// emitStructGetterCall - Call the runtime function to load a property
817
/// into the return value slot.
818
static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
819
bool isAtomic, bool hasStrong) {
820
ASTContext &Context = CGF.getContext();
821
822
llvm::Value *src =
823
CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
824
.getPointer(CGF);
825
826
// objc_copyStruct (ReturnValue, &structIvar,
827
// sizeof (Type of Ivar), isAtomic, false);
828
CallArgList args;
829
830
llvm::Value *dest = CGF.ReturnValue.emitRawPointer(CGF);
831
args.add(RValue::get(dest), Context.VoidPtrTy);
832
args.add(RValue::get(src), Context.VoidPtrTy);
833
834
CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
835
args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
836
args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
837
args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
838
839
llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
840
CGCallee callee = CGCallee::forDirect(fn);
841
CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
842
callee, ReturnValueSlot(), args);
843
}
844
845
/// Determine whether the given architecture supports unaligned atomic
846
/// accesses. They don't have to be fast, just faster than a function
847
/// call and a mutex.
848
static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
849
// FIXME: Allow unaligned atomic load/store on x86. (It is not
850
// currently supported by the backend.)
851
return false;
852
}
853
854
/// Return the maximum size that permits atomic accesses for the given
855
/// architecture.
856
static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
857
llvm::Triple::ArchType arch) {
858
// ARM has 8-byte atomic accesses, but it's not clear whether we
859
// want to rely on them here.
860
861
// In the default case, just assume that any size up to a pointer is
862
// fine given adequate alignment.
863
return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
864
}
865
866
namespace {
867
class PropertyImplStrategy {
868
public:
869
enum StrategyKind {
870
/// The 'native' strategy is to use the architecture's provided
871
/// reads and writes.
872
Native,
873
874
/// Use objc_setProperty and objc_getProperty.
875
GetSetProperty,
876
877
/// Use objc_setProperty for the setter, but use expression
878
/// evaluation for the getter.
879
SetPropertyAndExpressionGet,
880
881
/// Use objc_copyStruct.
882
CopyStruct,
883
884
/// The 'expression' strategy is to emit normal assignment or
885
/// lvalue-to-rvalue expressions.
886
Expression
887
};
888
889
StrategyKind getKind() const { return StrategyKind(Kind); }
890
891
bool hasStrongMember() const { return HasStrong; }
892
bool isAtomic() const { return IsAtomic; }
893
bool isCopy() const { return IsCopy; }
894
895
CharUnits getIvarSize() const { return IvarSize; }
896
CharUnits getIvarAlignment() const { return IvarAlignment; }
897
898
PropertyImplStrategy(CodeGenModule &CGM,
899
const ObjCPropertyImplDecl *propImpl);
900
901
private:
902
LLVM_PREFERRED_TYPE(StrategyKind)
903
unsigned Kind : 8;
904
LLVM_PREFERRED_TYPE(bool)
905
unsigned IsAtomic : 1;
906
LLVM_PREFERRED_TYPE(bool)
907
unsigned IsCopy : 1;
908
LLVM_PREFERRED_TYPE(bool)
909
unsigned HasStrong : 1;
910
911
CharUnits IvarSize;
912
CharUnits IvarAlignment;
913
};
914
}
915
916
/// Pick an implementation strategy for the given property synthesis.
917
PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
918
const ObjCPropertyImplDecl *propImpl) {
919
const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
920
ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
921
922
IsCopy = (setterKind == ObjCPropertyDecl::Copy);
923
IsAtomic = prop->isAtomic();
924
HasStrong = false; // doesn't matter here.
925
926
// Evaluate the ivar's size and alignment.
927
ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
928
QualType ivarType = ivar->getType();
929
auto TInfo = CGM.getContext().getTypeInfoInChars(ivarType);
930
IvarSize = TInfo.Width;
931
IvarAlignment = TInfo.Align;
932
933
// If we have a copy property, we always have to use setProperty.
934
// If the property is atomic we need to use getProperty, but in
935
// the nonatomic case we can just use expression.
936
if (IsCopy) {
937
Kind = IsAtomic ? GetSetProperty : SetPropertyAndExpressionGet;
938
return;
939
}
940
941
// Handle retain.
942
if (setterKind == ObjCPropertyDecl::Retain) {
943
// In GC-only, there's nothing special that needs to be done.
944
if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
945
// fallthrough
946
947
// In ARC, if the property is non-atomic, use expression emission,
948
// which translates to objc_storeStrong. This isn't required, but
949
// it's slightly nicer.
950
} else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
951
// Using standard expression emission for the setter is only
952
// acceptable if the ivar is __strong, which won't be true if
953
// the property is annotated with __attribute__((NSObject)).
954
// TODO: falling all the way back to objc_setProperty here is
955
// just laziness, though; we could still use objc_storeStrong
956
// if we hacked it right.
957
if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
958
Kind = Expression;
959
else
960
Kind = SetPropertyAndExpressionGet;
961
return;
962
963
// Otherwise, we need to at least use setProperty. However, if
964
// the property isn't atomic, we can use normal expression
965
// emission for the getter.
966
} else if (!IsAtomic) {
967
Kind = SetPropertyAndExpressionGet;
968
return;
969
970
// Otherwise, we have to use both setProperty and getProperty.
971
} else {
972
Kind = GetSetProperty;
973
return;
974
}
975
}
976
977
// If we're not atomic, just use expression accesses.
978
if (!IsAtomic) {
979
Kind = Expression;
980
return;
981
}
982
983
// Properties on bitfield ivars need to be emitted using expression
984
// accesses even if they're nominally atomic.
985
if (ivar->isBitField()) {
986
Kind = Expression;
987
return;
988
}
989
990
// GC-qualified or ARC-qualified ivars need to be emitted as
991
// expressions. This actually works out to being atomic anyway,
992
// except for ARC __strong, but that should trigger the above code.
993
if (ivarType.hasNonTrivialObjCLifetime() ||
994
(CGM.getLangOpts().getGC() &&
995
CGM.getContext().getObjCGCAttrKind(ivarType))) {
996
Kind = Expression;
997
return;
998
}
999
1000
// Compute whether the ivar has strong members.
1001
if (CGM.getLangOpts().getGC())
1002
if (const RecordType *recordType = ivarType->getAs<RecordType>())
1003
HasStrong = recordType->getDecl()->hasObjectMember();
1004
1005
// We can never access structs with object members with a native
1006
// access, because we need to use write barriers. This is what
1007
// objc_copyStruct is for.
1008
if (HasStrong) {
1009
Kind = CopyStruct;
1010
return;
1011
}
1012
1013
// Otherwise, this is target-dependent and based on the size and
1014
// alignment of the ivar.
1015
1016
// If the size of the ivar is not a power of two, give up. We don't
1017
// want to get into the business of doing compare-and-swaps.
1018
if (!IvarSize.isPowerOfTwo()) {
1019
Kind = CopyStruct;
1020
return;
1021
}
1022
1023
llvm::Triple::ArchType arch =
1024
CGM.getTarget().getTriple().getArch();
1025
1026
// Most architectures require memory to fit within a single cache
1027
// line, so the alignment has to be at least the size of the access.
1028
// Otherwise we have to grab a lock.
1029
if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
1030
Kind = CopyStruct;
1031
return;
1032
}
1033
1034
// If the ivar's size exceeds the architecture's maximum atomic
1035
// access size, we have to use CopyStruct.
1036
if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
1037
Kind = CopyStruct;
1038
return;
1039
}
1040
1041
// Otherwise, we can use native loads and stores.
1042
Kind = Native;
1043
}
1044
1045
/// Generate an Objective-C property getter function.
1046
///
1047
/// The given Decl must be an ObjCImplementationDecl. \@synthesize
1048
/// is illegal within a category.
1049
void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
1050
const ObjCPropertyImplDecl *PID) {
1051
llvm::Constant *AtomicHelperFn =
1052
CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
1053
ObjCMethodDecl *OMD = PID->getGetterMethodDecl();
1054
assert(OMD && "Invalid call to generate getter (empty method)");
1055
StartObjCMethod(OMD, IMP->getClassInterface());
1056
1057
generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
1058
1059
FinishFunction(OMD->getEndLoc());
1060
}
1061
1062
static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
1063
const Expr *getter = propImpl->getGetterCXXConstructor();
1064
if (!getter) return true;
1065
1066
// Sema only makes only of these when the ivar has a C++ class type,
1067
// so the form is pretty constrained.
1068
1069
// If the property has a reference type, we might just be binding a
1070
// reference, in which case the result will be a gl-value. We should
1071
// treat this as a non-trivial operation.
1072
if (getter->isGLValue())
1073
return false;
1074
1075
// If we selected a trivial copy-constructor, we're okay.
1076
if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
1077
return (construct->getConstructor()->isTrivial());
1078
1079
// The constructor might require cleanups (in which case it's never
1080
// trivial).
1081
assert(isa<ExprWithCleanups>(getter));
1082
return false;
1083
}
1084
1085
/// emitCPPObjectAtomicGetterCall - Call the runtime function to
1086
/// copy the ivar into the resturn slot.
1087
static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
1088
llvm::Value *returnAddr,
1089
ObjCIvarDecl *ivar,
1090
llvm::Constant *AtomicHelperFn) {
1091
// objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
1092
// AtomicHelperFn);
1093
CallArgList args;
1094
1095
// The 1st argument is the return Slot.
1096
args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
1097
1098
// The 2nd argument is the address of the ivar.
1099
llvm::Value *ivarAddr =
1100
CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1101
.getPointer(CGF);
1102
args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1103
1104
// Third argument is the helper function.
1105
args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1106
1107
llvm::FunctionCallee copyCppAtomicObjectFn =
1108
CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
1109
CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
1110
CGF.EmitCall(
1111
CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1112
callee, ReturnValueSlot(), args);
1113
}
1114
1115
// emitCmdValueForGetterSetterBody - Handle emitting the load necessary for
1116
// the `_cmd` selector argument for getter/setter bodies. For direct methods,
1117
// this returns an undefined/poison value; this matches behavior prior to `_cmd`
1118
// being removed from the direct method ABI as the getter/setter caller would
1119
// never load one. For non-direct methods, this emits a load of the implicit
1120
// `_cmd` storage.
1121
static llvm::Value *emitCmdValueForGetterSetterBody(CodeGenFunction &CGF,
1122
ObjCMethodDecl *MD) {
1123
if (MD->isDirectMethod()) {
1124
// Direct methods do not have a `_cmd` argument. Emit an undefined/poison
1125
// value. This will be passed to objc_getProperty/objc_setProperty, which
1126
// has not appeared bothered by the `_cmd` argument being undefined before.
1127
llvm::Type *selType = CGF.ConvertType(CGF.getContext().getObjCSelType());
1128
return llvm::PoisonValue::get(selType);
1129
}
1130
1131
return CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(MD->getCmdDecl()), "cmd");
1132
}
1133
1134
void
1135
CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1136
const ObjCPropertyImplDecl *propImpl,
1137
const ObjCMethodDecl *GetterMethodDecl,
1138
llvm::Constant *AtomicHelperFn) {
1139
1140
ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1141
1142
if (ivar->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
1143
if (!AtomicHelperFn) {
1144
LValue Src =
1145
EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1146
LValue Dst = MakeAddrLValue(ReturnValue, ivar->getType());
1147
callCStructCopyConstructor(Dst, Src);
1148
} else {
1149
ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1150
emitCPPObjectAtomicGetterCall(*this, ReturnValue.emitRawPointer(*this),
1151
ivar, AtomicHelperFn);
1152
}
1153
return;
1154
}
1155
1156
// If there's a non-trivial 'get' expression, we just have to emit that.
1157
if (!hasTrivialGetExpr(propImpl)) {
1158
if (!AtomicHelperFn) {
1159
auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
1160
propImpl->getGetterCXXConstructor(),
1161
/* NRVOCandidate=*/nullptr);
1162
EmitReturnStmt(*ret);
1163
}
1164
else {
1165
ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1166
emitCPPObjectAtomicGetterCall(*this, ReturnValue.emitRawPointer(*this),
1167
ivar, AtomicHelperFn);
1168
}
1169
return;
1170
}
1171
1172
const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1173
QualType propType = prop->getType();
1174
ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl();
1175
1176
// Pick an implementation strategy.
1177
PropertyImplStrategy strategy(CGM, propImpl);
1178
switch (strategy.getKind()) {
1179
case PropertyImplStrategy::Native: {
1180
// We don't need to do anything for a zero-size struct.
1181
if (strategy.getIvarSize().isZero())
1182
return;
1183
1184
LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1185
1186
// Currently, all atomic accesses have to be through integer
1187
// types, so there's no point in trying to pick a prettier type.
1188
uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
1189
llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
1190
1191
// Perform an atomic load. This does not impose ordering constraints.
1192
Address ivarAddr = LV.getAddress();
1193
ivarAddr = ivarAddr.withElementType(bitcastType);
1194
llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
1195
load->setAtomic(llvm::AtomicOrdering::Unordered);
1196
1197
// Store that value into the return address. Doing this with a
1198
// bitcast is likely to produce some pretty ugly IR, but it's not
1199
// the *most* terrible thing in the world.
1200
llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
1201
uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
1202
llvm::Value *ivarVal = load;
1203
if (ivarSize > retTySize) {
1204
bitcastType = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
1205
ivarVal = Builder.CreateTrunc(load, bitcastType);
1206
}
1207
Builder.CreateStore(ivarVal, ReturnValue.withElementType(bitcastType));
1208
1209
// Make sure we don't do an autorelease.
1210
AutoreleaseResult = false;
1211
return;
1212
}
1213
1214
case PropertyImplStrategy::GetSetProperty: {
1215
llvm::FunctionCallee getPropertyFn =
1216
CGM.getObjCRuntime().GetPropertyGetFunction();
1217
if (!getPropertyFn) {
1218
CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
1219
return;
1220
}
1221
CGCallee callee = CGCallee::forDirect(getPropertyFn);
1222
1223
// Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1224
// FIXME: Can't this be simpler? This might even be worse than the
1225
// corresponding gcc code.
1226
llvm::Value *cmd = emitCmdValueForGetterSetterBody(*this, getterMethod);
1227
llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1228
llvm::Value *ivarOffset =
1229
EmitIvarOffsetAsPointerDiff(classImpl->getClassInterface(), ivar);
1230
1231
CallArgList args;
1232
args.add(RValue::get(self), getContext().getObjCIdType());
1233
args.add(RValue::get(cmd), getContext().getObjCSelType());
1234
args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1235
args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1236
getContext().BoolTy);
1237
1238
// FIXME: We shouldn't need to get the function info here, the
1239
// runtime already should have computed it to build the function.
1240
llvm::CallBase *CallInstruction;
1241
RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall(
1242
getContext().getObjCIdType(), args),
1243
callee, ReturnValueSlot(), args, &CallInstruction);
1244
if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
1245
call->setTailCall();
1246
1247
// We need to fix the type here. Ivars with copy & retain are
1248
// always objects so we don't need to worry about complex or
1249
// aggregates.
1250
RV = RValue::get(Builder.CreateBitCast(
1251
RV.getScalarVal(),
1252
getTypes().ConvertType(getterMethod->getReturnType())));
1253
1254
EmitReturnOfRValue(RV, propType);
1255
1256
// objc_getProperty does an autorelease, so we should suppress ours.
1257
AutoreleaseResult = false;
1258
1259
return;
1260
}
1261
1262
case PropertyImplStrategy::CopyStruct:
1263
emitStructGetterCall(*this, ivar, strategy.isAtomic(),
1264
strategy.hasStrongMember());
1265
return;
1266
1267
case PropertyImplStrategy::Expression:
1268
case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1269
LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1270
1271
QualType ivarType = ivar->getType();
1272
switch (getEvaluationKind(ivarType)) {
1273
case TEK_Complex: {
1274
ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
1275
EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
1276
/*init*/ true);
1277
return;
1278
}
1279
case TEK_Aggregate: {
1280
// The return value slot is guaranteed to not be aliased, but
1281
// that's not necessarily the same as "on the stack", so
1282
// we still potentially need objc_memmove_collectable.
1283
EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1284
/* Src= */ LV, ivarType, getOverlapForReturnValue());
1285
return;
1286
}
1287
case TEK_Scalar: {
1288
llvm::Value *value;
1289
if (propType->isReferenceType()) {
1290
value = LV.getAddress().emitRawPointer(*this);
1291
} else {
1292
// We want to load and autoreleaseReturnValue ARC __weak ivars.
1293
if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1294
if (getLangOpts().ObjCAutoRefCount) {
1295
value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1296
} else {
1297
value = EmitARCLoadWeak(LV.getAddress());
1298
}
1299
1300
// Otherwise we want to do a simple load, suppressing the
1301
// final autorelease.
1302
} else {
1303
value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1304
AutoreleaseResult = false;
1305
}
1306
1307
value = Builder.CreateBitCast(
1308
value, ConvertType(GetterMethodDecl->getReturnType()));
1309
}
1310
1311
EmitReturnOfRValue(RValue::get(value), propType);
1312
return;
1313
}
1314
}
1315
llvm_unreachable("bad evaluation kind");
1316
}
1317
1318
}
1319
llvm_unreachable("bad @property implementation strategy!");
1320
}
1321
1322
/// emitStructSetterCall - Call the runtime function to store the value
1323
/// from the first formal parameter into the given ivar.
1324
static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1325
ObjCIvarDecl *ivar) {
1326
// objc_copyStruct (&structIvar, &Arg,
1327
// sizeof (struct something), true, false);
1328
CallArgList args;
1329
1330
// The first argument is the address of the ivar.
1331
llvm::Value *ivarAddr =
1332
CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1333
.getPointer(CGF);
1334
ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1335
args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1336
1337
// The second argument is the address of the parameter variable.
1338
ParmVarDecl *argVar = *OMD->param_begin();
1339
DeclRefExpr argRef(CGF.getContext(), argVar, false,
1340
argVar->getType().getNonReferenceType(), VK_LValue,
1341
SourceLocation());
1342
llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1343
args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1344
1345
// The third argument is the sizeof the type.
1346
llvm::Value *size =
1347
CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1348
args.add(RValue::get(size), CGF.getContext().getSizeType());
1349
1350
// The fourth argument is the 'isAtomic' flag.
1351
args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1352
1353
// The fifth argument is the 'hasStrong' flag.
1354
// FIXME: should this really always be false?
1355
args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1356
1357
llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1358
CGCallee callee = CGCallee::forDirect(fn);
1359
CGF.EmitCall(
1360
CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1361
callee, ReturnValueSlot(), args);
1362
}
1363
1364
/// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1365
/// the value from the first formal parameter into the given ivar, using
1366
/// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1367
static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1368
ObjCMethodDecl *OMD,
1369
ObjCIvarDecl *ivar,
1370
llvm::Constant *AtomicHelperFn) {
1371
// objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1372
// AtomicHelperFn);
1373
CallArgList args;
1374
1375
// The first argument is the address of the ivar.
1376
llvm::Value *ivarAddr =
1377
CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1378
.getPointer(CGF);
1379
args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1380
1381
// The second argument is the address of the parameter variable.
1382
ParmVarDecl *argVar = *OMD->param_begin();
1383
DeclRefExpr argRef(CGF.getContext(), argVar, false,
1384
argVar->getType().getNonReferenceType(), VK_LValue,
1385
SourceLocation());
1386
llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1387
args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1388
1389
// Third argument is the helper function.
1390
args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1391
1392
llvm::FunctionCallee fn =
1393
CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1394
CGCallee callee = CGCallee::forDirect(fn);
1395
CGF.EmitCall(
1396
CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1397
callee, ReturnValueSlot(), args);
1398
}
1399
1400
1401
static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1402
Expr *setter = PID->getSetterCXXAssignment();
1403
if (!setter) return true;
1404
1405
// Sema only makes only of these when the ivar has a C++ class type,
1406
// so the form is pretty constrained.
1407
1408
// An operator call is trivial if the function it calls is trivial.
1409
// This also implies that there's nothing non-trivial going on with
1410
// the arguments, because operator= can only be trivial if it's a
1411
// synthesized assignment operator and therefore both parameters are
1412
// references.
1413
if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1414
if (const FunctionDecl *callee
1415
= dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1416
if (callee->isTrivial())
1417
return true;
1418
return false;
1419
}
1420
1421
assert(isa<ExprWithCleanups>(setter));
1422
return false;
1423
}
1424
1425
static bool UseOptimizedSetter(CodeGenModule &CGM) {
1426
if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1427
return false;
1428
return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1429
}
1430
1431
void
1432
CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1433
const ObjCPropertyImplDecl *propImpl,
1434
llvm::Constant *AtomicHelperFn) {
1435
ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1436
ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl();
1437
1438
if (ivar->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
1439
ParmVarDecl *PVD = *setterMethod->param_begin();
1440
if (!AtomicHelperFn) {
1441
// Call the move assignment operator instead of calling the copy
1442
// assignment operator and destructor.
1443
LValue Dst = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar,
1444
/*quals*/ 0);
1445
LValue Src = MakeAddrLValue(GetAddrOfLocalVar(PVD), ivar->getType());
1446
callCStructMoveAssignmentOperator(Dst, Src);
1447
} else {
1448
// If atomic, assignment is called via a locking api.
1449
emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, AtomicHelperFn);
1450
}
1451
// Decativate the destructor for the setter parameter.
1452
DeactivateCleanupBlock(CalleeDestructedParamCleanups[PVD], AllocaInsertPt);
1453
return;
1454
}
1455
1456
// Just use the setter expression if Sema gave us one and it's
1457
// non-trivial.
1458
if (!hasTrivialSetExpr(propImpl)) {
1459
if (!AtomicHelperFn)
1460
// If non-atomic, assignment is called directly.
1461
EmitStmt(propImpl->getSetterCXXAssignment());
1462
else
1463
// If atomic, assignment is called via a locking api.
1464
emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1465
AtomicHelperFn);
1466
return;
1467
}
1468
1469
PropertyImplStrategy strategy(CGM, propImpl);
1470
switch (strategy.getKind()) {
1471
case PropertyImplStrategy::Native: {
1472
// We don't need to do anything for a zero-size struct.
1473
if (strategy.getIvarSize().isZero())
1474
return;
1475
1476
Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1477
1478
LValue ivarLValue =
1479
EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1480
Address ivarAddr = ivarLValue.getAddress();
1481
1482
// Currently, all atomic accesses have to be through integer
1483
// types, so there's no point in trying to pick a prettier type.
1484
llvm::Type *castType = llvm::Type::getIntNTy(
1485
getLLVMContext(), getContext().toBits(strategy.getIvarSize()));
1486
1487
// Cast both arguments to the chosen operation type.
1488
argAddr = argAddr.withElementType(castType);
1489
ivarAddr = ivarAddr.withElementType(castType);
1490
1491
llvm::Value *load = Builder.CreateLoad(argAddr);
1492
1493
// Perform an atomic store. There are no memory ordering requirements.
1494
llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1495
store->setAtomic(llvm::AtomicOrdering::Unordered);
1496
return;
1497
}
1498
1499
case PropertyImplStrategy::GetSetProperty:
1500
case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1501
1502
llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
1503
llvm::FunctionCallee setPropertyFn = nullptr;
1504
if (UseOptimizedSetter(CGM)) {
1505
// 10.8 and iOS 6.0 code and GC is off
1506
setOptimizedPropertyFn =
1507
CGM.getObjCRuntime().GetOptimizedPropertySetFunction(
1508
strategy.isAtomic(), strategy.isCopy());
1509
if (!setOptimizedPropertyFn) {
1510
CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1511
return;
1512
}
1513
}
1514
else {
1515
setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1516
if (!setPropertyFn) {
1517
CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1518
return;
1519
}
1520
}
1521
1522
// Emit objc_setProperty((id) self, _cmd, offset, arg,
1523
// <is-atomic>, <is-copy>).
1524
llvm::Value *cmd = emitCmdValueForGetterSetterBody(*this, setterMethod);
1525
llvm::Value *self =
1526
Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1527
llvm::Value *ivarOffset =
1528
EmitIvarOffsetAsPointerDiff(classImpl->getClassInterface(), ivar);
1529
Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1530
llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1531
arg = Builder.CreateBitCast(arg, VoidPtrTy);
1532
1533
CallArgList args;
1534
args.add(RValue::get(self), getContext().getObjCIdType());
1535
args.add(RValue::get(cmd), getContext().getObjCSelType());
1536
if (setOptimizedPropertyFn) {
1537
args.add(RValue::get(arg), getContext().getObjCIdType());
1538
args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1539
CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1540
EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1541
callee, ReturnValueSlot(), args);
1542
} else {
1543
args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1544
args.add(RValue::get(arg), getContext().getObjCIdType());
1545
args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1546
getContext().BoolTy);
1547
args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1548
getContext().BoolTy);
1549
// FIXME: We shouldn't need to get the function info here, the runtime
1550
// already should have computed it to build the function.
1551
CGCallee callee = CGCallee::forDirect(setPropertyFn);
1552
EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1553
callee, ReturnValueSlot(), args);
1554
}
1555
1556
return;
1557
}
1558
1559
case PropertyImplStrategy::CopyStruct:
1560
emitStructSetterCall(*this, setterMethod, ivar);
1561
return;
1562
1563
case PropertyImplStrategy::Expression:
1564
break;
1565
}
1566
1567
// Otherwise, fake up some ASTs and emit a normal assignment.
1568
ValueDecl *selfDecl = setterMethod->getSelfDecl();
1569
DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
1570
VK_LValue, SourceLocation());
1571
ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, selfDecl->getType(),
1572
CK_LValueToRValue, &self, VK_PRValue,
1573
FPOptionsOverride());
1574
ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1575
SourceLocation(), SourceLocation(),
1576
&selfLoad, true, true);
1577
1578
ParmVarDecl *argDecl = *setterMethod->param_begin();
1579
QualType argType = argDecl->getType().getNonReferenceType();
1580
DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
1581
SourceLocation());
1582
ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1583
argType.getUnqualifiedType(), CK_LValueToRValue,
1584
&arg, VK_PRValue, FPOptionsOverride());
1585
1586
// The property type can differ from the ivar type in some situations with
1587
// Objective-C pointer types, we can always bit cast the RHS in these cases.
1588
// The following absurdity is just to ensure well-formed IR.
1589
CastKind argCK = CK_NoOp;
1590
if (ivarRef.getType()->isObjCObjectPointerType()) {
1591
if (argLoad.getType()->isObjCObjectPointerType())
1592
argCK = CK_BitCast;
1593
else if (argLoad.getType()->isBlockPointerType())
1594
argCK = CK_BlockPointerToObjCPointerCast;
1595
else
1596
argCK = CK_CPointerToObjCPointerCast;
1597
} else if (ivarRef.getType()->isBlockPointerType()) {
1598
if (argLoad.getType()->isBlockPointerType())
1599
argCK = CK_BitCast;
1600
else
1601
argCK = CK_AnyPointerToBlockPointerCast;
1602
} else if (ivarRef.getType()->isPointerType()) {
1603
argCK = CK_BitCast;
1604
} else if (argLoad.getType()->isAtomicType() &&
1605
!ivarRef.getType()->isAtomicType()) {
1606
argCK = CK_AtomicToNonAtomic;
1607
} else if (!argLoad.getType()->isAtomicType() &&
1608
ivarRef.getType()->isAtomicType()) {
1609
argCK = CK_NonAtomicToAtomic;
1610
}
1611
ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, ivarRef.getType(), argCK,
1612
&argLoad, VK_PRValue, FPOptionsOverride());
1613
Expr *finalArg = &argLoad;
1614
if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1615
argLoad.getType()))
1616
finalArg = &argCast;
1617
1618
BinaryOperator *assign = BinaryOperator::Create(
1619
getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(),
1620
VK_PRValue, OK_Ordinary, SourceLocation(), FPOptionsOverride());
1621
EmitStmt(assign);
1622
}
1623
1624
/// Generate an Objective-C property setter function.
1625
///
1626
/// The given Decl must be an ObjCImplementationDecl. \@synthesize
1627
/// is illegal within a category.
1628
void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1629
const ObjCPropertyImplDecl *PID) {
1630
llvm::Constant *AtomicHelperFn =
1631
CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1632
ObjCMethodDecl *OMD = PID->getSetterMethodDecl();
1633
assert(OMD && "Invalid call to generate setter (empty method)");
1634
StartObjCMethod(OMD, IMP->getClassInterface());
1635
1636
generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1637
1638
FinishFunction(OMD->getEndLoc());
1639
}
1640
1641
namespace {
1642
struct DestroyIvar final : EHScopeStack::Cleanup {
1643
private:
1644
llvm::Value *addr;
1645
const ObjCIvarDecl *ivar;
1646
CodeGenFunction::Destroyer *destroyer;
1647
bool useEHCleanupForArray;
1648
public:
1649
DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1650
CodeGenFunction::Destroyer *destroyer,
1651
bool useEHCleanupForArray)
1652
: addr(addr), ivar(ivar), destroyer(destroyer),
1653
useEHCleanupForArray(useEHCleanupForArray) {}
1654
1655
void Emit(CodeGenFunction &CGF, Flags flags) override {
1656
LValue lvalue
1657
= CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1658
CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1659
flags.isForNormalCleanup() && useEHCleanupForArray);
1660
}
1661
};
1662
}
1663
1664
/// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1665
static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1666
Address addr,
1667
QualType type) {
1668
llvm::Value *null = getNullForVariable(addr);
1669
CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1670
}
1671
1672
static void emitCXXDestructMethod(CodeGenFunction &CGF,
1673
ObjCImplementationDecl *impl) {
1674
CodeGenFunction::RunCleanupsScope scope(CGF);
1675
1676
llvm::Value *self = CGF.LoadObjCSelf();
1677
1678
const ObjCInterfaceDecl *iface = impl->getClassInterface();
1679
for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1680
ivar; ivar = ivar->getNextIvar()) {
1681
QualType type = ivar->getType();
1682
1683
// Check whether the ivar is a destructible type.
1684
QualType::DestructionKind dtorKind = type.isDestructedType();
1685
if (!dtorKind) continue;
1686
1687
CodeGenFunction::Destroyer *destroyer = nullptr;
1688
1689
// Use a call to objc_storeStrong to destroy strong ivars, for the
1690
// general benefit of the tools.
1691
if (dtorKind == QualType::DK_objc_strong_lifetime) {
1692
destroyer = destroyARCStrongWithStore;
1693
1694
// Otherwise use the default for the destruction kind.
1695
} else {
1696
destroyer = CGF.getDestroyer(dtorKind);
1697
}
1698
1699
CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1700
1701
CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1702
cleanupKind & EHCleanup);
1703
}
1704
1705
assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1706
}
1707
1708
void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1709
ObjCMethodDecl *MD,
1710
bool ctor) {
1711
MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1712
StartObjCMethod(MD, IMP->getClassInterface());
1713
1714
// Emit .cxx_construct.
1715
if (ctor) {
1716
// Suppress the final autorelease in ARC.
1717
AutoreleaseResult = false;
1718
1719
for (const auto *IvarInit : IMP->inits()) {
1720
FieldDecl *Field = IvarInit->getAnyMember();
1721
ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1722
LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1723
LoadObjCSelf(), Ivar, 0);
1724
EmitAggExpr(IvarInit->getInit(),
1725
AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1726
AggValueSlot::DoesNotNeedGCBarriers,
1727
AggValueSlot::IsNotAliased,
1728
AggValueSlot::DoesNotOverlap));
1729
}
1730
// constructor returns 'self'.
1731
CodeGenTypes &Types = CGM.getTypes();
1732
QualType IdTy(CGM.getContext().getObjCIdType());
1733
llvm::Value *SelfAsId =
1734
Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1735
EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1736
1737
// Emit .cxx_destruct.
1738
} else {
1739
emitCXXDestructMethod(*this, IMP);
1740
}
1741
FinishFunction();
1742
}
1743
1744
llvm::Value *CodeGenFunction::LoadObjCSelf() {
1745
VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1746
DeclRefExpr DRE(getContext(), Self,
1747
/*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1748
Self->getType(), VK_LValue, SourceLocation());
1749
return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1750
}
1751
1752
QualType CodeGenFunction::TypeOfSelfObject() {
1753
const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1754
ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1755
const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1756
getContext().getCanonicalType(selfDecl->getType()));
1757
return PTy->getPointeeType();
1758
}
1759
1760
void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1761
llvm::FunctionCallee EnumerationMutationFnPtr =
1762
CGM.getObjCRuntime().EnumerationMutationFunction();
1763
if (!EnumerationMutationFnPtr) {
1764
CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1765
return;
1766
}
1767
CGCallee EnumerationMutationFn =
1768
CGCallee::forDirect(EnumerationMutationFnPtr);
1769
1770
CGDebugInfo *DI = getDebugInfo();
1771
if (DI)
1772
DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1773
1774
RunCleanupsScope ForScope(*this);
1775
1776
// The local variable comes into scope immediately.
1777
AutoVarEmission variable = AutoVarEmission::invalid();
1778
if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1779
variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1780
1781
JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1782
1783
// Fast enumeration state.
1784
QualType StateTy = CGM.getObjCFastEnumerationStateType();
1785
Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1786
EmitNullInitialization(StatePtr, StateTy);
1787
1788
// Number of elements in the items array.
1789
static const unsigned NumItems = 16;
1790
1791
// Fetch the countByEnumeratingWithState:objects:count: selector.
1792
const IdentifierInfo *II[] = {
1793
&CGM.getContext().Idents.get("countByEnumeratingWithState"),
1794
&CGM.getContext().Idents.get("objects"),
1795
&CGM.getContext().Idents.get("count")};
1796
Selector FastEnumSel =
1797
CGM.getContext().Selectors.getSelector(std::size(II), &II[0]);
1798
1799
QualType ItemsTy = getContext().getConstantArrayType(
1800
getContext().getObjCIdType(), llvm::APInt(32, NumItems), nullptr,
1801
ArraySizeModifier::Normal, 0);
1802
Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1803
1804
// Emit the collection pointer. In ARC, we do a retain.
1805
llvm::Value *Collection;
1806
if (getLangOpts().ObjCAutoRefCount) {
1807
Collection = EmitARCRetainScalarExpr(S.getCollection());
1808
1809
// Enter a cleanup to do the release.
1810
EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1811
} else {
1812
Collection = EmitScalarExpr(S.getCollection());
1813
}
1814
1815
// The 'continue' label needs to appear within the cleanup for the
1816
// collection object.
1817
JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1818
1819
// Send it our message:
1820
CallArgList Args;
1821
1822
// The first argument is a temporary of the enumeration-state type.
1823
Args.add(RValue::get(StatePtr, *this), getContext().getPointerType(StateTy));
1824
1825
// The second argument is a temporary array with space for NumItems
1826
// pointers. We'll actually be loading elements from the array
1827
// pointer written into the control state; this buffer is so that
1828
// collections that *aren't* backed by arrays can still queue up
1829
// batches of elements.
1830
Args.add(RValue::get(ItemsPtr, *this), getContext().getPointerType(ItemsTy));
1831
1832
// The third argument is the capacity of that temporary array.
1833
llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1834
llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1835
Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1836
1837
// Start the enumeration.
1838
RValue CountRV =
1839
CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1840
getContext().getNSUIntegerType(),
1841
FastEnumSel, Collection, Args);
1842
1843
// The initial number of objects that were returned in the buffer.
1844
llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1845
1846
llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1847
llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1848
1849
llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1850
1851
// If the limit pointer was zero to begin with, the collection is
1852
// empty; skip all this. Set the branch weight assuming this has the same
1853
// probability of exiting the loop as any other loop exit.
1854
uint64_t EntryCount = getCurrentProfileCount();
1855
Builder.CreateCondBr(
1856
Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1857
LoopInitBB,
1858
createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1859
1860
// Otherwise, initialize the loop.
1861
EmitBlock(LoopInitBB);
1862
1863
// Save the initial mutations value. This is the value at an
1864
// address that was written into the state object by
1865
// countByEnumeratingWithState:objects:count:.
1866
Address StateMutationsPtrPtr =
1867
Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1868
llvm::Value *StateMutationsPtr
1869
= Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1870
1871
llvm::Type *UnsignedLongTy = ConvertType(getContext().UnsignedLongTy);
1872
llvm::Value *initialMutations =
1873
Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1874
getPointerAlign(), "forcoll.initial-mutations");
1875
1876
// Start looping. This is the point we return to whenever we have a
1877
// fresh, non-empty batch of objects.
1878
llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1879
EmitBlock(LoopBodyBB);
1880
1881
// The current index into the buffer.
1882
llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1883
index->addIncoming(zero, LoopInitBB);
1884
1885
// The current buffer size.
1886
llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1887
count->addIncoming(initialBufferLimit, LoopInitBB);
1888
1889
incrementProfileCounter(&S);
1890
1891
// Check whether the mutations value has changed from where it was
1892
// at start. StateMutationsPtr should actually be invariant between
1893
// refreshes.
1894
StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1895
llvm::Value *currentMutations
1896
= Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1897
getPointerAlign(), "statemutations");
1898
1899
llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1900
llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1901
1902
Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1903
WasNotMutatedBB, WasMutatedBB);
1904
1905
// If so, call the enumeration-mutation function.
1906
EmitBlock(WasMutatedBB);
1907
llvm::Type *ObjCIdType = ConvertType(getContext().getObjCIdType());
1908
llvm::Value *V =
1909
Builder.CreateBitCast(Collection, ObjCIdType);
1910
CallArgList Args2;
1911
Args2.add(RValue::get(V), getContext().getObjCIdType());
1912
// FIXME: We shouldn't need to get the function info here, the runtime already
1913
// should have computed it to build the function.
1914
EmitCall(
1915
CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1916
EnumerationMutationFn, ReturnValueSlot(), Args2);
1917
1918
// Otherwise, or if the mutation function returns, just continue.
1919
EmitBlock(WasNotMutatedBB);
1920
1921
// Initialize the element variable.
1922
RunCleanupsScope elementVariableScope(*this);
1923
bool elementIsVariable;
1924
LValue elementLValue;
1925
QualType elementType;
1926
if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1927
// Initialize the variable, in case it's a __block variable or something.
1928
EmitAutoVarInit(variable);
1929
1930
const VarDecl *D = cast<VarDecl>(SD->getSingleDecl());
1931
DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
1932
D->getType(), VK_LValue, SourceLocation());
1933
elementLValue = EmitLValue(&tempDRE);
1934
elementType = D->getType();
1935
elementIsVariable = true;
1936
1937
if (D->isARCPseudoStrong())
1938
elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1939
} else {
1940
elementLValue = LValue(); // suppress warning
1941
elementType = cast<Expr>(S.getElement())->getType();
1942
elementIsVariable = false;
1943
}
1944
llvm::Type *convertedElementType = ConvertType(elementType);
1945
1946
// Fetch the buffer out of the enumeration state.
1947
// TODO: this pointer should actually be invariant between
1948
// refreshes, which would help us do certain loop optimizations.
1949
Address StateItemsPtr =
1950
Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1951
llvm::Value *EnumStateItems =
1952
Builder.CreateLoad(StateItemsPtr, "stateitems");
1953
1954
// Fetch the value at the current index from the buffer.
1955
llvm::Value *CurrentItemPtr = Builder.CreateInBoundsGEP(
1956
ObjCIdType, EnumStateItems, index, "currentitem.ptr");
1957
llvm::Value *CurrentItem =
1958
Builder.CreateAlignedLoad(ObjCIdType, CurrentItemPtr, getPointerAlign());
1959
1960
if (SanOpts.has(SanitizerKind::ObjCCast)) {
1961
// Before using an item from the collection, check that the implicit cast
1962
// from id to the element type is valid. This is done with instrumentation
1963
// roughly corresponding to:
1964
//
1965
// if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ }
1966
const ObjCObjectPointerType *ObjPtrTy =
1967
elementType->getAsObjCInterfacePointerType();
1968
const ObjCInterfaceType *InterfaceTy =
1969
ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr;
1970
if (InterfaceTy) {
1971
SanitizerScope SanScope(this);
1972
auto &C = CGM.getContext();
1973
assert(InterfaceTy->getDecl() && "No decl for ObjC interface type");
1974
Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C);
1975
CallArgList IsKindOfClassArgs;
1976
llvm::Value *Cls =
1977
CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl());
1978
IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType());
1979
llvm::Value *IsClass =
1980
CGM.getObjCRuntime()
1981
.GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy,
1982
IsKindOfClassSel, CurrentItem,
1983
IsKindOfClassArgs)
1984
.getScalarVal();
1985
llvm::Constant *StaticData[] = {
1986
EmitCheckSourceLocation(S.getBeginLoc()),
1987
EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))};
1988
EmitCheck({{IsClass, SanitizerKind::ObjCCast}},
1989
SanitizerHandler::InvalidObjCCast,
1990
ArrayRef<llvm::Constant *>(StaticData), CurrentItem);
1991
}
1992
}
1993
1994
// Cast that value to the right type.
1995
CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1996
"currentitem");
1997
1998
// Make sure we have an l-value. Yes, this gets evaluated every
1999
// time through the loop.
2000
if (!elementIsVariable) {
2001
elementLValue = EmitLValue(cast<Expr>(S.getElement()));
2002
EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
2003
} else {
2004
EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
2005
/*isInit*/ true);
2006
}
2007
2008
// If we do have an element variable, this assignment is the end of
2009
// its initialization.
2010
if (elementIsVariable)
2011
EmitAutoVarCleanups(variable);
2012
2013
// Perform the loop body, setting up break and continue labels.
2014
BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
2015
{
2016
RunCleanupsScope Scope(*this);
2017
EmitStmt(S.getBody());
2018
}
2019
BreakContinueStack.pop_back();
2020
2021
// Destroy the element variable now.
2022
elementVariableScope.ForceCleanup();
2023
2024
// Check whether there are more elements.
2025
EmitBlock(AfterBody.getBlock());
2026
2027
llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
2028
2029
// First we check in the local buffer.
2030
llvm::Value *indexPlusOne =
2031
Builder.CreateNUWAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
2032
2033
// If we haven't overrun the buffer yet, we can continue.
2034
// Set the branch weights based on the simplifying assumption that this is
2035
// like a while-loop, i.e., ignoring that the false branch fetches more
2036
// elements and then returns to the loop.
2037
Builder.CreateCondBr(
2038
Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
2039
createProfileWeights(getProfileCount(S.getBody()), EntryCount));
2040
2041
index->addIncoming(indexPlusOne, AfterBody.getBlock());
2042
count->addIncoming(count, AfterBody.getBlock());
2043
2044
// Otherwise, we have to fetch more elements.
2045
EmitBlock(FetchMoreBB);
2046
2047
CountRV =
2048
CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2049
getContext().getNSUIntegerType(),
2050
FastEnumSel, Collection, Args);
2051
2052
// If we got a zero count, we're done.
2053
llvm::Value *refetchCount = CountRV.getScalarVal();
2054
2055
// (note that the message send might split FetchMoreBB)
2056
index->addIncoming(zero, Builder.GetInsertBlock());
2057
count->addIncoming(refetchCount, Builder.GetInsertBlock());
2058
2059
Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
2060
EmptyBB, LoopBodyBB);
2061
2062
// No more elements.
2063
EmitBlock(EmptyBB);
2064
2065
if (!elementIsVariable) {
2066
// If the element was not a declaration, set it to be null.
2067
2068
llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
2069
elementLValue = EmitLValue(cast<Expr>(S.getElement()));
2070
EmitStoreThroughLValue(RValue::get(null), elementLValue);
2071
}
2072
2073
if (DI)
2074
DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
2075
2076
ForScope.ForceCleanup();
2077
EmitBlock(LoopEnd.getBlock());
2078
}
2079
2080
void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
2081
CGM.getObjCRuntime().EmitTryStmt(*this, S);
2082
}
2083
2084
void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
2085
CGM.getObjCRuntime().EmitThrowStmt(*this, S);
2086
}
2087
2088
void CodeGenFunction::EmitObjCAtSynchronizedStmt(
2089
const ObjCAtSynchronizedStmt &S) {
2090
CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
2091
}
2092
2093
namespace {
2094
struct CallObjCRelease final : EHScopeStack::Cleanup {
2095
CallObjCRelease(llvm::Value *object) : object(object) {}
2096
llvm::Value *object;
2097
2098
void Emit(CodeGenFunction &CGF, Flags flags) override {
2099
// Releases at the end of the full-expression are imprecise.
2100
CGF.EmitARCRelease(object, ARCImpreciseLifetime);
2101
}
2102
};
2103
}
2104
2105
/// Produce the code for a CK_ARCConsumeObject. Does a primitive
2106
/// release at the end of the full-expression.
2107
llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
2108
llvm::Value *object) {
2109
// If we're in a conditional branch, we need to make the cleanup
2110
// conditional.
2111
pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
2112
return object;
2113
}
2114
2115
llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
2116
llvm::Value *value) {
2117
return EmitARCRetainAutorelease(type, value);
2118
}
2119
2120
/// Given a number of pointers, inform the optimizer that they're
2121
/// being intrinsically used up until this point in the program.
2122
void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
2123
llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
2124
if (!fn)
2125
fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);
2126
2127
// This isn't really a "runtime" function, but as an intrinsic it
2128
// doesn't really matter as long as we align things up.
2129
EmitNounwindRuntimeCall(fn, values);
2130
}
2131
2132
/// Emit a call to "clang.arc.noop.use", which consumes the result of a call
2133
/// that has operand bundle "clang.arc.attachedcall".
2134
void CodeGenFunction::EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values) {
2135
llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_noop_use;
2136
if (!fn)
2137
fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_noop_use);
2138
EmitNounwindRuntimeCall(fn, values);
2139
}
2140
2141
static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) {
2142
if (auto *F = dyn_cast<llvm::Function>(RTF)) {
2143
// If the target runtime doesn't naturally support ARC, emit weak
2144
// references to the runtime support library. We don't really
2145
// permit this to fail, but we need a particular relocation style.
2146
if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
2147
!CGM.getTriple().isOSBinFormatCOFF()) {
2148
F->setLinkage(llvm::Function::ExternalWeakLinkage);
2149
}
2150
}
2151
}
2152
2153
static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM,
2154
llvm::FunctionCallee RTF) {
2155
setARCRuntimeFunctionLinkage(CGM, RTF.getCallee());
2156
}
2157
2158
static llvm::Function *getARCIntrinsic(llvm::Intrinsic::ID IntID,
2159
CodeGenModule &CGM) {
2160
llvm::Function *fn = CGM.getIntrinsic(IntID);
2161
setARCRuntimeFunctionLinkage(CGM, fn);
2162
return fn;
2163
}
2164
2165
/// Perform an operation having the signature
2166
/// i8* (i8*)
2167
/// where a null input causes a no-op and returns null.
2168
static llvm::Value *emitARCValueOperation(
2169
CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
2170
llvm::Function *&fn, llvm::Intrinsic::ID IntID,
2171
llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
2172
if (isa<llvm::ConstantPointerNull>(value))
2173
return value;
2174
2175
if (!fn)
2176
fn = getARCIntrinsic(IntID, CGF.CGM);
2177
2178
// Cast the argument to 'id'.
2179
llvm::Type *origType = returnType ? returnType : value->getType();
2180
value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2181
2182
// Call the function.
2183
llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
2184
call->setTailCallKind(tailKind);
2185
2186
// Cast the result back to the original type.
2187
return CGF.Builder.CreateBitCast(call, origType);
2188
}
2189
2190
/// Perform an operation having the following signature:
2191
/// i8* (i8**)
2192
static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr,
2193
llvm::Function *&fn,
2194
llvm::Intrinsic::ID IntID) {
2195
if (!fn)
2196
fn = getARCIntrinsic(IntID, CGF.CGM);
2197
2198
return CGF.EmitNounwindRuntimeCall(fn, addr.emitRawPointer(CGF));
2199
}
2200
2201
/// Perform an operation having the following signature:
2202
/// i8* (i8**, i8*)
2203
static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr,
2204
llvm::Value *value,
2205
llvm::Function *&fn,
2206
llvm::Intrinsic::ID IntID,
2207
bool ignored) {
2208
assert(addr.getElementType() == value->getType());
2209
2210
if (!fn)
2211
fn = getARCIntrinsic(IntID, CGF.CGM);
2212
2213
llvm::Type *origType = value->getType();
2214
2215
llvm::Value *args[] = {
2216
CGF.Builder.CreateBitCast(addr.emitRawPointer(CGF), CGF.Int8PtrPtrTy),
2217
CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)};
2218
llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
2219
2220
if (ignored) return nullptr;
2221
2222
return CGF.Builder.CreateBitCast(result, origType);
2223
}
2224
2225
/// Perform an operation having the following signature:
2226
/// void (i8**, i8**)
2227
static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src,
2228
llvm::Function *&fn,
2229
llvm::Intrinsic::ID IntID) {
2230
assert(dst.getType() == src.getType());
2231
2232
if (!fn)
2233
fn = getARCIntrinsic(IntID, CGF.CGM);
2234
2235
llvm::Value *args[] = {
2236
CGF.Builder.CreateBitCast(dst.emitRawPointer(CGF), CGF.Int8PtrPtrTy),
2237
CGF.Builder.CreateBitCast(src.emitRawPointer(CGF), CGF.Int8PtrPtrTy)};
2238
CGF.EmitNounwindRuntimeCall(fn, args);
2239
}
2240
2241
/// Perform an operation having the signature
2242
/// i8* (i8*)
2243
/// where a null input causes a no-op and returns null.
2244
static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF,
2245
llvm::Value *value,
2246
llvm::Type *returnType,
2247
llvm::FunctionCallee &fn,
2248
StringRef fnName) {
2249
if (isa<llvm::ConstantPointerNull>(value))
2250
return value;
2251
2252
if (!fn) {
2253
llvm::FunctionType *fnType =
2254
llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
2255
fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName);
2256
2257
// We have Native ARC, so set nonlazybind attribute for performance
2258
if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2259
if (fnName == "objc_retain")
2260
f->addFnAttr(llvm::Attribute::NonLazyBind);
2261
}
2262
2263
// Cast the argument to 'id'.
2264
llvm::Type *origType = returnType ? returnType : value->getType();
2265
value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2266
2267
// Call the function.
2268
llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value);
2269
2270
// Mark calls to objc_autorelease as tail on the assumption that methods
2271
// overriding autorelease do not touch anything on the stack.
2272
if (fnName == "objc_autorelease")
2273
if (auto *Call = dyn_cast<llvm::CallInst>(Inst))
2274
Call->setTailCall();
2275
2276
// Cast the result back to the original type.
2277
return CGF.Builder.CreateBitCast(Inst, origType);
2278
}
2279
2280
/// Produce the code to do a retain. Based on the type, calls one of:
2281
/// call i8* \@objc_retain(i8* %value)
2282
/// call i8* \@objc_retainBlock(i8* %value)
2283
llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
2284
if (type->isBlockPointerType())
2285
return EmitARCRetainBlock(value, /*mandatory*/ false);
2286
else
2287
return EmitARCRetainNonBlock(value);
2288
}
2289
2290
/// Retain the given object, with normal retain semantics.
2291
/// call i8* \@objc_retain(i8* %value)
2292
llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
2293
return emitARCValueOperation(*this, value, nullptr,
2294
CGM.getObjCEntrypoints().objc_retain,
2295
llvm::Intrinsic::objc_retain);
2296
}
2297
2298
/// Retain the given block, with _Block_copy semantics.
2299
/// call i8* \@objc_retainBlock(i8* %value)
2300
///
2301
/// \param mandatory - If false, emit the call with metadata
2302
/// indicating that it's okay for the optimizer to eliminate this call
2303
/// if it can prove that the block never escapes except down the stack.
2304
llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
2305
bool mandatory) {
2306
llvm::Value *result
2307
= emitARCValueOperation(*this, value, nullptr,
2308
CGM.getObjCEntrypoints().objc_retainBlock,
2309
llvm::Intrinsic::objc_retainBlock);
2310
2311
// If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2312
// tell the optimizer that it doesn't need to do this copy if the
2313
// block doesn't escape, where being passed as an argument doesn't
2314
// count as escaping.
2315
if (!mandatory && isa<llvm::Instruction>(result)) {
2316
llvm::CallInst *call
2317
= cast<llvm::CallInst>(result->stripPointerCasts());
2318
assert(call->getCalledOperand() ==
2319
CGM.getObjCEntrypoints().objc_retainBlock);
2320
2321
call->setMetadata("clang.arc.copy_on_escape",
2322
llvm::MDNode::get(Builder.getContext(), std::nullopt));
2323
}
2324
2325
return result;
2326
}
2327
2328
static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2329
// Fetch the void(void) inline asm which marks that we're going to
2330
// do something with the autoreleased return value.
2331
llvm::InlineAsm *&marker
2332
= CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2333
if (!marker) {
2334
StringRef assembly
2335
= CGF.CGM.getTargetCodeGenInfo()
2336
.getARCRetainAutoreleasedReturnValueMarker();
2337
2338
// If we have an empty assembly string, there's nothing to do.
2339
if (assembly.empty()) {
2340
2341
// Otherwise, at -O0, build an inline asm that we're going to call
2342
// in a moment.
2343
} else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2344
llvm::FunctionType *type =
2345
llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2346
2347
marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2348
2349
// If we're at -O1 and above, we don't want to litter the code
2350
// with this marker yet, so leave a breadcrumb for the ARC
2351
// optimizer to pick up.
2352
} else {
2353
const char *retainRVMarkerKey = llvm::objcarc::getRVMarkerModuleFlagStr();
2354
if (!CGF.CGM.getModule().getModuleFlag(retainRVMarkerKey)) {
2355
auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly);
2356
CGF.CGM.getModule().addModuleFlag(llvm::Module::Error,
2357
retainRVMarkerKey, str);
2358
}
2359
}
2360
}
2361
2362
// Call the marker asm if we made one, which we do only at -O0.
2363
if (marker)
2364
CGF.Builder.CreateCall(marker, std::nullopt,
2365
CGF.getBundlesForFunclet(marker));
2366
}
2367
2368
static llvm::Value *emitOptimizedARCReturnCall(llvm::Value *value,
2369
bool IsRetainRV,
2370
CodeGenFunction &CGF) {
2371
emitAutoreleasedReturnValueMarker(CGF);
2372
2373
// Add operand bundle "clang.arc.attachedcall" to the call instead of emitting
2374
// retainRV or claimRV calls in the IR. We currently do this only when the
2375
// optimization level isn't -O0 since global-isel, which is currently run at
2376
// -O0, doesn't know about the operand bundle.
2377
ObjCEntrypoints &EPs = CGF.CGM.getObjCEntrypoints();
2378
llvm::Function *&EP = IsRetainRV
2379
? EPs.objc_retainAutoreleasedReturnValue
2380
: EPs.objc_unsafeClaimAutoreleasedReturnValue;
2381
llvm::Intrinsic::ID IID =
2382
IsRetainRV ? llvm::Intrinsic::objc_retainAutoreleasedReturnValue
2383
: llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue;
2384
EP = getARCIntrinsic(IID, CGF.CGM);
2385
2386
llvm::Triple::ArchType Arch = CGF.CGM.getTriple().getArch();
2387
2388
// FIXME: Do this on all targets and at -O0 too. This can be enabled only if
2389
// the target backend knows how to handle the operand bundle.
2390
if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2391
(Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::x86_64)) {
2392
llvm::Value *bundleArgs[] = {EP};
2393
llvm::OperandBundleDef OB("clang.arc.attachedcall", bundleArgs);
2394
auto *oldCall = cast<llvm::CallBase>(value);
2395
llvm::CallBase *newCall = llvm::CallBase::addOperandBundle(
2396
oldCall, llvm::LLVMContext::OB_clang_arc_attachedcall, OB, oldCall);
2397
newCall->copyMetadata(*oldCall);
2398
oldCall->replaceAllUsesWith(newCall);
2399
oldCall->eraseFromParent();
2400
CGF.EmitARCNoopIntrinsicUse(newCall);
2401
return newCall;
2402
}
2403
2404
bool isNoTail =
2405
CGF.CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail();
2406
llvm::CallInst::TailCallKind tailKind =
2407
isNoTail ? llvm::CallInst::TCK_NoTail : llvm::CallInst::TCK_None;
2408
return emitARCValueOperation(CGF, value, nullptr, EP, IID, tailKind);
2409
}
2410
2411
/// Retain the given object which is the result of a function call.
2412
/// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2413
///
2414
/// Yes, this function name is one character away from a different
2415
/// call with completely different semantics.
2416
llvm::Value *
2417
CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2418
return emitOptimizedARCReturnCall(value, true, *this);
2419
}
2420
2421
/// Claim a possibly-autoreleased return value at +0. This is only
2422
/// valid to do in contexts which do not rely on the retain to keep
2423
/// the object valid for all of its uses; for example, when
2424
/// the value is ignored, or when it is being assigned to an
2425
/// __unsafe_unretained variable.
2426
///
2427
/// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2428
llvm::Value *
2429
CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2430
return emitOptimizedARCReturnCall(value, false, *this);
2431
}
2432
2433
/// Release the given object.
2434
/// call void \@objc_release(i8* %value)
2435
void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2436
ARCPreciseLifetime_t precise) {
2437
if (isa<llvm::ConstantPointerNull>(value)) return;
2438
2439
llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
2440
if (!fn)
2441
fn = getARCIntrinsic(llvm::Intrinsic::objc_release, CGM);
2442
2443
// Cast the argument to 'id'.
2444
value = Builder.CreateBitCast(value, Int8PtrTy);
2445
2446
// Call objc_release.
2447
llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2448
2449
if (precise == ARCImpreciseLifetime) {
2450
call->setMetadata("clang.imprecise_release",
2451
llvm::MDNode::get(Builder.getContext(), std::nullopt));
2452
}
2453
}
2454
2455
/// Destroy a __strong variable.
2456
///
2457
/// At -O0, emit a call to store 'null' into the address;
2458
/// instrumenting tools prefer this because the address is exposed,
2459
/// but it's relatively cumbersome to optimize.
2460
///
2461
/// At -O1 and above, just load and call objc_release.
2462
///
2463
/// call void \@objc_storeStrong(i8** %addr, i8* null)
2464
void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2465
ARCPreciseLifetime_t precise) {
2466
if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2467
llvm::Value *null = getNullForVariable(addr);
2468
EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2469
return;
2470
}
2471
2472
llvm::Value *value = Builder.CreateLoad(addr);
2473
EmitARCRelease(value, precise);
2474
}
2475
2476
/// Store into a strong object. Always calls this:
2477
/// call void \@objc_storeStrong(i8** %addr, i8* %value)
2478
llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2479
llvm::Value *value,
2480
bool ignored) {
2481
assert(addr.getElementType() == value->getType());
2482
2483
llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2484
if (!fn)
2485
fn = getARCIntrinsic(llvm::Intrinsic::objc_storeStrong, CGM);
2486
2487
llvm::Value *args[] = {
2488
Builder.CreateBitCast(addr.emitRawPointer(*this), Int8PtrPtrTy),
2489
Builder.CreateBitCast(value, Int8PtrTy)};
2490
EmitNounwindRuntimeCall(fn, args);
2491
2492
if (ignored) return nullptr;
2493
return value;
2494
}
2495
2496
/// Store into a strong object. Sometimes calls this:
2497
/// call void \@objc_storeStrong(i8** %addr, i8* %value)
2498
/// Other times, breaks it down into components.
2499
llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2500
llvm::Value *newValue,
2501
bool ignored) {
2502
QualType type = dst.getType();
2503
bool isBlock = type->isBlockPointerType();
2504
2505
// Use a store barrier at -O0 unless this is a block type or the
2506
// lvalue is inadequately aligned.
2507
if (shouldUseFusedARCCalls() &&
2508
!isBlock &&
2509
(dst.getAlignment().isZero() ||
2510
dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2511
return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2512
}
2513
2514
// Otherwise, split it out.
2515
2516
// Retain the new value.
2517
newValue = EmitARCRetain(type, newValue);
2518
2519
// Read the old value.
2520
llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2521
2522
// Store. We do this before the release so that any deallocs won't
2523
// see the old value.
2524
EmitStoreOfScalar(newValue, dst);
2525
2526
// Finally, release the old value.
2527
EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2528
2529
return newValue;
2530
}
2531
2532
/// Autorelease the given object.
2533
/// call i8* \@objc_autorelease(i8* %value)
2534
llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2535
return emitARCValueOperation(*this, value, nullptr,
2536
CGM.getObjCEntrypoints().objc_autorelease,
2537
llvm::Intrinsic::objc_autorelease);
2538
}
2539
2540
/// Autorelease the given object.
2541
/// call i8* \@objc_autoreleaseReturnValue(i8* %value)
2542
llvm::Value *
2543
CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2544
return emitARCValueOperation(*this, value, nullptr,
2545
CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2546
llvm::Intrinsic::objc_autoreleaseReturnValue,
2547
llvm::CallInst::TCK_Tail);
2548
}
2549
2550
/// Do a fused retain/autorelease of the given object.
2551
/// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2552
llvm::Value *
2553
CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2554
return emitARCValueOperation(*this, value, nullptr,
2555
CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2556
llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
2557
llvm::CallInst::TCK_Tail);
2558
}
2559
2560
/// Do a fused retain/autorelease of the given object.
2561
/// call i8* \@objc_retainAutorelease(i8* %value)
2562
/// or
2563
/// %retain = call i8* \@objc_retainBlock(i8* %value)
2564
/// call i8* \@objc_autorelease(i8* %retain)
2565
llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2566
llvm::Value *value) {
2567
if (!type->isBlockPointerType())
2568
return EmitARCRetainAutoreleaseNonBlock(value);
2569
2570
if (isa<llvm::ConstantPointerNull>(value)) return value;
2571
2572
llvm::Type *origType = value->getType();
2573
value = Builder.CreateBitCast(value, Int8PtrTy);
2574
value = EmitARCRetainBlock(value, /*mandatory*/ true);
2575
value = EmitARCAutorelease(value);
2576
return Builder.CreateBitCast(value, origType);
2577
}
2578
2579
/// Do a fused retain/autorelease of the given object.
2580
/// call i8* \@objc_retainAutorelease(i8* %value)
2581
llvm::Value *
2582
CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2583
return emitARCValueOperation(*this, value, nullptr,
2584
CGM.getObjCEntrypoints().objc_retainAutorelease,
2585
llvm::Intrinsic::objc_retainAutorelease);
2586
}
2587
2588
/// i8* \@objc_loadWeak(i8** %addr)
2589
/// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2590
llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2591
return emitARCLoadOperation(*this, addr,
2592
CGM.getObjCEntrypoints().objc_loadWeak,
2593
llvm::Intrinsic::objc_loadWeak);
2594
}
2595
2596
/// i8* \@objc_loadWeakRetained(i8** %addr)
2597
llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2598
return emitARCLoadOperation(*this, addr,
2599
CGM.getObjCEntrypoints().objc_loadWeakRetained,
2600
llvm::Intrinsic::objc_loadWeakRetained);
2601
}
2602
2603
/// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2604
/// Returns %value.
2605
llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2606
llvm::Value *value,
2607
bool ignored) {
2608
return emitARCStoreOperation(*this, addr, value,
2609
CGM.getObjCEntrypoints().objc_storeWeak,
2610
llvm::Intrinsic::objc_storeWeak, ignored);
2611
}
2612
2613
/// i8* \@objc_initWeak(i8** %addr, i8* %value)
2614
/// Returns %value. %addr is known to not have a current weak entry.
2615
/// Essentially equivalent to:
2616
/// *addr = nil; objc_storeWeak(addr, value);
2617
void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2618
// If we're initializing to null, just write null to memory; no need
2619
// to get the runtime involved. But don't do this if optimization
2620
// is enabled, because accounting for this would make the optimizer
2621
// much more complicated.
2622
if (isa<llvm::ConstantPointerNull>(value) &&
2623
CGM.getCodeGenOpts().OptimizationLevel == 0) {
2624
Builder.CreateStore(value, addr);
2625
return;
2626
}
2627
2628
emitARCStoreOperation(*this, addr, value,
2629
CGM.getObjCEntrypoints().objc_initWeak,
2630
llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
2631
}
2632
2633
/// void \@objc_destroyWeak(i8** %addr)
2634
/// Essentially objc_storeWeak(addr, nil).
2635
void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2636
llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2637
if (!fn)
2638
fn = getARCIntrinsic(llvm::Intrinsic::objc_destroyWeak, CGM);
2639
2640
EmitNounwindRuntimeCall(fn, addr.emitRawPointer(*this));
2641
}
2642
2643
/// void \@objc_moveWeak(i8** %dest, i8** %src)
2644
/// Disregards the current value in %dest. Leaves %src pointing to nothing.
2645
/// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2646
void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2647
emitARCCopyOperation(*this, dst, src,
2648
CGM.getObjCEntrypoints().objc_moveWeak,
2649
llvm::Intrinsic::objc_moveWeak);
2650
}
2651
2652
/// void \@objc_copyWeak(i8** %dest, i8** %src)
2653
/// Disregards the current value in %dest. Essentially
2654
/// objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2655
void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2656
emitARCCopyOperation(*this, dst, src,
2657
CGM.getObjCEntrypoints().objc_copyWeak,
2658
llvm::Intrinsic::objc_copyWeak);
2659
}
2660
2661
void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr,
2662
Address SrcAddr) {
2663
llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2664
Object = EmitObjCConsumeObject(Ty, Object);
2665
EmitARCStoreWeak(DstAddr, Object, false);
2666
}
2667
2668
void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr,
2669
Address SrcAddr) {
2670
llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2671
Object = EmitObjCConsumeObject(Ty, Object);
2672
EmitARCStoreWeak(DstAddr, Object, false);
2673
EmitARCDestroyWeak(SrcAddr);
2674
}
2675
2676
/// Produce the code to do a objc_autoreleasepool_push.
2677
/// call i8* \@objc_autoreleasePoolPush(void)
2678
llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2679
llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2680
if (!fn)
2681
fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush, CGM);
2682
2683
return EmitNounwindRuntimeCall(fn);
2684
}
2685
2686
/// Produce the code to do a primitive release.
2687
/// call void \@objc_autoreleasePoolPop(i8* %ptr)
2688
void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2689
assert(value->getType() == Int8PtrTy);
2690
2691
if (getInvokeDest()) {
2692
// Call the runtime method not the intrinsic if we are handling exceptions
2693
llvm::FunctionCallee &fn =
2694
CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke;
2695
if (!fn) {
2696
llvm::FunctionType *fnType =
2697
llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2698
fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop");
2699
setARCRuntimeFunctionLinkage(CGM, fn);
2700
}
2701
2702
// objc_autoreleasePoolPop can throw.
2703
EmitRuntimeCallOrInvoke(fn, value);
2704
} else {
2705
llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2706
if (!fn)
2707
fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop, CGM);
2708
2709
EmitRuntimeCall(fn, value);
2710
}
2711
}
2712
2713
/// Produce the code to do an MRR version objc_autoreleasepool_push.
2714
/// Which is: [[NSAutoreleasePool alloc] init];
2715
/// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2716
/// init is declared as: - (id) init; in its NSObject super class.
2717
///
2718
llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2719
CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2720
llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2721
// [NSAutoreleasePool alloc]
2722
const IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2723
Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2724
CallArgList Args;
2725
RValue AllocRV =
2726
Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2727
getContext().getObjCIdType(),
2728
AllocSel, Receiver, Args);
2729
2730
// [Receiver init]
2731
Receiver = AllocRV.getScalarVal();
2732
II = &CGM.getContext().Idents.get("init");
2733
Selector InitSel = getContext().Selectors.getSelector(0, &II);
2734
RValue InitRV =
2735
Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2736
getContext().getObjCIdType(),
2737
InitSel, Receiver, Args);
2738
return InitRV.getScalarVal();
2739
}
2740
2741
/// Allocate the given objc object.
2742
/// call i8* \@objc_alloc(i8* %value)
2743
llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value,
2744
llvm::Type *resultType) {
2745
return emitObjCValueOperation(*this, value, resultType,
2746
CGM.getObjCEntrypoints().objc_alloc,
2747
"objc_alloc");
2748
}
2749
2750
/// Allocate the given objc object.
2751
/// call i8* \@objc_allocWithZone(i8* %value)
2752
llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value,
2753
llvm::Type *resultType) {
2754
return emitObjCValueOperation(*this, value, resultType,
2755
CGM.getObjCEntrypoints().objc_allocWithZone,
2756
"objc_allocWithZone");
2757
}
2758
2759
llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value,
2760
llvm::Type *resultType) {
2761
return emitObjCValueOperation(*this, value, resultType,
2762
CGM.getObjCEntrypoints().objc_alloc_init,
2763
"objc_alloc_init");
2764
}
2765
2766
/// Produce the code to do a primitive release.
2767
/// [tmp drain];
2768
void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2769
const IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2770
Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2771
CallArgList Args;
2772
CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2773
getContext().VoidTy, DrainSel, Arg, Args);
2774
}
2775
2776
void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2777
Address addr,
2778
QualType type) {
2779
CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2780
}
2781
2782
void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2783
Address addr,
2784
QualType type) {
2785
CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2786
}
2787
2788
void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2789
Address addr,
2790
QualType type) {
2791
CGF.EmitARCDestroyWeak(addr);
2792
}
2793
2794
void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
2795
QualType type) {
2796
llvm::Value *value = CGF.Builder.CreateLoad(addr);
2797
CGF.EmitARCIntrinsicUse(value);
2798
}
2799
2800
/// Autorelease the given object.
2801
/// call i8* \@objc_autorelease(i8* %value)
2802
llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value,
2803
llvm::Type *returnType) {
2804
return emitObjCValueOperation(
2805
*this, value, returnType,
2806
CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction,
2807
"objc_autorelease");
2808
}
2809
2810
/// Retain the given object, with normal retain semantics.
2811
/// call i8* \@objc_retain(i8* %value)
2812
llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value,
2813
llvm::Type *returnType) {
2814
return emitObjCValueOperation(
2815
*this, value, returnType,
2816
CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain");
2817
}
2818
2819
/// Release the given object.
2820
/// call void \@objc_release(i8* %value)
2821
void CodeGenFunction::EmitObjCRelease(llvm::Value *value,
2822
ARCPreciseLifetime_t precise) {
2823
if (isa<llvm::ConstantPointerNull>(value)) return;
2824
2825
llvm::FunctionCallee &fn =
2826
CGM.getObjCEntrypoints().objc_releaseRuntimeFunction;
2827
if (!fn) {
2828
llvm::FunctionType *fnType =
2829
llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2830
fn = CGM.CreateRuntimeFunction(fnType, "objc_release");
2831
setARCRuntimeFunctionLinkage(CGM, fn);
2832
// We have Native ARC, so set nonlazybind attribute for performance
2833
if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2834
f->addFnAttr(llvm::Attribute::NonLazyBind);
2835
}
2836
2837
// Cast the argument to 'id'.
2838
value = Builder.CreateBitCast(value, Int8PtrTy);
2839
2840
// Call objc_release.
2841
llvm::CallBase *call = EmitCallOrInvoke(fn, value);
2842
2843
if (precise == ARCImpreciseLifetime) {
2844
call->setMetadata("clang.imprecise_release",
2845
llvm::MDNode::get(Builder.getContext(), std::nullopt));
2846
}
2847
}
2848
2849
namespace {
2850
struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2851
llvm::Value *Token;
2852
2853
CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2854
2855
void Emit(CodeGenFunction &CGF, Flags flags) override {
2856
CGF.EmitObjCAutoreleasePoolPop(Token);
2857
}
2858
};
2859
struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2860
llvm::Value *Token;
2861
2862
CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2863
2864
void Emit(CodeGenFunction &CGF, Flags flags) override {
2865
CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2866
}
2867
};
2868
}
2869
2870
void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2871
if (CGM.getLangOpts().ObjCAutoRefCount)
2872
EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2873
else
2874
EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2875
}
2876
2877
static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) {
2878
switch (lifetime) {
2879
case Qualifiers::OCL_None:
2880
case Qualifiers::OCL_ExplicitNone:
2881
case Qualifiers::OCL_Strong:
2882
case Qualifiers::OCL_Autoreleasing:
2883
return true;
2884
2885
case Qualifiers::OCL_Weak:
2886
return false;
2887
}
2888
2889
llvm_unreachable("impossible lifetime!");
2890
}
2891
2892
static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2893
LValue lvalue,
2894
QualType type) {
2895
llvm::Value *result;
2896
bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
2897
if (shouldRetain) {
2898
result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
2899
} else {
2900
assert(type.getObjCLifetime() == Qualifiers::OCL_Weak);
2901
result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress());
2902
}
2903
return TryEmitResult(result, !shouldRetain);
2904
}
2905
2906
static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2907
const Expr *e) {
2908
e = e->IgnoreParens();
2909
QualType type = e->getType();
2910
2911
// If we're loading retained from a __strong xvalue, we can avoid
2912
// an extra retain/release pair by zeroing out the source of this
2913
// "move" operation.
2914
if (e->isXValue() &&
2915
!type.isConstQualified() &&
2916
type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2917
// Emit the lvalue.
2918
LValue lv = CGF.EmitLValue(e);
2919
2920
// Load the object pointer.
2921
llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2922
SourceLocation()).getScalarVal();
2923
2924
// Set the source pointer to NULL.
2925
CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2926
2927
return TryEmitResult(result, true);
2928
}
2929
2930
// As a very special optimization, in ARC++, if the l-value is the
2931
// result of a non-volatile assignment, do a simple retain of the
2932
// result of the call to objc_storeWeak instead of reloading.
2933
if (CGF.getLangOpts().CPlusPlus &&
2934
!type.isVolatileQualified() &&
2935
type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2936
isa<BinaryOperator>(e) &&
2937
cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2938
return TryEmitResult(CGF.EmitScalarExpr(e), false);
2939
2940
// Try to emit code for scalar constant instead of emitting LValue and
2941
// loading it because we are not guaranteed to have an l-value. One of such
2942
// cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2943
if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
2944
auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2945
if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
2946
return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2947
!shouldRetainObjCLifetime(type.getObjCLifetime()));
2948
}
2949
2950
return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2951
}
2952
2953
typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2954
llvm::Value *value)>
2955
ValueTransform;
2956
2957
/// Insert code immediately after a call.
2958
2959
// FIXME: We should find a way to emit the runtime call immediately
2960
// after the call is emitted to eliminate the need for this function.
2961
static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2962
llvm::Value *value,
2963
ValueTransform doAfterCall,
2964
ValueTransform doFallback) {
2965
CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2966
auto *callBase = dyn_cast<llvm::CallBase>(value);
2967
2968
if (callBase && llvm::objcarc::hasAttachedCallOpBundle(callBase)) {
2969
// Fall back if the call base has operand bundle "clang.arc.attachedcall".
2970
value = doFallback(CGF, value);
2971
} else if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2972
// Place the retain immediately following the call.
2973
CGF.Builder.SetInsertPoint(call->getParent(),
2974
++llvm::BasicBlock::iterator(call));
2975
value = doAfterCall(CGF, value);
2976
} else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2977
// Place the retain at the beginning of the normal destination block.
2978
llvm::BasicBlock *BB = invoke->getNormalDest();
2979
CGF.Builder.SetInsertPoint(BB, BB->begin());
2980
value = doAfterCall(CGF, value);
2981
2982
// Bitcasts can arise because of related-result returns. Rewrite
2983
// the operand.
2984
} else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2985
// Change the insert point to avoid emitting the fall-back call after the
2986
// bitcast.
2987
CGF.Builder.SetInsertPoint(bitcast->getParent(), bitcast->getIterator());
2988
llvm::Value *operand = bitcast->getOperand(0);
2989
operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2990
bitcast->setOperand(0, operand);
2991
value = bitcast;
2992
} else {
2993
auto *phi = dyn_cast<llvm::PHINode>(value);
2994
if (phi && phi->getNumIncomingValues() == 2 &&
2995
isa<llvm::ConstantPointerNull>(phi->getIncomingValue(1)) &&
2996
isa<llvm::CallBase>(phi->getIncomingValue(0))) {
2997
// Handle phi instructions that are generated when it's necessary to check
2998
// whether the receiver of a message is null.
2999
llvm::Value *inVal = phi->getIncomingValue(0);
3000
inVal = emitARCOperationAfterCall(CGF, inVal, doAfterCall, doFallback);
3001
phi->setIncomingValue(0, inVal);
3002
value = phi;
3003
} else {
3004
// Generic fall-back case.
3005
// Retain using the non-block variant: we never need to do a copy
3006
// of a block that's been returned to us.
3007
value = doFallback(CGF, value);
3008
}
3009
}
3010
3011
CGF.Builder.restoreIP(ip);
3012
return value;
3013
}
3014
3015
/// Given that the given expression is some sort of call (which does
3016
/// not return retained), emit a retain following it.
3017
static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
3018
const Expr *e) {
3019
llvm::Value *value = CGF.EmitScalarExpr(e);
3020
return emitARCOperationAfterCall(CGF, value,
3021
[](CodeGenFunction &CGF, llvm::Value *value) {
3022
return CGF.EmitARCRetainAutoreleasedReturnValue(value);
3023
},
3024
[](CodeGenFunction &CGF, llvm::Value *value) {
3025
return CGF.EmitARCRetainNonBlock(value);
3026
});
3027
}
3028
3029
/// Given that the given expression is some sort of call (which does
3030
/// not return retained), perform an unsafeClaim following it.
3031
static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
3032
const Expr *e) {
3033
llvm::Value *value = CGF.EmitScalarExpr(e);
3034
return emitARCOperationAfterCall(CGF, value,
3035
[](CodeGenFunction &CGF, llvm::Value *value) {
3036
return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
3037
},
3038
[](CodeGenFunction &CGF, llvm::Value *value) {
3039
return value;
3040
});
3041
}
3042
3043
llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
3044
bool allowUnsafeClaim) {
3045
if (allowUnsafeClaim &&
3046
CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
3047
return emitARCUnsafeClaimCallResult(*this, E);
3048
} else {
3049
llvm::Value *value = emitARCRetainCallResult(*this, E);
3050
return EmitObjCConsumeObject(E->getType(), value);
3051
}
3052
}
3053
3054
/// Determine whether it might be important to emit a separate
3055
/// objc_retain_block on the result of the given expression, or
3056
/// whether it's okay to just emit it in a +1 context.
3057
static bool shouldEmitSeparateBlockRetain(const Expr *e) {
3058
assert(e->getType()->isBlockPointerType());
3059
e = e->IgnoreParens();
3060
3061
// For future goodness, emit block expressions directly in +1
3062
// contexts if we can.
3063
if (isa<BlockExpr>(e))
3064
return false;
3065
3066
if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
3067
switch (cast->getCastKind()) {
3068
// Emitting these operations in +1 contexts is goodness.
3069
case CK_LValueToRValue:
3070
case CK_ARCReclaimReturnedObject:
3071
case CK_ARCConsumeObject:
3072
case CK_ARCProduceObject:
3073
return false;
3074
3075
// These operations preserve a block type.
3076
case CK_NoOp:
3077
case CK_BitCast:
3078
return shouldEmitSeparateBlockRetain(cast->getSubExpr());
3079
3080
// These operations are known to be bad (or haven't been considered).
3081
case CK_AnyPointerToBlockPointerCast:
3082
default:
3083
return true;
3084
}
3085
}
3086
3087
return true;
3088
}
3089
3090
namespace {
3091
/// A CRTP base class for emitting expressions of retainable object
3092
/// pointer type in ARC.
3093
template <typename Impl, typename Result> class ARCExprEmitter {
3094
protected:
3095
CodeGenFunction &CGF;
3096
Impl &asImpl() { return *static_cast<Impl*>(this); }
3097
3098
ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
3099
3100
public:
3101
Result visit(const Expr *e);
3102
Result visitCastExpr(const CastExpr *e);
3103
Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
3104
Result visitBlockExpr(const BlockExpr *e);
3105
Result visitBinaryOperator(const BinaryOperator *e);
3106
Result visitBinAssign(const BinaryOperator *e);
3107
Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
3108
Result visitBinAssignAutoreleasing(const BinaryOperator *e);
3109
Result visitBinAssignWeak(const BinaryOperator *e);
3110
Result visitBinAssignStrong(const BinaryOperator *e);
3111
3112
// Minimal implementation:
3113
// Result visitLValueToRValue(const Expr *e)
3114
// Result visitConsumeObject(const Expr *e)
3115
// Result visitExtendBlockObject(const Expr *e)
3116
// Result visitReclaimReturnedObject(const Expr *e)
3117
// Result visitCall(const Expr *e)
3118
// Result visitExpr(const Expr *e)
3119
//
3120
// Result emitBitCast(Result result, llvm::Type *resultType)
3121
// llvm::Value *getValueOfResult(Result result)
3122
};
3123
}
3124
3125
/// Try to emit a PseudoObjectExpr under special ARC rules.
3126
///
3127
/// This massively duplicates emitPseudoObjectRValue.
3128
template <typename Impl, typename Result>
3129
Result
3130
ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
3131
SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3132
3133
// Find the result expression.
3134
const Expr *resultExpr = E->getResultExpr();
3135
assert(resultExpr);
3136
Result result;
3137
3138
for (PseudoObjectExpr::const_semantics_iterator
3139
i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3140
const Expr *semantic = *i;
3141
3142
// If this semantic expression is an opaque value, bind it
3143
// to the result of its source expression.
3144
if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3145
typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3146
OVMA opaqueData;
3147
3148
// If this semantic is the result of the pseudo-object
3149
// expression, try to evaluate the source as +1.
3150
if (ov == resultExpr) {
3151
assert(!OVMA::shouldBindAsLValue(ov));
3152
result = asImpl().visit(ov->getSourceExpr());
3153
opaqueData = OVMA::bind(CGF, ov,
3154
RValue::get(asImpl().getValueOfResult(result)));
3155
3156
// Otherwise, just bind it.
3157
} else {
3158
opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3159
}
3160
opaques.push_back(opaqueData);
3161
3162
// Otherwise, if the expression is the result, evaluate it
3163
// and remember the result.
3164
} else if (semantic == resultExpr) {
3165
result = asImpl().visit(semantic);
3166
3167
// Otherwise, evaluate the expression in an ignored context.
3168
} else {
3169
CGF.EmitIgnoredExpr(semantic);
3170
}
3171
}
3172
3173
// Unbind all the opaques now.
3174
for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3175
opaques[i].unbind(CGF);
3176
3177
return result;
3178
}
3179
3180
template <typename Impl, typename Result>
3181
Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
3182
// The default implementation just forwards the expression to visitExpr.
3183
return asImpl().visitExpr(e);
3184
}
3185
3186
template <typename Impl, typename Result>
3187
Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
3188
switch (e->getCastKind()) {
3189
3190
// No-op casts don't change the type, so we just ignore them.
3191
case CK_NoOp:
3192
return asImpl().visit(e->getSubExpr());
3193
3194
// These casts can change the type.
3195
case CK_CPointerToObjCPointerCast:
3196
case CK_BlockPointerToObjCPointerCast:
3197
case CK_AnyPointerToBlockPointerCast:
3198
case CK_BitCast: {
3199
llvm::Type *resultType = CGF.ConvertType(e->getType());
3200
assert(e->getSubExpr()->getType()->hasPointerRepresentation());
3201
Result result = asImpl().visit(e->getSubExpr());
3202
return asImpl().emitBitCast(result, resultType);
3203
}
3204
3205
// Handle some casts specially.
3206
case CK_LValueToRValue:
3207
return asImpl().visitLValueToRValue(e->getSubExpr());
3208
case CK_ARCConsumeObject:
3209
return asImpl().visitConsumeObject(e->getSubExpr());
3210
case CK_ARCExtendBlockObject:
3211
return asImpl().visitExtendBlockObject(e->getSubExpr());
3212
case CK_ARCReclaimReturnedObject:
3213
return asImpl().visitReclaimReturnedObject(e->getSubExpr());
3214
3215
// Otherwise, use the default logic.
3216
default:
3217
return asImpl().visitExpr(e);
3218
}
3219
}
3220
3221
template <typename Impl, typename Result>
3222
Result
3223
ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
3224
switch (e->getOpcode()) {
3225
case BO_Comma:
3226
CGF.EmitIgnoredExpr(e->getLHS());
3227
CGF.EnsureInsertPoint();
3228
return asImpl().visit(e->getRHS());
3229
3230
case BO_Assign:
3231
return asImpl().visitBinAssign(e);
3232
3233
default:
3234
return asImpl().visitExpr(e);
3235
}
3236
}
3237
3238
template <typename Impl, typename Result>
3239
Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
3240
switch (e->getLHS()->getType().getObjCLifetime()) {
3241
case Qualifiers::OCL_ExplicitNone:
3242
return asImpl().visitBinAssignUnsafeUnretained(e);
3243
3244
case Qualifiers::OCL_Weak:
3245
return asImpl().visitBinAssignWeak(e);
3246
3247
case Qualifiers::OCL_Autoreleasing:
3248
return asImpl().visitBinAssignAutoreleasing(e);
3249
3250
case Qualifiers::OCL_Strong:
3251
return asImpl().visitBinAssignStrong(e);
3252
3253
case Qualifiers::OCL_None:
3254
return asImpl().visitExpr(e);
3255
}
3256
llvm_unreachable("bad ObjC ownership qualifier");
3257
}
3258
3259
/// The default rule for __unsafe_unretained emits the RHS recursively,
3260
/// stores into the unsafe variable, and propagates the result outward.
3261
template <typename Impl, typename Result>
3262
Result ARCExprEmitter<Impl,Result>::
3263
visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
3264
// Recursively emit the RHS.
3265
// For __block safety, do this before emitting the LHS.
3266
Result result = asImpl().visit(e->getRHS());
3267
3268
// Perform the store.
3269
LValue lvalue =
3270
CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
3271
CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
3272
lvalue);
3273
3274
return result;
3275
}
3276
3277
template <typename Impl, typename Result>
3278
Result
3279
ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
3280
return asImpl().visitExpr(e);
3281
}
3282
3283
template <typename Impl, typename Result>
3284
Result
3285
ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
3286
return asImpl().visitExpr(e);
3287
}
3288
3289
template <typename Impl, typename Result>
3290
Result
3291
ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
3292
return asImpl().visitExpr(e);
3293
}
3294
3295
/// The general expression-emission logic.
3296
template <typename Impl, typename Result>
3297
Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
3298
// We should *never* see a nested full-expression here, because if
3299
// we fail to emit at +1, our caller must not retain after we close
3300
// out the full-expression. This isn't as important in the unsafe
3301
// emitter.
3302
assert(!isa<ExprWithCleanups>(e));
3303
3304
// Look through parens, __extension__, generic selection, etc.
3305
e = e->IgnoreParens();
3306
3307
// Handle certain kinds of casts.
3308
if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
3309
return asImpl().visitCastExpr(ce);
3310
3311
// Handle the comma operator.
3312
} else if (auto op = dyn_cast<BinaryOperator>(e)) {
3313
return asImpl().visitBinaryOperator(op);
3314
3315
// TODO: handle conditional operators here
3316
3317
// For calls and message sends, use the retained-call logic.
3318
// Delegate inits are a special case in that they're the only
3319
// returns-retained expression that *isn't* surrounded by
3320
// a consume.
3321
} else if (isa<CallExpr>(e) ||
3322
(isa<ObjCMessageExpr>(e) &&
3323
!cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
3324
return asImpl().visitCall(e);
3325
3326
// Look through pseudo-object expressions.
3327
} else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
3328
return asImpl().visitPseudoObjectExpr(pseudo);
3329
} else if (auto *be = dyn_cast<BlockExpr>(e))
3330
return asImpl().visitBlockExpr(be);
3331
3332
return asImpl().visitExpr(e);
3333
}
3334
3335
namespace {
3336
3337
/// An emitter for +1 results.
3338
struct ARCRetainExprEmitter :
3339
public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
3340
3341
ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3342
3343
llvm::Value *getValueOfResult(TryEmitResult result) {
3344
return result.getPointer();
3345
}
3346
3347
TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
3348
llvm::Value *value = result.getPointer();
3349
value = CGF.Builder.CreateBitCast(value, resultType);
3350
result.setPointer(value);
3351
return result;
3352
}
3353
3354
TryEmitResult visitLValueToRValue(const Expr *e) {
3355
return tryEmitARCRetainLoadOfScalar(CGF, e);
3356
}
3357
3358
/// For consumptions, just emit the subexpression and thus elide
3359
/// the retain/release pair.
3360
TryEmitResult visitConsumeObject(const Expr *e) {
3361
llvm::Value *result = CGF.EmitScalarExpr(e);
3362
return TryEmitResult(result, true);
3363
}
3364
3365
TryEmitResult visitBlockExpr(const BlockExpr *e) {
3366
TryEmitResult result = visitExpr(e);
3367
// Avoid the block-retain if this is a block literal that doesn't need to be
3368
// copied to the heap.
3369
if (CGF.CGM.getCodeGenOpts().ObjCAvoidHeapifyLocalBlocks &&
3370
e->getBlockDecl()->canAvoidCopyToHeap())
3371
result.setInt(true);
3372
return result;
3373
}
3374
3375
/// Block extends are net +0. Naively, we could just recurse on
3376
/// the subexpression, but actually we need to ensure that the
3377
/// value is copied as a block, so there's a little filter here.
3378
TryEmitResult visitExtendBlockObject(const Expr *e) {
3379
llvm::Value *result; // will be a +0 value
3380
3381
// If we can't safely assume the sub-expression will produce a
3382
// block-copied value, emit the sub-expression at +0.
3383
if (shouldEmitSeparateBlockRetain(e)) {
3384
result = CGF.EmitScalarExpr(e);
3385
3386
// Otherwise, try to emit the sub-expression at +1 recursively.
3387
} else {
3388
TryEmitResult subresult = asImpl().visit(e);
3389
3390
// If that produced a retained value, just use that.
3391
if (subresult.getInt()) {
3392
return subresult;
3393
}
3394
3395
// Otherwise it's +0.
3396
result = subresult.getPointer();
3397
}
3398
3399
// Retain the object as a block.
3400
result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
3401
return TryEmitResult(result, true);
3402
}
3403
3404
/// For reclaims, emit the subexpression as a retained call and
3405
/// skip the consumption.
3406
TryEmitResult visitReclaimReturnedObject(const Expr *e) {
3407
llvm::Value *result = emitARCRetainCallResult(CGF, e);
3408
return TryEmitResult(result, true);
3409
}
3410
3411
/// When we have an undecorated call, retroactively do a claim.
3412
TryEmitResult visitCall(const Expr *e) {
3413
llvm::Value *result = emitARCRetainCallResult(CGF, e);
3414
return TryEmitResult(result, true);
3415
}
3416
3417
// TODO: maybe special-case visitBinAssignWeak?
3418
3419
TryEmitResult visitExpr(const Expr *e) {
3420
// We didn't find an obvious production, so emit what we've got and
3421
// tell the caller that we didn't manage to retain.
3422
llvm::Value *result = CGF.EmitScalarExpr(e);
3423
return TryEmitResult(result, false);
3424
}
3425
};
3426
}
3427
3428
static TryEmitResult
3429
tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
3430
return ARCRetainExprEmitter(CGF).visit(e);
3431
}
3432
3433
static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
3434
LValue lvalue,
3435
QualType type) {
3436
TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
3437
llvm::Value *value = result.getPointer();
3438
if (!result.getInt())
3439
value = CGF.EmitARCRetain(type, value);
3440
return value;
3441
}
3442
3443
/// EmitARCRetainScalarExpr - Semantically equivalent to
3444
/// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3445
/// best-effort attempt to peephole expressions that naturally produce
3446
/// retained objects.
3447
llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
3448
// The retain needs to happen within the full-expression.
3449
if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3450
RunCleanupsScope scope(*this);
3451
return EmitARCRetainScalarExpr(cleanups->getSubExpr());
3452
}
3453
3454
TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3455
llvm::Value *value = result.getPointer();
3456
if (!result.getInt())
3457
value = EmitARCRetain(e->getType(), value);
3458
return value;
3459
}
3460
3461
llvm::Value *
3462
CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
3463
// The retain needs to happen within the full-expression.
3464
if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3465
RunCleanupsScope scope(*this);
3466
return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
3467
}
3468
3469
TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3470
llvm::Value *value = result.getPointer();
3471
if (result.getInt())
3472
value = EmitARCAutorelease(value);
3473
else
3474
value = EmitARCRetainAutorelease(e->getType(), value);
3475
return value;
3476
}
3477
3478
llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
3479
llvm::Value *result;
3480
bool doRetain;
3481
3482
if (shouldEmitSeparateBlockRetain(e)) {
3483
result = EmitScalarExpr(e);
3484
doRetain = true;
3485
} else {
3486
TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3487
result = subresult.getPointer();
3488
doRetain = !subresult.getInt();
3489
}
3490
3491
if (doRetain)
3492
result = EmitARCRetainBlock(result, /*mandatory*/ true);
3493
return EmitObjCConsumeObject(e->getType(), result);
3494
}
3495
3496
llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3497
// In ARC, retain and autorelease the expression.
3498
if (getLangOpts().ObjCAutoRefCount) {
3499
// Do so before running any cleanups for the full-expression.
3500
// EmitARCRetainAutoreleaseScalarExpr does this for us.
3501
return EmitARCRetainAutoreleaseScalarExpr(expr);
3502
}
3503
3504
// Otherwise, use the normal scalar-expression emission. The
3505
// exception machinery doesn't do anything special with the
3506
// exception like retaining it, so there's no safety associated with
3507
// only running cleanups after the throw has started, and when it
3508
// matters it tends to be substantially inferior code.
3509
return EmitScalarExpr(expr);
3510
}
3511
3512
namespace {
3513
3514
/// An emitter for assigning into an __unsafe_unretained context.
3515
struct ARCUnsafeUnretainedExprEmitter :
3516
public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3517
3518
ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3519
3520
llvm::Value *getValueOfResult(llvm::Value *value) {
3521
return value;
3522
}
3523
3524
llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3525
return CGF.Builder.CreateBitCast(value, resultType);
3526
}
3527
3528
llvm::Value *visitLValueToRValue(const Expr *e) {
3529
return CGF.EmitScalarExpr(e);
3530
}
3531
3532
/// For consumptions, just emit the subexpression and perform the
3533
/// consumption like normal.
3534
llvm::Value *visitConsumeObject(const Expr *e) {
3535
llvm::Value *value = CGF.EmitScalarExpr(e);
3536
return CGF.EmitObjCConsumeObject(e->getType(), value);
3537
}
3538
3539
/// No special logic for block extensions. (This probably can't
3540
/// actually happen in this emitter, though.)
3541
llvm::Value *visitExtendBlockObject(const Expr *e) {
3542
return CGF.EmitARCExtendBlockObject(e);
3543
}
3544
3545
/// For reclaims, perform an unsafeClaim if that's enabled.
3546
llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3547
return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3548
}
3549
3550
/// When we have an undecorated call, just emit it without adding
3551
/// the unsafeClaim.
3552
llvm::Value *visitCall(const Expr *e) {
3553
return CGF.EmitScalarExpr(e);
3554
}
3555
3556
/// Just do normal scalar emission in the default case.
3557
llvm::Value *visitExpr(const Expr *e) {
3558
return CGF.EmitScalarExpr(e);
3559
}
3560
};
3561
}
3562
3563
static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3564
const Expr *e) {
3565
return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3566
}
3567
3568
/// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3569
/// immediately releasing the resut of EmitARCRetainScalarExpr, but
3570
/// avoiding any spurious retains, including by performing reclaims
3571
/// with objc_unsafeClaimAutoreleasedReturnValue.
3572
llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3573
// Look through full-expressions.
3574
if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3575
RunCleanupsScope scope(*this);
3576
return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3577
}
3578
3579
return emitARCUnsafeUnretainedScalarExpr(*this, e);
3580
}
3581
3582
std::pair<LValue,llvm::Value*>
3583
CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3584
bool ignored) {
3585
// Evaluate the RHS first. If we're ignoring the result, assume
3586
// that we can emit at an unsafe +0.
3587
llvm::Value *value;
3588
if (ignored) {
3589
value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3590
} else {
3591
value = EmitScalarExpr(e->getRHS());
3592
}
3593
3594
// Emit the LHS and perform the store.
3595
LValue lvalue = EmitLValue(e->getLHS());
3596
EmitStoreOfScalar(value, lvalue);
3597
3598
return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3599
}
3600
3601
std::pair<LValue,llvm::Value*>
3602
CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3603
bool ignored) {
3604
// Evaluate the RHS first.
3605
TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3606
llvm::Value *value = result.getPointer();
3607
3608
bool hasImmediateRetain = result.getInt();
3609
3610
// If we didn't emit a retained object, and the l-value is of block
3611
// type, then we need to emit the block-retain immediately in case
3612
// it invalidates the l-value.
3613
if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3614
value = EmitARCRetainBlock(value, /*mandatory*/ false);
3615
hasImmediateRetain = true;
3616
}
3617
3618
LValue lvalue = EmitLValue(e->getLHS());
3619
3620
// If the RHS was emitted retained, expand this.
3621
if (hasImmediateRetain) {
3622
llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3623
EmitStoreOfScalar(value, lvalue);
3624
EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3625
} else {
3626
value = EmitARCStoreStrong(lvalue, value, ignored);
3627
}
3628
3629
return std::pair<LValue,llvm::Value*>(lvalue, value);
3630
}
3631
3632
std::pair<LValue,llvm::Value*>
3633
CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3634
llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3635
LValue lvalue = EmitLValue(e->getLHS());
3636
3637
EmitStoreOfScalar(value, lvalue);
3638
3639
return std::pair<LValue,llvm::Value*>(lvalue, value);
3640
}
3641
3642
void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3643
const ObjCAutoreleasePoolStmt &ARPS) {
3644
const Stmt *subStmt = ARPS.getSubStmt();
3645
const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3646
3647
CGDebugInfo *DI = getDebugInfo();
3648
if (DI)
3649
DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3650
3651
// Keep track of the current cleanup stack depth.
3652
RunCleanupsScope Scope(*this);
3653
if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3654
llvm::Value *token = EmitObjCAutoreleasePoolPush();
3655
EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3656
} else {
3657
llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3658
EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3659
}
3660
3661
for (const auto *I : S.body())
3662
EmitStmt(I);
3663
3664
if (DI)
3665
DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3666
}
3667
3668
/// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3669
/// make sure it survives garbage collection until this point.
3670
void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3671
// We just use an inline assembly.
3672
llvm::FunctionType *extenderType
3673
= llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3674
llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType,
3675
/* assembly */ "",
3676
/* constraints */ "r",
3677
/* side effects */ true);
3678
3679
EmitNounwindRuntimeCall(extender, object);
3680
}
3681
3682
/// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3683
/// non-trivial copy assignment function, produce following helper function.
3684
/// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3685
///
3686
llvm::Constant *
3687
CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3688
const ObjCPropertyImplDecl *PID) {
3689
const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3690
if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3691
return nullptr;
3692
3693
QualType Ty = PID->getPropertyIvarDecl()->getType();
3694
ASTContext &C = getContext();
3695
3696
if (Ty.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
3697
// Call the move assignment operator instead of calling the copy assignment
3698
// operator and destructor.
3699
CharUnits Alignment = C.getTypeAlignInChars(Ty);
3700
llvm::Constant *Fn = getNonTrivialCStructMoveAssignmentOperator(
3701
CGM, Alignment, Alignment, Ty.isVolatileQualified(), Ty);
3702
return Fn;
3703
}
3704
3705
if (!getLangOpts().CPlusPlus ||
3706
!getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3707
return nullptr;
3708
if (!Ty->isRecordType())
3709
return nullptr;
3710
llvm::Constant *HelperFn = nullptr;
3711
if (hasTrivialSetExpr(PID))
3712
return nullptr;
3713
assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3714
if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3715
return HelperFn;
3716
3717
const IdentifierInfo *II =
3718
&CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3719
3720
QualType ReturnTy = C.VoidTy;
3721
QualType DestTy = C.getPointerType(Ty);
3722
QualType SrcTy = Ty;
3723
SrcTy.addConst();
3724
SrcTy = C.getPointerType(SrcTy);
3725
3726
SmallVector<QualType, 2> ArgTys;
3727
ArgTys.push_back(DestTy);
3728
ArgTys.push_back(SrcTy);
3729
QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3730
3731
FunctionDecl *FD = FunctionDecl::Create(
3732
C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3733
FunctionTy, nullptr, SC_Static, false, false, false);
3734
3735
FunctionArgList args;
3736
ParmVarDecl *Params[2];
3737
ParmVarDecl *DstDecl = ParmVarDecl::Create(
3738
C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy,
3739
C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None,
3740
/*DefArg=*/nullptr);
3741
args.push_back(Params[0] = DstDecl);
3742
ParmVarDecl *SrcDecl = ParmVarDecl::Create(
3743
C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy,
3744
C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None,
3745
/*DefArg=*/nullptr);
3746
args.push_back(Params[1] = SrcDecl);
3747
FD->setParams(Params);
3748
3749
const CGFunctionInfo &FI =
3750
CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3751
3752
llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3753
3754
llvm::Function *Fn =
3755
llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3756
"__assign_helper_atomic_property_",
3757
&CGM.getModule());
3758
3759
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3760
3761
StartFunction(FD, ReturnTy, Fn, FI, args);
3762
3763
DeclRefExpr DstExpr(C, DstDecl, false, DestTy, VK_PRValue, SourceLocation());
3764
UnaryOperator *DST = UnaryOperator::Create(
3765
C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary,
3766
SourceLocation(), false, FPOptionsOverride());
3767
3768
DeclRefExpr SrcExpr(C, SrcDecl, false, SrcTy, VK_PRValue, SourceLocation());
3769
UnaryOperator *SRC = UnaryOperator::Create(
3770
C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3771
SourceLocation(), false, FPOptionsOverride());
3772
3773
Expr *Args[2] = {DST, SRC};
3774
CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3775
CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
3776
C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(),
3777
VK_LValue, SourceLocation(), FPOptionsOverride());
3778
3779
EmitStmt(TheCall);
3780
3781
FinishFunction();
3782
HelperFn = Fn;
3783
CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3784
return HelperFn;
3785
}
3786
3787
llvm::Constant *CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3788
const ObjCPropertyImplDecl *PID) {
3789
const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3790
if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3791
return nullptr;
3792
3793
QualType Ty = PD->getType();
3794
ASTContext &C = getContext();
3795
3796
if (Ty.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
3797
CharUnits Alignment = C.getTypeAlignInChars(Ty);
3798
llvm::Constant *Fn = getNonTrivialCStructCopyConstructor(
3799
CGM, Alignment, Alignment, Ty.isVolatileQualified(), Ty);
3800
return Fn;
3801
}
3802
3803
if (!getLangOpts().CPlusPlus ||
3804
!getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3805
return nullptr;
3806
if (!Ty->isRecordType())
3807
return nullptr;
3808
llvm::Constant *HelperFn = nullptr;
3809
if (hasTrivialGetExpr(PID))
3810
return nullptr;
3811
assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3812
if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3813
return HelperFn;
3814
3815
const IdentifierInfo *II =
3816
&CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3817
3818
QualType ReturnTy = C.VoidTy;
3819
QualType DestTy = C.getPointerType(Ty);
3820
QualType SrcTy = Ty;
3821
SrcTy.addConst();
3822
SrcTy = C.getPointerType(SrcTy);
3823
3824
SmallVector<QualType, 2> ArgTys;
3825
ArgTys.push_back(DestTy);
3826
ArgTys.push_back(SrcTy);
3827
QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3828
3829
FunctionDecl *FD = FunctionDecl::Create(
3830
C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3831
FunctionTy, nullptr, SC_Static, false, false, false);
3832
3833
FunctionArgList args;
3834
ParmVarDecl *Params[2];
3835
ParmVarDecl *DstDecl = ParmVarDecl::Create(
3836
C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy,
3837
C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None,
3838
/*DefArg=*/nullptr);
3839
args.push_back(Params[0] = DstDecl);
3840
ParmVarDecl *SrcDecl = ParmVarDecl::Create(
3841
C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy,
3842
C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None,
3843
/*DefArg=*/nullptr);
3844
args.push_back(Params[1] = SrcDecl);
3845
FD->setParams(Params);
3846
3847
const CGFunctionInfo &FI =
3848
CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3849
3850
llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3851
3852
llvm::Function *Fn = llvm::Function::Create(
3853
LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
3854
&CGM.getModule());
3855
3856
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3857
3858
StartFunction(FD, ReturnTy, Fn, FI, args);
3859
3860
DeclRefExpr SrcExpr(getContext(), SrcDecl, false, SrcTy, VK_PRValue,
3861
SourceLocation());
3862
3863
UnaryOperator *SRC = UnaryOperator::Create(
3864
C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3865
SourceLocation(), false, FPOptionsOverride());
3866
3867
CXXConstructExpr *CXXConstExpr =
3868
cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3869
3870
SmallVector<Expr*, 4> ConstructorArgs;
3871
ConstructorArgs.push_back(SRC);
3872
ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3873
CXXConstExpr->arg_end());
3874
3875
CXXConstructExpr *TheCXXConstructExpr =
3876
CXXConstructExpr::Create(C, Ty, SourceLocation(),
3877
CXXConstExpr->getConstructor(),
3878
CXXConstExpr->isElidable(),
3879
ConstructorArgs,
3880
CXXConstExpr->hadMultipleCandidates(),
3881
CXXConstExpr->isListInitialization(),
3882
CXXConstExpr->isStdInitListInitialization(),
3883
CXXConstExpr->requiresZeroInitialization(),
3884
CXXConstExpr->getConstructionKind(),
3885
SourceRange());
3886
3887
DeclRefExpr DstExpr(getContext(), DstDecl, false, DestTy, VK_PRValue,
3888
SourceLocation());
3889
3890
RValue DV = EmitAnyExpr(&DstExpr);
3891
CharUnits Alignment =
3892
getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3893
EmitAggExpr(TheCXXConstructExpr,
3894
AggValueSlot::forAddr(
3895
Address(DV.getScalarVal(), ConvertTypeForMem(Ty), Alignment),
3896
Qualifiers(), AggValueSlot::IsDestructed,
3897
AggValueSlot::DoesNotNeedGCBarriers,
3898
AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap));
3899
3900
FinishFunction();
3901
HelperFn = Fn;
3902
CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3903
return HelperFn;
3904
}
3905
3906
llvm::Value *
3907
CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3908
// Get selectors for retain/autorelease.
3909
const IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3910
Selector CopySelector =
3911
getContext().Selectors.getNullarySelector(CopyID);
3912
const IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3913
Selector AutoreleaseSelector =
3914
getContext().Selectors.getNullarySelector(AutoreleaseID);
3915
3916
// Emit calls to retain/autorelease.
3917
CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3918
llvm::Value *Val = Block;
3919
RValue Result;
3920
Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3921
Ty, CopySelector,
3922
Val, CallArgList(), nullptr, nullptr);
3923
Val = Result.getScalarVal();
3924
Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3925
Ty, AutoreleaseSelector,
3926
Val, CallArgList(), nullptr, nullptr);
3927
Val = Result.getScalarVal();
3928
return Val;
3929
}
3930
3931
static unsigned getBaseMachOPlatformID(const llvm::Triple &TT) {
3932
switch (TT.getOS()) {
3933
case llvm::Triple::Darwin:
3934
case llvm::Triple::MacOSX:
3935
return llvm::MachO::PLATFORM_MACOS;
3936
case llvm::Triple::IOS:
3937
return llvm::MachO::PLATFORM_IOS;
3938
case llvm::Triple::TvOS:
3939
return llvm::MachO::PLATFORM_TVOS;
3940
case llvm::Triple::WatchOS:
3941
return llvm::MachO::PLATFORM_WATCHOS;
3942
case llvm::Triple::XROS:
3943
return llvm::MachO::PLATFORM_XROS;
3944
case llvm::Triple::DriverKit:
3945
return llvm::MachO::PLATFORM_DRIVERKIT;
3946
default:
3947
return llvm::MachO::PLATFORM_UNKNOWN;
3948
}
3949
}
3950
3951
static llvm::Value *emitIsPlatformVersionAtLeast(CodeGenFunction &CGF,
3952
const VersionTuple &Version) {
3953
CodeGenModule &CGM = CGF.CGM;
3954
// Note: we intend to support multi-platform version checks, so reserve
3955
// the room for a dual platform checking invocation that will be
3956
// implemented in the future.
3957
llvm::SmallVector<llvm::Value *, 8> Args;
3958
3959
auto EmitArgs = [&](const VersionTuple &Version, const llvm::Triple &TT) {
3960
std::optional<unsigned> Min = Version.getMinor(),
3961
SMin = Version.getSubminor();
3962
Args.push_back(
3963
llvm::ConstantInt::get(CGM.Int32Ty, getBaseMachOPlatformID(TT)));
3964
Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()));
3965
Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Min.value_or(0)));
3966
Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, SMin.value_or(0)));
3967
};
3968
3969
assert(!Version.empty() && "unexpected empty version");
3970
EmitArgs(Version, CGM.getTarget().getTriple());
3971
3972
if (!CGM.IsPlatformVersionAtLeastFn) {
3973
llvm::FunctionType *FTy = llvm::FunctionType::get(
3974
CGM.Int32Ty, {CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty},
3975
false);
3976
CGM.IsPlatformVersionAtLeastFn =
3977
CGM.CreateRuntimeFunction(FTy, "__isPlatformVersionAtLeast");
3978
}
3979
3980
llvm::Value *Check =
3981
CGF.EmitNounwindRuntimeCall(CGM.IsPlatformVersionAtLeastFn, Args);
3982
return CGF.Builder.CreateICmpNE(Check,
3983
llvm::Constant::getNullValue(CGM.Int32Ty));
3984
}
3985
3986
llvm::Value *
3987
CodeGenFunction::EmitBuiltinAvailable(const VersionTuple &Version) {
3988
// Darwin uses the new __isPlatformVersionAtLeast family of routines.
3989
if (CGM.getTarget().getTriple().isOSDarwin())
3990
return emitIsPlatformVersionAtLeast(*this, Version);
3991
3992
if (!CGM.IsOSVersionAtLeastFn) {
3993
llvm::FunctionType *FTy =
3994
llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3995
CGM.IsOSVersionAtLeastFn =
3996
CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3997
}
3998
3999
std::optional<unsigned> Min = Version.getMinor(),
4000
SMin = Version.getSubminor();
4001
llvm::Value *Args[] = {
4002
llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()),
4003
llvm::ConstantInt::get(CGM.Int32Ty, Min.value_or(0)),
4004
llvm::ConstantInt::get(CGM.Int32Ty, SMin.value_or(0))};
4005
4006
llvm::Value *CallRes =
4007
EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
4008
4009
return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
4010
}
4011
4012
static bool isFoundationNeededForDarwinAvailabilityCheck(
4013
const llvm::Triple &TT, const VersionTuple &TargetVersion) {
4014
VersionTuple FoundationDroppedInVersion;
4015
switch (TT.getOS()) {
4016
case llvm::Triple::IOS:
4017
case llvm::Triple::TvOS:
4018
FoundationDroppedInVersion = VersionTuple(/*Major=*/13);
4019
break;
4020
case llvm::Triple::WatchOS:
4021
FoundationDroppedInVersion = VersionTuple(/*Major=*/6);
4022
break;
4023
case llvm::Triple::Darwin:
4024
case llvm::Triple::MacOSX:
4025
FoundationDroppedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/15);
4026
break;
4027
case llvm::Triple::XROS:
4028
// XROS doesn't need Foundation.
4029
return false;
4030
case llvm::Triple::DriverKit:
4031
// DriverKit doesn't need Foundation.
4032
return false;
4033
default:
4034
llvm_unreachable("Unexpected OS");
4035
}
4036
return TargetVersion < FoundationDroppedInVersion;
4037
}
4038
4039
void CodeGenModule::emitAtAvailableLinkGuard() {
4040
if (!IsPlatformVersionAtLeastFn)
4041
return;
4042
// @available requires CoreFoundation only on Darwin.
4043
if (!Target.getTriple().isOSDarwin())
4044
return;
4045
// @available doesn't need Foundation on macOS 10.15+, iOS/tvOS 13+, or
4046
// watchOS 6+.
4047
if (!isFoundationNeededForDarwinAvailabilityCheck(
4048
Target.getTriple(), Target.getPlatformMinVersion()))
4049
return;
4050
// Add -framework CoreFoundation to the linker commands. We still want to
4051
// emit the core foundation reference down below because otherwise if
4052
// CoreFoundation is not used in the code, the linker won't link the
4053
// framework.
4054
auto &Context = getLLVMContext();
4055
llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
4056
llvm::MDString::get(Context, "CoreFoundation")};
4057
LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
4058
// Emit a reference to a symbol from CoreFoundation to ensure that
4059
// CoreFoundation is linked into the final binary.
4060
llvm::FunctionType *FTy =
4061
llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
4062
llvm::FunctionCallee CFFunc =
4063
CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
4064
4065
llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
4066
llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
4067
CheckFTy, "__clang_at_available_requires_core_foundation_framework",
4068
llvm::AttributeList(), /*Local=*/true);
4069
llvm::Function *CFLinkCheckFunc =
4070
cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
4071
if (CFLinkCheckFunc->empty()) {
4072
CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
4073
CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
4074
CodeGenFunction CGF(*this);
4075
CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
4076
CGF.EmitNounwindRuntimeCall(CFFunc,
4077
llvm::Constant::getNullValue(VoidPtrTy));
4078
CGF.Builder.CreateUnreachable();
4079
addCompilerUsedGlobal(CFLinkCheckFunc);
4080
}
4081
}
4082
4083
CGObjCRuntime::~CGObjCRuntime() {}
4084
4085