Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/clang/lib/CodeGen/CGObjCGNU.cpp
35233 views
1
//===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This provides Objective-C code generation targeting the GNU runtime. The
10
// class in this file generates structures used by the GNU Objective-C runtime
11
// library. These structures are defined in objc/objc.h and objc/objc-api.h in
12
// the GNU runtime distribution.
13
//
14
//===----------------------------------------------------------------------===//
15
16
#include "CGCXXABI.h"
17
#include "CGCleanup.h"
18
#include "CGObjCRuntime.h"
19
#include "CodeGenFunction.h"
20
#include "CodeGenModule.h"
21
#include "CodeGenTypes.h"
22
#include "SanitizerMetadata.h"
23
#include "clang/AST/ASTContext.h"
24
#include "clang/AST/Attr.h"
25
#include "clang/AST/Decl.h"
26
#include "clang/AST/DeclObjC.h"
27
#include "clang/AST/RecordLayout.h"
28
#include "clang/AST/StmtObjC.h"
29
#include "clang/Basic/FileManager.h"
30
#include "clang/Basic/SourceManager.h"
31
#include "clang/CodeGen/ConstantInitBuilder.h"
32
#include "llvm/ADT/SmallVector.h"
33
#include "llvm/ADT/StringMap.h"
34
#include "llvm/IR/DataLayout.h"
35
#include "llvm/IR/Intrinsics.h"
36
#include "llvm/IR/LLVMContext.h"
37
#include "llvm/IR/Module.h"
38
#include "llvm/Support/Compiler.h"
39
#include "llvm/Support/ConvertUTF.h"
40
#include <cctype>
41
42
using namespace clang;
43
using namespace CodeGen;
44
45
namespace {
46
47
/// Class that lazily initialises the runtime function. Avoids inserting the
48
/// types and the function declaration into a module if they're not used, and
49
/// avoids constructing the type more than once if it's used more than once.
50
class LazyRuntimeFunction {
51
CodeGenModule *CGM = nullptr;
52
llvm::FunctionType *FTy = nullptr;
53
const char *FunctionName = nullptr;
54
llvm::FunctionCallee Function = nullptr;
55
56
public:
57
LazyRuntimeFunction() = default;
58
59
/// Initialises the lazy function with the name, return type, and the types
60
/// of the arguments.
61
template <typename... Tys>
62
void init(CodeGenModule *Mod, const char *name, llvm::Type *RetTy,
63
Tys *... Types) {
64
CGM = Mod;
65
FunctionName = name;
66
Function = nullptr;
67
if(sizeof...(Tys)) {
68
SmallVector<llvm::Type *, 8> ArgTys({Types...});
69
FTy = llvm::FunctionType::get(RetTy, ArgTys, false);
70
}
71
else {
72
FTy = llvm::FunctionType::get(RetTy, std::nullopt, false);
73
}
74
}
75
76
llvm::FunctionType *getType() { return FTy; }
77
78
/// Overloaded cast operator, allows the class to be implicitly cast to an
79
/// LLVM constant.
80
operator llvm::FunctionCallee() {
81
if (!Function) {
82
if (!FunctionName)
83
return nullptr;
84
Function = CGM->CreateRuntimeFunction(FTy, FunctionName);
85
}
86
return Function;
87
}
88
};
89
90
91
/// GNU Objective-C runtime code generation. This class implements the parts of
92
/// Objective-C support that are specific to the GNU family of runtimes (GCC,
93
/// GNUstep and ObjFW).
94
class CGObjCGNU : public CGObjCRuntime {
95
protected:
96
/// The LLVM module into which output is inserted
97
llvm::Module &TheModule;
98
/// strut objc_super. Used for sending messages to super. This structure
99
/// contains the receiver (object) and the expected class.
100
llvm::StructType *ObjCSuperTy;
101
/// struct objc_super*. The type of the argument to the superclass message
102
/// lookup functions.
103
llvm::PointerType *PtrToObjCSuperTy;
104
/// LLVM type for selectors. Opaque pointer (i8*) unless a header declaring
105
/// SEL is included in a header somewhere, in which case it will be whatever
106
/// type is declared in that header, most likely {i8*, i8*}.
107
llvm::PointerType *SelectorTy;
108
/// Element type of SelectorTy.
109
llvm::Type *SelectorElemTy;
110
/// LLVM i8 type. Cached here to avoid repeatedly getting it in all of the
111
/// places where it's used
112
llvm::IntegerType *Int8Ty;
113
/// Pointer to i8 - LLVM type of char*, for all of the places where the
114
/// runtime needs to deal with C strings.
115
llvm::PointerType *PtrToInt8Ty;
116
/// struct objc_protocol type
117
llvm::StructType *ProtocolTy;
118
/// Protocol * type.
119
llvm::PointerType *ProtocolPtrTy;
120
/// Instance Method Pointer type. This is a pointer to a function that takes,
121
/// at a minimum, an object and a selector, and is the generic type for
122
/// Objective-C methods. Due to differences between variadic / non-variadic
123
/// calling conventions, it must always be cast to the correct type before
124
/// actually being used.
125
llvm::PointerType *IMPTy;
126
/// Type of an untyped Objective-C object. Clang treats id as a built-in type
127
/// when compiling Objective-C code, so this may be an opaque pointer (i8*),
128
/// but if the runtime header declaring it is included then it may be a
129
/// pointer to a structure.
130
llvm::PointerType *IdTy;
131
/// Element type of IdTy.
132
llvm::Type *IdElemTy;
133
/// Pointer to a pointer to an Objective-C object. Used in the new ABI
134
/// message lookup function and some GC-related functions.
135
llvm::PointerType *PtrToIdTy;
136
/// The clang type of id. Used when using the clang CGCall infrastructure to
137
/// call Objective-C methods.
138
CanQualType ASTIdTy;
139
/// LLVM type for C int type.
140
llvm::IntegerType *IntTy;
141
/// LLVM type for an opaque pointer. This is identical to PtrToInt8Ty, but is
142
/// used in the code to document the difference between i8* meaning a pointer
143
/// to a C string and i8* meaning a pointer to some opaque type.
144
llvm::PointerType *PtrTy;
145
/// LLVM type for C long type. The runtime uses this in a lot of places where
146
/// it should be using intptr_t, but we can't fix this without breaking
147
/// compatibility with GCC...
148
llvm::IntegerType *LongTy;
149
/// LLVM type for C size_t. Used in various runtime data structures.
150
llvm::IntegerType *SizeTy;
151
/// LLVM type for C intptr_t.
152
llvm::IntegerType *IntPtrTy;
153
/// LLVM type for C ptrdiff_t. Mainly used in property accessor functions.
154
llvm::IntegerType *PtrDiffTy;
155
/// LLVM type for C int*. Used for GCC-ABI-compatible non-fragile instance
156
/// variables.
157
llvm::PointerType *PtrToIntTy;
158
/// LLVM type for Objective-C BOOL type.
159
llvm::Type *BoolTy;
160
/// 32-bit integer type, to save us needing to look it up every time it's used.
161
llvm::IntegerType *Int32Ty;
162
/// 64-bit integer type, to save us needing to look it up every time it's used.
163
llvm::IntegerType *Int64Ty;
164
/// The type of struct objc_property.
165
llvm::StructType *PropertyMetadataTy;
166
/// Metadata kind used to tie method lookups to message sends. The GNUstep
167
/// runtime provides some LLVM passes that can use this to do things like
168
/// automatic IMP caching and speculative inlining.
169
unsigned msgSendMDKind;
170
/// Does the current target use SEH-based exceptions? False implies
171
/// Itanium-style DWARF unwinding.
172
bool usesSEHExceptions;
173
/// Does the current target uses C++-based exceptions?
174
bool usesCxxExceptions;
175
176
/// Helper to check if we are targeting a specific runtime version or later.
177
bool isRuntime(ObjCRuntime::Kind kind, unsigned major, unsigned minor=0) {
178
const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
179
return (R.getKind() == kind) &&
180
(R.getVersion() >= VersionTuple(major, minor));
181
}
182
183
std::string ManglePublicSymbol(StringRef Name) {
184
return (StringRef(CGM.getTriple().isOSBinFormatCOFF() ? "$_" : "._") + Name).str();
185
}
186
187
std::string SymbolForProtocol(Twine Name) {
188
return (ManglePublicSymbol("OBJC_PROTOCOL_") + Name).str();
189
}
190
191
std::string SymbolForProtocolRef(StringRef Name) {
192
return (ManglePublicSymbol("OBJC_REF_PROTOCOL_") + Name).str();
193
}
194
195
196
/// Helper function that generates a constant string and returns a pointer to
197
/// the start of the string. The result of this function can be used anywhere
198
/// where the C code specifies const char*.
199
llvm::Constant *MakeConstantString(StringRef Str, const char *Name = "") {
200
ConstantAddress Array =
201
CGM.GetAddrOfConstantCString(std::string(Str), Name);
202
return Array.getPointer();
203
}
204
205
/// Emits a linkonce_odr string, whose name is the prefix followed by the
206
/// string value. This allows the linker to combine the strings between
207
/// different modules. Used for EH typeinfo names, selector strings, and a
208
/// few other things.
209
llvm::Constant *ExportUniqueString(const std::string &Str,
210
const std::string &prefix,
211
bool Private=false) {
212
std::string name = prefix + Str;
213
auto *ConstStr = TheModule.getGlobalVariable(name);
214
if (!ConstStr) {
215
llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str);
216
auto *GV = new llvm::GlobalVariable(TheModule, value->getType(), true,
217
llvm::GlobalValue::LinkOnceODRLinkage, value, name);
218
GV->setComdat(TheModule.getOrInsertComdat(name));
219
if (Private)
220
GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
221
ConstStr = GV;
222
}
223
return ConstStr;
224
}
225
226
/// Returns a property name and encoding string.
227
llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD,
228
const Decl *Container) {
229
assert(!isRuntime(ObjCRuntime::GNUstep, 2));
230
if (isRuntime(ObjCRuntime::GNUstep, 1, 6)) {
231
std::string NameAndAttributes;
232
std::string TypeStr =
233
CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container);
234
NameAndAttributes += '\0';
235
NameAndAttributes += TypeStr.length() + 3;
236
NameAndAttributes += TypeStr;
237
NameAndAttributes += '\0';
238
NameAndAttributes += PD->getNameAsString();
239
return MakeConstantString(NameAndAttributes);
240
}
241
return MakeConstantString(PD->getNameAsString());
242
}
243
244
/// Push the property attributes into two structure fields.
245
void PushPropertyAttributes(ConstantStructBuilder &Fields,
246
const ObjCPropertyDecl *property, bool isSynthesized=true, bool
247
isDynamic=true) {
248
int attrs = property->getPropertyAttributes();
249
// For read-only properties, clear the copy and retain flags
250
if (attrs & ObjCPropertyAttribute::kind_readonly) {
251
attrs &= ~ObjCPropertyAttribute::kind_copy;
252
attrs &= ~ObjCPropertyAttribute::kind_retain;
253
attrs &= ~ObjCPropertyAttribute::kind_weak;
254
attrs &= ~ObjCPropertyAttribute::kind_strong;
255
}
256
// The first flags field has the same attribute values as clang uses internally
257
Fields.addInt(Int8Ty, attrs & 0xff);
258
attrs >>= 8;
259
attrs <<= 2;
260
// For protocol properties, synthesized and dynamic have no meaning, so we
261
// reuse these flags to indicate that this is a protocol property (both set
262
// has no meaning, as a property can't be both synthesized and dynamic)
263
attrs |= isSynthesized ? (1<<0) : 0;
264
attrs |= isDynamic ? (1<<1) : 0;
265
// The second field is the next four fields left shifted by two, with the
266
// low bit set to indicate whether the field is synthesized or dynamic.
267
Fields.addInt(Int8Ty, attrs & 0xff);
268
// Two padding fields
269
Fields.addInt(Int8Ty, 0);
270
Fields.addInt(Int8Ty, 0);
271
}
272
273
virtual llvm::Constant *GenerateCategoryProtocolList(const
274
ObjCCategoryDecl *OCD);
275
virtual ConstantArrayBuilder PushPropertyListHeader(ConstantStructBuilder &Fields,
276
int count) {
277
// int count;
278
Fields.addInt(IntTy, count);
279
// int size; (only in GNUstep v2 ABI.
280
if (isRuntime(ObjCRuntime::GNUstep, 2)) {
281
llvm::DataLayout td(&TheModule);
282
Fields.addInt(IntTy, td.getTypeSizeInBits(PropertyMetadataTy) /
283
CGM.getContext().getCharWidth());
284
}
285
// struct objc_property_list *next;
286
Fields.add(NULLPtr);
287
// struct objc_property properties[]
288
return Fields.beginArray(PropertyMetadataTy);
289
}
290
virtual void PushProperty(ConstantArrayBuilder &PropertiesArray,
291
const ObjCPropertyDecl *property,
292
const Decl *OCD,
293
bool isSynthesized=true, bool
294
isDynamic=true) {
295
auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy);
296
ASTContext &Context = CGM.getContext();
297
Fields.add(MakePropertyEncodingString(property, OCD));
298
PushPropertyAttributes(Fields, property, isSynthesized, isDynamic);
299
auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) {
300
if (accessor) {
301
std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor);
302
llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
303
Fields.add(MakeConstantString(accessor->getSelector().getAsString()));
304
Fields.add(TypeEncoding);
305
} else {
306
Fields.add(NULLPtr);
307
Fields.add(NULLPtr);
308
}
309
};
310
addPropertyMethod(property->getGetterMethodDecl());
311
addPropertyMethod(property->getSetterMethodDecl());
312
Fields.finishAndAddTo(PropertiesArray);
313
}
314
315
/// Ensures that the value has the required type, by inserting a bitcast if
316
/// required. This function lets us avoid inserting bitcasts that are
317
/// redundant.
318
llvm::Value *EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) {
319
if (V->getType() == Ty)
320
return V;
321
return B.CreateBitCast(V, Ty);
322
}
323
324
// Some zeros used for GEPs in lots of places.
325
llvm::Constant *Zeros[2];
326
/// Null pointer value. Mainly used as a terminator in various arrays.
327
llvm::Constant *NULLPtr;
328
/// LLVM context.
329
llvm::LLVMContext &VMContext;
330
331
protected:
332
333
/// Placeholder for the class. Lots of things refer to the class before we've
334
/// actually emitted it. We use this alias as a placeholder, and then replace
335
/// it with a pointer to the class structure before finally emitting the
336
/// module.
337
llvm::GlobalAlias *ClassPtrAlias;
338
/// Placeholder for the metaclass. Lots of things refer to the class before
339
/// we've / actually emitted it. We use this alias as a placeholder, and then
340
/// replace / it with a pointer to the metaclass structure before finally
341
/// emitting the / module.
342
llvm::GlobalAlias *MetaClassPtrAlias;
343
/// All of the classes that have been generated for this compilation units.
344
std::vector<llvm::Constant*> Classes;
345
/// All of the categories that have been generated for this compilation units.
346
std::vector<llvm::Constant*> Categories;
347
/// All of the Objective-C constant strings that have been generated for this
348
/// compilation units.
349
std::vector<llvm::Constant*> ConstantStrings;
350
/// Map from string values to Objective-C constant strings in the output.
351
/// Used to prevent emitting Objective-C strings more than once. This should
352
/// not be required at all - CodeGenModule should manage this list.
353
llvm::StringMap<llvm::Constant*> ObjCStrings;
354
/// All of the protocols that have been declared.
355
llvm::StringMap<llvm::Constant*> ExistingProtocols;
356
/// For each variant of a selector, we store the type encoding and a
357
/// placeholder value. For an untyped selector, the type will be the empty
358
/// string. Selector references are all done via the module's selector table,
359
/// so we create an alias as a placeholder and then replace it with the real
360
/// value later.
361
typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector;
362
/// Type of the selector map. This is roughly equivalent to the structure
363
/// used in the GNUstep runtime, which maintains a list of all of the valid
364
/// types for a selector in a table.
365
typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> >
366
SelectorMap;
367
/// A map from selectors to selector types. This allows us to emit all
368
/// selectors of the same name and type together.
369
SelectorMap SelectorTable;
370
371
/// Selectors related to memory management. When compiling in GC mode, we
372
/// omit these.
373
Selector RetainSel, ReleaseSel, AutoreleaseSel;
374
/// Runtime functions used for memory management in GC mode. Note that clang
375
/// supports code generation for calling these functions, but neither GNU
376
/// runtime actually supports this API properly yet.
377
LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn,
378
WeakAssignFn, GlobalAssignFn;
379
380
typedef std::pair<std::string, std::string> ClassAliasPair;
381
/// All classes that have aliases set for them.
382
std::vector<ClassAliasPair> ClassAliases;
383
384
protected:
385
/// Function used for throwing Objective-C exceptions.
386
LazyRuntimeFunction ExceptionThrowFn;
387
/// Function used for rethrowing exceptions, used at the end of \@finally or
388
/// \@synchronize blocks.
389
LazyRuntimeFunction ExceptionReThrowFn;
390
/// Function called when entering a catch function. This is required for
391
/// differentiating Objective-C exceptions and foreign exceptions.
392
LazyRuntimeFunction EnterCatchFn;
393
/// Function called when exiting from a catch block. Used to do exception
394
/// cleanup.
395
LazyRuntimeFunction ExitCatchFn;
396
/// Function called when entering an \@synchronize block. Acquires the lock.
397
LazyRuntimeFunction SyncEnterFn;
398
/// Function called when exiting an \@synchronize block. Releases the lock.
399
LazyRuntimeFunction SyncExitFn;
400
401
private:
402
/// Function called if fast enumeration detects that the collection is
403
/// modified during the update.
404
LazyRuntimeFunction EnumerationMutationFn;
405
/// Function for implementing synthesized property getters that return an
406
/// object.
407
LazyRuntimeFunction GetPropertyFn;
408
/// Function for implementing synthesized property setters that return an
409
/// object.
410
LazyRuntimeFunction SetPropertyFn;
411
/// Function used for non-object declared property getters.
412
LazyRuntimeFunction GetStructPropertyFn;
413
/// Function used for non-object declared property setters.
414
LazyRuntimeFunction SetStructPropertyFn;
415
416
protected:
417
/// The version of the runtime that this class targets. Must match the
418
/// version in the runtime.
419
int RuntimeVersion;
420
/// The version of the protocol class. Used to differentiate between ObjC1
421
/// and ObjC2 protocols. Objective-C 1 protocols can not contain optional
422
/// components and can not contain declared properties. We always emit
423
/// Objective-C 2 property structures, but we have to pretend that they're
424
/// Objective-C 1 property structures when targeting the GCC runtime or it
425
/// will abort.
426
const int ProtocolVersion;
427
/// The version of the class ABI. This value is used in the class structure
428
/// and indicates how various fields should be interpreted.
429
const int ClassABIVersion;
430
/// Generates an instance variable list structure. This is a structure
431
/// containing a size and an array of structures containing instance variable
432
/// metadata. This is used purely for introspection in the fragile ABI. In
433
/// the non-fragile ABI, it's used for instance variable fixup.
434
virtual llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
435
ArrayRef<llvm::Constant *> IvarTypes,
436
ArrayRef<llvm::Constant *> IvarOffsets,
437
ArrayRef<llvm::Constant *> IvarAlign,
438
ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership);
439
440
/// Generates a method list structure. This is a structure containing a size
441
/// and an array of structures containing method metadata.
442
///
443
/// This structure is used by both classes and categories, and contains a next
444
/// pointer allowing them to be chained together in a linked list.
445
llvm::Constant *GenerateMethodList(StringRef ClassName,
446
StringRef CategoryName,
447
ArrayRef<const ObjCMethodDecl*> Methods,
448
bool isClassMethodList);
449
450
/// Emits an empty protocol. This is used for \@protocol() where no protocol
451
/// is found. The runtime will (hopefully) fix up the pointer to refer to the
452
/// real protocol.
453
virtual llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName);
454
455
/// Generates a list of property metadata structures. This follows the same
456
/// pattern as method and instance variable metadata lists.
457
llvm::Constant *GeneratePropertyList(const Decl *Container,
458
const ObjCContainerDecl *OCD,
459
bool isClassProperty=false,
460
bool protocolOptionalProperties=false);
461
462
/// Generates a list of referenced protocols. Classes, categories, and
463
/// protocols all use this structure.
464
llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols);
465
466
/// To ensure that all protocols are seen by the runtime, we add a category on
467
/// a class defined in the runtime, declaring no methods, but adopting the
468
/// protocols. This is a horribly ugly hack, but it allows us to collect all
469
/// of the protocols without changing the ABI.
470
void GenerateProtocolHolderCategory();
471
472
/// Generates a class structure.
473
llvm::Constant *GenerateClassStructure(
474
llvm::Constant *MetaClass,
475
llvm::Constant *SuperClass,
476
unsigned info,
477
const char *Name,
478
llvm::Constant *Version,
479
llvm::Constant *InstanceSize,
480
llvm::Constant *IVars,
481
llvm::Constant *Methods,
482
llvm::Constant *Protocols,
483
llvm::Constant *IvarOffsets,
484
llvm::Constant *Properties,
485
llvm::Constant *StrongIvarBitmap,
486
llvm::Constant *WeakIvarBitmap,
487
bool isMeta=false);
488
489
/// Generates a method list. This is used by protocols to define the required
490
/// and optional methods.
491
virtual llvm::Constant *GenerateProtocolMethodList(
492
ArrayRef<const ObjCMethodDecl*> Methods);
493
/// Emits optional and required method lists.
494
template<class T>
495
void EmitProtocolMethodList(T &&Methods, llvm::Constant *&Required,
496
llvm::Constant *&Optional) {
497
SmallVector<const ObjCMethodDecl*, 16> RequiredMethods;
498
SmallVector<const ObjCMethodDecl*, 16> OptionalMethods;
499
for (const auto *I : Methods)
500
if (I->isOptional())
501
OptionalMethods.push_back(I);
502
else
503
RequiredMethods.push_back(I);
504
Required = GenerateProtocolMethodList(RequiredMethods);
505
Optional = GenerateProtocolMethodList(OptionalMethods);
506
}
507
508
/// Returns a selector with the specified type encoding. An empty string is
509
/// used to return an untyped selector (with the types field set to NULL).
510
virtual llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
511
const std::string &TypeEncoding);
512
513
/// Returns the name of ivar offset variables. In the GNUstep v1 ABI, this
514
/// contains the class and ivar names, in the v2 ABI this contains the type
515
/// encoding as well.
516
virtual std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID,
517
const ObjCIvarDecl *Ivar) {
518
const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
519
+ '.' + Ivar->getNameAsString();
520
return Name;
521
}
522
/// Returns the variable used to store the offset of an instance variable.
523
llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
524
const ObjCIvarDecl *Ivar);
525
/// Emits a reference to a class. This allows the linker to object if there
526
/// is no class of the matching name.
527
void EmitClassRef(const std::string &className);
528
529
/// Emits a pointer to the named class
530
virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF,
531
const std::string &Name, bool isWeak);
532
533
/// Looks up the method for sending a message to the specified object. This
534
/// mechanism differs between the GCC and GNU runtimes, so this method must be
535
/// overridden in subclasses.
536
virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
537
llvm::Value *&Receiver,
538
llvm::Value *cmd,
539
llvm::MDNode *node,
540
MessageSendInfo &MSI) = 0;
541
542
/// Looks up the method for sending a message to a superclass. This
543
/// mechanism differs between the GCC and GNU runtimes, so this method must
544
/// be overridden in subclasses.
545
virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
546
Address ObjCSuper,
547
llvm::Value *cmd,
548
MessageSendInfo &MSI) = 0;
549
550
/// Libobjc2 uses a bitfield representation where small(ish) bitfields are
551
/// stored in a 64-bit value with the low bit set to 1 and the remaining 63
552
/// bits set to their values, LSB first, while larger ones are stored in a
553
/// structure of this / form:
554
///
555
/// struct { int32_t length; int32_t values[length]; };
556
///
557
/// The values in the array are stored in host-endian format, with the least
558
/// significant bit being assumed to come first in the bitfield. Therefore,
559
/// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] },
560
/// while a bitfield / with the 63rd bit set will be 1<<64.
561
llvm::Constant *MakeBitField(ArrayRef<bool> bits);
562
563
public:
564
CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
565
unsigned protocolClassVersion, unsigned classABI=1);
566
567
ConstantAddress GenerateConstantString(const StringLiteral *) override;
568
569
RValue
570
GenerateMessageSend(CodeGenFunction &CGF, ReturnValueSlot Return,
571
QualType ResultType, Selector Sel,
572
llvm::Value *Receiver, const CallArgList &CallArgs,
573
const ObjCInterfaceDecl *Class,
574
const ObjCMethodDecl *Method) override;
575
RValue
576
GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return,
577
QualType ResultType, Selector Sel,
578
const ObjCInterfaceDecl *Class,
579
bool isCategoryImpl, llvm::Value *Receiver,
580
bool IsClassMessage, const CallArgList &CallArgs,
581
const ObjCMethodDecl *Method) override;
582
llvm::Value *GetClass(CodeGenFunction &CGF,
583
const ObjCInterfaceDecl *OID) override;
584
llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override;
585
Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override;
586
llvm::Value *GetSelector(CodeGenFunction &CGF,
587
const ObjCMethodDecl *Method) override;
588
virtual llvm::Constant *GetConstantSelector(Selector Sel,
589
const std::string &TypeEncoding) {
590
llvm_unreachable("Runtime unable to generate constant selector");
591
}
592
llvm::Constant *GetConstantSelector(const ObjCMethodDecl *M) {
593
return GetConstantSelector(M->getSelector(),
594
CGM.getContext().getObjCEncodingForMethodDecl(M));
595
}
596
llvm::Constant *GetEHType(QualType T) override;
597
598
llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
599
const ObjCContainerDecl *CD) override;
600
601
// Map to unify direct method definitions.
602
llvm::DenseMap<const ObjCMethodDecl *, llvm::Function *>
603
DirectMethodDefinitions;
604
void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn,
605
const ObjCMethodDecl *OMD,
606
const ObjCContainerDecl *CD) override;
607
void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
608
void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
609
void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override;
610
llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
611
const ObjCProtocolDecl *PD) override;
612
void GenerateProtocol(const ObjCProtocolDecl *PD) override;
613
614
virtual llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD);
615
616
llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override {
617
return GenerateProtocolRef(PD);
618
}
619
620
llvm::Function *ModuleInitFunction() override;
621
llvm::FunctionCallee GetPropertyGetFunction() override;
622
llvm::FunctionCallee GetPropertySetFunction() override;
623
llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic,
624
bool copy) override;
625
llvm::FunctionCallee GetSetStructFunction() override;
626
llvm::FunctionCallee GetGetStructFunction() override;
627
llvm::FunctionCallee GetCppAtomicObjectGetFunction() override;
628
llvm::FunctionCallee GetCppAtomicObjectSetFunction() override;
629
llvm::FunctionCallee EnumerationMutationFunction() override;
630
631
void EmitTryStmt(CodeGenFunction &CGF,
632
const ObjCAtTryStmt &S) override;
633
void EmitSynchronizedStmt(CodeGenFunction &CGF,
634
const ObjCAtSynchronizedStmt &S) override;
635
void EmitThrowStmt(CodeGenFunction &CGF,
636
const ObjCAtThrowStmt &S,
637
bool ClearInsertionPoint=true) override;
638
llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF,
639
Address AddrWeakObj) override;
640
void EmitObjCWeakAssign(CodeGenFunction &CGF,
641
llvm::Value *src, Address dst) override;
642
void EmitObjCGlobalAssign(CodeGenFunction &CGF,
643
llvm::Value *src, Address dest,
644
bool threadlocal=false) override;
645
void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src,
646
Address dest, llvm::Value *ivarOffset) override;
647
void EmitObjCStrongCastAssign(CodeGenFunction &CGF,
648
llvm::Value *src, Address dest) override;
649
void EmitGCMemmoveCollectable(CodeGenFunction &CGF, Address DestPtr,
650
Address SrcPtr,
651
llvm::Value *Size) override;
652
LValue EmitObjCValueForIvar(CodeGenFunction &CGF, QualType ObjectTy,
653
llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
654
unsigned CVRQualifiers) override;
655
llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
656
const ObjCInterfaceDecl *Interface,
657
const ObjCIvarDecl *Ivar) override;
658
llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
659
llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM,
660
const CGBlockInfo &blockInfo) override {
661
return NULLPtr;
662
}
663
llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM,
664
const CGBlockInfo &blockInfo) override {
665
return NULLPtr;
666
}
667
668
llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override {
669
return NULLPtr;
670
}
671
};
672
673
/// Class representing the legacy GCC Objective-C ABI. This is the default when
674
/// -fobjc-nonfragile-abi is not specified.
675
///
676
/// The GCC ABI target actually generates code that is approximately compatible
677
/// with the new GNUstep runtime ABI, but refrains from using any features that
678
/// would not work with the GCC runtime. For example, clang always generates
679
/// the extended form of the class structure, and the extra fields are simply
680
/// ignored by GCC libobjc.
681
class CGObjCGCC : public CGObjCGNU {
682
/// The GCC ABI message lookup function. Returns an IMP pointing to the
683
/// method implementation for this message.
684
LazyRuntimeFunction MsgLookupFn;
685
/// The GCC ABI superclass message lookup function. Takes a pointer to a
686
/// structure describing the receiver and the class, and a selector as
687
/// arguments. Returns the IMP for the corresponding method.
688
LazyRuntimeFunction MsgLookupSuperFn;
689
690
protected:
691
llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
692
llvm::Value *cmd, llvm::MDNode *node,
693
MessageSendInfo &MSI) override {
694
CGBuilderTy &Builder = CGF.Builder;
695
llvm::Value *args[] = {
696
EnforceType(Builder, Receiver, IdTy),
697
EnforceType(Builder, cmd, SelectorTy) };
698
llvm::CallBase *imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
699
imp->setMetadata(msgSendMDKind, node);
700
return imp;
701
}
702
703
llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
704
llvm::Value *cmd, MessageSendInfo &MSI) override {
705
CGBuilderTy &Builder = CGF.Builder;
706
llvm::Value *lookupArgs[] = {
707
EnforceType(Builder, ObjCSuper.emitRawPointer(CGF), PtrToObjCSuperTy),
708
cmd};
709
return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
710
}
711
712
public:
713
CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) {
714
// IMP objc_msg_lookup(id, SEL);
715
MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy);
716
// IMP objc_msg_lookup_super(struct objc_super*, SEL);
717
MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
718
PtrToObjCSuperTy, SelectorTy);
719
}
720
};
721
722
/// Class used when targeting the new GNUstep runtime ABI.
723
class CGObjCGNUstep : public CGObjCGNU {
724
/// The slot lookup function. Returns a pointer to a cacheable structure
725
/// that contains (among other things) the IMP.
726
LazyRuntimeFunction SlotLookupFn;
727
/// The GNUstep ABI superclass message lookup function. Takes a pointer to
728
/// a structure describing the receiver and the class, and a selector as
729
/// arguments. Returns the slot for the corresponding method. Superclass
730
/// message lookup rarely changes, so this is a good caching opportunity.
731
LazyRuntimeFunction SlotLookupSuperFn;
732
/// Specialised function for setting atomic retain properties
733
LazyRuntimeFunction SetPropertyAtomic;
734
/// Specialised function for setting atomic copy properties
735
LazyRuntimeFunction SetPropertyAtomicCopy;
736
/// Specialised function for setting nonatomic retain properties
737
LazyRuntimeFunction SetPropertyNonAtomic;
738
/// Specialised function for setting nonatomic copy properties
739
LazyRuntimeFunction SetPropertyNonAtomicCopy;
740
/// Function to perform atomic copies of C++ objects with nontrivial copy
741
/// constructors from Objective-C ivars.
742
LazyRuntimeFunction CxxAtomicObjectGetFn;
743
/// Function to perform atomic copies of C++ objects with nontrivial copy
744
/// constructors to Objective-C ivars.
745
LazyRuntimeFunction CxxAtomicObjectSetFn;
746
/// Type of a slot structure pointer. This is returned by the various
747
/// lookup functions.
748
llvm::Type *SlotTy;
749
/// Type of a slot structure.
750
llvm::Type *SlotStructTy;
751
752
public:
753
llvm::Constant *GetEHType(QualType T) override;
754
755
protected:
756
llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
757
llvm::Value *cmd, llvm::MDNode *node,
758
MessageSendInfo &MSI) override {
759
CGBuilderTy &Builder = CGF.Builder;
760
llvm::FunctionCallee LookupFn = SlotLookupFn;
761
762
// Store the receiver on the stack so that we can reload it later
763
RawAddress ReceiverPtr =
764
CGF.CreateTempAlloca(Receiver->getType(), CGF.getPointerAlign());
765
Builder.CreateStore(Receiver, ReceiverPtr);
766
767
llvm::Value *self;
768
769
if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) {
770
self = CGF.LoadObjCSelf();
771
} else {
772
self = llvm::ConstantPointerNull::get(IdTy);
773
}
774
775
// The lookup function is guaranteed not to capture the receiver pointer.
776
if (auto *LookupFn2 = dyn_cast<llvm::Function>(LookupFn.getCallee()))
777
LookupFn2->addParamAttr(0, llvm::Attribute::NoCapture);
778
779
llvm::Value *args[] = {
780
EnforceType(Builder, ReceiverPtr.getPointer(), PtrToIdTy),
781
EnforceType(Builder, cmd, SelectorTy),
782
EnforceType(Builder, self, IdTy)};
783
llvm::CallBase *slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args);
784
slot->setOnlyReadsMemory();
785
slot->setMetadata(msgSendMDKind, node);
786
787
// Load the imp from the slot
788
llvm::Value *imp = Builder.CreateAlignedLoad(
789
IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4),
790
CGF.getPointerAlign());
791
792
// The lookup function may have changed the receiver, so make sure we use
793
// the new one.
794
Receiver = Builder.CreateLoad(ReceiverPtr, true);
795
return imp;
796
}
797
798
llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
799
llvm::Value *cmd,
800
MessageSendInfo &MSI) override {
801
CGBuilderTy &Builder = CGF.Builder;
802
llvm::Value *lookupArgs[] = {ObjCSuper.emitRawPointer(CGF), cmd};
803
804
llvm::CallInst *slot =
805
CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs);
806
slot->setOnlyReadsMemory();
807
808
return Builder.CreateAlignedLoad(
809
IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4),
810
CGF.getPointerAlign());
811
}
812
813
public:
814
CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 9, 3, 1) {}
815
CGObjCGNUstep(CodeGenModule &Mod, unsigned ABI, unsigned ProtocolABI,
816
unsigned ClassABI) :
817
CGObjCGNU(Mod, ABI, ProtocolABI, ClassABI) {
818
const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
819
820
SlotStructTy = llvm::StructType::get(PtrTy, PtrTy, PtrTy, IntTy, IMPTy);
821
SlotTy = llvm::PointerType::getUnqual(SlotStructTy);
822
// Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender);
823
SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy,
824
SelectorTy, IdTy);
825
// Slot_t objc_slot_lookup_super(struct objc_super*, SEL);
826
SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy,
827
PtrToObjCSuperTy, SelectorTy);
828
// If we're in ObjC++ mode, then we want to make
829
llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
830
if (usesCxxExceptions) {
831
// void *__cxa_begin_catch(void *e)
832
EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy);
833
// void __cxa_end_catch(void)
834
ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy);
835
// void objc_exception_rethrow(void*)
836
ExceptionReThrowFn.init(&CGM, "__cxa_rethrow", PtrTy);
837
} else if (usesSEHExceptions) {
838
// void objc_exception_rethrow(void)
839
ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy);
840
} else if (CGM.getLangOpts().CPlusPlus) {
841
// void *__cxa_begin_catch(void *e)
842
EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy);
843
// void __cxa_end_catch(void)
844
ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy);
845
// void _Unwind_Resume_or_Rethrow(void*)
846
ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy,
847
PtrTy);
848
} else if (R.getVersion() >= VersionTuple(1, 7)) {
849
// id objc_begin_catch(void *e)
850
EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy);
851
// void objc_end_catch(void)
852
ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy);
853
// void _Unwind_Resume_or_Rethrow(void*)
854
ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy, PtrTy);
855
}
856
SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy,
857
SelectorTy, IdTy, PtrDiffTy);
858
SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy,
859
IdTy, SelectorTy, IdTy, PtrDiffTy);
860
SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy,
861
IdTy, SelectorTy, IdTy, PtrDiffTy);
862
SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy",
863
VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy);
864
// void objc_setCppObjectAtomic(void *dest, const void *src, void
865
// *helper);
866
CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy,
867
PtrTy, PtrTy);
868
// void objc_getCppObjectAtomic(void *dest, const void *src, void
869
// *helper);
870
CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy,
871
PtrTy, PtrTy);
872
}
873
874
llvm::FunctionCallee GetCppAtomicObjectGetFunction() override {
875
// The optimised functions were added in version 1.7 of the GNUstep
876
// runtime.
877
assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
878
VersionTuple(1, 7));
879
return CxxAtomicObjectGetFn;
880
}
881
882
llvm::FunctionCallee GetCppAtomicObjectSetFunction() override {
883
// The optimised functions were added in version 1.7 of the GNUstep
884
// runtime.
885
assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
886
VersionTuple(1, 7));
887
return CxxAtomicObjectSetFn;
888
}
889
890
llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic,
891
bool copy) override {
892
// The optimised property functions omit the GC check, and so are not
893
// safe to use in GC mode. The standard functions are fast in GC mode,
894
// so there is less advantage in using them.
895
assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC));
896
// The optimised functions were added in version 1.7 of the GNUstep
897
// runtime.
898
assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
899
VersionTuple(1, 7));
900
901
if (atomic) {
902
if (copy) return SetPropertyAtomicCopy;
903
return SetPropertyAtomic;
904
}
905
906
return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic;
907
}
908
};
909
910
/// GNUstep Objective-C ABI version 2 implementation.
911
/// This is the ABI that provides a clean break with the legacy GCC ABI and
912
/// cleans up a number of things that were added to work around 1980s linkers.
913
class CGObjCGNUstep2 : public CGObjCGNUstep {
914
enum SectionKind
915
{
916
SelectorSection = 0,
917
ClassSection,
918
ClassReferenceSection,
919
CategorySection,
920
ProtocolSection,
921
ProtocolReferenceSection,
922
ClassAliasSection,
923
ConstantStringSection
924
};
925
/// The subset of `objc_class_flags` used at compile time.
926
enum ClassFlags {
927
/// This is a metaclass
928
ClassFlagMeta = (1 << 0),
929
/// This class has been initialised by the runtime (+initialize has been
930
/// sent if necessary).
931
ClassFlagInitialized = (1 << 8),
932
};
933
static const char *const SectionsBaseNames[8];
934
static const char *const PECOFFSectionsBaseNames[8];
935
template<SectionKind K>
936
std::string sectionName() {
937
if (CGM.getTriple().isOSBinFormatCOFF()) {
938
std::string name(PECOFFSectionsBaseNames[K]);
939
name += "$m";
940
return name;
941
}
942
return SectionsBaseNames[K];
943
}
944
/// The GCC ABI superclass message lookup function. Takes a pointer to a
945
/// structure describing the receiver and the class, and a selector as
946
/// arguments. Returns the IMP for the corresponding method.
947
LazyRuntimeFunction MsgLookupSuperFn;
948
/// Function to ensure that +initialize is sent to a class.
949
LazyRuntimeFunction SentInitializeFn;
950
/// A flag indicating if we've emitted at least one protocol.
951
/// If we haven't, then we need to emit an empty protocol, to ensure that the
952
/// __start__objc_protocols and __stop__objc_protocols sections exist.
953
bool EmittedProtocol = false;
954
/// A flag indicating if we've emitted at least one protocol reference.
955
/// If we haven't, then we need to emit an empty protocol, to ensure that the
956
/// __start__objc_protocol_refs and __stop__objc_protocol_refs sections
957
/// exist.
958
bool EmittedProtocolRef = false;
959
/// A flag indicating if we've emitted at least one class.
960
/// If we haven't, then we need to emit an empty protocol, to ensure that the
961
/// __start__objc_classes and __stop__objc_classes sections / exist.
962
bool EmittedClass = false;
963
/// Generate the name of a symbol for a reference to a class. Accesses to
964
/// classes should be indirected via this.
965
966
typedef std::pair<std::string, std::pair<llvm::GlobalVariable*, int>>
967
EarlyInitPair;
968
std::vector<EarlyInitPair> EarlyInitList;
969
970
std::string SymbolForClassRef(StringRef Name, bool isWeak) {
971
if (isWeak)
972
return (ManglePublicSymbol("OBJC_WEAK_REF_CLASS_") + Name).str();
973
else
974
return (ManglePublicSymbol("OBJC_REF_CLASS_") + Name).str();
975
}
976
/// Generate the name of a class symbol.
977
std::string SymbolForClass(StringRef Name) {
978
return (ManglePublicSymbol("OBJC_CLASS_") + Name).str();
979
}
980
void CallRuntimeFunction(CGBuilderTy &B, StringRef FunctionName,
981
ArrayRef<llvm::Value*> Args) {
982
SmallVector<llvm::Type *,8> Types;
983
for (auto *Arg : Args)
984
Types.push_back(Arg->getType());
985
llvm::FunctionType *FT = llvm::FunctionType::get(B.getVoidTy(), Types,
986
false);
987
llvm::FunctionCallee Fn = CGM.CreateRuntimeFunction(FT, FunctionName);
988
B.CreateCall(Fn, Args);
989
}
990
991
ConstantAddress GenerateConstantString(const StringLiteral *SL) override {
992
993
auto Str = SL->getString();
994
CharUnits Align = CGM.getPointerAlign();
995
996
// Look for an existing one
997
llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
998
if (old != ObjCStrings.end())
999
return ConstantAddress(old->getValue(), IdElemTy, Align);
1000
1001
bool isNonASCII = SL->containsNonAscii();
1002
1003
auto LiteralLength = SL->getLength();
1004
1005
if ((CGM.getTarget().getPointerWidth(LangAS::Default) == 64) &&
1006
(LiteralLength < 9) && !isNonASCII) {
1007
// Tiny strings are only used on 64-bit platforms. They store 8 7-bit
1008
// ASCII characters in the high 56 bits, followed by a 4-bit length and a
1009
// 3-bit tag (which is always 4).
1010
uint64_t str = 0;
1011
// Fill in the characters
1012
for (unsigned i=0 ; i<LiteralLength ; i++)
1013
str |= ((uint64_t)SL->getCodeUnit(i)) << ((64 - 4 - 3) - (i*7));
1014
// Fill in the length
1015
str |= LiteralLength << 3;
1016
// Set the tag
1017
str |= 4;
1018
auto *ObjCStr = llvm::ConstantExpr::getIntToPtr(
1019
llvm::ConstantInt::get(Int64Ty, str), IdTy);
1020
ObjCStrings[Str] = ObjCStr;
1021
return ConstantAddress(ObjCStr, IdElemTy, Align);
1022
}
1023
1024
StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
1025
1026
if (StringClass.empty()) StringClass = "NSConstantString";
1027
1028
std::string Sym = SymbolForClass(StringClass);
1029
1030
llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
1031
1032
if (!isa) {
1033
isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
1034
llvm::GlobalValue::ExternalLinkage, nullptr, Sym);
1035
if (CGM.getTriple().isOSBinFormatCOFF()) {
1036
cast<llvm::GlobalValue>(isa)->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1037
}
1038
}
1039
1040
// struct
1041
// {
1042
// Class isa;
1043
// uint32_t flags;
1044
// uint32_t length; // Number of codepoints
1045
// uint32_t size; // Number of bytes
1046
// uint32_t hash;
1047
// const char *data;
1048
// };
1049
1050
ConstantInitBuilder Builder(CGM);
1051
auto Fields = Builder.beginStruct();
1052
if (!CGM.getTriple().isOSBinFormatCOFF()) {
1053
Fields.add(isa);
1054
} else {
1055
Fields.addNullPointer(PtrTy);
1056
}
1057
// For now, all non-ASCII strings are represented as UTF-16. As such, the
1058
// number of bytes is simply double the number of UTF-16 codepoints. In
1059
// ASCII strings, the number of bytes is equal to the number of non-ASCII
1060
// codepoints.
1061
if (isNonASCII) {
1062
unsigned NumU8CodeUnits = Str.size();
1063
// A UTF-16 representation of a unicode string contains at most the same
1064
// number of code units as a UTF-8 representation. Allocate that much
1065
// space, plus one for the final null character.
1066
SmallVector<llvm::UTF16, 128> ToBuf(NumU8CodeUnits + 1);
1067
const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)Str.data();
1068
llvm::UTF16 *ToPtr = &ToBuf[0];
1069
(void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumU8CodeUnits,
1070
&ToPtr, ToPtr + NumU8CodeUnits, llvm::strictConversion);
1071
uint32_t StringLength = ToPtr - &ToBuf[0];
1072
// Add null terminator
1073
*ToPtr = 0;
1074
// Flags: 2 indicates UTF-16 encoding
1075
Fields.addInt(Int32Ty, 2);
1076
// Number of UTF-16 codepoints
1077
Fields.addInt(Int32Ty, StringLength);
1078
// Number of bytes
1079
Fields.addInt(Int32Ty, StringLength * 2);
1080
// Hash. Not currently initialised by the compiler.
1081
Fields.addInt(Int32Ty, 0);
1082
// pointer to the data string.
1083
auto Arr = llvm::ArrayRef(&ToBuf[0], ToPtr + 1);
1084
auto *C = llvm::ConstantDataArray::get(VMContext, Arr);
1085
auto *Buffer = new llvm::GlobalVariable(TheModule, C->getType(),
1086
/*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, C, ".str");
1087
Buffer->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1088
Fields.add(Buffer);
1089
} else {
1090
// Flags: 0 indicates ASCII encoding
1091
Fields.addInt(Int32Ty, 0);
1092
// Number of UTF-16 codepoints, each ASCII byte is a UTF-16 codepoint
1093
Fields.addInt(Int32Ty, Str.size());
1094
// Number of bytes
1095
Fields.addInt(Int32Ty, Str.size());
1096
// Hash. Not currently initialised by the compiler.
1097
Fields.addInt(Int32Ty, 0);
1098
// Data pointer
1099
Fields.add(MakeConstantString(Str));
1100
}
1101
std::string StringName;
1102
bool isNamed = !isNonASCII;
1103
if (isNamed) {
1104
StringName = ".objc_str_";
1105
for (int i=0,e=Str.size() ; i<e ; ++i) {
1106
unsigned char c = Str[i];
1107
if (isalnum(c))
1108
StringName += c;
1109
else if (c == ' ')
1110
StringName += '_';
1111
else {
1112
isNamed = false;
1113
break;
1114
}
1115
}
1116
}
1117
llvm::GlobalVariable *ObjCStrGV =
1118
Fields.finishAndCreateGlobal(
1119
isNamed ? StringRef(StringName) : ".objc_string",
1120
Align, false, isNamed ? llvm::GlobalValue::LinkOnceODRLinkage
1121
: llvm::GlobalValue::PrivateLinkage);
1122
ObjCStrGV->setSection(sectionName<ConstantStringSection>());
1123
if (isNamed) {
1124
ObjCStrGV->setComdat(TheModule.getOrInsertComdat(StringName));
1125
ObjCStrGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1126
}
1127
if (CGM.getTriple().isOSBinFormatCOFF()) {
1128
std::pair<llvm::GlobalVariable*, int> v{ObjCStrGV, 0};
1129
EarlyInitList.emplace_back(Sym, v);
1130
}
1131
ObjCStrings[Str] = ObjCStrGV;
1132
ConstantStrings.push_back(ObjCStrGV);
1133
return ConstantAddress(ObjCStrGV, IdElemTy, Align);
1134
}
1135
1136
void PushProperty(ConstantArrayBuilder &PropertiesArray,
1137
const ObjCPropertyDecl *property,
1138
const Decl *OCD,
1139
bool isSynthesized=true, bool
1140
isDynamic=true) override {
1141
// struct objc_property
1142
// {
1143
// const char *name;
1144
// const char *attributes;
1145
// const char *type;
1146
// SEL getter;
1147
// SEL setter;
1148
// };
1149
auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy);
1150
ASTContext &Context = CGM.getContext();
1151
Fields.add(MakeConstantString(property->getNameAsString()));
1152
std::string TypeStr =
1153
CGM.getContext().getObjCEncodingForPropertyDecl(property, OCD);
1154
Fields.add(MakeConstantString(TypeStr));
1155
std::string typeStr;
1156
Context.getObjCEncodingForType(property->getType(), typeStr);
1157
Fields.add(MakeConstantString(typeStr));
1158
auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) {
1159
if (accessor) {
1160
std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor);
1161
Fields.add(GetConstantSelector(accessor->getSelector(), TypeStr));
1162
} else {
1163
Fields.add(NULLPtr);
1164
}
1165
};
1166
addPropertyMethod(property->getGetterMethodDecl());
1167
addPropertyMethod(property->getSetterMethodDecl());
1168
Fields.finishAndAddTo(PropertiesArray);
1169
}
1170
1171
llvm::Constant *
1172
GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) override {
1173
// struct objc_protocol_method_description
1174
// {
1175
// SEL selector;
1176
// const char *types;
1177
// };
1178
llvm::StructType *ObjCMethodDescTy =
1179
llvm::StructType::get(CGM.getLLVMContext(),
1180
{ PtrToInt8Ty, PtrToInt8Ty });
1181
ASTContext &Context = CGM.getContext();
1182
ConstantInitBuilder Builder(CGM);
1183
// struct objc_protocol_method_description_list
1184
// {
1185
// int count;
1186
// int size;
1187
// struct objc_protocol_method_description methods[];
1188
// };
1189
auto MethodList = Builder.beginStruct();
1190
// int count;
1191
MethodList.addInt(IntTy, Methods.size());
1192
// int size; // sizeof(struct objc_method_description)
1193
llvm::DataLayout td(&TheModule);
1194
MethodList.addInt(IntTy, td.getTypeSizeInBits(ObjCMethodDescTy) /
1195
CGM.getContext().getCharWidth());
1196
// struct objc_method_description[]
1197
auto MethodArray = MethodList.beginArray(ObjCMethodDescTy);
1198
for (auto *M : Methods) {
1199
auto Method = MethodArray.beginStruct(ObjCMethodDescTy);
1200
Method.add(CGObjCGNU::GetConstantSelector(M));
1201
Method.add(GetTypeString(Context.getObjCEncodingForMethodDecl(M, true)));
1202
Method.finishAndAddTo(MethodArray);
1203
}
1204
MethodArray.finishAndAddTo(MethodList);
1205
return MethodList.finishAndCreateGlobal(".objc_protocol_method_list",
1206
CGM.getPointerAlign());
1207
}
1208
llvm::Constant *GenerateCategoryProtocolList(const ObjCCategoryDecl *OCD)
1209
override {
1210
const auto &ReferencedProtocols = OCD->getReferencedProtocols();
1211
auto RuntimeProtocols = GetRuntimeProtocolList(ReferencedProtocols.begin(),
1212
ReferencedProtocols.end());
1213
SmallVector<llvm::Constant *, 16> Protocols;
1214
for (const auto *PI : RuntimeProtocols)
1215
Protocols.push_back(GenerateProtocolRef(PI));
1216
return GenerateProtocolList(Protocols);
1217
}
1218
1219
llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
1220
llvm::Value *cmd, MessageSendInfo &MSI) override {
1221
// Don't access the slot unless we're trying to cache the result.
1222
CGBuilderTy &Builder = CGF.Builder;
1223
llvm::Value *lookupArgs[] = {
1224
CGObjCGNU::EnforceType(Builder, ObjCSuper.emitRawPointer(CGF),
1225
PtrToObjCSuperTy),
1226
cmd};
1227
return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
1228
}
1229
1230
llvm::GlobalVariable *GetClassVar(StringRef Name, bool isWeak=false) {
1231
std::string SymbolName = SymbolForClassRef(Name, isWeak);
1232
auto *ClassSymbol = TheModule.getNamedGlobal(SymbolName);
1233
if (ClassSymbol)
1234
return ClassSymbol;
1235
ClassSymbol = new llvm::GlobalVariable(TheModule,
1236
IdTy, false, llvm::GlobalValue::ExternalLinkage,
1237
nullptr, SymbolName);
1238
// If this is a weak symbol, then we are creating a valid definition for
1239
// the symbol, pointing to a weak definition of the real class pointer. If
1240
// this is not a weak reference, then we are expecting another compilation
1241
// unit to provide the real indirection symbol.
1242
if (isWeak)
1243
ClassSymbol->setInitializer(new llvm::GlobalVariable(TheModule,
1244
Int8Ty, false, llvm::GlobalValue::ExternalWeakLinkage,
1245
nullptr, SymbolForClass(Name)));
1246
else {
1247
if (CGM.getTriple().isOSBinFormatCOFF()) {
1248
IdentifierInfo &II = CGM.getContext().Idents.get(Name);
1249
TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
1250
DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
1251
1252
const ObjCInterfaceDecl *OID = nullptr;
1253
for (const auto *Result : DC->lookup(&II))
1254
if ((OID = dyn_cast<ObjCInterfaceDecl>(Result)))
1255
break;
1256
1257
// The first Interface we find may be a @class,
1258
// which should only be treated as the source of
1259
// truth in the absence of a true declaration.
1260
assert(OID && "Failed to find ObjCInterfaceDecl");
1261
const ObjCInterfaceDecl *OIDDef = OID->getDefinition();
1262
if (OIDDef != nullptr)
1263
OID = OIDDef;
1264
1265
auto Storage = llvm::GlobalValue::DefaultStorageClass;
1266
if (OID->hasAttr<DLLImportAttr>())
1267
Storage = llvm::GlobalValue::DLLImportStorageClass;
1268
else if (OID->hasAttr<DLLExportAttr>())
1269
Storage = llvm::GlobalValue::DLLExportStorageClass;
1270
1271
cast<llvm::GlobalValue>(ClassSymbol)->setDLLStorageClass(Storage);
1272
}
1273
}
1274
assert(ClassSymbol->getName() == SymbolName);
1275
return ClassSymbol;
1276
}
1277
llvm::Value *GetClassNamed(CodeGenFunction &CGF,
1278
const std::string &Name,
1279
bool isWeak) override {
1280
return CGF.Builder.CreateLoad(
1281
Address(GetClassVar(Name, isWeak), IdTy, CGM.getPointerAlign()));
1282
}
1283
int32_t FlagsForOwnership(Qualifiers::ObjCLifetime Ownership) {
1284
// typedef enum {
1285
// ownership_invalid = 0,
1286
// ownership_strong = 1,
1287
// ownership_weak = 2,
1288
// ownership_unsafe = 3
1289
// } ivar_ownership;
1290
int Flag;
1291
switch (Ownership) {
1292
case Qualifiers::OCL_Strong:
1293
Flag = 1;
1294
break;
1295
case Qualifiers::OCL_Weak:
1296
Flag = 2;
1297
break;
1298
case Qualifiers::OCL_ExplicitNone:
1299
Flag = 3;
1300
break;
1301
case Qualifiers::OCL_None:
1302
case Qualifiers::OCL_Autoreleasing:
1303
assert(Ownership != Qualifiers::OCL_Autoreleasing);
1304
Flag = 0;
1305
}
1306
return Flag;
1307
}
1308
llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
1309
ArrayRef<llvm::Constant *> IvarTypes,
1310
ArrayRef<llvm::Constant *> IvarOffsets,
1311
ArrayRef<llvm::Constant *> IvarAlign,
1312
ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) override {
1313
llvm_unreachable("Method should not be called!");
1314
}
1315
1316
llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName) override {
1317
std::string Name = SymbolForProtocol(ProtocolName);
1318
auto *GV = TheModule.getGlobalVariable(Name);
1319
if (!GV) {
1320
// Emit a placeholder symbol.
1321
GV = new llvm::GlobalVariable(TheModule, ProtocolTy, false,
1322
llvm::GlobalValue::ExternalLinkage, nullptr, Name);
1323
GV->setAlignment(CGM.getPointerAlign().getAsAlign());
1324
}
1325
return GV;
1326
}
1327
1328
/// Existing protocol references.
1329
llvm::StringMap<llvm::Constant*> ExistingProtocolRefs;
1330
1331
llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
1332
const ObjCProtocolDecl *PD) override {
1333
auto Name = PD->getNameAsString();
1334
auto *&Ref = ExistingProtocolRefs[Name];
1335
if (!Ref) {
1336
auto *&Protocol = ExistingProtocols[Name];
1337
if (!Protocol)
1338
Protocol = GenerateProtocolRef(PD);
1339
std::string RefName = SymbolForProtocolRef(Name);
1340
assert(!TheModule.getGlobalVariable(RefName));
1341
// Emit a reference symbol.
1342
auto GV = new llvm::GlobalVariable(TheModule, ProtocolPtrTy, false,
1343
llvm::GlobalValue::LinkOnceODRLinkage,
1344
Protocol, RefName);
1345
GV->setComdat(TheModule.getOrInsertComdat(RefName));
1346
GV->setSection(sectionName<ProtocolReferenceSection>());
1347
GV->setAlignment(CGM.getPointerAlign().getAsAlign());
1348
Ref = GV;
1349
}
1350
EmittedProtocolRef = true;
1351
return CGF.Builder.CreateAlignedLoad(ProtocolPtrTy, Ref,
1352
CGM.getPointerAlign());
1353
}
1354
1355
llvm::Constant *GenerateProtocolList(ArrayRef<llvm::Constant*> Protocols) {
1356
llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(ProtocolPtrTy,
1357
Protocols.size());
1358
llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1359
Protocols);
1360
ConstantInitBuilder builder(CGM);
1361
auto ProtocolBuilder = builder.beginStruct();
1362
ProtocolBuilder.addNullPointer(PtrTy);
1363
ProtocolBuilder.addInt(SizeTy, Protocols.size());
1364
ProtocolBuilder.add(ProtocolArray);
1365
return ProtocolBuilder.finishAndCreateGlobal(".objc_protocol_list",
1366
CGM.getPointerAlign(), false, llvm::GlobalValue::InternalLinkage);
1367
}
1368
1369
void GenerateProtocol(const ObjCProtocolDecl *PD) override {
1370
// Do nothing - we only emit referenced protocols.
1371
}
1372
llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD) override {
1373
std::string ProtocolName = PD->getNameAsString();
1374
auto *&Protocol = ExistingProtocols[ProtocolName];
1375
if (Protocol)
1376
return Protocol;
1377
1378
EmittedProtocol = true;
1379
1380
auto SymName = SymbolForProtocol(ProtocolName);
1381
auto *OldGV = TheModule.getGlobalVariable(SymName);
1382
1383
// Use the protocol definition, if there is one.
1384
if (const ObjCProtocolDecl *Def = PD->getDefinition())
1385
PD = Def;
1386
else {
1387
// If there is no definition, then create an external linkage symbol and
1388
// hope that someone else fills it in for us (and fail to link if they
1389
// don't).
1390
assert(!OldGV);
1391
Protocol = new llvm::GlobalVariable(TheModule, ProtocolTy,
1392
/*isConstant*/false,
1393
llvm::GlobalValue::ExternalLinkage, nullptr, SymName);
1394
return Protocol;
1395
}
1396
1397
SmallVector<llvm::Constant*, 16> Protocols;
1398
auto RuntimeProtocols =
1399
GetRuntimeProtocolList(PD->protocol_begin(), PD->protocol_end());
1400
for (const auto *PI : RuntimeProtocols)
1401
Protocols.push_back(GenerateProtocolRef(PI));
1402
llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
1403
1404
// Collect information about methods
1405
llvm::Constant *InstanceMethodList, *OptionalInstanceMethodList;
1406
llvm::Constant *ClassMethodList, *OptionalClassMethodList;
1407
EmitProtocolMethodList(PD->instance_methods(), InstanceMethodList,
1408
OptionalInstanceMethodList);
1409
EmitProtocolMethodList(PD->class_methods(), ClassMethodList,
1410
OptionalClassMethodList);
1411
1412
// The isa pointer must be set to a magic number so the runtime knows it's
1413
// the correct layout.
1414
ConstantInitBuilder builder(CGM);
1415
auto ProtocolBuilder = builder.beginStruct();
1416
ProtocolBuilder.add(llvm::ConstantExpr::getIntToPtr(
1417
llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1418
ProtocolBuilder.add(MakeConstantString(ProtocolName));
1419
ProtocolBuilder.add(ProtocolList);
1420
ProtocolBuilder.add(InstanceMethodList);
1421
ProtocolBuilder.add(ClassMethodList);
1422
ProtocolBuilder.add(OptionalInstanceMethodList);
1423
ProtocolBuilder.add(OptionalClassMethodList);
1424
// Required instance properties
1425
ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, false));
1426
// Optional instance properties
1427
ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, true));
1428
// Required class properties
1429
ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, false));
1430
// Optional class properties
1431
ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, true));
1432
1433
auto *GV = ProtocolBuilder.finishAndCreateGlobal(SymName,
1434
CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage);
1435
GV->setSection(sectionName<ProtocolSection>());
1436
GV->setComdat(TheModule.getOrInsertComdat(SymName));
1437
if (OldGV) {
1438
OldGV->replaceAllUsesWith(GV);
1439
OldGV->removeFromParent();
1440
GV->setName(SymName);
1441
}
1442
Protocol = GV;
1443
return GV;
1444
}
1445
llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
1446
const std::string &TypeEncoding) override {
1447
return GetConstantSelector(Sel, TypeEncoding);
1448
}
1449
std::string GetSymbolNameForTypeEncoding(const std::string &TypeEncoding) {
1450
std::string MangledTypes = std::string(TypeEncoding);
1451
// @ is used as a special character in ELF symbol names (used for symbol
1452
// versioning), so mangle the name to not include it. Replace it with a
1453
// character that is not a valid type encoding character (and, being
1454
// non-printable, never will be!)
1455
if (CGM.getTriple().isOSBinFormatELF())
1456
std::replace(MangledTypes.begin(), MangledTypes.end(), '@', '\1');
1457
// = in dll exported names causes lld to fail when linking on Windows.
1458
if (CGM.getTriple().isOSWindows())
1459
std::replace(MangledTypes.begin(), MangledTypes.end(), '=', '\2');
1460
return MangledTypes;
1461
}
1462
llvm::Constant *GetTypeString(llvm::StringRef TypeEncoding) {
1463
if (TypeEncoding.empty())
1464
return NULLPtr;
1465
std::string MangledTypes =
1466
GetSymbolNameForTypeEncoding(std::string(TypeEncoding));
1467
std::string TypesVarName = ".objc_sel_types_" + MangledTypes;
1468
auto *TypesGlobal = TheModule.getGlobalVariable(TypesVarName);
1469
if (!TypesGlobal) {
1470
llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext,
1471
TypeEncoding);
1472
auto *GV = new llvm::GlobalVariable(TheModule, Init->getType(),
1473
true, llvm::GlobalValue::LinkOnceODRLinkage, Init, TypesVarName);
1474
GV->setComdat(TheModule.getOrInsertComdat(TypesVarName));
1475
GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1476
TypesGlobal = GV;
1477
}
1478
return TypesGlobal;
1479
}
1480
llvm::Constant *GetConstantSelector(Selector Sel,
1481
const std::string &TypeEncoding) override {
1482
std::string MangledTypes = GetSymbolNameForTypeEncoding(TypeEncoding);
1483
auto SelVarName = (StringRef(".objc_selector_") + Sel.getAsString() + "_" +
1484
MangledTypes).str();
1485
if (auto *GV = TheModule.getNamedGlobal(SelVarName))
1486
return GV;
1487
ConstantInitBuilder builder(CGM);
1488
auto SelBuilder = builder.beginStruct();
1489
SelBuilder.add(ExportUniqueString(Sel.getAsString(), ".objc_sel_name_",
1490
true));
1491
SelBuilder.add(GetTypeString(TypeEncoding));
1492
auto *GV = SelBuilder.finishAndCreateGlobal(SelVarName,
1493
CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage);
1494
GV->setComdat(TheModule.getOrInsertComdat(SelVarName));
1495
GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1496
GV->setSection(sectionName<SelectorSection>());
1497
return GV;
1498
}
1499
llvm::StructType *emptyStruct = nullptr;
1500
1501
/// Return pointers to the start and end of a section. On ELF platforms, we
1502
/// use the __start_ and __stop_ symbols that GNU-compatible linkers will set
1503
/// to the start and end of section names, as long as those section names are
1504
/// valid identifiers and the symbols are referenced but not defined. On
1505
/// Windows, we use the fact that MSVC-compatible linkers will lexically sort
1506
/// by subsections and place everything that we want to reference in a middle
1507
/// subsection and then insert zero-sized symbols in subsections a and z.
1508
std::pair<llvm::Constant*,llvm::Constant*>
1509
GetSectionBounds(StringRef Section) {
1510
if (CGM.getTriple().isOSBinFormatCOFF()) {
1511
if (emptyStruct == nullptr) {
1512
emptyStruct = llvm::StructType::create(VMContext, ".objc_section_sentinel");
1513
emptyStruct->setBody({}, /*isPacked*/true);
1514
}
1515
auto ZeroInit = llvm::Constant::getNullValue(emptyStruct);
1516
auto Sym = [&](StringRef Prefix, StringRef SecSuffix) {
1517
auto *Sym = new llvm::GlobalVariable(TheModule, emptyStruct,
1518
/*isConstant*/false,
1519
llvm::GlobalValue::LinkOnceODRLinkage, ZeroInit, Prefix +
1520
Section);
1521
Sym->setVisibility(llvm::GlobalValue::HiddenVisibility);
1522
Sym->setSection((Section + SecSuffix).str());
1523
Sym->setComdat(TheModule.getOrInsertComdat((Prefix +
1524
Section).str()));
1525
Sym->setAlignment(CGM.getPointerAlign().getAsAlign());
1526
return Sym;
1527
};
1528
return { Sym("__start_", "$a"), Sym("__stop", "$z") };
1529
}
1530
auto *Start = new llvm::GlobalVariable(TheModule, PtrTy,
1531
/*isConstant*/false,
1532
llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__start_") +
1533
Section);
1534
Start->setVisibility(llvm::GlobalValue::HiddenVisibility);
1535
auto *Stop = new llvm::GlobalVariable(TheModule, PtrTy,
1536
/*isConstant*/false,
1537
llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__stop_") +
1538
Section);
1539
Stop->setVisibility(llvm::GlobalValue::HiddenVisibility);
1540
return { Start, Stop };
1541
}
1542
CatchTypeInfo getCatchAllTypeInfo() override {
1543
return CGM.getCXXABI().getCatchAllTypeInfo();
1544
}
1545
llvm::Function *ModuleInitFunction() override {
1546
llvm::Function *LoadFunction = llvm::Function::Create(
1547
llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
1548
llvm::GlobalValue::LinkOnceODRLinkage, ".objcv2_load_function",
1549
&TheModule);
1550
LoadFunction->setVisibility(llvm::GlobalValue::HiddenVisibility);
1551
LoadFunction->setComdat(TheModule.getOrInsertComdat(".objcv2_load_function"));
1552
1553
llvm::BasicBlock *EntryBB =
1554
llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
1555
CGBuilderTy B(CGM, VMContext);
1556
B.SetInsertPoint(EntryBB);
1557
ConstantInitBuilder builder(CGM);
1558
auto InitStructBuilder = builder.beginStruct();
1559
InitStructBuilder.addInt(Int64Ty, 0);
1560
auto &sectionVec = CGM.getTriple().isOSBinFormatCOFF() ? PECOFFSectionsBaseNames : SectionsBaseNames;
1561
for (auto *s : sectionVec) {
1562
auto bounds = GetSectionBounds(s);
1563
InitStructBuilder.add(bounds.first);
1564
InitStructBuilder.add(bounds.second);
1565
}
1566
auto *InitStruct = InitStructBuilder.finishAndCreateGlobal(".objc_init",
1567
CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage);
1568
InitStruct->setVisibility(llvm::GlobalValue::HiddenVisibility);
1569
InitStruct->setComdat(TheModule.getOrInsertComdat(".objc_init"));
1570
1571
CallRuntimeFunction(B, "__objc_load", {InitStruct});;
1572
B.CreateRetVoid();
1573
// Make sure that the optimisers don't delete this function.
1574
CGM.addCompilerUsedGlobal(LoadFunction);
1575
// FIXME: Currently ELF only!
1576
// We have to do this by hand, rather than with @llvm.ctors, so that the
1577
// linker can remove the duplicate invocations.
1578
auto *InitVar = new llvm::GlobalVariable(TheModule, LoadFunction->getType(),
1579
/*isConstant*/false, llvm::GlobalValue::LinkOnceAnyLinkage,
1580
LoadFunction, ".objc_ctor");
1581
// Check that this hasn't been renamed. This shouldn't happen, because
1582
// this function should be called precisely once.
1583
assert(InitVar->getName() == ".objc_ctor");
1584
// In Windows, initialisers are sorted by the suffix. XCL is for library
1585
// initialisers, which run before user initialisers. We are running
1586
// Objective-C loads at the end of library load. This means +load methods
1587
// will run before any other static constructors, but that static
1588
// constructors can see a fully initialised Objective-C state.
1589
if (CGM.getTriple().isOSBinFormatCOFF())
1590
InitVar->setSection(".CRT$XCLz");
1591
else
1592
{
1593
if (CGM.getCodeGenOpts().UseInitArray)
1594
InitVar->setSection(".init_array");
1595
else
1596
InitVar->setSection(".ctors");
1597
}
1598
InitVar->setVisibility(llvm::GlobalValue::HiddenVisibility);
1599
InitVar->setComdat(TheModule.getOrInsertComdat(".objc_ctor"));
1600
CGM.addUsedGlobal(InitVar);
1601
for (auto *C : Categories) {
1602
auto *Cat = cast<llvm::GlobalVariable>(C->stripPointerCasts());
1603
Cat->setSection(sectionName<CategorySection>());
1604
CGM.addUsedGlobal(Cat);
1605
}
1606
auto createNullGlobal = [&](StringRef Name, ArrayRef<llvm::Constant*> Init,
1607
StringRef Section) {
1608
auto nullBuilder = builder.beginStruct();
1609
for (auto *F : Init)
1610
nullBuilder.add(F);
1611
auto GV = nullBuilder.finishAndCreateGlobal(Name, CGM.getPointerAlign(),
1612
false, llvm::GlobalValue::LinkOnceODRLinkage);
1613
GV->setSection(Section);
1614
GV->setComdat(TheModule.getOrInsertComdat(Name));
1615
GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1616
CGM.addUsedGlobal(GV);
1617
return GV;
1618
};
1619
for (auto clsAlias : ClassAliases)
1620
createNullGlobal(std::string(".objc_class_alias") +
1621
clsAlias.second, { MakeConstantString(clsAlias.second),
1622
GetClassVar(clsAlias.first) }, sectionName<ClassAliasSection>());
1623
// On ELF platforms, add a null value for each special section so that we
1624
// can always guarantee that the _start and _stop symbols will exist and be
1625
// meaningful. This is not required on COFF platforms, where our start and
1626
// stop symbols will create the section.
1627
if (!CGM.getTriple().isOSBinFormatCOFF()) {
1628
createNullGlobal(".objc_null_selector", {NULLPtr, NULLPtr},
1629
sectionName<SelectorSection>());
1630
if (Categories.empty())
1631
createNullGlobal(".objc_null_category", {NULLPtr, NULLPtr,
1632
NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr},
1633
sectionName<CategorySection>());
1634
if (!EmittedClass) {
1635
createNullGlobal(".objc_null_cls_init_ref", NULLPtr,
1636
sectionName<ClassSection>());
1637
createNullGlobal(".objc_null_class_ref", { NULLPtr, NULLPtr },
1638
sectionName<ClassReferenceSection>());
1639
}
1640
if (!EmittedProtocol)
1641
createNullGlobal(".objc_null_protocol", {NULLPtr, NULLPtr, NULLPtr,
1642
NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr,
1643
NULLPtr}, sectionName<ProtocolSection>());
1644
if (!EmittedProtocolRef)
1645
createNullGlobal(".objc_null_protocol_ref", {NULLPtr},
1646
sectionName<ProtocolReferenceSection>());
1647
if (ClassAliases.empty())
1648
createNullGlobal(".objc_null_class_alias", { NULLPtr, NULLPtr },
1649
sectionName<ClassAliasSection>());
1650
if (ConstantStrings.empty()) {
1651
auto i32Zero = llvm::ConstantInt::get(Int32Ty, 0);
1652
createNullGlobal(".objc_null_constant_string", { NULLPtr, i32Zero,
1653
i32Zero, i32Zero, i32Zero, NULLPtr },
1654
sectionName<ConstantStringSection>());
1655
}
1656
}
1657
ConstantStrings.clear();
1658
Categories.clear();
1659
Classes.clear();
1660
1661
if (EarlyInitList.size() > 0) {
1662
auto *Init = llvm::Function::Create(llvm::FunctionType::get(CGM.VoidTy,
1663
{}), llvm::GlobalValue::InternalLinkage, ".objc_early_init",
1664
&CGM.getModule());
1665
llvm::IRBuilder<> b(llvm::BasicBlock::Create(CGM.getLLVMContext(), "entry",
1666
Init));
1667
for (const auto &lateInit : EarlyInitList) {
1668
auto *global = TheModule.getGlobalVariable(lateInit.first);
1669
if (global) {
1670
llvm::GlobalVariable *GV = lateInit.second.first;
1671
b.CreateAlignedStore(
1672
global,
1673
b.CreateStructGEP(GV->getValueType(), GV, lateInit.second.second),
1674
CGM.getPointerAlign().getAsAlign());
1675
}
1676
}
1677
b.CreateRetVoid();
1678
// We can't use the normal LLVM global initialisation array, because we
1679
// need to specify that this runs early in library initialisation.
1680
auto *InitVar = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
1681
/*isConstant*/true, llvm::GlobalValue::InternalLinkage,
1682
Init, ".objc_early_init_ptr");
1683
InitVar->setSection(".CRT$XCLb");
1684
CGM.addUsedGlobal(InitVar);
1685
}
1686
return nullptr;
1687
}
1688
/// In the v2 ABI, ivar offset variables use the type encoding in their name
1689
/// to trigger linker failures if the types don't match.
1690
std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID,
1691
const ObjCIvarDecl *Ivar) override {
1692
std::string TypeEncoding;
1693
CGM.getContext().getObjCEncodingForType(Ivar->getType(), TypeEncoding);
1694
TypeEncoding = GetSymbolNameForTypeEncoding(TypeEncoding);
1695
const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
1696
+ '.' + Ivar->getNameAsString() + '.' + TypeEncoding;
1697
return Name;
1698
}
1699
llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
1700
const ObjCInterfaceDecl *Interface,
1701
const ObjCIvarDecl *Ivar) override {
1702
const std::string Name = GetIVarOffsetVariableName(Ivar->getContainingInterface(), Ivar);
1703
llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
1704
if (!IvarOffsetPointer)
1705
IvarOffsetPointer = new llvm::GlobalVariable(TheModule, IntTy, false,
1706
llvm::GlobalValue::ExternalLinkage, nullptr, Name);
1707
CharUnits Align = CGM.getIntAlign();
1708
llvm::Value *Offset =
1709
CGF.Builder.CreateAlignedLoad(IntTy, IvarOffsetPointer, Align);
1710
if (Offset->getType() != PtrDiffTy)
1711
Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
1712
return Offset;
1713
}
1714
void GenerateClass(const ObjCImplementationDecl *OID) override {
1715
ASTContext &Context = CGM.getContext();
1716
bool IsCOFF = CGM.getTriple().isOSBinFormatCOFF();
1717
1718
// Get the class name
1719
ObjCInterfaceDecl *classDecl =
1720
const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
1721
std::string className = classDecl->getNameAsString();
1722
auto *classNameConstant = MakeConstantString(className);
1723
1724
ConstantInitBuilder builder(CGM);
1725
auto metaclassFields = builder.beginStruct();
1726
// struct objc_class *isa;
1727
metaclassFields.addNullPointer(PtrTy);
1728
// struct objc_class *super_class;
1729
metaclassFields.addNullPointer(PtrTy);
1730
// const char *name;
1731
metaclassFields.add(classNameConstant);
1732
// long version;
1733
metaclassFields.addInt(LongTy, 0);
1734
// unsigned long info;
1735
// objc_class_flag_meta
1736
metaclassFields.addInt(LongTy, ClassFlags::ClassFlagMeta);
1737
// long instance_size;
1738
// Setting this to zero is consistent with the older ABI, but it might be
1739
// more sensible to set this to sizeof(struct objc_class)
1740
metaclassFields.addInt(LongTy, 0);
1741
// struct objc_ivar_list *ivars;
1742
metaclassFields.addNullPointer(PtrTy);
1743
// struct objc_method_list *methods
1744
// FIXME: Almost identical code is copied and pasted below for the
1745
// class, but refactoring it cleanly requires C++14 generic lambdas.
1746
if (OID->classmeth_begin() == OID->classmeth_end())
1747
metaclassFields.addNullPointer(PtrTy);
1748
else {
1749
SmallVector<ObjCMethodDecl*, 16> ClassMethods;
1750
ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(),
1751
OID->classmeth_end());
1752
metaclassFields.add(
1753
GenerateMethodList(className, "", ClassMethods, true));
1754
}
1755
// void *dtable;
1756
metaclassFields.addNullPointer(PtrTy);
1757
// IMP cxx_construct;
1758
metaclassFields.addNullPointer(PtrTy);
1759
// IMP cxx_destruct;
1760
metaclassFields.addNullPointer(PtrTy);
1761
// struct objc_class *subclass_list
1762
metaclassFields.addNullPointer(PtrTy);
1763
// struct objc_class *sibling_class
1764
metaclassFields.addNullPointer(PtrTy);
1765
// struct objc_protocol_list *protocols;
1766
metaclassFields.addNullPointer(PtrTy);
1767
// struct reference_list *extra_data;
1768
metaclassFields.addNullPointer(PtrTy);
1769
// long abi_version;
1770
metaclassFields.addInt(LongTy, 0);
1771
// struct objc_property_list *properties
1772
metaclassFields.add(GeneratePropertyList(OID, classDecl, /*isClassProperty*/true));
1773
1774
auto *metaclass = metaclassFields.finishAndCreateGlobal(
1775
ManglePublicSymbol("OBJC_METACLASS_") + className,
1776
CGM.getPointerAlign());
1777
1778
auto classFields = builder.beginStruct();
1779
// struct objc_class *isa;
1780
classFields.add(metaclass);
1781
// struct objc_class *super_class;
1782
// Get the superclass name.
1783
const ObjCInterfaceDecl * SuperClassDecl =
1784
OID->getClassInterface()->getSuperClass();
1785
llvm::Constant *SuperClass = nullptr;
1786
if (SuperClassDecl) {
1787
auto SuperClassName = SymbolForClass(SuperClassDecl->getNameAsString());
1788
SuperClass = TheModule.getNamedGlobal(SuperClassName);
1789
if (!SuperClass)
1790
{
1791
SuperClass = new llvm::GlobalVariable(TheModule, PtrTy, false,
1792
llvm::GlobalValue::ExternalLinkage, nullptr, SuperClassName);
1793
if (IsCOFF) {
1794
auto Storage = llvm::GlobalValue::DefaultStorageClass;
1795
if (SuperClassDecl->hasAttr<DLLImportAttr>())
1796
Storage = llvm::GlobalValue::DLLImportStorageClass;
1797
else if (SuperClassDecl->hasAttr<DLLExportAttr>())
1798
Storage = llvm::GlobalValue::DLLExportStorageClass;
1799
1800
cast<llvm::GlobalValue>(SuperClass)->setDLLStorageClass(Storage);
1801
}
1802
}
1803
if (!IsCOFF)
1804
classFields.add(SuperClass);
1805
else
1806
classFields.addNullPointer(PtrTy);
1807
} else
1808
classFields.addNullPointer(PtrTy);
1809
// const char *name;
1810
classFields.add(classNameConstant);
1811
// long version;
1812
classFields.addInt(LongTy, 0);
1813
// unsigned long info;
1814
// !objc_class_flag_meta
1815
classFields.addInt(LongTy, 0);
1816
// long instance_size;
1817
int superInstanceSize = !SuperClassDecl ? 0 :
1818
Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
1819
// Instance size is negative for classes that have not yet had their ivar
1820
// layout calculated.
1821
classFields.addInt(LongTy,
1822
0 - (Context.getASTObjCImplementationLayout(OID).getSize().getQuantity() -
1823
superInstanceSize));
1824
1825
if (classDecl->all_declared_ivar_begin() == nullptr)
1826
classFields.addNullPointer(PtrTy);
1827
else {
1828
int ivar_count = 0;
1829
for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD;
1830
IVD = IVD->getNextIvar()) ivar_count++;
1831
llvm::DataLayout td(&TheModule);
1832
// struct objc_ivar_list *ivars;
1833
ConstantInitBuilder b(CGM);
1834
auto ivarListBuilder = b.beginStruct();
1835
// int count;
1836
ivarListBuilder.addInt(IntTy, ivar_count);
1837
// size_t size;
1838
llvm::StructType *ObjCIvarTy = llvm::StructType::get(
1839
PtrToInt8Ty,
1840
PtrToInt8Ty,
1841
PtrToInt8Ty,
1842
Int32Ty,
1843
Int32Ty);
1844
ivarListBuilder.addInt(SizeTy, td.getTypeSizeInBits(ObjCIvarTy) /
1845
CGM.getContext().getCharWidth());
1846
// struct objc_ivar ivars[]
1847
auto ivarArrayBuilder = ivarListBuilder.beginArray();
1848
for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD;
1849
IVD = IVD->getNextIvar()) {
1850
auto ivarTy = IVD->getType();
1851
auto ivarBuilder = ivarArrayBuilder.beginStruct();
1852
// const char *name;
1853
ivarBuilder.add(MakeConstantString(IVD->getNameAsString()));
1854
// const char *type;
1855
std::string TypeStr;
1856
//Context.getObjCEncodingForType(ivarTy, TypeStr, IVD, true);
1857
Context.getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, ivarTy, TypeStr, true);
1858
ivarBuilder.add(MakeConstantString(TypeStr));
1859
// int *offset;
1860
uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
1861
uint64_t Offset = BaseOffset - superInstanceSize;
1862
llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
1863
std::string OffsetName = GetIVarOffsetVariableName(classDecl, IVD);
1864
llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
1865
if (OffsetVar)
1866
OffsetVar->setInitializer(OffsetValue);
1867
else
1868
OffsetVar = new llvm::GlobalVariable(TheModule, IntTy,
1869
false, llvm::GlobalValue::ExternalLinkage,
1870
OffsetValue, OffsetName);
1871
auto ivarVisibility =
1872
(IVD->getAccessControl() == ObjCIvarDecl::Private ||
1873
IVD->getAccessControl() == ObjCIvarDecl::Package ||
1874
classDecl->getVisibility() == HiddenVisibility) ?
1875
llvm::GlobalValue::HiddenVisibility :
1876
llvm::GlobalValue::DefaultVisibility;
1877
OffsetVar->setVisibility(ivarVisibility);
1878
if (ivarVisibility != llvm::GlobalValue::HiddenVisibility)
1879
CGM.setGVProperties(OffsetVar, OID->getClassInterface());
1880
ivarBuilder.add(OffsetVar);
1881
// Ivar size
1882
ivarBuilder.addInt(Int32Ty,
1883
CGM.getContext().getTypeSizeInChars(ivarTy).getQuantity());
1884
// Alignment will be stored as a base-2 log of the alignment.
1885
unsigned align =
1886
llvm::Log2_32(Context.getTypeAlignInChars(ivarTy).getQuantity());
1887
// Objects that require more than 2^64-byte alignment should be impossible!
1888
assert(align < 64);
1889
// uint32_t flags;
1890
// Bits 0-1 are ownership.
1891
// Bit 2 indicates an extended type encoding
1892
// Bits 3-8 contain log2(aligment)
1893
ivarBuilder.addInt(Int32Ty,
1894
(align << 3) | (1<<2) |
1895
FlagsForOwnership(ivarTy.getQualifiers().getObjCLifetime()));
1896
ivarBuilder.finishAndAddTo(ivarArrayBuilder);
1897
}
1898
ivarArrayBuilder.finishAndAddTo(ivarListBuilder);
1899
auto ivarList = ivarListBuilder.finishAndCreateGlobal(".objc_ivar_list",
1900
CGM.getPointerAlign(), /*constant*/ false,
1901
llvm::GlobalValue::PrivateLinkage);
1902
classFields.add(ivarList);
1903
}
1904
// struct objc_method_list *methods
1905
SmallVector<const ObjCMethodDecl*, 16> InstanceMethods;
1906
InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(),
1907
OID->instmeth_end());
1908
for (auto *propImpl : OID->property_impls())
1909
if (propImpl->getPropertyImplementation() ==
1910
ObjCPropertyImplDecl::Synthesize) {
1911
auto addIfExists = [&](const ObjCMethodDecl *OMD) {
1912
if (OMD && OMD->hasBody())
1913
InstanceMethods.push_back(OMD);
1914
};
1915
addIfExists(propImpl->getGetterMethodDecl());
1916
addIfExists(propImpl->getSetterMethodDecl());
1917
}
1918
1919
if (InstanceMethods.size() == 0)
1920
classFields.addNullPointer(PtrTy);
1921
else
1922
classFields.add(
1923
GenerateMethodList(className, "", InstanceMethods, false));
1924
1925
// void *dtable;
1926
classFields.addNullPointer(PtrTy);
1927
// IMP cxx_construct;
1928
classFields.addNullPointer(PtrTy);
1929
// IMP cxx_destruct;
1930
classFields.addNullPointer(PtrTy);
1931
// struct objc_class *subclass_list
1932
classFields.addNullPointer(PtrTy);
1933
// struct objc_class *sibling_class
1934
classFields.addNullPointer(PtrTy);
1935
// struct objc_protocol_list *protocols;
1936
auto RuntimeProtocols = GetRuntimeProtocolList(classDecl->protocol_begin(),
1937
classDecl->protocol_end());
1938
SmallVector<llvm::Constant *, 16> Protocols;
1939
for (const auto *I : RuntimeProtocols)
1940
Protocols.push_back(GenerateProtocolRef(I));
1941
1942
if (Protocols.empty())
1943
classFields.addNullPointer(PtrTy);
1944
else
1945
classFields.add(GenerateProtocolList(Protocols));
1946
// struct reference_list *extra_data;
1947
classFields.addNullPointer(PtrTy);
1948
// long abi_version;
1949
classFields.addInt(LongTy, 0);
1950
// struct objc_property_list *properties
1951
classFields.add(GeneratePropertyList(OID, classDecl));
1952
1953
llvm::GlobalVariable *classStruct =
1954
classFields.finishAndCreateGlobal(SymbolForClass(className),
1955
CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage);
1956
1957
auto *classRefSymbol = GetClassVar(className);
1958
classRefSymbol->setSection(sectionName<ClassReferenceSection>());
1959
classRefSymbol->setInitializer(classStruct);
1960
1961
if (IsCOFF) {
1962
// we can't import a class struct.
1963
if (OID->getClassInterface()->hasAttr<DLLExportAttr>()) {
1964
classStruct->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1965
cast<llvm::GlobalValue>(classRefSymbol)->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1966
}
1967
1968
if (SuperClass) {
1969
std::pair<llvm::GlobalVariable*, int> v{classStruct, 1};
1970
EarlyInitList.emplace_back(std::string(SuperClass->getName()),
1971
std::move(v));
1972
}
1973
1974
}
1975
1976
1977
// Resolve the class aliases, if they exist.
1978
// FIXME: Class pointer aliases shouldn't exist!
1979
if (ClassPtrAlias) {
1980
ClassPtrAlias->replaceAllUsesWith(classStruct);
1981
ClassPtrAlias->eraseFromParent();
1982
ClassPtrAlias = nullptr;
1983
}
1984
if (auto Placeholder =
1985
TheModule.getNamedGlobal(SymbolForClass(className)))
1986
if (Placeholder != classStruct) {
1987
Placeholder->replaceAllUsesWith(classStruct);
1988
Placeholder->eraseFromParent();
1989
classStruct->setName(SymbolForClass(className));
1990
}
1991
if (MetaClassPtrAlias) {
1992
MetaClassPtrAlias->replaceAllUsesWith(metaclass);
1993
MetaClassPtrAlias->eraseFromParent();
1994
MetaClassPtrAlias = nullptr;
1995
}
1996
assert(classStruct->getName() == SymbolForClass(className));
1997
1998
auto classInitRef = new llvm::GlobalVariable(TheModule,
1999
classStruct->getType(), false, llvm::GlobalValue::ExternalLinkage,
2000
classStruct, ManglePublicSymbol("OBJC_INIT_CLASS_") + className);
2001
classInitRef->setSection(sectionName<ClassSection>());
2002
CGM.addUsedGlobal(classInitRef);
2003
2004
EmittedClass = true;
2005
}
2006
public:
2007
CGObjCGNUstep2(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 10, 4, 2) {
2008
MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
2009
PtrToObjCSuperTy, SelectorTy);
2010
SentInitializeFn.init(&CGM, "objc_send_initialize",
2011
llvm::Type::getVoidTy(VMContext), IdTy);
2012
// struct objc_property
2013
// {
2014
// const char *name;
2015
// const char *attributes;
2016
// const char *type;
2017
// SEL getter;
2018
// SEL setter;
2019
// }
2020
PropertyMetadataTy =
2021
llvm::StructType::get(CGM.getLLVMContext(),
2022
{ PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty });
2023
}
2024
2025
void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn,
2026
const ObjCMethodDecl *OMD,
2027
const ObjCContainerDecl *CD) override {
2028
auto &Builder = CGF.Builder;
2029
bool ReceiverCanBeNull = true;
2030
auto selfAddr = CGF.GetAddrOfLocalVar(OMD->getSelfDecl());
2031
auto selfValue = Builder.CreateLoad(selfAddr);
2032
2033
// Generate:
2034
//
2035
// /* unless the receiver is never NULL */
2036
// if (self == nil) {
2037
// return (ReturnType){ };
2038
// }
2039
//
2040
// /* for class methods only to force class lazy initialization */
2041
// if (!__objc_{class}_initialized)
2042
// {
2043
// objc_send_initialize(class);
2044
// __objc_{class}_initialized = 1;
2045
// }
2046
//
2047
// _cmd = @selector(...)
2048
// ...
2049
2050
if (OMD->isClassMethod()) {
2051
const ObjCInterfaceDecl *OID = cast<ObjCInterfaceDecl>(CD);
2052
2053
// Nullable `Class` expressions cannot be messaged with a direct method
2054
// so the only reason why the receive can be null would be because
2055
// of weak linking.
2056
ReceiverCanBeNull = isWeakLinkedClass(OID);
2057
}
2058
2059
llvm::MDBuilder MDHelper(CGM.getLLVMContext());
2060
if (ReceiverCanBeNull) {
2061
llvm::BasicBlock *SelfIsNilBlock =
2062
CGF.createBasicBlock("objc_direct_method.self_is_nil");
2063
llvm::BasicBlock *ContBlock =
2064
CGF.createBasicBlock("objc_direct_method.cont");
2065
2066
// if (self == nil) {
2067
auto selfTy = cast<llvm::PointerType>(selfValue->getType());
2068
auto Zero = llvm::ConstantPointerNull::get(selfTy);
2069
2070
Builder.CreateCondBr(Builder.CreateICmpEQ(selfValue, Zero),
2071
SelfIsNilBlock, ContBlock,
2072
MDHelper.createUnlikelyBranchWeights());
2073
2074
CGF.EmitBlock(SelfIsNilBlock);
2075
2076
// return (ReturnType){ };
2077
auto retTy = OMD->getReturnType();
2078
Builder.SetInsertPoint(SelfIsNilBlock);
2079
if (!retTy->isVoidType()) {
2080
CGF.EmitNullInitialization(CGF.ReturnValue, retTy);
2081
}
2082
CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
2083
// }
2084
2085
// rest of the body
2086
CGF.EmitBlock(ContBlock);
2087
Builder.SetInsertPoint(ContBlock);
2088
}
2089
2090
if (OMD->isClassMethod()) {
2091
// Prefix of the class type.
2092
auto *classStart =
2093
llvm::StructType::get(PtrTy, PtrTy, PtrTy, LongTy, LongTy);
2094
auto &astContext = CGM.getContext();
2095
auto flags = Builder.CreateLoad(
2096
Address{Builder.CreateStructGEP(classStart, selfValue, 4), LongTy,
2097
CharUnits::fromQuantity(
2098
astContext.getTypeAlign(astContext.UnsignedLongTy))});
2099
auto isInitialized =
2100
Builder.CreateAnd(flags, ClassFlags::ClassFlagInitialized);
2101
llvm::BasicBlock *notInitializedBlock =
2102
CGF.createBasicBlock("objc_direct_method.class_uninitialized");
2103
llvm::BasicBlock *initializedBlock =
2104
CGF.createBasicBlock("objc_direct_method.class_initialized");
2105
Builder.CreateCondBr(Builder.CreateICmpEQ(isInitialized, Zeros[0]),
2106
notInitializedBlock, initializedBlock,
2107
MDHelper.createUnlikelyBranchWeights());
2108
CGF.EmitBlock(notInitializedBlock);
2109
Builder.SetInsertPoint(notInitializedBlock);
2110
CGF.EmitRuntimeCall(SentInitializeFn, selfValue);
2111
Builder.CreateBr(initializedBlock);
2112
CGF.EmitBlock(initializedBlock);
2113
Builder.SetInsertPoint(initializedBlock);
2114
}
2115
2116
// only synthesize _cmd if it's referenced
2117
if (OMD->getCmdDecl()->isUsed()) {
2118
// `_cmd` is not a parameter to direct methods, so storage must be
2119
// explicitly declared for it.
2120
CGF.EmitVarDecl(*OMD->getCmdDecl());
2121
Builder.CreateStore(GetSelector(CGF, OMD),
2122
CGF.GetAddrOfLocalVar(OMD->getCmdDecl()));
2123
}
2124
}
2125
};
2126
2127
const char *const CGObjCGNUstep2::SectionsBaseNames[8] =
2128
{
2129
"__objc_selectors",
2130
"__objc_classes",
2131
"__objc_class_refs",
2132
"__objc_cats",
2133
"__objc_protocols",
2134
"__objc_protocol_refs",
2135
"__objc_class_aliases",
2136
"__objc_constant_string"
2137
};
2138
2139
const char *const CGObjCGNUstep2::PECOFFSectionsBaseNames[8] =
2140
{
2141
".objcrt$SEL",
2142
".objcrt$CLS",
2143
".objcrt$CLR",
2144
".objcrt$CAT",
2145
".objcrt$PCL",
2146
".objcrt$PCR",
2147
".objcrt$CAL",
2148
".objcrt$STR"
2149
};
2150
2151
/// Support for the ObjFW runtime.
2152
class CGObjCObjFW: public CGObjCGNU {
2153
protected:
2154
/// The GCC ABI message lookup function. Returns an IMP pointing to the
2155
/// method implementation for this message.
2156
LazyRuntimeFunction MsgLookupFn;
2157
/// stret lookup function. While this does not seem to make sense at the
2158
/// first look, this is required to call the correct forwarding function.
2159
LazyRuntimeFunction MsgLookupFnSRet;
2160
/// The GCC ABI superclass message lookup function. Takes a pointer to a
2161
/// structure describing the receiver and the class, and a selector as
2162
/// arguments. Returns the IMP for the corresponding method.
2163
LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet;
2164
2165
llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
2166
llvm::Value *cmd, llvm::MDNode *node,
2167
MessageSendInfo &MSI) override {
2168
CGBuilderTy &Builder = CGF.Builder;
2169
llvm::Value *args[] = {
2170
EnforceType(Builder, Receiver, IdTy),
2171
EnforceType(Builder, cmd, SelectorTy) };
2172
2173
llvm::CallBase *imp;
2174
if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
2175
imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args);
2176
else
2177
imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
2178
2179
imp->setMetadata(msgSendMDKind, node);
2180
return imp;
2181
}
2182
2183
llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
2184
llvm::Value *cmd, MessageSendInfo &MSI) override {
2185
CGBuilderTy &Builder = CGF.Builder;
2186
llvm::Value *lookupArgs[] = {
2187
EnforceType(Builder, ObjCSuper.emitRawPointer(CGF), PtrToObjCSuperTy),
2188
cmd,
2189
};
2190
2191
if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
2192
return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs);
2193
else
2194
return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
2195
}
2196
2197
llvm::Value *GetClassNamed(CodeGenFunction &CGF, const std::string &Name,
2198
bool isWeak) override {
2199
if (isWeak)
2200
return CGObjCGNU::GetClassNamed(CGF, Name, isWeak);
2201
2202
EmitClassRef(Name);
2203
std::string SymbolName = "_OBJC_CLASS_" + Name;
2204
llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName);
2205
if (!ClassSymbol)
2206
ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
2207
llvm::GlobalValue::ExternalLinkage,
2208
nullptr, SymbolName);
2209
return ClassSymbol;
2210
}
2211
2212
public:
2213
CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) {
2214
// IMP objc_msg_lookup(id, SEL);
2215
MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy);
2216
MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy,
2217
SelectorTy);
2218
// IMP objc_msg_lookup_super(struct objc_super*, SEL);
2219
MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
2220
PtrToObjCSuperTy, SelectorTy);
2221
MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy,
2222
PtrToObjCSuperTy, SelectorTy);
2223
}
2224
};
2225
} // end anonymous namespace
2226
2227
/// Emits a reference to a dummy variable which is emitted with each class.
2228
/// This ensures that a linker error will be generated when trying to link
2229
/// together modules where a referenced class is not defined.
2230
void CGObjCGNU::EmitClassRef(const std::string &className) {
2231
std::string symbolRef = "__objc_class_ref_" + className;
2232
// Don't emit two copies of the same symbol
2233
if (TheModule.getGlobalVariable(symbolRef))
2234
return;
2235
std::string symbolName = "__objc_class_name_" + className;
2236
llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName);
2237
if (!ClassSymbol) {
2238
ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
2239
llvm::GlobalValue::ExternalLinkage,
2240
nullptr, symbolName);
2241
}
2242
new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true,
2243
llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef);
2244
}
2245
2246
CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
2247
unsigned protocolClassVersion, unsigned classABI)
2248
: CGObjCRuntime(cgm), TheModule(CGM.getModule()),
2249
VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr),
2250
MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion),
2251
ProtocolVersion(protocolClassVersion), ClassABIVersion(classABI) {
2252
2253
msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend");
2254
usesSEHExceptions =
2255
cgm.getContext().getTargetInfo().getTriple().isWindowsMSVCEnvironment();
2256
usesCxxExceptions =
2257
cgm.getContext().getTargetInfo().getTriple().isOSCygMing() &&
2258
isRuntime(ObjCRuntime::GNUstep, 2);
2259
2260
CodeGenTypes &Types = CGM.getTypes();
2261
IntTy = cast<llvm::IntegerType>(
2262
Types.ConvertType(CGM.getContext().IntTy));
2263
LongTy = cast<llvm::IntegerType>(
2264
Types.ConvertType(CGM.getContext().LongTy));
2265
SizeTy = cast<llvm::IntegerType>(
2266
Types.ConvertType(CGM.getContext().getSizeType()));
2267
PtrDiffTy = cast<llvm::IntegerType>(
2268
Types.ConvertType(CGM.getContext().getPointerDiffType()));
2269
BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
2270
2271
Int8Ty = llvm::Type::getInt8Ty(VMContext);
2272
// C string type. Used in lots of places.
2273
PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty);
2274
ProtocolPtrTy = llvm::PointerType::getUnqual(
2275
Types.ConvertType(CGM.getContext().getObjCProtoType()));
2276
2277
Zeros[0] = llvm::ConstantInt::get(LongTy, 0);
2278
Zeros[1] = Zeros[0];
2279
NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty);
2280
// Get the selector Type.
2281
QualType selTy = CGM.getContext().getObjCSelType();
2282
if (QualType() == selTy) {
2283
SelectorTy = PtrToInt8Ty;
2284
SelectorElemTy = Int8Ty;
2285
} else {
2286
SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy));
2287
SelectorElemTy = CGM.getTypes().ConvertTypeForMem(selTy->getPointeeType());
2288
}
2289
2290
PtrToIntTy = llvm::PointerType::getUnqual(IntTy);
2291
PtrTy = PtrToInt8Ty;
2292
2293
Int32Ty = llvm::Type::getInt32Ty(VMContext);
2294
Int64Ty = llvm::Type::getInt64Ty(VMContext);
2295
2296
IntPtrTy =
2297
CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty;
2298
2299
// Object type
2300
QualType UnqualIdTy = CGM.getContext().getObjCIdType();
2301
ASTIdTy = CanQualType();
2302
if (UnqualIdTy != QualType()) {
2303
ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy);
2304
IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
2305
IdElemTy = CGM.getTypes().ConvertTypeForMem(
2306
ASTIdTy.getTypePtr()->getPointeeType());
2307
} else {
2308
IdTy = PtrToInt8Ty;
2309
IdElemTy = Int8Ty;
2310
}
2311
PtrToIdTy = llvm::PointerType::getUnqual(IdTy);
2312
ProtocolTy = llvm::StructType::get(IdTy,
2313
PtrToInt8Ty, // name
2314
PtrToInt8Ty, // protocols
2315
PtrToInt8Ty, // instance methods
2316
PtrToInt8Ty, // class methods
2317
PtrToInt8Ty, // optional instance methods
2318
PtrToInt8Ty, // optional class methods
2319
PtrToInt8Ty, // properties
2320
PtrToInt8Ty);// optional properties
2321
2322
// struct objc_property_gsv1
2323
// {
2324
// const char *name;
2325
// char attributes;
2326
// char attributes2;
2327
// char unused1;
2328
// char unused2;
2329
// const char *getter_name;
2330
// const char *getter_types;
2331
// const char *setter_name;
2332
// const char *setter_types;
2333
// }
2334
PropertyMetadataTy = llvm::StructType::get(CGM.getLLVMContext(), {
2335
PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty, PtrToInt8Ty,
2336
PtrToInt8Ty, PtrToInt8Ty });
2337
2338
ObjCSuperTy = llvm::StructType::get(IdTy, IdTy);
2339
PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy);
2340
2341
llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
2342
2343
// void objc_exception_throw(id);
2344
ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy);
2345
ExceptionReThrowFn.init(&CGM,
2346
usesCxxExceptions ? "objc_exception_rethrow"
2347
: "objc_exception_throw",
2348
VoidTy, IdTy);
2349
// int objc_sync_enter(id);
2350
SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy);
2351
// int objc_sync_exit(id);
2352
SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy);
2353
2354
// void objc_enumerationMutation (id)
2355
EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy, IdTy);
2356
2357
// id objc_getProperty(id, SEL, ptrdiff_t, BOOL)
2358
GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy,
2359
PtrDiffTy, BoolTy);
2360
// void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL)
2361
SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy,
2362
PtrDiffTy, IdTy, BoolTy, BoolTy);
2363
// void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
2364
GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy,
2365
PtrDiffTy, BoolTy, BoolTy);
2366
// void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
2367
SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy,
2368
PtrDiffTy, BoolTy, BoolTy);
2369
2370
// IMP type
2371
llvm::Type *IMPArgs[] = { IdTy, SelectorTy };
2372
IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs,
2373
true));
2374
2375
const LangOptions &Opts = CGM.getLangOpts();
2376
if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount)
2377
RuntimeVersion = 10;
2378
2379
// Don't bother initialising the GC stuff unless we're compiling in GC mode
2380
if (Opts.getGC() != LangOptions::NonGC) {
2381
// This is a bit of an hack. We should sort this out by having a proper
2382
// CGObjCGNUstep subclass for GC, but we may want to really support the old
2383
// ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now
2384
// Get selectors needed in GC mode
2385
RetainSel = GetNullarySelector("retain", CGM.getContext());
2386
ReleaseSel = GetNullarySelector("release", CGM.getContext());
2387
AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext());
2388
2389
// Get functions needed in GC mode
2390
2391
// id objc_assign_ivar(id, id, ptrdiff_t);
2392
IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy);
2393
// id objc_assign_strongCast (id, id*)
2394
StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy,
2395
PtrToIdTy);
2396
// id objc_assign_global(id, id*);
2397
GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy);
2398
// id objc_assign_weak(id, id*);
2399
WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy);
2400
// id objc_read_weak(id*);
2401
WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy);
2402
// void *objc_memmove_collectable(void*, void *, size_t);
2403
MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy,
2404
SizeTy);
2405
}
2406
}
2407
2408
llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF,
2409
const std::string &Name, bool isWeak) {
2410
llvm::Constant *ClassName = MakeConstantString(Name);
2411
// With the incompatible ABI, this will need to be replaced with a direct
2412
// reference to the class symbol. For the compatible nonfragile ABI we are
2413
// still performing this lookup at run time but emitting the symbol for the
2414
// class externally so that we can make the switch later.
2415
//
2416
// Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class
2417
// with memoized versions or with static references if it's safe to do so.
2418
if (!isWeak)
2419
EmitClassRef(Name);
2420
2421
llvm::FunctionCallee ClassLookupFn = CGM.CreateRuntimeFunction(
2422
llvm::FunctionType::get(IdTy, PtrToInt8Ty, true), "objc_lookup_class");
2423
return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName);
2424
}
2425
2426
// This has to perform the lookup every time, since posing and related
2427
// techniques can modify the name -> class mapping.
2428
llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF,
2429
const ObjCInterfaceDecl *OID) {
2430
auto *Value =
2431
GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported());
2432
if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value))
2433
CGM.setGVProperties(ClassSymbol, OID);
2434
return Value;
2435
}
2436
2437
llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
2438
auto *Value = GetClassNamed(CGF, "NSAutoreleasePool", false);
2439
if (CGM.getTriple().isOSBinFormatCOFF()) {
2440
if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value)) {
2441
IdentifierInfo &II = CGF.CGM.getContext().Idents.get("NSAutoreleasePool");
2442
TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
2443
DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2444
2445
const VarDecl *VD = nullptr;
2446
for (const auto *Result : DC->lookup(&II))
2447
if ((VD = dyn_cast<VarDecl>(Result)))
2448
break;
2449
2450
CGM.setGVProperties(ClassSymbol, VD);
2451
}
2452
}
2453
return Value;
2454
}
2455
2456
llvm::Value *CGObjCGNU::GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
2457
const std::string &TypeEncoding) {
2458
SmallVectorImpl<TypedSelector> &Types = SelectorTable[Sel];
2459
llvm::GlobalAlias *SelValue = nullptr;
2460
2461
for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
2462
e = Types.end() ; i!=e ; i++) {
2463
if (i->first == TypeEncoding) {
2464
SelValue = i->second;
2465
break;
2466
}
2467
}
2468
if (!SelValue) {
2469
SelValue = llvm::GlobalAlias::create(SelectorElemTy, 0,
2470
llvm::GlobalValue::PrivateLinkage,
2471
".objc_selector_" + Sel.getAsString(),
2472
&TheModule);
2473
Types.emplace_back(TypeEncoding, SelValue);
2474
}
2475
2476
return SelValue;
2477
}
2478
2479
Address CGObjCGNU::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) {
2480
llvm::Value *SelValue = GetSelector(CGF, Sel);
2481
2482
// Store it to a temporary. Does this satisfy the semantics of
2483
// GetAddrOfSelector? Hopefully.
2484
Address tmp = CGF.CreateTempAlloca(SelValue->getType(),
2485
CGF.getPointerAlign());
2486
CGF.Builder.CreateStore(SelValue, tmp);
2487
return tmp;
2488
}
2489
2490
llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel) {
2491
return GetTypedSelector(CGF, Sel, std::string());
2492
}
2493
2494
llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF,
2495
const ObjCMethodDecl *Method) {
2496
std::string SelTypes = CGM.getContext().getObjCEncodingForMethodDecl(Method);
2497
return GetTypedSelector(CGF, Method->getSelector(), SelTypes);
2498
}
2499
2500
llvm::Constant *CGObjCGNU::GetEHType(QualType T) {
2501
if (T->isObjCIdType() || T->isObjCQualifiedIdType()) {
2502
// With the old ABI, there was only one kind of catchall, which broke
2503
// foreign exceptions. With the new ABI, we use __objc_id_typeinfo as
2504
// a pointer indicating object catchalls, and NULL to indicate real
2505
// catchalls
2506
if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2507
return MakeConstantString("@id");
2508
} else {
2509
return nullptr;
2510
}
2511
}
2512
2513
// All other types should be Objective-C interface pointer types.
2514
const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>();
2515
assert(OPT && "Invalid @catch type.");
2516
const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface();
2517
assert(IDecl && "Invalid @catch type.");
2518
return MakeConstantString(IDecl->getIdentifier()->getName());
2519
}
2520
2521
llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) {
2522
if (usesSEHExceptions)
2523
return CGM.getCXXABI().getAddrOfRTTIDescriptor(T);
2524
2525
if (!CGM.getLangOpts().CPlusPlus && !usesCxxExceptions)
2526
return CGObjCGNU::GetEHType(T);
2527
2528
// For Objective-C++, we want to provide the ability to catch both C++ and
2529
// Objective-C objects in the same function.
2530
2531
// There's a particular fixed type info for 'id'.
2532
if (T->isObjCIdType() ||
2533
T->isObjCQualifiedIdType()) {
2534
llvm::Constant *IDEHType =
2535
CGM.getModule().getGlobalVariable("__objc_id_type_info");
2536
if (!IDEHType)
2537
IDEHType =
2538
new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty,
2539
false,
2540
llvm::GlobalValue::ExternalLinkage,
2541
nullptr, "__objc_id_type_info");
2542
return IDEHType;
2543
}
2544
2545
const ObjCObjectPointerType *PT =
2546
T->getAs<ObjCObjectPointerType>();
2547
assert(PT && "Invalid @catch type.");
2548
const ObjCInterfaceType *IT = PT->getInterfaceType();
2549
assert(IT && "Invalid @catch type.");
2550
std::string className =
2551
std::string(IT->getDecl()->getIdentifier()->getName());
2552
2553
std::string typeinfoName = "__objc_eh_typeinfo_" + className;
2554
2555
// Return the existing typeinfo if it exists
2556
if (llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName))
2557
return typeinfo;
2558
2559
// Otherwise create it.
2560
2561
// vtable for gnustep::libobjc::__objc_class_type_info
2562
// It's quite ugly hard-coding this. Ideally we'd generate it using the host
2563
// platform's name mangling.
2564
const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE";
2565
auto *Vtable = TheModule.getGlobalVariable(vtableName);
2566
if (!Vtable) {
2567
Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true,
2568
llvm::GlobalValue::ExternalLinkage,
2569
nullptr, vtableName);
2570
}
2571
llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2);
2572
auto *BVtable =
2573
llvm::ConstantExpr::getGetElementPtr(Vtable->getValueType(), Vtable, Two);
2574
2575
llvm::Constant *typeName =
2576
ExportUniqueString(className, "__objc_eh_typename_");
2577
2578
ConstantInitBuilder builder(CGM);
2579
auto fields = builder.beginStruct();
2580
fields.add(BVtable);
2581
fields.add(typeName);
2582
llvm::Constant *TI =
2583
fields.finishAndCreateGlobal("__objc_eh_typeinfo_" + className,
2584
CGM.getPointerAlign(),
2585
/*constant*/ false,
2586
llvm::GlobalValue::LinkOnceODRLinkage);
2587
return TI;
2588
}
2589
2590
/// Generate an NSConstantString object.
2591
ConstantAddress CGObjCGNU::GenerateConstantString(const StringLiteral *SL) {
2592
2593
std::string Str = SL->getString().str();
2594
CharUnits Align = CGM.getPointerAlign();
2595
2596
// Look for an existing one
2597
llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
2598
if (old != ObjCStrings.end())
2599
return ConstantAddress(old->getValue(), Int8Ty, Align);
2600
2601
StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
2602
2603
if (StringClass.empty()) StringClass = "NSConstantString";
2604
2605
std::string Sym = "_OBJC_CLASS_";
2606
Sym += StringClass;
2607
2608
llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
2609
2610
if (!isa)
2611
isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */ false,
2612
llvm::GlobalValue::ExternalWeakLinkage,
2613
nullptr, Sym);
2614
2615
ConstantInitBuilder Builder(CGM);
2616
auto Fields = Builder.beginStruct();
2617
Fields.add(isa);
2618
Fields.add(MakeConstantString(Str));
2619
Fields.addInt(IntTy, Str.size());
2620
llvm::Constant *ObjCStr = Fields.finishAndCreateGlobal(".objc_str", Align);
2621
ObjCStrings[Str] = ObjCStr;
2622
ConstantStrings.push_back(ObjCStr);
2623
return ConstantAddress(ObjCStr, Int8Ty, Align);
2624
}
2625
2626
///Generates a message send where the super is the receiver. This is a message
2627
///send to self with special delivery semantics indicating which class's method
2628
///should be called.
2629
RValue
2630
CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF,
2631
ReturnValueSlot Return,
2632
QualType ResultType,
2633
Selector Sel,
2634
const ObjCInterfaceDecl *Class,
2635
bool isCategoryImpl,
2636
llvm::Value *Receiver,
2637
bool IsClassMessage,
2638
const CallArgList &CallArgs,
2639
const ObjCMethodDecl *Method) {
2640
CGBuilderTy &Builder = CGF.Builder;
2641
if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
2642
if (Sel == RetainSel || Sel == AutoreleaseSel) {
2643
return RValue::get(EnforceType(Builder, Receiver,
2644
CGM.getTypes().ConvertType(ResultType)));
2645
}
2646
if (Sel == ReleaseSel) {
2647
return RValue::get(nullptr);
2648
}
2649
}
2650
2651
llvm::Value *cmd = GetSelector(CGF, Sel);
2652
CallArgList ActualArgs;
2653
2654
ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy);
2655
ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
2656
ActualArgs.addFrom(CallArgs);
2657
2658
MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
2659
2660
llvm::Value *ReceiverClass = nullptr;
2661
bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2);
2662
if (isV2ABI) {
2663
ReceiverClass = GetClassNamed(CGF,
2664
Class->getSuperClass()->getNameAsString(), /*isWeak*/false);
2665
if (IsClassMessage) {
2666
// Load the isa pointer of the superclass is this is a class method.
2667
ReceiverClass = Builder.CreateBitCast(ReceiverClass,
2668
llvm::PointerType::getUnqual(IdTy));
2669
ReceiverClass =
2670
Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign());
2671
}
2672
ReceiverClass = EnforceType(Builder, ReceiverClass, IdTy);
2673
} else {
2674
if (isCategoryImpl) {
2675
llvm::FunctionCallee classLookupFunction = nullptr;
2676
if (IsClassMessage) {
2677
classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
2678
IdTy, PtrTy, true), "objc_get_meta_class");
2679
} else {
2680
classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
2681
IdTy, PtrTy, true), "objc_get_class");
2682
}
2683
ReceiverClass = Builder.CreateCall(classLookupFunction,
2684
MakeConstantString(Class->getNameAsString()));
2685
} else {
2686
// Set up global aliases for the metaclass or class pointer if they do not
2687
// already exist. These will are forward-references which will be set to
2688
// pointers to the class and metaclass structure created for the runtime
2689
// load function. To send a message to super, we look up the value of the
2690
// super_class pointer from either the class or metaclass structure.
2691
if (IsClassMessage) {
2692
if (!MetaClassPtrAlias) {
2693
MetaClassPtrAlias = llvm::GlobalAlias::create(
2694
IdElemTy, 0, llvm::GlobalValue::InternalLinkage,
2695
".objc_metaclass_ref" + Class->getNameAsString(), &TheModule);
2696
}
2697
ReceiverClass = MetaClassPtrAlias;
2698
} else {
2699
if (!ClassPtrAlias) {
2700
ClassPtrAlias = llvm::GlobalAlias::create(
2701
IdElemTy, 0, llvm::GlobalValue::InternalLinkage,
2702
".objc_class_ref" + Class->getNameAsString(), &TheModule);
2703
}
2704
ReceiverClass = ClassPtrAlias;
2705
}
2706
}
2707
// Cast the pointer to a simplified version of the class structure
2708
llvm::Type *CastTy = llvm::StructType::get(IdTy, IdTy);
2709
ReceiverClass = Builder.CreateBitCast(ReceiverClass,
2710
llvm::PointerType::getUnqual(CastTy));
2711
// Get the superclass pointer
2712
ReceiverClass = Builder.CreateStructGEP(CastTy, ReceiverClass, 1);
2713
// Load the superclass pointer
2714
ReceiverClass =
2715
Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign());
2716
}
2717
// Construct the structure used to look up the IMP
2718
llvm::StructType *ObjCSuperTy =
2719
llvm::StructType::get(Receiver->getType(), IdTy);
2720
2721
Address ObjCSuper = CGF.CreateTempAlloca(ObjCSuperTy,
2722
CGF.getPointerAlign());
2723
2724
Builder.CreateStore(Receiver, Builder.CreateStructGEP(ObjCSuper, 0));
2725
Builder.CreateStore(ReceiverClass, Builder.CreateStructGEP(ObjCSuper, 1));
2726
2727
// Get the IMP
2728
llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI);
2729
imp = EnforceType(Builder, imp, MSI.MessengerType);
2730
2731
llvm::Metadata *impMD[] = {
2732
llvm::MDString::get(VMContext, Sel.getAsString()),
2733
llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()),
2734
llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2735
llvm::Type::getInt1Ty(VMContext), IsClassMessage))};
2736
llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
2737
2738
CGCallee callee(CGCalleeInfo(), imp);
2739
2740
llvm::CallBase *call;
2741
RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call);
2742
call->setMetadata(msgSendMDKind, node);
2743
return msgRet;
2744
}
2745
2746
/// Generate code for a message send expression.
2747
RValue
2748
CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF,
2749
ReturnValueSlot Return,
2750
QualType ResultType,
2751
Selector Sel,
2752
llvm::Value *Receiver,
2753
const CallArgList &CallArgs,
2754
const ObjCInterfaceDecl *Class,
2755
const ObjCMethodDecl *Method) {
2756
CGBuilderTy &Builder = CGF.Builder;
2757
2758
// Strip out message sends to retain / release in GC mode
2759
if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
2760
if (Sel == RetainSel || Sel == AutoreleaseSel) {
2761
return RValue::get(EnforceType(Builder, Receiver,
2762
CGM.getTypes().ConvertType(ResultType)));
2763
}
2764
if (Sel == ReleaseSel) {
2765
return RValue::get(nullptr);
2766
}
2767
}
2768
2769
bool isDirect = Method && Method->isDirectMethod();
2770
2771
IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
2772
llvm::Value *cmd;
2773
if (!isDirect) {
2774
if (Method)
2775
cmd = GetSelector(CGF, Method);
2776
else
2777
cmd = GetSelector(CGF, Sel);
2778
cmd = EnforceType(Builder, cmd, SelectorTy);
2779
}
2780
2781
Receiver = EnforceType(Builder, Receiver, IdTy);
2782
2783
llvm::Metadata *impMD[] = {
2784
llvm::MDString::get(VMContext, Sel.getAsString()),
2785
llvm::MDString::get(VMContext, Class ? Class->getNameAsString() : ""),
2786
llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2787
llvm::Type::getInt1Ty(VMContext), Class != nullptr))};
2788
llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
2789
2790
CallArgList ActualArgs;
2791
ActualArgs.add(RValue::get(Receiver), ASTIdTy);
2792
if (!isDirect)
2793
ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
2794
ActualArgs.addFrom(CallArgs);
2795
2796
MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
2797
2798
// Message sends are expected to return a zero value when the
2799
// receiver is nil. At one point, this was only guaranteed for
2800
// simple integer and pointer types, but expectations have grown
2801
// over time.
2802
//
2803
// Given a nil receiver, the GNU runtime's message lookup will
2804
// return a stub function that simply sets various return-value
2805
// registers to zero and then returns. That's good enough for us
2806
// if and only if (1) the calling conventions of that stub are
2807
// compatible with the signature we're using and (2) the registers
2808
// it sets are sufficient to produce a zero value of the return type.
2809
// Rather than doing a whole target-specific analysis, we assume it
2810
// only works for void, integer, and pointer types, and in all
2811
// other cases we do an explicit nil check is emitted code. In
2812
// addition to ensuring we produce a zero value for other types, this
2813
// sidesteps the few outright CC incompatibilities we know about that
2814
// could otherwise lead to crashes, like when a method is expected to
2815
// return on the x87 floating point stack or adjust the stack pointer
2816
// because of an indirect return.
2817
bool hasParamDestroyedInCallee = false;
2818
bool requiresExplicitZeroResult = false;
2819
bool requiresNilReceiverCheck = [&] {
2820
// We never need a check if we statically know the receiver isn't nil.
2821
if (!canMessageReceiverBeNull(CGF, Method, /*IsSuper*/ false,
2822
Class, Receiver))
2823
return false;
2824
2825
// If there's a consumed argument, we need a nil check.
2826
if (Method && Method->hasParamDestroyedInCallee()) {
2827
hasParamDestroyedInCallee = true;
2828
}
2829
2830
// If the return value isn't flagged as unused, and the result
2831
// type isn't in our narrow set where we assume compatibility,
2832
// we need a nil check to ensure a nil value.
2833
if (!Return.isUnused()) {
2834
if (ResultType->isVoidType()) {
2835
// void results are definitely okay.
2836
} else if (ResultType->hasPointerRepresentation() &&
2837
CGM.getTypes().isZeroInitializable(ResultType)) {
2838
// Pointer types should be fine as long as they have
2839
// bitwise-zero null pointers. But do we need to worry
2840
// about unusual address spaces?
2841
} else if (ResultType->isIntegralOrEnumerationType()) {
2842
// Bitwise zero should always be zero for integral types.
2843
// FIXME: we probably need a size limit here, but we've
2844
// never imposed one before
2845
} else {
2846
// Otherwise, use an explicit check just to be sure, unless we're
2847
// calling a direct method, where the implementation does this for us.
2848
requiresExplicitZeroResult = !isDirect;
2849
}
2850
}
2851
2852
return hasParamDestroyedInCallee || requiresExplicitZeroResult;
2853
}();
2854
2855
// We will need to explicitly zero-initialize an aggregate result slot
2856
// if we generally require explicit zeroing and we have an aggregate
2857
// result.
2858
bool requiresExplicitAggZeroing =
2859
requiresExplicitZeroResult && CGF.hasAggregateEvaluationKind(ResultType);
2860
2861
// The block we're going to end up in after any message send or nil path.
2862
llvm::BasicBlock *continueBB = nullptr;
2863
// The block that eventually branched to continueBB along the nil path.
2864
llvm::BasicBlock *nilPathBB = nullptr;
2865
// The block to do explicit work in along the nil path, if necessary.
2866
llvm::BasicBlock *nilCleanupBB = nullptr;
2867
2868
// Emit the nil-receiver check.
2869
if (requiresNilReceiverCheck) {
2870
llvm::BasicBlock *messageBB = CGF.createBasicBlock("msgSend");
2871
continueBB = CGF.createBasicBlock("continue");
2872
2873
// If we need to zero-initialize an aggregate result or destroy
2874
// consumed arguments, we'll need a separate cleanup block.
2875
// Otherwise we can just branch directly to the continuation block.
2876
if (requiresExplicitAggZeroing || hasParamDestroyedInCallee) {
2877
nilCleanupBB = CGF.createBasicBlock("nilReceiverCleanup");
2878
} else {
2879
nilPathBB = Builder.GetInsertBlock();
2880
}
2881
2882
llvm::Value *isNil = Builder.CreateICmpEQ(Receiver,
2883
llvm::Constant::getNullValue(Receiver->getType()));
2884
Builder.CreateCondBr(isNil, nilCleanupBB ? nilCleanupBB : continueBB,
2885
messageBB);
2886
CGF.EmitBlock(messageBB);
2887
}
2888
2889
// Get the IMP to call
2890
llvm::Value *imp;
2891
2892
// If this is a direct method, just emit it here.
2893
if (isDirect)
2894
imp = GenerateMethod(Method, Method->getClassInterface());
2895
else
2896
// If we have non-legacy dispatch specified, we try using the
2897
// objc_msgSend() functions. These are not supported on all platforms
2898
// (or all runtimes on a given platform), so we
2899
switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
2900
case CodeGenOptions::Legacy:
2901
imp = LookupIMP(CGF, Receiver, cmd, node, MSI);
2902
break;
2903
case CodeGenOptions::Mixed:
2904
case CodeGenOptions::NonLegacy:
2905
StringRef name = "objc_msgSend";
2906
if (CGM.ReturnTypeUsesFPRet(ResultType)) {
2907
name = "objc_msgSend_fpret";
2908
} else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) {
2909
name = "objc_msgSend_stret";
2910
2911
// The address of the memory block is be passed in x8 for POD type,
2912
// or in x0 for non-POD type (marked as inreg).
2913
bool shouldCheckForInReg =
2914
CGM.getContext()
2915
.getTargetInfo()
2916
.getTriple()
2917
.isWindowsMSVCEnvironment() &&
2918
CGM.getContext().getTargetInfo().getTriple().isAArch64();
2919
if (shouldCheckForInReg && CGM.ReturnTypeHasInReg(MSI.CallInfo)) {
2920
name = "objc_msgSend_stret2";
2921
}
2922
}
2923
// The actual types here don't matter - we're going to bitcast the
2924
// function anyway
2925
imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
2926
name)
2927
.getCallee();
2928
}
2929
2930
// Reset the receiver in case the lookup modified it
2931
ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy);
2932
2933
imp = EnforceType(Builder, imp, MSI.MessengerType);
2934
2935
llvm::CallBase *call;
2936
CGCallee callee(CGCalleeInfo(), imp);
2937
RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call);
2938
if (!isDirect)
2939
call->setMetadata(msgSendMDKind, node);
2940
2941
if (requiresNilReceiverCheck) {
2942
llvm::BasicBlock *nonNilPathBB = CGF.Builder.GetInsertBlock();
2943
CGF.Builder.CreateBr(continueBB);
2944
2945
// Emit the nil path if we decided it was necessary above.
2946
if (nilCleanupBB) {
2947
CGF.EmitBlock(nilCleanupBB);
2948
2949
if (hasParamDestroyedInCallee) {
2950
destroyCalleeDestroyedArguments(CGF, Method, CallArgs);
2951
}
2952
2953
if (requiresExplicitAggZeroing) {
2954
assert(msgRet.isAggregate());
2955
Address addr = msgRet.getAggregateAddress();
2956
CGF.EmitNullInitialization(addr, ResultType);
2957
}
2958
2959
nilPathBB = CGF.Builder.GetInsertBlock();
2960
CGF.Builder.CreateBr(continueBB);
2961
}
2962
2963
// Enter the continuation block and emit a phi if required.
2964
CGF.EmitBlock(continueBB);
2965
if (msgRet.isScalar()) {
2966
// If the return type is void, do nothing
2967
if (llvm::Value *v = msgRet.getScalarVal()) {
2968
llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
2969
phi->addIncoming(v, nonNilPathBB);
2970
phi->addIncoming(CGM.EmitNullConstant(ResultType), nilPathBB);
2971
msgRet = RValue::get(phi);
2972
}
2973
} else if (msgRet.isAggregate()) {
2974
// Aggregate zeroing is handled in nilCleanupBB when it's required.
2975
} else /* isComplex() */ {
2976
std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal();
2977
llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2);
2978
phi->addIncoming(v.first, nonNilPathBB);
2979
phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()),
2980
nilPathBB);
2981
llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2);
2982
phi2->addIncoming(v.second, nonNilPathBB);
2983
phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()),
2984
nilPathBB);
2985
msgRet = RValue::getComplex(phi, phi2);
2986
}
2987
}
2988
return msgRet;
2989
}
2990
2991
/// Generates a MethodList. Used in construction of a objc_class and
2992
/// objc_category structures.
2993
llvm::Constant *CGObjCGNU::
2994
GenerateMethodList(StringRef ClassName,
2995
StringRef CategoryName,
2996
ArrayRef<const ObjCMethodDecl*> Methods,
2997
bool isClassMethodList) {
2998
if (Methods.empty())
2999
return NULLPtr;
3000
3001
ConstantInitBuilder Builder(CGM);
3002
3003
auto MethodList = Builder.beginStruct();
3004
MethodList.addNullPointer(CGM.Int8PtrTy);
3005
MethodList.addInt(Int32Ty, Methods.size());
3006
3007
// Get the method structure type.
3008
llvm::StructType *ObjCMethodTy =
3009
llvm::StructType::get(CGM.getLLVMContext(), {
3010
PtrToInt8Ty, // Really a selector, but the runtime creates it us.
3011
PtrToInt8Ty, // Method types
3012
IMPTy // Method pointer
3013
});
3014
bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2);
3015
if (isV2ABI) {
3016
// size_t size;
3017
llvm::DataLayout td(&TheModule);
3018
MethodList.addInt(SizeTy, td.getTypeSizeInBits(ObjCMethodTy) /
3019
CGM.getContext().getCharWidth());
3020
ObjCMethodTy =
3021
llvm::StructType::get(CGM.getLLVMContext(), {
3022
IMPTy, // Method pointer
3023
PtrToInt8Ty, // Selector
3024
PtrToInt8Ty // Extended type encoding
3025
});
3026
} else {
3027
ObjCMethodTy =
3028
llvm::StructType::get(CGM.getLLVMContext(), {
3029
PtrToInt8Ty, // Really a selector, but the runtime creates it us.
3030
PtrToInt8Ty, // Method types
3031
IMPTy // Method pointer
3032
});
3033
}
3034
auto MethodArray = MethodList.beginArray();
3035
ASTContext &Context = CGM.getContext();
3036
for (const auto *OMD : Methods) {
3037
llvm::Constant *FnPtr =
3038
TheModule.getFunction(getSymbolNameForMethod(OMD));
3039
assert(FnPtr && "Can't generate metadata for method that doesn't exist");
3040
auto Method = MethodArray.beginStruct(ObjCMethodTy);
3041
if (isV2ABI) {
3042
Method.add(FnPtr);
3043
Method.add(GetConstantSelector(OMD->getSelector(),
3044
Context.getObjCEncodingForMethodDecl(OMD)));
3045
Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD, true)));
3046
} else {
3047
Method.add(MakeConstantString(OMD->getSelector().getAsString()));
3048
Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD)));
3049
Method.add(FnPtr);
3050
}
3051
Method.finishAndAddTo(MethodArray);
3052
}
3053
MethodArray.finishAndAddTo(MethodList);
3054
3055
// Create an instance of the structure
3056
return MethodList.finishAndCreateGlobal(".objc_method_list",
3057
CGM.getPointerAlign());
3058
}
3059
3060
/// Generates an IvarList. Used in construction of a objc_class.
3061
llvm::Constant *CGObjCGNU::
3062
GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
3063
ArrayRef<llvm::Constant *> IvarTypes,
3064
ArrayRef<llvm::Constant *> IvarOffsets,
3065
ArrayRef<llvm::Constant *> IvarAlign,
3066
ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) {
3067
if (IvarNames.empty())
3068
return NULLPtr;
3069
3070
ConstantInitBuilder Builder(CGM);
3071
3072
// Structure containing array count followed by array.
3073
auto IvarList = Builder.beginStruct();
3074
IvarList.addInt(IntTy, (int)IvarNames.size());
3075
3076
// Get the ivar structure type.
3077
llvm::StructType *ObjCIvarTy =
3078
llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, IntTy);
3079
3080
// Array of ivar structures.
3081
auto Ivars = IvarList.beginArray(ObjCIvarTy);
3082
for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) {
3083
auto Ivar = Ivars.beginStruct(ObjCIvarTy);
3084
Ivar.add(IvarNames[i]);
3085
Ivar.add(IvarTypes[i]);
3086
Ivar.add(IvarOffsets[i]);
3087
Ivar.finishAndAddTo(Ivars);
3088
}
3089
Ivars.finishAndAddTo(IvarList);
3090
3091
// Create an instance of the structure
3092
return IvarList.finishAndCreateGlobal(".objc_ivar_list",
3093
CGM.getPointerAlign());
3094
}
3095
3096
/// Generate a class structure
3097
llvm::Constant *CGObjCGNU::GenerateClassStructure(
3098
llvm::Constant *MetaClass,
3099
llvm::Constant *SuperClass,
3100
unsigned info,
3101
const char *Name,
3102
llvm::Constant *Version,
3103
llvm::Constant *InstanceSize,
3104
llvm::Constant *IVars,
3105
llvm::Constant *Methods,
3106
llvm::Constant *Protocols,
3107
llvm::Constant *IvarOffsets,
3108
llvm::Constant *Properties,
3109
llvm::Constant *StrongIvarBitmap,
3110
llvm::Constant *WeakIvarBitmap,
3111
bool isMeta) {
3112
// Set up the class structure
3113
// Note: Several of these are char*s when they should be ids. This is
3114
// because the runtime performs this translation on load.
3115
//
3116
// Fields marked New ABI are part of the GNUstep runtime. We emit them
3117
// anyway; the classes will still work with the GNU runtime, they will just
3118
// be ignored.
3119
llvm::StructType *ClassTy = llvm::StructType::get(
3120
PtrToInt8Ty, // isa
3121
PtrToInt8Ty, // super_class
3122
PtrToInt8Ty, // name
3123
LongTy, // version
3124
LongTy, // info
3125
LongTy, // instance_size
3126
IVars->getType(), // ivars
3127
Methods->getType(), // methods
3128
// These are all filled in by the runtime, so we pretend
3129
PtrTy, // dtable
3130
PtrTy, // subclass_list
3131
PtrTy, // sibling_class
3132
PtrTy, // protocols
3133
PtrTy, // gc_object_type
3134
// New ABI:
3135
LongTy, // abi_version
3136
IvarOffsets->getType(), // ivar_offsets
3137
Properties->getType(), // properties
3138
IntPtrTy, // strong_pointers
3139
IntPtrTy // weak_pointers
3140
);
3141
3142
ConstantInitBuilder Builder(CGM);
3143
auto Elements = Builder.beginStruct(ClassTy);
3144
3145
// Fill in the structure
3146
3147
// isa
3148
Elements.add(MetaClass);
3149
// super_class
3150
Elements.add(SuperClass);
3151
// name
3152
Elements.add(MakeConstantString(Name, ".class_name"));
3153
// version
3154
Elements.addInt(LongTy, 0);
3155
// info
3156
Elements.addInt(LongTy, info);
3157
// instance_size
3158
if (isMeta) {
3159
llvm::DataLayout td(&TheModule);
3160
Elements.addInt(LongTy,
3161
td.getTypeSizeInBits(ClassTy) /
3162
CGM.getContext().getCharWidth());
3163
} else
3164
Elements.add(InstanceSize);
3165
// ivars
3166
Elements.add(IVars);
3167
// methods
3168
Elements.add(Methods);
3169
// These are all filled in by the runtime, so we pretend
3170
// dtable
3171
Elements.add(NULLPtr);
3172
// subclass_list
3173
Elements.add(NULLPtr);
3174
// sibling_class
3175
Elements.add(NULLPtr);
3176
// protocols
3177
Elements.add(Protocols);
3178
// gc_object_type
3179
Elements.add(NULLPtr);
3180
// abi_version
3181
Elements.addInt(LongTy, ClassABIVersion);
3182
// ivar_offsets
3183
Elements.add(IvarOffsets);
3184
// properties
3185
Elements.add(Properties);
3186
// strong_pointers
3187
Elements.add(StrongIvarBitmap);
3188
// weak_pointers
3189
Elements.add(WeakIvarBitmap);
3190
// Create an instance of the structure
3191
// This is now an externally visible symbol, so that we can speed up class
3192
// messages in the next ABI. We may already have some weak references to
3193
// this, so check and fix them properly.
3194
std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") +
3195
std::string(Name));
3196
llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym);
3197
llvm::Constant *Class =
3198
Elements.finishAndCreateGlobal(ClassSym, CGM.getPointerAlign(), false,
3199
llvm::GlobalValue::ExternalLinkage);
3200
if (ClassRef) {
3201
ClassRef->replaceAllUsesWith(Class);
3202
ClassRef->removeFromParent();
3203
Class->setName(ClassSym);
3204
}
3205
return Class;
3206
}
3207
3208
llvm::Constant *CGObjCGNU::
3209
GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) {
3210
// Get the method structure type.
3211
llvm::StructType *ObjCMethodDescTy =
3212
llvm::StructType::get(CGM.getLLVMContext(), { PtrToInt8Ty, PtrToInt8Ty });
3213
ASTContext &Context = CGM.getContext();
3214
ConstantInitBuilder Builder(CGM);
3215
auto MethodList = Builder.beginStruct();
3216
MethodList.addInt(IntTy, Methods.size());
3217
auto MethodArray = MethodList.beginArray(ObjCMethodDescTy);
3218
for (auto *M : Methods) {
3219
auto Method = MethodArray.beginStruct(ObjCMethodDescTy);
3220
Method.add(MakeConstantString(M->getSelector().getAsString()));
3221
Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(M)));
3222
Method.finishAndAddTo(MethodArray);
3223
}
3224
MethodArray.finishAndAddTo(MethodList);
3225
return MethodList.finishAndCreateGlobal(".objc_method_list",
3226
CGM.getPointerAlign());
3227
}
3228
3229
// Create the protocol list structure used in classes, categories and so on
3230
llvm::Constant *
3231
CGObjCGNU::GenerateProtocolList(ArrayRef<std::string> Protocols) {
3232
3233
ConstantInitBuilder Builder(CGM);
3234
auto ProtocolList = Builder.beginStruct();
3235
ProtocolList.add(NULLPtr);
3236
ProtocolList.addInt(LongTy, Protocols.size());
3237
3238
auto Elements = ProtocolList.beginArray(PtrToInt8Ty);
3239
for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end();
3240
iter != endIter ; iter++) {
3241
llvm::Constant *protocol = nullptr;
3242
llvm::StringMap<llvm::Constant*>::iterator value =
3243
ExistingProtocols.find(*iter);
3244
if (value == ExistingProtocols.end()) {
3245
protocol = GenerateEmptyProtocol(*iter);
3246
} else {
3247
protocol = value->getValue();
3248
}
3249
Elements.add(protocol);
3250
}
3251
Elements.finishAndAddTo(ProtocolList);
3252
return ProtocolList.finishAndCreateGlobal(".objc_protocol_list",
3253
CGM.getPointerAlign());
3254
}
3255
3256
llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF,
3257
const ObjCProtocolDecl *PD) {
3258
auto protocol = GenerateProtocolRef(PD);
3259
llvm::Type *T =
3260
CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType());
3261
return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T));
3262
}
3263
3264
llvm::Constant *CGObjCGNU::GenerateProtocolRef(const ObjCProtocolDecl *PD) {
3265
llvm::Constant *&protocol = ExistingProtocols[PD->getNameAsString()];
3266
if (!protocol)
3267
GenerateProtocol(PD);
3268
assert(protocol && "Unknown protocol");
3269
return protocol;
3270
}
3271
3272
llvm::Constant *
3273
CGObjCGNU::GenerateEmptyProtocol(StringRef ProtocolName) {
3274
llvm::Constant *ProtocolList = GenerateProtocolList({});
3275
llvm::Constant *MethodList = GenerateProtocolMethodList({});
3276
// Protocols are objects containing lists of the methods implemented and
3277
// protocols adopted.
3278
ConstantInitBuilder Builder(CGM);
3279
auto Elements = Builder.beginStruct();
3280
3281
// The isa pointer must be set to a magic number so the runtime knows it's
3282
// the correct layout.
3283
Elements.add(llvm::ConstantExpr::getIntToPtr(
3284
llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
3285
3286
Elements.add(MakeConstantString(ProtocolName, ".objc_protocol_name"));
3287
Elements.add(ProtocolList); /* .protocol_list */
3288
Elements.add(MethodList); /* .instance_methods */
3289
Elements.add(MethodList); /* .class_methods */
3290
Elements.add(MethodList); /* .optional_instance_methods */
3291
Elements.add(MethodList); /* .optional_class_methods */
3292
Elements.add(NULLPtr); /* .properties */
3293
Elements.add(NULLPtr); /* .optional_properties */
3294
return Elements.finishAndCreateGlobal(SymbolForProtocol(ProtocolName),
3295
CGM.getPointerAlign());
3296
}
3297
3298
void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) {
3299
if (PD->isNonRuntimeProtocol())
3300
return;
3301
3302
std::string ProtocolName = PD->getNameAsString();
3303
3304
// Use the protocol definition, if there is one.
3305
if (const ObjCProtocolDecl *Def = PD->getDefinition())
3306
PD = Def;
3307
3308
SmallVector<std::string, 16> Protocols;
3309
for (const auto *PI : PD->protocols())
3310
Protocols.push_back(PI->getNameAsString());
3311
SmallVector<const ObjCMethodDecl*, 16> InstanceMethods;
3312
SmallVector<const ObjCMethodDecl*, 16> OptionalInstanceMethods;
3313
for (const auto *I : PD->instance_methods())
3314
if (I->isOptional())
3315
OptionalInstanceMethods.push_back(I);
3316
else
3317
InstanceMethods.push_back(I);
3318
// Collect information about class methods:
3319
SmallVector<const ObjCMethodDecl*, 16> ClassMethods;
3320
SmallVector<const ObjCMethodDecl*, 16> OptionalClassMethods;
3321
for (const auto *I : PD->class_methods())
3322
if (I->isOptional())
3323
OptionalClassMethods.push_back(I);
3324
else
3325
ClassMethods.push_back(I);
3326
3327
llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
3328
llvm::Constant *InstanceMethodList =
3329
GenerateProtocolMethodList(InstanceMethods);
3330
llvm::Constant *ClassMethodList =
3331
GenerateProtocolMethodList(ClassMethods);
3332
llvm::Constant *OptionalInstanceMethodList =
3333
GenerateProtocolMethodList(OptionalInstanceMethods);
3334
llvm::Constant *OptionalClassMethodList =
3335
GenerateProtocolMethodList(OptionalClassMethods);
3336
3337
// Property metadata: name, attributes, isSynthesized, setter name, setter
3338
// types, getter name, getter types.
3339
// The isSynthesized value is always set to 0 in a protocol. It exists to
3340
// simplify the runtime library by allowing it to use the same data
3341
// structures for protocol metadata everywhere.
3342
3343
llvm::Constant *PropertyList =
3344
GeneratePropertyList(nullptr, PD, false, false);
3345
llvm::Constant *OptionalPropertyList =
3346
GeneratePropertyList(nullptr, PD, false, true);
3347
3348
// Protocols are objects containing lists of the methods implemented and
3349
// protocols adopted.
3350
// The isa pointer must be set to a magic number so the runtime knows it's
3351
// the correct layout.
3352
ConstantInitBuilder Builder(CGM);
3353
auto Elements = Builder.beginStruct();
3354
Elements.add(
3355
llvm::ConstantExpr::getIntToPtr(
3356
llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
3357
Elements.add(MakeConstantString(ProtocolName));
3358
Elements.add(ProtocolList);
3359
Elements.add(InstanceMethodList);
3360
Elements.add(ClassMethodList);
3361
Elements.add(OptionalInstanceMethodList);
3362
Elements.add(OptionalClassMethodList);
3363
Elements.add(PropertyList);
3364
Elements.add(OptionalPropertyList);
3365
ExistingProtocols[ProtocolName] =
3366
Elements.finishAndCreateGlobal(".objc_protocol", CGM.getPointerAlign());
3367
}
3368
void CGObjCGNU::GenerateProtocolHolderCategory() {
3369
// Collect information about instance methods
3370
3371
ConstantInitBuilder Builder(CGM);
3372
auto Elements = Builder.beginStruct();
3373
3374
const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack";
3375
const std::string CategoryName = "AnotherHack";
3376
Elements.add(MakeConstantString(CategoryName));
3377
Elements.add(MakeConstantString(ClassName));
3378
// Instance method list
3379
Elements.add(GenerateMethodList(ClassName, CategoryName, {}, false));
3380
// Class method list
3381
Elements.add(GenerateMethodList(ClassName, CategoryName, {}, true));
3382
3383
// Protocol list
3384
ConstantInitBuilder ProtocolListBuilder(CGM);
3385
auto ProtocolList = ProtocolListBuilder.beginStruct();
3386
ProtocolList.add(NULLPtr);
3387
ProtocolList.addInt(LongTy, ExistingProtocols.size());
3388
auto ProtocolElements = ProtocolList.beginArray(PtrTy);
3389
for (auto iter = ExistingProtocols.begin(), endIter = ExistingProtocols.end();
3390
iter != endIter ; iter++) {
3391
ProtocolElements.add(iter->getValue());
3392
}
3393
ProtocolElements.finishAndAddTo(ProtocolList);
3394
Elements.add(ProtocolList.finishAndCreateGlobal(".objc_protocol_list",
3395
CGM.getPointerAlign()));
3396
Categories.push_back(
3397
Elements.finishAndCreateGlobal("", CGM.getPointerAlign()));
3398
}
3399
3400
/// Libobjc2 uses a bitfield representation where small(ish) bitfields are
3401
/// stored in a 64-bit value with the low bit set to 1 and the remaining 63
3402
/// bits set to their values, LSB first, while larger ones are stored in a
3403
/// structure of this / form:
3404
///
3405
/// struct { int32_t length; int32_t values[length]; };
3406
///
3407
/// The values in the array are stored in host-endian format, with the least
3408
/// significant bit being assumed to come first in the bitfield. Therefore, a
3409
/// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a
3410
/// bitfield / with the 63rd bit set will be 1<<64.
3411
llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) {
3412
int bitCount = bits.size();
3413
int ptrBits = CGM.getDataLayout().getPointerSizeInBits();
3414
if (bitCount < ptrBits) {
3415
uint64_t val = 1;
3416
for (int i=0 ; i<bitCount ; ++i) {
3417
if (bits[i]) val |= 1ULL<<(i+1);
3418
}
3419
return llvm::ConstantInt::get(IntPtrTy, val);
3420
}
3421
SmallVector<llvm::Constant *, 8> values;
3422
int v=0;
3423
while (v < bitCount) {
3424
int32_t word = 0;
3425
for (int i=0 ; (i<32) && (v<bitCount) ; ++i) {
3426
if (bits[v]) word |= 1<<i;
3427
v++;
3428
}
3429
values.push_back(llvm::ConstantInt::get(Int32Ty, word));
3430
}
3431
3432
ConstantInitBuilder builder(CGM);
3433
auto fields = builder.beginStruct();
3434
fields.addInt(Int32Ty, values.size());
3435
auto array = fields.beginArray();
3436
for (auto *v : values) array.add(v);
3437
array.finishAndAddTo(fields);
3438
3439
llvm::Constant *GS =
3440
fields.finishAndCreateGlobal("", CharUnits::fromQuantity(4));
3441
llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy);
3442
return ptr;
3443
}
3444
3445
llvm::Constant *CGObjCGNU::GenerateCategoryProtocolList(const
3446
ObjCCategoryDecl *OCD) {
3447
const auto &RefPro = OCD->getReferencedProtocols();
3448
const auto RuntimeProtos =
3449
GetRuntimeProtocolList(RefPro.begin(), RefPro.end());
3450
SmallVector<std::string, 16> Protocols;
3451
for (const auto *PD : RuntimeProtos)
3452
Protocols.push_back(PD->getNameAsString());
3453
return GenerateProtocolList(Protocols);
3454
}
3455
3456
void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
3457
const ObjCInterfaceDecl *Class = OCD->getClassInterface();
3458
std::string ClassName = Class->getNameAsString();
3459
std::string CategoryName = OCD->getNameAsString();
3460
3461
// Collect the names of referenced protocols
3462
const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl();
3463
3464
ConstantInitBuilder Builder(CGM);
3465
auto Elements = Builder.beginStruct();
3466
Elements.add(MakeConstantString(CategoryName));
3467
Elements.add(MakeConstantString(ClassName));
3468
// Instance method list
3469
SmallVector<ObjCMethodDecl*, 16> InstanceMethods;
3470
InstanceMethods.insert(InstanceMethods.begin(), OCD->instmeth_begin(),
3471
OCD->instmeth_end());
3472
Elements.add(
3473
GenerateMethodList(ClassName, CategoryName, InstanceMethods, false));
3474
3475
// Class method list
3476
3477
SmallVector<ObjCMethodDecl*, 16> ClassMethods;
3478
ClassMethods.insert(ClassMethods.begin(), OCD->classmeth_begin(),
3479
OCD->classmeth_end());
3480
Elements.add(GenerateMethodList(ClassName, CategoryName, ClassMethods, true));
3481
3482
// Protocol list
3483
Elements.add(GenerateCategoryProtocolList(CatDecl));
3484
if (isRuntime(ObjCRuntime::GNUstep, 2)) {
3485
const ObjCCategoryDecl *Category =
3486
Class->FindCategoryDeclaration(OCD->getIdentifier());
3487
if (Category) {
3488
// Instance properties
3489
Elements.add(GeneratePropertyList(OCD, Category, false));
3490
// Class properties
3491
Elements.add(GeneratePropertyList(OCD, Category, true));
3492
} else {
3493
Elements.addNullPointer(PtrTy);
3494
Elements.addNullPointer(PtrTy);
3495
}
3496
}
3497
3498
Categories.push_back(Elements.finishAndCreateGlobal(
3499
std::string(".objc_category_") + ClassName + CategoryName,
3500
CGM.getPointerAlign()));
3501
}
3502
3503
llvm::Constant *CGObjCGNU::GeneratePropertyList(const Decl *Container,
3504
const ObjCContainerDecl *OCD,
3505
bool isClassProperty,
3506
bool protocolOptionalProperties) {
3507
3508
SmallVector<const ObjCPropertyDecl *, 16> Properties;
3509
llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet;
3510
bool isProtocol = isa<ObjCProtocolDecl>(OCD);
3511
ASTContext &Context = CGM.getContext();
3512
3513
std::function<void(const ObjCProtocolDecl *Proto)> collectProtocolProperties
3514
= [&](const ObjCProtocolDecl *Proto) {
3515
for (const auto *P : Proto->protocols())
3516
collectProtocolProperties(P);
3517
for (const auto *PD : Proto->properties()) {
3518
if (isClassProperty != PD->isClassProperty())
3519
continue;
3520
// Skip any properties that are declared in protocols that this class
3521
// conforms to but are not actually implemented by this class.
3522
if (!isProtocol && !Context.getObjCPropertyImplDeclForPropertyDecl(PD, Container))
3523
continue;
3524
if (!PropertySet.insert(PD->getIdentifier()).second)
3525
continue;
3526
Properties.push_back(PD);
3527
}
3528
};
3529
3530
if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3531
for (const ObjCCategoryDecl *ClassExt : OID->known_extensions())
3532
for (auto *PD : ClassExt->properties()) {
3533
if (isClassProperty != PD->isClassProperty())
3534
continue;
3535
PropertySet.insert(PD->getIdentifier());
3536
Properties.push_back(PD);
3537
}
3538
3539
for (const auto *PD : OCD->properties()) {
3540
if (isClassProperty != PD->isClassProperty())
3541
continue;
3542
// If we're generating a list for a protocol, skip optional / required ones
3543
// when generating the other list.
3544
if (isProtocol && (protocolOptionalProperties != PD->isOptional()))
3545
continue;
3546
// Don't emit duplicate metadata for properties that were already in a
3547
// class extension.
3548
if (!PropertySet.insert(PD->getIdentifier()).second)
3549
continue;
3550
3551
Properties.push_back(PD);
3552
}
3553
3554
if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3555
for (const auto *P : OID->all_referenced_protocols())
3556
collectProtocolProperties(P);
3557
else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD))
3558
for (const auto *P : CD->protocols())
3559
collectProtocolProperties(P);
3560
3561
auto numProperties = Properties.size();
3562
3563
if (numProperties == 0)
3564
return NULLPtr;
3565
3566
ConstantInitBuilder builder(CGM);
3567
auto propertyList = builder.beginStruct();
3568
auto properties = PushPropertyListHeader(propertyList, numProperties);
3569
3570
// Add all of the property methods need adding to the method list and to the
3571
// property metadata list.
3572
for (auto *property : Properties) {
3573
bool isSynthesized = false;
3574
bool isDynamic = false;
3575
if (!isProtocol) {
3576
auto *propertyImpl = Context.getObjCPropertyImplDeclForPropertyDecl(property, Container);
3577
if (propertyImpl) {
3578
isSynthesized = (propertyImpl->getPropertyImplementation() ==
3579
ObjCPropertyImplDecl::Synthesize);
3580
isDynamic = (propertyImpl->getPropertyImplementation() ==
3581
ObjCPropertyImplDecl::Dynamic);
3582
}
3583
}
3584
PushProperty(properties, property, Container, isSynthesized, isDynamic);
3585
}
3586
properties.finishAndAddTo(propertyList);
3587
3588
return propertyList.finishAndCreateGlobal(".objc_property_list",
3589
CGM.getPointerAlign());
3590
}
3591
3592
void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) {
3593
// Get the class declaration for which the alias is specified.
3594
ObjCInterfaceDecl *ClassDecl =
3595
const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface());
3596
ClassAliases.emplace_back(ClassDecl->getNameAsString(),
3597
OAD->getNameAsString());
3598
}
3599
3600
void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) {
3601
ASTContext &Context = CGM.getContext();
3602
3603
// Get the superclass name.
3604
const ObjCInterfaceDecl * SuperClassDecl =
3605
OID->getClassInterface()->getSuperClass();
3606
std::string SuperClassName;
3607
if (SuperClassDecl) {
3608
SuperClassName = SuperClassDecl->getNameAsString();
3609
EmitClassRef(SuperClassName);
3610
}
3611
3612
// Get the class name
3613
ObjCInterfaceDecl *ClassDecl =
3614
const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
3615
std::string ClassName = ClassDecl->getNameAsString();
3616
3617
// Emit the symbol that is used to generate linker errors if this class is
3618
// referenced in other modules but not declared.
3619
std::string classSymbolName = "__objc_class_name_" + ClassName;
3620
if (auto *symbol = TheModule.getGlobalVariable(classSymbolName)) {
3621
symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0));
3622
} else {
3623
new llvm::GlobalVariable(TheModule, LongTy, false,
3624
llvm::GlobalValue::ExternalLinkage,
3625
llvm::ConstantInt::get(LongTy, 0),
3626
classSymbolName);
3627
}
3628
3629
// Get the size of instances.
3630
int instanceSize =
3631
Context.getASTObjCImplementationLayout(OID).getSize().getQuantity();
3632
3633
// Collect information about instance variables.
3634
SmallVector<llvm::Constant*, 16> IvarNames;
3635
SmallVector<llvm::Constant*, 16> IvarTypes;
3636
SmallVector<llvm::Constant*, 16> IvarOffsets;
3637
SmallVector<llvm::Constant*, 16> IvarAligns;
3638
SmallVector<Qualifiers::ObjCLifetime, 16> IvarOwnership;
3639
3640
ConstantInitBuilder IvarOffsetBuilder(CGM);
3641
auto IvarOffsetValues = IvarOffsetBuilder.beginArray(PtrToIntTy);
3642
SmallVector<bool, 16> WeakIvars;
3643
SmallVector<bool, 16> StrongIvars;
3644
3645
int superInstanceSize = !SuperClassDecl ? 0 :
3646
Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
3647
// For non-fragile ivars, set the instance size to 0 - {the size of just this
3648
// class}. The runtime will then set this to the correct value on load.
3649
if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
3650
instanceSize = 0 - (instanceSize - superInstanceSize);
3651
}
3652
3653
for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
3654
IVD = IVD->getNextIvar()) {
3655
// Store the name
3656
IvarNames.push_back(MakeConstantString(IVD->getNameAsString()));
3657
// Get the type encoding for this ivar
3658
std::string TypeStr;
3659
Context.getObjCEncodingForType(IVD->getType(), TypeStr, IVD);
3660
IvarTypes.push_back(MakeConstantString(TypeStr));
3661
IvarAligns.push_back(llvm::ConstantInt::get(IntTy,
3662
Context.getTypeSize(IVD->getType())));
3663
// Get the offset
3664
uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
3665
uint64_t Offset = BaseOffset;
3666
if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
3667
Offset = BaseOffset - superInstanceSize;
3668
}
3669
llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
3670
// Create the direct offset value
3671
std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." +
3672
IVD->getNameAsString();
3673
3674
llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
3675
if (OffsetVar) {
3676
OffsetVar->setInitializer(OffsetValue);
3677
// If this is the real definition, change its linkage type so that
3678
// different modules will use this one, rather than their private
3679
// copy.
3680
OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage);
3681
} else
3682
OffsetVar = new llvm::GlobalVariable(TheModule, Int32Ty,
3683
false, llvm::GlobalValue::ExternalLinkage,
3684
OffsetValue, OffsetName);
3685
IvarOffsets.push_back(OffsetValue);
3686
IvarOffsetValues.add(OffsetVar);
3687
Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime();
3688
IvarOwnership.push_back(lt);
3689
switch (lt) {
3690
case Qualifiers::OCL_Strong:
3691
StrongIvars.push_back(true);
3692
WeakIvars.push_back(false);
3693
break;
3694
case Qualifiers::OCL_Weak:
3695
StrongIvars.push_back(false);
3696
WeakIvars.push_back(true);
3697
break;
3698
default:
3699
StrongIvars.push_back(false);
3700
WeakIvars.push_back(false);
3701
}
3702
}
3703
llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars);
3704
llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars);
3705
llvm::GlobalVariable *IvarOffsetArray =
3706
IvarOffsetValues.finishAndCreateGlobal(".ivar.offsets",
3707
CGM.getPointerAlign());
3708
3709
// Collect information about instance methods
3710
SmallVector<const ObjCMethodDecl*, 16> InstanceMethods;
3711
InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(),
3712
OID->instmeth_end());
3713
3714
SmallVector<const ObjCMethodDecl*, 16> ClassMethods;
3715
ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(),
3716
OID->classmeth_end());
3717
3718
llvm::Constant *Properties = GeneratePropertyList(OID, ClassDecl);
3719
3720
// Collect the names of referenced protocols
3721
auto RefProtocols = ClassDecl->protocols();
3722
auto RuntimeProtocols =
3723
GetRuntimeProtocolList(RefProtocols.begin(), RefProtocols.end());
3724
SmallVector<std::string, 16> Protocols;
3725
for (const auto *I : RuntimeProtocols)
3726
Protocols.push_back(I->getNameAsString());
3727
3728
// Get the superclass pointer.
3729
llvm::Constant *SuperClass;
3730
if (!SuperClassName.empty()) {
3731
SuperClass = MakeConstantString(SuperClassName, ".super_class_name");
3732
} else {
3733
SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty);
3734
}
3735
// Empty vector used to construct empty method lists
3736
SmallVector<llvm::Constant*, 1> empty;
3737
// Generate the method and instance variable lists
3738
llvm::Constant *MethodList = GenerateMethodList(ClassName, "",
3739
InstanceMethods, false);
3740
llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "",
3741
ClassMethods, true);
3742
llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes,
3743
IvarOffsets, IvarAligns, IvarOwnership);
3744
// Irrespective of whether we are compiling for a fragile or non-fragile ABI,
3745
// we emit a symbol containing the offset for each ivar in the class. This
3746
// allows code compiled for the non-Fragile ABI to inherit from code compiled
3747
// for the legacy ABI, without causing problems. The converse is also
3748
// possible, but causes all ivar accesses to be fragile.
3749
3750
// Offset pointer for getting at the correct field in the ivar list when
3751
// setting up the alias. These are: The base address for the global, the
3752
// ivar array (second field), the ivar in this list (set for each ivar), and
3753
// the offset (third field in ivar structure)
3754
llvm::Type *IndexTy = Int32Ty;
3755
llvm::Constant *offsetPointerIndexes[] = {Zeros[0],
3756
llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 2 : 1), nullptr,
3757
llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 3 : 2) };
3758
3759
unsigned ivarIndex = 0;
3760
for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
3761
IVD = IVD->getNextIvar()) {
3762
const std::string Name = GetIVarOffsetVariableName(ClassDecl, IVD);
3763
offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex);
3764
// Get the correct ivar field
3765
llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr(
3766
cast<llvm::GlobalVariable>(IvarList)->getValueType(), IvarList,
3767
offsetPointerIndexes);
3768
// Get the existing variable, if one exists.
3769
llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name);
3770
if (offset) {
3771
offset->setInitializer(offsetValue);
3772
// If this is the real definition, change its linkage type so that
3773
// different modules will use this one, rather than their private
3774
// copy.
3775
offset->setLinkage(llvm::GlobalValue::ExternalLinkage);
3776
} else
3777
// Add a new alias if there isn't one already.
3778
new llvm::GlobalVariable(TheModule, offsetValue->getType(),
3779
false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name);
3780
++ivarIndex;
3781
}
3782
llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0);
3783
3784
//Generate metaclass for class methods
3785
llvm::Constant *MetaClassStruct = GenerateClassStructure(
3786
NULLPtr, NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0],
3787
NULLPtr, ClassMethodList, NULLPtr, NULLPtr,
3788
GeneratePropertyList(OID, ClassDecl, true), ZeroPtr, ZeroPtr, true);
3789
CGM.setGVProperties(cast<llvm::GlobalValue>(MetaClassStruct),
3790
OID->getClassInterface());
3791
3792
// Generate the class structure
3793
llvm::Constant *ClassStruct = GenerateClassStructure(
3794
MetaClassStruct, SuperClass, 0x11L, ClassName.c_str(), nullptr,
3795
llvm::ConstantInt::get(LongTy, instanceSize), IvarList, MethodList,
3796
GenerateProtocolList(Protocols), IvarOffsetArray, Properties,
3797
StrongIvarBitmap, WeakIvarBitmap);
3798
CGM.setGVProperties(cast<llvm::GlobalValue>(ClassStruct),
3799
OID->getClassInterface());
3800
3801
// Resolve the class aliases, if they exist.
3802
if (ClassPtrAlias) {
3803
ClassPtrAlias->replaceAllUsesWith(ClassStruct);
3804
ClassPtrAlias->eraseFromParent();
3805
ClassPtrAlias = nullptr;
3806
}
3807
if (MetaClassPtrAlias) {
3808
MetaClassPtrAlias->replaceAllUsesWith(MetaClassStruct);
3809
MetaClassPtrAlias->eraseFromParent();
3810
MetaClassPtrAlias = nullptr;
3811
}
3812
3813
// Add class structure to list to be added to the symtab later
3814
Classes.push_back(ClassStruct);
3815
}
3816
3817
llvm::Function *CGObjCGNU::ModuleInitFunction() {
3818
// Only emit an ObjC load function if no Objective-C stuff has been called
3819
if (Classes.empty() && Categories.empty() && ConstantStrings.empty() &&
3820
ExistingProtocols.empty() && SelectorTable.empty())
3821
return nullptr;
3822
3823
// Add all referenced protocols to a category.
3824
GenerateProtocolHolderCategory();
3825
3826
llvm::StructType *selStructTy = dyn_cast<llvm::StructType>(SelectorElemTy);
3827
if (!selStructTy) {
3828
selStructTy = llvm::StructType::get(CGM.getLLVMContext(),
3829
{ PtrToInt8Ty, PtrToInt8Ty });
3830
}
3831
3832
// Generate statics list:
3833
llvm::Constant *statics = NULLPtr;
3834
if (!ConstantStrings.empty()) {
3835
llvm::GlobalVariable *fileStatics = [&] {
3836
ConstantInitBuilder builder(CGM);
3837
auto staticsStruct = builder.beginStruct();
3838
3839
StringRef stringClass = CGM.getLangOpts().ObjCConstantStringClass;
3840
if (stringClass.empty()) stringClass = "NXConstantString";
3841
staticsStruct.add(MakeConstantString(stringClass,
3842
".objc_static_class_name"));
3843
3844
auto array = staticsStruct.beginArray();
3845
array.addAll(ConstantStrings);
3846
array.add(NULLPtr);
3847
array.finishAndAddTo(staticsStruct);
3848
3849
return staticsStruct.finishAndCreateGlobal(".objc_statics",
3850
CGM.getPointerAlign());
3851
}();
3852
3853
ConstantInitBuilder builder(CGM);
3854
auto allStaticsArray = builder.beginArray(fileStatics->getType());
3855
allStaticsArray.add(fileStatics);
3856
allStaticsArray.addNullPointer(fileStatics->getType());
3857
3858
statics = allStaticsArray.finishAndCreateGlobal(".objc_statics_ptr",
3859
CGM.getPointerAlign());
3860
}
3861
3862
// Array of classes, categories, and constant objects.
3863
3864
SmallVector<llvm::GlobalAlias*, 16> selectorAliases;
3865
unsigned selectorCount;
3866
3867
// Pointer to an array of selectors used in this module.
3868
llvm::GlobalVariable *selectorList = [&] {
3869
ConstantInitBuilder builder(CGM);
3870
auto selectors = builder.beginArray(selStructTy);
3871
auto &table = SelectorTable; // MSVC workaround
3872
std::vector<Selector> allSelectors;
3873
for (auto &entry : table)
3874
allSelectors.push_back(entry.first);
3875
llvm::sort(allSelectors);
3876
3877
for (auto &untypedSel : allSelectors) {
3878
std::string selNameStr = untypedSel.getAsString();
3879
llvm::Constant *selName = ExportUniqueString(selNameStr, ".objc_sel_name");
3880
3881
for (TypedSelector &sel : table[untypedSel]) {
3882
llvm::Constant *selectorTypeEncoding = NULLPtr;
3883
if (!sel.first.empty())
3884
selectorTypeEncoding =
3885
MakeConstantString(sel.first, ".objc_sel_types");
3886
3887
auto selStruct = selectors.beginStruct(selStructTy);
3888
selStruct.add(selName);
3889
selStruct.add(selectorTypeEncoding);
3890
selStruct.finishAndAddTo(selectors);
3891
3892
// Store the selector alias for later replacement
3893
selectorAliases.push_back(sel.second);
3894
}
3895
}
3896
3897
// Remember the number of entries in the selector table.
3898
selectorCount = selectors.size();
3899
3900
// NULL-terminate the selector list. This should not actually be required,
3901
// because the selector list has a length field. Unfortunately, the GCC
3902
// runtime decides to ignore the length field and expects a NULL terminator,
3903
// and GCC cooperates with this by always setting the length to 0.
3904
auto selStruct = selectors.beginStruct(selStructTy);
3905
selStruct.add(NULLPtr);
3906
selStruct.add(NULLPtr);
3907
selStruct.finishAndAddTo(selectors);
3908
3909
return selectors.finishAndCreateGlobal(".objc_selector_list",
3910
CGM.getPointerAlign());
3911
}();
3912
3913
// Now that all of the static selectors exist, create pointers to them.
3914
for (unsigned i = 0; i < selectorCount; ++i) {
3915
llvm::Constant *idxs[] = {
3916
Zeros[0],
3917
llvm::ConstantInt::get(Int32Ty, i)
3918
};
3919
// FIXME: We're generating redundant loads and stores here!
3920
llvm::Constant *selPtr = llvm::ConstantExpr::getGetElementPtr(
3921
selectorList->getValueType(), selectorList, idxs);
3922
selectorAliases[i]->replaceAllUsesWith(selPtr);
3923
selectorAliases[i]->eraseFromParent();
3924
}
3925
3926
llvm::GlobalVariable *symtab = [&] {
3927
ConstantInitBuilder builder(CGM);
3928
auto symtab = builder.beginStruct();
3929
3930
// Number of static selectors
3931
symtab.addInt(LongTy, selectorCount);
3932
3933
symtab.add(selectorList);
3934
3935
// Number of classes defined.
3936
symtab.addInt(CGM.Int16Ty, Classes.size());
3937
// Number of categories defined
3938
symtab.addInt(CGM.Int16Ty, Categories.size());
3939
3940
// Create an array of classes, then categories, then static object instances
3941
auto classList = symtab.beginArray(PtrToInt8Ty);
3942
classList.addAll(Classes);
3943
classList.addAll(Categories);
3944
// NULL-terminated list of static object instances (mainly constant strings)
3945
classList.add(statics);
3946
classList.add(NULLPtr);
3947
classList.finishAndAddTo(symtab);
3948
3949
// Construct the symbol table.
3950
return symtab.finishAndCreateGlobal("", CGM.getPointerAlign());
3951
}();
3952
3953
// The symbol table is contained in a module which has some version-checking
3954
// constants
3955
llvm::Constant *module = [&] {
3956
llvm::Type *moduleEltTys[] = {
3957
LongTy, LongTy, PtrToInt8Ty, symtab->getType(), IntTy
3958
};
3959
llvm::StructType *moduleTy = llvm::StructType::get(
3960
CGM.getLLVMContext(),
3961
ArrayRef(moduleEltTys).drop_back(unsigned(RuntimeVersion < 10)));
3962
3963
ConstantInitBuilder builder(CGM);
3964
auto module = builder.beginStruct(moduleTy);
3965
// Runtime version, used for ABI compatibility checking.
3966
module.addInt(LongTy, RuntimeVersion);
3967
// sizeof(ModuleTy)
3968
module.addInt(LongTy, CGM.getDataLayout().getTypeStoreSize(moduleTy));
3969
3970
// The path to the source file where this module was declared
3971
SourceManager &SM = CGM.getContext().getSourceManager();
3972
OptionalFileEntryRef mainFile = SM.getFileEntryRefForID(SM.getMainFileID());
3973
std::string path =
3974
(mainFile->getDir().getName() + "/" + mainFile->getName()).str();
3975
module.add(MakeConstantString(path, ".objc_source_file_name"));
3976
module.add(symtab);
3977
3978
if (RuntimeVersion >= 10) {
3979
switch (CGM.getLangOpts().getGC()) {
3980
case LangOptions::GCOnly:
3981
module.addInt(IntTy, 2);
3982
break;
3983
case LangOptions::NonGC:
3984
if (CGM.getLangOpts().ObjCAutoRefCount)
3985
module.addInt(IntTy, 1);
3986
else
3987
module.addInt(IntTy, 0);
3988
break;
3989
case LangOptions::HybridGC:
3990
module.addInt(IntTy, 1);
3991
break;
3992
}
3993
}
3994
3995
return module.finishAndCreateGlobal("", CGM.getPointerAlign());
3996
}();
3997
3998
// Create the load function calling the runtime entry point with the module
3999
// structure
4000
llvm::Function * LoadFunction = llvm::Function::Create(
4001
llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
4002
llvm::GlobalValue::InternalLinkage, ".objc_load_function",
4003
&TheModule);
4004
llvm::BasicBlock *EntryBB =
4005
llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
4006
CGBuilderTy Builder(CGM, VMContext);
4007
Builder.SetInsertPoint(EntryBB);
4008
4009
llvm::FunctionType *FT =
4010
llvm::FunctionType::get(Builder.getVoidTy(), module->getType(), true);
4011
llvm::FunctionCallee Register =
4012
CGM.CreateRuntimeFunction(FT, "__objc_exec_class");
4013
Builder.CreateCall(Register, module);
4014
4015
if (!ClassAliases.empty()) {
4016
llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty};
4017
llvm::FunctionType *RegisterAliasTy =
4018
llvm::FunctionType::get(Builder.getVoidTy(),
4019
ArgTypes, false);
4020
llvm::Function *RegisterAlias = llvm::Function::Create(
4021
RegisterAliasTy,
4022
llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np",
4023
&TheModule);
4024
llvm::BasicBlock *AliasBB =
4025
llvm::BasicBlock::Create(VMContext, "alias", LoadFunction);
4026
llvm::BasicBlock *NoAliasBB =
4027
llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction);
4028
4029
// Branch based on whether the runtime provided class_registerAlias_np()
4030
llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias,
4031
llvm::Constant::getNullValue(RegisterAlias->getType()));
4032
Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB);
4033
4034
// The true branch (has alias registration function):
4035
Builder.SetInsertPoint(AliasBB);
4036
// Emit alias registration calls:
4037
for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin();
4038
iter != ClassAliases.end(); ++iter) {
4039
llvm::Constant *TheClass =
4040
TheModule.getGlobalVariable("_OBJC_CLASS_" + iter->first, true);
4041
if (TheClass) {
4042
Builder.CreateCall(RegisterAlias,
4043
{TheClass, MakeConstantString(iter->second)});
4044
}
4045
}
4046
// Jump to end:
4047
Builder.CreateBr(NoAliasBB);
4048
4049
// Missing alias registration function, just return from the function:
4050
Builder.SetInsertPoint(NoAliasBB);
4051
}
4052
Builder.CreateRetVoid();
4053
4054
return LoadFunction;
4055
}
4056
4057
llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD,
4058
const ObjCContainerDecl *CD) {
4059
CodeGenTypes &Types = CGM.getTypes();
4060
llvm::FunctionType *MethodTy =
4061
Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
4062
4063
bool isDirect = OMD->isDirectMethod();
4064
std::string FunctionName =
4065
getSymbolNameForMethod(OMD, /*include category*/ !isDirect);
4066
4067
if (!isDirect)
4068
return llvm::Function::Create(MethodTy,
4069
llvm::GlobalVariable::InternalLinkage,
4070
FunctionName, &TheModule);
4071
4072
auto *COMD = OMD->getCanonicalDecl();
4073
auto I = DirectMethodDefinitions.find(COMD);
4074
llvm::Function *OldFn = nullptr, *Fn = nullptr;
4075
4076
if (I == DirectMethodDefinitions.end()) {
4077
auto *F =
4078
llvm::Function::Create(MethodTy, llvm::GlobalVariable::ExternalLinkage,
4079
FunctionName, &TheModule);
4080
DirectMethodDefinitions.insert(std::make_pair(COMD, F));
4081
return F;
4082
}
4083
4084
// Objective-C allows for the declaration and implementation types
4085
// to differ slightly.
4086
//
4087
// If we're being asked for the Function associated for a method
4088
// implementation, a previous value might have been cached
4089
// based on the type of the canonical declaration.
4090
//
4091
// If these do not match, then we'll replace this function with
4092
// a new one that has the proper type below.
4093
if (!OMD->getBody() || COMD->getReturnType() == OMD->getReturnType())
4094
return I->second;
4095
4096
OldFn = I->second;
4097
Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage, "",
4098
&CGM.getModule());
4099
Fn->takeName(OldFn);
4100
OldFn->replaceAllUsesWith(Fn);
4101
OldFn->eraseFromParent();
4102
4103
// Replace the cached function in the map.
4104
I->second = Fn;
4105
return Fn;
4106
}
4107
4108
void CGObjCGNU::GenerateDirectMethodPrologue(CodeGenFunction &CGF,
4109
llvm::Function *Fn,
4110
const ObjCMethodDecl *OMD,
4111
const ObjCContainerDecl *CD) {
4112
// GNU runtime doesn't support direct calls at this time
4113
}
4114
4115
llvm::FunctionCallee CGObjCGNU::GetPropertyGetFunction() {
4116
return GetPropertyFn;
4117
}
4118
4119
llvm::FunctionCallee CGObjCGNU::GetPropertySetFunction() {
4120
return SetPropertyFn;
4121
}
4122
4123
llvm::FunctionCallee CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic,
4124
bool copy) {
4125
return nullptr;
4126
}
4127
4128
llvm::FunctionCallee CGObjCGNU::GetGetStructFunction() {
4129
return GetStructPropertyFn;
4130
}
4131
4132
llvm::FunctionCallee CGObjCGNU::GetSetStructFunction() {
4133
return SetStructPropertyFn;
4134
}
4135
4136
llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectGetFunction() {
4137
return nullptr;
4138
}
4139
4140
llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectSetFunction() {
4141
return nullptr;
4142
}
4143
4144
llvm::FunctionCallee CGObjCGNU::EnumerationMutationFunction() {
4145
return EnumerationMutationFn;
4146
}
4147
4148
void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF,
4149
const ObjCAtSynchronizedStmt &S) {
4150
EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn);
4151
}
4152
4153
4154
void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF,
4155
const ObjCAtTryStmt &S) {
4156
// Unlike the Apple non-fragile runtimes, which also uses
4157
// unwind-based zero cost exceptions, the GNU Objective C runtime's
4158
// EH support isn't a veneer over C++ EH. Instead, exception
4159
// objects are created by objc_exception_throw and destroyed by
4160
// the personality function; this avoids the need for bracketing
4161
// catch handlers with calls to __blah_begin_catch/__blah_end_catch
4162
// (or even _Unwind_DeleteException), but probably doesn't
4163
// interoperate very well with foreign exceptions.
4164
//
4165
// In Objective-C++ mode, we actually emit something equivalent to the C++
4166
// exception handler.
4167
EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn);
4168
}
4169
4170
void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF,
4171
const ObjCAtThrowStmt &S,
4172
bool ClearInsertionPoint) {
4173
llvm::Value *ExceptionAsObject;
4174
bool isRethrow = false;
4175
4176
if (const Expr *ThrowExpr = S.getThrowExpr()) {
4177
llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
4178
ExceptionAsObject = Exception;
4179
} else {
4180
assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
4181
"Unexpected rethrow outside @catch block.");
4182
ExceptionAsObject = CGF.ObjCEHValueStack.back();
4183
isRethrow = true;
4184
}
4185
if (isRethrow && (usesSEHExceptions || usesCxxExceptions)) {
4186
// For SEH, ExceptionAsObject may be undef, because the catch handler is
4187
// not passed it for catchalls and so it is not visible to the catch
4188
// funclet. The real thrown object will still be live on the stack at this
4189
// point and will be rethrown. If we are explicitly rethrowing the object
4190
// that was passed into the `@catch` block, then this code path is not
4191
// reached and we will instead call `objc_exception_throw` with an explicit
4192
// argument.
4193
llvm::CallBase *Throw = CGF.EmitRuntimeCallOrInvoke(ExceptionReThrowFn);
4194
Throw->setDoesNotReturn();
4195
} else {
4196
ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy);
4197
llvm::CallBase *Throw =
4198
CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject);
4199
Throw->setDoesNotReturn();
4200
}
4201
CGF.Builder.CreateUnreachable();
4202
if (ClearInsertionPoint)
4203
CGF.Builder.ClearInsertionPoint();
4204
}
4205
4206
llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF,
4207
Address AddrWeakObj) {
4208
CGBuilderTy &B = CGF.Builder;
4209
return B.CreateCall(
4210
WeakReadFn, EnforceType(B, AddrWeakObj.emitRawPointer(CGF), PtrToIdTy));
4211
}
4212
4213
void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF,
4214
llvm::Value *src, Address dst) {
4215
CGBuilderTy &B = CGF.Builder;
4216
src = EnforceType(B, src, IdTy);
4217
llvm::Value *dstVal = EnforceType(B, dst.emitRawPointer(CGF), PtrToIdTy);
4218
B.CreateCall(WeakAssignFn, {src, dstVal});
4219
}
4220
4221
void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF,
4222
llvm::Value *src, Address dst,
4223
bool threadlocal) {
4224
CGBuilderTy &B = CGF.Builder;
4225
src = EnforceType(B, src, IdTy);
4226
llvm::Value *dstVal = EnforceType(B, dst.emitRawPointer(CGF), PtrToIdTy);
4227
// FIXME. Add threadloca assign API
4228
assert(!threadlocal && "EmitObjCGlobalAssign - Threal Local API NYI");
4229
B.CreateCall(GlobalAssignFn, {src, dstVal});
4230
}
4231
4232
void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF,
4233
llvm::Value *src, Address dst,
4234
llvm::Value *ivarOffset) {
4235
CGBuilderTy &B = CGF.Builder;
4236
src = EnforceType(B, src, IdTy);
4237
llvm::Value *dstVal = EnforceType(B, dst.emitRawPointer(CGF), IdTy);
4238
B.CreateCall(IvarAssignFn, {src, dstVal, ivarOffset});
4239
}
4240
4241
void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF,
4242
llvm::Value *src, Address dst) {
4243
CGBuilderTy &B = CGF.Builder;
4244
src = EnforceType(B, src, IdTy);
4245
llvm::Value *dstVal = EnforceType(B, dst.emitRawPointer(CGF), PtrToIdTy);
4246
B.CreateCall(StrongCastAssignFn, {src, dstVal});
4247
}
4248
4249
void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF,
4250
Address DestPtr,
4251
Address SrcPtr,
4252
llvm::Value *Size) {
4253
CGBuilderTy &B = CGF.Builder;
4254
llvm::Value *DestPtrVal = EnforceType(B, DestPtr.emitRawPointer(CGF), PtrTy);
4255
llvm::Value *SrcPtrVal = EnforceType(B, SrcPtr.emitRawPointer(CGF), PtrTy);
4256
4257
B.CreateCall(MemMoveFn, {DestPtrVal, SrcPtrVal, Size});
4258
}
4259
4260
llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable(
4261
const ObjCInterfaceDecl *ID,
4262
const ObjCIvarDecl *Ivar) {
4263
const std::string Name = GetIVarOffsetVariableName(ID, Ivar);
4264
// Emit the variable and initialize it with what we think the correct value
4265
// is. This allows code compiled with non-fragile ivars to work correctly
4266
// when linked against code which isn't (most of the time).
4267
llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
4268
if (!IvarOffsetPointer)
4269
IvarOffsetPointer = new llvm::GlobalVariable(
4270
TheModule, llvm::PointerType::getUnqual(VMContext), false,
4271
llvm::GlobalValue::ExternalLinkage, nullptr, Name);
4272
return IvarOffsetPointer;
4273
}
4274
4275
LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF,
4276
QualType ObjectTy,
4277
llvm::Value *BaseValue,
4278
const ObjCIvarDecl *Ivar,
4279
unsigned CVRQualifiers) {
4280
const ObjCInterfaceDecl *ID =
4281
ObjectTy->castAs<ObjCObjectType>()->getInterface();
4282
return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
4283
EmitIvarOffset(CGF, ID, Ivar));
4284
}
4285
4286
static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context,
4287
const ObjCInterfaceDecl *OID,
4288
const ObjCIvarDecl *OIVD) {
4289
for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next;
4290
next = next->getNextIvar()) {
4291
if (OIVD == next)
4292
return OID;
4293
}
4294
4295
// Otherwise check in the super class.
4296
if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
4297
return FindIvarInterface(Context, Super, OIVD);
4298
4299
return nullptr;
4300
}
4301
4302
llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF,
4303
const ObjCInterfaceDecl *Interface,
4304
const ObjCIvarDecl *Ivar) {
4305
if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
4306
Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar);
4307
4308
// The MSVC linker cannot have a single global defined as LinkOnceAnyLinkage
4309
// and ExternalLinkage, so create a reference to the ivar global and rely on
4310
// the definition being created as part of GenerateClass.
4311
if (RuntimeVersion < 10 ||
4312
CGF.CGM.getTarget().getTriple().isKnownWindowsMSVCEnvironment())
4313
return CGF.Builder.CreateZExtOrBitCast(
4314
CGF.Builder.CreateAlignedLoad(
4315
Int32Ty,
4316
CGF.Builder.CreateAlignedLoad(
4317
llvm::PointerType::getUnqual(VMContext),
4318
ObjCIvarOffsetVariable(Interface, Ivar),
4319
CGF.getPointerAlign(), "ivar"),
4320
CharUnits::fromQuantity(4)),
4321
PtrDiffTy);
4322
std::string name = "__objc_ivar_offset_value_" +
4323
Interface->getNameAsString() +"." + Ivar->getNameAsString();
4324
CharUnits Align = CGM.getIntAlign();
4325
llvm::Value *Offset = TheModule.getGlobalVariable(name);
4326
if (!Offset) {
4327
auto GV = new llvm::GlobalVariable(TheModule, IntTy,
4328
false, llvm::GlobalValue::LinkOnceAnyLinkage,
4329
llvm::Constant::getNullValue(IntTy), name);
4330
GV->setAlignment(Align.getAsAlign());
4331
Offset = GV;
4332
}
4333
Offset = CGF.Builder.CreateAlignedLoad(IntTy, Offset, Align);
4334
if (Offset->getType() != PtrDiffTy)
4335
Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
4336
return Offset;
4337
}
4338
uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar);
4339
return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true);
4340
}
4341
4342
CGObjCRuntime *
4343
clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) {
4344
auto Runtime = CGM.getLangOpts().ObjCRuntime;
4345
switch (Runtime.getKind()) {
4346
case ObjCRuntime::GNUstep:
4347
if (Runtime.getVersion() >= VersionTuple(2, 0))
4348
return new CGObjCGNUstep2(CGM);
4349
return new CGObjCGNUstep(CGM);
4350
4351
case ObjCRuntime::GCC:
4352
return new CGObjCGCC(CGM);
4353
4354
case ObjCRuntime::ObjFW:
4355
return new CGObjCObjFW(CGM);
4356
4357
case ObjCRuntime::FragileMacOSX:
4358
case ObjCRuntime::MacOSX:
4359
case ObjCRuntime::iOS:
4360
case ObjCRuntime::WatchOS:
4361
llvm_unreachable("these runtimes are not GNU runtimes");
4362
}
4363
llvm_unreachable("bad runtime");
4364
}
4365
4366