Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/clang/lib/Driver/Driver.cpp
35234 views
1
//===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#include "clang/Driver/Driver.h"
10
#include "ToolChains/AIX.h"
11
#include "ToolChains/AMDGPU.h"
12
#include "ToolChains/AMDGPUOpenMP.h"
13
#include "ToolChains/AVR.h"
14
#include "ToolChains/Arch/RISCV.h"
15
#include "ToolChains/BareMetal.h"
16
#include "ToolChains/CSKYToolChain.h"
17
#include "ToolChains/Clang.h"
18
#include "ToolChains/CrossWindows.h"
19
#include "ToolChains/Cuda.h"
20
#include "ToolChains/Darwin.h"
21
#include "ToolChains/DragonFly.h"
22
#include "ToolChains/FreeBSD.h"
23
#include "ToolChains/Fuchsia.h"
24
#include "ToolChains/Gnu.h"
25
#include "ToolChains/HIPAMD.h"
26
#include "ToolChains/HIPSPV.h"
27
#include "ToolChains/HLSL.h"
28
#include "ToolChains/Haiku.h"
29
#include "ToolChains/Hexagon.h"
30
#include "ToolChains/Hurd.h"
31
#include "ToolChains/Lanai.h"
32
#include "ToolChains/Linux.h"
33
#include "ToolChains/MSP430.h"
34
#include "ToolChains/MSVC.h"
35
#include "ToolChains/MinGW.h"
36
#include "ToolChains/MipsLinux.h"
37
#include "ToolChains/NaCl.h"
38
#include "ToolChains/NetBSD.h"
39
#include "ToolChains/OHOS.h"
40
#include "ToolChains/OpenBSD.h"
41
#include "ToolChains/PPCFreeBSD.h"
42
#include "ToolChains/PPCLinux.h"
43
#include "ToolChains/PS4CPU.h"
44
#include "ToolChains/RISCVToolchain.h"
45
#include "ToolChains/SPIRV.h"
46
#include "ToolChains/Solaris.h"
47
#include "ToolChains/TCE.h"
48
#include "ToolChains/VEToolchain.h"
49
#include "ToolChains/WebAssembly.h"
50
#include "ToolChains/XCore.h"
51
#include "ToolChains/ZOS.h"
52
#include "clang/Basic/DiagnosticDriver.h"
53
#include "clang/Basic/TargetID.h"
54
#include "clang/Basic/Version.h"
55
#include "clang/Config/config.h"
56
#include "clang/Driver/Action.h"
57
#include "clang/Driver/Compilation.h"
58
#include "clang/Driver/DriverDiagnostic.h"
59
#include "clang/Driver/InputInfo.h"
60
#include "clang/Driver/Job.h"
61
#include "clang/Driver/Options.h"
62
#include "clang/Driver/Phases.h"
63
#include "clang/Driver/SanitizerArgs.h"
64
#include "clang/Driver/Tool.h"
65
#include "clang/Driver/ToolChain.h"
66
#include "clang/Driver/Types.h"
67
#include "llvm/ADT/ArrayRef.h"
68
#include "llvm/ADT/STLExtras.h"
69
#include "llvm/ADT/StringExtras.h"
70
#include "llvm/ADT/StringRef.h"
71
#include "llvm/ADT/StringSet.h"
72
#include "llvm/ADT/StringSwitch.h"
73
#include "llvm/Config/llvm-config.h"
74
#include "llvm/MC/TargetRegistry.h"
75
#include "llvm/Option/Arg.h"
76
#include "llvm/Option/ArgList.h"
77
#include "llvm/Option/OptSpecifier.h"
78
#include "llvm/Option/OptTable.h"
79
#include "llvm/Option/Option.h"
80
#include "llvm/Support/CommandLine.h"
81
#include "llvm/Support/ErrorHandling.h"
82
#include "llvm/Support/ExitCodes.h"
83
#include "llvm/Support/FileSystem.h"
84
#include "llvm/Support/FormatVariadic.h"
85
#include "llvm/Support/MD5.h"
86
#include "llvm/Support/Path.h"
87
#include "llvm/Support/PrettyStackTrace.h"
88
#include "llvm/Support/Process.h"
89
#include "llvm/Support/Program.h"
90
#include "llvm/Support/Regex.h"
91
#include "llvm/Support/StringSaver.h"
92
#include "llvm/Support/VirtualFileSystem.h"
93
#include "llvm/Support/raw_ostream.h"
94
#include "llvm/TargetParser/Host.h"
95
#include "llvm/TargetParser/RISCVISAInfo.h"
96
#include <cstdlib> // ::getenv
97
#include <map>
98
#include <memory>
99
#include <optional>
100
#include <set>
101
#include <utility>
102
#if LLVM_ON_UNIX
103
#include <unistd.h> // getpid
104
#endif
105
106
using namespace clang::driver;
107
using namespace clang;
108
using namespace llvm::opt;
109
110
static std::optional<llvm::Triple> getOffloadTargetTriple(const Driver &D,
111
const ArgList &Args) {
112
auto OffloadTargets = Args.getAllArgValues(options::OPT_offload_EQ);
113
// Offload compilation flow does not support multiple targets for now. We
114
// need the HIPActionBuilder (and possibly the CudaActionBuilder{,Base}too)
115
// to support multiple tool chains first.
116
switch (OffloadTargets.size()) {
117
default:
118
D.Diag(diag::err_drv_only_one_offload_target_supported);
119
return std::nullopt;
120
case 0:
121
D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << "";
122
return std::nullopt;
123
case 1:
124
break;
125
}
126
return llvm::Triple(OffloadTargets[0]);
127
}
128
129
static std::optional<llvm::Triple>
130
getNVIDIAOffloadTargetTriple(const Driver &D, const ArgList &Args,
131
const llvm::Triple &HostTriple) {
132
if (!Args.hasArg(options::OPT_offload_EQ)) {
133
return llvm::Triple(HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda"
134
: "nvptx-nvidia-cuda");
135
}
136
auto TT = getOffloadTargetTriple(D, Args);
137
if (TT && (TT->getArch() == llvm::Triple::spirv32 ||
138
TT->getArch() == llvm::Triple::spirv64)) {
139
if (Args.hasArg(options::OPT_emit_llvm))
140
return TT;
141
D.Diag(diag::err_drv_cuda_offload_only_emit_bc);
142
return std::nullopt;
143
}
144
D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << TT->str();
145
return std::nullopt;
146
}
147
static std::optional<llvm::Triple>
148
getHIPOffloadTargetTriple(const Driver &D, const ArgList &Args) {
149
if (!Args.hasArg(options::OPT_offload_EQ)) {
150
auto OffloadArchs = Args.getAllArgValues(options::OPT_offload_arch_EQ);
151
if (llvm::find(OffloadArchs, "amdgcnspirv") != OffloadArchs.cend()) {
152
if (OffloadArchs.size() == 1)
153
return llvm::Triple("spirv64-amd-amdhsa");
154
// Mixing specific & SPIR-V compilation is not supported for now.
155
D.Diag(diag::err_drv_only_one_offload_target_supported);
156
return std::nullopt;
157
}
158
return llvm::Triple("amdgcn-amd-amdhsa"); // Default HIP triple.
159
}
160
auto TT = getOffloadTargetTriple(D, Args);
161
if (!TT)
162
return std::nullopt;
163
if (TT->getArch() == llvm::Triple::amdgcn &&
164
TT->getVendor() == llvm::Triple::AMD &&
165
TT->getOS() == llvm::Triple::AMDHSA)
166
return TT;
167
if (TT->getArch() == llvm::Triple::spirv64)
168
return TT;
169
D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << TT->str();
170
return std::nullopt;
171
}
172
173
// static
174
std::string Driver::GetResourcesPath(StringRef BinaryPath,
175
StringRef CustomResourceDir) {
176
// Since the resource directory is embedded in the module hash, it's important
177
// that all places that need it call this function, so that they get the
178
// exact same string ("a/../b/" and "b/" get different hashes, for example).
179
180
// Dir is bin/ or lib/, depending on where BinaryPath is.
181
std::string Dir = std::string(llvm::sys::path::parent_path(BinaryPath));
182
183
SmallString<128> P(Dir);
184
if (CustomResourceDir != "") {
185
llvm::sys::path::append(P, CustomResourceDir);
186
} else {
187
// On Windows, libclang.dll is in bin/.
188
// On non-Windows, libclang.so/.dylib is in lib/.
189
// With a static-library build of libclang, LibClangPath will contain the
190
// path of the embedding binary, which for LLVM binaries will be in bin/.
191
// ../lib gets us to lib/ in both cases.
192
P = llvm::sys::path::parent_path(Dir);
193
// This search path is also created in the COFF driver of lld, so any
194
// changes here also needs to happen in lld/COFF/Driver.cpp
195
llvm::sys::path::append(P, CLANG_INSTALL_LIBDIR_BASENAME, "clang",
196
CLANG_VERSION_MAJOR_STRING);
197
}
198
199
return std::string(P);
200
}
201
202
Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
203
DiagnosticsEngine &Diags, std::string Title,
204
IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)
205
: Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode),
206
SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone),
207
Offload(OffloadHostDevice), CXX20HeaderType(HeaderMode_None),
208
ModulesModeCXX20(false), LTOMode(LTOK_None),
209
ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT),
210
DriverTitle(Title), CCCPrintBindings(false), CCPrintOptions(false),
211
CCLogDiagnostics(false), CCGenDiagnostics(false),
212
CCPrintProcessStats(false), CCPrintInternalStats(false),
213
TargetTriple(TargetTriple), Saver(Alloc), PrependArg(nullptr),
214
CheckInputsExist(true), ProbePrecompiled(true),
215
SuppressMissingInputWarning(false) {
216
// Provide a sane fallback if no VFS is specified.
217
if (!this->VFS)
218
this->VFS = llvm::vfs::getRealFileSystem();
219
220
Name = std::string(llvm::sys::path::filename(ClangExecutable));
221
Dir = std::string(llvm::sys::path::parent_path(ClangExecutable));
222
223
if ((!SysRoot.empty()) && llvm::sys::path::is_relative(SysRoot)) {
224
// Prepend InstalledDir if SysRoot is relative
225
SmallString<128> P(Dir);
226
llvm::sys::path::append(P, SysRoot);
227
SysRoot = std::string(P);
228
}
229
230
#if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
231
SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
232
#endif
233
#if defined(CLANG_CONFIG_FILE_USER_DIR)
234
{
235
SmallString<128> P;
236
llvm::sys::fs::expand_tilde(CLANG_CONFIG_FILE_USER_DIR, P);
237
UserConfigDir = static_cast<std::string>(P);
238
}
239
#endif
240
241
// Compute the path to the resource directory.
242
ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR);
243
}
244
245
void Driver::setDriverMode(StringRef Value) {
246
static StringRef OptName =
247
getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
248
if (auto M = llvm::StringSwitch<std::optional<DriverMode>>(Value)
249
.Case("gcc", GCCMode)
250
.Case("g++", GXXMode)
251
.Case("cpp", CPPMode)
252
.Case("cl", CLMode)
253
.Case("flang", FlangMode)
254
.Case("dxc", DXCMode)
255
.Default(std::nullopt))
256
Mode = *M;
257
else
258
Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
259
}
260
261
InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings,
262
bool UseDriverMode, bool &ContainsError) {
263
llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
264
ContainsError = false;
265
266
llvm::opt::Visibility VisibilityMask = getOptionVisibilityMask(UseDriverMode);
267
unsigned MissingArgIndex, MissingArgCount;
268
InputArgList Args = getOpts().ParseArgs(ArgStrings, MissingArgIndex,
269
MissingArgCount, VisibilityMask);
270
271
// Check for missing argument error.
272
if (MissingArgCount) {
273
Diag(diag::err_drv_missing_argument)
274
<< Args.getArgString(MissingArgIndex) << MissingArgCount;
275
ContainsError |=
276
Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
277
SourceLocation()) > DiagnosticsEngine::Warning;
278
}
279
280
// Check for unsupported options.
281
for (const Arg *A : Args) {
282
if (A->getOption().hasFlag(options::Unsupported)) {
283
Diag(diag::err_drv_unsupported_opt) << A->getAsString(Args);
284
ContainsError |= Diags.getDiagnosticLevel(diag::err_drv_unsupported_opt,
285
SourceLocation()) >
286
DiagnosticsEngine::Warning;
287
continue;
288
}
289
290
// Warn about -mcpu= without an argument.
291
if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
292
Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
293
ContainsError |= Diags.getDiagnosticLevel(
294
diag::warn_drv_empty_joined_argument,
295
SourceLocation()) > DiagnosticsEngine::Warning;
296
}
297
}
298
299
for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
300
unsigned DiagID;
301
auto ArgString = A->getAsString(Args);
302
std::string Nearest;
303
if (getOpts().findNearest(ArgString, Nearest, VisibilityMask) > 1) {
304
if (!IsCLMode() &&
305
getOpts().findExact(ArgString, Nearest,
306
llvm::opt::Visibility(options::CC1Option))) {
307
DiagID = diag::err_drv_unknown_argument_with_suggestion;
308
Diags.Report(DiagID) << ArgString << "-Xclang " + Nearest;
309
} else {
310
DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
311
: diag::err_drv_unknown_argument;
312
Diags.Report(DiagID) << ArgString;
313
}
314
} else {
315
DiagID = IsCLMode()
316
? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
317
: diag::err_drv_unknown_argument_with_suggestion;
318
Diags.Report(DiagID) << ArgString << Nearest;
319
}
320
ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
321
DiagnosticsEngine::Warning;
322
}
323
324
for (const Arg *A : Args.filtered(options::OPT_o)) {
325
if (ArgStrings[A->getIndex()] == A->getSpelling())
326
continue;
327
328
// Warn on joined arguments that are similar to a long argument.
329
std::string ArgString = ArgStrings[A->getIndex()];
330
std::string Nearest;
331
if (getOpts().findExact("-" + ArgString, Nearest, VisibilityMask))
332
Diags.Report(diag::warn_drv_potentially_misspelled_joined_argument)
333
<< A->getAsString(Args) << Nearest;
334
}
335
336
return Args;
337
}
338
339
// Determine which compilation mode we are in. We look for options which
340
// affect the phase, starting with the earliest phases, and record which
341
// option we used to determine the final phase.
342
phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
343
Arg **FinalPhaseArg) const {
344
Arg *PhaseArg = nullptr;
345
phases::ID FinalPhase;
346
347
// -{E,EP,P,M,MM} only run the preprocessor.
348
if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
349
(PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
350
(PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
351
(PhaseArg = DAL.getLastArg(options::OPT__SLASH_P)) ||
352
CCGenDiagnostics) {
353
FinalPhase = phases::Preprocess;
354
355
// --precompile only runs up to precompilation.
356
// Options that cause the output of C++20 compiled module interfaces or
357
// header units have the same effect.
358
} else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile)) ||
359
(PhaseArg = DAL.getLastArg(options::OPT_extract_api)) ||
360
(PhaseArg = DAL.getLastArg(options::OPT_fmodule_header,
361
options::OPT_fmodule_header_EQ))) {
362
FinalPhase = phases::Precompile;
363
// -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
364
} else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
365
(PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) ||
366
(PhaseArg = DAL.getLastArg(options::OPT_print_enabled_extensions)) ||
367
(PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
368
(PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
369
(PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
370
(PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
371
(PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
372
(PhaseArg = DAL.getLastArg(options::OPT__analyze)) ||
373
(PhaseArg = DAL.getLastArg(options::OPT_emit_cir)) ||
374
(PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
375
FinalPhase = phases::Compile;
376
377
// -S only runs up to the backend.
378
} else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
379
FinalPhase = phases::Backend;
380
381
// -c compilation only runs up to the assembler.
382
} else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
383
FinalPhase = phases::Assemble;
384
385
} else if ((PhaseArg = DAL.getLastArg(options::OPT_emit_interface_stubs))) {
386
FinalPhase = phases::IfsMerge;
387
388
// Otherwise do everything.
389
} else
390
FinalPhase = phases::Link;
391
392
if (FinalPhaseArg)
393
*FinalPhaseArg = PhaseArg;
394
395
return FinalPhase;
396
}
397
398
static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts,
399
StringRef Value, bool Claim = true) {
400
Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
401
Args.getBaseArgs().MakeIndex(Value), Value.data());
402
Args.AddSynthesizedArg(A);
403
if (Claim)
404
A->claim();
405
return A;
406
}
407
408
DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
409
const llvm::opt::OptTable &Opts = getOpts();
410
DerivedArgList *DAL = new DerivedArgList(Args);
411
412
bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
413
bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx);
414
bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
415
bool IgnoreUnused = false;
416
for (Arg *A : Args) {
417
if (IgnoreUnused)
418
A->claim();
419
420
if (A->getOption().matches(options::OPT_start_no_unused_arguments)) {
421
IgnoreUnused = true;
422
continue;
423
}
424
if (A->getOption().matches(options::OPT_end_no_unused_arguments)) {
425
IgnoreUnused = false;
426
continue;
427
}
428
429
// Unfortunately, we have to parse some forwarding options (-Xassembler,
430
// -Xlinker, -Xpreprocessor) because we either integrate their functionality
431
// (assembler and preprocessor), or bypass a previous driver ('collect2').
432
433
// Rewrite linker options, to replace --no-demangle with a custom internal
434
// option.
435
if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
436
A->getOption().matches(options::OPT_Xlinker)) &&
437
A->containsValue("--no-demangle")) {
438
// Add the rewritten no-demangle argument.
439
DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle));
440
441
// Add the remaining values as Xlinker arguments.
442
for (StringRef Val : A->getValues())
443
if (Val != "--no-demangle")
444
DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val);
445
446
continue;
447
}
448
449
// Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
450
// some build systems. We don't try to be complete here because we don't
451
// care to encourage this usage model.
452
if (A->getOption().matches(options::OPT_Wp_COMMA) &&
453
(A->getValue(0) == StringRef("-MD") ||
454
A->getValue(0) == StringRef("-MMD"))) {
455
// Rewrite to -MD/-MMD along with -MF.
456
if (A->getValue(0) == StringRef("-MD"))
457
DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD));
458
else
459
DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD));
460
if (A->getNumValues() == 2)
461
DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1));
462
continue;
463
}
464
465
// Rewrite reserved library names.
466
if (A->getOption().matches(options::OPT_l)) {
467
StringRef Value = A->getValue();
468
469
// Rewrite unless -nostdlib is present.
470
if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
471
Value == "stdc++") {
472
DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx));
473
continue;
474
}
475
476
// Rewrite unconditionally.
477
if (Value == "cc_kext") {
478
DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext));
479
continue;
480
}
481
}
482
483
// Pick up inputs via the -- option.
484
if (A->getOption().matches(options::OPT__DASH_DASH)) {
485
A->claim();
486
for (StringRef Val : A->getValues())
487
DAL->append(MakeInputArg(*DAL, Opts, Val, false));
488
continue;
489
}
490
491
DAL->append(A);
492
}
493
494
// DXC mode quits before assembly if an output object file isn't specified.
495
if (IsDXCMode() && !Args.hasArg(options::OPT_dxc_Fo))
496
DAL->AddFlagArg(nullptr, Opts.getOption(options::OPT_S));
497
498
// Enforce -static if -miamcu is present.
499
if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
500
DAL->AddFlagArg(nullptr, Opts.getOption(options::OPT_static));
501
502
// Add a default value of -mlinker-version=, if one was given and the user
503
// didn't specify one.
504
#if defined(HOST_LINK_VERSION)
505
if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
506
strlen(HOST_LINK_VERSION) > 0) {
507
DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ),
508
HOST_LINK_VERSION);
509
DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
510
}
511
#endif
512
513
return DAL;
514
}
515
516
/// Compute target triple from args.
517
///
518
/// This routine provides the logic to compute a target triple from various
519
/// args passed to the driver and the default triple string.
520
static llvm::Triple computeTargetTriple(const Driver &D,
521
StringRef TargetTriple,
522
const ArgList &Args,
523
StringRef DarwinArchName = "") {
524
// FIXME: Already done in Compilation *Driver::BuildCompilation
525
if (const Arg *A = Args.getLastArg(options::OPT_target))
526
TargetTriple = A->getValue();
527
528
llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
529
530
// GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
531
// -gnu* only, and we can not change this, so we have to detect that case as
532
// being the Hurd OS.
533
if (TargetTriple.contains("-unknown-gnu") || TargetTriple.contains("-pc-gnu"))
534
Target.setOSName("hurd");
535
536
// Handle Apple-specific options available here.
537
if (Target.isOSBinFormatMachO()) {
538
// If an explicit Darwin arch name is given, that trumps all.
539
if (!DarwinArchName.empty()) {
540
tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName,
541
Args);
542
return Target;
543
}
544
545
// Handle the Darwin '-arch' flag.
546
if (Arg *A = Args.getLastArg(options::OPT_arch)) {
547
StringRef ArchName = A->getValue();
548
tools::darwin::setTripleTypeForMachOArchName(Target, ArchName, Args);
549
}
550
}
551
552
// Handle pseudo-target flags '-mlittle-endian'/'-EL' and
553
// '-mbig-endian'/'-EB'.
554
if (Arg *A = Args.getLastArgNoClaim(options::OPT_mlittle_endian,
555
options::OPT_mbig_endian)) {
556
llvm::Triple T = A->getOption().matches(options::OPT_mlittle_endian)
557
? Target.getLittleEndianArchVariant()
558
: Target.getBigEndianArchVariant();
559
if (T.getArch() != llvm::Triple::UnknownArch) {
560
Target = std::move(T);
561
Args.claimAllArgs(options::OPT_mlittle_endian, options::OPT_mbig_endian);
562
}
563
}
564
565
// Skip further flag support on OSes which don't support '-m32' or '-m64'.
566
if (Target.getArch() == llvm::Triple::tce)
567
return Target;
568
569
// On AIX, the env OBJECT_MODE may affect the resulting arch variant.
570
if (Target.isOSAIX()) {
571
if (std::optional<std::string> ObjectModeValue =
572
llvm::sys::Process::GetEnv("OBJECT_MODE")) {
573
StringRef ObjectMode = *ObjectModeValue;
574
llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
575
576
if (ObjectMode == "64") {
577
AT = Target.get64BitArchVariant().getArch();
578
} else if (ObjectMode == "32") {
579
AT = Target.get32BitArchVariant().getArch();
580
} else {
581
D.Diag(diag::err_drv_invalid_object_mode) << ObjectMode;
582
}
583
584
if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
585
Target.setArch(AT);
586
}
587
}
588
589
// The `-maix[32|64]` flags are only valid for AIX targets.
590
if (Arg *A = Args.getLastArgNoClaim(options::OPT_maix32, options::OPT_maix64);
591
A && !Target.isOSAIX())
592
D.Diag(diag::err_drv_unsupported_opt_for_target)
593
<< A->getAsString(Args) << Target.str();
594
595
// Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
596
Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
597
options::OPT_m32, options::OPT_m16,
598
options::OPT_maix32, options::OPT_maix64);
599
if (A) {
600
llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
601
602
if (A->getOption().matches(options::OPT_m64) ||
603
A->getOption().matches(options::OPT_maix64)) {
604
AT = Target.get64BitArchVariant().getArch();
605
if (Target.getEnvironment() == llvm::Triple::GNUX32 ||
606
Target.getEnvironment() == llvm::Triple::GNUT64)
607
Target.setEnvironment(llvm::Triple::GNU);
608
else if (Target.getEnvironment() == llvm::Triple::MuslX32)
609
Target.setEnvironment(llvm::Triple::Musl);
610
} else if (A->getOption().matches(options::OPT_mx32) &&
611
Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
612
AT = llvm::Triple::x86_64;
613
if (Target.getEnvironment() == llvm::Triple::Musl)
614
Target.setEnvironment(llvm::Triple::MuslX32);
615
else
616
Target.setEnvironment(llvm::Triple::GNUX32);
617
} else if (A->getOption().matches(options::OPT_m32) ||
618
A->getOption().matches(options::OPT_maix32)) {
619
AT = Target.get32BitArchVariant().getArch();
620
if (Target.getEnvironment() == llvm::Triple::GNUX32)
621
Target.setEnvironment(llvm::Triple::GNU);
622
else if (Target.getEnvironment() == llvm::Triple::MuslX32)
623
Target.setEnvironment(llvm::Triple::Musl);
624
} else if (A->getOption().matches(options::OPT_m16) &&
625
Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
626
AT = llvm::Triple::x86;
627
Target.setEnvironment(llvm::Triple::CODE16);
628
}
629
630
if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) {
631
Target.setArch(AT);
632
if (Target.isWindowsGNUEnvironment())
633
toolchains::MinGW::fixTripleArch(D, Target, Args);
634
}
635
}
636
637
// Handle -miamcu flag.
638
if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
639
if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
640
D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
641
<< Target.str();
642
643
if (A && !A->getOption().matches(options::OPT_m32))
644
D.Diag(diag::err_drv_argument_not_allowed_with)
645
<< "-miamcu" << A->getBaseArg().getAsString(Args);
646
647
Target.setArch(llvm::Triple::x86);
648
Target.setArchName("i586");
649
Target.setEnvironment(llvm::Triple::UnknownEnvironment);
650
Target.setEnvironmentName("");
651
Target.setOS(llvm::Triple::ELFIAMCU);
652
Target.setVendor(llvm::Triple::UnknownVendor);
653
Target.setVendorName("intel");
654
}
655
656
// If target is MIPS adjust the target triple
657
// accordingly to provided ABI name.
658
if (Target.isMIPS()) {
659
if ((A = Args.getLastArg(options::OPT_mabi_EQ))) {
660
StringRef ABIName = A->getValue();
661
if (ABIName == "32") {
662
Target = Target.get32BitArchVariant();
663
if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
664
Target.getEnvironment() == llvm::Triple::GNUABIN32)
665
Target.setEnvironment(llvm::Triple::GNU);
666
} else if (ABIName == "n32") {
667
Target = Target.get64BitArchVariant();
668
if (Target.getEnvironment() == llvm::Triple::GNU ||
669
Target.getEnvironment() == llvm::Triple::GNUT64 ||
670
Target.getEnvironment() == llvm::Triple::GNUABI64)
671
Target.setEnvironment(llvm::Triple::GNUABIN32);
672
} else if (ABIName == "64") {
673
Target = Target.get64BitArchVariant();
674
if (Target.getEnvironment() == llvm::Triple::GNU ||
675
Target.getEnvironment() == llvm::Triple::GNUT64 ||
676
Target.getEnvironment() == llvm::Triple::GNUABIN32)
677
Target.setEnvironment(llvm::Triple::GNUABI64);
678
}
679
}
680
}
681
682
// If target is RISC-V adjust the target triple according to
683
// provided architecture name
684
if (Target.isRISCV()) {
685
if (Args.hasArg(options::OPT_march_EQ) ||
686
Args.hasArg(options::OPT_mcpu_EQ)) {
687
std::string ArchName = tools::riscv::getRISCVArch(Args, Target);
688
auto ISAInfo = llvm::RISCVISAInfo::parseArchString(
689
ArchName, /*EnableExperimentalExtensions=*/true);
690
if (!llvm::errorToBool(ISAInfo.takeError())) {
691
unsigned XLen = (*ISAInfo)->getXLen();
692
if (XLen == 32)
693
Target.setArch(llvm::Triple::riscv32);
694
else if (XLen == 64)
695
Target.setArch(llvm::Triple::riscv64);
696
}
697
}
698
}
699
700
return Target;
701
}
702
703
// Parse the LTO options and record the type of LTO compilation
704
// based on which -f(no-)?lto(=.*)? or -f(no-)?offload-lto(=.*)?
705
// option occurs last.
706
static driver::LTOKind parseLTOMode(Driver &D, const llvm::opt::ArgList &Args,
707
OptSpecifier OptEq, OptSpecifier OptNeg) {
708
if (!Args.hasFlag(OptEq, OptNeg, false))
709
return LTOK_None;
710
711
const Arg *A = Args.getLastArg(OptEq);
712
StringRef LTOName = A->getValue();
713
714
driver::LTOKind LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
715
.Case("full", LTOK_Full)
716
.Case("thin", LTOK_Thin)
717
.Default(LTOK_Unknown);
718
719
if (LTOMode == LTOK_Unknown) {
720
D.Diag(diag::err_drv_unsupported_option_argument)
721
<< A->getSpelling() << A->getValue();
722
return LTOK_None;
723
}
724
return LTOMode;
725
}
726
727
// Parse the LTO options.
728
void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
729
LTOMode =
730
parseLTOMode(*this, Args, options::OPT_flto_EQ, options::OPT_fno_lto);
731
732
OffloadLTOMode = parseLTOMode(*this, Args, options::OPT_foffload_lto_EQ,
733
options::OPT_fno_offload_lto);
734
735
// Try to enable `-foffload-lto=full` if `-fopenmp-target-jit` is on.
736
if (Args.hasFlag(options::OPT_fopenmp_target_jit,
737
options::OPT_fno_openmp_target_jit, false)) {
738
if (Arg *A = Args.getLastArg(options::OPT_foffload_lto_EQ,
739
options::OPT_fno_offload_lto))
740
if (OffloadLTOMode != LTOK_Full)
741
Diag(diag::err_drv_incompatible_options)
742
<< A->getSpelling() << "-fopenmp-target-jit";
743
OffloadLTOMode = LTOK_Full;
744
}
745
}
746
747
/// Compute the desired OpenMP runtime from the flags provided.
748
Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const {
749
StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
750
751
const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
752
if (A)
753
RuntimeName = A->getValue();
754
755
auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
756
.Case("libomp", OMPRT_OMP)
757
.Case("libgomp", OMPRT_GOMP)
758
.Case("libiomp5", OMPRT_IOMP5)
759
.Default(OMPRT_Unknown);
760
761
if (RT == OMPRT_Unknown) {
762
if (A)
763
Diag(diag::err_drv_unsupported_option_argument)
764
<< A->getSpelling() << A->getValue();
765
else
766
// FIXME: We could use a nicer diagnostic here.
767
Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
768
}
769
770
return RT;
771
}
772
773
void Driver::CreateOffloadingDeviceToolChains(Compilation &C,
774
InputList &Inputs) {
775
776
//
777
// CUDA/HIP
778
//
779
// We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
780
// or HIP type. However, mixed CUDA/HIP compilation is not supported.
781
bool IsCuda =
782
llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
783
return types::isCuda(I.first);
784
});
785
bool IsHIP =
786
llvm::any_of(Inputs,
787
[](std::pair<types::ID, const llvm::opt::Arg *> &I) {
788
return types::isHIP(I.first);
789
}) ||
790
C.getInputArgs().hasArg(options::OPT_hip_link) ||
791
C.getInputArgs().hasArg(options::OPT_hipstdpar);
792
if (IsCuda && IsHIP) {
793
Diag(clang::diag::err_drv_mix_cuda_hip);
794
return;
795
}
796
if (IsCuda) {
797
const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
798
const llvm::Triple &HostTriple = HostTC->getTriple();
799
auto OFK = Action::OFK_Cuda;
800
auto CudaTriple =
801
getNVIDIAOffloadTargetTriple(*this, C.getInputArgs(), HostTriple);
802
if (!CudaTriple)
803
return;
804
// Use the CUDA and host triples as the key into the ToolChains map,
805
// because the device toolchain we create depends on both.
806
auto &CudaTC = ToolChains[CudaTriple->str() + "/" + HostTriple.str()];
807
if (!CudaTC) {
808
CudaTC = std::make_unique<toolchains::CudaToolChain>(
809
*this, *CudaTriple, *HostTC, C.getInputArgs());
810
811
// Emit a warning if the detected CUDA version is too new.
812
CudaInstallationDetector &CudaInstallation =
813
static_cast<toolchains::CudaToolChain &>(*CudaTC).CudaInstallation;
814
if (CudaInstallation.isValid())
815
CudaInstallation.WarnIfUnsupportedVersion();
816
}
817
C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
818
} else if (IsHIP) {
819
if (auto *OMPTargetArg =
820
C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
821
Diag(clang::diag::err_drv_unsupported_opt_for_language_mode)
822
<< OMPTargetArg->getSpelling() << "HIP";
823
return;
824
}
825
const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
826
auto OFK = Action::OFK_HIP;
827
auto HIPTriple = getHIPOffloadTargetTriple(*this, C.getInputArgs());
828
if (!HIPTriple)
829
return;
830
auto *HIPTC = &getOffloadingDeviceToolChain(C.getInputArgs(), *HIPTriple,
831
*HostTC, OFK);
832
assert(HIPTC && "Could not create offloading device tool chain.");
833
C.addOffloadDeviceToolChain(HIPTC, OFK);
834
}
835
836
//
837
// OpenMP
838
//
839
// We need to generate an OpenMP toolchain if the user specified targets with
840
// the -fopenmp-targets option or used --offload-arch with OpenMP enabled.
841
bool IsOpenMPOffloading =
842
C.getInputArgs().hasFlag(options::OPT_fopenmp, options::OPT_fopenmp_EQ,
843
options::OPT_fno_openmp, false) &&
844
(C.getInputArgs().hasArg(options::OPT_fopenmp_targets_EQ) ||
845
C.getInputArgs().hasArg(options::OPT_offload_arch_EQ));
846
if (IsOpenMPOffloading) {
847
// We expect that -fopenmp-targets is always used in conjunction with the
848
// option -fopenmp specifying a valid runtime with offloading support, i.e.
849
// libomp or libiomp.
850
OpenMPRuntimeKind RuntimeKind = getOpenMPRuntime(C.getInputArgs());
851
if (RuntimeKind != OMPRT_OMP && RuntimeKind != OMPRT_IOMP5) {
852
Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
853
return;
854
}
855
856
llvm::StringMap<llvm::DenseSet<StringRef>> DerivedArchs;
857
llvm::StringMap<StringRef> FoundNormalizedTriples;
858
std::multiset<StringRef> OpenMPTriples;
859
860
// If the user specified -fopenmp-targets= we create a toolchain for each
861
// valid triple. Otherwise, if only --offload-arch= was specified we instead
862
// attempt to derive the appropriate toolchains from the arguments.
863
if (Arg *OpenMPTargets =
864
C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
865
if (OpenMPTargets && !OpenMPTargets->getNumValues()) {
866
Diag(clang::diag::warn_drv_empty_joined_argument)
867
<< OpenMPTargets->getAsString(C.getInputArgs());
868
return;
869
}
870
for (StringRef T : OpenMPTargets->getValues())
871
OpenMPTriples.insert(T);
872
} else if (C.getInputArgs().hasArg(options::OPT_offload_arch_EQ) &&
873
!IsHIP && !IsCuda) {
874
const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
875
auto AMDTriple = getHIPOffloadTargetTriple(*this, C.getInputArgs());
876
auto NVPTXTriple = getNVIDIAOffloadTargetTriple(*this, C.getInputArgs(),
877
HostTC->getTriple());
878
879
// Attempt to deduce the offloading triple from the set of architectures.
880
// We can only correctly deduce NVPTX / AMDGPU triples currently. We need
881
// to temporarily create these toolchains so that we can access tools for
882
// inferring architectures.
883
llvm::DenseSet<StringRef> Archs;
884
if (NVPTXTriple) {
885
auto TempTC = std::make_unique<toolchains::CudaToolChain>(
886
*this, *NVPTXTriple, *HostTC, C.getInputArgs());
887
for (StringRef Arch : getOffloadArchs(
888
C, C.getArgs(), Action::OFK_OpenMP, &*TempTC, true))
889
Archs.insert(Arch);
890
}
891
if (AMDTriple) {
892
auto TempTC = std::make_unique<toolchains::AMDGPUOpenMPToolChain>(
893
*this, *AMDTriple, *HostTC, C.getInputArgs());
894
for (StringRef Arch : getOffloadArchs(
895
C, C.getArgs(), Action::OFK_OpenMP, &*TempTC, true))
896
Archs.insert(Arch);
897
}
898
if (!AMDTriple && !NVPTXTriple) {
899
for (StringRef Arch :
900
getOffloadArchs(C, C.getArgs(), Action::OFK_OpenMP, nullptr, true))
901
Archs.insert(Arch);
902
}
903
904
for (StringRef Arch : Archs) {
905
if (NVPTXTriple && IsNVIDIAOffloadArch(StringToOffloadArch(
906
getProcessorFromTargetID(*NVPTXTriple, Arch)))) {
907
DerivedArchs[NVPTXTriple->getTriple()].insert(Arch);
908
} else if (AMDTriple &&
909
IsAMDOffloadArch(StringToOffloadArch(
910
getProcessorFromTargetID(*AMDTriple, Arch)))) {
911
DerivedArchs[AMDTriple->getTriple()].insert(Arch);
912
} else {
913
Diag(clang::diag::err_drv_failed_to_deduce_target_from_arch) << Arch;
914
return;
915
}
916
}
917
918
// If the set is empty then we failed to find a native architecture.
919
if (Archs.empty()) {
920
Diag(clang::diag::err_drv_failed_to_deduce_target_from_arch)
921
<< "native";
922
return;
923
}
924
925
for (const auto &TripleAndArchs : DerivedArchs)
926
OpenMPTriples.insert(TripleAndArchs.first());
927
}
928
929
for (StringRef Val : OpenMPTriples) {
930
llvm::Triple TT(ToolChain::getOpenMPTriple(Val));
931
std::string NormalizedName = TT.normalize();
932
933
// Make sure we don't have a duplicate triple.
934
auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
935
if (Duplicate != FoundNormalizedTriples.end()) {
936
Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
937
<< Val << Duplicate->second;
938
continue;
939
}
940
941
// Store the current triple so that we can check for duplicates in the
942
// following iterations.
943
FoundNormalizedTriples[NormalizedName] = Val;
944
945
// If the specified target is invalid, emit a diagnostic.
946
if (TT.getArch() == llvm::Triple::UnknownArch)
947
Diag(clang::diag::err_drv_invalid_omp_target) << Val;
948
else {
949
const ToolChain *TC;
950
// Device toolchains have to be selected differently. They pair host
951
// and device in their implementation.
952
if (TT.isNVPTX() || TT.isAMDGCN()) {
953
const ToolChain *HostTC =
954
C.getSingleOffloadToolChain<Action::OFK_Host>();
955
assert(HostTC && "Host toolchain should be always defined.");
956
auto &DeviceTC =
957
ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
958
if (!DeviceTC) {
959
if (TT.isNVPTX())
960
DeviceTC = std::make_unique<toolchains::CudaToolChain>(
961
*this, TT, *HostTC, C.getInputArgs());
962
else if (TT.isAMDGCN())
963
DeviceTC = std::make_unique<toolchains::AMDGPUOpenMPToolChain>(
964
*this, TT, *HostTC, C.getInputArgs());
965
else
966
assert(DeviceTC && "Device toolchain not defined.");
967
}
968
969
TC = DeviceTC.get();
970
} else
971
TC = &getToolChain(C.getInputArgs(), TT);
972
C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP);
973
if (DerivedArchs.contains(TT.getTriple()))
974
KnownArchs[TC] = DerivedArchs[TT.getTriple()];
975
}
976
}
977
} else if (C.getInputArgs().hasArg(options::OPT_fopenmp_targets_EQ)) {
978
Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
979
return;
980
}
981
982
//
983
// TODO: Add support for other offloading programming models here.
984
//
985
}
986
987
static void appendOneArg(InputArgList &Args, const Arg *Opt,
988
const Arg *BaseArg) {
989
// The args for config files or /clang: flags belong to different InputArgList
990
// objects than Args. This copies an Arg from one of those other InputArgLists
991
// to the ownership of Args.
992
unsigned Index = Args.MakeIndex(Opt->getSpelling());
993
Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Args.getArgString(Index),
994
Index, BaseArg);
995
Copy->getValues() = Opt->getValues();
996
if (Opt->isClaimed())
997
Copy->claim();
998
Copy->setOwnsValues(Opt->getOwnsValues());
999
Opt->setOwnsValues(false);
1000
Args.append(Copy);
1001
}
1002
1003
bool Driver::readConfigFile(StringRef FileName,
1004
llvm::cl::ExpansionContext &ExpCtx) {
1005
// Try opening the given file.
1006
auto Status = getVFS().status(FileName);
1007
if (!Status) {
1008
Diag(diag::err_drv_cannot_open_config_file)
1009
<< FileName << Status.getError().message();
1010
return true;
1011
}
1012
if (Status->getType() != llvm::sys::fs::file_type::regular_file) {
1013
Diag(diag::err_drv_cannot_open_config_file)
1014
<< FileName << "not a regular file";
1015
return true;
1016
}
1017
1018
// Try reading the given file.
1019
SmallVector<const char *, 32> NewCfgArgs;
1020
if (llvm::Error Err = ExpCtx.readConfigFile(FileName, NewCfgArgs)) {
1021
Diag(diag::err_drv_cannot_read_config_file)
1022
<< FileName << toString(std::move(Err));
1023
return true;
1024
}
1025
1026
// Read options from config file.
1027
llvm::SmallString<128> CfgFileName(FileName);
1028
llvm::sys::path::native(CfgFileName);
1029
bool ContainErrors;
1030
std::unique_ptr<InputArgList> NewOptions = std::make_unique<InputArgList>(
1031
ParseArgStrings(NewCfgArgs, /*UseDriverMode=*/true, ContainErrors));
1032
if (ContainErrors)
1033
return true;
1034
1035
// Claim all arguments that come from a configuration file so that the driver
1036
// does not warn on any that is unused.
1037
for (Arg *A : *NewOptions)
1038
A->claim();
1039
1040
if (!CfgOptions)
1041
CfgOptions = std::move(NewOptions);
1042
else {
1043
// If this is a subsequent config file, append options to the previous one.
1044
for (auto *Opt : *NewOptions) {
1045
const Arg *BaseArg = &Opt->getBaseArg();
1046
if (BaseArg == Opt)
1047
BaseArg = nullptr;
1048
appendOneArg(*CfgOptions, Opt, BaseArg);
1049
}
1050
}
1051
ConfigFiles.push_back(std::string(CfgFileName));
1052
return false;
1053
}
1054
1055
bool Driver::loadConfigFiles() {
1056
llvm::cl::ExpansionContext ExpCtx(Saver.getAllocator(),
1057
llvm::cl::tokenizeConfigFile);
1058
ExpCtx.setVFS(&getVFS());
1059
1060
// Process options that change search path for config files.
1061
if (CLOptions) {
1062
if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
1063
SmallString<128> CfgDir;
1064
CfgDir.append(
1065
CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
1066
if (CfgDir.empty() || getVFS().makeAbsolute(CfgDir))
1067
SystemConfigDir.clear();
1068
else
1069
SystemConfigDir = static_cast<std::string>(CfgDir);
1070
}
1071
if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
1072
SmallString<128> CfgDir;
1073
llvm::sys::fs::expand_tilde(
1074
CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ), CfgDir);
1075
if (CfgDir.empty() || getVFS().makeAbsolute(CfgDir))
1076
UserConfigDir.clear();
1077
else
1078
UserConfigDir = static_cast<std::string>(CfgDir);
1079
}
1080
}
1081
1082
// Prepare list of directories where config file is searched for.
1083
StringRef CfgFileSearchDirs[] = {UserConfigDir, SystemConfigDir, Dir};
1084
ExpCtx.setSearchDirs(CfgFileSearchDirs);
1085
1086
// First try to load configuration from the default files, return on error.
1087
if (loadDefaultConfigFiles(ExpCtx))
1088
return true;
1089
1090
// Then load configuration files specified explicitly.
1091
SmallString<128> CfgFilePath;
1092
if (CLOptions) {
1093
for (auto CfgFileName : CLOptions->getAllArgValues(options::OPT_config)) {
1094
// If argument contains directory separator, treat it as a path to
1095
// configuration file.
1096
if (llvm::sys::path::has_parent_path(CfgFileName)) {
1097
CfgFilePath.assign(CfgFileName);
1098
if (llvm::sys::path::is_relative(CfgFilePath)) {
1099
if (getVFS().makeAbsolute(CfgFilePath)) {
1100
Diag(diag::err_drv_cannot_open_config_file)
1101
<< CfgFilePath << "cannot get absolute path";
1102
return true;
1103
}
1104
}
1105
} else if (!ExpCtx.findConfigFile(CfgFileName, CfgFilePath)) {
1106
// Report an error that the config file could not be found.
1107
Diag(diag::err_drv_config_file_not_found) << CfgFileName;
1108
for (const StringRef &SearchDir : CfgFileSearchDirs)
1109
if (!SearchDir.empty())
1110
Diag(diag::note_drv_config_file_searched_in) << SearchDir;
1111
return true;
1112
}
1113
1114
// Try to read the config file, return on error.
1115
if (readConfigFile(CfgFilePath, ExpCtx))
1116
return true;
1117
}
1118
}
1119
1120
// No error occurred.
1121
return false;
1122
}
1123
1124
bool Driver::loadDefaultConfigFiles(llvm::cl::ExpansionContext &ExpCtx) {
1125
// Disable default config if CLANG_NO_DEFAULT_CONFIG is set to a non-empty
1126
// value.
1127
if (const char *NoConfigEnv = ::getenv("CLANG_NO_DEFAULT_CONFIG")) {
1128
if (*NoConfigEnv)
1129
return false;
1130
}
1131
if (CLOptions && CLOptions->hasArg(options::OPT_no_default_config))
1132
return false;
1133
1134
std::string RealMode = getExecutableForDriverMode(Mode);
1135
std::string Triple;
1136
1137
// If name prefix is present, no --target= override was passed via CLOptions
1138
// and the name prefix is not a valid triple, force it for backwards
1139
// compatibility.
1140
if (!ClangNameParts.TargetPrefix.empty() &&
1141
computeTargetTriple(*this, "/invalid/", *CLOptions).str() ==
1142
"/invalid/") {
1143
llvm::Triple PrefixTriple{ClangNameParts.TargetPrefix};
1144
if (PrefixTriple.getArch() == llvm::Triple::UnknownArch ||
1145
PrefixTriple.isOSUnknown())
1146
Triple = PrefixTriple.str();
1147
}
1148
1149
// Otherwise, use the real triple as used by the driver.
1150
if (Triple.empty()) {
1151
llvm::Triple RealTriple =
1152
computeTargetTriple(*this, TargetTriple, *CLOptions);
1153
Triple = RealTriple.str();
1154
assert(!Triple.empty());
1155
}
1156
1157
// Search for config files in the following order:
1158
// 1. <triple>-<mode>.cfg using real driver mode
1159
// (e.g. i386-pc-linux-gnu-clang++.cfg).
1160
// 2. <triple>-<mode>.cfg using executable suffix
1161
// (e.g. i386-pc-linux-gnu-clang-g++.cfg for *clang-g++).
1162
// 3. <triple>.cfg + <mode>.cfg using real driver mode
1163
// (e.g. i386-pc-linux-gnu.cfg + clang++.cfg).
1164
// 4. <triple>.cfg + <mode>.cfg using executable suffix
1165
// (e.g. i386-pc-linux-gnu.cfg + clang-g++.cfg for *clang-g++).
1166
1167
// Try loading <triple>-<mode>.cfg, and return if we find a match.
1168
SmallString<128> CfgFilePath;
1169
std::string CfgFileName = Triple + '-' + RealMode + ".cfg";
1170
if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath))
1171
return readConfigFile(CfgFilePath, ExpCtx);
1172
1173
bool TryModeSuffix = !ClangNameParts.ModeSuffix.empty() &&
1174
ClangNameParts.ModeSuffix != RealMode;
1175
if (TryModeSuffix) {
1176
CfgFileName = Triple + '-' + ClangNameParts.ModeSuffix + ".cfg";
1177
if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath))
1178
return readConfigFile(CfgFilePath, ExpCtx);
1179
}
1180
1181
// Try loading <mode>.cfg, and return if loading failed. If a matching file
1182
// was not found, still proceed on to try <triple>.cfg.
1183
CfgFileName = RealMode + ".cfg";
1184
if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath)) {
1185
if (readConfigFile(CfgFilePath, ExpCtx))
1186
return true;
1187
} else if (TryModeSuffix) {
1188
CfgFileName = ClangNameParts.ModeSuffix + ".cfg";
1189
if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath) &&
1190
readConfigFile(CfgFilePath, ExpCtx))
1191
return true;
1192
}
1193
1194
// Try loading <triple>.cfg and return if we find a match.
1195
CfgFileName = Triple + ".cfg";
1196
if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath))
1197
return readConfigFile(CfgFilePath, ExpCtx);
1198
1199
// If we were unable to find a config file deduced from executable name,
1200
// that is not an error.
1201
return false;
1202
}
1203
1204
Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) {
1205
llvm::PrettyStackTraceString CrashInfo("Compilation construction");
1206
1207
// FIXME: Handle environment options which affect driver behavior, somewhere
1208
// (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
1209
1210
// We look for the driver mode option early, because the mode can affect
1211
// how other options are parsed.
1212
1213
auto DriverMode = getDriverMode(ClangExecutable, ArgList.slice(1));
1214
if (!DriverMode.empty())
1215
setDriverMode(DriverMode);
1216
1217
// FIXME: What are we going to do with -V and -b?
1218
1219
// Arguments specified in command line.
1220
bool ContainsError;
1221
CLOptions = std::make_unique<InputArgList>(
1222
ParseArgStrings(ArgList.slice(1), /*UseDriverMode=*/true, ContainsError));
1223
1224
// Try parsing configuration file.
1225
if (!ContainsError)
1226
ContainsError = loadConfigFiles();
1227
bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
1228
1229
// All arguments, from both config file and command line.
1230
InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
1231
: std::move(*CLOptions));
1232
1233
if (HasConfigFile)
1234
for (auto *Opt : *CLOptions) {
1235
if (Opt->getOption().matches(options::OPT_config))
1236
continue;
1237
const Arg *BaseArg = &Opt->getBaseArg();
1238
if (BaseArg == Opt)
1239
BaseArg = nullptr;
1240
appendOneArg(Args, Opt, BaseArg);
1241
}
1242
1243
// In CL mode, look for any pass-through arguments
1244
if (IsCLMode() && !ContainsError) {
1245
SmallVector<const char *, 16> CLModePassThroughArgList;
1246
for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
1247
A->claim();
1248
CLModePassThroughArgList.push_back(A->getValue());
1249
}
1250
1251
if (!CLModePassThroughArgList.empty()) {
1252
// Parse any pass through args using default clang processing rather
1253
// than clang-cl processing.
1254
auto CLModePassThroughOptions = std::make_unique<InputArgList>(
1255
ParseArgStrings(CLModePassThroughArgList, /*UseDriverMode=*/false,
1256
ContainsError));
1257
1258
if (!ContainsError)
1259
for (auto *Opt : *CLModePassThroughOptions) {
1260
appendOneArg(Args, Opt, nullptr);
1261
}
1262
}
1263
}
1264
1265
// Check for working directory option before accessing any files
1266
if (Arg *WD = Args.getLastArg(options::OPT_working_directory))
1267
if (VFS->setCurrentWorkingDirectory(WD->getValue()))
1268
Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue();
1269
1270
// Check for missing include directories.
1271
if (!Diags.isIgnored(diag::warn_missing_include_dirs, SourceLocation())) {
1272
for (auto IncludeDir : Args.getAllArgValues(options::OPT_I_Group)) {
1273
if (!VFS->exists(IncludeDir))
1274
Diag(diag::warn_missing_include_dirs) << IncludeDir;
1275
}
1276
}
1277
1278
// FIXME: This stuff needs to go into the Compilation, not the driver.
1279
bool CCCPrintPhases;
1280
1281
// -canonical-prefixes, -no-canonical-prefixes are used very early in main.
1282
Args.ClaimAllArgs(options::OPT_canonical_prefixes);
1283
Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
1284
1285
// f(no-)integated-cc1 is also used very early in main.
1286
Args.ClaimAllArgs(options::OPT_fintegrated_cc1);
1287
Args.ClaimAllArgs(options::OPT_fno_integrated_cc1);
1288
1289
// Ignore -pipe.
1290
Args.ClaimAllArgs(options::OPT_pipe);
1291
1292
// Extract -ccc args.
1293
//
1294
// FIXME: We need to figure out where this behavior should live. Most of it
1295
// should be outside in the client; the parts that aren't should have proper
1296
// options, either by introducing new ones or by overloading gcc ones like -V
1297
// or -b.
1298
CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
1299
CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
1300
if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
1301
CCCGenericGCCName = A->getValue();
1302
1303
// Process -fproc-stat-report options.
1304
if (const Arg *A = Args.getLastArg(options::OPT_fproc_stat_report_EQ)) {
1305
CCPrintProcessStats = true;
1306
CCPrintStatReportFilename = A->getValue();
1307
}
1308
if (Args.hasArg(options::OPT_fproc_stat_report))
1309
CCPrintProcessStats = true;
1310
1311
// FIXME: TargetTriple is used by the target-prefixed calls to as/ld
1312
// and getToolChain is const.
1313
if (IsCLMode()) {
1314
// clang-cl targets MSVC-style Win32.
1315
llvm::Triple T(TargetTriple);
1316
T.setOS(llvm::Triple::Win32);
1317
T.setVendor(llvm::Triple::PC);
1318
T.setEnvironment(llvm::Triple::MSVC);
1319
T.setObjectFormat(llvm::Triple::COFF);
1320
if (Args.hasArg(options::OPT__SLASH_arm64EC))
1321
T.setArch(llvm::Triple::aarch64, llvm::Triple::AArch64SubArch_arm64ec);
1322
TargetTriple = T.str();
1323
} else if (IsDXCMode()) {
1324
// Build TargetTriple from target_profile option for clang-dxc.
1325
if (const Arg *A = Args.getLastArg(options::OPT_target_profile)) {
1326
StringRef TargetProfile = A->getValue();
1327
if (auto Triple =
1328
toolchains::HLSLToolChain::parseTargetProfile(TargetProfile))
1329
TargetTriple = *Triple;
1330
else
1331
Diag(diag::err_drv_invalid_directx_shader_module) << TargetProfile;
1332
1333
A->claim();
1334
1335
if (Args.hasArg(options::OPT_spirv)) {
1336
llvm::Triple T(TargetTriple);
1337
T.setArch(llvm::Triple::spirv);
1338
T.setOS(llvm::Triple::Vulkan);
1339
1340
// Set specific Vulkan version if applicable.
1341
if (const Arg *A = Args.getLastArg(options::OPT_fspv_target_env_EQ)) {
1342
const llvm::StringSet<> ValidValues = {"vulkan1.2", "vulkan1.3"};
1343
if (ValidValues.contains(A->getValue())) {
1344
T.setOSName(A->getValue());
1345
} else {
1346
Diag(diag::err_drv_invalid_value)
1347
<< A->getAsString(Args) << A->getValue();
1348
}
1349
A->claim();
1350
}
1351
1352
TargetTriple = T.str();
1353
}
1354
} else {
1355
Diag(diag::err_drv_dxc_missing_target_profile);
1356
}
1357
}
1358
1359
if (const Arg *A = Args.getLastArg(options::OPT_target))
1360
TargetTriple = A->getValue();
1361
if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
1362
Dir = Dir = A->getValue();
1363
for (const Arg *A : Args.filtered(options::OPT_B)) {
1364
A->claim();
1365
PrefixDirs.push_back(A->getValue(0));
1366
}
1367
if (std::optional<std::string> CompilerPathValue =
1368
llvm::sys::Process::GetEnv("COMPILER_PATH")) {
1369
StringRef CompilerPath = *CompilerPathValue;
1370
while (!CompilerPath.empty()) {
1371
std::pair<StringRef, StringRef> Split =
1372
CompilerPath.split(llvm::sys::EnvPathSeparator);
1373
PrefixDirs.push_back(std::string(Split.first));
1374
CompilerPath = Split.second;
1375
}
1376
}
1377
if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
1378
SysRoot = A->getValue();
1379
if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
1380
DyldPrefix = A->getValue();
1381
1382
if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
1383
ResourceDir = A->getValue();
1384
1385
if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
1386
SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
1387
.Case("cwd", SaveTempsCwd)
1388
.Case("obj", SaveTempsObj)
1389
.Default(SaveTempsCwd);
1390
}
1391
1392
if (const Arg *A = Args.getLastArg(options::OPT_offload_host_only,
1393
options::OPT_offload_device_only,
1394
options::OPT_offload_host_device)) {
1395
if (A->getOption().matches(options::OPT_offload_host_only))
1396
Offload = OffloadHost;
1397
else if (A->getOption().matches(options::OPT_offload_device_only))
1398
Offload = OffloadDevice;
1399
else
1400
Offload = OffloadHostDevice;
1401
}
1402
1403
setLTOMode(Args);
1404
1405
// Process -fembed-bitcode= flags.
1406
if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
1407
StringRef Name = A->getValue();
1408
unsigned Model = llvm::StringSwitch<unsigned>(Name)
1409
.Case("off", EmbedNone)
1410
.Case("all", EmbedBitcode)
1411
.Case("bitcode", EmbedBitcode)
1412
.Case("marker", EmbedMarker)
1413
.Default(~0U);
1414
if (Model == ~0U) {
1415
Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1416
<< Name;
1417
} else
1418
BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1419
}
1420
1421
// Remove existing compilation database so that each job can append to it.
1422
if (Arg *A = Args.getLastArg(options::OPT_MJ))
1423
llvm::sys::fs::remove(A->getValue());
1424
1425
// Setting up the jobs for some precompile cases depends on whether we are
1426
// treating them as PCH, implicit modules or C++20 ones.
1427
// TODO: inferring the mode like this seems fragile (it meets the objective
1428
// of not requiring anything new for operation, however).
1429
const Arg *Std = Args.getLastArg(options::OPT_std_EQ);
1430
ModulesModeCXX20 =
1431
!Args.hasArg(options::OPT_fmodules) && Std &&
1432
(Std->containsValue("c++20") || Std->containsValue("c++2a") ||
1433
Std->containsValue("c++23") || Std->containsValue("c++2b") ||
1434
Std->containsValue("c++26") || Std->containsValue("c++2c") ||
1435
Std->containsValue("c++latest"));
1436
1437
// Process -fmodule-header{=} flags.
1438
if (Arg *A = Args.getLastArg(options::OPT_fmodule_header_EQ,
1439
options::OPT_fmodule_header)) {
1440
// These flags force C++20 handling of headers.
1441
ModulesModeCXX20 = true;
1442
if (A->getOption().matches(options::OPT_fmodule_header))
1443
CXX20HeaderType = HeaderMode_Default;
1444
else {
1445
StringRef ArgName = A->getValue();
1446
unsigned Kind = llvm::StringSwitch<unsigned>(ArgName)
1447
.Case("user", HeaderMode_User)
1448
.Case("system", HeaderMode_System)
1449
.Default(~0U);
1450
if (Kind == ~0U) {
1451
Diags.Report(diag::err_drv_invalid_value)
1452
<< A->getAsString(Args) << ArgName;
1453
} else
1454
CXX20HeaderType = static_cast<ModuleHeaderMode>(Kind);
1455
}
1456
}
1457
1458
std::unique_ptr<llvm::opt::InputArgList> UArgs =
1459
std::make_unique<InputArgList>(std::move(Args));
1460
1461
// Perform the default argument translations.
1462
DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1463
1464
// Owned by the host.
1465
const ToolChain &TC = getToolChain(
1466
*UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1467
1468
// Check if the environment version is valid except wasm case.
1469
llvm::Triple Triple = TC.getTriple();
1470
if (!Triple.isWasm()) {
1471
StringRef TripleVersionName = Triple.getEnvironmentVersionString();
1472
StringRef TripleObjectFormat =
1473
Triple.getObjectFormatTypeName(Triple.getObjectFormat());
1474
if (Triple.getEnvironmentVersion().empty() && TripleVersionName != "" &&
1475
TripleVersionName != TripleObjectFormat) {
1476
Diags.Report(diag::err_drv_triple_version_invalid)
1477
<< TripleVersionName << TC.getTripleString();
1478
ContainsError = true;
1479
}
1480
}
1481
1482
// Report warning when arm64EC option is overridden by specified target
1483
if ((TC.getTriple().getArch() != llvm::Triple::aarch64 ||
1484
TC.getTriple().getSubArch() != llvm::Triple::AArch64SubArch_arm64ec) &&
1485
UArgs->hasArg(options::OPT__SLASH_arm64EC)) {
1486
getDiags().Report(clang::diag::warn_target_override_arm64ec)
1487
<< TC.getTriple().str();
1488
}
1489
1490
// A common user mistake is specifying a target of aarch64-none-eabi or
1491
// arm-none-elf whereas the correct names are aarch64-none-elf &
1492
// arm-none-eabi. Detect these cases and issue a warning.
1493
if (TC.getTriple().getOS() == llvm::Triple::UnknownOS &&
1494
TC.getTriple().getVendor() == llvm::Triple::UnknownVendor) {
1495
switch (TC.getTriple().getArch()) {
1496
case llvm::Triple::arm:
1497
case llvm::Triple::armeb:
1498
case llvm::Triple::thumb:
1499
case llvm::Triple::thumbeb:
1500
if (TC.getTriple().getEnvironmentName() == "elf") {
1501
Diag(diag::warn_target_unrecognized_env)
1502
<< TargetTriple
1503
<< (TC.getTriple().getArchName().str() + "-none-eabi");
1504
}
1505
break;
1506
case llvm::Triple::aarch64:
1507
case llvm::Triple::aarch64_be:
1508
case llvm::Triple::aarch64_32:
1509
if (TC.getTriple().getEnvironmentName().starts_with("eabi")) {
1510
Diag(diag::warn_target_unrecognized_env)
1511
<< TargetTriple
1512
<< (TC.getTriple().getArchName().str() + "-none-elf");
1513
}
1514
break;
1515
default:
1516
break;
1517
}
1518
}
1519
1520
// The compilation takes ownership of Args.
1521
Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1522
ContainsError);
1523
1524
if (!HandleImmediateArgs(*C))
1525
return C;
1526
1527
// Construct the list of inputs.
1528
InputList Inputs;
1529
BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1530
1531
// Populate the tool chains for the offloading devices, if any.
1532
CreateOffloadingDeviceToolChains(*C, Inputs);
1533
1534
// Construct the list of abstract actions to perform for this compilation. On
1535
// MachO targets this uses the driver-driver and universal actions.
1536
if (TC.getTriple().isOSBinFormatMachO())
1537
BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1538
else
1539
BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1540
1541
if (CCCPrintPhases) {
1542
PrintActions(*C);
1543
return C;
1544
}
1545
1546
BuildJobs(*C);
1547
1548
return C;
1549
}
1550
1551
static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1552
llvm::opt::ArgStringList ASL;
1553
for (const auto *A : Args) {
1554
// Use user's original spelling of flags. For example, use
1555
// `/source-charset:utf-8` instead of `-finput-charset=utf-8` if the user
1556
// wrote the former.
1557
while (A->getAlias())
1558
A = A->getAlias();
1559
A->render(Args, ASL);
1560
}
1561
1562
for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1563
if (I != ASL.begin())
1564
OS << ' ';
1565
llvm::sys::printArg(OS, *I, true);
1566
}
1567
OS << '\n';
1568
}
1569
1570
bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1571
SmallString<128> &CrashDiagDir) {
1572
using namespace llvm::sys;
1573
assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1574
"Only knows about .crash files on Darwin");
1575
1576
// The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1577
// (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1578
// clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1579
path::home_directory(CrashDiagDir);
1580
if (CrashDiagDir.starts_with("/var/root"))
1581
CrashDiagDir = "/";
1582
path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1583
int PID =
1584
#if LLVM_ON_UNIX
1585
getpid();
1586
#else
1587
0;
1588
#endif
1589
std::error_code EC;
1590
fs::file_status FileStatus;
1591
TimePoint<> LastAccessTime;
1592
SmallString<128> CrashFilePath;
1593
// Lookup the .crash files and get the one generated by a subprocess spawned
1594
// by this driver invocation.
1595
for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1596
File != FileEnd && !EC; File.increment(EC)) {
1597
StringRef FileName = path::filename(File->path());
1598
if (!FileName.starts_with(Name))
1599
continue;
1600
if (fs::status(File->path(), FileStatus))
1601
continue;
1602
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1603
llvm::MemoryBuffer::getFile(File->path());
1604
if (!CrashFile)
1605
continue;
1606
// The first line should start with "Process:", otherwise this isn't a real
1607
// .crash file.
1608
StringRef Data = CrashFile.get()->getBuffer();
1609
if (!Data.starts_with("Process:"))
1610
continue;
1611
// Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1612
size_t ParentProcPos = Data.find("Parent Process:");
1613
if (ParentProcPos == StringRef::npos)
1614
continue;
1615
size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1616
if (LineEnd == StringRef::npos)
1617
continue;
1618
StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1619
int OpenBracket = -1, CloseBracket = -1;
1620
for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1621
if (ParentProcess[i] == '[')
1622
OpenBracket = i;
1623
if (ParentProcess[i] == ']')
1624
CloseBracket = i;
1625
}
1626
// Extract the parent process PID from the .crash file and check whether
1627
// it matches this driver invocation pid.
1628
int CrashPID;
1629
if (OpenBracket < 0 || CloseBracket < 0 ||
1630
ParentProcess.slice(OpenBracket + 1, CloseBracket)
1631
.getAsInteger(10, CrashPID) || CrashPID != PID) {
1632
continue;
1633
}
1634
1635
// Found a .crash file matching the driver pid. To avoid getting an older
1636
// and misleading crash file, continue looking for the most recent.
1637
// FIXME: the driver can dispatch multiple cc1 invocations, leading to
1638
// multiple crashes poiting to the same parent process. Since the driver
1639
// does not collect pid information for the dispatched invocation there's
1640
// currently no way to distinguish among them.
1641
const auto FileAccessTime = FileStatus.getLastModificationTime();
1642
if (FileAccessTime > LastAccessTime) {
1643
CrashFilePath.assign(File->path());
1644
LastAccessTime = FileAccessTime;
1645
}
1646
}
1647
1648
// If found, copy it over to the location of other reproducer files.
1649
if (!CrashFilePath.empty()) {
1650
EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1651
if (EC)
1652
return false;
1653
return true;
1654
}
1655
1656
return false;
1657
}
1658
1659
static const char BugReporMsg[] =
1660
"\n********************\n\n"
1661
"PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1662
"Preprocessed source(s) and associated run script(s) are located at:";
1663
1664
// When clang crashes, produce diagnostic information including the fully
1665
// preprocessed source file(s). Request that the developer attach the
1666
// diagnostic information to a bug report.
1667
void Driver::generateCompilationDiagnostics(
1668
Compilation &C, const Command &FailingCommand,
1669
StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1670
if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1671
return;
1672
1673
unsigned Level = 1;
1674
if (Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_EQ)) {
1675
Level = llvm::StringSwitch<unsigned>(A->getValue())
1676
.Case("off", 0)
1677
.Case("compiler", 1)
1678
.Case("all", 2)
1679
.Default(1);
1680
}
1681
if (!Level)
1682
return;
1683
1684
// Don't try to generate diagnostics for dsymutil jobs.
1685
if (FailingCommand.getCreator().isDsymutilJob())
1686
return;
1687
1688
bool IsLLD = false;
1689
ArgStringList SavedTemps;
1690
if (FailingCommand.getCreator().isLinkJob()) {
1691
C.getDefaultToolChain().GetLinkerPath(&IsLLD);
1692
if (!IsLLD || Level < 2)
1693
return;
1694
1695
// If lld crashed, we will re-run the same command with the input it used
1696
// to have. In that case we should not remove temp files in
1697
// initCompilationForDiagnostics yet. They will be added back and removed
1698
// later.
1699
SavedTemps = std::move(C.getTempFiles());
1700
assert(!C.getTempFiles().size());
1701
}
1702
1703
// Print the version of the compiler.
1704
PrintVersion(C, llvm::errs());
1705
1706
// Suppress driver output and emit preprocessor output to temp file.
1707
CCGenDiagnostics = true;
1708
1709
// Save the original job command(s).
1710
Command Cmd = FailingCommand;
1711
1712
// Keep track of whether we produce any errors while trying to produce
1713
// preprocessed sources.
1714
DiagnosticErrorTrap Trap(Diags);
1715
1716
// Suppress tool output.
1717
C.initCompilationForDiagnostics();
1718
1719
// If lld failed, rerun it again with --reproduce.
1720
if (IsLLD) {
1721
const char *TmpName = CreateTempFile(C, "linker-crash", "tar");
1722
Command NewLLDInvocation = Cmd;
1723
llvm::opt::ArgStringList ArgList = NewLLDInvocation.getArguments();
1724
StringRef ReproduceOption =
1725
C.getDefaultToolChain().getTriple().isWindowsMSVCEnvironment()
1726
? "/reproduce:"
1727
: "--reproduce=";
1728
ArgList.push_back(Saver.save(Twine(ReproduceOption) + TmpName).data());
1729
NewLLDInvocation.replaceArguments(std::move(ArgList));
1730
1731
// Redirect stdout/stderr to /dev/null.
1732
NewLLDInvocation.Execute({std::nullopt, {""}, {""}}, nullptr, nullptr);
1733
Diag(clang::diag::note_drv_command_failed_diag_msg) << BugReporMsg;
1734
Diag(clang::diag::note_drv_command_failed_diag_msg) << TmpName;
1735
Diag(clang::diag::note_drv_command_failed_diag_msg)
1736
<< "\n\n********************";
1737
if (Report)
1738
Report->TemporaryFiles.push_back(TmpName);
1739
return;
1740
}
1741
1742
// Construct the list of inputs.
1743
InputList Inputs;
1744
BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1745
1746
for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1747
bool IgnoreInput = false;
1748
1749
// Ignore input from stdin or any inputs that cannot be preprocessed.
1750
// Check type first as not all linker inputs have a value.
1751
if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1752
IgnoreInput = true;
1753
} else if (!strcmp(it->second->getValue(), "-")) {
1754
Diag(clang::diag::note_drv_command_failed_diag_msg)
1755
<< "Error generating preprocessed source(s) - "
1756
"ignoring input from stdin.";
1757
IgnoreInput = true;
1758
}
1759
1760
if (IgnoreInput) {
1761
it = Inputs.erase(it);
1762
ie = Inputs.end();
1763
} else {
1764
++it;
1765
}
1766
}
1767
1768
if (Inputs.empty()) {
1769
Diag(clang::diag::note_drv_command_failed_diag_msg)
1770
<< "Error generating preprocessed source(s) - "
1771
"no preprocessable inputs.";
1772
return;
1773
}
1774
1775
// Don't attempt to generate preprocessed files if multiple -arch options are
1776
// used, unless they're all duplicates.
1777
llvm::StringSet<> ArchNames;
1778
for (const Arg *A : C.getArgs()) {
1779
if (A->getOption().matches(options::OPT_arch)) {
1780
StringRef ArchName = A->getValue();
1781
ArchNames.insert(ArchName);
1782
}
1783
}
1784
if (ArchNames.size() > 1) {
1785
Diag(clang::diag::note_drv_command_failed_diag_msg)
1786
<< "Error generating preprocessed source(s) - cannot generate "
1787
"preprocessed source with multiple -arch options.";
1788
return;
1789
}
1790
1791
// Construct the list of abstract actions to perform for this compilation. On
1792
// Darwin OSes this uses the driver-driver and builds universal actions.
1793
const ToolChain &TC = C.getDefaultToolChain();
1794
if (TC.getTriple().isOSBinFormatMachO())
1795
BuildUniversalActions(C, TC, Inputs);
1796
else
1797
BuildActions(C, C.getArgs(), Inputs, C.getActions());
1798
1799
BuildJobs(C);
1800
1801
// If there were errors building the compilation, quit now.
1802
if (Trap.hasErrorOccurred()) {
1803
Diag(clang::diag::note_drv_command_failed_diag_msg)
1804
<< "Error generating preprocessed source(s).";
1805
return;
1806
}
1807
1808
// Generate preprocessed output.
1809
SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1810
C.ExecuteJobs(C.getJobs(), FailingCommands);
1811
1812
// If any of the preprocessing commands failed, clean up and exit.
1813
if (!FailingCommands.empty()) {
1814
Diag(clang::diag::note_drv_command_failed_diag_msg)
1815
<< "Error generating preprocessed source(s).";
1816
return;
1817
}
1818
1819
const ArgStringList &TempFiles = C.getTempFiles();
1820
if (TempFiles.empty()) {
1821
Diag(clang::diag::note_drv_command_failed_diag_msg)
1822
<< "Error generating preprocessed source(s).";
1823
return;
1824
}
1825
1826
Diag(clang::diag::note_drv_command_failed_diag_msg) << BugReporMsg;
1827
1828
SmallString<128> VFS;
1829
SmallString<128> ReproCrashFilename;
1830
for (const char *TempFile : TempFiles) {
1831
Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1832
if (Report)
1833
Report->TemporaryFiles.push_back(TempFile);
1834
if (ReproCrashFilename.empty()) {
1835
ReproCrashFilename = TempFile;
1836
llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1837
}
1838
if (StringRef(TempFile).ends_with(".cache")) {
1839
// In some cases (modules) we'll dump extra data to help with reproducing
1840
// the crash into a directory next to the output.
1841
VFS = llvm::sys::path::filename(TempFile);
1842
llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1843
}
1844
}
1845
1846
for (const char *TempFile : SavedTemps)
1847
C.addTempFile(TempFile);
1848
1849
// Assume associated files are based off of the first temporary file.
1850
CrashReportInfo CrashInfo(TempFiles[0], VFS);
1851
1852
llvm::SmallString<128> Script(CrashInfo.Filename);
1853
llvm::sys::path::replace_extension(Script, "sh");
1854
std::error_code EC;
1855
llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew,
1856
llvm::sys::fs::FA_Write,
1857
llvm::sys::fs::OF_Text);
1858
if (EC) {
1859
Diag(clang::diag::note_drv_command_failed_diag_msg)
1860
<< "Error generating run script: " << Script << " " << EC.message();
1861
} else {
1862
ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1863
<< "# Driver args: ";
1864
printArgList(ScriptOS, C.getInputArgs());
1865
ScriptOS << "# Original command: ";
1866
Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1867
Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1868
if (!AdditionalInformation.empty())
1869
ScriptOS << "\n# Additional information: " << AdditionalInformation
1870
<< "\n";
1871
if (Report)
1872
Report->TemporaryFiles.push_back(std::string(Script));
1873
Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1874
}
1875
1876
// On darwin, provide information about the .crash diagnostic report.
1877
if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1878
SmallString<128> CrashDiagDir;
1879
if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1880
Diag(clang::diag::note_drv_command_failed_diag_msg)
1881
<< ReproCrashFilename.str();
1882
} else { // Suggest a directory for the user to look for .crash files.
1883
llvm::sys::path::append(CrashDiagDir, Name);
1884
CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1885
Diag(clang::diag::note_drv_command_failed_diag_msg)
1886
<< "Crash backtrace is located in";
1887
Diag(clang::diag::note_drv_command_failed_diag_msg)
1888
<< CrashDiagDir.str();
1889
Diag(clang::diag::note_drv_command_failed_diag_msg)
1890
<< "(choose the .crash file that corresponds to your crash)";
1891
}
1892
}
1893
1894
Diag(clang::diag::note_drv_command_failed_diag_msg)
1895
<< "\n\n********************";
1896
}
1897
1898
void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1899
// Since commandLineFitsWithinSystemLimits() may underestimate system's
1900
// capacity if the tool does not support response files, there is a chance/
1901
// that things will just work without a response file, so we silently just
1902
// skip it.
1903
if (Cmd.getResponseFileSupport().ResponseKind ==
1904
ResponseFileSupport::RF_None ||
1905
llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(),
1906
Cmd.getArguments()))
1907
return;
1908
1909
std::string TmpName = GetTemporaryPath("response", "txt");
1910
Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1911
}
1912
1913
int Driver::ExecuteCompilation(
1914
Compilation &C,
1915
SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1916
if (C.getArgs().hasArg(options::OPT_fdriver_only)) {
1917
if (C.getArgs().hasArg(options::OPT_v))
1918
C.getJobs().Print(llvm::errs(), "\n", true);
1919
1920
C.ExecuteJobs(C.getJobs(), FailingCommands, /*LogOnly=*/true);
1921
1922
// If there were errors building the compilation, quit now.
1923
if (!FailingCommands.empty() || Diags.hasErrorOccurred())
1924
return 1;
1925
1926
return 0;
1927
}
1928
1929
// Just print if -### was present.
1930
if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1931
C.getJobs().Print(llvm::errs(), "\n", true);
1932
return Diags.hasErrorOccurred() ? 1 : 0;
1933
}
1934
1935
// If there were errors building the compilation, quit now.
1936
if (Diags.hasErrorOccurred())
1937
return 1;
1938
1939
// Set up response file names for each command, if necessary.
1940
for (auto &Job : C.getJobs())
1941
setUpResponseFiles(C, Job);
1942
1943
C.ExecuteJobs(C.getJobs(), FailingCommands);
1944
1945
// If the command succeeded, we are done.
1946
if (FailingCommands.empty())
1947
return 0;
1948
1949
// Otherwise, remove result files and print extra information about abnormal
1950
// failures.
1951
int Res = 0;
1952
for (const auto &CmdPair : FailingCommands) {
1953
int CommandRes = CmdPair.first;
1954
const Command *FailingCommand = CmdPair.second;
1955
1956
// Remove result files if we're not saving temps.
1957
if (!isSaveTempsEnabled()) {
1958
const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1959
C.CleanupFileMap(C.getResultFiles(), JA, true);
1960
1961
// Failure result files are valid unless we crashed.
1962
if (CommandRes < 0)
1963
C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1964
}
1965
1966
// llvm/lib/Support/*/Signals.inc will exit with a special return code
1967
// for SIGPIPE. Do not print diagnostics for this case.
1968
if (CommandRes == EX_IOERR) {
1969
Res = CommandRes;
1970
continue;
1971
}
1972
1973
// Print extra information about abnormal failures, if possible.
1974
//
1975
// This is ad-hoc, but we don't want to be excessively noisy. If the result
1976
// status was 1, assume the command failed normally. In particular, if it
1977
// was the compiler then assume it gave a reasonable error code. Failures
1978
// in other tools are less common, and they generally have worse
1979
// diagnostics, so always print the diagnostic there.
1980
const Tool &FailingTool = FailingCommand->getCreator();
1981
1982
if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
1983
// FIXME: See FIXME above regarding result code interpretation.
1984
if (CommandRes < 0)
1985
Diag(clang::diag::err_drv_command_signalled)
1986
<< FailingTool.getShortName();
1987
else
1988
Diag(clang::diag::err_drv_command_failed)
1989
<< FailingTool.getShortName() << CommandRes;
1990
}
1991
}
1992
return Res;
1993
}
1994
1995
void Driver::PrintHelp(bool ShowHidden) const {
1996
llvm::opt::Visibility VisibilityMask = getOptionVisibilityMask();
1997
1998
std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
1999
getOpts().printHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
2000
ShowHidden, /*ShowAllAliases=*/false,
2001
VisibilityMask);
2002
}
2003
2004
void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
2005
if (IsFlangMode()) {
2006
OS << getClangToolFullVersion("flang-new") << '\n';
2007
} else {
2008
// FIXME: The following handlers should use a callback mechanism, we don't
2009
// know what the client would like to do.
2010
OS << getClangFullVersion() << '\n';
2011
}
2012
const ToolChain &TC = C.getDefaultToolChain();
2013
OS << "Target: " << TC.getTripleString() << '\n';
2014
2015
// Print the threading model.
2016
if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
2017
// Don't print if the ToolChain would have barfed on it already
2018
if (TC.isThreadModelSupported(A->getValue()))
2019
OS << "Thread model: " << A->getValue();
2020
} else
2021
OS << "Thread model: " << TC.getThreadModel();
2022
OS << '\n';
2023
2024
// Print out the install directory.
2025
OS << "InstalledDir: " << Dir << '\n';
2026
2027
// Print the build config if it's non-default.
2028
// Intended to help LLVM developers understand the configs of compilers
2029
// they're investigating.
2030
if (!llvm::cl::getCompilerBuildConfig().empty())
2031
llvm::cl::printBuildConfig(OS);
2032
2033
// If configuration files were used, print their paths.
2034
for (auto ConfigFile : ConfigFiles)
2035
OS << "Configuration file: " << ConfigFile << '\n';
2036
}
2037
2038
/// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
2039
/// option.
2040
static void PrintDiagnosticCategories(raw_ostream &OS) {
2041
// Skip the empty category.
2042
for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
2043
++i)
2044
OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
2045
}
2046
2047
void Driver::HandleAutocompletions(StringRef PassedFlags) const {
2048
if (PassedFlags == "")
2049
return;
2050
// Print out all options that start with a given argument. This is used for
2051
// shell autocompletion.
2052
std::vector<std::string> SuggestedCompletions;
2053
std::vector<std::string> Flags;
2054
2055
llvm::opt::Visibility VisibilityMask(options::ClangOption);
2056
2057
// Make sure that Flang-only options don't pollute the Clang output
2058
// TODO: Make sure that Clang-only options don't pollute Flang output
2059
if (IsFlangMode())
2060
VisibilityMask = llvm::opt::Visibility(options::FlangOption);
2061
2062
// Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
2063
// because the latter indicates that the user put space before pushing tab
2064
// which should end up in a file completion.
2065
const bool HasSpace = PassedFlags.ends_with(",");
2066
2067
// Parse PassedFlags by "," as all the command-line flags are passed to this
2068
// function separated by ","
2069
StringRef TargetFlags = PassedFlags;
2070
while (TargetFlags != "") {
2071
StringRef CurFlag;
2072
std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
2073
Flags.push_back(std::string(CurFlag));
2074
}
2075
2076
// We want to show cc1-only options only when clang is invoked with -cc1 or
2077
// -Xclang.
2078
if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1"))
2079
VisibilityMask = llvm::opt::Visibility(options::CC1Option);
2080
2081
const llvm::opt::OptTable &Opts = getOpts();
2082
StringRef Cur;
2083
Cur = Flags.at(Flags.size() - 1);
2084
StringRef Prev;
2085
if (Flags.size() >= 2) {
2086
Prev = Flags.at(Flags.size() - 2);
2087
SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur);
2088
}
2089
2090
if (SuggestedCompletions.empty())
2091
SuggestedCompletions = Opts.suggestValueCompletions(Cur, "");
2092
2093
// If Flags were empty, it means the user typed `clang [tab]` where we should
2094
// list all possible flags. If there was no value completion and the user
2095
// pressed tab after a space, we should fall back to a file completion.
2096
// We're printing a newline to be consistent with what we print at the end of
2097
// this function.
2098
if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
2099
llvm::outs() << '\n';
2100
return;
2101
}
2102
2103
// When flag ends with '=' and there was no value completion, return empty
2104
// string and fall back to the file autocompletion.
2105
if (SuggestedCompletions.empty() && !Cur.ends_with("=")) {
2106
// If the flag is in the form of "--autocomplete=-foo",
2107
// we were requested to print out all option names that start with "-foo".
2108
// For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
2109
SuggestedCompletions = Opts.findByPrefix(
2110
Cur, VisibilityMask,
2111
/*DisableFlags=*/options::Unsupported | options::Ignored);
2112
2113
// We have to query the -W flags manually as they're not in the OptTable.
2114
// TODO: Find a good way to add them to OptTable instead and them remove
2115
// this code.
2116
for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
2117
if (S.starts_with(Cur))
2118
SuggestedCompletions.push_back(std::string(S));
2119
}
2120
2121
// Sort the autocomplete candidates so that shells print them out in a
2122
// deterministic order. We could sort in any way, but we chose
2123
// case-insensitive sorting for consistency with the -help option
2124
// which prints out options in the case-insensitive alphabetical order.
2125
llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
2126
if (int X = A.compare_insensitive(B))
2127
return X < 0;
2128
return A.compare(B) > 0;
2129
});
2130
2131
llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
2132
}
2133
2134
bool Driver::HandleImmediateArgs(Compilation &C) {
2135
// The order these options are handled in gcc is all over the place, but we
2136
// don't expect inconsistencies w.r.t. that to matter in practice.
2137
2138
if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
2139
llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
2140
return false;
2141
}
2142
2143
if (C.getArgs().hasArg(options::OPT_dumpversion)) {
2144
// Since -dumpversion is only implemented for pedantic GCC compatibility, we
2145
// return an answer which matches our definition of __VERSION__.
2146
llvm::outs() << CLANG_VERSION_STRING << "\n";
2147
return false;
2148
}
2149
2150
if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
2151
PrintDiagnosticCategories(llvm::outs());
2152
return false;
2153
}
2154
2155
if (C.getArgs().hasArg(options::OPT_help) ||
2156
C.getArgs().hasArg(options::OPT__help_hidden)) {
2157
PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
2158
return false;
2159
}
2160
2161
if (C.getArgs().hasArg(options::OPT__version)) {
2162
// Follow gcc behavior and use stdout for --version and stderr for -v.
2163
PrintVersion(C, llvm::outs());
2164
return false;
2165
}
2166
2167
if (C.getArgs().hasArg(options::OPT_v) ||
2168
C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) ||
2169
C.getArgs().hasArg(options::OPT_print_supported_cpus) ||
2170
C.getArgs().hasArg(options::OPT_print_supported_extensions) ||
2171
C.getArgs().hasArg(options::OPT_print_enabled_extensions)) {
2172
PrintVersion(C, llvm::errs());
2173
SuppressMissingInputWarning = true;
2174
}
2175
2176
if (C.getArgs().hasArg(options::OPT_v)) {
2177
if (!SystemConfigDir.empty())
2178
llvm::errs() << "System configuration file directory: "
2179
<< SystemConfigDir << "\n";
2180
if (!UserConfigDir.empty())
2181
llvm::errs() << "User configuration file directory: "
2182
<< UserConfigDir << "\n";
2183
}
2184
2185
const ToolChain &TC = C.getDefaultToolChain();
2186
2187
if (C.getArgs().hasArg(options::OPT_v))
2188
TC.printVerboseInfo(llvm::errs());
2189
2190
if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
2191
llvm::outs() << ResourceDir << '\n';
2192
return false;
2193
}
2194
2195
if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
2196
llvm::outs() << "programs: =";
2197
bool separator = false;
2198
// Print -B and COMPILER_PATH.
2199
for (const std::string &Path : PrefixDirs) {
2200
if (separator)
2201
llvm::outs() << llvm::sys::EnvPathSeparator;
2202
llvm::outs() << Path;
2203
separator = true;
2204
}
2205
for (const std::string &Path : TC.getProgramPaths()) {
2206
if (separator)
2207
llvm::outs() << llvm::sys::EnvPathSeparator;
2208
llvm::outs() << Path;
2209
separator = true;
2210
}
2211
llvm::outs() << "\n";
2212
llvm::outs() << "libraries: =" << ResourceDir;
2213
2214
StringRef sysroot = C.getSysRoot();
2215
2216
for (const std::string &Path : TC.getFilePaths()) {
2217
// Always print a separator. ResourceDir was the first item shown.
2218
llvm::outs() << llvm::sys::EnvPathSeparator;
2219
// Interpretation of leading '=' is needed only for NetBSD.
2220
if (Path[0] == '=')
2221
llvm::outs() << sysroot << Path.substr(1);
2222
else
2223
llvm::outs() << Path;
2224
}
2225
llvm::outs() << "\n";
2226
return false;
2227
}
2228
2229
if (C.getArgs().hasArg(options::OPT_print_std_module_manifest_path)) {
2230
llvm::outs() << GetStdModuleManifestPath(C, C.getDefaultToolChain())
2231
<< '\n';
2232
return false;
2233
}
2234
2235
if (C.getArgs().hasArg(options::OPT_print_runtime_dir)) {
2236
if (std::optional<std::string> RuntimePath = TC.getRuntimePath())
2237
llvm::outs() << *RuntimePath << '\n';
2238
else
2239
llvm::outs() << TC.getCompilerRTPath() << '\n';
2240
return false;
2241
}
2242
2243
if (C.getArgs().hasArg(options::OPT_print_diagnostic_options)) {
2244
std::vector<std::string> Flags = DiagnosticIDs::getDiagnosticFlags();
2245
for (std::size_t I = 0; I != Flags.size(); I += 2)
2246
llvm::outs() << " " << Flags[I] << "\n " << Flags[I + 1] << "\n\n";
2247
return false;
2248
}
2249
2250
// FIXME: The following handlers should use a callback mechanism, we don't
2251
// know what the client would like to do.
2252
if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
2253
llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
2254
return false;
2255
}
2256
2257
if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
2258
StringRef ProgName = A->getValue();
2259
2260
// Null program name cannot have a path.
2261
if (! ProgName.empty())
2262
llvm::outs() << GetProgramPath(ProgName, TC);
2263
2264
llvm::outs() << "\n";
2265
return false;
2266
}
2267
2268
if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
2269
StringRef PassedFlags = A->getValue();
2270
HandleAutocompletions(PassedFlags);
2271
return false;
2272
}
2273
2274
if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
2275
ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs());
2276
const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
2277
// The 'Darwin' toolchain is initialized only when its arguments are
2278
// computed. Get the default arguments for OFK_None to ensure that
2279
// initialization is performed before trying to access properties of
2280
// the toolchain in the functions below.
2281
// FIXME: Remove when darwin's toolchain is initialized during construction.
2282
// FIXME: For some more esoteric targets the default toolchain is not the
2283
// correct one.
2284
C.getArgsForToolChain(&TC, Triple.getArchName(), Action::OFK_None);
2285
RegisterEffectiveTriple TripleRAII(TC, Triple);
2286
switch (RLT) {
2287
case ToolChain::RLT_CompilerRT:
2288
llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
2289
break;
2290
case ToolChain::RLT_Libgcc:
2291
llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
2292
break;
2293
}
2294
return false;
2295
}
2296
2297
if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
2298
for (const Multilib &Multilib : TC.getMultilibs())
2299
llvm::outs() << Multilib << "\n";
2300
return false;
2301
}
2302
2303
if (C.getArgs().hasArg(options::OPT_print_multi_flags)) {
2304
Multilib::flags_list ArgFlags = TC.getMultilibFlags(C.getArgs());
2305
llvm::StringSet<> ExpandedFlags = TC.getMultilibs().expandFlags(ArgFlags);
2306
std::set<llvm::StringRef> SortedFlags;
2307
for (const auto &FlagEntry : ExpandedFlags)
2308
SortedFlags.insert(FlagEntry.getKey());
2309
for (auto Flag : SortedFlags)
2310
llvm::outs() << Flag << '\n';
2311
return false;
2312
}
2313
2314
if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
2315
for (const Multilib &Multilib : TC.getSelectedMultilibs()) {
2316
if (Multilib.gccSuffix().empty())
2317
llvm::outs() << ".\n";
2318
else {
2319
StringRef Suffix(Multilib.gccSuffix());
2320
assert(Suffix.front() == '/');
2321
llvm::outs() << Suffix.substr(1) << "\n";
2322
}
2323
}
2324
return false;
2325
}
2326
2327
if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
2328
llvm::outs() << TC.getTripleString() << "\n";
2329
return false;
2330
}
2331
2332
if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
2333
const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
2334
llvm::outs() << Triple.getTriple() << "\n";
2335
return false;
2336
}
2337
2338
if (C.getArgs().hasArg(options::OPT_print_targets)) {
2339
llvm::TargetRegistry::printRegisteredTargetsForVersion(llvm::outs());
2340
return false;
2341
}
2342
2343
return true;
2344
}
2345
2346
enum {
2347
TopLevelAction = 0,
2348
HeadSibAction = 1,
2349
OtherSibAction = 2,
2350
};
2351
2352
// Display an action graph human-readably. Action A is the "sink" node
2353
// and latest-occuring action. Traversal is in pre-order, visiting the
2354
// inputs to each action before printing the action itself.
2355
static unsigned PrintActions1(const Compilation &C, Action *A,
2356
std::map<Action *, unsigned> &Ids,
2357
Twine Indent = {}, int Kind = TopLevelAction) {
2358
if (Ids.count(A)) // A was already visited.
2359
return Ids[A];
2360
2361
std::string str;
2362
llvm::raw_string_ostream os(str);
2363
2364
auto getSibIndent = [](int K) -> Twine {
2365
return (K == HeadSibAction) ? " " : (K == OtherSibAction) ? "| " : "";
2366
};
2367
2368
Twine SibIndent = Indent + getSibIndent(Kind);
2369
int SibKind = HeadSibAction;
2370
os << Action::getClassName(A->getKind()) << ", ";
2371
if (InputAction *IA = dyn_cast<InputAction>(A)) {
2372
os << "\"" << IA->getInputArg().getValue() << "\"";
2373
} else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
2374
os << '"' << BIA->getArchName() << '"' << ", {"
2375
<< PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}";
2376
} else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
2377
bool IsFirst = true;
2378
OA->doOnEachDependence(
2379
[&](Action *A, const ToolChain *TC, const char *BoundArch) {
2380
assert(TC && "Unknown host toolchain");
2381
// E.g. for two CUDA device dependences whose bound arch is sm_20 and
2382
// sm_35 this will generate:
2383
// "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
2384
// (nvptx64-nvidia-cuda:sm_35) {#ID}
2385
if (!IsFirst)
2386
os << ", ";
2387
os << '"';
2388
os << A->getOffloadingKindPrefix();
2389
os << " (";
2390
os << TC->getTriple().normalize();
2391
if (BoundArch)
2392
os << ":" << BoundArch;
2393
os << ")";
2394
os << '"';
2395
os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}";
2396
IsFirst = false;
2397
SibKind = OtherSibAction;
2398
});
2399
} else {
2400
const ActionList *AL = &A->getInputs();
2401
2402
if (AL->size()) {
2403
const char *Prefix = "{";
2404
for (Action *PreRequisite : *AL) {
2405
os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind);
2406
Prefix = ", ";
2407
SibKind = OtherSibAction;
2408
}
2409
os << "}";
2410
} else
2411
os << "{}";
2412
}
2413
2414
// Append offload info for all options other than the offloading action
2415
// itself (e.g. (cuda-device, sm_20) or (cuda-host)).
2416
std::string offload_str;
2417
llvm::raw_string_ostream offload_os(offload_str);
2418
if (!isa<OffloadAction>(A)) {
2419
auto S = A->getOffloadingKindPrefix();
2420
if (!S.empty()) {
2421
offload_os << ", (" << S;
2422
if (A->getOffloadingArch())
2423
offload_os << ", " << A->getOffloadingArch();
2424
offload_os << ")";
2425
}
2426
}
2427
2428
auto getSelfIndent = [](int K) -> Twine {
2429
return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : "";
2430
};
2431
2432
unsigned Id = Ids.size();
2433
Ids[A] = Id;
2434
llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", "
2435
<< types::getTypeName(A->getType()) << offload_os.str() << "\n";
2436
2437
return Id;
2438
}
2439
2440
// Print the action graphs in a compilation C.
2441
// For example "clang -c file1.c file2.c" is composed of two subgraphs.
2442
void Driver::PrintActions(const Compilation &C) const {
2443
std::map<Action *, unsigned> Ids;
2444
for (Action *A : C.getActions())
2445
PrintActions1(C, A, Ids);
2446
}
2447
2448
/// Check whether the given input tree contains any compilation or
2449
/// assembly actions.
2450
static bool ContainsCompileOrAssembleAction(const Action *A) {
2451
if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
2452
isa<AssembleJobAction>(A))
2453
return true;
2454
2455
return llvm::any_of(A->inputs(), ContainsCompileOrAssembleAction);
2456
}
2457
2458
void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC,
2459
const InputList &BAInputs) const {
2460
DerivedArgList &Args = C.getArgs();
2461
ActionList &Actions = C.getActions();
2462
llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
2463
// Collect the list of architectures. Duplicates are allowed, but should only
2464
// be handled once (in the order seen).
2465
llvm::StringSet<> ArchNames;
2466
SmallVector<const char *, 4> Archs;
2467
for (Arg *A : Args) {
2468
if (A->getOption().matches(options::OPT_arch)) {
2469
// Validate the option here; we don't save the type here because its
2470
// particular spelling may participate in other driver choices.
2471
llvm::Triple::ArchType Arch =
2472
tools::darwin::getArchTypeForMachOArchName(A->getValue());
2473
if (Arch == llvm::Triple::UnknownArch) {
2474
Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
2475
continue;
2476
}
2477
2478
A->claim();
2479
if (ArchNames.insert(A->getValue()).second)
2480
Archs.push_back(A->getValue());
2481
}
2482
}
2483
2484
// When there is no explicit arch for this platform, make sure we still bind
2485
// the architecture (to the default) so that -Xarch_ is handled correctly.
2486
if (!Archs.size())
2487
Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
2488
2489
ActionList SingleActions;
2490
BuildActions(C, Args, BAInputs, SingleActions);
2491
2492
// Add in arch bindings for every top level action, as well as lipo and
2493
// dsymutil steps if needed.
2494
for (Action* Act : SingleActions) {
2495
// Make sure we can lipo this kind of output. If not (and it is an actual
2496
// output) then we disallow, since we can't create an output file with the
2497
// right name without overwriting it. We could remove this oddity by just
2498
// changing the output names to include the arch, which would also fix
2499
// -save-temps. Compatibility wins for now.
2500
2501
if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
2502
Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
2503
<< types::getTypeName(Act->getType());
2504
2505
ActionList Inputs;
2506
for (unsigned i = 0, e = Archs.size(); i != e; ++i)
2507
Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
2508
2509
// Lipo if necessary, we do it this way because we need to set the arch flag
2510
// so that -Xarch_ gets overwritten.
2511
if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
2512
Actions.append(Inputs.begin(), Inputs.end());
2513
else
2514
Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
2515
2516
// Handle debug info queries.
2517
Arg *A = Args.getLastArg(options::OPT_g_Group);
2518
bool enablesDebugInfo = A && !A->getOption().matches(options::OPT_g0) &&
2519
!A->getOption().matches(options::OPT_gstabs);
2520
if ((enablesDebugInfo || willEmitRemarks(Args)) &&
2521
ContainsCompileOrAssembleAction(Actions.back())) {
2522
2523
// Add a 'dsymutil' step if necessary, when debug info is enabled and we
2524
// have a compile input. We need to run 'dsymutil' ourselves in such cases
2525
// because the debug info will refer to a temporary object file which
2526
// will be removed at the end of the compilation process.
2527
if (Act->getType() == types::TY_Image) {
2528
ActionList Inputs;
2529
Inputs.push_back(Actions.back());
2530
Actions.pop_back();
2531
Actions.push_back(
2532
C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
2533
}
2534
2535
// Verify the debug info output.
2536
if (Args.hasArg(options::OPT_verify_debug_info)) {
2537
Action* LastAction = Actions.back();
2538
Actions.pop_back();
2539
Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
2540
LastAction, types::TY_Nothing));
2541
}
2542
}
2543
}
2544
}
2545
2546
bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value,
2547
types::ID Ty, bool TypoCorrect) const {
2548
if (!getCheckInputsExist())
2549
return true;
2550
2551
// stdin always exists.
2552
if (Value == "-")
2553
return true;
2554
2555
// If it's a header to be found in the system or user search path, then defer
2556
// complaints about its absence until those searches can be done. When we
2557
// are definitely processing headers for C++20 header units, extend this to
2558
// allow the user to put "-fmodule-header -xc++-header vector" for example.
2559
if (Ty == types::TY_CXXSHeader || Ty == types::TY_CXXUHeader ||
2560
(ModulesModeCXX20 && Ty == types::TY_CXXHeader))
2561
return true;
2562
2563
if (getVFS().exists(Value))
2564
return true;
2565
2566
if (TypoCorrect) {
2567
// Check if the filename is a typo for an option flag. OptTable thinks
2568
// that all args that are not known options and that start with / are
2569
// filenames, but e.g. `/diagnostic:caret` is more likely a typo for
2570
// the option `/diagnostics:caret` than a reference to a file in the root
2571
// directory.
2572
std::string Nearest;
2573
if (getOpts().findNearest(Value, Nearest, getOptionVisibilityMask()) <= 1) {
2574
Diag(clang::diag::err_drv_no_such_file_with_suggestion)
2575
<< Value << Nearest;
2576
return false;
2577
}
2578
}
2579
2580
// In CL mode, don't error on apparently non-existent linker inputs, because
2581
// they can be influenced by linker flags the clang driver might not
2582
// understand.
2583
// Examples:
2584
// - `clang-cl main.cc ole32.lib` in a non-MSVC shell will make the driver
2585
// module look for an MSVC installation in the registry. (We could ask
2586
// the MSVCToolChain object if it can find `ole32.lib`, but the logic to
2587
// look in the registry might move into lld-link in the future so that
2588
// lld-link invocations in non-MSVC shells just work too.)
2589
// - `clang-cl ... /link ...` can pass arbitrary flags to the linker,
2590
// including /libpath:, which is used to find .lib and .obj files.
2591
// So do not diagnose this on the driver level. Rely on the linker diagnosing
2592
// it. (If we don't end up invoking the linker, this means we'll emit a
2593
// "'linker' input unused [-Wunused-command-line-argument]" warning instead
2594
// of an error.)
2595
//
2596
// Only do this skip after the typo correction step above. `/Brepo` is treated
2597
// as TY_Object, but it's clearly a typo for `/Brepro`. It seems fine to emit
2598
// an error if we have a flag that's within an edit distance of 1 from a
2599
// flag. (Users can use `-Wl,` or `/linker` to launder the flag past the
2600
// driver in the unlikely case they run into this.)
2601
//
2602
// Don't do this for inputs that start with a '/', else we'd pass options
2603
// like /libpath: through to the linker silently.
2604
//
2605
// Emitting an error for linker inputs can also cause incorrect diagnostics
2606
// with the gcc driver. The command
2607
// clang -fuse-ld=lld -Wl,--chroot,some/dir /file.o
2608
// will make lld look for some/dir/file.o, while we will diagnose here that
2609
// `/file.o` does not exist. However, configure scripts check if
2610
// `clang /GR-` compiles without error to see if the compiler is cl.exe,
2611
// so we can't downgrade diagnostics for `/GR-` from an error to a warning
2612
// in cc mode. (We can in cl mode because cl.exe itself only warns on
2613
// unknown flags.)
2614
if (IsCLMode() && Ty == types::TY_Object && !Value.starts_with("/"))
2615
return true;
2616
2617
Diag(clang::diag::err_drv_no_such_file) << Value;
2618
return false;
2619
}
2620
2621
// Get the C++20 Header Unit type corresponding to the input type.
2622
static types::ID CXXHeaderUnitType(ModuleHeaderMode HM) {
2623
switch (HM) {
2624
case HeaderMode_User:
2625
return types::TY_CXXUHeader;
2626
case HeaderMode_System:
2627
return types::TY_CXXSHeader;
2628
case HeaderMode_Default:
2629
break;
2630
case HeaderMode_None:
2631
llvm_unreachable("should not be called in this case");
2632
}
2633
return types::TY_CXXHUHeader;
2634
}
2635
2636
// Construct a the list of inputs and their types.
2637
void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
2638
InputList &Inputs) const {
2639
const llvm::opt::OptTable &Opts = getOpts();
2640
// Track the current user specified (-x) input. We also explicitly track the
2641
// argument used to set the type; we only want to claim the type when we
2642
// actually use it, so we warn about unused -x arguments.
2643
types::ID InputType = types::TY_Nothing;
2644
Arg *InputTypeArg = nullptr;
2645
2646
// The last /TC or /TP option sets the input type to C or C++ globally.
2647
if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
2648
options::OPT__SLASH_TP)) {
2649
InputTypeArg = TCTP;
2650
InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
2651
? types::TY_C
2652
: types::TY_CXX;
2653
2654
Arg *Previous = nullptr;
2655
bool ShowNote = false;
2656
for (Arg *A :
2657
Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
2658
if (Previous) {
2659
Diag(clang::diag::warn_drv_overriding_option)
2660
<< Previous->getSpelling() << A->getSpelling();
2661
ShowNote = true;
2662
}
2663
Previous = A;
2664
}
2665
if (ShowNote)
2666
Diag(clang::diag::note_drv_t_option_is_global);
2667
}
2668
2669
// Warn -x after last input file has no effect
2670
{
2671
Arg *LastXArg = Args.getLastArgNoClaim(options::OPT_x);
2672
Arg *LastInputArg = Args.getLastArgNoClaim(options::OPT_INPUT);
2673
if (LastXArg && LastInputArg &&
2674
LastInputArg->getIndex() < LastXArg->getIndex())
2675
Diag(clang::diag::warn_drv_unused_x) << LastXArg->getValue();
2676
}
2677
2678
for (Arg *A : Args) {
2679
if (A->getOption().getKind() == Option::InputClass) {
2680
const char *Value = A->getValue();
2681
types::ID Ty = types::TY_INVALID;
2682
2683
// Infer the input type if necessary.
2684
if (InputType == types::TY_Nothing) {
2685
// If there was an explicit arg for this, claim it.
2686
if (InputTypeArg)
2687
InputTypeArg->claim();
2688
2689
// stdin must be handled specially.
2690
if (memcmp(Value, "-", 2) == 0) {
2691
if (IsFlangMode()) {
2692
Ty = types::TY_Fortran;
2693
} else if (IsDXCMode()) {
2694
Ty = types::TY_HLSL;
2695
} else {
2696
// If running with -E, treat as a C input (this changes the
2697
// builtin macros, for example). This may be overridden by -ObjC
2698
// below.
2699
//
2700
// Otherwise emit an error but still use a valid type to avoid
2701
// spurious errors (e.g., no inputs).
2702
assert(!CCGenDiagnostics && "stdin produces no crash reproducer");
2703
if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
2704
Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
2705
: clang::diag::err_drv_unknown_stdin_type);
2706
Ty = types::TY_C;
2707
}
2708
} else {
2709
// Otherwise lookup by extension.
2710
// Fallback is C if invoked as C preprocessor, C++ if invoked with
2711
// clang-cl /E, or Object otherwise.
2712
// We use a host hook here because Darwin at least has its own
2713
// idea of what .s is.
2714
if (const char *Ext = strrchr(Value, '.'))
2715
Ty = TC.LookupTypeForExtension(Ext + 1);
2716
2717
if (Ty == types::TY_INVALID) {
2718
if (IsCLMode() && (Args.hasArgNoClaim(options::OPT_E) || CCGenDiagnostics))
2719
Ty = types::TY_CXX;
2720
else if (CCCIsCPP() || CCGenDiagnostics)
2721
Ty = types::TY_C;
2722
else
2723
Ty = types::TY_Object;
2724
}
2725
2726
// If the driver is invoked as C++ compiler (like clang++ or c++) it
2727
// should autodetect some input files as C++ for g++ compatibility.
2728
if (CCCIsCXX()) {
2729
types::ID OldTy = Ty;
2730
Ty = types::lookupCXXTypeForCType(Ty);
2731
2732
// Do not complain about foo.h, when we are known to be processing
2733
// it as a C++20 header unit.
2734
if (Ty != OldTy && !(OldTy == types::TY_CHeader && hasHeaderMode()))
2735
Diag(clang::diag::warn_drv_treating_input_as_cxx)
2736
<< getTypeName(OldTy) << getTypeName(Ty);
2737
}
2738
2739
// If running with -fthinlto-index=, extensions that normally identify
2740
// native object files actually identify LLVM bitcode files.
2741
if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) &&
2742
Ty == types::TY_Object)
2743
Ty = types::TY_LLVM_BC;
2744
}
2745
2746
// -ObjC and -ObjC++ override the default language, but only for "source
2747
// files". We just treat everything that isn't a linker input as a
2748
// source file.
2749
//
2750
// FIXME: Clean this up if we move the phase sequence into the type.
2751
if (Ty != types::TY_Object) {
2752
if (Args.hasArg(options::OPT_ObjC))
2753
Ty = types::TY_ObjC;
2754
else if (Args.hasArg(options::OPT_ObjCXX))
2755
Ty = types::TY_ObjCXX;
2756
}
2757
2758
// Disambiguate headers that are meant to be header units from those
2759
// intended to be PCH. Avoid missing '.h' cases that are counted as
2760
// C headers by default - we know we are in C++ mode and we do not
2761
// want to issue a complaint about compiling things in the wrong mode.
2762
if ((Ty == types::TY_CXXHeader || Ty == types::TY_CHeader) &&
2763
hasHeaderMode())
2764
Ty = CXXHeaderUnitType(CXX20HeaderType);
2765
} else {
2766
assert(InputTypeArg && "InputType set w/o InputTypeArg");
2767
if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2768
// If emulating cl.exe, make sure that /TC and /TP don't affect input
2769
// object files.
2770
const char *Ext = strrchr(Value, '.');
2771
if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2772
Ty = types::TY_Object;
2773
}
2774
if (Ty == types::TY_INVALID) {
2775
Ty = InputType;
2776
InputTypeArg->claim();
2777
}
2778
}
2779
2780
if ((Ty == types::TY_C || Ty == types::TY_CXX) &&
2781
Args.hasArgNoClaim(options::OPT_hipstdpar))
2782
Ty = types::TY_HIP;
2783
2784
if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true))
2785
Inputs.push_back(std::make_pair(Ty, A));
2786
2787
} else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2788
StringRef Value = A->getValue();
2789
if (DiagnoseInputExistence(Args, Value, types::TY_C,
2790
/*TypoCorrect=*/false)) {
2791
Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2792
Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2793
}
2794
A->claim();
2795
} else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2796
StringRef Value = A->getValue();
2797
if (DiagnoseInputExistence(Args, Value, types::TY_CXX,
2798
/*TypoCorrect=*/false)) {
2799
Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2800
Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2801
}
2802
A->claim();
2803
} else if (A->getOption().hasFlag(options::LinkerInput)) {
2804
// Just treat as object type, we could make a special type for this if
2805
// necessary.
2806
Inputs.push_back(std::make_pair(types::TY_Object, A));
2807
2808
} else if (A->getOption().matches(options::OPT_x)) {
2809
InputTypeArg = A;
2810
InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2811
A->claim();
2812
2813
// Follow gcc behavior and treat as linker input for invalid -x
2814
// options. Its not clear why we shouldn't just revert to unknown; but
2815
// this isn't very important, we might as well be bug compatible.
2816
if (!InputType) {
2817
Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2818
InputType = types::TY_Object;
2819
}
2820
2821
// If the user has put -fmodule-header{,=} then we treat C++ headers as
2822
// header unit inputs. So we 'promote' -xc++-header appropriately.
2823
if (InputType == types::TY_CXXHeader && hasHeaderMode())
2824
InputType = CXXHeaderUnitType(CXX20HeaderType);
2825
} else if (A->getOption().getID() == options::OPT_U) {
2826
assert(A->getNumValues() == 1 && "The /U option has one value.");
2827
StringRef Val = A->getValue(0);
2828
if (Val.find_first_of("/\\") != StringRef::npos) {
2829
// Warn about e.g. "/Users/me/myfile.c".
2830
Diag(diag::warn_slash_u_filename) << Val;
2831
Diag(diag::note_use_dashdash);
2832
}
2833
}
2834
}
2835
if (CCCIsCPP() && Inputs.empty()) {
2836
// If called as standalone preprocessor, stdin is processed
2837
// if no other input is present.
2838
Arg *A = MakeInputArg(Args, Opts, "-");
2839
Inputs.push_back(std::make_pair(types::TY_C, A));
2840
}
2841
}
2842
2843
namespace {
2844
/// Provides a convenient interface for different programming models to generate
2845
/// the required device actions.
2846
class OffloadingActionBuilder final {
2847
/// Flag used to trace errors in the builder.
2848
bool IsValid = false;
2849
2850
/// The compilation that is using this builder.
2851
Compilation &C;
2852
2853
/// Map between an input argument and the offload kinds used to process it.
2854
std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2855
2856
/// Map between a host action and its originating input argument.
2857
std::map<Action *, const Arg *> HostActionToInputArgMap;
2858
2859
/// Builder interface. It doesn't build anything or keep any state.
2860
class DeviceActionBuilder {
2861
public:
2862
typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy;
2863
2864
enum ActionBuilderReturnCode {
2865
// The builder acted successfully on the current action.
2866
ABRT_Success,
2867
// The builder didn't have to act on the current action.
2868
ABRT_Inactive,
2869
// The builder was successful and requested the host action to not be
2870
// generated.
2871
ABRT_Ignore_Host,
2872
};
2873
2874
protected:
2875
/// Compilation associated with this builder.
2876
Compilation &C;
2877
2878
/// Tool chains associated with this builder. The same programming
2879
/// model may have associated one or more tool chains.
2880
SmallVector<const ToolChain *, 2> ToolChains;
2881
2882
/// The derived arguments associated with this builder.
2883
DerivedArgList &Args;
2884
2885
/// The inputs associated with this builder.
2886
const Driver::InputList &Inputs;
2887
2888
/// The associated offload kind.
2889
Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2890
2891
public:
2892
DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2893
const Driver::InputList &Inputs,
2894
Action::OffloadKind AssociatedOffloadKind)
2895
: C(C), Args(Args), Inputs(Inputs),
2896
AssociatedOffloadKind(AssociatedOffloadKind) {}
2897
virtual ~DeviceActionBuilder() {}
2898
2899
/// Fill up the array \a DA with all the device dependences that should be
2900
/// added to the provided host action \a HostAction. By default it is
2901
/// inactive.
2902
virtual ActionBuilderReturnCode
2903
getDeviceDependences(OffloadAction::DeviceDependences &DA,
2904
phases::ID CurPhase, phases::ID FinalPhase,
2905
PhasesTy &Phases) {
2906
return ABRT_Inactive;
2907
}
2908
2909
/// Update the state to include the provided host action \a HostAction as a
2910
/// dependency of the current device action. By default it is inactive.
2911
virtual ActionBuilderReturnCode addDeviceDependences(Action *HostAction) {
2912
return ABRT_Inactive;
2913
}
2914
2915
/// Append top level actions generated by the builder.
2916
virtual void appendTopLevelActions(ActionList &AL) {}
2917
2918
/// Append linker device actions generated by the builder.
2919
virtual void appendLinkDeviceActions(ActionList &AL) {}
2920
2921
/// Append linker host action generated by the builder.
2922
virtual Action* appendLinkHostActions(ActionList &AL) { return nullptr; }
2923
2924
/// Append linker actions generated by the builder.
2925
virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2926
2927
/// Initialize the builder. Return true if any initialization errors are
2928
/// found.
2929
virtual bool initialize() { return false; }
2930
2931
/// Return true if the builder can use bundling/unbundling.
2932
virtual bool canUseBundlerUnbundler() const { return false; }
2933
2934
/// Return true if this builder is valid. We have a valid builder if we have
2935
/// associated device tool chains.
2936
bool isValid() { return !ToolChains.empty(); }
2937
2938
/// Return the associated offload kind.
2939
Action::OffloadKind getAssociatedOffloadKind() {
2940
return AssociatedOffloadKind;
2941
}
2942
};
2943
2944
/// Base class for CUDA/HIP action builder. It injects device code in
2945
/// the host backend action.
2946
class CudaActionBuilderBase : public DeviceActionBuilder {
2947
protected:
2948
/// Flags to signal if the user requested host-only or device-only
2949
/// compilation.
2950
bool CompileHostOnly = false;
2951
bool CompileDeviceOnly = false;
2952
bool EmitLLVM = false;
2953
bool EmitAsm = false;
2954
2955
/// ID to identify each device compilation. For CUDA it is simply the
2956
/// GPU arch string. For HIP it is either the GPU arch string or GPU
2957
/// arch string plus feature strings delimited by a plus sign, e.g.
2958
/// gfx906+xnack.
2959
struct TargetID {
2960
/// Target ID string which is persistent throughout the compilation.
2961
const char *ID;
2962
TargetID(OffloadArch Arch) { ID = OffloadArchToString(Arch); }
2963
TargetID(const char *ID) : ID(ID) {}
2964
operator const char *() { return ID; }
2965
operator StringRef() { return StringRef(ID); }
2966
};
2967
/// List of GPU architectures to use in this compilation.
2968
SmallVector<TargetID, 4> GpuArchList;
2969
2970
/// The CUDA actions for the current input.
2971
ActionList CudaDeviceActions;
2972
2973
/// The CUDA fat binary if it was generated for the current input.
2974
Action *CudaFatBinary = nullptr;
2975
2976
/// Flag that is set to true if this builder acted on the current input.
2977
bool IsActive = false;
2978
2979
/// Flag for -fgpu-rdc.
2980
bool Relocatable = false;
2981
2982
/// Default GPU architecture if there's no one specified.
2983
OffloadArch DefaultOffloadArch = OffloadArch::UNKNOWN;
2984
2985
/// Method to generate compilation unit ID specified by option
2986
/// '-fuse-cuid='.
2987
enum UseCUIDKind { CUID_Hash, CUID_Random, CUID_None, CUID_Invalid };
2988
UseCUIDKind UseCUID = CUID_Hash;
2989
2990
/// Compilation unit ID specified by option '-cuid='.
2991
StringRef FixedCUID;
2992
2993
public:
2994
CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2995
const Driver::InputList &Inputs,
2996
Action::OffloadKind OFKind)
2997
: DeviceActionBuilder(C, Args, Inputs, OFKind) {
2998
2999
CompileDeviceOnly = C.getDriver().offloadDeviceOnly();
3000
Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
3001
options::OPT_fno_gpu_rdc, /*Default=*/false);
3002
}
3003
3004
ActionBuilderReturnCode addDeviceDependences(Action *HostAction) override {
3005
// While generating code for CUDA, we only depend on the host input action
3006
// to trigger the creation of all the CUDA device actions.
3007
3008
// If we are dealing with an input action, replicate it for each GPU
3009
// architecture. If we are in host-only mode we return 'success' so that
3010
// the host uses the CUDA offload kind.
3011
if (auto *IA = dyn_cast<InputAction>(HostAction)) {
3012
assert(!GpuArchList.empty() &&
3013
"We should have at least one GPU architecture.");
3014
3015
// If the host input is not CUDA or HIP, we don't need to bother about
3016
// this input.
3017
if (!(IA->getType() == types::TY_CUDA ||
3018
IA->getType() == types::TY_HIP ||
3019
IA->getType() == types::TY_PP_HIP)) {
3020
// The builder will ignore this input.
3021
IsActive = false;
3022
return ABRT_Inactive;
3023
}
3024
3025
// Set the flag to true, so that the builder acts on the current input.
3026
IsActive = true;
3027
3028
if (CompileHostOnly)
3029
return ABRT_Success;
3030
3031
// Replicate inputs for each GPU architecture.
3032
auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
3033
: types::TY_CUDA_DEVICE;
3034
std::string CUID = FixedCUID.str();
3035
if (CUID.empty()) {
3036
if (UseCUID == CUID_Random)
3037
CUID = llvm::utohexstr(llvm::sys::Process::GetRandomNumber(),
3038
/*LowerCase=*/true);
3039
else if (UseCUID == CUID_Hash) {
3040
llvm::MD5 Hasher;
3041
llvm::MD5::MD5Result Hash;
3042
SmallString<256> RealPath;
3043
llvm::sys::fs::real_path(IA->getInputArg().getValue(), RealPath,
3044
/*expand_tilde=*/true);
3045
Hasher.update(RealPath);
3046
for (auto *A : Args) {
3047
if (A->getOption().matches(options::OPT_INPUT))
3048
continue;
3049
Hasher.update(A->getAsString(Args));
3050
}
3051
Hasher.final(Hash);
3052
CUID = llvm::utohexstr(Hash.low(), /*LowerCase=*/true);
3053
}
3054
}
3055
IA->setId(CUID);
3056
3057
for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3058
CudaDeviceActions.push_back(
3059
C.MakeAction<InputAction>(IA->getInputArg(), Ty, IA->getId()));
3060
}
3061
3062
return ABRT_Success;
3063
}
3064
3065
// If this is an unbundling action use it as is for each CUDA toolchain.
3066
if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
3067
3068
// If -fgpu-rdc is disabled, should not unbundle since there is no
3069
// device code to link.
3070
if (UA->getType() == types::TY_Object && !Relocatable)
3071
return ABRT_Inactive;
3072
3073
CudaDeviceActions.clear();
3074
auto *IA = cast<InputAction>(UA->getInputs().back());
3075
std::string FileName = IA->getInputArg().getAsString(Args);
3076
// Check if the type of the file is the same as the action. Do not
3077
// unbundle it if it is not. Do not unbundle .so files, for example,
3078
// which are not object files. Files with extension ".lib" is classified
3079
// as TY_Object but they are actually archives, therefore should not be
3080
// unbundled here as objects. They will be handled at other places.
3081
const StringRef LibFileExt = ".lib";
3082
if (IA->getType() == types::TY_Object &&
3083
(!llvm::sys::path::has_extension(FileName) ||
3084
types::lookupTypeForExtension(
3085
llvm::sys::path::extension(FileName).drop_front()) !=
3086
types::TY_Object ||
3087
llvm::sys::path::extension(FileName) == LibFileExt))
3088
return ABRT_Inactive;
3089
3090
for (auto Arch : GpuArchList) {
3091
CudaDeviceActions.push_back(UA);
3092
UA->registerDependentActionInfo(ToolChains[0], Arch,
3093
AssociatedOffloadKind);
3094
}
3095
IsActive = true;
3096
return ABRT_Success;
3097
}
3098
3099
return IsActive ? ABRT_Success : ABRT_Inactive;
3100
}
3101
3102
void appendTopLevelActions(ActionList &AL) override {
3103
// Utility to append actions to the top level list.
3104
auto AddTopLevel = [&](Action *A, TargetID TargetID) {
3105
OffloadAction::DeviceDependences Dep;
3106
Dep.add(*A, *ToolChains.front(), TargetID, AssociatedOffloadKind);
3107
AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
3108
};
3109
3110
// If we have a fat binary, add it to the list.
3111
if (CudaFatBinary) {
3112
AddTopLevel(CudaFatBinary, OffloadArch::UNUSED);
3113
CudaDeviceActions.clear();
3114
CudaFatBinary = nullptr;
3115
return;
3116
}
3117
3118
if (CudaDeviceActions.empty())
3119
return;
3120
3121
// If we have CUDA actions at this point, that's because we have a have
3122
// partial compilation, so we should have an action for each GPU
3123
// architecture.
3124
assert(CudaDeviceActions.size() == GpuArchList.size() &&
3125
"Expecting one action per GPU architecture.");
3126
assert(ToolChains.size() == 1 &&
3127
"Expecting to have a single CUDA toolchain.");
3128
for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
3129
AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
3130
3131
CudaDeviceActions.clear();
3132
}
3133
3134
/// Get canonicalized offload arch option. \returns empty StringRef if the
3135
/// option is invalid.
3136
virtual StringRef getCanonicalOffloadArch(StringRef Arch) = 0;
3137
3138
virtual std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
3139
getConflictOffloadArchCombination(const std::set<StringRef> &GpuArchs) = 0;
3140
3141
bool initialize() override {
3142
assert(AssociatedOffloadKind == Action::OFK_Cuda ||
3143
AssociatedOffloadKind == Action::OFK_HIP);
3144
3145
// We don't need to support CUDA.
3146
if (AssociatedOffloadKind == Action::OFK_Cuda &&
3147
!C.hasOffloadToolChain<Action::OFK_Cuda>())
3148
return false;
3149
3150
// We don't need to support HIP.
3151
if (AssociatedOffloadKind == Action::OFK_HIP &&
3152
!C.hasOffloadToolChain<Action::OFK_HIP>())
3153
return false;
3154
3155
const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
3156
assert(HostTC && "No toolchain for host compilation.");
3157
if (HostTC->getTriple().isNVPTX() ||
3158
HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
3159
// We do not support targeting NVPTX/AMDGCN for host compilation. Throw
3160
// an error and abort pipeline construction early so we don't trip
3161
// asserts that assume device-side compilation.
3162
C.getDriver().Diag(diag::err_drv_cuda_host_arch)
3163
<< HostTC->getTriple().getArchName();
3164
return true;
3165
}
3166
3167
ToolChains.push_back(
3168
AssociatedOffloadKind == Action::OFK_Cuda
3169
? C.getSingleOffloadToolChain<Action::OFK_Cuda>()
3170
: C.getSingleOffloadToolChain<Action::OFK_HIP>());
3171
3172
CompileHostOnly = C.getDriver().offloadHostOnly();
3173
EmitLLVM = Args.getLastArg(options::OPT_emit_llvm);
3174
EmitAsm = Args.getLastArg(options::OPT_S);
3175
FixedCUID = Args.getLastArgValue(options::OPT_cuid_EQ);
3176
if (Arg *A = Args.getLastArg(options::OPT_fuse_cuid_EQ)) {
3177
StringRef UseCUIDStr = A->getValue();
3178
UseCUID = llvm::StringSwitch<UseCUIDKind>(UseCUIDStr)
3179
.Case("hash", CUID_Hash)
3180
.Case("random", CUID_Random)
3181
.Case("none", CUID_None)
3182
.Default(CUID_Invalid);
3183
if (UseCUID == CUID_Invalid) {
3184
C.getDriver().Diag(diag::err_drv_invalid_value)
3185
<< A->getAsString(Args) << UseCUIDStr;
3186
C.setContainsError();
3187
return true;
3188
}
3189
}
3190
3191
// --offload and --offload-arch options are mutually exclusive.
3192
if (Args.hasArgNoClaim(options::OPT_offload_EQ) &&
3193
Args.hasArgNoClaim(options::OPT_offload_arch_EQ,
3194
options::OPT_no_offload_arch_EQ)) {
3195
C.getDriver().Diag(diag::err_opt_not_valid_with_opt) << "--offload-arch"
3196
<< "--offload";
3197
}
3198
3199
// Collect all offload arch parameters, removing duplicates.
3200
std::set<StringRef> GpuArchs;
3201
bool Error = false;
3202
for (Arg *A : Args) {
3203
if (!(A->getOption().matches(options::OPT_offload_arch_EQ) ||
3204
A->getOption().matches(options::OPT_no_offload_arch_EQ)))
3205
continue;
3206
A->claim();
3207
3208
for (StringRef ArchStr : llvm::split(A->getValue(), ",")) {
3209
if (A->getOption().matches(options::OPT_no_offload_arch_EQ) &&
3210
ArchStr == "all") {
3211
GpuArchs.clear();
3212
} else if (ArchStr == "native") {
3213
const ToolChain &TC = *ToolChains.front();
3214
auto GPUsOrErr = ToolChains.front()->getSystemGPUArchs(Args);
3215
if (!GPUsOrErr) {
3216
TC.getDriver().Diag(diag::err_drv_undetermined_gpu_arch)
3217
<< llvm::Triple::getArchTypeName(TC.getArch())
3218
<< llvm::toString(GPUsOrErr.takeError()) << "--offload-arch";
3219
continue;
3220
}
3221
3222
for (auto GPU : *GPUsOrErr) {
3223
GpuArchs.insert(Args.MakeArgString(GPU));
3224
}
3225
} else {
3226
ArchStr = getCanonicalOffloadArch(ArchStr);
3227
if (ArchStr.empty()) {
3228
Error = true;
3229
} else if (A->getOption().matches(options::OPT_offload_arch_EQ))
3230
GpuArchs.insert(ArchStr);
3231
else if (A->getOption().matches(options::OPT_no_offload_arch_EQ))
3232
GpuArchs.erase(ArchStr);
3233
else
3234
llvm_unreachable("Unexpected option.");
3235
}
3236
}
3237
}
3238
3239
auto &&ConflictingArchs = getConflictOffloadArchCombination(GpuArchs);
3240
if (ConflictingArchs) {
3241
C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo)
3242
<< ConflictingArchs->first << ConflictingArchs->second;
3243
C.setContainsError();
3244
return true;
3245
}
3246
3247
// Collect list of GPUs remaining in the set.
3248
for (auto Arch : GpuArchs)
3249
GpuArchList.push_back(Arch.data());
3250
3251
// Default to sm_20 which is the lowest common denominator for
3252
// supported GPUs. sm_20 code should work correctly, if
3253
// suboptimally, on all newer GPUs.
3254
if (GpuArchList.empty()) {
3255
if (ToolChains.front()->getTriple().isSPIRV()) {
3256
if (ToolChains.front()->getTriple().getVendor() == llvm::Triple::AMD)
3257
GpuArchList.push_back(OffloadArch::AMDGCNSPIRV);
3258
else
3259
GpuArchList.push_back(OffloadArch::Generic);
3260
} else {
3261
GpuArchList.push_back(DefaultOffloadArch);
3262
}
3263
}
3264
3265
return Error;
3266
}
3267
};
3268
3269
/// \brief CUDA action builder. It injects device code in the host backend
3270
/// action.
3271
class CudaActionBuilder final : public CudaActionBuilderBase {
3272
public:
3273
CudaActionBuilder(Compilation &C, DerivedArgList &Args,
3274
const Driver::InputList &Inputs)
3275
: CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {
3276
DefaultOffloadArch = OffloadArch::CudaDefault;
3277
}
3278
3279
StringRef getCanonicalOffloadArch(StringRef ArchStr) override {
3280
OffloadArch Arch = StringToOffloadArch(ArchStr);
3281
if (Arch == OffloadArch::UNKNOWN || !IsNVIDIAOffloadArch(Arch)) {
3282
C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
3283
return StringRef();
3284
}
3285
return OffloadArchToString(Arch);
3286
}
3287
3288
std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
3289
getConflictOffloadArchCombination(
3290
const std::set<StringRef> &GpuArchs) override {
3291
return std::nullopt;
3292
}
3293
3294
ActionBuilderReturnCode
3295
getDeviceDependences(OffloadAction::DeviceDependences &DA,
3296
phases::ID CurPhase, phases::ID FinalPhase,
3297
PhasesTy &Phases) override {
3298
if (!IsActive)
3299
return ABRT_Inactive;
3300
3301
// If we don't have more CUDA actions, we don't have any dependences to
3302
// create for the host.
3303
if (CudaDeviceActions.empty())
3304
return ABRT_Success;
3305
3306
assert(CudaDeviceActions.size() == GpuArchList.size() &&
3307
"Expecting one action per GPU architecture.");
3308
assert(!CompileHostOnly &&
3309
"Not expecting CUDA actions in host-only compilation.");
3310
3311
// If we are generating code for the device or we are in a backend phase,
3312
// we attempt to generate the fat binary. We compile each arch to ptx and
3313
// assemble to cubin, then feed the cubin *and* the ptx into a device
3314
// "link" action, which uses fatbinary to combine these cubins into one
3315
// fatbin. The fatbin is then an input to the host action if not in
3316
// device-only mode.
3317
if (CompileDeviceOnly || CurPhase == phases::Backend) {
3318
ActionList DeviceActions;
3319
for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3320
// Produce the device action from the current phase up to the assemble
3321
// phase.
3322
for (auto Ph : Phases) {
3323
// Skip the phases that were already dealt with.
3324
if (Ph < CurPhase)
3325
continue;
3326
// We have to be consistent with the host final phase.
3327
if (Ph > FinalPhase)
3328
break;
3329
3330
CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
3331
C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
3332
3333
if (Ph == phases::Assemble)
3334
break;
3335
}
3336
3337
// If we didn't reach the assemble phase, we can't generate the fat
3338
// binary. We don't need to generate the fat binary if we are not in
3339
// device-only mode.
3340
if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
3341
CompileDeviceOnly)
3342
continue;
3343
3344
Action *AssembleAction = CudaDeviceActions[I];
3345
assert(AssembleAction->getType() == types::TY_Object);
3346
assert(AssembleAction->getInputs().size() == 1);
3347
3348
Action *BackendAction = AssembleAction->getInputs()[0];
3349
assert(BackendAction->getType() == types::TY_PP_Asm);
3350
3351
for (auto &A : {AssembleAction, BackendAction}) {
3352
OffloadAction::DeviceDependences DDep;
3353
DDep.add(*A, *ToolChains.front(), GpuArchList[I], Action::OFK_Cuda);
3354
DeviceActions.push_back(
3355
C.MakeAction<OffloadAction>(DDep, A->getType()));
3356
}
3357
}
3358
3359
// We generate the fat binary if we have device input actions.
3360
if (!DeviceActions.empty()) {
3361
CudaFatBinary =
3362
C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
3363
3364
if (!CompileDeviceOnly) {
3365
DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
3366
Action::OFK_Cuda);
3367
// Clear the fat binary, it is already a dependence to an host
3368
// action.
3369
CudaFatBinary = nullptr;
3370
}
3371
3372
// Remove the CUDA actions as they are already connected to an host
3373
// action or fat binary.
3374
CudaDeviceActions.clear();
3375
}
3376
3377
// We avoid creating host action in device-only mode.
3378
return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3379
} else if (CurPhase > phases::Backend) {
3380
// If we are past the backend phase and still have a device action, we
3381
// don't have to do anything as this action is already a device
3382
// top-level action.
3383
return ABRT_Success;
3384
}
3385
3386
assert(CurPhase < phases::Backend && "Generating single CUDA "
3387
"instructions should only occur "
3388
"before the backend phase!");
3389
3390
// By default, we produce an action for each device arch.
3391
for (Action *&A : CudaDeviceActions)
3392
A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
3393
3394
return ABRT_Success;
3395
}
3396
};
3397
/// \brief HIP action builder. It injects device code in the host backend
3398
/// action.
3399
class HIPActionBuilder final : public CudaActionBuilderBase {
3400
/// The linker inputs obtained for each device arch.
3401
SmallVector<ActionList, 8> DeviceLinkerInputs;
3402
// The default bundling behavior depends on the type of output, therefore
3403
// BundleOutput needs to be tri-value: None, true, or false.
3404
// Bundle code objects except --no-gpu-output is specified for device
3405
// only compilation. Bundle other type of output files only if
3406
// --gpu-bundle-output is specified for device only compilation.
3407
std::optional<bool> BundleOutput;
3408
std::optional<bool> EmitReloc;
3409
3410
public:
3411
HIPActionBuilder(Compilation &C, DerivedArgList &Args,
3412
const Driver::InputList &Inputs)
3413
: CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {
3414
3415
DefaultOffloadArch = OffloadArch::HIPDefault;
3416
3417
if (Args.hasArg(options::OPT_fhip_emit_relocatable,
3418
options::OPT_fno_hip_emit_relocatable)) {
3419
EmitReloc = Args.hasFlag(options::OPT_fhip_emit_relocatable,
3420
options::OPT_fno_hip_emit_relocatable, false);
3421
3422
if (*EmitReloc) {
3423
if (Relocatable) {
3424
C.getDriver().Diag(diag::err_opt_not_valid_with_opt)
3425
<< "-fhip-emit-relocatable"
3426
<< "-fgpu-rdc";
3427
}
3428
3429
if (!CompileDeviceOnly) {
3430
C.getDriver().Diag(diag::err_opt_not_valid_without_opt)
3431
<< "-fhip-emit-relocatable"
3432
<< "--cuda-device-only";
3433
}
3434
}
3435
}
3436
3437
if (Args.hasArg(options::OPT_gpu_bundle_output,
3438
options::OPT_no_gpu_bundle_output))
3439
BundleOutput = Args.hasFlag(options::OPT_gpu_bundle_output,
3440
options::OPT_no_gpu_bundle_output, true) &&
3441
(!EmitReloc || !*EmitReloc);
3442
}
3443
3444
bool canUseBundlerUnbundler() const override { return true; }
3445
3446
StringRef getCanonicalOffloadArch(StringRef IdStr) override {
3447
llvm::StringMap<bool> Features;
3448
// getHIPOffloadTargetTriple() is known to return valid value as it has
3449
// been called successfully in the CreateOffloadingDeviceToolChains().
3450
auto ArchStr = parseTargetID(
3451
*getHIPOffloadTargetTriple(C.getDriver(), C.getInputArgs()), IdStr,
3452
&Features);
3453
if (!ArchStr) {
3454
C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << IdStr;
3455
C.setContainsError();
3456
return StringRef();
3457
}
3458
auto CanId = getCanonicalTargetID(*ArchStr, Features);
3459
return Args.MakeArgStringRef(CanId);
3460
};
3461
3462
std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
3463
getConflictOffloadArchCombination(
3464
const std::set<StringRef> &GpuArchs) override {
3465
return getConflictTargetIDCombination(GpuArchs);
3466
}
3467
3468
ActionBuilderReturnCode
3469
getDeviceDependences(OffloadAction::DeviceDependences &DA,
3470
phases::ID CurPhase, phases::ID FinalPhase,
3471
PhasesTy &Phases) override {
3472
if (!IsActive)
3473
return ABRT_Inactive;
3474
3475
// amdgcn does not support linking of object files, therefore we skip
3476
// backend and assemble phases to output LLVM IR. Except for generating
3477
// non-relocatable device code, where we generate fat binary for device
3478
// code and pass to host in Backend phase.
3479
if (CudaDeviceActions.empty())
3480
return ABRT_Success;
3481
3482
assert(((CurPhase == phases::Link && Relocatable) ||
3483
CudaDeviceActions.size() == GpuArchList.size()) &&
3484
"Expecting one action per GPU architecture.");
3485
assert(!CompileHostOnly &&
3486
"Not expecting HIP actions in host-only compilation.");
3487
3488
bool ShouldLink = !EmitReloc || !*EmitReloc;
3489
3490
if (!Relocatable && CurPhase == phases::Backend && !EmitLLVM &&
3491
!EmitAsm && ShouldLink) {
3492
// If we are in backend phase, we attempt to generate the fat binary.
3493
// We compile each arch to IR and use a link action to generate code
3494
// object containing ISA. Then we use a special "link" action to create
3495
// a fat binary containing all the code objects for different GPU's.
3496
// The fat binary is then an input to the host action.
3497
for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3498
if (C.getDriver().isUsingLTO(/*IsOffload=*/true)) {
3499
// When LTO is enabled, skip the backend and assemble phases and
3500
// use lld to link the bitcode.
3501
ActionList AL;
3502
AL.push_back(CudaDeviceActions[I]);
3503
// Create a link action to link device IR with device library
3504
// and generate ISA.
3505
CudaDeviceActions[I] =
3506
C.MakeAction<LinkJobAction>(AL, types::TY_Image);
3507
} else {
3508
// When LTO is not enabled, we follow the conventional
3509
// compiler phases, including backend and assemble phases.
3510
ActionList AL;
3511
Action *BackendAction = nullptr;
3512
if (ToolChains.front()->getTriple().isSPIRV()) {
3513
// Emit LLVM bitcode for SPIR-V targets. SPIR-V device tool chain
3514
// (HIPSPVToolChain) runs post-link LLVM IR passes.
3515
types::ID Output = Args.hasArg(options::OPT_S)
3516
? types::TY_LLVM_IR
3517
: types::TY_LLVM_BC;
3518
BackendAction =
3519
C.MakeAction<BackendJobAction>(CudaDeviceActions[I], Output);
3520
} else
3521
BackendAction = C.getDriver().ConstructPhaseAction(
3522
C, Args, phases::Backend, CudaDeviceActions[I],
3523
AssociatedOffloadKind);
3524
auto AssembleAction = C.getDriver().ConstructPhaseAction(
3525
C, Args, phases::Assemble, BackendAction,
3526
AssociatedOffloadKind);
3527
AL.push_back(AssembleAction);
3528
// Create a link action to link device IR with device library
3529
// and generate ISA.
3530
CudaDeviceActions[I] =
3531
C.MakeAction<LinkJobAction>(AL, types::TY_Image);
3532
}
3533
3534
// OffloadingActionBuilder propagates device arch until an offload
3535
// action. Since the next action for creating fatbin does
3536
// not have device arch, whereas the above link action and its input
3537
// have device arch, an offload action is needed to stop the null
3538
// device arch of the next action being propagated to the above link
3539
// action.
3540
OffloadAction::DeviceDependences DDep;
3541
DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
3542
AssociatedOffloadKind);
3543
CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
3544
DDep, CudaDeviceActions[I]->getType());
3545
}
3546
3547
if (!CompileDeviceOnly || !BundleOutput || *BundleOutput) {
3548
// Create HIP fat binary with a special "link" action.
3549
CudaFatBinary = C.MakeAction<LinkJobAction>(CudaDeviceActions,
3550
types::TY_HIP_FATBIN);
3551
3552
if (!CompileDeviceOnly) {
3553
DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
3554
AssociatedOffloadKind);
3555
// Clear the fat binary, it is already a dependence to an host
3556
// action.
3557
CudaFatBinary = nullptr;
3558
}
3559
3560
// Remove the CUDA actions as they are already connected to an host
3561
// action or fat binary.
3562
CudaDeviceActions.clear();
3563
}
3564
3565
return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3566
} else if (CurPhase == phases::Link) {
3567
if (!ShouldLink)
3568
return ABRT_Success;
3569
// Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
3570
// This happens to each device action originated from each input file.
3571
// Later on, device actions in DeviceLinkerInputs are used to create
3572
// device link actions in appendLinkDependences and the created device
3573
// link actions are passed to the offload action as device dependence.
3574
DeviceLinkerInputs.resize(CudaDeviceActions.size());
3575
auto LI = DeviceLinkerInputs.begin();
3576
for (auto *A : CudaDeviceActions) {
3577
LI->push_back(A);
3578
++LI;
3579
}
3580
3581
// We will pass the device action as a host dependence, so we don't
3582
// need to do anything else with them.
3583
CudaDeviceActions.clear();
3584
return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3585
}
3586
3587
// By default, we produce an action for each device arch.
3588
for (Action *&A : CudaDeviceActions)
3589
A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
3590
AssociatedOffloadKind);
3591
3592
if (CompileDeviceOnly && CurPhase == FinalPhase && BundleOutput &&
3593
*BundleOutput) {
3594
for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3595
OffloadAction::DeviceDependences DDep;
3596
DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
3597
AssociatedOffloadKind);
3598
CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
3599
DDep, CudaDeviceActions[I]->getType());
3600
}
3601
CudaFatBinary =
3602
C.MakeAction<OffloadBundlingJobAction>(CudaDeviceActions);
3603
CudaDeviceActions.clear();
3604
}
3605
3606
return (CompileDeviceOnly &&
3607
(CurPhase == FinalPhase ||
3608
(!ShouldLink && CurPhase == phases::Assemble)))
3609
? ABRT_Ignore_Host
3610
: ABRT_Success;
3611
}
3612
3613
void appendLinkDeviceActions(ActionList &AL) override {
3614
if (DeviceLinkerInputs.size() == 0)
3615
return;
3616
3617
assert(DeviceLinkerInputs.size() == GpuArchList.size() &&
3618
"Linker inputs and GPU arch list sizes do not match.");
3619
3620
ActionList Actions;
3621
unsigned I = 0;
3622
// Append a new link action for each device.
3623
// Each entry in DeviceLinkerInputs corresponds to a GPU arch.
3624
for (auto &LI : DeviceLinkerInputs) {
3625
3626
types::ID Output = Args.hasArg(options::OPT_emit_llvm)
3627
? types::TY_LLVM_BC
3628
: types::TY_Image;
3629
3630
auto *DeviceLinkAction = C.MakeAction<LinkJobAction>(LI, Output);
3631
// Linking all inputs for the current GPU arch.
3632
// LI contains all the inputs for the linker.
3633
OffloadAction::DeviceDependences DeviceLinkDeps;
3634
DeviceLinkDeps.add(*DeviceLinkAction, *ToolChains[0],
3635
GpuArchList[I], AssociatedOffloadKind);
3636
Actions.push_back(C.MakeAction<OffloadAction>(
3637
DeviceLinkDeps, DeviceLinkAction->getType()));
3638
++I;
3639
}
3640
DeviceLinkerInputs.clear();
3641
3642
// If emitting LLVM, do not generate final host/device compilation action
3643
if (Args.hasArg(options::OPT_emit_llvm)) {
3644
AL.append(Actions);
3645
return;
3646
}
3647
3648
// Create a host object from all the device images by embedding them
3649
// in a fat binary for mixed host-device compilation. For device-only
3650
// compilation, creates a fat binary.
3651
OffloadAction::DeviceDependences DDeps;
3652
if (!CompileDeviceOnly || !BundleOutput || *BundleOutput) {
3653
auto *TopDeviceLinkAction = C.MakeAction<LinkJobAction>(
3654
Actions,
3655
CompileDeviceOnly ? types::TY_HIP_FATBIN : types::TY_Object);
3656
DDeps.add(*TopDeviceLinkAction, *ToolChains[0], nullptr,
3657
AssociatedOffloadKind);
3658
// Offload the host object to the host linker.
3659
AL.push_back(
3660
C.MakeAction<OffloadAction>(DDeps, TopDeviceLinkAction->getType()));
3661
} else {
3662
AL.append(Actions);
3663
}
3664
}
3665
3666
Action* appendLinkHostActions(ActionList &AL) override { return AL.back(); }
3667
3668
void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
3669
};
3670
3671
///
3672
/// TODO: Add the implementation for other specialized builders here.
3673
///
3674
3675
/// Specialized builders being used by this offloading action builder.
3676
SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
3677
3678
/// Flag set to true if all valid builders allow file bundling/unbundling.
3679
bool CanUseBundler;
3680
3681
public:
3682
OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
3683
const Driver::InputList &Inputs)
3684
: C(C) {
3685
// Create a specialized builder for each device toolchain.
3686
3687
IsValid = true;
3688
3689
// Create a specialized builder for CUDA.
3690
SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
3691
3692
// Create a specialized builder for HIP.
3693
SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
3694
3695
//
3696
// TODO: Build other specialized builders here.
3697
//
3698
3699
// Initialize all the builders, keeping track of errors. If all valid
3700
// builders agree that we can use bundling, set the flag to true.
3701
unsigned ValidBuilders = 0u;
3702
unsigned ValidBuildersSupportingBundling = 0u;
3703
for (auto *SB : SpecializedBuilders) {
3704
IsValid = IsValid && !SB->initialize();
3705
3706
// Update the counters if the builder is valid.
3707
if (SB->isValid()) {
3708
++ValidBuilders;
3709
if (SB->canUseBundlerUnbundler())
3710
++ValidBuildersSupportingBundling;
3711
}
3712
}
3713
CanUseBundler =
3714
ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
3715
}
3716
3717
~OffloadingActionBuilder() {
3718
for (auto *SB : SpecializedBuilders)
3719
delete SB;
3720
}
3721
3722
/// Record a host action and its originating input argument.
3723
void recordHostAction(Action *HostAction, const Arg *InputArg) {
3724
assert(HostAction && "Invalid host action");
3725
assert(InputArg && "Invalid input argument");
3726
auto Loc = HostActionToInputArgMap.find(HostAction);
3727
if (Loc == HostActionToInputArgMap.end())
3728
HostActionToInputArgMap[HostAction] = InputArg;
3729
assert(HostActionToInputArgMap[HostAction] == InputArg &&
3730
"host action mapped to multiple input arguments");
3731
}
3732
3733
/// Generate an action that adds device dependences (if any) to a host action.
3734
/// If no device dependence actions exist, just return the host action \a
3735
/// HostAction. If an error is found or if no builder requires the host action
3736
/// to be generated, return nullptr.
3737
Action *
3738
addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
3739
phases::ID CurPhase, phases::ID FinalPhase,
3740
DeviceActionBuilder::PhasesTy &Phases) {
3741
if (!IsValid)
3742
return nullptr;
3743
3744
if (SpecializedBuilders.empty())
3745
return HostAction;
3746
3747
assert(HostAction && "Invalid host action!");
3748
recordHostAction(HostAction, InputArg);
3749
3750
OffloadAction::DeviceDependences DDeps;
3751
// Check if all the programming models agree we should not emit the host
3752
// action. Also, keep track of the offloading kinds employed.
3753
auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3754
unsigned InactiveBuilders = 0u;
3755
unsigned IgnoringBuilders = 0u;
3756
for (auto *SB : SpecializedBuilders) {
3757
if (!SB->isValid()) {
3758
++InactiveBuilders;
3759
continue;
3760
}
3761
auto RetCode =
3762
SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
3763
3764
// If the builder explicitly says the host action should be ignored,
3765
// we need to increment the variable that tracks the builders that request
3766
// the host object to be ignored.
3767
if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
3768
++IgnoringBuilders;
3769
3770
// Unless the builder was inactive for this action, we have to record the
3771
// offload kind because the host will have to use it.
3772
if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3773
OffloadKind |= SB->getAssociatedOffloadKind();
3774
}
3775
3776
// If all builders agree that the host object should be ignored, just return
3777
// nullptr.
3778
if (IgnoringBuilders &&
3779
SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
3780
return nullptr;
3781
3782
if (DDeps.getActions().empty())
3783
return HostAction;
3784
3785
// We have dependences we need to bundle together. We use an offload action
3786
// for that.
3787
OffloadAction::HostDependence HDep(
3788
*HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3789
/*BoundArch=*/nullptr, DDeps);
3790
return C.MakeAction<OffloadAction>(HDep, DDeps);
3791
}
3792
3793
/// Generate an action that adds a host dependence to a device action. The
3794
/// results will be kept in this action builder. Return true if an error was
3795
/// found.
3796
bool addHostDependenceToDeviceActions(Action *&HostAction,
3797
const Arg *InputArg) {
3798
if (!IsValid)
3799
return true;
3800
3801
recordHostAction(HostAction, InputArg);
3802
3803
// If we are supporting bundling/unbundling and the current action is an
3804
// input action of non-source file, we replace the host action by the
3805
// unbundling action. The bundler tool has the logic to detect if an input
3806
// is a bundle or not and if the input is not a bundle it assumes it is a
3807
// host file. Therefore it is safe to create an unbundling action even if
3808
// the input is not a bundle.
3809
if (CanUseBundler && isa<InputAction>(HostAction) &&
3810
InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
3811
(!types::isSrcFile(HostAction->getType()) ||
3812
HostAction->getType() == types::TY_PP_HIP)) {
3813
auto UnbundlingHostAction =
3814
C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
3815
UnbundlingHostAction->registerDependentActionInfo(
3816
C.getSingleOffloadToolChain<Action::OFK_Host>(),
3817
/*BoundArch=*/StringRef(), Action::OFK_Host);
3818
HostAction = UnbundlingHostAction;
3819
recordHostAction(HostAction, InputArg);
3820
}
3821
3822
assert(HostAction && "Invalid host action!");
3823
3824
// Register the offload kinds that are used.
3825
auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3826
for (auto *SB : SpecializedBuilders) {
3827
if (!SB->isValid())
3828
continue;
3829
3830
auto RetCode = SB->addDeviceDependences(HostAction);
3831
3832
// Host dependences for device actions are not compatible with that same
3833
// action being ignored.
3834
assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
3835
"Host dependence not expected to be ignored.!");
3836
3837
// Unless the builder was inactive for this action, we have to record the
3838
// offload kind because the host will have to use it.
3839
if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3840
OffloadKind |= SB->getAssociatedOffloadKind();
3841
}
3842
3843
// Do not use unbundler if the Host does not depend on device action.
3844
if (OffloadKind == Action::OFK_None && CanUseBundler)
3845
if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction))
3846
HostAction = UA->getInputs().back();
3847
3848
return false;
3849
}
3850
3851
/// Add the offloading top level actions to the provided action list. This
3852
/// function can replace the host action by a bundling action if the
3853
/// programming models allow it.
3854
bool appendTopLevelActions(ActionList &AL, Action *HostAction,
3855
const Arg *InputArg) {
3856
if (HostAction)
3857
recordHostAction(HostAction, InputArg);
3858
3859
// Get the device actions to be appended.
3860
ActionList OffloadAL;
3861
for (auto *SB : SpecializedBuilders) {
3862
if (!SB->isValid())
3863
continue;
3864
SB->appendTopLevelActions(OffloadAL);
3865
}
3866
3867
// If we can use the bundler, replace the host action by the bundling one in
3868
// the resulting list. Otherwise, just append the device actions. For
3869
// device only compilation, HostAction is a null pointer, therefore only do
3870
// this when HostAction is not a null pointer.
3871
if (CanUseBundler && HostAction &&
3872
HostAction->getType() != types::TY_Nothing && !OffloadAL.empty()) {
3873
// Add the host action to the list in order to create the bundling action.
3874
OffloadAL.push_back(HostAction);
3875
3876
// We expect that the host action was just appended to the action list
3877
// before this method was called.
3878
assert(HostAction == AL.back() && "Host action not in the list??");
3879
HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
3880
recordHostAction(HostAction, InputArg);
3881
AL.back() = HostAction;
3882
} else
3883
AL.append(OffloadAL.begin(), OffloadAL.end());
3884
3885
// Propagate to the current host action (if any) the offload information
3886
// associated with the current input.
3887
if (HostAction)
3888
HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
3889
/*BoundArch=*/nullptr);
3890
return false;
3891
}
3892
3893
void appendDeviceLinkActions(ActionList &AL) {
3894
for (DeviceActionBuilder *SB : SpecializedBuilders) {
3895
if (!SB->isValid())
3896
continue;
3897
SB->appendLinkDeviceActions(AL);
3898
}
3899
}
3900
3901
Action *makeHostLinkAction() {
3902
// Build a list of device linking actions.
3903
ActionList DeviceAL;
3904
appendDeviceLinkActions(DeviceAL);
3905
if (DeviceAL.empty())
3906
return nullptr;
3907
3908
// Let builders add host linking actions.
3909
Action* HA = nullptr;
3910
for (DeviceActionBuilder *SB : SpecializedBuilders) {
3911
if (!SB->isValid())
3912
continue;
3913
HA = SB->appendLinkHostActions(DeviceAL);
3914
// This created host action has no originating input argument, therefore
3915
// needs to set its offloading kind directly.
3916
if (HA)
3917
HA->propagateHostOffloadInfo(SB->getAssociatedOffloadKind(),
3918
/*BoundArch=*/nullptr);
3919
}
3920
return HA;
3921
}
3922
3923
/// Processes the host linker action. This currently consists of replacing it
3924
/// with an offload action if there are device link objects and propagate to
3925
/// the host action all the offload kinds used in the current compilation. The
3926
/// resulting action is returned.
3927
Action *processHostLinkAction(Action *HostAction) {
3928
// Add all the dependences from the device linking actions.
3929
OffloadAction::DeviceDependences DDeps;
3930
for (auto *SB : SpecializedBuilders) {
3931
if (!SB->isValid())
3932
continue;
3933
3934
SB->appendLinkDependences(DDeps);
3935
}
3936
3937
// Calculate all the offload kinds used in the current compilation.
3938
unsigned ActiveOffloadKinds = 0u;
3939
for (auto &I : InputArgToOffloadKindMap)
3940
ActiveOffloadKinds |= I.second;
3941
3942
// If we don't have device dependencies, we don't have to create an offload
3943
// action.
3944
if (DDeps.getActions().empty()) {
3945
// Set all the active offloading kinds to the link action. Given that it
3946
// is a link action it is assumed to depend on all actions generated so
3947
// far.
3948
HostAction->setHostOffloadInfo(ActiveOffloadKinds,
3949
/*BoundArch=*/nullptr);
3950
// Propagate active offloading kinds for each input to the link action.
3951
// Each input may have different active offloading kind.
3952
for (auto *A : HostAction->inputs()) {
3953
auto ArgLoc = HostActionToInputArgMap.find(A);
3954
if (ArgLoc == HostActionToInputArgMap.end())
3955
continue;
3956
auto OFKLoc = InputArgToOffloadKindMap.find(ArgLoc->second);
3957
if (OFKLoc == InputArgToOffloadKindMap.end())
3958
continue;
3959
A->propagateHostOffloadInfo(OFKLoc->second, /*BoundArch=*/nullptr);
3960
}
3961
return HostAction;
3962
}
3963
3964
// Create the offload action with all dependences. When an offload action
3965
// is created the kinds are propagated to the host action, so we don't have
3966
// to do that explicitly here.
3967
OffloadAction::HostDependence HDep(
3968
*HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3969
/*BoundArch*/ nullptr, ActiveOffloadKinds);
3970
return C.MakeAction<OffloadAction>(HDep, DDeps);
3971
}
3972
};
3973
} // anonymous namespace.
3974
3975
void Driver::handleArguments(Compilation &C, DerivedArgList &Args,
3976
const InputList &Inputs,
3977
ActionList &Actions) const {
3978
3979
// Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
3980
Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
3981
Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
3982
if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
3983
Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
3984
Args.eraseArg(options::OPT__SLASH_Yc);
3985
Args.eraseArg(options::OPT__SLASH_Yu);
3986
YcArg = YuArg = nullptr;
3987
}
3988
if (YcArg && Inputs.size() > 1) {
3989
Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
3990
Args.eraseArg(options::OPT__SLASH_Yc);
3991
YcArg = nullptr;
3992
}
3993
3994
Arg *FinalPhaseArg;
3995
phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
3996
3997
if (FinalPhase == phases::Link) {
3998
if (Args.hasArgNoClaim(options::OPT_hipstdpar)) {
3999
Args.AddFlagArg(nullptr, getOpts().getOption(options::OPT_hip_link));
4000
Args.AddFlagArg(nullptr,
4001
getOpts().getOption(options::OPT_frtlib_add_rpath));
4002
}
4003
// Emitting LLVM while linking disabled except in HIPAMD Toolchain
4004
if (Args.hasArg(options::OPT_emit_llvm) && !Args.hasArg(options::OPT_hip_link))
4005
Diag(clang::diag::err_drv_emit_llvm_link);
4006
if (IsCLMode() && LTOMode != LTOK_None &&
4007
!Args.getLastArgValue(options::OPT_fuse_ld_EQ)
4008
.equals_insensitive("lld"))
4009
Diag(clang::diag::err_drv_lto_without_lld);
4010
4011
// If -dumpdir is not specified, give a default prefix derived from the link
4012
// output filename. For example, `clang -g -gsplit-dwarf a.c -o x` passes
4013
// `-dumpdir x-` to cc1. If -o is unspecified, use
4014
// stem(getDefaultImageName()) (usually stem("a.out") = "a").
4015
if (!Args.hasArg(options::OPT_dumpdir)) {
4016
Arg *FinalOutput = Args.getLastArg(options::OPT_o, options::OPT__SLASH_o);
4017
Arg *Arg = Args.MakeSeparateArg(
4018
nullptr, getOpts().getOption(options::OPT_dumpdir),
4019
Args.MakeArgString(
4020
(FinalOutput ? FinalOutput->getValue()
4021
: llvm::sys::path::stem(getDefaultImageName())) +
4022
"-"));
4023
Arg->claim();
4024
Args.append(Arg);
4025
}
4026
}
4027
4028
if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
4029
// If only preprocessing or /Y- is used, all pch handling is disabled.
4030
// Rather than check for it everywhere, just remove clang-cl pch-related
4031
// flags here.
4032
Args.eraseArg(options::OPT__SLASH_Fp);
4033
Args.eraseArg(options::OPT__SLASH_Yc);
4034
Args.eraseArg(options::OPT__SLASH_Yu);
4035
YcArg = YuArg = nullptr;
4036
}
4037
4038
unsigned LastPLSize = 0;
4039
for (auto &I : Inputs) {
4040
types::ID InputType = I.first;
4041
const Arg *InputArg = I.second;
4042
4043
auto PL = types::getCompilationPhases(InputType);
4044
LastPLSize = PL.size();
4045
4046
// If the first step comes after the final phase we are doing as part of
4047
// this compilation, warn the user about it.
4048
phases::ID InitialPhase = PL[0];
4049
if (InitialPhase > FinalPhase) {
4050
if (InputArg->isClaimed())
4051
continue;
4052
4053
// Claim here to avoid the more general unused warning.
4054
InputArg->claim();
4055
4056
// Suppress all unused style warnings with -Qunused-arguments
4057
if (Args.hasArg(options::OPT_Qunused_arguments))
4058
continue;
4059
4060
// Special case when final phase determined by binary name, rather than
4061
// by a command-line argument with a corresponding Arg.
4062
if (CCCIsCPP())
4063
Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
4064
<< InputArg->getAsString(Args) << getPhaseName(InitialPhase);
4065
// Special case '-E' warning on a previously preprocessed file to make
4066
// more sense.
4067
else if (InitialPhase == phases::Compile &&
4068
(Args.getLastArg(options::OPT__SLASH_EP,
4069
options::OPT__SLASH_P) ||
4070
Args.getLastArg(options::OPT_E) ||
4071
Args.getLastArg(options::OPT_M, options::OPT_MM)) &&
4072
getPreprocessedType(InputType) == types::TY_INVALID)
4073
Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
4074
<< InputArg->getAsString(Args) << !!FinalPhaseArg
4075
<< (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
4076
else
4077
Diag(clang::diag::warn_drv_input_file_unused)
4078
<< InputArg->getAsString(Args) << getPhaseName(InitialPhase)
4079
<< !!FinalPhaseArg
4080
<< (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
4081
continue;
4082
}
4083
4084
if (YcArg) {
4085
// Add a separate precompile phase for the compile phase.
4086
if (FinalPhase >= phases::Compile) {
4087
const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
4088
// Build the pipeline for the pch file.
4089
Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType);
4090
for (phases::ID Phase : types::getCompilationPhases(HeaderType))
4091
ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
4092
assert(ClangClPch);
4093
Actions.push_back(ClangClPch);
4094
// The driver currently exits after the first failed command. This
4095
// relies on that behavior, to make sure if the pch generation fails,
4096
// the main compilation won't run.
4097
// FIXME: If the main compilation fails, the PCH generation should
4098
// probably not be considered successful either.
4099
}
4100
}
4101
}
4102
4103
// If we are linking, claim any options which are obviously only used for
4104
// compilation.
4105
// FIXME: Understand why the last Phase List length is used here.
4106
if (FinalPhase == phases::Link && LastPLSize == 1) {
4107
Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
4108
Args.ClaimAllArgs(options::OPT_cl_compile_Group);
4109
}
4110
}
4111
4112
void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
4113
const InputList &Inputs, ActionList &Actions) const {
4114
llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
4115
4116
if (!SuppressMissingInputWarning && Inputs.empty()) {
4117
Diag(clang::diag::err_drv_no_input_files);
4118
return;
4119
}
4120
4121
// Diagnose misuse of /Fo.
4122
if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
4123
StringRef V = A->getValue();
4124
if (Inputs.size() > 1 && !V.empty() &&
4125
!llvm::sys::path::is_separator(V.back())) {
4126
// Check whether /Fo tries to name an output file for multiple inputs.
4127
Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
4128
<< A->getSpelling() << V;
4129
Args.eraseArg(options::OPT__SLASH_Fo);
4130
}
4131
}
4132
4133
// Diagnose misuse of /Fa.
4134
if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
4135
StringRef V = A->getValue();
4136
if (Inputs.size() > 1 && !V.empty() &&
4137
!llvm::sys::path::is_separator(V.back())) {
4138
// Check whether /Fa tries to name an asm file for multiple inputs.
4139
Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
4140
<< A->getSpelling() << V;
4141
Args.eraseArg(options::OPT__SLASH_Fa);
4142
}
4143
}
4144
4145
// Diagnose misuse of /o.
4146
if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
4147
if (A->getValue()[0] == '\0') {
4148
// It has to have a value.
4149
Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
4150
Args.eraseArg(options::OPT__SLASH_o);
4151
}
4152
}
4153
4154
handleArguments(C, Args, Inputs, Actions);
4155
4156
bool UseNewOffloadingDriver =
4157
C.isOffloadingHostKind(Action::OFK_OpenMP) ||
4158
Args.hasFlag(options::OPT_offload_new_driver,
4159
options::OPT_no_offload_new_driver, false);
4160
4161
// Builder to be used to build offloading actions.
4162
std::unique_ptr<OffloadingActionBuilder> OffloadBuilder =
4163
!UseNewOffloadingDriver
4164
? std::make_unique<OffloadingActionBuilder>(C, Args, Inputs)
4165
: nullptr;
4166
4167
// Construct the actions to perform.
4168
ExtractAPIJobAction *ExtractAPIAction = nullptr;
4169
ActionList LinkerInputs;
4170
ActionList MergerInputs;
4171
4172
for (auto &I : Inputs) {
4173
types::ID InputType = I.first;
4174
const Arg *InputArg = I.second;
4175
4176
auto PL = types::getCompilationPhases(*this, Args, InputType);
4177
if (PL.empty())
4178
continue;
4179
4180
auto FullPL = types::getCompilationPhases(InputType);
4181
4182
// Build the pipeline for this file.
4183
Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
4184
4185
// Use the current host action in any of the offloading actions, if
4186
// required.
4187
if (!UseNewOffloadingDriver)
4188
if (OffloadBuilder->addHostDependenceToDeviceActions(Current, InputArg))
4189
break;
4190
4191
for (phases::ID Phase : PL) {
4192
4193
// Add any offload action the host action depends on.
4194
if (!UseNewOffloadingDriver)
4195
Current = OffloadBuilder->addDeviceDependencesToHostAction(
4196
Current, InputArg, Phase, PL.back(), FullPL);
4197
if (!Current)
4198
break;
4199
4200
// Queue linker inputs.
4201
if (Phase == phases::Link) {
4202
assert(Phase == PL.back() && "linking must be final compilation step.");
4203
// We don't need to generate additional link commands if emitting AMD
4204
// bitcode or compiling only for the offload device
4205
if (!(C.getInputArgs().hasArg(options::OPT_hip_link) &&
4206
(C.getInputArgs().hasArg(options::OPT_emit_llvm))) &&
4207
!offloadDeviceOnly())
4208
LinkerInputs.push_back(Current);
4209
Current = nullptr;
4210
break;
4211
}
4212
4213
// TODO: Consider removing this because the merged may not end up being
4214
// the final Phase in the pipeline. Perhaps the merged could just merge
4215
// and then pass an artifact of some sort to the Link Phase.
4216
// Queue merger inputs.
4217
if (Phase == phases::IfsMerge) {
4218
assert(Phase == PL.back() && "merging must be final compilation step.");
4219
MergerInputs.push_back(Current);
4220
Current = nullptr;
4221
break;
4222
}
4223
4224
if (Phase == phases::Precompile && ExtractAPIAction) {
4225
ExtractAPIAction->addHeaderInput(Current);
4226
Current = nullptr;
4227
break;
4228
}
4229
4230
// FIXME: Should we include any prior module file outputs as inputs of
4231
// later actions in the same command line?
4232
4233
// Otherwise construct the appropriate action.
4234
Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
4235
4236
// We didn't create a new action, so we will just move to the next phase.
4237
if (NewCurrent == Current)
4238
continue;
4239
4240
if (auto *EAA = dyn_cast<ExtractAPIJobAction>(NewCurrent))
4241
ExtractAPIAction = EAA;
4242
4243
Current = NewCurrent;
4244
4245
// Try to build the offloading actions and add the result as a dependency
4246
// to the host.
4247
if (UseNewOffloadingDriver)
4248
Current = BuildOffloadingActions(C, Args, I, Current);
4249
// Use the current host action in any of the offloading actions, if
4250
// required.
4251
else if (OffloadBuilder->addHostDependenceToDeviceActions(Current,
4252
InputArg))
4253
break;
4254
4255
if (Current->getType() == types::TY_Nothing)
4256
break;
4257
}
4258
4259
// If we ended with something, add to the output list.
4260
if (Current)
4261
Actions.push_back(Current);
4262
4263
// Add any top level actions generated for offloading.
4264
if (!UseNewOffloadingDriver)
4265
OffloadBuilder->appendTopLevelActions(Actions, Current, InputArg);
4266
else if (Current)
4267
Current->propagateHostOffloadInfo(C.getActiveOffloadKinds(),
4268
/*BoundArch=*/nullptr);
4269
}
4270
4271
// Add a link action if necessary.
4272
4273
if (LinkerInputs.empty()) {
4274
Arg *FinalPhaseArg;
4275
if (getFinalPhase(Args, &FinalPhaseArg) == phases::Link)
4276
if (!UseNewOffloadingDriver)
4277
OffloadBuilder->appendDeviceLinkActions(Actions);
4278
}
4279
4280
if (!LinkerInputs.empty()) {
4281
if (!UseNewOffloadingDriver)
4282
if (Action *Wrapper = OffloadBuilder->makeHostLinkAction())
4283
LinkerInputs.push_back(Wrapper);
4284
Action *LA;
4285
// Check if this Linker Job should emit a static library.
4286
if (ShouldEmitStaticLibrary(Args)) {
4287
LA = C.MakeAction<StaticLibJobAction>(LinkerInputs, types::TY_Image);
4288
} else if (UseNewOffloadingDriver ||
4289
Args.hasArg(options::OPT_offload_link)) {
4290
LA = C.MakeAction<LinkerWrapperJobAction>(LinkerInputs, types::TY_Image);
4291
LA->propagateHostOffloadInfo(C.getActiveOffloadKinds(),
4292
/*BoundArch=*/nullptr);
4293
} else {
4294
LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
4295
}
4296
if (!UseNewOffloadingDriver)
4297
LA = OffloadBuilder->processHostLinkAction(LA);
4298
Actions.push_back(LA);
4299
}
4300
4301
// Add an interface stubs merge action if necessary.
4302
if (!MergerInputs.empty())
4303
Actions.push_back(
4304
C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
4305
4306
if (Args.hasArg(options::OPT_emit_interface_stubs)) {
4307
auto PhaseList = types::getCompilationPhases(
4308
types::TY_IFS_CPP,
4309
Args.hasArg(options::OPT_c) ? phases::Compile : phases::IfsMerge);
4310
4311
ActionList MergerInputs;
4312
4313
for (auto &I : Inputs) {
4314
types::ID InputType = I.first;
4315
const Arg *InputArg = I.second;
4316
4317
// Currently clang and the llvm assembler do not support generating symbol
4318
// stubs from assembly, so we skip the input on asm files. For ifs files
4319
// we rely on the normal pipeline setup in the pipeline setup code above.
4320
if (InputType == types::TY_IFS || InputType == types::TY_PP_Asm ||
4321
InputType == types::TY_Asm)
4322
continue;
4323
4324
Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
4325
4326
for (auto Phase : PhaseList) {
4327
switch (Phase) {
4328
default:
4329
llvm_unreachable(
4330
"IFS Pipeline can only consist of Compile followed by IfsMerge.");
4331
case phases::Compile: {
4332
// Only IfsMerge (llvm-ifs) can handle .o files by looking for ifs
4333
// files where the .o file is located. The compile action can not
4334
// handle this.
4335
if (InputType == types::TY_Object)
4336
break;
4337
4338
Current = C.MakeAction<CompileJobAction>(Current, types::TY_IFS_CPP);
4339
break;
4340
}
4341
case phases::IfsMerge: {
4342
assert(Phase == PhaseList.back() &&
4343
"merging must be final compilation step.");
4344
MergerInputs.push_back(Current);
4345
Current = nullptr;
4346
break;
4347
}
4348
}
4349
}
4350
4351
// If we ended with something, add to the output list.
4352
if (Current)
4353
Actions.push_back(Current);
4354
}
4355
4356
// Add an interface stubs merge action if necessary.
4357
if (!MergerInputs.empty())
4358
Actions.push_back(
4359
C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
4360
}
4361
4362
for (auto Opt : {options::OPT_print_supported_cpus,
4363
options::OPT_print_supported_extensions,
4364
options::OPT_print_enabled_extensions}) {
4365
// If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a
4366
// custom Compile phase that prints out supported cpu models and quits.
4367
//
4368
// If either --print-supported-extensions or --print-enabled-extensions is
4369
// specified, call the corresponding helper function that prints out the
4370
// supported/enabled extensions and quits.
4371
if (Arg *A = Args.getLastArg(Opt)) {
4372
if (Opt == options::OPT_print_supported_extensions &&
4373
!C.getDefaultToolChain().getTriple().isRISCV() &&
4374
!C.getDefaultToolChain().getTriple().isAArch64() &&
4375
!C.getDefaultToolChain().getTriple().isARM()) {
4376
C.getDriver().Diag(diag::err_opt_not_valid_on_target)
4377
<< "--print-supported-extensions";
4378
return;
4379
}
4380
if (Opt == options::OPT_print_enabled_extensions &&
4381
!C.getDefaultToolChain().getTriple().isRISCV() &&
4382
!C.getDefaultToolChain().getTriple().isAArch64()) {
4383
C.getDriver().Diag(diag::err_opt_not_valid_on_target)
4384
<< "--print-enabled-extensions";
4385
return;
4386
}
4387
4388
// Use the -mcpu=? flag as the dummy input to cc1.
4389
Actions.clear();
4390
Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C);
4391
Actions.push_back(
4392
C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing));
4393
for (auto &I : Inputs)
4394
I.second->claim();
4395
}
4396
}
4397
4398
// Call validator for dxil when -Vd not in Args.
4399
if (C.getDefaultToolChain().getTriple().isDXIL()) {
4400
// Only add action when needValidation.
4401
const auto &TC =
4402
static_cast<const toolchains::HLSLToolChain &>(C.getDefaultToolChain());
4403
if (TC.requiresValidation(Args)) {
4404
Action *LastAction = Actions.back();
4405
Actions.push_back(C.MakeAction<BinaryAnalyzeJobAction>(
4406
LastAction, types::TY_DX_CONTAINER));
4407
}
4408
}
4409
4410
// Claim ignored clang-cl options.
4411
Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
4412
}
4413
4414
/// Returns the canonical name for the offloading architecture when using a HIP
4415
/// or CUDA architecture.
4416
static StringRef getCanonicalArchString(Compilation &C,
4417
const llvm::opt::DerivedArgList &Args,
4418
StringRef ArchStr,
4419
const llvm::Triple &Triple,
4420
bool SuppressError = false) {
4421
// Lookup the CUDA / HIP architecture string. Only report an error if we were
4422
// expecting the triple to be only NVPTX / AMDGPU.
4423
OffloadArch Arch =
4424
StringToOffloadArch(getProcessorFromTargetID(Triple, ArchStr));
4425
if (!SuppressError && Triple.isNVPTX() &&
4426
(Arch == OffloadArch::UNKNOWN || !IsNVIDIAOffloadArch(Arch))) {
4427
C.getDriver().Diag(clang::diag::err_drv_offload_bad_gpu_arch)
4428
<< "CUDA" << ArchStr;
4429
return StringRef();
4430
} else if (!SuppressError && Triple.isAMDGPU() &&
4431
(Arch == OffloadArch::UNKNOWN || !IsAMDOffloadArch(Arch))) {
4432
C.getDriver().Diag(clang::diag::err_drv_offload_bad_gpu_arch)
4433
<< "HIP" << ArchStr;
4434
return StringRef();
4435
}
4436
4437
if (IsNVIDIAOffloadArch(Arch))
4438
return Args.MakeArgStringRef(OffloadArchToString(Arch));
4439
4440
if (IsAMDOffloadArch(Arch)) {
4441
llvm::StringMap<bool> Features;
4442
auto HIPTriple = getHIPOffloadTargetTriple(C.getDriver(), C.getInputArgs());
4443
if (!HIPTriple)
4444
return StringRef();
4445
auto Arch = parseTargetID(*HIPTriple, ArchStr, &Features);
4446
if (!Arch) {
4447
C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << ArchStr;
4448
C.setContainsError();
4449
return StringRef();
4450
}
4451
return Args.MakeArgStringRef(getCanonicalTargetID(*Arch, Features));
4452
}
4453
4454
// If the input isn't CUDA or HIP just return the architecture.
4455
return ArchStr;
4456
}
4457
4458
/// Checks if the set offloading architectures does not conflict. Returns the
4459
/// incompatible pair if a conflict occurs.
4460
static std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
4461
getConflictOffloadArchCombination(const llvm::DenseSet<StringRef> &Archs,
4462
llvm::Triple Triple) {
4463
if (!Triple.isAMDGPU())
4464
return std::nullopt;
4465
4466
std::set<StringRef> ArchSet;
4467
llvm::copy(Archs, std::inserter(ArchSet, ArchSet.begin()));
4468
return getConflictTargetIDCombination(ArchSet);
4469
}
4470
4471
llvm::DenseSet<StringRef>
4472
Driver::getOffloadArchs(Compilation &C, const llvm::opt::DerivedArgList &Args,
4473
Action::OffloadKind Kind, const ToolChain *TC,
4474
bool SuppressError) const {
4475
if (!TC)
4476
TC = &C.getDefaultToolChain();
4477
4478
// --offload and --offload-arch options are mutually exclusive.
4479
if (Args.hasArgNoClaim(options::OPT_offload_EQ) &&
4480
Args.hasArgNoClaim(options::OPT_offload_arch_EQ,
4481
options::OPT_no_offload_arch_EQ)) {
4482
C.getDriver().Diag(diag::err_opt_not_valid_with_opt)
4483
<< "--offload"
4484
<< (Args.hasArgNoClaim(options::OPT_offload_arch_EQ)
4485
? "--offload-arch"
4486
: "--no-offload-arch");
4487
}
4488
4489
if (KnownArchs.contains(TC))
4490
return KnownArchs.lookup(TC);
4491
4492
llvm::DenseSet<StringRef> Archs;
4493
for (auto *Arg : Args) {
4494
// Extract any '--[no-]offload-arch' arguments intended for this toolchain.
4495
std::unique_ptr<llvm::opt::Arg> ExtractedArg = nullptr;
4496
if (Arg->getOption().matches(options::OPT_Xopenmp_target_EQ) &&
4497
ToolChain::getOpenMPTriple(Arg->getValue(0)) == TC->getTriple()) {
4498
Arg->claim();
4499
unsigned Index = Args.getBaseArgs().MakeIndex(Arg->getValue(1));
4500
ExtractedArg = getOpts().ParseOneArg(Args, Index);
4501
Arg = ExtractedArg.get();
4502
}
4503
4504
// Add or remove the seen architectures in order of appearance. If an
4505
// invalid architecture is given we simply exit.
4506
if (Arg->getOption().matches(options::OPT_offload_arch_EQ)) {
4507
for (StringRef Arch : llvm::split(Arg->getValue(), ",")) {
4508
if (Arch == "native" || Arch.empty()) {
4509
auto GPUsOrErr = TC->getSystemGPUArchs(Args);
4510
if (!GPUsOrErr) {
4511
if (SuppressError)
4512
llvm::consumeError(GPUsOrErr.takeError());
4513
else
4514
TC->getDriver().Diag(diag::err_drv_undetermined_gpu_arch)
4515
<< llvm::Triple::getArchTypeName(TC->getArch())
4516
<< llvm::toString(GPUsOrErr.takeError()) << "--offload-arch";
4517
continue;
4518
}
4519
4520
for (auto ArchStr : *GPUsOrErr) {
4521
Archs.insert(
4522
getCanonicalArchString(C, Args, Args.MakeArgString(ArchStr),
4523
TC->getTriple(), SuppressError));
4524
}
4525
} else {
4526
StringRef ArchStr = getCanonicalArchString(
4527
C, Args, Arch, TC->getTriple(), SuppressError);
4528
if (ArchStr.empty())
4529
return Archs;
4530
Archs.insert(ArchStr);
4531
}
4532
}
4533
} else if (Arg->getOption().matches(options::OPT_no_offload_arch_EQ)) {
4534
for (StringRef Arch : llvm::split(Arg->getValue(), ",")) {
4535
if (Arch == "all") {
4536
Archs.clear();
4537
} else {
4538
StringRef ArchStr = getCanonicalArchString(
4539
C, Args, Arch, TC->getTriple(), SuppressError);
4540
if (ArchStr.empty())
4541
return Archs;
4542
Archs.erase(ArchStr);
4543
}
4544
}
4545
}
4546
}
4547
4548
if (auto ConflictingArchs =
4549
getConflictOffloadArchCombination(Archs, TC->getTriple())) {
4550
C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo)
4551
<< ConflictingArchs->first << ConflictingArchs->second;
4552
C.setContainsError();
4553
}
4554
4555
// Skip filling defaults if we're just querying what is availible.
4556
if (SuppressError)
4557
return Archs;
4558
4559
if (Archs.empty()) {
4560
if (Kind == Action::OFK_Cuda)
4561
Archs.insert(OffloadArchToString(OffloadArch::CudaDefault));
4562
else if (Kind == Action::OFK_HIP)
4563
Archs.insert(OffloadArchToString(OffloadArch::HIPDefault));
4564
else if (Kind == Action::OFK_OpenMP)
4565
Archs.insert(StringRef());
4566
} else {
4567
Args.ClaimAllArgs(options::OPT_offload_arch_EQ);
4568
Args.ClaimAllArgs(options::OPT_no_offload_arch_EQ);
4569
}
4570
4571
return Archs;
4572
}
4573
4574
Action *Driver::BuildOffloadingActions(Compilation &C,
4575
llvm::opt::DerivedArgList &Args,
4576
const InputTy &Input,
4577
Action *HostAction) const {
4578
// Don't build offloading actions if explicitly disabled or we do not have a
4579
// valid source input and compile action to embed it in. If preprocessing only
4580
// ignore embedding.
4581
if (offloadHostOnly() || !types::isSrcFile(Input.first) ||
4582
!(isa<CompileJobAction>(HostAction) ||
4583
getFinalPhase(Args) == phases::Preprocess))
4584
return HostAction;
4585
4586
ActionList OffloadActions;
4587
OffloadAction::DeviceDependences DDeps;
4588
4589
const Action::OffloadKind OffloadKinds[] = {
4590
Action::OFK_OpenMP, Action::OFK_Cuda, Action::OFK_HIP};
4591
4592
for (Action::OffloadKind Kind : OffloadKinds) {
4593
SmallVector<const ToolChain *, 2> ToolChains;
4594
ActionList DeviceActions;
4595
4596
auto TCRange = C.getOffloadToolChains(Kind);
4597
for (auto TI = TCRange.first, TE = TCRange.second; TI != TE; ++TI)
4598
ToolChains.push_back(TI->second);
4599
4600
if (ToolChains.empty())
4601
continue;
4602
4603
types::ID InputType = Input.first;
4604
const Arg *InputArg = Input.second;
4605
4606
// The toolchain can be active for unsupported file types.
4607
if ((Kind == Action::OFK_Cuda && !types::isCuda(InputType)) ||
4608
(Kind == Action::OFK_HIP && !types::isHIP(InputType)))
4609
continue;
4610
4611
// Get the product of all bound architectures and toolchains.
4612
SmallVector<std::pair<const ToolChain *, StringRef>> TCAndArchs;
4613
for (const ToolChain *TC : ToolChains) {
4614
llvm::DenseSet<StringRef> Arches = getOffloadArchs(C, Args, Kind, TC);
4615
SmallVector<StringRef, 0> Sorted(Arches.begin(), Arches.end());
4616
llvm::sort(Sorted);
4617
for (StringRef Arch : Sorted)
4618
TCAndArchs.push_back(std::make_pair(TC, Arch));
4619
}
4620
4621
for (unsigned I = 0, E = TCAndArchs.size(); I != E; ++I)
4622
DeviceActions.push_back(C.MakeAction<InputAction>(*InputArg, InputType));
4623
4624
if (DeviceActions.empty())
4625
return HostAction;
4626
4627
auto PL = types::getCompilationPhases(*this, Args, InputType);
4628
4629
for (phases::ID Phase : PL) {
4630
if (Phase == phases::Link) {
4631
assert(Phase == PL.back() && "linking must be final compilation step.");
4632
break;
4633
}
4634
4635
auto TCAndArch = TCAndArchs.begin();
4636
for (Action *&A : DeviceActions) {
4637
if (A->getType() == types::TY_Nothing)
4638
continue;
4639
4640
// Propagate the ToolChain so we can use it in ConstructPhaseAction.
4641
A->propagateDeviceOffloadInfo(Kind, TCAndArch->second.data(),
4642
TCAndArch->first);
4643
A = ConstructPhaseAction(C, Args, Phase, A, Kind);
4644
4645
if (isa<CompileJobAction>(A) && isa<CompileJobAction>(HostAction) &&
4646
Kind == Action::OFK_OpenMP &&
4647
HostAction->getType() != types::TY_Nothing) {
4648
// OpenMP offloading has a dependency on the host compile action to
4649
// identify which declarations need to be emitted. This shouldn't be
4650
// collapsed with any other actions so we can use it in the device.
4651
HostAction->setCannotBeCollapsedWithNextDependentAction();
4652
OffloadAction::HostDependence HDep(
4653
*HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4654
TCAndArch->second.data(), Kind);
4655
OffloadAction::DeviceDependences DDep;
4656
DDep.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4657
A = C.MakeAction<OffloadAction>(HDep, DDep);
4658
}
4659
4660
++TCAndArch;
4661
}
4662
}
4663
4664
// Compiling HIP in non-RDC mode requires linking each action individually.
4665
for (Action *&A : DeviceActions) {
4666
if ((A->getType() != types::TY_Object &&
4667
A->getType() != types::TY_LTO_BC) ||
4668
Kind != Action::OFK_HIP ||
4669
Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false))
4670
continue;
4671
ActionList LinkerInput = {A};
4672
A = C.MakeAction<LinkJobAction>(LinkerInput, types::TY_Image);
4673
}
4674
4675
auto TCAndArch = TCAndArchs.begin();
4676
for (Action *A : DeviceActions) {
4677
DDeps.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4678
OffloadAction::DeviceDependences DDep;
4679
DDep.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4680
4681
// Compiling CUDA in non-RDC mode uses the PTX output if available.
4682
for (Action *Input : A->getInputs())
4683
if (Kind == Action::OFK_Cuda && A->getType() == types::TY_Object &&
4684
!Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
4685
false))
4686
DDep.add(*Input, *TCAndArch->first, TCAndArch->second.data(), Kind);
4687
OffloadActions.push_back(C.MakeAction<OffloadAction>(DDep, A->getType()));
4688
4689
++TCAndArch;
4690
}
4691
}
4692
4693
// HIP code in non-RDC mode will bundle the output if it invoked the linker.
4694
bool ShouldBundleHIP =
4695
C.isOffloadingHostKind(Action::OFK_HIP) &&
4696
Args.hasFlag(options::OPT_gpu_bundle_output,
4697
options::OPT_no_gpu_bundle_output, true) &&
4698
!Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false) &&
4699
!llvm::any_of(OffloadActions,
4700
[](Action *A) { return A->getType() != types::TY_Image; });
4701
4702
// All kinds exit now in device-only mode except for non-RDC mode HIP.
4703
if (offloadDeviceOnly() && !ShouldBundleHIP)
4704
return C.MakeAction<OffloadAction>(DDeps, types::TY_Nothing);
4705
4706
if (OffloadActions.empty())
4707
return HostAction;
4708
4709
OffloadAction::DeviceDependences DDep;
4710
if (C.isOffloadingHostKind(Action::OFK_Cuda) &&
4711
!Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false)) {
4712
// If we are not in RDC-mode we just emit the final CUDA fatbinary for
4713
// each translation unit without requiring any linking.
4714
Action *FatbinAction =
4715
C.MakeAction<LinkJobAction>(OffloadActions, types::TY_CUDA_FATBIN);
4716
DDep.add(*FatbinAction, *C.getSingleOffloadToolChain<Action::OFK_Cuda>(),
4717
nullptr, Action::OFK_Cuda);
4718
} else if (C.isOffloadingHostKind(Action::OFK_HIP) &&
4719
!Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
4720
false)) {
4721
// If we are not in RDC-mode we just emit the final HIP fatbinary for each
4722
// translation unit, linking each input individually.
4723
Action *FatbinAction =
4724
C.MakeAction<LinkJobAction>(OffloadActions, types::TY_HIP_FATBIN);
4725
DDep.add(*FatbinAction, *C.getSingleOffloadToolChain<Action::OFK_HIP>(),
4726
nullptr, Action::OFK_HIP);
4727
} else {
4728
// Package all the offloading actions into a single output that can be
4729
// embedded in the host and linked.
4730
Action *PackagerAction =
4731
C.MakeAction<OffloadPackagerJobAction>(OffloadActions, types::TY_Image);
4732
DDep.add(*PackagerAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4733
nullptr, C.getActiveOffloadKinds());
4734
}
4735
4736
// HIP wants '--offload-device-only' to create a fatbinary by default.
4737
if (offloadDeviceOnly())
4738
return C.MakeAction<OffloadAction>(DDep, types::TY_Nothing);
4739
4740
// If we are unable to embed a single device output into the host, we need to
4741
// add each device output as a host dependency to ensure they are still built.
4742
bool SingleDeviceOutput = !llvm::any_of(OffloadActions, [](Action *A) {
4743
return A->getType() == types::TY_Nothing;
4744
}) && isa<CompileJobAction>(HostAction);
4745
OffloadAction::HostDependence HDep(
4746
*HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4747
/*BoundArch=*/nullptr, SingleDeviceOutput ? DDep : DDeps);
4748
return C.MakeAction<OffloadAction>(HDep, SingleDeviceOutput ? DDep : DDeps);
4749
}
4750
4751
Action *Driver::ConstructPhaseAction(
4752
Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
4753
Action::OffloadKind TargetDeviceOffloadKind) const {
4754
llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
4755
4756
// Some types skip the assembler phase (e.g., llvm-bc), but we can't
4757
// encode this in the steps because the intermediate type depends on
4758
// arguments. Just special case here.
4759
if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
4760
return Input;
4761
4762
// Build the appropriate action.
4763
switch (Phase) {
4764
case phases::Link:
4765
llvm_unreachable("link action invalid here.");
4766
case phases::IfsMerge:
4767
llvm_unreachable("ifsmerge action invalid here.");
4768
case phases::Preprocess: {
4769
types::ID OutputTy;
4770
// -M and -MM specify the dependency file name by altering the output type,
4771
// -if -MD and -MMD are not specified.
4772
if (Args.hasArg(options::OPT_M, options::OPT_MM) &&
4773
!Args.hasArg(options::OPT_MD, options::OPT_MMD)) {
4774
OutputTy = types::TY_Dependencies;
4775
} else {
4776
OutputTy = Input->getType();
4777
// For these cases, the preprocessor is only translating forms, the Output
4778
// still needs preprocessing.
4779
if (!Args.hasFlag(options::OPT_frewrite_includes,
4780
options::OPT_fno_rewrite_includes, false) &&
4781
!Args.hasFlag(options::OPT_frewrite_imports,
4782
options::OPT_fno_rewrite_imports, false) &&
4783
!Args.hasFlag(options::OPT_fdirectives_only,
4784
options::OPT_fno_directives_only, false) &&
4785
!CCGenDiagnostics)
4786
OutputTy = types::getPreprocessedType(OutputTy);
4787
assert(OutputTy != types::TY_INVALID &&
4788
"Cannot preprocess this input type!");
4789
}
4790
return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
4791
}
4792
case phases::Precompile: {
4793
// API extraction should not generate an actual precompilation action.
4794
if (Args.hasArg(options::OPT_extract_api))
4795
return C.MakeAction<ExtractAPIJobAction>(Input, types::TY_API_INFO);
4796
4797
// With 'fexperimental-modules-reduced-bmi', we don't want to run the
4798
// precompile phase unless the user specified '--precompile'. In the case
4799
// the '--precompile' flag is enabled, we will try to emit the reduced BMI
4800
// as a by product in GenerateModuleInterfaceAction.
4801
if (Args.hasArg(options::OPT_modules_reduced_bmi) &&
4802
!Args.getLastArg(options::OPT__precompile))
4803
return Input;
4804
4805
types::ID OutputTy = getPrecompiledType(Input->getType());
4806
assert(OutputTy != types::TY_INVALID &&
4807
"Cannot precompile this input type!");
4808
4809
// If we're given a module name, precompile header file inputs as a
4810
// module, not as a precompiled header.
4811
const char *ModName = nullptr;
4812
if (OutputTy == types::TY_PCH) {
4813
if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
4814
ModName = A->getValue();
4815
if (ModName)
4816
OutputTy = types::TY_ModuleFile;
4817
}
4818
4819
if (Args.hasArg(options::OPT_fsyntax_only)) {
4820
// Syntax checks should not emit a PCH file
4821
OutputTy = types::TY_Nothing;
4822
}
4823
4824
return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
4825
}
4826
case phases::Compile: {
4827
if (Args.hasArg(options::OPT_fsyntax_only))
4828
return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
4829
if (Args.hasArg(options::OPT_rewrite_objc))
4830
return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
4831
if (Args.hasArg(options::OPT_rewrite_legacy_objc))
4832
return C.MakeAction<CompileJobAction>(Input,
4833
types::TY_RewrittenLegacyObjC);
4834
if (Args.hasArg(options::OPT__analyze))
4835
return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
4836
if (Args.hasArg(options::OPT__migrate))
4837
return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
4838
if (Args.hasArg(options::OPT_emit_ast))
4839
return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
4840
if (Args.hasArg(options::OPT_emit_cir))
4841
return C.MakeAction<CompileJobAction>(Input, types::TY_CIR);
4842
if (Args.hasArg(options::OPT_module_file_info))
4843
return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
4844
if (Args.hasArg(options::OPT_verify_pch))
4845
return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
4846
if (Args.hasArg(options::OPT_extract_api))
4847
return C.MakeAction<ExtractAPIJobAction>(Input, types::TY_API_INFO);
4848
return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
4849
}
4850
case phases::Backend: {
4851
if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
4852
types::ID Output;
4853
if (Args.hasArg(options::OPT_ffat_lto_objects) &&
4854
!Args.hasArg(options::OPT_emit_llvm))
4855
Output = types::TY_PP_Asm;
4856
else if (Args.hasArg(options::OPT_S))
4857
Output = types::TY_LTO_IR;
4858
else
4859
Output = types::TY_LTO_BC;
4860
return C.MakeAction<BackendJobAction>(Input, Output);
4861
}
4862
if (isUsingLTO(/* IsOffload */ true) &&
4863
TargetDeviceOffloadKind != Action::OFK_None) {
4864
types::ID Output =
4865
Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
4866
return C.MakeAction<BackendJobAction>(Input, Output);
4867
}
4868
if (Args.hasArg(options::OPT_emit_llvm) ||
4869
(((Input->getOffloadingToolChain() &&
4870
Input->getOffloadingToolChain()->getTriple().isAMDGPU()) ||
4871
TargetDeviceOffloadKind == Action::OFK_HIP) &&
4872
(Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
4873
false) ||
4874
TargetDeviceOffloadKind == Action::OFK_OpenMP))) {
4875
types::ID Output =
4876
Args.hasArg(options::OPT_S) &&
4877
(TargetDeviceOffloadKind == Action::OFK_None ||
4878
offloadDeviceOnly() ||
4879
(TargetDeviceOffloadKind == Action::OFK_HIP &&
4880
!Args.hasFlag(options::OPT_offload_new_driver,
4881
options::OPT_no_offload_new_driver, false)))
4882
? types::TY_LLVM_IR
4883
: types::TY_LLVM_BC;
4884
return C.MakeAction<BackendJobAction>(Input, Output);
4885
}
4886
return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
4887
}
4888
case phases::Assemble:
4889
return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
4890
}
4891
4892
llvm_unreachable("invalid phase in ConstructPhaseAction");
4893
}
4894
4895
void Driver::BuildJobs(Compilation &C) const {
4896
llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
4897
4898
Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
4899
4900
// It is an error to provide a -o option if we are making multiple output
4901
// files. There are exceptions:
4902
//
4903
// IfsMergeJob: when generating interface stubs enabled we want to be able to
4904
// generate the stub file at the same time that we generate the real
4905
// library/a.out. So when a .o, .so, etc are the output, with clang interface
4906
// stubs there will also be a .ifs and .ifso at the same location.
4907
//
4908
// CompileJob of type TY_IFS_CPP: when generating interface stubs is enabled
4909
// and -c is passed, we still want to be able to generate a .ifs file while
4910
// we are also generating .o files. So we allow more than one output file in
4911
// this case as well.
4912
//
4913
// OffloadClass of type TY_Nothing: device-only output will place many outputs
4914
// into a single offloading action. We should count all inputs to the action
4915
// as outputs. Also ignore device-only outputs if we're compiling with
4916
// -fsyntax-only.
4917
if (FinalOutput) {
4918
unsigned NumOutputs = 0;
4919
unsigned NumIfsOutputs = 0;
4920
for (const Action *A : C.getActions()) {
4921
if (A->getType() != types::TY_Nothing &&
4922
A->getType() != types::TY_DX_CONTAINER &&
4923
!(A->getKind() == Action::IfsMergeJobClass ||
4924
(A->getType() == clang::driver::types::TY_IFS_CPP &&
4925
A->getKind() == clang::driver::Action::CompileJobClass &&
4926
0 == NumIfsOutputs++) ||
4927
(A->getKind() == Action::BindArchClass && A->getInputs().size() &&
4928
A->getInputs().front()->getKind() == Action::IfsMergeJobClass)))
4929
++NumOutputs;
4930
else if (A->getKind() == Action::OffloadClass &&
4931
A->getType() == types::TY_Nothing &&
4932
!C.getArgs().hasArg(options::OPT_fsyntax_only))
4933
NumOutputs += A->size();
4934
}
4935
4936
if (NumOutputs > 1) {
4937
Diag(clang::diag::err_drv_output_argument_with_multiple_files);
4938
FinalOutput = nullptr;
4939
}
4940
}
4941
4942
const llvm::Triple &RawTriple = C.getDefaultToolChain().getTriple();
4943
4944
// Collect the list of architectures.
4945
llvm::StringSet<> ArchNames;
4946
if (RawTriple.isOSBinFormatMachO())
4947
for (const Arg *A : C.getArgs())
4948
if (A->getOption().matches(options::OPT_arch))
4949
ArchNames.insert(A->getValue());
4950
4951
// Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
4952
std::map<std::pair<const Action *, std::string>, InputInfoList> CachedResults;
4953
for (Action *A : C.getActions()) {
4954
// If we are linking an image for multiple archs then the linker wants
4955
// -arch_multiple and -final_output <final image name>. Unfortunately, this
4956
// doesn't fit in cleanly because we have to pass this information down.
4957
//
4958
// FIXME: This is a hack; find a cleaner way to integrate this into the
4959
// process.
4960
const char *LinkingOutput = nullptr;
4961
if (isa<LipoJobAction>(A)) {
4962
if (FinalOutput)
4963
LinkingOutput = FinalOutput->getValue();
4964
else
4965
LinkingOutput = getDefaultImageName();
4966
}
4967
4968
BuildJobsForAction(C, A, &C.getDefaultToolChain(),
4969
/*BoundArch*/ StringRef(),
4970
/*AtTopLevel*/ true,
4971
/*MultipleArchs*/ ArchNames.size() > 1,
4972
/*LinkingOutput*/ LinkingOutput, CachedResults,
4973
/*TargetDeviceOffloadKind*/ Action::OFK_None);
4974
}
4975
4976
// If we have more than one job, then disable integrated-cc1 for now. Do this
4977
// also when we need to report process execution statistics.
4978
if (C.getJobs().size() > 1 || CCPrintProcessStats)
4979
for (auto &J : C.getJobs())
4980
J.InProcess = false;
4981
4982
if (CCPrintProcessStats) {
4983
C.setPostCallback([=](const Command &Cmd, int Res) {
4984
std::optional<llvm::sys::ProcessStatistics> ProcStat =
4985
Cmd.getProcessStatistics();
4986
if (!ProcStat)
4987
return;
4988
4989
const char *LinkingOutput = nullptr;
4990
if (FinalOutput)
4991
LinkingOutput = FinalOutput->getValue();
4992
else if (!Cmd.getOutputFilenames().empty())
4993
LinkingOutput = Cmd.getOutputFilenames().front().c_str();
4994
else
4995
LinkingOutput = getDefaultImageName();
4996
4997
if (CCPrintStatReportFilename.empty()) {
4998
using namespace llvm;
4999
// Human readable output.
5000
outs() << sys::path::filename(Cmd.getExecutable()) << ": "
5001
<< "output=" << LinkingOutput;
5002
outs() << ", total="
5003
<< format("%.3f", ProcStat->TotalTime.count() / 1000.) << " ms"
5004
<< ", user="
5005
<< format("%.3f", ProcStat->UserTime.count() / 1000.) << " ms"
5006
<< ", mem=" << ProcStat->PeakMemory << " Kb\n";
5007
} else {
5008
// CSV format.
5009
std::string Buffer;
5010
llvm::raw_string_ostream Out(Buffer);
5011
llvm::sys::printArg(Out, llvm::sys::path::filename(Cmd.getExecutable()),
5012
/*Quote*/ true);
5013
Out << ',';
5014
llvm::sys::printArg(Out, LinkingOutput, true);
5015
Out << ',' << ProcStat->TotalTime.count() << ','
5016
<< ProcStat->UserTime.count() << ',' << ProcStat->PeakMemory
5017
<< '\n';
5018
Out.flush();
5019
std::error_code EC;
5020
llvm::raw_fd_ostream OS(CCPrintStatReportFilename, EC,
5021
llvm::sys::fs::OF_Append |
5022
llvm::sys::fs::OF_Text);
5023
if (EC)
5024
return;
5025
auto L = OS.lock();
5026
if (!L) {
5027
llvm::errs() << "ERROR: Cannot lock file "
5028
<< CCPrintStatReportFilename << ": "
5029
<< toString(L.takeError()) << "\n";
5030
return;
5031
}
5032
OS << Buffer;
5033
OS.flush();
5034
}
5035
});
5036
}
5037
5038
// If the user passed -Qunused-arguments or there were errors, don't warn
5039
// about any unused arguments.
5040
if (Diags.hasErrorOccurred() ||
5041
C.getArgs().hasArg(options::OPT_Qunused_arguments))
5042
return;
5043
5044
// Claim -fdriver-only here.
5045
(void)C.getArgs().hasArg(options::OPT_fdriver_only);
5046
// Claim -### here.
5047
(void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
5048
5049
// Claim --driver-mode, --rsp-quoting, it was handled earlier.
5050
(void)C.getArgs().hasArg(options::OPT_driver_mode);
5051
(void)C.getArgs().hasArg(options::OPT_rsp_quoting);
5052
5053
bool HasAssembleJob = llvm::any_of(C.getJobs(), [](auto &J) {
5054
// Match ClangAs and other derived assemblers of Tool. ClangAs uses a
5055
// longer ShortName "clang integrated assembler" while other assemblers just
5056
// use "assembler".
5057
return strstr(J.getCreator().getShortName(), "assembler");
5058
});
5059
for (Arg *A : C.getArgs()) {
5060
// FIXME: It would be nice to be able to send the argument to the
5061
// DiagnosticsEngine, so that extra values, position, and so on could be
5062
// printed.
5063
if (!A->isClaimed()) {
5064
if (A->getOption().hasFlag(options::NoArgumentUnused))
5065
continue;
5066
5067
// Suppress the warning automatically if this is just a flag, and it is an
5068
// instance of an argument we already claimed.
5069
const Option &Opt = A->getOption();
5070
if (Opt.getKind() == Option::FlagClass) {
5071
bool DuplicateClaimed = false;
5072
5073
for (const Arg *AA : C.getArgs().filtered(&Opt)) {
5074
if (AA->isClaimed()) {
5075
DuplicateClaimed = true;
5076
break;
5077
}
5078
}
5079
5080
if (DuplicateClaimed)
5081
continue;
5082
}
5083
5084
// In clang-cl, don't mention unknown arguments here since they have
5085
// already been warned about.
5086
if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN)) {
5087
if (A->getOption().hasFlag(options::TargetSpecific) &&
5088
!A->isIgnoredTargetSpecific() && !HasAssembleJob &&
5089
// When for example -### or -v is used
5090
// without a file, target specific options are not
5091
// consumed/validated.
5092
// Instead emitting an error emit a warning instead.
5093
!C.getActions().empty()) {
5094
Diag(diag::err_drv_unsupported_opt_for_target)
5095
<< A->getSpelling() << getTargetTriple();
5096
} else {
5097
Diag(clang::diag::warn_drv_unused_argument)
5098
<< A->getAsString(C.getArgs());
5099
}
5100
}
5101
}
5102
}
5103
}
5104
5105
namespace {
5106
/// Utility class to control the collapse of dependent actions and select the
5107
/// tools accordingly.
5108
class ToolSelector final {
5109
/// The tool chain this selector refers to.
5110
const ToolChain &TC;
5111
5112
/// The compilation this selector refers to.
5113
const Compilation &C;
5114
5115
/// The base action this selector refers to.
5116
const JobAction *BaseAction;
5117
5118
/// Set to true if the current toolchain refers to host actions.
5119
bool IsHostSelector;
5120
5121
/// Set to true if save-temps and embed-bitcode functionalities are active.
5122
bool SaveTemps;
5123
bool EmbedBitcode;
5124
5125
/// Get previous dependent action or null if that does not exist. If
5126
/// \a CanBeCollapsed is false, that action must be legal to collapse or
5127
/// null will be returned.
5128
const JobAction *getPrevDependentAction(const ActionList &Inputs,
5129
ActionList &SavedOffloadAction,
5130
bool CanBeCollapsed = true) {
5131
// An option can be collapsed only if it has a single input.
5132
if (Inputs.size() != 1)
5133
return nullptr;
5134
5135
Action *CurAction = *Inputs.begin();
5136
if (CanBeCollapsed &&
5137
!CurAction->isCollapsingWithNextDependentActionLegal())
5138
return nullptr;
5139
5140
// If the input action is an offload action. Look through it and save any
5141
// offload action that can be dropped in the event of a collapse.
5142
if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
5143
// If the dependent action is a device action, we will attempt to collapse
5144
// only with other device actions. Otherwise, we would do the same but
5145
// with host actions only.
5146
if (!IsHostSelector) {
5147
if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
5148
CurAction =
5149
OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
5150
if (CanBeCollapsed &&
5151
!CurAction->isCollapsingWithNextDependentActionLegal())
5152
return nullptr;
5153
SavedOffloadAction.push_back(OA);
5154
return dyn_cast<JobAction>(CurAction);
5155
}
5156
} else if (OA->hasHostDependence()) {
5157
CurAction = OA->getHostDependence();
5158
if (CanBeCollapsed &&
5159
!CurAction->isCollapsingWithNextDependentActionLegal())
5160
return nullptr;
5161
SavedOffloadAction.push_back(OA);
5162
return dyn_cast<JobAction>(CurAction);
5163
}
5164
return nullptr;
5165
}
5166
5167
return dyn_cast<JobAction>(CurAction);
5168
}
5169
5170
/// Return true if an assemble action can be collapsed.
5171
bool canCollapseAssembleAction() const {
5172
return TC.useIntegratedAs() && !SaveTemps &&
5173
!C.getArgs().hasArg(options::OPT_via_file_asm) &&
5174
!C.getArgs().hasArg(options::OPT__SLASH_FA) &&
5175
!C.getArgs().hasArg(options::OPT__SLASH_Fa) &&
5176
!C.getArgs().hasArg(options::OPT_dxc_Fc);
5177
}
5178
5179
/// Return true if a preprocessor action can be collapsed.
5180
bool canCollapsePreprocessorAction() const {
5181
return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
5182
!C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
5183
!C.getArgs().hasArg(options::OPT_rewrite_objc);
5184
}
5185
5186
/// Struct that relates an action with the offload actions that would be
5187
/// collapsed with it.
5188
struct JobActionInfo final {
5189
/// The action this info refers to.
5190
const JobAction *JA = nullptr;
5191
/// The offload actions we need to take care off if this action is
5192
/// collapsed.
5193
ActionList SavedOffloadAction;
5194
};
5195
5196
/// Append collapsed offload actions from the give nnumber of elements in the
5197
/// action info array.
5198
static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
5199
ArrayRef<JobActionInfo> &ActionInfo,
5200
unsigned ElementNum) {
5201
assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
5202
for (unsigned I = 0; I < ElementNum; ++I)
5203
CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
5204
ActionInfo[I].SavedOffloadAction.end());
5205
}
5206
5207
/// Functions that attempt to perform the combining. They detect if that is
5208
/// legal, and if so they update the inputs \a Inputs and the offload action
5209
/// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
5210
/// the combined action is returned. If the combining is not legal or if the
5211
/// tool does not exist, null is returned.
5212
/// Currently three kinds of collapsing are supported:
5213
/// - Assemble + Backend + Compile;
5214
/// - Assemble + Backend ;
5215
/// - Backend + Compile.
5216
const Tool *
5217
combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
5218
ActionList &Inputs,
5219
ActionList &CollapsedOffloadAction) {
5220
if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
5221
return nullptr;
5222
auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
5223
auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
5224
auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
5225
if (!AJ || !BJ || !CJ)
5226
return nullptr;
5227
5228
// Get compiler tool.
5229
const Tool *T = TC.SelectTool(*CJ);
5230
if (!T)
5231
return nullptr;
5232
5233
// Can't collapse if we don't have codegen support unless we are
5234
// emitting LLVM IR.
5235
bool OutputIsLLVM = types::isLLVMIR(ActionInfo[0].JA->getType());
5236
if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR()))
5237
return nullptr;
5238
5239
// When using -fembed-bitcode, it is required to have the same tool (clang)
5240
// for both CompilerJA and BackendJA. Otherwise, combine two stages.
5241
if (EmbedBitcode) {
5242
const Tool *BT = TC.SelectTool(*BJ);
5243
if (BT == T)
5244
return nullptr;
5245
}
5246
5247
if (!T->hasIntegratedAssembler())
5248
return nullptr;
5249
5250
Inputs = CJ->getInputs();
5251
AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
5252
/*NumElements=*/3);
5253
return T;
5254
}
5255
const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
5256
ActionList &Inputs,
5257
ActionList &CollapsedOffloadAction) {
5258
if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
5259
return nullptr;
5260
auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
5261
auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
5262
if (!AJ || !BJ)
5263
return nullptr;
5264
5265
// Get backend tool.
5266
const Tool *T = TC.SelectTool(*BJ);
5267
if (!T)
5268
return nullptr;
5269
5270
if (!T->hasIntegratedAssembler())
5271
return nullptr;
5272
5273
Inputs = BJ->getInputs();
5274
AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
5275
/*NumElements=*/2);
5276
return T;
5277
}
5278
const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
5279
ActionList &Inputs,
5280
ActionList &CollapsedOffloadAction) {
5281
if (ActionInfo.size() < 2)
5282
return nullptr;
5283
auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
5284
auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
5285
if (!BJ || !CJ)
5286
return nullptr;
5287
5288
// Check if the initial input (to the compile job or its predessor if one
5289
// exists) is LLVM bitcode. In that case, no preprocessor step is required
5290
// and we can still collapse the compile and backend jobs when we have
5291
// -save-temps. I.e. there is no need for a separate compile job just to
5292
// emit unoptimized bitcode.
5293
bool InputIsBitcode = true;
5294
for (size_t i = 1; i < ActionInfo.size(); i++)
5295
if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
5296
ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
5297
InputIsBitcode = false;
5298
break;
5299
}
5300
if (!InputIsBitcode && !canCollapsePreprocessorAction())
5301
return nullptr;
5302
5303
// Get compiler tool.
5304
const Tool *T = TC.SelectTool(*CJ);
5305
if (!T)
5306
return nullptr;
5307
5308
// Can't collapse if we don't have codegen support unless we are
5309
// emitting LLVM IR.
5310
bool OutputIsLLVM = types::isLLVMIR(ActionInfo[0].JA->getType());
5311
if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR()))
5312
return nullptr;
5313
5314
if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
5315
return nullptr;
5316
5317
Inputs = CJ->getInputs();
5318
AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
5319
/*NumElements=*/2);
5320
return T;
5321
}
5322
5323
/// Updates the inputs if the obtained tool supports combining with
5324
/// preprocessor action, and the current input is indeed a preprocessor
5325
/// action. If combining results in the collapse of offloading actions, those
5326
/// are appended to \a CollapsedOffloadAction.
5327
void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
5328
ActionList &CollapsedOffloadAction) {
5329
if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
5330
return;
5331
5332
// Attempt to get a preprocessor action dependence.
5333
ActionList PreprocessJobOffloadActions;
5334
ActionList NewInputs;
5335
for (Action *A : Inputs) {
5336
auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
5337
if (!PJ || !isa<PreprocessJobAction>(PJ)) {
5338
NewInputs.push_back(A);
5339
continue;
5340
}
5341
5342
// This is legal to combine. Append any offload action we found and add the
5343
// current input to preprocessor inputs.
5344
CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
5345
PreprocessJobOffloadActions.end());
5346
NewInputs.append(PJ->input_begin(), PJ->input_end());
5347
}
5348
Inputs = NewInputs;
5349
}
5350
5351
public:
5352
ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
5353
const Compilation &C, bool SaveTemps, bool EmbedBitcode)
5354
: TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
5355
EmbedBitcode(EmbedBitcode) {
5356
assert(BaseAction && "Invalid base action.");
5357
IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
5358
}
5359
5360
/// Check if a chain of actions can be combined and return the tool that can
5361
/// handle the combination of actions. The pointer to the current inputs \a
5362
/// Inputs and the list of offload actions \a CollapsedOffloadActions
5363
/// connected to collapsed actions are updated accordingly. The latter enables
5364
/// the caller of the selector to process them afterwards instead of just
5365
/// dropping them. If no suitable tool is found, null will be returned.
5366
const Tool *getTool(ActionList &Inputs,
5367
ActionList &CollapsedOffloadAction) {
5368
//
5369
// Get the largest chain of actions that we could combine.
5370
//
5371
5372
SmallVector<JobActionInfo, 5> ActionChain(1);
5373
ActionChain.back().JA = BaseAction;
5374
while (ActionChain.back().JA) {
5375
const Action *CurAction = ActionChain.back().JA;
5376
5377
// Grow the chain by one element.
5378
ActionChain.resize(ActionChain.size() + 1);
5379
JobActionInfo &AI = ActionChain.back();
5380
5381
// Attempt to fill it with the
5382
AI.JA =
5383
getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
5384
}
5385
5386
// Pop the last action info as it could not be filled.
5387
ActionChain.pop_back();
5388
5389
//
5390
// Attempt to combine actions. If all combining attempts failed, just return
5391
// the tool of the provided action. At the end we attempt to combine the
5392
// action with any preprocessor action it may depend on.
5393
//
5394
5395
const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
5396
CollapsedOffloadAction);
5397
if (!T)
5398
T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
5399
if (!T)
5400
T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
5401
if (!T) {
5402
Inputs = BaseAction->getInputs();
5403
T = TC.SelectTool(*BaseAction);
5404
}
5405
5406
combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
5407
return T;
5408
}
5409
};
5410
}
5411
5412
/// Return a string that uniquely identifies the result of a job. The bound arch
5413
/// is not necessarily represented in the toolchain's triple -- for example,
5414
/// armv7 and armv7s both map to the same triple -- so we need both in our map.
5415
/// Also, we need to add the offloading device kind, as the same tool chain can
5416
/// be used for host and device for some programming models, e.g. OpenMP.
5417
static std::string GetTriplePlusArchString(const ToolChain *TC,
5418
StringRef BoundArch,
5419
Action::OffloadKind OffloadKind) {
5420
std::string TriplePlusArch = TC->getTriple().normalize();
5421
if (!BoundArch.empty()) {
5422
TriplePlusArch += "-";
5423
TriplePlusArch += BoundArch;
5424
}
5425
TriplePlusArch += "-";
5426
TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
5427
return TriplePlusArch;
5428
}
5429
5430
InputInfoList Driver::BuildJobsForAction(
5431
Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
5432
bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
5433
std::map<std::pair<const Action *, std::string>, InputInfoList>
5434
&CachedResults,
5435
Action::OffloadKind TargetDeviceOffloadKind) const {
5436
std::pair<const Action *, std::string> ActionTC = {
5437
A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5438
auto CachedResult = CachedResults.find(ActionTC);
5439
if (CachedResult != CachedResults.end()) {
5440
return CachedResult->second;
5441
}
5442
InputInfoList Result = BuildJobsForActionNoCache(
5443
C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
5444
CachedResults, TargetDeviceOffloadKind);
5445
CachedResults[ActionTC] = Result;
5446
return Result;
5447
}
5448
5449
static void handleTimeTrace(Compilation &C, const ArgList &Args,
5450
const JobAction *JA, const char *BaseInput,
5451
const InputInfo &Result) {
5452
Arg *A =
5453
Args.getLastArg(options::OPT_ftime_trace, options::OPT_ftime_trace_EQ);
5454
if (!A)
5455
return;
5456
SmallString<128> Path;
5457
if (A->getOption().matches(options::OPT_ftime_trace_EQ)) {
5458
Path = A->getValue();
5459
if (llvm::sys::fs::is_directory(Path)) {
5460
SmallString<128> Tmp(Result.getFilename());
5461
llvm::sys::path::replace_extension(Tmp, "json");
5462
llvm::sys::path::append(Path, llvm::sys::path::filename(Tmp));
5463
}
5464
} else {
5465
if (Arg *DumpDir = Args.getLastArgNoClaim(options::OPT_dumpdir)) {
5466
// The trace file is ${dumpdir}${basename}.json. Note that dumpdir may not
5467
// end with a path separator.
5468
Path = DumpDir->getValue();
5469
Path += llvm::sys::path::filename(BaseInput);
5470
} else {
5471
Path = Result.getFilename();
5472
}
5473
llvm::sys::path::replace_extension(Path, "json");
5474
}
5475
const char *ResultFile = C.getArgs().MakeArgString(Path);
5476
C.addTimeTraceFile(ResultFile, JA);
5477
C.addResultFile(ResultFile, JA);
5478
}
5479
5480
InputInfoList Driver::BuildJobsForActionNoCache(
5481
Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
5482
bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
5483
std::map<std::pair<const Action *, std::string>, InputInfoList>
5484
&CachedResults,
5485
Action::OffloadKind TargetDeviceOffloadKind) const {
5486
llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
5487
5488
InputInfoList OffloadDependencesInputInfo;
5489
bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
5490
if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
5491
// The 'Darwin' toolchain is initialized only when its arguments are
5492
// computed. Get the default arguments for OFK_None to ensure that
5493
// initialization is performed before processing the offload action.
5494
// FIXME: Remove when darwin's toolchain is initialized during construction.
5495
C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
5496
5497
// The offload action is expected to be used in four different situations.
5498
//
5499
// a) Set a toolchain/architecture/kind for a host action:
5500
// Host Action 1 -> OffloadAction -> Host Action 2
5501
//
5502
// b) Set a toolchain/architecture/kind for a device action;
5503
// Device Action 1 -> OffloadAction -> Device Action 2
5504
//
5505
// c) Specify a device dependence to a host action;
5506
// Device Action 1 _
5507
// \
5508
// Host Action 1 ---> OffloadAction -> Host Action 2
5509
//
5510
// d) Specify a host dependence to a device action.
5511
// Host Action 1 _
5512
// \
5513
// Device Action 1 ---> OffloadAction -> Device Action 2
5514
//
5515
// For a) and b), we just return the job generated for the dependences. For
5516
// c) and d) we override the current action with the host/device dependence
5517
// if the current toolchain is host/device and set the offload dependences
5518
// info with the jobs obtained from the device/host dependence(s).
5519
5520
// If there is a single device option or has no host action, just generate
5521
// the job for it.
5522
if (OA->hasSingleDeviceDependence() || !OA->hasHostDependence()) {
5523
InputInfoList DevA;
5524
OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
5525
const char *DepBoundArch) {
5526
DevA.append(BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
5527
/*MultipleArchs*/ !!DepBoundArch,
5528
LinkingOutput, CachedResults,
5529
DepA->getOffloadingDeviceKind()));
5530
});
5531
return DevA;
5532
}
5533
5534
// If 'Action 2' is host, we generate jobs for the device dependences and
5535
// override the current action with the host dependence. Otherwise, we
5536
// generate the host dependences and override the action with the device
5537
// dependence. The dependences can't therefore be a top-level action.
5538
OA->doOnEachDependence(
5539
/*IsHostDependence=*/BuildingForOffloadDevice,
5540
[&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
5541
OffloadDependencesInputInfo.append(BuildJobsForAction(
5542
C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
5543
/*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
5544
DepA->getOffloadingDeviceKind()));
5545
});
5546
5547
A = BuildingForOffloadDevice
5548
? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
5549
: OA->getHostDependence();
5550
5551
// We may have already built this action as a part of the offloading
5552
// toolchain, return the cached input if so.
5553
std::pair<const Action *, std::string> ActionTC = {
5554
OA->getHostDependence(),
5555
GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5556
if (CachedResults.find(ActionTC) != CachedResults.end()) {
5557
InputInfoList Inputs = CachedResults[ActionTC];
5558
Inputs.append(OffloadDependencesInputInfo);
5559
return Inputs;
5560
}
5561
}
5562
5563
if (const InputAction *IA = dyn_cast<InputAction>(A)) {
5564
// FIXME: It would be nice to not claim this here; maybe the old scheme of
5565
// just using Args was better?
5566
const Arg &Input = IA->getInputArg();
5567
Input.claim();
5568
if (Input.getOption().matches(options::OPT_INPUT)) {
5569
const char *Name = Input.getValue();
5570
return {InputInfo(A, Name, /* _BaseInput = */ Name)};
5571
}
5572
return {InputInfo(A, &Input, /* _BaseInput = */ "")};
5573
}
5574
5575
if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
5576
const ToolChain *TC;
5577
StringRef ArchName = BAA->getArchName();
5578
5579
if (!ArchName.empty())
5580
TC = &getToolChain(C.getArgs(),
5581
computeTargetTriple(*this, TargetTriple,
5582
C.getArgs(), ArchName));
5583
else
5584
TC = &C.getDefaultToolChain();
5585
5586
return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
5587
MultipleArchs, LinkingOutput, CachedResults,
5588
TargetDeviceOffloadKind);
5589
}
5590
5591
5592
ActionList Inputs = A->getInputs();
5593
5594
const JobAction *JA = cast<JobAction>(A);
5595
ActionList CollapsedOffloadActions;
5596
5597
ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
5598
embedBitcodeInObject() && !isUsingLTO());
5599
const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
5600
5601
if (!T)
5602
return {InputInfo()};
5603
5604
// If we've collapsed action list that contained OffloadAction we
5605
// need to build jobs for host/device-side inputs it may have held.
5606
for (const auto *OA : CollapsedOffloadActions)
5607
cast<OffloadAction>(OA)->doOnEachDependence(
5608
/*IsHostDependence=*/BuildingForOffloadDevice,
5609
[&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
5610
OffloadDependencesInputInfo.append(BuildJobsForAction(
5611
C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
5612
/*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
5613
DepA->getOffloadingDeviceKind()));
5614
});
5615
5616
// Only use pipes when there is exactly one input.
5617
InputInfoList InputInfos;
5618
for (const Action *Input : Inputs) {
5619
// Treat dsymutil and verify sub-jobs as being at the top-level too, they
5620
// shouldn't get temporary output names.
5621
// FIXME: Clean this up.
5622
bool SubJobAtTopLevel =
5623
AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
5624
InputInfos.append(BuildJobsForAction(
5625
C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
5626
CachedResults, A->getOffloadingDeviceKind()));
5627
}
5628
5629
// Always use the first file input as the base input.
5630
const char *BaseInput = InputInfos[0].getBaseInput();
5631
for (auto &Info : InputInfos) {
5632
if (Info.isFilename()) {
5633
BaseInput = Info.getBaseInput();
5634
break;
5635
}
5636
}
5637
5638
// ... except dsymutil actions, which use their actual input as the base
5639
// input.
5640
if (JA->getType() == types::TY_dSYM)
5641
BaseInput = InputInfos[0].getFilename();
5642
5643
// Append outputs of offload device jobs to the input list
5644
if (!OffloadDependencesInputInfo.empty())
5645
InputInfos.append(OffloadDependencesInputInfo.begin(),
5646
OffloadDependencesInputInfo.end());
5647
5648
// Set the effective triple of the toolchain for the duration of this job.
5649
llvm::Triple EffectiveTriple;
5650
const ToolChain &ToolTC = T->getToolChain();
5651
const ArgList &Args =
5652
C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
5653
if (InputInfos.size() != 1) {
5654
EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
5655
} else {
5656
// Pass along the input type if it can be unambiguously determined.
5657
EffectiveTriple = llvm::Triple(
5658
ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
5659
}
5660
RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
5661
5662
// Determine the place to write output to, if any.
5663
InputInfo Result;
5664
InputInfoList UnbundlingResults;
5665
if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
5666
// If we have an unbundling job, we need to create results for all the
5667
// outputs. We also update the results cache so that other actions using
5668
// this unbundling action can get the right results.
5669
for (auto &UI : UA->getDependentActionsInfo()) {
5670
assert(UI.DependentOffloadKind != Action::OFK_None &&
5671
"Unbundling with no offloading??");
5672
5673
// Unbundling actions are never at the top level. When we generate the
5674
// offloading prefix, we also do that for the host file because the
5675
// unbundling action does not change the type of the output which can
5676
// cause a overwrite.
5677
std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
5678
UI.DependentOffloadKind,
5679
UI.DependentToolChain->getTriple().normalize(),
5680
/*CreatePrefixForHost=*/true);
5681
auto CurI = InputInfo(
5682
UA,
5683
GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
5684
/*AtTopLevel=*/false,
5685
MultipleArchs ||
5686
UI.DependentOffloadKind == Action::OFK_HIP,
5687
OffloadingPrefix),
5688
BaseInput);
5689
// Save the unbundling result.
5690
UnbundlingResults.push_back(CurI);
5691
5692
// Get the unique string identifier for this dependence and cache the
5693
// result.
5694
StringRef Arch;
5695
if (TargetDeviceOffloadKind == Action::OFK_HIP) {
5696
if (UI.DependentOffloadKind == Action::OFK_Host)
5697
Arch = StringRef();
5698
else
5699
Arch = UI.DependentBoundArch;
5700
} else
5701
Arch = BoundArch;
5702
5703
CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
5704
UI.DependentOffloadKind)}] = {
5705
CurI};
5706
}
5707
5708
// Now that we have all the results generated, select the one that should be
5709
// returned for the current depending action.
5710
std::pair<const Action *, std::string> ActionTC = {
5711
A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5712
assert(CachedResults.find(ActionTC) != CachedResults.end() &&
5713
"Result does not exist??");
5714
Result = CachedResults[ActionTC].front();
5715
} else if (JA->getType() == types::TY_Nothing)
5716
Result = {InputInfo(A, BaseInput)};
5717
else {
5718
// We only have to generate a prefix for the host if this is not a top-level
5719
// action.
5720
std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
5721
A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
5722
/*CreatePrefixForHost=*/isa<OffloadPackagerJobAction>(A) ||
5723
!(A->getOffloadingHostActiveKinds() == Action::OFK_None ||
5724
AtTopLevel));
5725
Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
5726
AtTopLevel, MultipleArchs,
5727
OffloadingPrefix),
5728
BaseInput);
5729
if (T->canEmitIR() && OffloadingPrefix.empty())
5730
handleTimeTrace(C, Args, JA, BaseInput, Result);
5731
}
5732
5733
if (CCCPrintBindings && !CCGenDiagnostics) {
5734
llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
5735
<< " - \"" << T->getName() << "\", inputs: [";
5736
for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
5737
llvm::errs() << InputInfos[i].getAsString();
5738
if (i + 1 != e)
5739
llvm::errs() << ", ";
5740
}
5741
if (UnbundlingResults.empty())
5742
llvm::errs() << "], output: " << Result.getAsString() << "\n";
5743
else {
5744
llvm::errs() << "], outputs: [";
5745
for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
5746
llvm::errs() << UnbundlingResults[i].getAsString();
5747
if (i + 1 != e)
5748
llvm::errs() << ", ";
5749
}
5750
llvm::errs() << "] \n";
5751
}
5752
} else {
5753
if (UnbundlingResults.empty())
5754
T->ConstructJob(
5755
C, *JA, Result, InputInfos,
5756
C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
5757
LinkingOutput);
5758
else
5759
T->ConstructJobMultipleOutputs(
5760
C, *JA, UnbundlingResults, InputInfos,
5761
C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
5762
LinkingOutput);
5763
}
5764
return {Result};
5765
}
5766
5767
const char *Driver::getDefaultImageName() const {
5768
llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
5769
return Target.isOSWindows() ? "a.exe" : "a.out";
5770
}
5771
5772
/// Create output filename based on ArgValue, which could either be a
5773
/// full filename, filename without extension, or a directory. If ArgValue
5774
/// does not provide a filename, then use BaseName, and use the extension
5775
/// suitable for FileType.
5776
static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
5777
StringRef BaseName,
5778
types::ID FileType) {
5779
SmallString<128> Filename = ArgValue;
5780
5781
if (ArgValue.empty()) {
5782
// If the argument is empty, output to BaseName in the current dir.
5783
Filename = BaseName;
5784
} else if (llvm::sys::path::is_separator(Filename.back())) {
5785
// If the argument is a directory, output to BaseName in that dir.
5786
llvm::sys::path::append(Filename, BaseName);
5787
}
5788
5789
if (!llvm::sys::path::has_extension(ArgValue)) {
5790
// If the argument didn't provide an extension, then set it.
5791
const char *Extension = types::getTypeTempSuffix(FileType, true);
5792
5793
if (FileType == types::TY_Image &&
5794
Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
5795
// The output file is a dll.
5796
Extension = "dll";
5797
}
5798
5799
llvm::sys::path::replace_extension(Filename, Extension);
5800
}
5801
5802
return Args.MakeArgString(Filename.c_str());
5803
}
5804
5805
static bool HasPreprocessOutput(const Action &JA) {
5806
if (isa<PreprocessJobAction>(JA))
5807
return true;
5808
if (isa<OffloadAction>(JA) && isa<PreprocessJobAction>(JA.getInputs()[0]))
5809
return true;
5810
if (isa<OffloadBundlingJobAction>(JA) &&
5811
HasPreprocessOutput(*(JA.getInputs()[0])))
5812
return true;
5813
return false;
5814
}
5815
5816
const char *Driver::CreateTempFile(Compilation &C, StringRef Prefix,
5817
StringRef Suffix, bool MultipleArchs,
5818
StringRef BoundArch,
5819
bool NeedUniqueDirectory) const {
5820
SmallString<128> TmpName;
5821
Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
5822
std::optional<std::string> CrashDirectory =
5823
CCGenDiagnostics && A
5824
? std::string(A->getValue())
5825
: llvm::sys::Process::GetEnv("CLANG_CRASH_DIAGNOSTICS_DIR");
5826
if (CrashDirectory) {
5827
if (!getVFS().exists(*CrashDirectory))
5828
llvm::sys::fs::create_directories(*CrashDirectory);
5829
SmallString<128> Path(*CrashDirectory);
5830
llvm::sys::path::append(Path, Prefix);
5831
const char *Middle = !Suffix.empty() ? "-%%%%%%." : "-%%%%%%";
5832
if (std::error_code EC =
5833
llvm::sys::fs::createUniqueFile(Path + Middle + Suffix, TmpName)) {
5834
Diag(clang::diag::err_unable_to_make_temp) << EC.message();
5835
return "";
5836
}
5837
} else {
5838
if (MultipleArchs && !BoundArch.empty()) {
5839
if (NeedUniqueDirectory) {
5840
TmpName = GetTemporaryDirectory(Prefix);
5841
llvm::sys::path::append(TmpName,
5842
Twine(Prefix) + "-" + BoundArch + "." + Suffix);
5843
} else {
5844
TmpName =
5845
GetTemporaryPath((Twine(Prefix) + "-" + BoundArch).str(), Suffix);
5846
}
5847
5848
} else {
5849
TmpName = GetTemporaryPath(Prefix, Suffix);
5850
}
5851
}
5852
return C.addTempFile(C.getArgs().MakeArgString(TmpName));
5853
}
5854
5855
// Calculate the output path of the module file when compiling a module unit
5856
// with the `-fmodule-output` option or `-fmodule-output=` option specified.
5857
// The behavior is:
5858
// - If `-fmodule-output=` is specfied, then the module file is
5859
// writing to the value.
5860
// - Otherwise if the output object file of the module unit is specified, the
5861
// output path
5862
// of the module file should be the same with the output object file except
5863
// the corresponding suffix. This requires both `-o` and `-c` are specified.
5864
// - Otherwise, the output path of the module file will be the same with the
5865
// input with the corresponding suffix.
5866
static const char *GetModuleOutputPath(Compilation &C, const JobAction &JA,
5867
const char *BaseInput) {
5868
assert(isa<PrecompileJobAction>(JA) && JA.getType() == types::TY_ModuleFile &&
5869
(C.getArgs().hasArg(options::OPT_fmodule_output) ||
5870
C.getArgs().hasArg(options::OPT_fmodule_output_EQ)));
5871
5872
SmallString<256> OutputPath =
5873
tools::getCXX20NamedModuleOutputPath(C.getArgs(), BaseInput);
5874
5875
return C.addResultFile(C.getArgs().MakeArgString(OutputPath.c_str()), &JA);
5876
}
5877
5878
const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA,
5879
const char *BaseInput,
5880
StringRef OrigBoundArch, bool AtTopLevel,
5881
bool MultipleArchs,
5882
StringRef OffloadingPrefix) const {
5883
std::string BoundArch = OrigBoundArch.str();
5884
if (is_style_windows(llvm::sys::path::Style::native)) {
5885
// BoundArch may contains ':', which is invalid in file names on Windows,
5886
// therefore replace it with '%'.
5887
std::replace(BoundArch.begin(), BoundArch.end(), ':', '@');
5888
}
5889
5890
llvm::PrettyStackTraceString CrashInfo("Computing output path");
5891
// Output to a user requested destination?
5892
if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
5893
if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
5894
return C.addResultFile(FinalOutput->getValue(), &JA);
5895
}
5896
5897
// For /P, preprocess to file named after BaseInput.
5898
if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
5899
assert(AtTopLevel && isa<PreprocessJobAction>(JA));
5900
StringRef BaseName = llvm::sys::path::filename(BaseInput);
5901
StringRef NameArg;
5902
if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
5903
NameArg = A->getValue();
5904
return C.addResultFile(
5905
MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
5906
&JA);
5907
}
5908
5909
// Default to writing to stdout?
5910
if (AtTopLevel && !CCGenDiagnostics && HasPreprocessOutput(JA)) {
5911
return "-";
5912
}
5913
5914
if (JA.getType() == types::TY_ModuleFile &&
5915
C.getArgs().getLastArg(options::OPT_module_file_info)) {
5916
return "-";
5917
}
5918
5919
if (JA.getType() == types::TY_PP_Asm &&
5920
C.getArgs().hasArg(options::OPT_dxc_Fc)) {
5921
StringRef FcValue = C.getArgs().getLastArgValue(options::OPT_dxc_Fc);
5922
// TODO: Should we use `MakeCLOutputFilename` here? If so, we can probably
5923
// handle this as part of the SLASH_Fa handling below.
5924
return C.addResultFile(C.getArgs().MakeArgString(FcValue.str()), &JA);
5925
}
5926
5927
if (JA.getType() == types::TY_Object &&
5928
C.getArgs().hasArg(options::OPT_dxc_Fo)) {
5929
StringRef FoValue = C.getArgs().getLastArgValue(options::OPT_dxc_Fo);
5930
// TODO: Should we use `MakeCLOutputFilename` here? If so, we can probably
5931
// handle this as part of the SLASH_Fo handling below.
5932
return C.addResultFile(C.getArgs().MakeArgString(FoValue.str()), &JA);
5933
}
5934
5935
// Is this the assembly listing for /FA?
5936
if (JA.getType() == types::TY_PP_Asm &&
5937
(C.getArgs().hasArg(options::OPT__SLASH_FA) ||
5938
C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
5939
// Use /Fa and the input filename to determine the asm file name.
5940
StringRef BaseName = llvm::sys::path::filename(BaseInput);
5941
StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
5942
return C.addResultFile(
5943
MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
5944
&JA);
5945
}
5946
5947
if (JA.getType() == types::TY_API_INFO &&
5948
C.getArgs().hasArg(options::OPT_emit_extension_symbol_graphs) &&
5949
C.getArgs().hasArg(options::OPT_o))
5950
Diag(clang::diag::err_drv_unexpected_symbol_graph_output)
5951
<< C.getArgs().getLastArgValue(options::OPT_o);
5952
5953
// DXC defaults to standard out when generating assembly. We check this after
5954
// any DXC flags that might specify a file.
5955
if (AtTopLevel && JA.getType() == types::TY_PP_Asm && IsDXCMode())
5956
return "-";
5957
5958
bool SpecifiedModuleOutput =
5959
C.getArgs().hasArg(options::OPT_fmodule_output) ||
5960
C.getArgs().hasArg(options::OPT_fmodule_output_EQ);
5961
if (MultipleArchs && SpecifiedModuleOutput)
5962
Diag(clang::diag::err_drv_module_output_with_multiple_arch);
5963
5964
// If we're emitting a module output with the specified option
5965
// `-fmodule-output`.
5966
if (!AtTopLevel && isa<PrecompileJobAction>(JA) &&
5967
JA.getType() == types::TY_ModuleFile && SpecifiedModuleOutput) {
5968
assert(!C.getArgs().hasArg(options::OPT_modules_reduced_bmi));
5969
return GetModuleOutputPath(C, JA, BaseInput);
5970
}
5971
5972
// Output to a temporary file?
5973
if ((!AtTopLevel && !isSaveTempsEnabled() &&
5974
!C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
5975
CCGenDiagnostics) {
5976
StringRef Name = llvm::sys::path::filename(BaseInput);
5977
std::pair<StringRef, StringRef> Split = Name.split('.');
5978
const char *Suffix =
5979
types::getTypeTempSuffix(JA.getType(), IsCLMode() || IsDXCMode());
5980
// The non-offloading toolchain on Darwin requires deterministic input
5981
// file name for binaries to be deterministic, therefore it needs unique
5982
// directory.
5983
llvm::Triple Triple(C.getDriver().getTargetTriple());
5984
bool NeedUniqueDirectory =
5985
(JA.getOffloadingDeviceKind() == Action::OFK_None ||
5986
JA.getOffloadingDeviceKind() == Action::OFK_Host) &&
5987
Triple.isOSDarwin();
5988
return CreateTempFile(C, Split.first, Suffix, MultipleArchs, BoundArch,
5989
NeedUniqueDirectory);
5990
}
5991
5992
SmallString<128> BasePath(BaseInput);
5993
SmallString<128> ExternalPath("");
5994
StringRef BaseName;
5995
5996
// Dsymutil actions should use the full path.
5997
if (isa<DsymutilJobAction>(JA) && C.getArgs().hasArg(options::OPT_dsym_dir)) {
5998
ExternalPath += C.getArgs().getLastArg(options::OPT_dsym_dir)->getValue();
5999
// We use posix style here because the tests (specifically
6000
// darwin-dsymutil.c) demonstrate that posix style paths are acceptable
6001
// even on Windows and if we don't then the similar test covering this
6002
// fails.
6003
llvm::sys::path::append(ExternalPath, llvm::sys::path::Style::posix,
6004
llvm::sys::path::filename(BasePath));
6005
BaseName = ExternalPath;
6006
} else if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
6007
BaseName = BasePath;
6008
else
6009
BaseName = llvm::sys::path::filename(BasePath);
6010
6011
// Determine what the derived output name should be.
6012
const char *NamedOutput;
6013
6014
if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
6015
C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
6016
// The /Fo or /o flag decides the object filename.
6017
StringRef Val =
6018
C.getArgs()
6019
.getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
6020
->getValue();
6021
NamedOutput =
6022
MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
6023
} else if (JA.getType() == types::TY_Image &&
6024
C.getArgs().hasArg(options::OPT__SLASH_Fe,
6025
options::OPT__SLASH_o)) {
6026
// The /Fe or /o flag names the linked file.
6027
StringRef Val =
6028
C.getArgs()
6029
.getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
6030
->getValue();
6031
NamedOutput =
6032
MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
6033
} else if (JA.getType() == types::TY_Image) {
6034
if (IsCLMode()) {
6035
// clang-cl uses BaseName for the executable name.
6036
NamedOutput =
6037
MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
6038
} else {
6039
SmallString<128> Output(getDefaultImageName());
6040
// HIP image for device compilation with -fno-gpu-rdc is per compilation
6041
// unit.
6042
bool IsHIPNoRDC = JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
6043
!C.getArgs().hasFlag(options::OPT_fgpu_rdc,
6044
options::OPT_fno_gpu_rdc, false);
6045
bool UseOutExtension = IsHIPNoRDC || isa<OffloadPackagerJobAction>(JA);
6046
if (UseOutExtension) {
6047
Output = BaseName;
6048
llvm::sys::path::replace_extension(Output, "");
6049
}
6050
Output += OffloadingPrefix;
6051
if (MultipleArchs && !BoundArch.empty()) {
6052
Output += "-";
6053
Output.append(BoundArch);
6054
}
6055
if (UseOutExtension)
6056
Output += ".out";
6057
NamedOutput = C.getArgs().MakeArgString(Output.c_str());
6058
}
6059
} else if (JA.getType() == types::TY_PCH && IsCLMode()) {
6060
NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
6061
} else if ((JA.getType() == types::TY_Plist || JA.getType() == types::TY_AST) &&
6062
C.getArgs().hasArg(options::OPT__SLASH_o)) {
6063
StringRef Val =
6064
C.getArgs()
6065
.getLastArg(options::OPT__SLASH_o)
6066
->getValue();
6067
NamedOutput =
6068
MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
6069
} else {
6070
const char *Suffix =
6071
types::getTypeTempSuffix(JA.getType(), IsCLMode() || IsDXCMode());
6072
assert(Suffix && "All types used for output should have a suffix.");
6073
6074
std::string::size_type End = std::string::npos;
6075
if (!types::appendSuffixForType(JA.getType()))
6076
End = BaseName.rfind('.');
6077
SmallString<128> Suffixed(BaseName.substr(0, End));
6078
Suffixed += OffloadingPrefix;
6079
if (MultipleArchs && !BoundArch.empty()) {
6080
Suffixed += "-";
6081
Suffixed.append(BoundArch);
6082
}
6083
// When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
6084
// the unoptimized bitcode so that it does not get overwritten by the ".bc"
6085
// optimized bitcode output.
6086
auto IsAMDRDCInCompilePhase = [](const JobAction &JA,
6087
const llvm::opt::DerivedArgList &Args) {
6088
// The relocatable compilation in HIP and OpenMP implies -emit-llvm.
6089
// Similarly, use a ".tmp.bc" suffix for the unoptimized bitcode
6090
// (generated in the compile phase.)
6091
const ToolChain *TC = JA.getOffloadingToolChain();
6092
return isa<CompileJobAction>(JA) &&
6093
((JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
6094
Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
6095
false)) ||
6096
(JA.getOffloadingDeviceKind() == Action::OFK_OpenMP && TC &&
6097
TC->getTriple().isAMDGPU()));
6098
};
6099
if (!AtTopLevel && JA.getType() == types::TY_LLVM_BC &&
6100
(C.getArgs().hasArg(options::OPT_emit_llvm) ||
6101
IsAMDRDCInCompilePhase(JA, C.getArgs())))
6102
Suffixed += ".tmp";
6103
Suffixed += '.';
6104
Suffixed += Suffix;
6105
NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
6106
}
6107
6108
// Prepend object file path if -save-temps=obj
6109
if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
6110
JA.getType() != types::TY_PCH) {
6111
Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
6112
SmallString<128> TempPath(FinalOutput->getValue());
6113
llvm::sys::path::remove_filename(TempPath);
6114
StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
6115
llvm::sys::path::append(TempPath, OutputFileName);
6116
NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
6117
}
6118
6119
// If we're saving temps and the temp file conflicts with the input file,
6120
// then avoid overwriting input file.
6121
if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
6122
bool SameFile = false;
6123
SmallString<256> Result;
6124
llvm::sys::fs::current_path(Result);
6125
llvm::sys::path::append(Result, BaseName);
6126
llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
6127
// Must share the same path to conflict.
6128
if (SameFile) {
6129
StringRef Name = llvm::sys::path::filename(BaseInput);
6130
std::pair<StringRef, StringRef> Split = Name.split('.');
6131
std::string TmpName = GetTemporaryPath(
6132
Split.first,
6133
types::getTypeTempSuffix(JA.getType(), IsCLMode() || IsDXCMode()));
6134
return C.addTempFile(C.getArgs().MakeArgString(TmpName));
6135
}
6136
}
6137
6138
// As an annoying special case, PCH generation doesn't strip the pathname.
6139
if (JA.getType() == types::TY_PCH && !IsCLMode()) {
6140
llvm::sys::path::remove_filename(BasePath);
6141
if (BasePath.empty())
6142
BasePath = NamedOutput;
6143
else
6144
llvm::sys::path::append(BasePath, NamedOutput);
6145
return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
6146
}
6147
6148
return C.addResultFile(NamedOutput, &JA);
6149
}
6150
6151
std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
6152
// Search for Name in a list of paths.
6153
auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
6154
-> std::optional<std::string> {
6155
// Respect a limited subset of the '-Bprefix' functionality in GCC by
6156
// attempting to use this prefix when looking for file paths.
6157
for (const auto &Dir : P) {
6158
if (Dir.empty())
6159
continue;
6160
SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
6161
llvm::sys::path::append(P, Name);
6162
if (llvm::sys::fs::exists(Twine(P)))
6163
return std::string(P);
6164
}
6165
return std::nullopt;
6166
};
6167
6168
if (auto P = SearchPaths(PrefixDirs))
6169
return *P;
6170
6171
SmallString<128> R(ResourceDir);
6172
llvm::sys::path::append(R, Name);
6173
if (llvm::sys::fs::exists(Twine(R)))
6174
return std::string(R);
6175
6176
SmallString<128> P(TC.getCompilerRTPath());
6177
llvm::sys::path::append(P, Name);
6178
if (llvm::sys::fs::exists(Twine(P)))
6179
return std::string(P);
6180
6181
SmallString<128> D(Dir);
6182
llvm::sys::path::append(D, "..", Name);
6183
if (llvm::sys::fs::exists(Twine(D)))
6184
return std::string(D);
6185
6186
if (auto P = SearchPaths(TC.getLibraryPaths()))
6187
return *P;
6188
6189
if (auto P = SearchPaths(TC.getFilePaths()))
6190
return *P;
6191
6192
SmallString<128> R2(ResourceDir);
6193
llvm::sys::path::append(R2, "..", "..", Name);
6194
if (llvm::sys::fs::exists(Twine(R2)))
6195
return std::string(R2);
6196
6197
return std::string(Name);
6198
}
6199
6200
void Driver::generatePrefixedToolNames(
6201
StringRef Tool, const ToolChain &TC,
6202
SmallVectorImpl<std::string> &Names) const {
6203
// FIXME: Needs a better variable than TargetTriple
6204
Names.emplace_back((TargetTriple + "-" + Tool).str());
6205
Names.emplace_back(Tool);
6206
}
6207
6208
static bool ScanDirForExecutable(SmallString<128> &Dir, StringRef Name) {
6209
llvm::sys::path::append(Dir, Name);
6210
if (llvm::sys::fs::can_execute(Twine(Dir)))
6211
return true;
6212
llvm::sys::path::remove_filename(Dir);
6213
return false;
6214
}
6215
6216
std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
6217
SmallVector<std::string, 2> TargetSpecificExecutables;
6218
generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
6219
6220
// Respect a limited subset of the '-Bprefix' functionality in GCC by
6221
// attempting to use this prefix when looking for program paths.
6222
for (const auto &PrefixDir : PrefixDirs) {
6223
if (llvm::sys::fs::is_directory(PrefixDir)) {
6224
SmallString<128> P(PrefixDir);
6225
if (ScanDirForExecutable(P, Name))
6226
return std::string(P);
6227
} else {
6228
SmallString<128> P((PrefixDir + Name).str());
6229
if (llvm::sys::fs::can_execute(Twine(P)))
6230
return std::string(P);
6231
}
6232
}
6233
6234
const ToolChain::path_list &List = TC.getProgramPaths();
6235
for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) {
6236
// For each possible name of the tool look for it in
6237
// program paths first, then the path.
6238
// Higher priority names will be first, meaning that
6239
// a higher priority name in the path will be found
6240
// instead of a lower priority name in the program path.
6241
// E.g. <triple>-gcc on the path will be found instead
6242
// of gcc in the program path
6243
for (const auto &Path : List) {
6244
SmallString<128> P(Path);
6245
if (ScanDirForExecutable(P, TargetSpecificExecutable))
6246
return std::string(P);
6247
}
6248
6249
// Fall back to the path
6250
if (llvm::ErrorOr<std::string> P =
6251
llvm::sys::findProgramByName(TargetSpecificExecutable))
6252
return *P;
6253
}
6254
6255
return std::string(Name);
6256
}
6257
6258
std::string Driver::GetStdModuleManifestPath(const Compilation &C,
6259
const ToolChain &TC) const {
6260
std::string error = "<NOT PRESENT>";
6261
6262
switch (TC.GetCXXStdlibType(C.getArgs())) {
6263
case ToolChain::CST_Libcxx: {
6264
auto evaluate = [&](const char *library) -> std::optional<std::string> {
6265
std::string lib = GetFilePath(library, TC);
6266
6267
// Note when there are multiple flavours of libc++ the module json needs
6268
// to look at the command-line arguments for the proper json. These
6269
// flavours do not exist at the moment, but there are plans to provide a
6270
// variant that is built with sanitizer instrumentation enabled.
6271
6272
// For example
6273
// StringRef modules = [&] {
6274
// const SanitizerArgs &Sanitize = TC.getSanitizerArgs(C.getArgs());
6275
// if (Sanitize.needsAsanRt())
6276
// return "libc++.modules-asan.json";
6277
// return "libc++.modules.json";
6278
// }();
6279
6280
SmallString<128> path(lib.begin(), lib.end());
6281
llvm::sys::path::remove_filename(path);
6282
llvm::sys::path::append(path, "libc++.modules.json");
6283
if (TC.getVFS().exists(path))
6284
return static_cast<std::string>(path);
6285
6286
return {};
6287
};
6288
6289
if (std::optional<std::string> result = evaluate("libc++.so"); result)
6290
return *result;
6291
6292
return evaluate("libc++.a").value_or(error);
6293
}
6294
6295
case ToolChain::CST_Libstdcxx:
6296
// libstdc++ does not provide Standard library modules yet.
6297
return error;
6298
}
6299
6300
return error;
6301
}
6302
6303
std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
6304
SmallString<128> Path;
6305
std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
6306
if (EC) {
6307
Diag(clang::diag::err_unable_to_make_temp) << EC.message();
6308
return "";
6309
}
6310
6311
return std::string(Path);
6312
}
6313
6314
std::string Driver::GetTemporaryDirectory(StringRef Prefix) const {
6315
SmallString<128> Path;
6316
std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path);
6317
if (EC) {
6318
Diag(clang::diag::err_unable_to_make_temp) << EC.message();
6319
return "";
6320
}
6321
6322
return std::string(Path);
6323
}
6324
6325
std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
6326
SmallString<128> Output;
6327
if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
6328
// FIXME: If anybody needs it, implement this obscure rule:
6329
// "If you specify a directory without a file name, the default file name
6330
// is VCx0.pch., where x is the major version of Visual C++ in use."
6331
Output = FpArg->getValue();
6332
6333
// "If you do not specify an extension as part of the path name, an
6334
// extension of .pch is assumed. "
6335
if (!llvm::sys::path::has_extension(Output))
6336
Output += ".pch";
6337
} else {
6338
if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
6339
Output = YcArg->getValue();
6340
if (Output.empty())
6341
Output = BaseName;
6342
llvm::sys::path::replace_extension(Output, ".pch");
6343
}
6344
return std::string(Output);
6345
}
6346
6347
const ToolChain &Driver::getToolChain(const ArgList &Args,
6348
const llvm::Triple &Target) const {
6349
6350
auto &TC = ToolChains[Target.str()];
6351
if (!TC) {
6352
switch (Target.getOS()) {
6353
case llvm::Triple::AIX:
6354
TC = std::make_unique<toolchains::AIX>(*this, Target, Args);
6355
break;
6356
case llvm::Triple::Haiku:
6357
TC = std::make_unique<toolchains::Haiku>(*this, Target, Args);
6358
break;
6359
case llvm::Triple::Darwin:
6360
case llvm::Triple::MacOSX:
6361
case llvm::Triple::IOS:
6362
case llvm::Triple::TvOS:
6363
case llvm::Triple::WatchOS:
6364
case llvm::Triple::XROS:
6365
case llvm::Triple::DriverKit:
6366
TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args);
6367
break;
6368
case llvm::Triple::DragonFly:
6369
TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args);
6370
break;
6371
case llvm::Triple::OpenBSD:
6372
TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args);
6373
break;
6374
case llvm::Triple::NetBSD:
6375
TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args);
6376
break;
6377
case llvm::Triple::FreeBSD:
6378
if (Target.isPPC())
6379
TC = std::make_unique<toolchains::PPCFreeBSDToolChain>(*this, Target,
6380
Args);
6381
else
6382
TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args);
6383
break;
6384
case llvm::Triple::Linux:
6385
case llvm::Triple::ELFIAMCU:
6386
if (Target.getArch() == llvm::Triple::hexagon)
6387
TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
6388
Args);
6389
else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
6390
!Target.hasEnvironment())
6391
TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
6392
Args);
6393
else if (Target.isPPC())
6394
TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target,
6395
Args);
6396
else if (Target.getArch() == llvm::Triple::ve)
6397
TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
6398
else if (Target.isOHOSFamily())
6399
TC = std::make_unique<toolchains::OHOS>(*this, Target, Args);
6400
else
6401
TC = std::make_unique<toolchains::Linux>(*this, Target, Args);
6402
break;
6403
case llvm::Triple::NaCl:
6404
TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
6405
break;
6406
case llvm::Triple::Fuchsia:
6407
TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args);
6408
break;
6409
case llvm::Triple::Solaris:
6410
TC = std::make_unique<toolchains::Solaris>(*this, Target, Args);
6411
break;
6412
case llvm::Triple::CUDA:
6413
TC = std::make_unique<toolchains::NVPTXToolChain>(*this, Target, Args);
6414
break;
6415
case llvm::Triple::AMDHSA:
6416
TC = std::make_unique<toolchains::ROCMToolChain>(*this, Target, Args);
6417
break;
6418
case llvm::Triple::AMDPAL:
6419
case llvm::Triple::Mesa3D:
6420
TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
6421
break;
6422
case llvm::Triple::Win32:
6423
switch (Target.getEnvironment()) {
6424
default:
6425
if (Target.isOSBinFormatELF())
6426
TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
6427
else if (Target.isOSBinFormatMachO())
6428
TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
6429
else
6430
TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
6431
break;
6432
case llvm::Triple::GNU:
6433
TC = std::make_unique<toolchains::MinGW>(*this, Target, Args);
6434
break;
6435
case llvm::Triple::Itanium:
6436
TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
6437
Args);
6438
break;
6439
case llvm::Triple::MSVC:
6440
case llvm::Triple::UnknownEnvironment:
6441
if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
6442
.starts_with_insensitive("bfd"))
6443
TC = std::make_unique<toolchains::CrossWindowsToolChain>(
6444
*this, Target, Args);
6445
else
6446
TC =
6447
std::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
6448
break;
6449
}
6450
break;
6451
case llvm::Triple::PS4:
6452
TC = std::make_unique<toolchains::PS4CPU>(*this, Target, Args);
6453
break;
6454
case llvm::Triple::PS5:
6455
TC = std::make_unique<toolchains::PS5CPU>(*this, Target, Args);
6456
break;
6457
case llvm::Triple::Hurd:
6458
TC = std::make_unique<toolchains::Hurd>(*this, Target, Args);
6459
break;
6460
case llvm::Triple::LiteOS:
6461
TC = std::make_unique<toolchains::OHOS>(*this, Target, Args);
6462
break;
6463
case llvm::Triple::ZOS:
6464
TC = std::make_unique<toolchains::ZOS>(*this, Target, Args);
6465
break;
6466
case llvm::Triple::ShaderModel:
6467
TC = std::make_unique<toolchains::HLSLToolChain>(*this, Target, Args);
6468
break;
6469
default:
6470
// Of these targets, Hexagon is the only one that might have
6471
// an OS of Linux, in which case it got handled above already.
6472
switch (Target.getArch()) {
6473
case llvm::Triple::tce:
6474
TC = std::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
6475
break;
6476
case llvm::Triple::tcele:
6477
TC = std::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
6478
break;
6479
case llvm::Triple::hexagon:
6480
TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
6481
Args);
6482
break;
6483
case llvm::Triple::lanai:
6484
TC = std::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
6485
break;
6486
case llvm::Triple::xcore:
6487
TC = std::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
6488
break;
6489
case llvm::Triple::wasm32:
6490
case llvm::Triple::wasm64:
6491
TC = std::make_unique<toolchains::WebAssembly>(*this, Target, Args);
6492
break;
6493
case llvm::Triple::avr:
6494
TC = std::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
6495
break;
6496
case llvm::Triple::msp430:
6497
TC =
6498
std::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args);
6499
break;
6500
case llvm::Triple::riscv32:
6501
case llvm::Triple::riscv64:
6502
if (toolchains::RISCVToolChain::hasGCCToolchain(*this, Args))
6503
TC =
6504
std::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
6505
else
6506
TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
6507
break;
6508
case llvm::Triple::ve:
6509
TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
6510
break;
6511
case llvm::Triple::spirv32:
6512
case llvm::Triple::spirv64:
6513
TC = std::make_unique<toolchains::SPIRVToolChain>(*this, Target, Args);
6514
break;
6515
case llvm::Triple::csky:
6516
TC = std::make_unique<toolchains::CSKYToolChain>(*this, Target, Args);
6517
break;
6518
default:
6519
if (toolchains::BareMetal::handlesTarget(Target))
6520
TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
6521
else if (Target.isOSBinFormatELF())
6522
TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
6523
else if (Target.isOSBinFormatMachO())
6524
TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
6525
else
6526
TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
6527
}
6528
}
6529
}
6530
6531
return *TC;
6532
}
6533
6534
const ToolChain &Driver::getOffloadingDeviceToolChain(
6535
const ArgList &Args, const llvm::Triple &Target, const ToolChain &HostTC,
6536
const Action::OffloadKind &TargetDeviceOffloadKind) const {
6537
// Use device / host triples as the key into the ToolChains map because the
6538
// device ToolChain we create depends on both.
6539
auto &TC = ToolChains[Target.str() + "/" + HostTC.getTriple().str()];
6540
if (!TC) {
6541
// Categorized by offload kind > arch rather than OS > arch like
6542
// the normal getToolChain call, as it seems a reasonable way to categorize
6543
// things.
6544
switch (TargetDeviceOffloadKind) {
6545
case Action::OFK_HIP: {
6546
if (((Target.getArch() == llvm::Triple::amdgcn ||
6547
Target.getArch() == llvm::Triple::spirv64) &&
6548
Target.getVendor() == llvm::Triple::AMD &&
6549
Target.getOS() == llvm::Triple::AMDHSA) ||
6550
!Args.hasArgNoClaim(options::OPT_offload_EQ))
6551
TC = std::make_unique<toolchains::HIPAMDToolChain>(*this, Target,
6552
HostTC, Args);
6553
else if (Target.getArch() == llvm::Triple::spirv64 &&
6554
Target.getVendor() == llvm::Triple::UnknownVendor &&
6555
Target.getOS() == llvm::Triple::UnknownOS)
6556
TC = std::make_unique<toolchains::HIPSPVToolChain>(*this, Target,
6557
HostTC, Args);
6558
break;
6559
}
6560
default:
6561
break;
6562
}
6563
}
6564
6565
return *TC;
6566
}
6567
6568
bool Driver::ShouldUseClangCompiler(const JobAction &JA) const {
6569
// Say "no" if there is not exactly one input of a type clang understands.
6570
if (JA.size() != 1 ||
6571
!types::isAcceptedByClang((*JA.input_begin())->getType()))
6572
return false;
6573
6574
// And say "no" if this is not a kind of action clang understands.
6575
if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
6576
!isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA) &&
6577
!isa<ExtractAPIJobAction>(JA))
6578
return false;
6579
6580
return true;
6581
}
6582
6583
bool Driver::ShouldUseFlangCompiler(const JobAction &JA) const {
6584
// Say "no" if there is not exactly one input of a type flang understands.
6585
if (JA.size() != 1 ||
6586
!types::isAcceptedByFlang((*JA.input_begin())->getType()))
6587
return false;
6588
6589
// And say "no" if this is not a kind of action flang understands.
6590
if (!isa<PreprocessJobAction>(JA) && !isa<CompileJobAction>(JA) &&
6591
!isa<BackendJobAction>(JA))
6592
return false;
6593
6594
return true;
6595
}
6596
6597
bool Driver::ShouldEmitStaticLibrary(const ArgList &Args) const {
6598
// Only emit static library if the flag is set explicitly.
6599
if (Args.hasArg(options::OPT_emit_static_lib))
6600
return true;
6601
return false;
6602
}
6603
6604
/// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
6605
/// grouped values as integers. Numbers which are not provided are set to 0.
6606
///
6607
/// \return True if the entire string was parsed (9.2), or all groups were
6608
/// parsed (10.3.5extrastuff).
6609
bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
6610
unsigned &Micro, bool &HadExtra) {
6611
HadExtra = false;
6612
6613
Major = Minor = Micro = 0;
6614
if (Str.empty())
6615
return false;
6616
6617
if (Str.consumeInteger(10, Major))
6618
return false;
6619
if (Str.empty())
6620
return true;
6621
if (!Str.consume_front("."))
6622
return false;
6623
6624
if (Str.consumeInteger(10, Minor))
6625
return false;
6626
if (Str.empty())
6627
return true;
6628
if (!Str.consume_front("."))
6629
return false;
6630
6631
if (Str.consumeInteger(10, Micro))
6632
return false;
6633
if (!Str.empty())
6634
HadExtra = true;
6635
return true;
6636
}
6637
6638
/// Parse digits from a string \p Str and fulfill \p Digits with
6639
/// the parsed numbers. This method assumes that the max number of
6640
/// digits to look for is equal to Digits.size().
6641
///
6642
/// \return True if the entire string was parsed and there are
6643
/// no extra characters remaining at the end.
6644
bool Driver::GetReleaseVersion(StringRef Str,
6645
MutableArrayRef<unsigned> Digits) {
6646
if (Str.empty())
6647
return false;
6648
6649
unsigned CurDigit = 0;
6650
while (CurDigit < Digits.size()) {
6651
unsigned Digit;
6652
if (Str.consumeInteger(10, Digit))
6653
return false;
6654
Digits[CurDigit] = Digit;
6655
if (Str.empty())
6656
return true;
6657
if (!Str.consume_front("."))
6658
return false;
6659
CurDigit++;
6660
}
6661
6662
// More digits than requested, bail out...
6663
return false;
6664
}
6665
6666
llvm::opt::Visibility
6667
Driver::getOptionVisibilityMask(bool UseDriverMode) const {
6668
if (!UseDriverMode)
6669
return llvm::opt::Visibility(options::ClangOption);
6670
if (IsCLMode())
6671
return llvm::opt::Visibility(options::CLOption);
6672
if (IsDXCMode())
6673
return llvm::opt::Visibility(options::DXCOption);
6674
if (IsFlangMode()) {
6675
return llvm::opt::Visibility(options::FlangOption);
6676
}
6677
return llvm::opt::Visibility(options::ClangOption);
6678
}
6679
6680
const char *Driver::getExecutableForDriverMode(DriverMode Mode) {
6681
switch (Mode) {
6682
case GCCMode:
6683
return "clang";
6684
case GXXMode:
6685
return "clang++";
6686
case CPPMode:
6687
return "clang-cpp";
6688
case CLMode:
6689
return "clang-cl";
6690
case FlangMode:
6691
return "flang";
6692
case DXCMode:
6693
return "clang-dxc";
6694
}
6695
6696
llvm_unreachable("Unhandled Mode");
6697
}
6698
6699
bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
6700
return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
6701
}
6702
6703
bool clang::driver::willEmitRemarks(const ArgList &Args) {
6704
// -fsave-optimization-record enables it.
6705
if (Args.hasFlag(options::OPT_fsave_optimization_record,
6706
options::OPT_fno_save_optimization_record, false))
6707
return true;
6708
6709
// -fsave-optimization-record=<format> enables it as well.
6710
if (Args.hasFlag(options::OPT_fsave_optimization_record_EQ,
6711
options::OPT_fno_save_optimization_record, false))
6712
return true;
6713
6714
// -foptimization-record-file alone enables it too.
6715
if (Args.hasFlag(options::OPT_foptimization_record_file_EQ,
6716
options::OPT_fno_save_optimization_record, false))
6717
return true;
6718
6719
// -foptimization-record-passes alone enables it too.
6720
if (Args.hasFlag(options::OPT_foptimization_record_passes_EQ,
6721
options::OPT_fno_save_optimization_record, false))
6722
return true;
6723
return false;
6724
}
6725
6726
llvm::StringRef clang::driver::getDriverMode(StringRef ProgName,
6727
ArrayRef<const char *> Args) {
6728
static StringRef OptName =
6729
getDriverOptTable().getOption(options::OPT_driver_mode).getPrefixedName();
6730
llvm::StringRef Opt;
6731
for (StringRef Arg : Args) {
6732
if (!Arg.starts_with(OptName))
6733
continue;
6734
Opt = Arg;
6735
}
6736
if (Opt.empty())
6737
Opt = ToolChain::getTargetAndModeFromProgramName(ProgName).DriverMode;
6738
return Opt.consume_front(OptName) ? Opt : "";
6739
}
6740
6741
bool driver::IsClangCL(StringRef DriverMode) { return DriverMode == "cl"; }
6742
6743
llvm::Error driver::expandResponseFiles(SmallVectorImpl<const char *> &Args,
6744
bool ClangCLMode,
6745
llvm::BumpPtrAllocator &Alloc,
6746
llvm::vfs::FileSystem *FS) {
6747
// Parse response files using the GNU syntax, unless we're in CL mode. There
6748
// are two ways to put clang in CL compatibility mode: ProgName is either
6749
// clang-cl or cl, or --driver-mode=cl is on the command line. The normal
6750
// command line parsing can't happen until after response file parsing, so we
6751
// have to manually search for a --driver-mode=cl argument the hard way.
6752
// Finally, our -cc1 tools don't care which tokenization mode we use because
6753
// response files written by clang will tokenize the same way in either mode.
6754
enum { Default, POSIX, Windows } RSPQuoting = Default;
6755
for (const char *F : Args) {
6756
if (strcmp(F, "--rsp-quoting=posix") == 0)
6757
RSPQuoting = POSIX;
6758
else if (strcmp(F, "--rsp-quoting=windows") == 0)
6759
RSPQuoting = Windows;
6760
}
6761
6762
// Determines whether we want nullptr markers in Args to indicate response
6763
// files end-of-lines. We only use this for the /LINK driver argument with
6764
// clang-cl.exe on Windows.
6765
bool MarkEOLs = ClangCLMode;
6766
6767
llvm::cl::TokenizerCallback Tokenizer;
6768
if (RSPQuoting == Windows || (RSPQuoting == Default && ClangCLMode))
6769
Tokenizer = &llvm::cl::TokenizeWindowsCommandLine;
6770
else
6771
Tokenizer = &llvm::cl::TokenizeGNUCommandLine;
6772
6773
if (MarkEOLs && Args.size() > 1 && StringRef(Args[1]).starts_with("-cc1"))
6774
MarkEOLs = false;
6775
6776
llvm::cl::ExpansionContext ECtx(Alloc, Tokenizer);
6777
ECtx.setMarkEOLs(MarkEOLs);
6778
if (FS)
6779
ECtx.setVFS(FS);
6780
6781
if (llvm::Error Err = ECtx.expandResponseFiles(Args))
6782
return Err;
6783
6784
// If -cc1 came from a response file, remove the EOL sentinels.
6785
auto FirstArg = llvm::find_if(llvm::drop_begin(Args),
6786
[](const char *A) { return A != nullptr; });
6787
if (FirstArg != Args.end() && StringRef(*FirstArg).starts_with("-cc1")) {
6788
// If -cc1 came from a response file, remove the EOL sentinels.
6789
if (MarkEOLs) {
6790
auto newEnd = std::remove(Args.begin(), Args.end(), nullptr);
6791
Args.resize(newEnd - Args.begin());
6792
}
6793
}
6794
6795
return llvm::Error::success();
6796
}
6797
6798
static const char *GetStableCStr(llvm::StringSet<> &SavedStrings, StringRef S) {
6799
return SavedStrings.insert(S).first->getKeyData();
6800
}
6801
6802
/// Apply a list of edits to the input argument lists.
6803
///
6804
/// The input string is a space separated list of edits to perform,
6805
/// they are applied in order to the input argument lists. Edits
6806
/// should be one of the following forms:
6807
///
6808
/// '#': Silence information about the changes to the command line arguments.
6809
///
6810
/// '^': Add FOO as a new argument at the beginning of the command line.
6811
///
6812
/// '+': Add FOO as a new argument at the end of the command line.
6813
///
6814
/// 's/XXX/YYY/': Substitute the regular expression XXX with YYY in the command
6815
/// line.
6816
///
6817
/// 'xOPTION': Removes all instances of the literal argument OPTION.
6818
///
6819
/// 'XOPTION': Removes all instances of the literal argument OPTION,
6820
/// and the following argument.
6821
///
6822
/// 'Ox': Removes all flags matching 'O' or 'O[sz0-9]' and adds 'Ox'
6823
/// at the end of the command line.
6824
///
6825
/// \param OS - The stream to write edit information to.
6826
/// \param Args - The vector of command line arguments.
6827
/// \param Edit - The override command to perform.
6828
/// \param SavedStrings - Set to use for storing string representations.
6829
static void applyOneOverrideOption(raw_ostream &OS,
6830
SmallVectorImpl<const char *> &Args,
6831
StringRef Edit,
6832
llvm::StringSet<> &SavedStrings) {
6833
// This does not need to be efficient.
6834
6835
if (Edit[0] == '^') {
6836
const char *Str = GetStableCStr(SavedStrings, Edit.substr(1));
6837
OS << "### Adding argument " << Str << " at beginning\n";
6838
Args.insert(Args.begin() + 1, Str);
6839
} else if (Edit[0] == '+') {
6840
const char *Str = GetStableCStr(SavedStrings, Edit.substr(1));
6841
OS << "### Adding argument " << Str << " at end\n";
6842
Args.push_back(Str);
6843
} else if (Edit[0] == 's' && Edit[1] == '/' && Edit.ends_with("/") &&
6844
Edit.slice(2, Edit.size() - 1).contains('/')) {
6845
StringRef MatchPattern = Edit.substr(2).split('/').first;
6846
StringRef ReplPattern = Edit.substr(2).split('/').second;
6847
ReplPattern = ReplPattern.slice(0, ReplPattern.size() - 1);
6848
6849
for (unsigned i = 1, e = Args.size(); i != e; ++i) {
6850
// Ignore end-of-line response file markers
6851
if (Args[i] == nullptr)
6852
continue;
6853
std::string Repl = llvm::Regex(MatchPattern).sub(ReplPattern, Args[i]);
6854
6855
if (Repl != Args[i]) {
6856
OS << "### Replacing '" << Args[i] << "' with '" << Repl << "'\n";
6857
Args[i] = GetStableCStr(SavedStrings, Repl);
6858
}
6859
}
6860
} else if (Edit[0] == 'x' || Edit[0] == 'X') {
6861
auto Option = Edit.substr(1);
6862
for (unsigned i = 1; i < Args.size();) {
6863
if (Option == Args[i]) {
6864
OS << "### Deleting argument " << Args[i] << '\n';
6865
Args.erase(Args.begin() + i);
6866
if (Edit[0] == 'X') {
6867
if (i < Args.size()) {
6868
OS << "### Deleting argument " << Args[i] << '\n';
6869
Args.erase(Args.begin() + i);
6870
} else
6871
OS << "### Invalid X edit, end of command line!\n";
6872
}
6873
} else
6874
++i;
6875
}
6876
} else if (Edit[0] == 'O') {
6877
for (unsigned i = 1; i < Args.size();) {
6878
const char *A = Args[i];
6879
// Ignore end-of-line response file markers
6880
if (A == nullptr)
6881
continue;
6882
if (A[0] == '-' && A[1] == 'O' &&
6883
(A[2] == '\0' || (A[3] == '\0' && (A[2] == 's' || A[2] == 'z' ||
6884
('0' <= A[2] && A[2] <= '9'))))) {
6885
OS << "### Deleting argument " << Args[i] << '\n';
6886
Args.erase(Args.begin() + i);
6887
} else
6888
++i;
6889
}
6890
OS << "### Adding argument " << Edit << " at end\n";
6891
Args.push_back(GetStableCStr(SavedStrings, '-' + Edit.str()));
6892
} else {
6893
OS << "### Unrecognized edit: " << Edit << "\n";
6894
}
6895
}
6896
6897
void driver::applyOverrideOptions(SmallVectorImpl<const char *> &Args,
6898
const char *OverrideStr,
6899
llvm::StringSet<> &SavedStrings,
6900
raw_ostream *OS) {
6901
if (!OS)
6902
OS = &llvm::nulls();
6903
6904
if (OverrideStr[0] == '#') {
6905
++OverrideStr;
6906
OS = &llvm::nulls();
6907
}
6908
6909
*OS << "### CCC_OVERRIDE_OPTIONS: " << OverrideStr << "\n";
6910
6911
// This does not need to be efficient.
6912
6913
const char *S = OverrideStr;
6914
while (*S) {
6915
const char *End = ::strchr(S, ' ');
6916
if (!End)
6917
End = S + strlen(S);
6918
if (End != S)
6919
applyOneOverrideOption(*OS, Args, std::string(S, End), SavedStrings);
6920
S = End;
6921
if (*S != '\0')
6922
++S;
6923
}
6924
}
6925
6926