Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/clang/lib/Lex/Preprocessor.cpp
35232 views
1
//===- Preprocessor.cpp - C Language Family Preprocessor Implementation ---===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the Preprocessor interface.
10
//
11
//===----------------------------------------------------------------------===//
12
//
13
// Options to support:
14
// -H - Print the name of each header file used.
15
// -d[DNI] - Dump various things.
16
// -fworking-directory - #line's with preprocessor's working dir.
17
// -fpreprocessed
18
// -dependency-file,-M,-MM,-MF,-MG,-MP,-MT,-MQ,-MD,-MMD
19
// -W*
20
// -w
21
//
22
// Messages to emit:
23
// "Multiple include guards may be useful for:\n"
24
//
25
//===----------------------------------------------------------------------===//
26
27
#include "clang/Lex/Preprocessor.h"
28
#include "clang/Basic/Builtins.h"
29
#include "clang/Basic/FileManager.h"
30
#include "clang/Basic/FileSystemStatCache.h"
31
#include "clang/Basic/IdentifierTable.h"
32
#include "clang/Basic/LLVM.h"
33
#include "clang/Basic/LangOptions.h"
34
#include "clang/Basic/Module.h"
35
#include "clang/Basic/SourceLocation.h"
36
#include "clang/Basic/SourceManager.h"
37
#include "clang/Basic/TargetInfo.h"
38
#include "clang/Lex/CodeCompletionHandler.h"
39
#include "clang/Lex/ExternalPreprocessorSource.h"
40
#include "clang/Lex/HeaderSearch.h"
41
#include "clang/Lex/LexDiagnostic.h"
42
#include "clang/Lex/Lexer.h"
43
#include "clang/Lex/LiteralSupport.h"
44
#include "clang/Lex/MacroArgs.h"
45
#include "clang/Lex/MacroInfo.h"
46
#include "clang/Lex/ModuleLoader.h"
47
#include "clang/Lex/Pragma.h"
48
#include "clang/Lex/PreprocessingRecord.h"
49
#include "clang/Lex/PreprocessorLexer.h"
50
#include "clang/Lex/PreprocessorOptions.h"
51
#include "clang/Lex/ScratchBuffer.h"
52
#include "clang/Lex/Token.h"
53
#include "clang/Lex/TokenLexer.h"
54
#include "llvm/ADT/APInt.h"
55
#include "llvm/ADT/ArrayRef.h"
56
#include "llvm/ADT/DenseMap.h"
57
#include "llvm/ADT/STLExtras.h"
58
#include "llvm/ADT/SmallString.h"
59
#include "llvm/ADT/SmallVector.h"
60
#include "llvm/ADT/StringRef.h"
61
#include "llvm/ADT/iterator_range.h"
62
#include "llvm/Support/Capacity.h"
63
#include "llvm/Support/ErrorHandling.h"
64
#include "llvm/Support/MemoryBuffer.h"
65
#include "llvm/Support/raw_ostream.h"
66
#include <algorithm>
67
#include <cassert>
68
#include <memory>
69
#include <optional>
70
#include <string>
71
#include <utility>
72
#include <vector>
73
74
using namespace clang;
75
76
/// Minimum distance between two check points, in tokens.
77
static constexpr unsigned CheckPointStepSize = 1024;
78
79
LLVM_INSTANTIATE_REGISTRY(PragmaHandlerRegistry)
80
81
ExternalPreprocessorSource::~ExternalPreprocessorSource() = default;
82
83
Preprocessor::Preprocessor(std::shared_ptr<PreprocessorOptions> PPOpts,
84
DiagnosticsEngine &diags, const LangOptions &opts,
85
SourceManager &SM, HeaderSearch &Headers,
86
ModuleLoader &TheModuleLoader,
87
IdentifierInfoLookup *IILookup, bool OwnsHeaders,
88
TranslationUnitKind TUKind)
89
: PPOpts(std::move(PPOpts)), Diags(&diags), LangOpts(opts),
90
FileMgr(Headers.getFileMgr()), SourceMgr(SM),
91
ScratchBuf(new ScratchBuffer(SourceMgr)), HeaderInfo(Headers),
92
TheModuleLoader(TheModuleLoader), ExternalSource(nullptr),
93
// As the language options may have not been loaded yet (when
94
// deserializing an ASTUnit), adding keywords to the identifier table is
95
// deferred to Preprocessor::Initialize().
96
Identifiers(IILookup), PragmaHandlers(new PragmaNamespace(StringRef())),
97
TUKind(TUKind), SkipMainFilePreamble(0, true),
98
CurSubmoduleState(&NullSubmoduleState) {
99
OwnsHeaderSearch = OwnsHeaders;
100
101
// Default to discarding comments.
102
KeepComments = false;
103
KeepMacroComments = false;
104
SuppressIncludeNotFoundError = false;
105
106
// Macro expansion is enabled.
107
DisableMacroExpansion = false;
108
MacroExpansionInDirectivesOverride = false;
109
InMacroArgs = false;
110
ArgMacro = nullptr;
111
InMacroArgPreExpansion = false;
112
NumCachedTokenLexers = 0;
113
PragmasEnabled = true;
114
ParsingIfOrElifDirective = false;
115
PreprocessedOutput = false;
116
117
// We haven't read anything from the external source.
118
ReadMacrosFromExternalSource = false;
119
120
BuiltinInfo = std::make_unique<Builtin::Context>();
121
122
// "Poison" __VA_ARGS__, __VA_OPT__ which can only appear in the expansion of
123
// a macro. They get unpoisoned where it is allowed.
124
(Ident__VA_ARGS__ = getIdentifierInfo("__VA_ARGS__"))->setIsPoisoned();
125
SetPoisonReason(Ident__VA_ARGS__,diag::ext_pp_bad_vaargs_use);
126
(Ident__VA_OPT__ = getIdentifierInfo("__VA_OPT__"))->setIsPoisoned();
127
SetPoisonReason(Ident__VA_OPT__,diag::ext_pp_bad_vaopt_use);
128
129
// Initialize the pragma handlers.
130
RegisterBuiltinPragmas();
131
132
// Initialize builtin macros like __LINE__ and friends.
133
RegisterBuiltinMacros();
134
135
if(LangOpts.Borland) {
136
Ident__exception_info = getIdentifierInfo("_exception_info");
137
Ident___exception_info = getIdentifierInfo("__exception_info");
138
Ident_GetExceptionInfo = getIdentifierInfo("GetExceptionInformation");
139
Ident__exception_code = getIdentifierInfo("_exception_code");
140
Ident___exception_code = getIdentifierInfo("__exception_code");
141
Ident_GetExceptionCode = getIdentifierInfo("GetExceptionCode");
142
Ident__abnormal_termination = getIdentifierInfo("_abnormal_termination");
143
Ident___abnormal_termination = getIdentifierInfo("__abnormal_termination");
144
Ident_AbnormalTermination = getIdentifierInfo("AbnormalTermination");
145
} else {
146
Ident__exception_info = Ident__exception_code = nullptr;
147
Ident__abnormal_termination = Ident___exception_info = nullptr;
148
Ident___exception_code = Ident___abnormal_termination = nullptr;
149
Ident_GetExceptionInfo = Ident_GetExceptionCode = nullptr;
150
Ident_AbnormalTermination = nullptr;
151
}
152
153
// Default incremental processing to -fincremental-extensions, clients can
154
// override with `enableIncrementalProcessing` if desired.
155
IncrementalProcessing = LangOpts.IncrementalExtensions;
156
157
// If using a PCH where a #pragma hdrstop is expected, start skipping tokens.
158
if (usingPCHWithPragmaHdrStop())
159
SkippingUntilPragmaHdrStop = true;
160
161
// If using a PCH with a through header, start skipping tokens.
162
if (!this->PPOpts->PCHThroughHeader.empty() &&
163
!this->PPOpts->ImplicitPCHInclude.empty())
164
SkippingUntilPCHThroughHeader = true;
165
166
if (this->PPOpts->GeneratePreamble)
167
PreambleConditionalStack.startRecording();
168
169
MaxTokens = LangOpts.MaxTokens;
170
}
171
172
Preprocessor::~Preprocessor() {
173
assert(BacktrackPositions.empty() && "EnableBacktrack/Backtrack imbalance!");
174
175
IncludeMacroStack.clear();
176
177
// Free any cached macro expanders.
178
// This populates MacroArgCache, so all TokenLexers need to be destroyed
179
// before the code below that frees up the MacroArgCache list.
180
std::fill(TokenLexerCache, TokenLexerCache + NumCachedTokenLexers, nullptr);
181
CurTokenLexer.reset();
182
183
// Free any cached MacroArgs.
184
for (MacroArgs *ArgList = MacroArgCache; ArgList;)
185
ArgList = ArgList->deallocate();
186
187
// Delete the header search info, if we own it.
188
if (OwnsHeaderSearch)
189
delete &HeaderInfo;
190
}
191
192
void Preprocessor::Initialize(const TargetInfo &Target,
193
const TargetInfo *AuxTarget) {
194
assert((!this->Target || this->Target == &Target) &&
195
"Invalid override of target information");
196
this->Target = &Target;
197
198
assert((!this->AuxTarget || this->AuxTarget == AuxTarget) &&
199
"Invalid override of aux target information.");
200
this->AuxTarget = AuxTarget;
201
202
// Initialize information about built-ins.
203
BuiltinInfo->InitializeTarget(Target, AuxTarget);
204
HeaderInfo.setTarget(Target);
205
206
// Populate the identifier table with info about keywords for the current language.
207
Identifiers.AddKeywords(LangOpts);
208
209
// Initialize the __FTL_EVAL_METHOD__ macro to the TargetInfo.
210
setTUFPEvalMethod(getTargetInfo().getFPEvalMethod());
211
212
if (getLangOpts().getFPEvalMethod() == LangOptions::FEM_UnsetOnCommandLine)
213
// Use setting from TargetInfo.
214
setCurrentFPEvalMethod(SourceLocation(), Target.getFPEvalMethod());
215
else
216
// Set initial value of __FLT_EVAL_METHOD__ from the command line.
217
setCurrentFPEvalMethod(SourceLocation(), getLangOpts().getFPEvalMethod());
218
}
219
220
void Preprocessor::InitializeForModelFile() {
221
NumEnteredSourceFiles = 0;
222
223
// Reset pragmas
224
PragmaHandlersBackup = std::move(PragmaHandlers);
225
PragmaHandlers = std::make_unique<PragmaNamespace>(StringRef());
226
RegisterBuiltinPragmas();
227
228
// Reset PredefinesFileID
229
PredefinesFileID = FileID();
230
}
231
232
void Preprocessor::FinalizeForModelFile() {
233
NumEnteredSourceFiles = 1;
234
235
PragmaHandlers = std::move(PragmaHandlersBackup);
236
}
237
238
void Preprocessor::DumpToken(const Token &Tok, bool DumpFlags) const {
239
llvm::errs() << tok::getTokenName(Tok.getKind());
240
241
if (!Tok.isAnnotation())
242
llvm::errs() << " '" << getSpelling(Tok) << "'";
243
244
if (!DumpFlags) return;
245
246
llvm::errs() << "\t";
247
if (Tok.isAtStartOfLine())
248
llvm::errs() << " [StartOfLine]";
249
if (Tok.hasLeadingSpace())
250
llvm::errs() << " [LeadingSpace]";
251
if (Tok.isExpandDisabled())
252
llvm::errs() << " [ExpandDisabled]";
253
if (Tok.needsCleaning()) {
254
const char *Start = SourceMgr.getCharacterData(Tok.getLocation());
255
llvm::errs() << " [UnClean='" << StringRef(Start, Tok.getLength())
256
<< "']";
257
}
258
259
llvm::errs() << "\tLoc=<";
260
DumpLocation(Tok.getLocation());
261
llvm::errs() << ">";
262
}
263
264
void Preprocessor::DumpLocation(SourceLocation Loc) const {
265
Loc.print(llvm::errs(), SourceMgr);
266
}
267
268
void Preprocessor::DumpMacro(const MacroInfo &MI) const {
269
llvm::errs() << "MACRO: ";
270
for (unsigned i = 0, e = MI.getNumTokens(); i != e; ++i) {
271
DumpToken(MI.getReplacementToken(i));
272
llvm::errs() << " ";
273
}
274
llvm::errs() << "\n";
275
}
276
277
void Preprocessor::PrintStats() {
278
llvm::errs() << "\n*** Preprocessor Stats:\n";
279
llvm::errs() << NumDirectives << " directives found:\n";
280
llvm::errs() << " " << NumDefined << " #define.\n";
281
llvm::errs() << " " << NumUndefined << " #undef.\n";
282
llvm::errs() << " #include/#include_next/#import:\n";
283
llvm::errs() << " " << NumEnteredSourceFiles << " source files entered.\n";
284
llvm::errs() << " " << MaxIncludeStackDepth << " max include stack depth\n";
285
llvm::errs() << " " << NumIf << " #if/#ifndef/#ifdef.\n";
286
llvm::errs() << " " << NumElse << " #else/#elif/#elifdef/#elifndef.\n";
287
llvm::errs() << " " << NumEndif << " #endif.\n";
288
llvm::errs() << " " << NumPragma << " #pragma.\n";
289
llvm::errs() << NumSkipped << " #if/#ifndef#ifdef regions skipped\n";
290
291
llvm::errs() << NumMacroExpanded << "/" << NumFnMacroExpanded << "/"
292
<< NumBuiltinMacroExpanded << " obj/fn/builtin macros expanded, "
293
<< NumFastMacroExpanded << " on the fast path.\n";
294
llvm::errs() << (NumFastTokenPaste+NumTokenPaste)
295
<< " token paste (##) operations performed, "
296
<< NumFastTokenPaste << " on the fast path.\n";
297
298
llvm::errs() << "\nPreprocessor Memory: " << getTotalMemory() << "B total";
299
300
llvm::errs() << "\n BumpPtr: " << BP.getTotalMemory();
301
llvm::errs() << "\n Macro Expanded Tokens: "
302
<< llvm::capacity_in_bytes(MacroExpandedTokens);
303
llvm::errs() << "\n Predefines Buffer: " << Predefines.capacity();
304
// FIXME: List information for all submodules.
305
llvm::errs() << "\n Macros: "
306
<< llvm::capacity_in_bytes(CurSubmoduleState->Macros);
307
llvm::errs() << "\n #pragma push_macro Info: "
308
<< llvm::capacity_in_bytes(PragmaPushMacroInfo);
309
llvm::errs() << "\n Poison Reasons: "
310
<< llvm::capacity_in_bytes(PoisonReasons);
311
llvm::errs() << "\n Comment Handlers: "
312
<< llvm::capacity_in_bytes(CommentHandlers) << "\n";
313
}
314
315
Preprocessor::macro_iterator
316
Preprocessor::macro_begin(bool IncludeExternalMacros) const {
317
if (IncludeExternalMacros && ExternalSource &&
318
!ReadMacrosFromExternalSource) {
319
ReadMacrosFromExternalSource = true;
320
ExternalSource->ReadDefinedMacros();
321
}
322
323
// Make sure we cover all macros in visible modules.
324
for (const ModuleMacro &Macro : ModuleMacros)
325
CurSubmoduleState->Macros.insert(std::make_pair(Macro.II, MacroState()));
326
327
return CurSubmoduleState->Macros.begin();
328
}
329
330
size_t Preprocessor::getTotalMemory() const {
331
return BP.getTotalMemory()
332
+ llvm::capacity_in_bytes(MacroExpandedTokens)
333
+ Predefines.capacity() /* Predefines buffer. */
334
// FIXME: Include sizes from all submodules, and include MacroInfo sizes,
335
// and ModuleMacros.
336
+ llvm::capacity_in_bytes(CurSubmoduleState->Macros)
337
+ llvm::capacity_in_bytes(PragmaPushMacroInfo)
338
+ llvm::capacity_in_bytes(PoisonReasons)
339
+ llvm::capacity_in_bytes(CommentHandlers);
340
}
341
342
Preprocessor::macro_iterator
343
Preprocessor::macro_end(bool IncludeExternalMacros) const {
344
if (IncludeExternalMacros && ExternalSource &&
345
!ReadMacrosFromExternalSource) {
346
ReadMacrosFromExternalSource = true;
347
ExternalSource->ReadDefinedMacros();
348
}
349
350
return CurSubmoduleState->Macros.end();
351
}
352
353
/// Compares macro tokens with a specified token value sequence.
354
static bool MacroDefinitionEquals(const MacroInfo *MI,
355
ArrayRef<TokenValue> Tokens) {
356
return Tokens.size() == MI->getNumTokens() &&
357
std::equal(Tokens.begin(), Tokens.end(), MI->tokens_begin());
358
}
359
360
StringRef Preprocessor::getLastMacroWithSpelling(
361
SourceLocation Loc,
362
ArrayRef<TokenValue> Tokens) const {
363
SourceLocation BestLocation;
364
StringRef BestSpelling;
365
for (Preprocessor::macro_iterator I = macro_begin(), E = macro_end();
366
I != E; ++I) {
367
const MacroDirective::DefInfo
368
Def = I->second.findDirectiveAtLoc(Loc, SourceMgr);
369
if (!Def || !Def.getMacroInfo())
370
continue;
371
if (!Def.getMacroInfo()->isObjectLike())
372
continue;
373
if (!MacroDefinitionEquals(Def.getMacroInfo(), Tokens))
374
continue;
375
SourceLocation Location = Def.getLocation();
376
// Choose the macro defined latest.
377
if (BestLocation.isInvalid() ||
378
(Location.isValid() &&
379
SourceMgr.isBeforeInTranslationUnit(BestLocation, Location))) {
380
BestLocation = Location;
381
BestSpelling = I->first->getName();
382
}
383
}
384
return BestSpelling;
385
}
386
387
void Preprocessor::recomputeCurLexerKind() {
388
if (CurLexer)
389
CurLexerCallback = CurLexer->isDependencyDirectivesLexer()
390
? CLK_DependencyDirectivesLexer
391
: CLK_Lexer;
392
else if (CurTokenLexer)
393
CurLexerCallback = CLK_TokenLexer;
394
else
395
CurLexerCallback = CLK_CachingLexer;
396
}
397
398
bool Preprocessor::SetCodeCompletionPoint(FileEntryRef File,
399
unsigned CompleteLine,
400
unsigned CompleteColumn) {
401
assert(CompleteLine && CompleteColumn && "Starts from 1:1");
402
assert(!CodeCompletionFile && "Already set");
403
404
// Load the actual file's contents.
405
std::optional<llvm::MemoryBufferRef> Buffer =
406
SourceMgr.getMemoryBufferForFileOrNone(File);
407
if (!Buffer)
408
return true;
409
410
// Find the byte position of the truncation point.
411
const char *Position = Buffer->getBufferStart();
412
for (unsigned Line = 1; Line < CompleteLine; ++Line) {
413
for (; *Position; ++Position) {
414
if (*Position != '\r' && *Position != '\n')
415
continue;
416
417
// Eat \r\n or \n\r as a single line.
418
if ((Position[1] == '\r' || Position[1] == '\n') &&
419
Position[0] != Position[1])
420
++Position;
421
++Position;
422
break;
423
}
424
}
425
426
Position += CompleteColumn - 1;
427
428
// If pointing inside the preamble, adjust the position at the beginning of
429
// the file after the preamble.
430
if (SkipMainFilePreamble.first &&
431
SourceMgr.getFileEntryForID(SourceMgr.getMainFileID()) == File) {
432
if (Position - Buffer->getBufferStart() < SkipMainFilePreamble.first)
433
Position = Buffer->getBufferStart() + SkipMainFilePreamble.first;
434
}
435
436
if (Position > Buffer->getBufferEnd())
437
Position = Buffer->getBufferEnd();
438
439
CodeCompletionFile = File;
440
CodeCompletionOffset = Position - Buffer->getBufferStart();
441
442
auto NewBuffer = llvm::WritableMemoryBuffer::getNewUninitMemBuffer(
443
Buffer->getBufferSize() + 1, Buffer->getBufferIdentifier());
444
char *NewBuf = NewBuffer->getBufferStart();
445
char *NewPos = std::copy(Buffer->getBufferStart(), Position, NewBuf);
446
*NewPos = '\0';
447
std::copy(Position, Buffer->getBufferEnd(), NewPos+1);
448
SourceMgr.overrideFileContents(File, std::move(NewBuffer));
449
450
return false;
451
}
452
453
void Preprocessor::CodeCompleteIncludedFile(llvm::StringRef Dir,
454
bool IsAngled) {
455
setCodeCompletionReached();
456
if (CodeComplete)
457
CodeComplete->CodeCompleteIncludedFile(Dir, IsAngled);
458
}
459
460
void Preprocessor::CodeCompleteNaturalLanguage() {
461
setCodeCompletionReached();
462
if (CodeComplete)
463
CodeComplete->CodeCompleteNaturalLanguage();
464
}
465
466
/// getSpelling - This method is used to get the spelling of a token into a
467
/// SmallVector. Note that the returned StringRef may not point to the
468
/// supplied buffer if a copy can be avoided.
469
StringRef Preprocessor::getSpelling(const Token &Tok,
470
SmallVectorImpl<char> &Buffer,
471
bool *Invalid) const {
472
// NOTE: this has to be checked *before* testing for an IdentifierInfo.
473
if (Tok.isNot(tok::raw_identifier) && !Tok.hasUCN()) {
474
// Try the fast path.
475
if (const IdentifierInfo *II = Tok.getIdentifierInfo())
476
return II->getName();
477
}
478
479
// Resize the buffer if we need to copy into it.
480
if (Tok.needsCleaning())
481
Buffer.resize(Tok.getLength());
482
483
const char *Ptr = Buffer.data();
484
unsigned Len = getSpelling(Tok, Ptr, Invalid);
485
return StringRef(Ptr, Len);
486
}
487
488
/// CreateString - Plop the specified string into a scratch buffer and return a
489
/// location for it. If specified, the source location provides a source
490
/// location for the token.
491
void Preprocessor::CreateString(StringRef Str, Token &Tok,
492
SourceLocation ExpansionLocStart,
493
SourceLocation ExpansionLocEnd) {
494
Tok.setLength(Str.size());
495
496
const char *DestPtr;
497
SourceLocation Loc = ScratchBuf->getToken(Str.data(), Str.size(), DestPtr);
498
499
if (ExpansionLocStart.isValid())
500
Loc = SourceMgr.createExpansionLoc(Loc, ExpansionLocStart,
501
ExpansionLocEnd, Str.size());
502
Tok.setLocation(Loc);
503
504
// If this is a raw identifier or a literal token, set the pointer data.
505
if (Tok.is(tok::raw_identifier))
506
Tok.setRawIdentifierData(DestPtr);
507
else if (Tok.isLiteral())
508
Tok.setLiteralData(DestPtr);
509
}
510
511
SourceLocation Preprocessor::SplitToken(SourceLocation Loc, unsigned Length) {
512
auto &SM = getSourceManager();
513
SourceLocation SpellingLoc = SM.getSpellingLoc(Loc);
514
std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(SpellingLoc);
515
bool Invalid = false;
516
StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
517
if (Invalid)
518
return SourceLocation();
519
520
// FIXME: We could consider re-using spelling for tokens we see repeatedly.
521
const char *DestPtr;
522
SourceLocation Spelling =
523
ScratchBuf->getToken(Buffer.data() + LocInfo.second, Length, DestPtr);
524
return SM.createTokenSplitLoc(Spelling, Loc, Loc.getLocWithOffset(Length));
525
}
526
527
Module *Preprocessor::getCurrentModule() {
528
if (!getLangOpts().isCompilingModule())
529
return nullptr;
530
531
return getHeaderSearchInfo().lookupModule(getLangOpts().CurrentModule);
532
}
533
534
Module *Preprocessor::getCurrentModuleImplementation() {
535
if (!getLangOpts().isCompilingModuleImplementation())
536
return nullptr;
537
538
return getHeaderSearchInfo().lookupModule(getLangOpts().ModuleName);
539
}
540
541
//===----------------------------------------------------------------------===//
542
// Preprocessor Initialization Methods
543
//===----------------------------------------------------------------------===//
544
545
/// EnterMainSourceFile - Enter the specified FileID as the main source file,
546
/// which implicitly adds the builtin defines etc.
547
void Preprocessor::EnterMainSourceFile() {
548
// We do not allow the preprocessor to reenter the main file. Doing so will
549
// cause FileID's to accumulate information from both runs (e.g. #line
550
// information) and predefined macros aren't guaranteed to be set properly.
551
assert(NumEnteredSourceFiles == 0 && "Cannot reenter the main file!");
552
FileID MainFileID = SourceMgr.getMainFileID();
553
554
// If MainFileID is loaded it means we loaded an AST file, no need to enter
555
// a main file.
556
if (!SourceMgr.isLoadedFileID(MainFileID)) {
557
// Enter the main file source buffer.
558
EnterSourceFile(MainFileID, nullptr, SourceLocation());
559
560
// If we've been asked to skip bytes in the main file (e.g., as part of a
561
// precompiled preamble), do so now.
562
if (SkipMainFilePreamble.first > 0)
563
CurLexer->SetByteOffset(SkipMainFilePreamble.first,
564
SkipMainFilePreamble.second);
565
566
// Tell the header info that the main file was entered. If the file is later
567
// #imported, it won't be re-entered.
568
if (OptionalFileEntryRef FE = SourceMgr.getFileEntryRefForID(MainFileID))
569
markIncluded(*FE);
570
}
571
572
// Preprocess Predefines to populate the initial preprocessor state.
573
std::unique_ptr<llvm::MemoryBuffer> SB =
574
llvm::MemoryBuffer::getMemBufferCopy(Predefines, "<built-in>");
575
assert(SB && "Cannot create predefined source buffer");
576
FileID FID = SourceMgr.createFileID(std::move(SB));
577
assert(FID.isValid() && "Could not create FileID for predefines?");
578
setPredefinesFileID(FID);
579
580
// Start parsing the predefines.
581
EnterSourceFile(FID, nullptr, SourceLocation());
582
583
if (!PPOpts->PCHThroughHeader.empty()) {
584
// Lookup and save the FileID for the through header. If it isn't found
585
// in the search path, it's a fatal error.
586
OptionalFileEntryRef File = LookupFile(
587
SourceLocation(), PPOpts->PCHThroughHeader,
588
/*isAngled=*/false, /*FromDir=*/nullptr, /*FromFile=*/nullptr,
589
/*CurDir=*/nullptr, /*SearchPath=*/nullptr, /*RelativePath=*/nullptr,
590
/*SuggestedModule=*/nullptr, /*IsMapped=*/nullptr,
591
/*IsFrameworkFound=*/nullptr);
592
if (!File) {
593
Diag(SourceLocation(), diag::err_pp_through_header_not_found)
594
<< PPOpts->PCHThroughHeader;
595
return;
596
}
597
setPCHThroughHeaderFileID(
598
SourceMgr.createFileID(*File, SourceLocation(), SrcMgr::C_User));
599
}
600
601
// Skip tokens from the Predefines and if needed the main file.
602
if ((usingPCHWithThroughHeader() && SkippingUntilPCHThroughHeader) ||
603
(usingPCHWithPragmaHdrStop() && SkippingUntilPragmaHdrStop))
604
SkipTokensWhileUsingPCH();
605
}
606
607
void Preprocessor::setPCHThroughHeaderFileID(FileID FID) {
608
assert(PCHThroughHeaderFileID.isInvalid() &&
609
"PCHThroughHeaderFileID already set!");
610
PCHThroughHeaderFileID = FID;
611
}
612
613
bool Preprocessor::isPCHThroughHeader(const FileEntry *FE) {
614
assert(PCHThroughHeaderFileID.isValid() &&
615
"Invalid PCH through header FileID");
616
return FE == SourceMgr.getFileEntryForID(PCHThroughHeaderFileID);
617
}
618
619
bool Preprocessor::creatingPCHWithThroughHeader() {
620
return TUKind == TU_Prefix && !PPOpts->PCHThroughHeader.empty() &&
621
PCHThroughHeaderFileID.isValid();
622
}
623
624
bool Preprocessor::usingPCHWithThroughHeader() {
625
return TUKind != TU_Prefix && !PPOpts->PCHThroughHeader.empty() &&
626
PCHThroughHeaderFileID.isValid();
627
}
628
629
bool Preprocessor::creatingPCHWithPragmaHdrStop() {
630
return TUKind == TU_Prefix && PPOpts->PCHWithHdrStop;
631
}
632
633
bool Preprocessor::usingPCHWithPragmaHdrStop() {
634
return TUKind != TU_Prefix && PPOpts->PCHWithHdrStop;
635
}
636
637
/// Skip tokens until after the #include of the through header or
638
/// until after a #pragma hdrstop is seen. Tokens in the predefines file
639
/// and the main file may be skipped. If the end of the predefines file
640
/// is reached, skipping continues into the main file. If the end of the
641
/// main file is reached, it's a fatal error.
642
void Preprocessor::SkipTokensWhileUsingPCH() {
643
bool ReachedMainFileEOF = false;
644
bool UsingPCHThroughHeader = SkippingUntilPCHThroughHeader;
645
bool UsingPragmaHdrStop = SkippingUntilPragmaHdrStop;
646
Token Tok;
647
while (true) {
648
bool InPredefines =
649
(CurLexer && CurLexer->getFileID() == getPredefinesFileID());
650
CurLexerCallback(*this, Tok);
651
if (Tok.is(tok::eof) && !InPredefines) {
652
ReachedMainFileEOF = true;
653
break;
654
}
655
if (UsingPCHThroughHeader && !SkippingUntilPCHThroughHeader)
656
break;
657
if (UsingPragmaHdrStop && !SkippingUntilPragmaHdrStop)
658
break;
659
}
660
if (ReachedMainFileEOF) {
661
if (UsingPCHThroughHeader)
662
Diag(SourceLocation(), diag::err_pp_through_header_not_seen)
663
<< PPOpts->PCHThroughHeader << 1;
664
else if (!PPOpts->PCHWithHdrStopCreate)
665
Diag(SourceLocation(), diag::err_pp_pragma_hdrstop_not_seen);
666
}
667
}
668
669
void Preprocessor::replayPreambleConditionalStack() {
670
// Restore the conditional stack from the preamble, if there is one.
671
if (PreambleConditionalStack.isReplaying()) {
672
assert(CurPPLexer &&
673
"CurPPLexer is null when calling replayPreambleConditionalStack.");
674
CurPPLexer->setConditionalLevels(PreambleConditionalStack.getStack());
675
PreambleConditionalStack.doneReplaying();
676
if (PreambleConditionalStack.reachedEOFWhileSkipping())
677
SkipExcludedConditionalBlock(
678
PreambleConditionalStack.SkipInfo->HashTokenLoc,
679
PreambleConditionalStack.SkipInfo->IfTokenLoc,
680
PreambleConditionalStack.SkipInfo->FoundNonSkipPortion,
681
PreambleConditionalStack.SkipInfo->FoundElse,
682
PreambleConditionalStack.SkipInfo->ElseLoc);
683
}
684
}
685
686
void Preprocessor::EndSourceFile() {
687
// Notify the client that we reached the end of the source file.
688
if (Callbacks)
689
Callbacks->EndOfMainFile();
690
}
691
692
//===----------------------------------------------------------------------===//
693
// Lexer Event Handling.
694
//===----------------------------------------------------------------------===//
695
696
/// LookUpIdentifierInfo - Given a tok::raw_identifier token, look up the
697
/// identifier information for the token and install it into the token,
698
/// updating the token kind accordingly.
699
IdentifierInfo *Preprocessor::LookUpIdentifierInfo(Token &Identifier) const {
700
assert(!Identifier.getRawIdentifier().empty() && "No raw identifier data!");
701
702
// Look up this token, see if it is a macro, or if it is a language keyword.
703
IdentifierInfo *II;
704
if (!Identifier.needsCleaning() && !Identifier.hasUCN()) {
705
// No cleaning needed, just use the characters from the lexed buffer.
706
II = getIdentifierInfo(Identifier.getRawIdentifier());
707
} else {
708
// Cleaning needed, alloca a buffer, clean into it, then use the buffer.
709
SmallString<64> IdentifierBuffer;
710
StringRef CleanedStr = getSpelling(Identifier, IdentifierBuffer);
711
712
if (Identifier.hasUCN()) {
713
SmallString<64> UCNIdentifierBuffer;
714
expandUCNs(UCNIdentifierBuffer, CleanedStr);
715
II = getIdentifierInfo(UCNIdentifierBuffer);
716
} else {
717
II = getIdentifierInfo(CleanedStr);
718
}
719
}
720
721
// Update the token info (identifier info and appropriate token kind).
722
// FIXME: the raw_identifier may contain leading whitespace which is removed
723
// from the cleaned identifier token. The SourceLocation should be updated to
724
// refer to the non-whitespace character. For instance, the text "\\\nB" (a
725
// line continuation before 'B') is parsed as a single tok::raw_identifier and
726
// is cleaned to tok::identifier "B". After cleaning the token's length is
727
// still 3 and the SourceLocation refers to the location of the backslash.
728
Identifier.setIdentifierInfo(II);
729
Identifier.setKind(II->getTokenID());
730
731
return II;
732
}
733
734
void Preprocessor::SetPoisonReason(IdentifierInfo *II, unsigned DiagID) {
735
PoisonReasons[II] = DiagID;
736
}
737
738
void Preprocessor::PoisonSEHIdentifiers(bool Poison) {
739
assert(Ident__exception_code && Ident__exception_info);
740
assert(Ident___exception_code && Ident___exception_info);
741
Ident__exception_code->setIsPoisoned(Poison);
742
Ident___exception_code->setIsPoisoned(Poison);
743
Ident_GetExceptionCode->setIsPoisoned(Poison);
744
Ident__exception_info->setIsPoisoned(Poison);
745
Ident___exception_info->setIsPoisoned(Poison);
746
Ident_GetExceptionInfo->setIsPoisoned(Poison);
747
Ident__abnormal_termination->setIsPoisoned(Poison);
748
Ident___abnormal_termination->setIsPoisoned(Poison);
749
Ident_AbnormalTermination->setIsPoisoned(Poison);
750
}
751
752
void Preprocessor::HandlePoisonedIdentifier(Token & Identifier) {
753
assert(Identifier.getIdentifierInfo() &&
754
"Can't handle identifiers without identifier info!");
755
llvm::DenseMap<IdentifierInfo*,unsigned>::const_iterator it =
756
PoisonReasons.find(Identifier.getIdentifierInfo());
757
if(it == PoisonReasons.end())
758
Diag(Identifier, diag::err_pp_used_poisoned_id);
759
else
760
Diag(Identifier,it->second) << Identifier.getIdentifierInfo();
761
}
762
763
void Preprocessor::updateOutOfDateIdentifier(const IdentifierInfo &II) const {
764
assert(II.isOutOfDate() && "not out of date");
765
getExternalSource()->updateOutOfDateIdentifier(II);
766
}
767
768
/// HandleIdentifier - This callback is invoked when the lexer reads an
769
/// identifier. This callback looks up the identifier in the map and/or
770
/// potentially macro expands it or turns it into a named token (like 'for').
771
///
772
/// Note that callers of this method are guarded by checking the
773
/// IdentifierInfo's 'isHandleIdentifierCase' bit. If this method changes, the
774
/// IdentifierInfo methods that compute these properties will need to change to
775
/// match.
776
bool Preprocessor::HandleIdentifier(Token &Identifier) {
777
assert(Identifier.getIdentifierInfo() &&
778
"Can't handle identifiers without identifier info!");
779
780
IdentifierInfo &II = *Identifier.getIdentifierInfo();
781
782
// If the information about this identifier is out of date, update it from
783
// the external source.
784
// We have to treat __VA_ARGS__ in a special way, since it gets
785
// serialized with isPoisoned = true, but our preprocessor may have
786
// unpoisoned it if we're defining a C99 macro.
787
if (II.isOutOfDate()) {
788
bool CurrentIsPoisoned = false;
789
const bool IsSpecialVariadicMacro =
790
&II == Ident__VA_ARGS__ || &II == Ident__VA_OPT__;
791
if (IsSpecialVariadicMacro)
792
CurrentIsPoisoned = II.isPoisoned();
793
794
updateOutOfDateIdentifier(II);
795
Identifier.setKind(II.getTokenID());
796
797
if (IsSpecialVariadicMacro)
798
II.setIsPoisoned(CurrentIsPoisoned);
799
}
800
801
// If this identifier was poisoned, and if it was not produced from a macro
802
// expansion, emit an error.
803
if (II.isPoisoned() && CurPPLexer) {
804
HandlePoisonedIdentifier(Identifier);
805
}
806
807
// If this is a macro to be expanded, do it.
808
if (const MacroDefinition MD = getMacroDefinition(&II)) {
809
const auto *MI = MD.getMacroInfo();
810
assert(MI && "macro definition with no macro info?");
811
if (!DisableMacroExpansion) {
812
if (!Identifier.isExpandDisabled() && MI->isEnabled()) {
813
// C99 6.10.3p10: If the preprocessing token immediately after the
814
// macro name isn't a '(', this macro should not be expanded.
815
if (!MI->isFunctionLike() || isNextPPTokenLParen())
816
return HandleMacroExpandedIdentifier(Identifier, MD);
817
} else {
818
// C99 6.10.3.4p2 says that a disabled macro may never again be
819
// expanded, even if it's in a context where it could be expanded in the
820
// future.
821
Identifier.setFlag(Token::DisableExpand);
822
if (MI->isObjectLike() || isNextPPTokenLParen())
823
Diag(Identifier, diag::pp_disabled_macro_expansion);
824
}
825
}
826
}
827
828
// If this identifier is a keyword in a newer Standard or proposed Standard,
829
// produce a warning. Don't warn if we're not considering macro expansion,
830
// since this identifier might be the name of a macro.
831
// FIXME: This warning is disabled in cases where it shouldn't be, like
832
// "#define constexpr constexpr", "int constexpr;"
833
if (II.isFutureCompatKeyword() && !DisableMacroExpansion) {
834
Diag(Identifier, getIdentifierTable().getFutureCompatDiagKind(II, getLangOpts()))
835
<< II.getName();
836
// Don't diagnose this keyword again in this translation unit.
837
II.setIsFutureCompatKeyword(false);
838
}
839
840
// If this is an extension token, diagnose its use.
841
// We avoid diagnosing tokens that originate from macro definitions.
842
// FIXME: This warning is disabled in cases where it shouldn't be,
843
// like "#define TY typeof", "TY(1) x".
844
if (II.isExtensionToken() && !DisableMacroExpansion)
845
Diag(Identifier, diag::ext_token_used);
846
847
// If this is the 'import' contextual keyword following an '@', note
848
// that the next token indicates a module name.
849
//
850
// Note that we do not treat 'import' as a contextual
851
// keyword when we're in a caching lexer, because caching lexers only get
852
// used in contexts where import declarations are disallowed.
853
//
854
// Likewise if this is the standard C++ import keyword.
855
if (((LastTokenWasAt && II.isModulesImport()) ||
856
Identifier.is(tok::kw_import)) &&
857
!InMacroArgs && !DisableMacroExpansion &&
858
(getLangOpts().Modules || getLangOpts().DebuggerSupport) &&
859
CurLexerCallback != CLK_CachingLexer) {
860
ModuleImportLoc = Identifier.getLocation();
861
NamedModuleImportPath.clear();
862
IsAtImport = true;
863
ModuleImportExpectsIdentifier = true;
864
CurLexerCallback = CLK_LexAfterModuleImport;
865
}
866
return true;
867
}
868
869
void Preprocessor::Lex(Token &Result) {
870
++LexLevel;
871
872
// We loop here until a lex function returns a token; this avoids recursion.
873
while (!CurLexerCallback(*this, Result))
874
;
875
876
if (Result.is(tok::unknown) && TheModuleLoader.HadFatalFailure)
877
return;
878
879
if (Result.is(tok::code_completion) && Result.getIdentifierInfo()) {
880
// Remember the identifier before code completion token.
881
setCodeCompletionIdentifierInfo(Result.getIdentifierInfo());
882
setCodeCompletionTokenRange(Result.getLocation(), Result.getEndLoc());
883
// Set IdenfitierInfo to null to avoid confusing code that handles both
884
// identifiers and completion tokens.
885
Result.setIdentifierInfo(nullptr);
886
}
887
888
// Update StdCXXImportSeqState to track our position within a C++20 import-seq
889
// if this token is being produced as a result of phase 4 of translation.
890
// Update TrackGMFState to decide if we are currently in a Global Module
891
// Fragment. GMF state updates should precede StdCXXImportSeq ones, since GMF state
892
// depends on the prevailing StdCXXImportSeq state in two cases.
893
if (getLangOpts().CPlusPlusModules && LexLevel == 1 &&
894
!Result.getFlag(Token::IsReinjected)) {
895
switch (Result.getKind()) {
896
case tok::l_paren: case tok::l_square: case tok::l_brace:
897
StdCXXImportSeqState.handleOpenBracket();
898
break;
899
case tok::r_paren: case tok::r_square:
900
StdCXXImportSeqState.handleCloseBracket();
901
break;
902
case tok::r_brace:
903
StdCXXImportSeqState.handleCloseBrace();
904
break;
905
// This token is injected to represent the translation of '#include "a.h"'
906
// into "import a.h;". Mimic the notional ';'.
907
case tok::annot_module_include:
908
case tok::semi:
909
TrackGMFState.handleSemi();
910
StdCXXImportSeqState.handleSemi();
911
ModuleDeclState.handleSemi();
912
break;
913
case tok::header_name:
914
case tok::annot_header_unit:
915
StdCXXImportSeqState.handleHeaderName();
916
break;
917
case tok::kw_export:
918
TrackGMFState.handleExport();
919
StdCXXImportSeqState.handleExport();
920
ModuleDeclState.handleExport();
921
break;
922
case tok::colon:
923
ModuleDeclState.handleColon();
924
break;
925
case tok::period:
926
ModuleDeclState.handlePeriod();
927
break;
928
case tok::identifier:
929
// Check "import" and "module" when there is no open bracket. The two
930
// identifiers are not meaningful with open brackets.
931
if (StdCXXImportSeqState.atTopLevel()) {
932
if (Result.getIdentifierInfo()->isModulesImport()) {
933
TrackGMFState.handleImport(StdCXXImportSeqState.afterTopLevelSeq());
934
StdCXXImportSeqState.handleImport();
935
if (StdCXXImportSeqState.afterImportSeq()) {
936
ModuleImportLoc = Result.getLocation();
937
NamedModuleImportPath.clear();
938
IsAtImport = false;
939
ModuleImportExpectsIdentifier = true;
940
CurLexerCallback = CLK_LexAfterModuleImport;
941
}
942
break;
943
} else if (Result.getIdentifierInfo() == getIdentifierInfo("module")) {
944
TrackGMFState.handleModule(StdCXXImportSeqState.afterTopLevelSeq());
945
ModuleDeclState.handleModule();
946
break;
947
}
948
}
949
ModuleDeclState.handleIdentifier(Result.getIdentifierInfo());
950
if (ModuleDeclState.isModuleCandidate())
951
break;
952
[[fallthrough]];
953
default:
954
TrackGMFState.handleMisc();
955
StdCXXImportSeqState.handleMisc();
956
ModuleDeclState.handleMisc();
957
break;
958
}
959
}
960
961
if (CurLexer && ++CheckPointCounter == CheckPointStepSize) {
962
CheckPoints[CurLexer->getFileID()].push_back(CurLexer->BufferPtr);
963
CheckPointCounter = 0;
964
}
965
966
LastTokenWasAt = Result.is(tok::at);
967
--LexLevel;
968
969
if ((LexLevel == 0 || PreprocessToken) &&
970
!Result.getFlag(Token::IsReinjected)) {
971
if (LexLevel == 0)
972
++TokenCount;
973
if (OnToken)
974
OnToken(Result);
975
}
976
}
977
978
void Preprocessor::LexTokensUntilEOF(std::vector<Token> *Tokens) {
979
while (1) {
980
Token Tok;
981
Lex(Tok);
982
if (Tok.isOneOf(tok::unknown, tok::eof, tok::eod,
983
tok::annot_repl_input_end))
984
break;
985
if (Tokens != nullptr)
986
Tokens->push_back(Tok);
987
}
988
}
989
990
/// Lex a header-name token (including one formed from header-name-tokens if
991
/// \p AllowMacroExpansion is \c true).
992
///
993
/// \param FilenameTok Filled in with the next token. On success, this will
994
/// be either a header_name token. On failure, it will be whatever other
995
/// token was found instead.
996
/// \param AllowMacroExpansion If \c true, allow the header name to be formed
997
/// by macro expansion (concatenating tokens as necessary if the first
998
/// token is a '<').
999
/// \return \c true if we reached EOD or EOF while looking for a > token in
1000
/// a concatenated header name and diagnosed it. \c false otherwise.
1001
bool Preprocessor::LexHeaderName(Token &FilenameTok, bool AllowMacroExpansion) {
1002
// Lex using header-name tokenization rules if tokens are being lexed from
1003
// a file. Just grab a token normally if we're in a macro expansion.
1004
if (CurPPLexer)
1005
CurPPLexer->LexIncludeFilename(FilenameTok);
1006
else
1007
Lex(FilenameTok);
1008
1009
// This could be a <foo/bar.h> file coming from a macro expansion. In this
1010
// case, glue the tokens together into an angle_string_literal token.
1011
SmallString<128> FilenameBuffer;
1012
if (FilenameTok.is(tok::less) && AllowMacroExpansion) {
1013
bool StartOfLine = FilenameTok.isAtStartOfLine();
1014
bool LeadingSpace = FilenameTok.hasLeadingSpace();
1015
bool LeadingEmptyMacro = FilenameTok.hasLeadingEmptyMacro();
1016
1017
SourceLocation Start = FilenameTok.getLocation();
1018
SourceLocation End;
1019
FilenameBuffer.push_back('<');
1020
1021
// Consume tokens until we find a '>'.
1022
// FIXME: A header-name could be formed starting or ending with an
1023
// alternative token. It's not clear whether that's ill-formed in all
1024
// cases.
1025
while (FilenameTok.isNot(tok::greater)) {
1026
Lex(FilenameTok);
1027
if (FilenameTok.isOneOf(tok::eod, tok::eof)) {
1028
Diag(FilenameTok.getLocation(), diag::err_expected) << tok::greater;
1029
Diag(Start, diag::note_matching) << tok::less;
1030
return true;
1031
}
1032
1033
End = FilenameTok.getLocation();
1034
1035
// FIXME: Provide code completion for #includes.
1036
if (FilenameTok.is(tok::code_completion)) {
1037
setCodeCompletionReached();
1038
Lex(FilenameTok);
1039
continue;
1040
}
1041
1042
// Append the spelling of this token to the buffer. If there was a space
1043
// before it, add it now.
1044
if (FilenameTok.hasLeadingSpace())
1045
FilenameBuffer.push_back(' ');
1046
1047
// Get the spelling of the token, directly into FilenameBuffer if
1048
// possible.
1049
size_t PreAppendSize = FilenameBuffer.size();
1050
FilenameBuffer.resize(PreAppendSize + FilenameTok.getLength());
1051
1052
const char *BufPtr = &FilenameBuffer[PreAppendSize];
1053
unsigned ActualLen = getSpelling(FilenameTok, BufPtr);
1054
1055
// If the token was spelled somewhere else, copy it into FilenameBuffer.
1056
if (BufPtr != &FilenameBuffer[PreAppendSize])
1057
memcpy(&FilenameBuffer[PreAppendSize], BufPtr, ActualLen);
1058
1059
// Resize FilenameBuffer to the correct size.
1060
if (FilenameTok.getLength() != ActualLen)
1061
FilenameBuffer.resize(PreAppendSize + ActualLen);
1062
}
1063
1064
FilenameTok.startToken();
1065
FilenameTok.setKind(tok::header_name);
1066
FilenameTok.setFlagValue(Token::StartOfLine, StartOfLine);
1067
FilenameTok.setFlagValue(Token::LeadingSpace, LeadingSpace);
1068
FilenameTok.setFlagValue(Token::LeadingEmptyMacro, LeadingEmptyMacro);
1069
CreateString(FilenameBuffer, FilenameTok, Start, End);
1070
} else if (FilenameTok.is(tok::string_literal) && AllowMacroExpansion) {
1071
// Convert a string-literal token of the form " h-char-sequence "
1072
// (produced by macro expansion) into a header-name token.
1073
//
1074
// The rules for header-names don't quite match the rules for
1075
// string-literals, but all the places where they differ result in
1076
// undefined behavior, so we can and do treat them the same.
1077
//
1078
// A string-literal with a prefix or suffix is not translated into a
1079
// header-name. This could theoretically be observable via the C++20
1080
// context-sensitive header-name formation rules.
1081
StringRef Str = getSpelling(FilenameTok, FilenameBuffer);
1082
if (Str.size() >= 2 && Str.front() == '"' && Str.back() == '"')
1083
FilenameTok.setKind(tok::header_name);
1084
}
1085
1086
return false;
1087
}
1088
1089
/// Collect the tokens of a C++20 pp-import-suffix.
1090
void Preprocessor::CollectPpImportSuffix(SmallVectorImpl<Token> &Toks) {
1091
// FIXME: For error recovery, consider recognizing attribute syntax here
1092
// and terminating / diagnosing a missing semicolon if we find anything
1093
// else? (Can we leave that to the parser?)
1094
unsigned BracketDepth = 0;
1095
while (true) {
1096
Toks.emplace_back();
1097
Lex(Toks.back());
1098
1099
switch (Toks.back().getKind()) {
1100
case tok::l_paren: case tok::l_square: case tok::l_brace:
1101
++BracketDepth;
1102
break;
1103
1104
case tok::r_paren: case tok::r_square: case tok::r_brace:
1105
if (BracketDepth == 0)
1106
return;
1107
--BracketDepth;
1108
break;
1109
1110
case tok::semi:
1111
if (BracketDepth == 0)
1112
return;
1113
break;
1114
1115
case tok::eof:
1116
return;
1117
1118
default:
1119
break;
1120
}
1121
}
1122
}
1123
1124
1125
/// Lex a token following the 'import' contextual keyword.
1126
///
1127
/// pp-import: [C++20]
1128
/// import header-name pp-import-suffix[opt] ;
1129
/// import header-name-tokens pp-import-suffix[opt] ;
1130
/// [ObjC] @ import module-name ;
1131
/// [Clang] import module-name ;
1132
///
1133
/// header-name-tokens:
1134
/// string-literal
1135
/// < [any sequence of preprocessing-tokens other than >] >
1136
///
1137
/// module-name:
1138
/// module-name-qualifier[opt] identifier
1139
///
1140
/// module-name-qualifier
1141
/// module-name-qualifier[opt] identifier .
1142
///
1143
/// We respond to a pp-import by importing macros from the named module.
1144
bool Preprocessor::LexAfterModuleImport(Token &Result) {
1145
// Figure out what kind of lexer we actually have.
1146
recomputeCurLexerKind();
1147
1148
// Lex the next token. The header-name lexing rules are used at the start of
1149
// a pp-import.
1150
//
1151
// For now, we only support header-name imports in C++20 mode.
1152
// FIXME: Should we allow this in all language modes that support an import
1153
// declaration as an extension?
1154
if (NamedModuleImportPath.empty() && getLangOpts().CPlusPlusModules) {
1155
if (LexHeaderName(Result))
1156
return true;
1157
1158
if (Result.is(tok::colon) && ModuleDeclState.isNamedModule()) {
1159
std::string Name = ModuleDeclState.getPrimaryName().str();
1160
Name += ":";
1161
NamedModuleImportPath.push_back(
1162
{getIdentifierInfo(Name), Result.getLocation()});
1163
CurLexerCallback = CLK_LexAfterModuleImport;
1164
return true;
1165
}
1166
} else {
1167
Lex(Result);
1168
}
1169
1170
// Allocate a holding buffer for a sequence of tokens and introduce it into
1171
// the token stream.
1172
auto EnterTokens = [this](ArrayRef<Token> Toks) {
1173
auto ToksCopy = std::make_unique<Token[]>(Toks.size());
1174
std::copy(Toks.begin(), Toks.end(), ToksCopy.get());
1175
EnterTokenStream(std::move(ToksCopy), Toks.size(),
1176
/*DisableMacroExpansion*/ true, /*IsReinject*/ false);
1177
};
1178
1179
bool ImportingHeader = Result.is(tok::header_name);
1180
// Check for a header-name.
1181
SmallVector<Token, 32> Suffix;
1182
if (ImportingHeader) {
1183
// Enter the header-name token into the token stream; a Lex action cannot
1184
// both return a token and cache tokens (doing so would corrupt the token
1185
// cache if the call to Lex comes from CachingLex / PeekAhead).
1186
Suffix.push_back(Result);
1187
1188
// Consume the pp-import-suffix and expand any macros in it now. We'll add
1189
// it back into the token stream later.
1190
CollectPpImportSuffix(Suffix);
1191
if (Suffix.back().isNot(tok::semi)) {
1192
// This is not a pp-import after all.
1193
EnterTokens(Suffix);
1194
return false;
1195
}
1196
1197
// C++2a [cpp.module]p1:
1198
// The ';' preprocessing-token terminating a pp-import shall not have
1199
// been produced by macro replacement.
1200
SourceLocation SemiLoc = Suffix.back().getLocation();
1201
if (SemiLoc.isMacroID())
1202
Diag(SemiLoc, diag::err_header_import_semi_in_macro);
1203
1204
// Reconstitute the import token.
1205
Token ImportTok;
1206
ImportTok.startToken();
1207
ImportTok.setKind(tok::kw_import);
1208
ImportTok.setLocation(ModuleImportLoc);
1209
ImportTok.setIdentifierInfo(getIdentifierInfo("import"));
1210
ImportTok.setLength(6);
1211
1212
auto Action = HandleHeaderIncludeOrImport(
1213
/*HashLoc*/ SourceLocation(), ImportTok, Suffix.front(), SemiLoc);
1214
switch (Action.Kind) {
1215
case ImportAction::None:
1216
break;
1217
1218
case ImportAction::ModuleBegin:
1219
// Let the parser know we're textually entering the module.
1220
Suffix.emplace_back();
1221
Suffix.back().startToken();
1222
Suffix.back().setKind(tok::annot_module_begin);
1223
Suffix.back().setLocation(SemiLoc);
1224
Suffix.back().setAnnotationEndLoc(SemiLoc);
1225
Suffix.back().setAnnotationValue(Action.ModuleForHeader);
1226
[[fallthrough]];
1227
1228
case ImportAction::ModuleImport:
1229
case ImportAction::HeaderUnitImport:
1230
case ImportAction::SkippedModuleImport:
1231
// We chose to import (or textually enter) the file. Convert the
1232
// header-name token into a header unit annotation token.
1233
Suffix[0].setKind(tok::annot_header_unit);
1234
Suffix[0].setAnnotationEndLoc(Suffix[0].getLocation());
1235
Suffix[0].setAnnotationValue(Action.ModuleForHeader);
1236
// FIXME: Call the moduleImport callback?
1237
break;
1238
case ImportAction::Failure:
1239
assert(TheModuleLoader.HadFatalFailure &&
1240
"This should be an early exit only to a fatal error");
1241
Result.setKind(tok::eof);
1242
CurLexer->cutOffLexing();
1243
EnterTokens(Suffix);
1244
return true;
1245
}
1246
1247
EnterTokens(Suffix);
1248
return false;
1249
}
1250
1251
// The token sequence
1252
//
1253
// import identifier (. identifier)*
1254
//
1255
// indicates a module import directive. We already saw the 'import'
1256
// contextual keyword, so now we're looking for the identifiers.
1257
if (ModuleImportExpectsIdentifier && Result.getKind() == tok::identifier) {
1258
// We expected to see an identifier here, and we did; continue handling
1259
// identifiers.
1260
NamedModuleImportPath.push_back(
1261
std::make_pair(Result.getIdentifierInfo(), Result.getLocation()));
1262
ModuleImportExpectsIdentifier = false;
1263
CurLexerCallback = CLK_LexAfterModuleImport;
1264
return true;
1265
}
1266
1267
// If we're expecting a '.' or a ';', and we got a '.', then wait until we
1268
// see the next identifier. (We can also see a '[[' that begins an
1269
// attribute-specifier-seq here under the Standard C++ Modules.)
1270
if (!ModuleImportExpectsIdentifier && Result.getKind() == tok::period) {
1271
ModuleImportExpectsIdentifier = true;
1272
CurLexerCallback = CLK_LexAfterModuleImport;
1273
return true;
1274
}
1275
1276
// If we didn't recognize a module name at all, this is not a (valid) import.
1277
if (NamedModuleImportPath.empty() || Result.is(tok::eof))
1278
return true;
1279
1280
// Consume the pp-import-suffix and expand any macros in it now, if we're not
1281
// at the semicolon already.
1282
SourceLocation SemiLoc = Result.getLocation();
1283
if (Result.isNot(tok::semi)) {
1284
Suffix.push_back(Result);
1285
CollectPpImportSuffix(Suffix);
1286
if (Suffix.back().isNot(tok::semi)) {
1287
// This is not an import after all.
1288
EnterTokens(Suffix);
1289
return false;
1290
}
1291
SemiLoc = Suffix.back().getLocation();
1292
}
1293
1294
// Under the standard C++ Modules, the dot is just part of the module name,
1295
// and not a real hierarchy separator. Flatten such module names now.
1296
//
1297
// FIXME: Is this the right level to be performing this transformation?
1298
std::string FlatModuleName;
1299
if (getLangOpts().CPlusPlusModules) {
1300
for (auto &Piece : NamedModuleImportPath) {
1301
// If the FlatModuleName ends with colon, it implies it is a partition.
1302
if (!FlatModuleName.empty() && FlatModuleName.back() != ':')
1303
FlatModuleName += ".";
1304
FlatModuleName += Piece.first->getName();
1305
}
1306
SourceLocation FirstPathLoc = NamedModuleImportPath[0].second;
1307
NamedModuleImportPath.clear();
1308
NamedModuleImportPath.push_back(
1309
std::make_pair(getIdentifierInfo(FlatModuleName), FirstPathLoc));
1310
}
1311
1312
Module *Imported = nullptr;
1313
// We don't/shouldn't load the standard c++20 modules when preprocessing.
1314
if (getLangOpts().Modules && !isInImportingCXXNamedModules()) {
1315
Imported = TheModuleLoader.loadModule(ModuleImportLoc,
1316
NamedModuleImportPath,
1317
Module::Hidden,
1318
/*IsInclusionDirective=*/false);
1319
if (Imported)
1320
makeModuleVisible(Imported, SemiLoc);
1321
}
1322
1323
if (Callbacks)
1324
Callbacks->moduleImport(ModuleImportLoc, NamedModuleImportPath, Imported);
1325
1326
if (!Suffix.empty()) {
1327
EnterTokens(Suffix);
1328
return false;
1329
}
1330
return true;
1331
}
1332
1333
void Preprocessor::makeModuleVisible(Module *M, SourceLocation Loc) {
1334
CurSubmoduleState->VisibleModules.setVisible(
1335
M, Loc, [](Module *) {},
1336
[&](ArrayRef<Module *> Path, Module *Conflict, StringRef Message) {
1337
// FIXME: Include the path in the diagnostic.
1338
// FIXME: Include the import location for the conflicting module.
1339
Diag(ModuleImportLoc, diag::warn_module_conflict)
1340
<< Path[0]->getFullModuleName()
1341
<< Conflict->getFullModuleName()
1342
<< Message;
1343
});
1344
1345
// Add this module to the imports list of the currently-built submodule.
1346
if (!BuildingSubmoduleStack.empty() && M != BuildingSubmoduleStack.back().M)
1347
BuildingSubmoduleStack.back().M->Imports.insert(M);
1348
}
1349
1350
bool Preprocessor::FinishLexStringLiteral(Token &Result, std::string &String,
1351
const char *DiagnosticTag,
1352
bool AllowMacroExpansion) {
1353
// We need at least one string literal.
1354
if (Result.isNot(tok::string_literal)) {
1355
Diag(Result, diag::err_expected_string_literal)
1356
<< /*Source='in...'*/0 << DiagnosticTag;
1357
return false;
1358
}
1359
1360
// Lex string literal tokens, optionally with macro expansion.
1361
SmallVector<Token, 4> StrToks;
1362
do {
1363
StrToks.push_back(Result);
1364
1365
if (Result.hasUDSuffix())
1366
Diag(Result, diag::err_invalid_string_udl);
1367
1368
if (AllowMacroExpansion)
1369
Lex(Result);
1370
else
1371
LexUnexpandedToken(Result);
1372
} while (Result.is(tok::string_literal));
1373
1374
// Concatenate and parse the strings.
1375
StringLiteralParser Literal(StrToks, *this);
1376
assert(Literal.isOrdinary() && "Didn't allow wide strings in");
1377
1378
if (Literal.hadError)
1379
return false;
1380
1381
if (Literal.Pascal) {
1382
Diag(StrToks[0].getLocation(), diag::err_expected_string_literal)
1383
<< /*Source='in...'*/0 << DiagnosticTag;
1384
return false;
1385
}
1386
1387
String = std::string(Literal.GetString());
1388
return true;
1389
}
1390
1391
bool Preprocessor::parseSimpleIntegerLiteral(Token &Tok, uint64_t &Value) {
1392
assert(Tok.is(tok::numeric_constant));
1393
SmallString<8> IntegerBuffer;
1394
bool NumberInvalid = false;
1395
StringRef Spelling = getSpelling(Tok, IntegerBuffer, &NumberInvalid);
1396
if (NumberInvalid)
1397
return false;
1398
NumericLiteralParser Literal(Spelling, Tok.getLocation(), getSourceManager(),
1399
getLangOpts(), getTargetInfo(),
1400
getDiagnostics());
1401
if (Literal.hadError || !Literal.isIntegerLiteral() || Literal.hasUDSuffix())
1402
return false;
1403
llvm::APInt APVal(64, 0);
1404
if (Literal.GetIntegerValue(APVal))
1405
return false;
1406
Lex(Tok);
1407
Value = APVal.getLimitedValue();
1408
return true;
1409
}
1410
1411
void Preprocessor::addCommentHandler(CommentHandler *Handler) {
1412
assert(Handler && "NULL comment handler");
1413
assert(!llvm::is_contained(CommentHandlers, Handler) &&
1414
"Comment handler already registered");
1415
CommentHandlers.push_back(Handler);
1416
}
1417
1418
void Preprocessor::removeCommentHandler(CommentHandler *Handler) {
1419
std::vector<CommentHandler *>::iterator Pos =
1420
llvm::find(CommentHandlers, Handler);
1421
assert(Pos != CommentHandlers.end() && "Comment handler not registered");
1422
CommentHandlers.erase(Pos);
1423
}
1424
1425
bool Preprocessor::HandleComment(Token &result, SourceRange Comment) {
1426
bool AnyPendingTokens = false;
1427
for (std::vector<CommentHandler *>::iterator H = CommentHandlers.begin(),
1428
HEnd = CommentHandlers.end();
1429
H != HEnd; ++H) {
1430
if ((*H)->HandleComment(*this, Comment))
1431
AnyPendingTokens = true;
1432
}
1433
if (!AnyPendingTokens || getCommentRetentionState())
1434
return false;
1435
Lex(result);
1436
return true;
1437
}
1438
1439
void Preprocessor::emitMacroDeprecationWarning(const Token &Identifier) const {
1440
const MacroAnnotations &A =
1441
getMacroAnnotations(Identifier.getIdentifierInfo());
1442
assert(A.DeprecationInfo &&
1443
"Macro deprecation warning without recorded annotation!");
1444
const MacroAnnotationInfo &Info = *A.DeprecationInfo;
1445
if (Info.Message.empty())
1446
Diag(Identifier, diag::warn_pragma_deprecated_macro_use)
1447
<< Identifier.getIdentifierInfo() << 0;
1448
else
1449
Diag(Identifier, diag::warn_pragma_deprecated_macro_use)
1450
<< Identifier.getIdentifierInfo() << 1 << Info.Message;
1451
Diag(Info.Location, diag::note_pp_macro_annotation) << 0;
1452
}
1453
1454
void Preprocessor::emitRestrictExpansionWarning(const Token &Identifier) const {
1455
const MacroAnnotations &A =
1456
getMacroAnnotations(Identifier.getIdentifierInfo());
1457
assert(A.RestrictExpansionInfo &&
1458
"Macro restricted expansion warning without recorded annotation!");
1459
const MacroAnnotationInfo &Info = *A.RestrictExpansionInfo;
1460
if (Info.Message.empty())
1461
Diag(Identifier, diag::warn_pragma_restrict_expansion_macro_use)
1462
<< Identifier.getIdentifierInfo() << 0;
1463
else
1464
Diag(Identifier, diag::warn_pragma_restrict_expansion_macro_use)
1465
<< Identifier.getIdentifierInfo() << 1 << Info.Message;
1466
Diag(Info.Location, diag::note_pp_macro_annotation) << 1;
1467
}
1468
1469
void Preprocessor::emitRestrictInfNaNWarning(const Token &Identifier,
1470
unsigned DiagSelection) const {
1471
Diag(Identifier, diag::warn_fp_nan_inf_when_disabled) << DiagSelection << 1;
1472
}
1473
1474
void Preprocessor::emitFinalMacroWarning(const Token &Identifier,
1475
bool IsUndef) const {
1476
const MacroAnnotations &A =
1477
getMacroAnnotations(Identifier.getIdentifierInfo());
1478
assert(A.FinalAnnotationLoc &&
1479
"Final macro warning without recorded annotation!");
1480
1481
Diag(Identifier, diag::warn_pragma_final_macro)
1482
<< Identifier.getIdentifierInfo() << (IsUndef ? 0 : 1);
1483
Diag(*A.FinalAnnotationLoc, diag::note_pp_macro_annotation) << 2;
1484
}
1485
1486
bool Preprocessor::isSafeBufferOptOut(const SourceManager &SourceMgr,
1487
const SourceLocation &Loc) const {
1488
// The lambda that tests if a `Loc` is in an opt-out region given one opt-out
1489
// region map:
1490
auto TestInMap = [&SourceMgr](const SafeBufferOptOutRegionsTy &Map,
1491
const SourceLocation &Loc) -> bool {
1492
// Try to find a region in `SafeBufferOptOutMap` where `Loc` is in:
1493
auto FirstRegionEndingAfterLoc = llvm::partition_point(
1494
Map, [&SourceMgr,
1495
&Loc](const std::pair<SourceLocation, SourceLocation> &Region) {
1496
return SourceMgr.isBeforeInTranslationUnit(Region.second, Loc);
1497
});
1498
1499
if (FirstRegionEndingAfterLoc != Map.end()) {
1500
// To test if the start location of the found region precedes `Loc`:
1501
return SourceMgr.isBeforeInTranslationUnit(
1502
FirstRegionEndingAfterLoc->first, Loc);
1503
}
1504
// If we do not find a region whose end location passes `Loc`, we want to
1505
// check if the current region is still open:
1506
if (!Map.empty() && Map.back().first == Map.back().second)
1507
return SourceMgr.isBeforeInTranslationUnit(Map.back().first, Loc);
1508
return false;
1509
};
1510
1511
// What the following does:
1512
//
1513
// If `Loc` belongs to the local TU, we just look up `SafeBufferOptOutMap`.
1514
// Otherwise, `Loc` is from a loaded AST. We look up the
1515
// `LoadedSafeBufferOptOutMap` first to get the opt-out region map of the
1516
// loaded AST where `Loc` is at. Then we find if `Loc` is in an opt-out
1517
// region w.r.t. the region map. If the region map is absent, it means there
1518
// is no opt-out pragma in that loaded AST.
1519
//
1520
// Opt-out pragmas in the local TU or a loaded AST is not visible to another
1521
// one of them. That means if you put the pragmas around a `#include
1522
// "module.h"`, where module.h is a module, it is not actually suppressing
1523
// warnings in module.h. This is fine because warnings in module.h will be
1524
// reported when module.h is compiled in isolation and nothing in module.h
1525
// will be analyzed ever again. So you will not see warnings from the file
1526
// that imports module.h anyway. And you can't even do the same thing for PCHs
1527
// because they can only be included from the command line.
1528
1529
if (SourceMgr.isLocalSourceLocation(Loc))
1530
return TestInMap(SafeBufferOptOutMap, Loc);
1531
1532
const SafeBufferOptOutRegionsTy *LoadedRegions =
1533
LoadedSafeBufferOptOutMap.lookupLoadedOptOutMap(Loc, SourceMgr);
1534
1535
if (LoadedRegions)
1536
return TestInMap(*LoadedRegions, Loc);
1537
return false;
1538
}
1539
1540
bool Preprocessor::enterOrExitSafeBufferOptOutRegion(
1541
bool isEnter, const SourceLocation &Loc) {
1542
if (isEnter) {
1543
if (isPPInSafeBufferOptOutRegion())
1544
return true; // invalid enter action
1545
InSafeBufferOptOutRegion = true;
1546
CurrentSafeBufferOptOutStart = Loc;
1547
1548
// To set the start location of a new region:
1549
1550
if (!SafeBufferOptOutMap.empty()) {
1551
[[maybe_unused]] auto *PrevRegion = &SafeBufferOptOutMap.back();
1552
assert(PrevRegion->first != PrevRegion->second &&
1553
"Shall not begin a safe buffer opt-out region before closing the "
1554
"previous one.");
1555
}
1556
// If the start location equals to the end location, we call the region a
1557
// open region or a unclosed region (i.e., end location has not been set
1558
// yet).
1559
SafeBufferOptOutMap.emplace_back(Loc, Loc);
1560
} else {
1561
if (!isPPInSafeBufferOptOutRegion())
1562
return true; // invalid enter action
1563
InSafeBufferOptOutRegion = false;
1564
1565
// To set the end location of the current open region:
1566
1567
assert(!SafeBufferOptOutMap.empty() &&
1568
"Misordered safe buffer opt-out regions");
1569
auto *CurrRegion = &SafeBufferOptOutMap.back();
1570
assert(CurrRegion->first == CurrRegion->second &&
1571
"Set end location to a closed safe buffer opt-out region");
1572
CurrRegion->second = Loc;
1573
}
1574
return false;
1575
}
1576
1577
bool Preprocessor::isPPInSafeBufferOptOutRegion() {
1578
return InSafeBufferOptOutRegion;
1579
}
1580
bool Preprocessor::isPPInSafeBufferOptOutRegion(SourceLocation &StartLoc) {
1581
StartLoc = CurrentSafeBufferOptOutStart;
1582
return InSafeBufferOptOutRegion;
1583
}
1584
1585
SmallVector<SourceLocation, 64>
1586
Preprocessor::serializeSafeBufferOptOutMap() const {
1587
assert(!InSafeBufferOptOutRegion &&
1588
"Attempt to serialize safe buffer opt-out regions before file being "
1589
"completely preprocessed");
1590
1591
SmallVector<SourceLocation, 64> SrcSeq;
1592
1593
for (const auto &[begin, end] : SafeBufferOptOutMap) {
1594
SrcSeq.push_back(begin);
1595
SrcSeq.push_back(end);
1596
}
1597
// Only `SafeBufferOptOutMap` gets serialized. No need to serialize
1598
// `LoadedSafeBufferOptOutMap` because if this TU loads a pch/module, every
1599
// pch/module in the pch-chain/module-DAG will be loaded one by one in order.
1600
// It means that for each loading pch/module m, it just needs to load m's own
1601
// `SafeBufferOptOutMap`.
1602
return SrcSeq;
1603
}
1604
1605
bool Preprocessor::setDeserializedSafeBufferOptOutMap(
1606
const SmallVectorImpl<SourceLocation> &SourceLocations) {
1607
if (SourceLocations.size() == 0)
1608
return false;
1609
1610
assert(SourceLocations.size() % 2 == 0 &&
1611
"ill-formed SourceLocation sequence");
1612
1613
auto It = SourceLocations.begin();
1614
SafeBufferOptOutRegionsTy &Regions =
1615
LoadedSafeBufferOptOutMap.findAndConsLoadedOptOutMap(*It, SourceMgr);
1616
1617
do {
1618
SourceLocation Begin = *It++;
1619
SourceLocation End = *It++;
1620
1621
Regions.emplace_back(Begin, End);
1622
} while (It != SourceLocations.end());
1623
return true;
1624
}
1625
1626
ModuleLoader::~ModuleLoader() = default;
1627
1628
CommentHandler::~CommentHandler() = default;
1629
1630
EmptylineHandler::~EmptylineHandler() = default;
1631
1632
CodeCompletionHandler::~CodeCompletionHandler() = default;
1633
1634
void Preprocessor::createPreprocessingRecord() {
1635
if (Record)
1636
return;
1637
1638
Record = new PreprocessingRecord(getSourceManager());
1639
addPPCallbacks(std::unique_ptr<PPCallbacks>(Record));
1640
}
1641
1642
const char *Preprocessor::getCheckPoint(FileID FID, const char *Start) const {
1643
if (auto It = CheckPoints.find(FID); It != CheckPoints.end()) {
1644
const SmallVector<const char *> &FileCheckPoints = It->second;
1645
const char *Last = nullptr;
1646
// FIXME: Do better than a linear search.
1647
for (const char *P : FileCheckPoints) {
1648
if (P > Start)
1649
break;
1650
Last = P;
1651
}
1652
return Last;
1653
}
1654
1655
return nullptr;
1656
}
1657
1658