Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/clang/lib/Rewrite/RewriteRope.cpp
35233 views
1
//===- RewriteRope.cpp - Rope specialized for rewriter --------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the RewriteRope class, which is a powerful string.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "clang/Rewrite/Core/RewriteRope.h"
14
#include "clang/Basic/LLVM.h"
15
#include "llvm/Support/Casting.h"
16
#include <algorithm>
17
#include <cassert>
18
#include <cstring>
19
20
using namespace clang;
21
22
/// RewriteRope is a "strong" string class, designed to make insertions and
23
/// deletions in the middle of the string nearly constant time (really, they are
24
/// O(log N), but with a very low constant factor).
25
///
26
/// The implementation of this datastructure is a conceptual linear sequence of
27
/// RopePiece elements. Each RopePiece represents a view on a separately
28
/// allocated and reference counted string. This means that splitting a very
29
/// long string can be done in constant time by splitting a RopePiece that
30
/// references the whole string into two rope pieces that reference each half.
31
/// Once split, another string can be inserted in between the two halves by
32
/// inserting a RopePiece in between the two others. All of this is very
33
/// inexpensive: it takes time proportional to the number of RopePieces, not the
34
/// length of the strings they represent.
35
///
36
/// While a linear sequences of RopePieces is the conceptual model, the actual
37
/// implementation captures them in an adapted B+ Tree. Using a B+ tree (which
38
/// is a tree that keeps the values in the leaves and has where each node
39
/// contains a reasonable number of pointers to children/values) allows us to
40
/// maintain efficient operation when the RewriteRope contains a *huge* number
41
/// of RopePieces. The basic idea of the B+ Tree is that it allows us to find
42
/// the RopePiece corresponding to some offset very efficiently, and it
43
/// automatically balances itself on insertions of RopePieces (which can happen
44
/// for both insertions and erases of string ranges).
45
///
46
/// The one wrinkle on the theory is that we don't attempt to keep the tree
47
/// properly balanced when erases happen. Erases of string data can both insert
48
/// new RopePieces (e.g. when the middle of some other rope piece is deleted,
49
/// which results in two rope pieces, which is just like an insert) or it can
50
/// reduce the number of RopePieces maintained by the B+Tree. In the case when
51
/// the number of RopePieces is reduced, we don't attempt to maintain the
52
/// standard 'invariant' that each node in the tree contains at least
53
/// 'WidthFactor' children/values. For our use cases, this doesn't seem to
54
/// matter.
55
///
56
/// The implementation below is primarily implemented in terms of three classes:
57
/// RopePieceBTreeNode - Common base class for:
58
///
59
/// RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
60
/// nodes. This directly represents a chunk of the string with those
61
/// RopePieces concatenated.
62
/// RopePieceBTreeInterior - An interior node in the B+ Tree, which manages
63
/// up to '2*WidthFactor' other nodes in the tree.
64
65
namespace {
66
67
//===----------------------------------------------------------------------===//
68
// RopePieceBTreeNode Class
69
//===----------------------------------------------------------------------===//
70
71
/// RopePieceBTreeNode - Common base class of RopePieceBTreeLeaf and
72
/// RopePieceBTreeInterior. This provides some 'virtual' dispatching methods
73
/// and a flag that determines which subclass the instance is. Also
74
/// important, this node knows the full extend of the node, including any
75
/// children that it has. This allows efficient skipping over entire subtrees
76
/// when looking for an offset in the BTree.
77
class RopePieceBTreeNode {
78
protected:
79
/// WidthFactor - This controls the number of K/V slots held in the BTree:
80
/// how wide it is. Each level of the BTree is guaranteed to have at least
81
/// 'WidthFactor' elements in it (either ropepieces or children), (except
82
/// the root, which may have less) and may have at most 2*WidthFactor
83
/// elements.
84
enum { WidthFactor = 8 };
85
86
/// Size - This is the number of bytes of file this node (including any
87
/// potential children) covers.
88
unsigned Size = 0;
89
90
/// IsLeaf - True if this is an instance of RopePieceBTreeLeaf, false if it
91
/// is an instance of RopePieceBTreeInterior.
92
bool IsLeaf;
93
94
RopePieceBTreeNode(bool isLeaf) : IsLeaf(isLeaf) {}
95
~RopePieceBTreeNode() = default;
96
97
public:
98
bool isLeaf() const { return IsLeaf; }
99
unsigned size() const { return Size; }
100
101
void Destroy();
102
103
/// split - Split the range containing the specified offset so that we are
104
/// guaranteed that there is a place to do an insertion at the specified
105
/// offset. The offset is relative, so "0" is the start of the node.
106
///
107
/// If there is no space in this subtree for the extra piece, the extra tree
108
/// node is returned and must be inserted into a parent.
109
RopePieceBTreeNode *split(unsigned Offset);
110
111
/// insert - Insert the specified ropepiece into this tree node at the
112
/// specified offset. The offset is relative, so "0" is the start of the
113
/// node.
114
///
115
/// If there is no space in this subtree for the extra piece, the extra tree
116
/// node is returned and must be inserted into a parent.
117
RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
118
119
/// erase - Remove NumBytes from this node at the specified offset. We are
120
/// guaranteed that there is a split at Offset.
121
void erase(unsigned Offset, unsigned NumBytes);
122
};
123
124
//===----------------------------------------------------------------------===//
125
// RopePieceBTreeLeaf Class
126
//===----------------------------------------------------------------------===//
127
128
/// RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
129
/// nodes. This directly represents a chunk of the string with those
130
/// RopePieces concatenated. Since this is a B+Tree, all values (in this case
131
/// instances of RopePiece) are stored in leaves like this. To make iteration
132
/// over the leaves efficient, they maintain a singly linked list through the
133
/// NextLeaf field. This allows the B+Tree forward iterator to be constant
134
/// time for all increments.
135
class RopePieceBTreeLeaf : public RopePieceBTreeNode {
136
/// NumPieces - This holds the number of rope pieces currently active in the
137
/// Pieces array.
138
unsigned char NumPieces = 0;
139
140
/// Pieces - This tracks the file chunks currently in this leaf.
141
RopePiece Pieces[2*WidthFactor];
142
143
/// NextLeaf - This is a pointer to the next leaf in the tree, allowing
144
/// efficient in-order forward iteration of the tree without traversal.
145
RopePieceBTreeLeaf **PrevLeaf = nullptr;
146
RopePieceBTreeLeaf *NextLeaf = nullptr;
147
148
public:
149
RopePieceBTreeLeaf() : RopePieceBTreeNode(true) {}
150
151
~RopePieceBTreeLeaf() {
152
if (PrevLeaf || NextLeaf)
153
removeFromLeafInOrder();
154
clear();
155
}
156
157
bool isFull() const { return NumPieces == 2*WidthFactor; }
158
159
/// clear - Remove all rope pieces from this leaf.
160
void clear() {
161
while (NumPieces)
162
Pieces[--NumPieces] = RopePiece();
163
Size = 0;
164
}
165
166
unsigned getNumPieces() const { return NumPieces; }
167
168
const RopePiece &getPiece(unsigned i) const {
169
assert(i < getNumPieces() && "Invalid piece ID");
170
return Pieces[i];
171
}
172
173
const RopePieceBTreeLeaf *getNextLeafInOrder() const { return NextLeaf; }
174
175
void insertAfterLeafInOrder(RopePieceBTreeLeaf *Node) {
176
assert(!PrevLeaf && !NextLeaf && "Already in ordering");
177
178
NextLeaf = Node->NextLeaf;
179
if (NextLeaf)
180
NextLeaf->PrevLeaf = &NextLeaf;
181
PrevLeaf = &Node->NextLeaf;
182
Node->NextLeaf = this;
183
}
184
185
void removeFromLeafInOrder() {
186
if (PrevLeaf) {
187
*PrevLeaf = NextLeaf;
188
if (NextLeaf)
189
NextLeaf->PrevLeaf = PrevLeaf;
190
} else if (NextLeaf) {
191
NextLeaf->PrevLeaf = nullptr;
192
}
193
}
194
195
/// FullRecomputeSizeLocally - This method recomputes the 'Size' field by
196
/// summing the size of all RopePieces.
197
void FullRecomputeSizeLocally() {
198
Size = 0;
199
for (unsigned i = 0, e = getNumPieces(); i != e; ++i)
200
Size += getPiece(i).size();
201
}
202
203
/// split - Split the range containing the specified offset so that we are
204
/// guaranteed that there is a place to do an insertion at the specified
205
/// offset. The offset is relative, so "0" is the start of the node.
206
///
207
/// If there is no space in this subtree for the extra piece, the extra tree
208
/// node is returned and must be inserted into a parent.
209
RopePieceBTreeNode *split(unsigned Offset);
210
211
/// insert - Insert the specified ropepiece into this tree node at the
212
/// specified offset. The offset is relative, so "0" is the start of the
213
/// node.
214
///
215
/// If there is no space in this subtree for the extra piece, the extra tree
216
/// node is returned and must be inserted into a parent.
217
RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
218
219
/// erase - Remove NumBytes from this node at the specified offset. We are
220
/// guaranteed that there is a split at Offset.
221
void erase(unsigned Offset, unsigned NumBytes);
222
223
static bool classof(const RopePieceBTreeNode *N) {
224
return N->isLeaf();
225
}
226
};
227
228
} // namespace
229
230
/// split - Split the range containing the specified offset so that we are
231
/// guaranteed that there is a place to do an insertion at the specified
232
/// offset. The offset is relative, so "0" is the start of the node.
233
///
234
/// If there is no space in this subtree for the extra piece, the extra tree
235
/// node is returned and must be inserted into a parent.
236
RopePieceBTreeNode *RopePieceBTreeLeaf::split(unsigned Offset) {
237
// Find the insertion point. We are guaranteed that there is a split at the
238
// specified offset so find it.
239
if (Offset == 0 || Offset == size()) {
240
// Fastpath for a common case. There is already a splitpoint at the end.
241
return nullptr;
242
}
243
244
// Find the piece that this offset lands in.
245
unsigned PieceOffs = 0;
246
unsigned i = 0;
247
while (Offset >= PieceOffs+Pieces[i].size()) {
248
PieceOffs += Pieces[i].size();
249
++i;
250
}
251
252
// If there is already a split point at the specified offset, just return
253
// success.
254
if (PieceOffs == Offset)
255
return nullptr;
256
257
// Otherwise, we need to split piece 'i' at Offset-PieceOffs. Convert Offset
258
// to being Piece relative.
259
unsigned IntraPieceOffset = Offset-PieceOffs;
260
261
// We do this by shrinking the RopePiece and then doing an insert of the tail.
262
RopePiece Tail(Pieces[i].StrData, Pieces[i].StartOffs+IntraPieceOffset,
263
Pieces[i].EndOffs);
264
Size -= Pieces[i].size();
265
Pieces[i].EndOffs = Pieces[i].StartOffs+IntraPieceOffset;
266
Size += Pieces[i].size();
267
268
return insert(Offset, Tail);
269
}
270
271
/// insert - Insert the specified RopePiece into this tree node at the
272
/// specified offset. The offset is relative, so "0" is the start of the node.
273
///
274
/// If there is no space in this subtree for the extra piece, the extra tree
275
/// node is returned and must be inserted into a parent.
276
RopePieceBTreeNode *RopePieceBTreeLeaf::insert(unsigned Offset,
277
const RopePiece &R) {
278
// If this node is not full, insert the piece.
279
if (!isFull()) {
280
// Find the insertion point. We are guaranteed that there is a split at the
281
// specified offset so find it.
282
unsigned i = 0, e = getNumPieces();
283
if (Offset == size()) {
284
// Fastpath for a common case.
285
i = e;
286
} else {
287
unsigned SlotOffs = 0;
288
for (; Offset > SlotOffs; ++i)
289
SlotOffs += getPiece(i).size();
290
assert(SlotOffs == Offset && "Split didn't occur before insertion!");
291
}
292
293
// For an insertion into a non-full leaf node, just insert the value in
294
// its sorted position. This requires moving later values over.
295
for (; i != e; --e)
296
Pieces[e] = Pieces[e-1];
297
Pieces[i] = R;
298
++NumPieces;
299
Size += R.size();
300
return nullptr;
301
}
302
303
// Otherwise, if this is leaf is full, split it in two halves. Since this
304
// node is full, it contains 2*WidthFactor values. We move the first
305
// 'WidthFactor' values to the LHS child (which we leave in this node) and
306
// move the last 'WidthFactor' values into the RHS child.
307
308
// Create the new node.
309
RopePieceBTreeLeaf *NewNode = new RopePieceBTreeLeaf();
310
311
// Move over the last 'WidthFactor' values from here to NewNode.
312
std::copy(&Pieces[WidthFactor], &Pieces[2*WidthFactor],
313
&NewNode->Pieces[0]);
314
// Replace old pieces with null RopePieces to drop refcounts.
315
std::fill(&Pieces[WidthFactor], &Pieces[2*WidthFactor], RopePiece());
316
317
// Decrease the number of values in the two nodes.
318
NewNode->NumPieces = NumPieces = WidthFactor;
319
320
// Recompute the two nodes' size.
321
NewNode->FullRecomputeSizeLocally();
322
FullRecomputeSizeLocally();
323
324
// Update the list of leaves.
325
NewNode->insertAfterLeafInOrder(this);
326
327
// These insertions can't fail.
328
if (this->size() >= Offset)
329
this->insert(Offset, R);
330
else
331
NewNode->insert(Offset - this->size(), R);
332
return NewNode;
333
}
334
335
/// erase - Remove NumBytes from this node at the specified offset. We are
336
/// guaranteed that there is a split at Offset.
337
void RopePieceBTreeLeaf::erase(unsigned Offset, unsigned NumBytes) {
338
// Since we are guaranteed that there is a split at Offset, we start by
339
// finding the Piece that starts there.
340
unsigned PieceOffs = 0;
341
unsigned i = 0;
342
for (; Offset > PieceOffs; ++i)
343
PieceOffs += getPiece(i).size();
344
assert(PieceOffs == Offset && "Split didn't occur before erase!");
345
346
unsigned StartPiece = i;
347
348
// Figure out how many pieces completely cover 'NumBytes'. We want to remove
349
// all of them.
350
for (; Offset+NumBytes > PieceOffs+getPiece(i).size(); ++i)
351
PieceOffs += getPiece(i).size();
352
353
// If we exactly include the last one, include it in the region to delete.
354
if (Offset+NumBytes == PieceOffs+getPiece(i).size()) {
355
PieceOffs += getPiece(i).size();
356
++i;
357
}
358
359
// If we completely cover some RopePieces, erase them now.
360
if (i != StartPiece) {
361
unsigned NumDeleted = i-StartPiece;
362
for (; i != getNumPieces(); ++i)
363
Pieces[i-NumDeleted] = Pieces[i];
364
365
// Drop references to dead rope pieces.
366
std::fill(&Pieces[getNumPieces()-NumDeleted], &Pieces[getNumPieces()],
367
RopePiece());
368
NumPieces -= NumDeleted;
369
370
unsigned CoverBytes = PieceOffs-Offset;
371
NumBytes -= CoverBytes;
372
Size -= CoverBytes;
373
}
374
375
// If we completely removed some stuff, we could be done.
376
if (NumBytes == 0) return;
377
378
// Okay, now might be erasing part of some Piece. If this is the case, then
379
// move the start point of the piece.
380
assert(getPiece(StartPiece).size() > NumBytes);
381
Pieces[StartPiece].StartOffs += NumBytes;
382
383
// The size of this node just shrunk by NumBytes.
384
Size -= NumBytes;
385
}
386
387
//===----------------------------------------------------------------------===//
388
// RopePieceBTreeInterior Class
389
//===----------------------------------------------------------------------===//
390
391
namespace {
392
393
/// RopePieceBTreeInterior - This represents an interior node in the B+Tree,
394
/// which holds up to 2*WidthFactor pointers to child nodes.
395
class RopePieceBTreeInterior : public RopePieceBTreeNode {
396
/// NumChildren - This holds the number of children currently active in the
397
/// Children array.
398
unsigned char NumChildren = 0;
399
400
RopePieceBTreeNode *Children[2*WidthFactor];
401
402
public:
403
RopePieceBTreeInterior() : RopePieceBTreeNode(false) {}
404
405
RopePieceBTreeInterior(RopePieceBTreeNode *LHS, RopePieceBTreeNode *RHS)
406
: RopePieceBTreeNode(false) {
407
Children[0] = LHS;
408
Children[1] = RHS;
409
NumChildren = 2;
410
Size = LHS->size() + RHS->size();
411
}
412
413
~RopePieceBTreeInterior() {
414
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
415
Children[i]->Destroy();
416
}
417
418
bool isFull() const { return NumChildren == 2*WidthFactor; }
419
420
unsigned getNumChildren() const { return NumChildren; }
421
422
const RopePieceBTreeNode *getChild(unsigned i) const {
423
assert(i < NumChildren && "invalid child #");
424
return Children[i];
425
}
426
427
RopePieceBTreeNode *getChild(unsigned i) {
428
assert(i < NumChildren && "invalid child #");
429
return Children[i];
430
}
431
432
/// FullRecomputeSizeLocally - Recompute the Size field of this node by
433
/// summing up the sizes of the child nodes.
434
void FullRecomputeSizeLocally() {
435
Size = 0;
436
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
437
Size += getChild(i)->size();
438
}
439
440
/// split - Split the range containing the specified offset so that we are
441
/// guaranteed that there is a place to do an insertion at the specified
442
/// offset. The offset is relative, so "0" is the start of the node.
443
///
444
/// If there is no space in this subtree for the extra piece, the extra tree
445
/// node is returned and must be inserted into a parent.
446
RopePieceBTreeNode *split(unsigned Offset);
447
448
/// insert - Insert the specified ropepiece into this tree node at the
449
/// specified offset. The offset is relative, so "0" is the start of the
450
/// node.
451
///
452
/// If there is no space in this subtree for the extra piece, the extra tree
453
/// node is returned and must be inserted into a parent.
454
RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
455
456
/// HandleChildPiece - A child propagated an insertion result up to us.
457
/// Insert the new child, and/or propagate the result further up the tree.
458
RopePieceBTreeNode *HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS);
459
460
/// erase - Remove NumBytes from this node at the specified offset. We are
461
/// guaranteed that there is a split at Offset.
462
void erase(unsigned Offset, unsigned NumBytes);
463
464
static bool classof(const RopePieceBTreeNode *N) {
465
return !N->isLeaf();
466
}
467
};
468
469
} // namespace
470
471
/// split - Split the range containing the specified offset so that we are
472
/// guaranteed that there is a place to do an insertion at the specified
473
/// offset. The offset is relative, so "0" is the start of the node.
474
///
475
/// If there is no space in this subtree for the extra piece, the extra tree
476
/// node is returned and must be inserted into a parent.
477
RopePieceBTreeNode *RopePieceBTreeInterior::split(unsigned Offset) {
478
// Figure out which child to split.
479
if (Offset == 0 || Offset == size())
480
return nullptr; // If we have an exact offset, we're already split.
481
482
unsigned ChildOffset = 0;
483
unsigned i = 0;
484
for (; Offset >= ChildOffset+getChild(i)->size(); ++i)
485
ChildOffset += getChild(i)->size();
486
487
// If already split there, we're done.
488
if (ChildOffset == Offset)
489
return nullptr;
490
491
// Otherwise, recursively split the child.
492
if (RopePieceBTreeNode *RHS = getChild(i)->split(Offset-ChildOffset))
493
return HandleChildPiece(i, RHS);
494
return nullptr; // Done!
495
}
496
497
/// insert - Insert the specified ropepiece into this tree node at the
498
/// specified offset. The offset is relative, so "0" is the start of the
499
/// node.
500
///
501
/// If there is no space in this subtree for the extra piece, the extra tree
502
/// node is returned and must be inserted into a parent.
503
RopePieceBTreeNode *RopePieceBTreeInterior::insert(unsigned Offset,
504
const RopePiece &R) {
505
// Find the insertion point. We are guaranteed that there is a split at the
506
// specified offset so find it.
507
unsigned i = 0, e = getNumChildren();
508
509
unsigned ChildOffs = 0;
510
if (Offset == size()) {
511
// Fastpath for a common case. Insert at end of last child.
512
i = e-1;
513
ChildOffs = size()-getChild(i)->size();
514
} else {
515
for (; Offset > ChildOffs+getChild(i)->size(); ++i)
516
ChildOffs += getChild(i)->size();
517
}
518
519
Size += R.size();
520
521
// Insert at the end of this child.
522
if (RopePieceBTreeNode *RHS = getChild(i)->insert(Offset-ChildOffs, R))
523
return HandleChildPiece(i, RHS);
524
525
return nullptr;
526
}
527
528
/// HandleChildPiece - A child propagated an insertion result up to us.
529
/// Insert the new child, and/or propagate the result further up the tree.
530
RopePieceBTreeNode *
531
RopePieceBTreeInterior::HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS) {
532
// Otherwise the child propagated a subtree up to us as a new child. See if
533
// we have space for it here.
534
if (!isFull()) {
535
// Insert RHS after child 'i'.
536
if (i + 1 != getNumChildren())
537
memmove(&Children[i+2], &Children[i+1],
538
(getNumChildren()-i-1)*sizeof(Children[0]));
539
Children[i+1] = RHS;
540
++NumChildren;
541
return nullptr;
542
}
543
544
// Okay, this node is full. Split it in half, moving WidthFactor children to
545
// a newly allocated interior node.
546
547
// Create the new node.
548
RopePieceBTreeInterior *NewNode = new RopePieceBTreeInterior();
549
550
// Move over the last 'WidthFactor' values from here to NewNode.
551
memcpy(&NewNode->Children[0], &Children[WidthFactor],
552
WidthFactor*sizeof(Children[0]));
553
554
// Decrease the number of values in the two nodes.
555
NewNode->NumChildren = NumChildren = WidthFactor;
556
557
// Finally, insert the two new children in the side the can (now) hold them.
558
// These insertions can't fail.
559
if (i < WidthFactor)
560
this->HandleChildPiece(i, RHS);
561
else
562
NewNode->HandleChildPiece(i-WidthFactor, RHS);
563
564
// Recompute the two nodes' size.
565
NewNode->FullRecomputeSizeLocally();
566
FullRecomputeSizeLocally();
567
return NewNode;
568
}
569
570
/// erase - Remove NumBytes from this node at the specified offset. We are
571
/// guaranteed that there is a split at Offset.
572
void RopePieceBTreeInterior::erase(unsigned Offset, unsigned NumBytes) {
573
// This will shrink this node by NumBytes.
574
Size -= NumBytes;
575
576
// Find the first child that overlaps with Offset.
577
unsigned i = 0;
578
for (; Offset >= getChild(i)->size(); ++i)
579
Offset -= getChild(i)->size();
580
581
// Propagate the delete request into overlapping children, or completely
582
// delete the children as appropriate.
583
while (NumBytes) {
584
RopePieceBTreeNode *CurChild = getChild(i);
585
586
// If we are deleting something contained entirely in the child, pass on the
587
// request.
588
if (Offset+NumBytes < CurChild->size()) {
589
CurChild->erase(Offset, NumBytes);
590
return;
591
}
592
593
// If this deletion request starts somewhere in the middle of the child, it
594
// must be deleting to the end of the child.
595
if (Offset) {
596
unsigned BytesFromChild = CurChild->size()-Offset;
597
CurChild->erase(Offset, BytesFromChild);
598
NumBytes -= BytesFromChild;
599
// Start at the beginning of the next child.
600
Offset = 0;
601
++i;
602
continue;
603
}
604
605
// If the deletion request completely covers the child, delete it and move
606
// the rest down.
607
NumBytes -= CurChild->size();
608
CurChild->Destroy();
609
--NumChildren;
610
if (i != getNumChildren())
611
memmove(&Children[i], &Children[i+1],
612
(getNumChildren()-i)*sizeof(Children[0]));
613
}
614
}
615
616
//===----------------------------------------------------------------------===//
617
// RopePieceBTreeNode Implementation
618
//===----------------------------------------------------------------------===//
619
620
void RopePieceBTreeNode::Destroy() {
621
if (auto *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
622
delete Leaf;
623
else
624
delete cast<RopePieceBTreeInterior>(this);
625
}
626
627
/// split - Split the range containing the specified offset so that we are
628
/// guaranteed that there is a place to do an insertion at the specified
629
/// offset. The offset is relative, so "0" is the start of the node.
630
///
631
/// If there is no space in this subtree for the extra piece, the extra tree
632
/// node is returned and must be inserted into a parent.
633
RopePieceBTreeNode *RopePieceBTreeNode::split(unsigned Offset) {
634
assert(Offset <= size() && "Invalid offset to split!");
635
if (auto *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
636
return Leaf->split(Offset);
637
return cast<RopePieceBTreeInterior>(this)->split(Offset);
638
}
639
640
/// insert - Insert the specified ropepiece into this tree node at the
641
/// specified offset. The offset is relative, so "0" is the start of the
642
/// node.
643
///
644
/// If there is no space in this subtree for the extra piece, the extra tree
645
/// node is returned and must be inserted into a parent.
646
RopePieceBTreeNode *RopePieceBTreeNode::insert(unsigned Offset,
647
const RopePiece &R) {
648
assert(Offset <= size() && "Invalid offset to insert!");
649
if (auto *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
650
return Leaf->insert(Offset, R);
651
return cast<RopePieceBTreeInterior>(this)->insert(Offset, R);
652
}
653
654
/// erase - Remove NumBytes from this node at the specified offset. We are
655
/// guaranteed that there is a split at Offset.
656
void RopePieceBTreeNode::erase(unsigned Offset, unsigned NumBytes) {
657
assert(Offset+NumBytes <= size() && "Invalid offset to erase!");
658
if (auto *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
659
return Leaf->erase(Offset, NumBytes);
660
return cast<RopePieceBTreeInterior>(this)->erase(Offset, NumBytes);
661
}
662
663
//===----------------------------------------------------------------------===//
664
// RopePieceBTreeIterator Implementation
665
//===----------------------------------------------------------------------===//
666
667
static const RopePieceBTreeLeaf *getCN(const void *P) {
668
return static_cast<const RopePieceBTreeLeaf*>(P);
669
}
670
671
// begin iterator.
672
RopePieceBTreeIterator::RopePieceBTreeIterator(const void *n) {
673
const auto *N = static_cast<const RopePieceBTreeNode *>(n);
674
675
// Walk down the left side of the tree until we get to a leaf.
676
while (const auto *IN = dyn_cast<RopePieceBTreeInterior>(N))
677
N = IN->getChild(0);
678
679
// We must have at least one leaf.
680
CurNode = cast<RopePieceBTreeLeaf>(N);
681
682
// If we found a leaf that happens to be empty, skip over it until we get
683
// to something full.
684
while (CurNode && getCN(CurNode)->getNumPieces() == 0)
685
CurNode = getCN(CurNode)->getNextLeafInOrder();
686
687
if (CurNode)
688
CurPiece = &getCN(CurNode)->getPiece(0);
689
else // Empty tree, this is an end() iterator.
690
CurPiece = nullptr;
691
CurChar = 0;
692
}
693
694
void RopePieceBTreeIterator::MoveToNextPiece() {
695
if (CurPiece != &getCN(CurNode)->getPiece(getCN(CurNode)->getNumPieces()-1)) {
696
CurChar = 0;
697
++CurPiece;
698
return;
699
}
700
701
// Find the next non-empty leaf node.
702
do
703
CurNode = getCN(CurNode)->getNextLeafInOrder();
704
while (CurNode && getCN(CurNode)->getNumPieces() == 0);
705
706
if (CurNode)
707
CurPiece = &getCN(CurNode)->getPiece(0);
708
else // Hit end().
709
CurPiece = nullptr;
710
CurChar = 0;
711
}
712
713
//===----------------------------------------------------------------------===//
714
// RopePieceBTree Implementation
715
//===----------------------------------------------------------------------===//
716
717
static RopePieceBTreeNode *getRoot(void *P) {
718
return static_cast<RopePieceBTreeNode*>(P);
719
}
720
721
RopePieceBTree::RopePieceBTree() {
722
Root = new RopePieceBTreeLeaf();
723
}
724
725
RopePieceBTree::RopePieceBTree(const RopePieceBTree &RHS) {
726
assert(RHS.empty() && "Can't copy non-empty tree yet");
727
Root = new RopePieceBTreeLeaf();
728
}
729
730
RopePieceBTree::~RopePieceBTree() {
731
getRoot(Root)->Destroy();
732
}
733
734
unsigned RopePieceBTree::size() const {
735
return getRoot(Root)->size();
736
}
737
738
void RopePieceBTree::clear() {
739
if (auto *Leaf = dyn_cast<RopePieceBTreeLeaf>(getRoot(Root)))
740
Leaf->clear();
741
else {
742
getRoot(Root)->Destroy();
743
Root = new RopePieceBTreeLeaf();
744
}
745
}
746
747
void RopePieceBTree::insert(unsigned Offset, const RopePiece &R) {
748
// #1. Split at Offset.
749
if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
750
Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
751
752
// #2. Do the insertion.
753
if (RopePieceBTreeNode *RHS = getRoot(Root)->insert(Offset, R))
754
Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
755
}
756
757
void RopePieceBTree::erase(unsigned Offset, unsigned NumBytes) {
758
// #1. Split at Offset.
759
if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
760
Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
761
762
// #2. Do the erasing.
763
getRoot(Root)->erase(Offset, NumBytes);
764
}
765
766
//===----------------------------------------------------------------------===//
767
// RewriteRope Implementation
768
//===----------------------------------------------------------------------===//
769
770
/// MakeRopeString - This copies the specified byte range into some instance of
771
/// RopeRefCountString, and return a RopePiece that represents it. This uses
772
/// the AllocBuffer object to aggregate requests for small strings into one
773
/// allocation instead of doing tons of tiny allocations.
774
RopePiece RewriteRope::MakeRopeString(const char *Start, const char *End) {
775
unsigned Len = End-Start;
776
assert(Len && "Zero length RopePiece is invalid!");
777
778
// If we have space for this string in the current alloc buffer, use it.
779
if (AllocOffs+Len <= AllocChunkSize) {
780
memcpy(AllocBuffer->Data+AllocOffs, Start, Len);
781
AllocOffs += Len;
782
return RopePiece(AllocBuffer, AllocOffs-Len, AllocOffs);
783
}
784
785
// If we don't have enough room because this specific allocation is huge,
786
// just allocate a new rope piece for it alone.
787
if (Len > AllocChunkSize) {
788
unsigned Size = End-Start+sizeof(RopeRefCountString)-1;
789
auto *Res = reinterpret_cast<RopeRefCountString *>(new char[Size]);
790
Res->RefCount = 0;
791
memcpy(Res->Data, Start, End-Start);
792
return RopePiece(Res, 0, End-Start);
793
}
794
795
// Otherwise, this was a small request but we just don't have space for it
796
// Make a new chunk and share it with later allocations.
797
798
unsigned AllocSize = offsetof(RopeRefCountString, Data) + AllocChunkSize;
799
auto *Res = reinterpret_cast<RopeRefCountString *>(new char[AllocSize]);
800
Res->RefCount = 0;
801
memcpy(Res->Data, Start, Len);
802
AllocBuffer = Res;
803
AllocOffs = Len;
804
805
return RopePiece(AllocBuffer, 0, Len);
806
}
807
808