Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/clang/lib/Sema/Sema.cpp
35233 views
1
//===--- Sema.cpp - AST Builder and Semantic Analysis Implementation ------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the actions class which performs semantic analysis and
10
// builds an AST out of a parse stream.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "UsedDeclVisitor.h"
15
#include "clang/AST/ASTContext.h"
16
#include "clang/AST/ASTDiagnostic.h"
17
#include "clang/AST/Decl.h"
18
#include "clang/AST/DeclCXX.h"
19
#include "clang/AST/DeclFriend.h"
20
#include "clang/AST/DeclObjC.h"
21
#include "clang/AST/Expr.h"
22
#include "clang/AST/ExprCXX.h"
23
#include "clang/AST/PrettyDeclStackTrace.h"
24
#include "clang/AST/StmtCXX.h"
25
#include "clang/Basic/DarwinSDKInfo.h"
26
#include "clang/Basic/DiagnosticOptions.h"
27
#include "clang/Basic/PartialDiagnostic.h"
28
#include "clang/Basic/SourceManager.h"
29
#include "clang/Basic/Stack.h"
30
#include "clang/Basic/TargetInfo.h"
31
#include "clang/Lex/HeaderSearch.h"
32
#include "clang/Lex/HeaderSearchOptions.h"
33
#include "clang/Lex/Preprocessor.h"
34
#include "clang/Sema/CXXFieldCollector.h"
35
#include "clang/Sema/DelayedDiagnostic.h"
36
#include "clang/Sema/EnterExpressionEvaluationContext.h"
37
#include "clang/Sema/ExternalSemaSource.h"
38
#include "clang/Sema/Initialization.h"
39
#include "clang/Sema/MultiplexExternalSemaSource.h"
40
#include "clang/Sema/ObjCMethodList.h"
41
#include "clang/Sema/RISCVIntrinsicManager.h"
42
#include "clang/Sema/Scope.h"
43
#include "clang/Sema/ScopeInfo.h"
44
#include "clang/Sema/SemaAMDGPU.h"
45
#include "clang/Sema/SemaARM.h"
46
#include "clang/Sema/SemaAVR.h"
47
#include "clang/Sema/SemaBPF.h"
48
#include "clang/Sema/SemaCUDA.h"
49
#include "clang/Sema/SemaCodeCompletion.h"
50
#include "clang/Sema/SemaConsumer.h"
51
#include "clang/Sema/SemaHLSL.h"
52
#include "clang/Sema/SemaHexagon.h"
53
#include "clang/Sema/SemaInternal.h"
54
#include "clang/Sema/SemaLoongArch.h"
55
#include "clang/Sema/SemaM68k.h"
56
#include "clang/Sema/SemaMIPS.h"
57
#include "clang/Sema/SemaMSP430.h"
58
#include "clang/Sema/SemaNVPTX.h"
59
#include "clang/Sema/SemaObjC.h"
60
#include "clang/Sema/SemaOpenACC.h"
61
#include "clang/Sema/SemaOpenCL.h"
62
#include "clang/Sema/SemaOpenMP.h"
63
#include "clang/Sema/SemaPPC.h"
64
#include "clang/Sema/SemaPseudoObject.h"
65
#include "clang/Sema/SemaRISCV.h"
66
#include "clang/Sema/SemaSYCL.h"
67
#include "clang/Sema/SemaSwift.h"
68
#include "clang/Sema/SemaSystemZ.h"
69
#include "clang/Sema/SemaWasm.h"
70
#include "clang/Sema/SemaX86.h"
71
#include "clang/Sema/TemplateDeduction.h"
72
#include "clang/Sema/TemplateInstCallback.h"
73
#include "clang/Sema/TypoCorrection.h"
74
#include "llvm/ADT/DenseMap.h"
75
#include "llvm/ADT/STLExtras.h"
76
#include "llvm/ADT/SmallPtrSet.h"
77
#include "llvm/Support/TimeProfiler.h"
78
#include <optional>
79
80
using namespace clang;
81
using namespace sema;
82
83
SourceLocation Sema::getLocForEndOfToken(SourceLocation Loc, unsigned Offset) {
84
return Lexer::getLocForEndOfToken(Loc, Offset, SourceMgr, LangOpts);
85
}
86
87
ModuleLoader &Sema::getModuleLoader() const { return PP.getModuleLoader(); }
88
89
DarwinSDKInfo *
90
Sema::getDarwinSDKInfoForAvailabilityChecking(SourceLocation Loc,
91
StringRef Platform) {
92
auto *SDKInfo = getDarwinSDKInfoForAvailabilityChecking();
93
if (!SDKInfo && !WarnedDarwinSDKInfoMissing) {
94
Diag(Loc, diag::warn_missing_sdksettings_for_availability_checking)
95
<< Platform;
96
WarnedDarwinSDKInfoMissing = true;
97
}
98
return SDKInfo;
99
}
100
101
DarwinSDKInfo *Sema::getDarwinSDKInfoForAvailabilityChecking() {
102
if (CachedDarwinSDKInfo)
103
return CachedDarwinSDKInfo->get();
104
auto SDKInfo = parseDarwinSDKInfo(
105
PP.getFileManager().getVirtualFileSystem(),
106
PP.getHeaderSearchInfo().getHeaderSearchOpts().Sysroot);
107
if (SDKInfo && *SDKInfo) {
108
CachedDarwinSDKInfo = std::make_unique<DarwinSDKInfo>(std::move(**SDKInfo));
109
return CachedDarwinSDKInfo->get();
110
}
111
if (!SDKInfo)
112
llvm::consumeError(SDKInfo.takeError());
113
CachedDarwinSDKInfo = std::unique_ptr<DarwinSDKInfo>();
114
return nullptr;
115
}
116
117
IdentifierInfo *Sema::InventAbbreviatedTemplateParameterTypeName(
118
const IdentifierInfo *ParamName, unsigned int Index) {
119
std::string InventedName;
120
llvm::raw_string_ostream OS(InventedName);
121
122
if (!ParamName)
123
OS << "auto:" << Index + 1;
124
else
125
OS << ParamName->getName() << ":auto";
126
127
OS.flush();
128
return &Context.Idents.get(OS.str());
129
}
130
131
PrintingPolicy Sema::getPrintingPolicy(const ASTContext &Context,
132
const Preprocessor &PP) {
133
PrintingPolicy Policy = Context.getPrintingPolicy();
134
// In diagnostics, we print _Bool as bool if the latter is defined as the
135
// former.
136
Policy.Bool = Context.getLangOpts().Bool;
137
if (!Policy.Bool) {
138
if (const MacroInfo *BoolMacro = PP.getMacroInfo(Context.getBoolName())) {
139
Policy.Bool = BoolMacro->isObjectLike() &&
140
BoolMacro->getNumTokens() == 1 &&
141
BoolMacro->getReplacementToken(0).is(tok::kw__Bool);
142
}
143
}
144
145
// Shorten the data output if needed
146
Policy.EntireContentsOfLargeArray = false;
147
148
return Policy;
149
}
150
151
void Sema::ActOnTranslationUnitScope(Scope *S) {
152
TUScope = S;
153
PushDeclContext(S, Context.getTranslationUnitDecl());
154
}
155
156
namespace clang {
157
namespace sema {
158
159
class SemaPPCallbacks : public PPCallbacks {
160
Sema *S = nullptr;
161
llvm::SmallVector<SourceLocation, 8> IncludeStack;
162
llvm::SmallVector<llvm::TimeTraceProfilerEntry *, 8> ProfilerStack;
163
164
public:
165
void set(Sema &S) { this->S = &S; }
166
167
void reset() { S = nullptr; }
168
169
void FileChanged(SourceLocation Loc, FileChangeReason Reason,
170
SrcMgr::CharacteristicKind FileType,
171
FileID PrevFID) override {
172
if (!S)
173
return;
174
switch (Reason) {
175
case EnterFile: {
176
SourceManager &SM = S->getSourceManager();
177
SourceLocation IncludeLoc = SM.getIncludeLoc(SM.getFileID(Loc));
178
if (IncludeLoc.isValid()) {
179
if (llvm::timeTraceProfilerEnabled()) {
180
OptionalFileEntryRef FE = SM.getFileEntryRefForID(SM.getFileID(Loc));
181
ProfilerStack.push_back(llvm::timeTraceAsyncProfilerBegin(
182
"Source", FE ? FE->getName() : StringRef("<unknown>")));
183
}
184
185
IncludeStack.push_back(IncludeLoc);
186
S->DiagnoseNonDefaultPragmaAlignPack(
187
Sema::PragmaAlignPackDiagnoseKind::NonDefaultStateAtInclude,
188
IncludeLoc);
189
}
190
break;
191
}
192
case ExitFile:
193
if (!IncludeStack.empty()) {
194
if (llvm::timeTraceProfilerEnabled())
195
llvm::timeTraceProfilerEnd(ProfilerStack.pop_back_val());
196
197
S->DiagnoseNonDefaultPragmaAlignPack(
198
Sema::PragmaAlignPackDiagnoseKind::ChangedStateAtExit,
199
IncludeStack.pop_back_val());
200
}
201
break;
202
default:
203
break;
204
}
205
}
206
};
207
208
} // end namespace sema
209
} // end namespace clang
210
211
const unsigned Sema::MaxAlignmentExponent;
212
const uint64_t Sema::MaximumAlignment;
213
214
Sema::Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer,
215
TranslationUnitKind TUKind, CodeCompleteConsumer *CodeCompleter)
216
: SemaBase(*this), CollectStats(false), TUKind(TUKind),
217
CurFPFeatures(pp.getLangOpts()), LangOpts(pp.getLangOpts()), PP(pp),
218
Context(ctxt), Consumer(consumer), Diags(PP.getDiagnostics()),
219
SourceMgr(PP.getSourceManager()), APINotes(SourceMgr, LangOpts),
220
AnalysisWarnings(*this), ThreadSafetyDeclCache(nullptr),
221
LateTemplateParser(nullptr), LateTemplateParserCleanup(nullptr),
222
OpaqueParser(nullptr), CurContext(nullptr), ExternalSource(nullptr),
223
CurScope(nullptr), Ident_super(nullptr),
224
AMDGPUPtr(std::make_unique<SemaAMDGPU>(*this)),
225
ARMPtr(std::make_unique<SemaARM>(*this)),
226
AVRPtr(std::make_unique<SemaAVR>(*this)),
227
BPFPtr(std::make_unique<SemaBPF>(*this)),
228
CodeCompletionPtr(
229
std::make_unique<SemaCodeCompletion>(*this, CodeCompleter)),
230
CUDAPtr(std::make_unique<SemaCUDA>(*this)),
231
HLSLPtr(std::make_unique<SemaHLSL>(*this)),
232
HexagonPtr(std::make_unique<SemaHexagon>(*this)),
233
LoongArchPtr(std::make_unique<SemaLoongArch>(*this)),
234
M68kPtr(std::make_unique<SemaM68k>(*this)),
235
MIPSPtr(std::make_unique<SemaMIPS>(*this)),
236
MSP430Ptr(std::make_unique<SemaMSP430>(*this)),
237
NVPTXPtr(std::make_unique<SemaNVPTX>(*this)),
238
ObjCPtr(std::make_unique<SemaObjC>(*this)),
239
OpenACCPtr(std::make_unique<SemaOpenACC>(*this)),
240
OpenCLPtr(std::make_unique<SemaOpenCL>(*this)),
241
OpenMPPtr(std::make_unique<SemaOpenMP>(*this)),
242
PPCPtr(std::make_unique<SemaPPC>(*this)),
243
PseudoObjectPtr(std::make_unique<SemaPseudoObject>(*this)),
244
RISCVPtr(std::make_unique<SemaRISCV>(*this)),
245
SYCLPtr(std::make_unique<SemaSYCL>(*this)),
246
SwiftPtr(std::make_unique<SemaSwift>(*this)),
247
SystemZPtr(std::make_unique<SemaSystemZ>(*this)),
248
WasmPtr(std::make_unique<SemaWasm>(*this)),
249
X86Ptr(std::make_unique<SemaX86>(*this)),
250
MSPointerToMemberRepresentationMethod(
251
LangOpts.getMSPointerToMemberRepresentationMethod()),
252
MSStructPragmaOn(false), VtorDispStack(LangOpts.getVtorDispMode()),
253
AlignPackStack(AlignPackInfo(getLangOpts().XLPragmaPack)),
254
DataSegStack(nullptr), BSSSegStack(nullptr), ConstSegStack(nullptr),
255
CodeSegStack(nullptr), StrictGuardStackCheckStack(false),
256
FpPragmaStack(FPOptionsOverride()), CurInitSeg(nullptr),
257
VisContext(nullptr), PragmaAttributeCurrentTargetDecl(nullptr),
258
StdCoroutineTraitsCache(nullptr), IdResolver(pp),
259
OriginalLexicalContext(nullptr), StdInitializerList(nullptr),
260
FullyCheckedComparisonCategories(
261
static_cast<unsigned>(ComparisonCategoryType::Last) + 1),
262
StdSourceLocationImplDecl(nullptr), CXXTypeInfoDecl(nullptr),
263
GlobalNewDeleteDeclared(false), DisableTypoCorrection(false),
264
TyposCorrected(0), IsBuildingRecoveryCallExpr(false), NumSFINAEErrors(0),
265
AccessCheckingSFINAE(false), CurrentInstantiationScope(nullptr),
266
InNonInstantiationSFINAEContext(false), NonInstantiationEntries(0),
267
ArgumentPackSubstitutionIndex(-1), SatisfactionCache(Context) {
268
assert(pp.TUKind == TUKind);
269
TUScope = nullptr;
270
271
LoadedExternalKnownNamespaces = false;
272
for (unsigned I = 0; I != NSAPI::NumNSNumberLiteralMethods; ++I)
273
ObjC().NSNumberLiteralMethods[I] = nullptr;
274
275
if (getLangOpts().ObjC)
276
ObjC().NSAPIObj.reset(new NSAPI(Context));
277
278
if (getLangOpts().CPlusPlus)
279
FieldCollector.reset(new CXXFieldCollector());
280
281
// Tell diagnostics how to render things from the AST library.
282
Diags.SetArgToStringFn(&FormatASTNodeDiagnosticArgument, &Context);
283
284
// This evaluation context exists to ensure that there's always at least one
285
// valid evaluation context available. It is never removed from the
286
// evaluation stack.
287
ExprEvalContexts.emplace_back(
288
ExpressionEvaluationContext::PotentiallyEvaluated, 0, CleanupInfo{},
289
nullptr, ExpressionEvaluationContextRecord::EK_Other);
290
291
// Initialization of data sharing attributes stack for OpenMP
292
OpenMP().InitDataSharingAttributesStack();
293
294
std::unique_ptr<sema::SemaPPCallbacks> Callbacks =
295
std::make_unique<sema::SemaPPCallbacks>();
296
SemaPPCallbackHandler = Callbacks.get();
297
PP.addPPCallbacks(std::move(Callbacks));
298
SemaPPCallbackHandler->set(*this);
299
300
CurFPFeatures.setFPEvalMethod(PP.getCurrentFPEvalMethod());
301
}
302
303
// Anchor Sema's type info to this TU.
304
void Sema::anchor() {}
305
306
void Sema::addImplicitTypedef(StringRef Name, QualType T) {
307
DeclarationName DN = &Context.Idents.get(Name);
308
if (IdResolver.begin(DN) == IdResolver.end())
309
PushOnScopeChains(Context.buildImplicitTypedef(T, Name), TUScope);
310
}
311
312
void Sema::Initialize() {
313
if (SemaConsumer *SC = dyn_cast<SemaConsumer>(&Consumer))
314
SC->InitializeSema(*this);
315
316
// Tell the external Sema source about this Sema object.
317
if (ExternalSemaSource *ExternalSema
318
= dyn_cast_or_null<ExternalSemaSource>(Context.getExternalSource()))
319
ExternalSema->InitializeSema(*this);
320
321
// This needs to happen after ExternalSemaSource::InitializeSema(this) or we
322
// will not be able to merge any duplicate __va_list_tag decls correctly.
323
VAListTagName = PP.getIdentifierInfo("__va_list_tag");
324
325
if (!TUScope)
326
return;
327
328
// Initialize predefined 128-bit integer types, if needed.
329
if (Context.getTargetInfo().hasInt128Type() ||
330
(Context.getAuxTargetInfo() &&
331
Context.getAuxTargetInfo()->hasInt128Type())) {
332
// If either of the 128-bit integer types are unavailable to name lookup,
333
// define them now.
334
DeclarationName Int128 = &Context.Idents.get("__int128_t");
335
if (IdResolver.begin(Int128) == IdResolver.end())
336
PushOnScopeChains(Context.getInt128Decl(), TUScope);
337
338
DeclarationName UInt128 = &Context.Idents.get("__uint128_t");
339
if (IdResolver.begin(UInt128) == IdResolver.end())
340
PushOnScopeChains(Context.getUInt128Decl(), TUScope);
341
}
342
343
344
// Initialize predefined Objective-C types:
345
if (getLangOpts().ObjC) {
346
// If 'SEL' does not yet refer to any declarations, make it refer to the
347
// predefined 'SEL'.
348
DeclarationName SEL = &Context.Idents.get("SEL");
349
if (IdResolver.begin(SEL) == IdResolver.end())
350
PushOnScopeChains(Context.getObjCSelDecl(), TUScope);
351
352
// If 'id' does not yet refer to any declarations, make it refer to the
353
// predefined 'id'.
354
DeclarationName Id = &Context.Idents.get("id");
355
if (IdResolver.begin(Id) == IdResolver.end())
356
PushOnScopeChains(Context.getObjCIdDecl(), TUScope);
357
358
// Create the built-in typedef for 'Class'.
359
DeclarationName Class = &Context.Idents.get("Class");
360
if (IdResolver.begin(Class) == IdResolver.end())
361
PushOnScopeChains(Context.getObjCClassDecl(), TUScope);
362
363
// Create the built-in forward declaratino for 'Protocol'.
364
DeclarationName Protocol = &Context.Idents.get("Protocol");
365
if (IdResolver.begin(Protocol) == IdResolver.end())
366
PushOnScopeChains(Context.getObjCProtocolDecl(), TUScope);
367
}
368
369
// Create the internal type for the *StringMakeConstantString builtins.
370
DeclarationName ConstantString = &Context.Idents.get("__NSConstantString");
371
if (IdResolver.begin(ConstantString) == IdResolver.end())
372
PushOnScopeChains(Context.getCFConstantStringDecl(), TUScope);
373
374
// Initialize Microsoft "predefined C++ types".
375
if (getLangOpts().MSVCCompat) {
376
if (getLangOpts().CPlusPlus &&
377
IdResolver.begin(&Context.Idents.get("type_info")) == IdResolver.end())
378
PushOnScopeChains(
379
Context.buildImplicitRecord("type_info", TagTypeKind::Class),
380
TUScope);
381
382
addImplicitTypedef("size_t", Context.getSizeType());
383
}
384
385
// Initialize predefined OpenCL types and supported extensions and (optional)
386
// core features.
387
if (getLangOpts().OpenCL) {
388
getOpenCLOptions().addSupport(
389
Context.getTargetInfo().getSupportedOpenCLOpts(), getLangOpts());
390
addImplicitTypedef("sampler_t", Context.OCLSamplerTy);
391
addImplicitTypedef("event_t", Context.OCLEventTy);
392
auto OCLCompatibleVersion = getLangOpts().getOpenCLCompatibleVersion();
393
if (OCLCompatibleVersion >= 200) {
394
if (getLangOpts().OpenCLCPlusPlus || getLangOpts().Blocks) {
395
addImplicitTypedef("clk_event_t", Context.OCLClkEventTy);
396
addImplicitTypedef("queue_t", Context.OCLQueueTy);
397
}
398
if (getLangOpts().OpenCLPipes)
399
addImplicitTypedef("reserve_id_t", Context.OCLReserveIDTy);
400
addImplicitTypedef("atomic_int", Context.getAtomicType(Context.IntTy));
401
addImplicitTypedef("atomic_uint",
402
Context.getAtomicType(Context.UnsignedIntTy));
403
addImplicitTypedef("atomic_float",
404
Context.getAtomicType(Context.FloatTy));
405
// OpenCLC v2.0, s6.13.11.6 requires that atomic_flag is implemented as
406
// 32-bit integer and OpenCLC v2.0, s6.1.1 int is always 32-bit wide.
407
addImplicitTypedef("atomic_flag", Context.getAtomicType(Context.IntTy));
408
409
410
// OpenCL v2.0 s6.13.11.6:
411
// - The atomic_long and atomic_ulong types are supported if the
412
// cl_khr_int64_base_atomics and cl_khr_int64_extended_atomics
413
// extensions are supported.
414
// - The atomic_double type is only supported if double precision
415
// is supported and the cl_khr_int64_base_atomics and
416
// cl_khr_int64_extended_atomics extensions are supported.
417
// - If the device address space is 64-bits, the data types
418
// atomic_intptr_t, atomic_uintptr_t, atomic_size_t and
419
// atomic_ptrdiff_t are supported if the cl_khr_int64_base_atomics and
420
// cl_khr_int64_extended_atomics extensions are supported.
421
422
auto AddPointerSizeDependentTypes = [&]() {
423
auto AtomicSizeT = Context.getAtomicType(Context.getSizeType());
424
auto AtomicIntPtrT = Context.getAtomicType(Context.getIntPtrType());
425
auto AtomicUIntPtrT = Context.getAtomicType(Context.getUIntPtrType());
426
auto AtomicPtrDiffT =
427
Context.getAtomicType(Context.getPointerDiffType());
428
addImplicitTypedef("atomic_size_t", AtomicSizeT);
429
addImplicitTypedef("atomic_intptr_t", AtomicIntPtrT);
430
addImplicitTypedef("atomic_uintptr_t", AtomicUIntPtrT);
431
addImplicitTypedef("atomic_ptrdiff_t", AtomicPtrDiffT);
432
};
433
434
if (Context.getTypeSize(Context.getSizeType()) == 32) {
435
AddPointerSizeDependentTypes();
436
}
437
438
if (getOpenCLOptions().isSupported("cl_khr_fp16", getLangOpts())) {
439
auto AtomicHalfT = Context.getAtomicType(Context.HalfTy);
440
addImplicitTypedef("atomic_half", AtomicHalfT);
441
}
442
443
std::vector<QualType> Atomic64BitTypes;
444
if (getOpenCLOptions().isSupported("cl_khr_int64_base_atomics",
445
getLangOpts()) &&
446
getOpenCLOptions().isSupported("cl_khr_int64_extended_atomics",
447
getLangOpts())) {
448
if (getOpenCLOptions().isSupported("cl_khr_fp64", getLangOpts())) {
449
auto AtomicDoubleT = Context.getAtomicType(Context.DoubleTy);
450
addImplicitTypedef("atomic_double", AtomicDoubleT);
451
Atomic64BitTypes.push_back(AtomicDoubleT);
452
}
453
auto AtomicLongT = Context.getAtomicType(Context.LongTy);
454
auto AtomicULongT = Context.getAtomicType(Context.UnsignedLongTy);
455
addImplicitTypedef("atomic_long", AtomicLongT);
456
addImplicitTypedef("atomic_ulong", AtomicULongT);
457
458
459
if (Context.getTypeSize(Context.getSizeType()) == 64) {
460
AddPointerSizeDependentTypes();
461
}
462
}
463
}
464
465
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
466
if (getOpenCLOptions().isSupported(#Ext, getLangOpts())) { \
467
addImplicitTypedef(#ExtType, Context.Id##Ty); \
468
}
469
#include "clang/Basic/OpenCLExtensionTypes.def"
470
}
471
472
if (Context.getTargetInfo().hasAArch64SVETypes() ||
473
(Context.getAuxTargetInfo() &&
474
Context.getAuxTargetInfo()->hasAArch64SVETypes())) {
475
#define SVE_TYPE(Name, Id, SingletonId) \
476
addImplicitTypedef(Name, Context.SingletonId);
477
#include "clang/Basic/AArch64SVEACLETypes.def"
478
}
479
480
if (Context.getTargetInfo().getTriple().isPPC64()) {
481
#define PPC_VECTOR_MMA_TYPE(Name, Id, Size) \
482
addImplicitTypedef(#Name, Context.Id##Ty);
483
#include "clang/Basic/PPCTypes.def"
484
#define PPC_VECTOR_VSX_TYPE(Name, Id, Size) \
485
addImplicitTypedef(#Name, Context.Id##Ty);
486
#include "clang/Basic/PPCTypes.def"
487
}
488
489
if (Context.getTargetInfo().hasRISCVVTypes()) {
490
#define RVV_TYPE(Name, Id, SingletonId) \
491
addImplicitTypedef(Name, Context.SingletonId);
492
#include "clang/Basic/RISCVVTypes.def"
493
}
494
495
if (Context.getTargetInfo().getTriple().isWasm() &&
496
Context.getTargetInfo().hasFeature("reference-types")) {
497
#define WASM_TYPE(Name, Id, SingletonId) \
498
addImplicitTypedef(Name, Context.SingletonId);
499
#include "clang/Basic/WebAssemblyReferenceTypes.def"
500
}
501
502
if (Context.getTargetInfo().getTriple().isAMDGPU() ||
503
(Context.getAuxTargetInfo() &&
504
Context.getAuxTargetInfo()->getTriple().isAMDGPU())) {
505
#define AMDGPU_TYPE(Name, Id, SingletonId) \
506
addImplicitTypedef(Name, Context.SingletonId);
507
#include "clang/Basic/AMDGPUTypes.def"
508
}
509
510
if (Context.getTargetInfo().hasBuiltinMSVaList()) {
511
DeclarationName MSVaList = &Context.Idents.get("__builtin_ms_va_list");
512
if (IdResolver.begin(MSVaList) == IdResolver.end())
513
PushOnScopeChains(Context.getBuiltinMSVaListDecl(), TUScope);
514
}
515
516
DeclarationName BuiltinVaList = &Context.Idents.get("__builtin_va_list");
517
if (IdResolver.begin(BuiltinVaList) == IdResolver.end())
518
PushOnScopeChains(Context.getBuiltinVaListDecl(), TUScope);
519
}
520
521
Sema::~Sema() {
522
assert(InstantiatingSpecializations.empty() &&
523
"failed to clean up an InstantiatingTemplate?");
524
525
if (VisContext) FreeVisContext();
526
527
// Kill all the active scopes.
528
for (sema::FunctionScopeInfo *FSI : FunctionScopes)
529
delete FSI;
530
531
// Tell the SemaConsumer to forget about us; we're going out of scope.
532
if (SemaConsumer *SC = dyn_cast<SemaConsumer>(&Consumer))
533
SC->ForgetSema();
534
535
// Detach from the external Sema source.
536
if (ExternalSemaSource *ExternalSema
537
= dyn_cast_or_null<ExternalSemaSource>(Context.getExternalSource()))
538
ExternalSema->ForgetSema();
539
540
// Delete cached satisfactions.
541
std::vector<ConstraintSatisfaction *> Satisfactions;
542
Satisfactions.reserve(SatisfactionCache.size());
543
for (auto &Node : SatisfactionCache)
544
Satisfactions.push_back(&Node);
545
for (auto *Node : Satisfactions)
546
delete Node;
547
548
threadSafety::threadSafetyCleanup(ThreadSafetyDeclCache);
549
550
// Destroys data sharing attributes stack for OpenMP
551
OpenMP().DestroyDataSharingAttributesStack();
552
553
// Detach from the PP callback handler which outlives Sema since it's owned
554
// by the preprocessor.
555
SemaPPCallbackHandler->reset();
556
}
557
558
void Sema::warnStackExhausted(SourceLocation Loc) {
559
// Only warn about this once.
560
if (!WarnedStackExhausted) {
561
Diag(Loc, diag::warn_stack_exhausted);
562
WarnedStackExhausted = true;
563
}
564
}
565
566
void Sema::runWithSufficientStackSpace(SourceLocation Loc,
567
llvm::function_ref<void()> Fn) {
568
clang::runWithSufficientStackSpace([&] { warnStackExhausted(Loc); }, Fn);
569
}
570
571
bool Sema::makeUnavailableInSystemHeader(SourceLocation loc,
572
UnavailableAttr::ImplicitReason reason) {
573
// If we're not in a function, it's an error.
574
FunctionDecl *fn = dyn_cast<FunctionDecl>(CurContext);
575
if (!fn) return false;
576
577
// If we're in template instantiation, it's an error.
578
if (inTemplateInstantiation())
579
return false;
580
581
// If that function's not in a system header, it's an error.
582
if (!Context.getSourceManager().isInSystemHeader(loc))
583
return false;
584
585
// If the function is already unavailable, it's not an error.
586
if (fn->hasAttr<UnavailableAttr>()) return true;
587
588
fn->addAttr(UnavailableAttr::CreateImplicit(Context, "", reason, loc));
589
return true;
590
}
591
592
ASTMutationListener *Sema::getASTMutationListener() const {
593
return getASTConsumer().GetASTMutationListener();
594
}
595
596
void Sema::addExternalSource(ExternalSemaSource *E) {
597
assert(E && "Cannot use with NULL ptr");
598
599
if (!ExternalSource) {
600
ExternalSource = E;
601
return;
602
}
603
604
if (auto *Ex = dyn_cast<MultiplexExternalSemaSource>(ExternalSource))
605
Ex->AddSource(E);
606
else
607
ExternalSource = new MultiplexExternalSemaSource(ExternalSource.get(), E);
608
}
609
610
void Sema::PrintStats() const {
611
llvm::errs() << "\n*** Semantic Analysis Stats:\n";
612
llvm::errs() << NumSFINAEErrors << " SFINAE diagnostics trapped.\n";
613
614
BumpAlloc.PrintStats();
615
AnalysisWarnings.PrintStats();
616
}
617
618
void Sema::diagnoseNullableToNonnullConversion(QualType DstType,
619
QualType SrcType,
620
SourceLocation Loc) {
621
std::optional<NullabilityKind> ExprNullability = SrcType->getNullability();
622
if (!ExprNullability || (*ExprNullability != NullabilityKind::Nullable &&
623
*ExprNullability != NullabilityKind::NullableResult))
624
return;
625
626
std::optional<NullabilityKind> TypeNullability = DstType->getNullability();
627
if (!TypeNullability || *TypeNullability != NullabilityKind::NonNull)
628
return;
629
630
Diag(Loc, diag::warn_nullability_lost) << SrcType << DstType;
631
}
632
633
// Generate diagnostics when adding or removing effects in a type conversion.
634
void Sema::diagnoseFunctionEffectConversion(QualType DstType, QualType SrcType,
635
SourceLocation Loc) {
636
const auto SrcFX = FunctionEffectsRef::get(SrcType);
637
const auto DstFX = FunctionEffectsRef::get(DstType);
638
if (SrcFX != DstFX) {
639
for (const auto &Diff : FunctionEffectDifferences(SrcFX, DstFX)) {
640
if (Diff.shouldDiagnoseConversion(SrcType, SrcFX, DstType, DstFX))
641
Diag(Loc, diag::warn_invalid_add_func_effects) << Diff.effectName();
642
}
643
}
644
}
645
646
void Sema::diagnoseZeroToNullptrConversion(CastKind Kind, const Expr *E) {
647
// nullptr only exists from C++11 on, so don't warn on its absence earlier.
648
if (!getLangOpts().CPlusPlus11)
649
return;
650
651
if (Kind != CK_NullToPointer && Kind != CK_NullToMemberPointer)
652
return;
653
654
const Expr *EStripped = E->IgnoreParenImpCasts();
655
if (EStripped->getType()->isNullPtrType())
656
return;
657
if (isa<GNUNullExpr>(EStripped))
658
return;
659
660
if (Diags.isIgnored(diag::warn_zero_as_null_pointer_constant,
661
E->getBeginLoc()))
662
return;
663
664
// Don't diagnose the conversion from a 0 literal to a null pointer argument
665
// in a synthesized call to operator<=>.
666
if (!CodeSynthesisContexts.empty() &&
667
CodeSynthesisContexts.back().Kind ==
668
CodeSynthesisContext::RewritingOperatorAsSpaceship)
669
return;
670
671
// Ignore null pointers in defaulted comparison operators.
672
FunctionDecl *FD = getCurFunctionDecl();
673
if (FD && FD->isDefaulted()) {
674
return;
675
}
676
677
// If it is a macro from system header, and if the macro name is not "NULL",
678
// do not warn.
679
// Note that uses of "NULL" will be ignored above on systems that define it
680
// as __null.
681
SourceLocation MaybeMacroLoc = E->getBeginLoc();
682
if (Diags.getSuppressSystemWarnings() &&
683
SourceMgr.isInSystemMacro(MaybeMacroLoc) &&
684
!findMacroSpelling(MaybeMacroLoc, "NULL"))
685
return;
686
687
Diag(E->getBeginLoc(), diag::warn_zero_as_null_pointer_constant)
688
<< FixItHint::CreateReplacement(E->getSourceRange(), "nullptr");
689
}
690
691
/// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit cast.
692
/// If there is already an implicit cast, merge into the existing one.
693
/// The result is of the given category.
694
ExprResult Sema::ImpCastExprToType(Expr *E, QualType Ty,
695
CastKind Kind, ExprValueKind VK,
696
const CXXCastPath *BasePath,
697
CheckedConversionKind CCK) {
698
#ifndef NDEBUG
699
if (VK == VK_PRValue && !E->isPRValue()) {
700
switch (Kind) {
701
default:
702
llvm_unreachable(
703
("can't implicitly cast glvalue to prvalue with this cast "
704
"kind: " +
705
std::string(CastExpr::getCastKindName(Kind)))
706
.c_str());
707
case CK_Dependent:
708
case CK_LValueToRValue:
709
case CK_ArrayToPointerDecay:
710
case CK_FunctionToPointerDecay:
711
case CK_ToVoid:
712
case CK_NonAtomicToAtomic:
713
case CK_HLSLArrayRValue:
714
break;
715
}
716
}
717
assert((VK == VK_PRValue || Kind == CK_Dependent || !E->isPRValue()) &&
718
"can't cast prvalue to glvalue");
719
#endif
720
721
diagnoseNullableToNonnullConversion(Ty, E->getType(), E->getBeginLoc());
722
diagnoseZeroToNullptrConversion(Kind, E);
723
if (Context.hasAnyFunctionEffects() && !isCast(CCK) &&
724
Kind != CK_NullToPointer && Kind != CK_NullToMemberPointer)
725
diagnoseFunctionEffectConversion(Ty, E->getType(), E->getBeginLoc());
726
727
QualType ExprTy = Context.getCanonicalType(E->getType());
728
QualType TypeTy = Context.getCanonicalType(Ty);
729
730
if (ExprTy == TypeTy)
731
return E;
732
733
if (Kind == CK_ArrayToPointerDecay) {
734
// C++1z [conv.array]: The temporary materialization conversion is applied.
735
// We also use this to fuel C++ DR1213, which applies to C++11 onwards.
736
if (getLangOpts().CPlusPlus && E->isPRValue()) {
737
// The temporary is an lvalue in C++98 and an xvalue otherwise.
738
ExprResult Materialized = CreateMaterializeTemporaryExpr(
739
E->getType(), E, !getLangOpts().CPlusPlus11);
740
if (Materialized.isInvalid())
741
return ExprError();
742
E = Materialized.get();
743
}
744
// C17 6.7.1p6 footnote 124: The implementation can treat any register
745
// declaration simply as an auto declaration. However, whether or not
746
// addressable storage is actually used, the address of any part of an
747
// object declared with storage-class specifier register cannot be
748
// computed, either explicitly(by use of the unary & operator as discussed
749
// in 6.5.3.2) or implicitly(by converting an array name to a pointer as
750
// discussed in 6.3.2.1).Thus, the only operator that can be applied to an
751
// array declared with storage-class specifier register is sizeof.
752
if (VK == VK_PRValue && !getLangOpts().CPlusPlus && !E->isPRValue()) {
753
if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
754
if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
755
if (VD->getStorageClass() == SC_Register) {
756
Diag(E->getExprLoc(), diag::err_typecheck_address_of)
757
<< /*register variable*/ 3 << E->getSourceRange();
758
return ExprError();
759
}
760
}
761
}
762
}
763
}
764
765
if (ImplicitCastExpr *ImpCast = dyn_cast<ImplicitCastExpr>(E)) {
766
if (ImpCast->getCastKind() == Kind && (!BasePath || BasePath->empty())) {
767
ImpCast->setType(Ty);
768
ImpCast->setValueKind(VK);
769
return E;
770
}
771
}
772
773
return ImplicitCastExpr::Create(Context, Ty, Kind, E, BasePath, VK,
774
CurFPFeatureOverrides());
775
}
776
777
CastKind Sema::ScalarTypeToBooleanCastKind(QualType ScalarTy) {
778
switch (ScalarTy->getScalarTypeKind()) {
779
case Type::STK_Bool: return CK_NoOp;
780
case Type::STK_CPointer: return CK_PointerToBoolean;
781
case Type::STK_BlockPointer: return CK_PointerToBoolean;
782
case Type::STK_ObjCObjectPointer: return CK_PointerToBoolean;
783
case Type::STK_MemberPointer: return CK_MemberPointerToBoolean;
784
case Type::STK_Integral: return CK_IntegralToBoolean;
785
case Type::STK_Floating: return CK_FloatingToBoolean;
786
case Type::STK_IntegralComplex: return CK_IntegralComplexToBoolean;
787
case Type::STK_FloatingComplex: return CK_FloatingComplexToBoolean;
788
case Type::STK_FixedPoint: return CK_FixedPointToBoolean;
789
}
790
llvm_unreachable("unknown scalar type kind");
791
}
792
793
/// Used to prune the decls of Sema's UnusedFileScopedDecls vector.
794
static bool ShouldRemoveFromUnused(Sema *SemaRef, const DeclaratorDecl *D) {
795
if (D->getMostRecentDecl()->isUsed())
796
return true;
797
798
if (D->isExternallyVisible())
799
return true;
800
801
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
802
// If this is a function template and none of its specializations is used,
803
// we should warn.
804
if (FunctionTemplateDecl *Template = FD->getDescribedFunctionTemplate())
805
for (const auto *Spec : Template->specializations())
806
if (ShouldRemoveFromUnused(SemaRef, Spec))
807
return true;
808
809
// UnusedFileScopedDecls stores the first declaration.
810
// The declaration may have become definition so check again.
811
const FunctionDecl *DeclToCheck;
812
if (FD->hasBody(DeclToCheck))
813
return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck);
814
815
// Later redecls may add new information resulting in not having to warn,
816
// so check again.
817
DeclToCheck = FD->getMostRecentDecl();
818
if (DeclToCheck != FD)
819
return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck);
820
}
821
822
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
823
// If a variable usable in constant expressions is referenced,
824
// don't warn if it isn't used: if the value of a variable is required
825
// for the computation of a constant expression, it doesn't make sense to
826
// warn even if the variable isn't odr-used. (isReferenced doesn't
827
// precisely reflect that, but it's a decent approximation.)
828
if (VD->isReferenced() &&
829
VD->mightBeUsableInConstantExpressions(SemaRef->Context))
830
return true;
831
832
if (VarTemplateDecl *Template = VD->getDescribedVarTemplate())
833
// If this is a variable template and none of its specializations is used,
834
// we should warn.
835
for (const auto *Spec : Template->specializations())
836
if (ShouldRemoveFromUnused(SemaRef, Spec))
837
return true;
838
839
// UnusedFileScopedDecls stores the first declaration.
840
// The declaration may have become definition so check again.
841
const VarDecl *DeclToCheck = VD->getDefinition();
842
if (DeclToCheck)
843
return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck);
844
845
// Later redecls may add new information resulting in not having to warn,
846
// so check again.
847
DeclToCheck = VD->getMostRecentDecl();
848
if (DeclToCheck != VD)
849
return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck);
850
}
851
852
return false;
853
}
854
855
static bool isFunctionOrVarDeclExternC(const NamedDecl *ND) {
856
if (const auto *FD = dyn_cast<FunctionDecl>(ND))
857
return FD->isExternC();
858
return cast<VarDecl>(ND)->isExternC();
859
}
860
861
/// Determine whether ND is an external-linkage function or variable whose
862
/// type has no linkage.
863
bool Sema::isExternalWithNoLinkageType(const ValueDecl *VD) const {
864
// Note: it's not quite enough to check whether VD has UniqueExternalLinkage,
865
// because we also want to catch the case where its type has VisibleNoLinkage,
866
// which does not affect the linkage of VD.
867
return getLangOpts().CPlusPlus && VD->hasExternalFormalLinkage() &&
868
!isExternalFormalLinkage(VD->getType()->getLinkage()) &&
869
!isFunctionOrVarDeclExternC(VD);
870
}
871
872
/// Obtains a sorted list of functions and variables that are undefined but
873
/// ODR-used.
874
void Sema::getUndefinedButUsed(
875
SmallVectorImpl<std::pair<NamedDecl *, SourceLocation> > &Undefined) {
876
for (const auto &UndefinedUse : UndefinedButUsed) {
877
NamedDecl *ND = UndefinedUse.first;
878
879
// Ignore attributes that have become invalid.
880
if (ND->isInvalidDecl()) continue;
881
882
// __attribute__((weakref)) is basically a definition.
883
if (ND->hasAttr<WeakRefAttr>()) continue;
884
885
if (isa<CXXDeductionGuideDecl>(ND))
886
continue;
887
888
if (ND->hasAttr<DLLImportAttr>() || ND->hasAttr<DLLExportAttr>()) {
889
// An exported function will always be emitted when defined, so even if
890
// the function is inline, it doesn't have to be emitted in this TU. An
891
// imported function implies that it has been exported somewhere else.
892
continue;
893
}
894
895
if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
896
if (FD->isDefined())
897
continue;
898
if (FD->isExternallyVisible() &&
899
!isExternalWithNoLinkageType(FD) &&
900
!FD->getMostRecentDecl()->isInlined() &&
901
!FD->hasAttr<ExcludeFromExplicitInstantiationAttr>())
902
continue;
903
if (FD->getBuiltinID())
904
continue;
905
} else {
906
const auto *VD = cast<VarDecl>(ND);
907
if (VD->hasDefinition() != VarDecl::DeclarationOnly)
908
continue;
909
if (VD->isExternallyVisible() &&
910
!isExternalWithNoLinkageType(VD) &&
911
!VD->getMostRecentDecl()->isInline() &&
912
!VD->hasAttr<ExcludeFromExplicitInstantiationAttr>())
913
continue;
914
915
// Skip VarDecls that lack formal definitions but which we know are in
916
// fact defined somewhere.
917
if (VD->isKnownToBeDefined())
918
continue;
919
}
920
921
Undefined.push_back(std::make_pair(ND, UndefinedUse.second));
922
}
923
}
924
925
/// checkUndefinedButUsed - Check for undefined objects with internal linkage
926
/// or that are inline.
927
static void checkUndefinedButUsed(Sema &S) {
928
if (S.UndefinedButUsed.empty()) return;
929
930
// Collect all the still-undefined entities with internal linkage.
931
SmallVector<std::pair<NamedDecl *, SourceLocation>, 16> Undefined;
932
S.getUndefinedButUsed(Undefined);
933
S.UndefinedButUsed.clear();
934
if (Undefined.empty()) return;
935
936
for (const auto &Undef : Undefined) {
937
ValueDecl *VD = cast<ValueDecl>(Undef.first);
938
SourceLocation UseLoc = Undef.second;
939
940
if (S.isExternalWithNoLinkageType(VD)) {
941
// C++ [basic.link]p8:
942
// A type without linkage shall not be used as the type of a variable
943
// or function with external linkage unless
944
// -- the entity has C language linkage
945
// -- the entity is not odr-used or is defined in the same TU
946
//
947
// As an extension, accept this in cases where the type is externally
948
// visible, since the function or variable actually can be defined in
949
// another translation unit in that case.
950
S.Diag(VD->getLocation(), isExternallyVisible(VD->getType()->getLinkage())
951
? diag::ext_undefined_internal_type
952
: diag::err_undefined_internal_type)
953
<< isa<VarDecl>(VD) << VD;
954
} else if (!VD->isExternallyVisible()) {
955
// FIXME: We can promote this to an error. The function or variable can't
956
// be defined anywhere else, so the program must necessarily violate the
957
// one definition rule.
958
bool IsImplicitBase = false;
959
if (const auto *BaseD = dyn_cast<FunctionDecl>(VD)) {
960
auto *DVAttr = BaseD->getAttr<OMPDeclareVariantAttr>();
961
if (DVAttr && !DVAttr->getTraitInfo().isExtensionActive(
962
llvm::omp::TraitProperty::
963
implementation_extension_disable_implicit_base)) {
964
const auto *Func = cast<FunctionDecl>(
965
cast<DeclRefExpr>(DVAttr->getVariantFuncRef())->getDecl());
966
IsImplicitBase = BaseD->isImplicit() &&
967
Func->getIdentifier()->isMangledOpenMPVariantName();
968
}
969
}
970
if (!S.getLangOpts().OpenMP || !IsImplicitBase)
971
S.Diag(VD->getLocation(), diag::warn_undefined_internal)
972
<< isa<VarDecl>(VD) << VD;
973
} else if (auto *FD = dyn_cast<FunctionDecl>(VD)) {
974
(void)FD;
975
assert(FD->getMostRecentDecl()->isInlined() &&
976
"used object requires definition but isn't inline or internal?");
977
// FIXME: This is ill-formed; we should reject.
978
S.Diag(VD->getLocation(), diag::warn_undefined_inline) << VD;
979
} else {
980
assert(cast<VarDecl>(VD)->getMostRecentDecl()->isInline() &&
981
"used var requires definition but isn't inline or internal?");
982
S.Diag(VD->getLocation(), diag::err_undefined_inline_var) << VD;
983
}
984
if (UseLoc.isValid())
985
S.Diag(UseLoc, diag::note_used_here);
986
}
987
}
988
989
void Sema::LoadExternalWeakUndeclaredIdentifiers() {
990
if (!ExternalSource)
991
return;
992
993
SmallVector<std::pair<IdentifierInfo *, WeakInfo>, 4> WeakIDs;
994
ExternalSource->ReadWeakUndeclaredIdentifiers(WeakIDs);
995
for (auto &WeakID : WeakIDs)
996
(void)WeakUndeclaredIdentifiers[WeakID.first].insert(WeakID.second);
997
}
998
999
1000
typedef llvm::DenseMap<const CXXRecordDecl*, bool> RecordCompleteMap;
1001
1002
/// Returns true, if all methods and nested classes of the given
1003
/// CXXRecordDecl are defined in this translation unit.
1004
///
1005
/// Should only be called from ActOnEndOfTranslationUnit so that all
1006
/// definitions are actually read.
1007
static bool MethodsAndNestedClassesComplete(const CXXRecordDecl *RD,
1008
RecordCompleteMap &MNCComplete) {
1009
RecordCompleteMap::iterator Cache = MNCComplete.find(RD);
1010
if (Cache != MNCComplete.end())
1011
return Cache->second;
1012
if (!RD->isCompleteDefinition())
1013
return false;
1014
bool Complete = true;
1015
for (DeclContext::decl_iterator I = RD->decls_begin(),
1016
E = RD->decls_end();
1017
I != E && Complete; ++I) {
1018
if (const CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(*I))
1019
Complete = M->isDefined() || M->isDefaulted() ||
1020
(M->isPureVirtual() && !isa<CXXDestructorDecl>(M));
1021
else if (const FunctionTemplateDecl *F = dyn_cast<FunctionTemplateDecl>(*I))
1022
// If the template function is marked as late template parsed at this
1023
// point, it has not been instantiated and therefore we have not
1024
// performed semantic analysis on it yet, so we cannot know if the type
1025
// can be considered complete.
1026
Complete = !F->getTemplatedDecl()->isLateTemplateParsed() &&
1027
F->getTemplatedDecl()->isDefined();
1028
else if (const CXXRecordDecl *R = dyn_cast<CXXRecordDecl>(*I)) {
1029
if (R->isInjectedClassName())
1030
continue;
1031
if (R->hasDefinition())
1032
Complete = MethodsAndNestedClassesComplete(R->getDefinition(),
1033
MNCComplete);
1034
else
1035
Complete = false;
1036
}
1037
}
1038
MNCComplete[RD] = Complete;
1039
return Complete;
1040
}
1041
1042
/// Returns true, if the given CXXRecordDecl is fully defined in this
1043
/// translation unit, i.e. all methods are defined or pure virtual and all
1044
/// friends, friend functions and nested classes are fully defined in this
1045
/// translation unit.
1046
///
1047
/// Should only be called from ActOnEndOfTranslationUnit so that all
1048
/// definitions are actually read.
1049
static bool IsRecordFullyDefined(const CXXRecordDecl *RD,
1050
RecordCompleteMap &RecordsComplete,
1051
RecordCompleteMap &MNCComplete) {
1052
RecordCompleteMap::iterator Cache = RecordsComplete.find(RD);
1053
if (Cache != RecordsComplete.end())
1054
return Cache->second;
1055
bool Complete = MethodsAndNestedClassesComplete(RD, MNCComplete);
1056
for (CXXRecordDecl::friend_iterator I = RD->friend_begin(),
1057
E = RD->friend_end();
1058
I != E && Complete; ++I) {
1059
// Check if friend classes and methods are complete.
1060
if (TypeSourceInfo *TSI = (*I)->getFriendType()) {
1061
// Friend classes are available as the TypeSourceInfo of the FriendDecl.
1062
if (CXXRecordDecl *FriendD = TSI->getType()->getAsCXXRecordDecl())
1063
Complete = MethodsAndNestedClassesComplete(FriendD, MNCComplete);
1064
else
1065
Complete = false;
1066
} else {
1067
// Friend functions are available through the NamedDecl of FriendDecl.
1068
if (const FunctionDecl *FD =
1069
dyn_cast<FunctionDecl>((*I)->getFriendDecl()))
1070
Complete = FD->isDefined();
1071
else
1072
// This is a template friend, give up.
1073
Complete = false;
1074
}
1075
}
1076
RecordsComplete[RD] = Complete;
1077
return Complete;
1078
}
1079
1080
void Sema::emitAndClearUnusedLocalTypedefWarnings() {
1081
if (ExternalSource)
1082
ExternalSource->ReadUnusedLocalTypedefNameCandidates(
1083
UnusedLocalTypedefNameCandidates);
1084
for (const TypedefNameDecl *TD : UnusedLocalTypedefNameCandidates) {
1085
if (TD->isReferenced())
1086
continue;
1087
Diag(TD->getLocation(), diag::warn_unused_local_typedef)
1088
<< isa<TypeAliasDecl>(TD) << TD->getDeclName();
1089
}
1090
UnusedLocalTypedefNameCandidates.clear();
1091
}
1092
1093
void Sema::ActOnStartOfTranslationUnit() {
1094
if (getLangOpts().CPlusPlusModules &&
1095
getLangOpts().getCompilingModule() == LangOptions::CMK_HeaderUnit)
1096
HandleStartOfHeaderUnit();
1097
}
1098
1099
void Sema::ActOnEndOfTranslationUnitFragment(TUFragmentKind Kind) {
1100
// No explicit actions are required at the end of the global module fragment.
1101
if (Kind == TUFragmentKind::Global)
1102
return;
1103
1104
// Transfer late parsed template instantiations over to the pending template
1105
// instantiation list. During normal compilation, the late template parser
1106
// will be installed and instantiating these templates will succeed.
1107
//
1108
// If we are building a TU prefix for serialization, it is also safe to
1109
// transfer these over, even though they are not parsed. The end of the TU
1110
// should be outside of any eager template instantiation scope, so when this
1111
// AST is deserialized, these templates will not be parsed until the end of
1112
// the combined TU.
1113
PendingInstantiations.insert(PendingInstantiations.end(),
1114
LateParsedInstantiations.begin(),
1115
LateParsedInstantiations.end());
1116
LateParsedInstantiations.clear();
1117
1118
// If DefinedUsedVTables ends up marking any virtual member functions it
1119
// might lead to more pending template instantiations, which we then need
1120
// to instantiate.
1121
DefineUsedVTables();
1122
1123
// C++: Perform implicit template instantiations.
1124
//
1125
// FIXME: When we perform these implicit instantiations, we do not
1126
// carefully keep track of the point of instantiation (C++ [temp.point]).
1127
// This means that name lookup that occurs within the template
1128
// instantiation will always happen at the end of the translation unit,
1129
// so it will find some names that are not required to be found. This is
1130
// valid, but we could do better by diagnosing if an instantiation uses a
1131
// name that was not visible at its first point of instantiation.
1132
if (ExternalSource) {
1133
// Load pending instantiations from the external source.
1134
SmallVector<PendingImplicitInstantiation, 4> Pending;
1135
ExternalSource->ReadPendingInstantiations(Pending);
1136
for (auto PII : Pending)
1137
if (auto Func = dyn_cast<FunctionDecl>(PII.first))
1138
Func->setInstantiationIsPending(true);
1139
PendingInstantiations.insert(PendingInstantiations.begin(),
1140
Pending.begin(), Pending.end());
1141
}
1142
1143
{
1144
llvm::TimeTraceScope TimeScope("PerformPendingInstantiations");
1145
PerformPendingInstantiations();
1146
}
1147
1148
emitDeferredDiags();
1149
1150
assert(LateParsedInstantiations.empty() &&
1151
"end of TU template instantiation should not create more "
1152
"late-parsed templates");
1153
1154
// Report diagnostics for uncorrected delayed typos. Ideally all of them
1155
// should have been corrected by that time, but it is very hard to cover all
1156
// cases in practice.
1157
for (const auto &Typo : DelayedTypos) {
1158
// We pass an empty TypoCorrection to indicate no correction was performed.
1159
Typo.second.DiagHandler(TypoCorrection());
1160
}
1161
DelayedTypos.clear();
1162
}
1163
1164
void Sema::ActOnEndOfTranslationUnit() {
1165
assert(DelayedDiagnostics.getCurrentPool() == nullptr
1166
&& "reached end of translation unit with a pool attached?");
1167
1168
// If code completion is enabled, don't perform any end-of-translation-unit
1169
// work.
1170
if (PP.isCodeCompletionEnabled())
1171
return;
1172
1173
// Complete translation units and modules define vtables and perform implicit
1174
// instantiations. PCH files do not.
1175
if (TUKind != TU_Prefix) {
1176
ObjC().DiagnoseUseOfUnimplementedSelectors();
1177
1178
ActOnEndOfTranslationUnitFragment(
1179
!ModuleScopes.empty() && ModuleScopes.back().Module->Kind ==
1180
Module::PrivateModuleFragment
1181
? TUFragmentKind::Private
1182
: TUFragmentKind::Normal);
1183
1184
if (LateTemplateParserCleanup)
1185
LateTemplateParserCleanup(OpaqueParser);
1186
1187
CheckDelayedMemberExceptionSpecs();
1188
} else {
1189
// If we are building a TU prefix for serialization, it is safe to transfer
1190
// these over, even though they are not parsed. The end of the TU should be
1191
// outside of any eager template instantiation scope, so when this AST is
1192
// deserialized, these templates will not be parsed until the end of the
1193
// combined TU.
1194
PendingInstantiations.insert(PendingInstantiations.end(),
1195
LateParsedInstantiations.begin(),
1196
LateParsedInstantiations.end());
1197
LateParsedInstantiations.clear();
1198
1199
if (LangOpts.PCHInstantiateTemplates) {
1200
llvm::TimeTraceScope TimeScope("PerformPendingInstantiations");
1201
PerformPendingInstantiations();
1202
}
1203
}
1204
1205
DiagnoseUnterminatedPragmaAlignPack();
1206
DiagnoseUnterminatedPragmaAttribute();
1207
OpenMP().DiagnoseUnterminatedOpenMPDeclareTarget();
1208
1209
// All delayed member exception specs should be checked or we end up accepting
1210
// incompatible declarations.
1211
assert(DelayedOverridingExceptionSpecChecks.empty());
1212
assert(DelayedEquivalentExceptionSpecChecks.empty());
1213
1214
// All dllexport classes should have been processed already.
1215
assert(DelayedDllExportClasses.empty());
1216
assert(DelayedDllExportMemberFunctions.empty());
1217
1218
// Remove file scoped decls that turned out to be used.
1219
UnusedFileScopedDecls.erase(
1220
std::remove_if(UnusedFileScopedDecls.begin(nullptr, true),
1221
UnusedFileScopedDecls.end(),
1222
[this](const DeclaratorDecl *DD) {
1223
return ShouldRemoveFromUnused(this, DD);
1224
}),
1225
UnusedFileScopedDecls.end());
1226
1227
if (TUKind == TU_Prefix) {
1228
// Translation unit prefixes don't need any of the checking below.
1229
if (!PP.isIncrementalProcessingEnabled())
1230
TUScope = nullptr;
1231
return;
1232
}
1233
1234
// Check for #pragma weak identifiers that were never declared
1235
LoadExternalWeakUndeclaredIdentifiers();
1236
for (const auto &WeakIDs : WeakUndeclaredIdentifiers) {
1237
if (WeakIDs.second.empty())
1238
continue;
1239
1240
Decl *PrevDecl = LookupSingleName(TUScope, WeakIDs.first, SourceLocation(),
1241
LookupOrdinaryName);
1242
if (PrevDecl != nullptr &&
1243
!(isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl)))
1244
for (const auto &WI : WeakIDs.second)
1245
Diag(WI.getLocation(), diag::warn_attribute_wrong_decl_type)
1246
<< "'weak'" << /*isRegularKeyword=*/0 << ExpectedVariableOrFunction;
1247
else
1248
for (const auto &WI : WeakIDs.second)
1249
Diag(WI.getLocation(), diag::warn_weak_identifier_undeclared)
1250
<< WeakIDs.first;
1251
}
1252
1253
if (LangOpts.CPlusPlus11 &&
1254
!Diags.isIgnored(diag::warn_delegating_ctor_cycle, SourceLocation()))
1255
CheckDelegatingCtorCycles();
1256
1257
if (!Diags.hasErrorOccurred()) {
1258
if (ExternalSource)
1259
ExternalSource->ReadUndefinedButUsed(UndefinedButUsed);
1260
checkUndefinedButUsed(*this);
1261
}
1262
1263
// A global-module-fragment is only permitted within a module unit.
1264
if (!ModuleScopes.empty() && ModuleScopes.back().Module->Kind ==
1265
Module::ExplicitGlobalModuleFragment) {
1266
Diag(ModuleScopes.back().BeginLoc,
1267
diag::err_module_declaration_missing_after_global_module_introducer);
1268
}
1269
1270
// Now we can decide whether the modules we're building need an initializer.
1271
if (Module *CurrentModule = getCurrentModule();
1272
CurrentModule && CurrentModule->isInterfaceOrPartition()) {
1273
auto DoesModNeedInit = [this](Module *M) {
1274
if (!getASTContext().getModuleInitializers(M).empty())
1275
return true;
1276
for (auto [Exported, _] : M->Exports)
1277
if (Exported->isNamedModuleInterfaceHasInit())
1278
return true;
1279
for (Module *I : M->Imports)
1280
if (I->isNamedModuleInterfaceHasInit())
1281
return true;
1282
1283
return false;
1284
};
1285
1286
CurrentModule->NamedModuleHasInit =
1287
DoesModNeedInit(CurrentModule) ||
1288
llvm::any_of(CurrentModule->submodules(),
1289
[&](auto *SubM) { return DoesModNeedInit(SubM); });
1290
}
1291
1292
if (TUKind == TU_ClangModule) {
1293
// If we are building a module, resolve all of the exported declarations
1294
// now.
1295
if (Module *CurrentModule = PP.getCurrentModule()) {
1296
ModuleMap &ModMap = PP.getHeaderSearchInfo().getModuleMap();
1297
1298
SmallVector<Module *, 2> Stack;
1299
Stack.push_back(CurrentModule);
1300
while (!Stack.empty()) {
1301
Module *Mod = Stack.pop_back_val();
1302
1303
// Resolve the exported declarations and conflicts.
1304
// FIXME: Actually complain, once we figure out how to teach the
1305
// diagnostic client to deal with complaints in the module map at this
1306
// point.
1307
ModMap.resolveExports(Mod, /*Complain=*/false);
1308
ModMap.resolveUses(Mod, /*Complain=*/false);
1309
ModMap.resolveConflicts(Mod, /*Complain=*/false);
1310
1311
// Queue the submodules, so their exports will also be resolved.
1312
auto SubmodulesRange = Mod->submodules();
1313
Stack.append(SubmodulesRange.begin(), SubmodulesRange.end());
1314
}
1315
}
1316
1317
// Warnings emitted in ActOnEndOfTranslationUnit() should be emitted for
1318
// modules when they are built, not every time they are used.
1319
emitAndClearUnusedLocalTypedefWarnings();
1320
}
1321
1322
// C++ standard modules. Diagnose cases where a function is declared inline
1323
// in the module purview but has no definition before the end of the TU or
1324
// the start of a Private Module Fragment (if one is present).
1325
if (!PendingInlineFuncDecls.empty()) {
1326
for (auto *D : PendingInlineFuncDecls) {
1327
if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1328
bool DefInPMF = false;
1329
if (auto *FDD = FD->getDefinition()) {
1330
DefInPMF = FDD->getOwningModule()->isPrivateModule();
1331
if (!DefInPMF)
1332
continue;
1333
}
1334
Diag(FD->getLocation(), diag::err_export_inline_not_defined)
1335
<< DefInPMF;
1336
// If we have a PMF it should be at the end of the ModuleScopes.
1337
if (DefInPMF &&
1338
ModuleScopes.back().Module->Kind == Module::PrivateModuleFragment) {
1339
Diag(ModuleScopes.back().BeginLoc,
1340
diag::note_private_module_fragment);
1341
}
1342
}
1343
}
1344
PendingInlineFuncDecls.clear();
1345
}
1346
1347
// C99 6.9.2p2:
1348
// A declaration of an identifier for an object that has file
1349
// scope without an initializer, and without a storage-class
1350
// specifier or with the storage-class specifier static,
1351
// constitutes a tentative definition. If a translation unit
1352
// contains one or more tentative definitions for an identifier,
1353
// and the translation unit contains no external definition for
1354
// that identifier, then the behavior is exactly as if the
1355
// translation unit contains a file scope declaration of that
1356
// identifier, with the composite type as of the end of the
1357
// translation unit, with an initializer equal to 0.
1358
llvm::SmallSet<VarDecl *, 32> Seen;
1359
for (TentativeDefinitionsType::iterator
1360
T = TentativeDefinitions.begin(ExternalSource.get()),
1361
TEnd = TentativeDefinitions.end();
1362
T != TEnd; ++T) {
1363
VarDecl *VD = (*T)->getActingDefinition();
1364
1365
// If the tentative definition was completed, getActingDefinition() returns
1366
// null. If we've already seen this variable before, insert()'s second
1367
// return value is false.
1368
if (!VD || VD->isInvalidDecl() || !Seen.insert(VD).second)
1369
continue;
1370
1371
if (const IncompleteArrayType *ArrayT
1372
= Context.getAsIncompleteArrayType(VD->getType())) {
1373
// Set the length of the array to 1 (C99 6.9.2p5).
1374
Diag(VD->getLocation(), diag::warn_tentative_incomplete_array);
1375
llvm::APInt One(Context.getTypeSize(Context.getSizeType()), true);
1376
QualType T = Context.getConstantArrayType(
1377
ArrayT->getElementType(), One, nullptr, ArraySizeModifier::Normal, 0);
1378
VD->setType(T);
1379
} else if (RequireCompleteType(VD->getLocation(), VD->getType(),
1380
diag::err_tentative_def_incomplete_type))
1381
VD->setInvalidDecl();
1382
1383
// No initialization is performed for a tentative definition.
1384
CheckCompleteVariableDeclaration(VD);
1385
1386
// Notify the consumer that we've completed a tentative definition.
1387
if (!VD->isInvalidDecl())
1388
Consumer.CompleteTentativeDefinition(VD);
1389
}
1390
1391
for (auto *D : ExternalDeclarations) {
1392
if (!D || D->isInvalidDecl() || D->getPreviousDecl() || !D->isUsed())
1393
continue;
1394
1395
Consumer.CompleteExternalDeclaration(D);
1396
}
1397
1398
if (LangOpts.HLSL)
1399
HLSL().DiagnoseAvailabilityViolations(
1400
getASTContext().getTranslationUnitDecl());
1401
1402
// If there were errors, disable 'unused' warnings since they will mostly be
1403
// noise. Don't warn for a use from a module: either we should warn on all
1404
// file-scope declarations in modules or not at all, but whether the
1405
// declaration is used is immaterial.
1406
if (!Diags.hasErrorOccurred() && TUKind != TU_ClangModule) {
1407
// Output warning for unused file scoped decls.
1408
for (UnusedFileScopedDeclsType::iterator
1409
I = UnusedFileScopedDecls.begin(ExternalSource.get()),
1410
E = UnusedFileScopedDecls.end();
1411
I != E; ++I) {
1412
if (ShouldRemoveFromUnused(this, *I))
1413
continue;
1414
1415
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
1416
const FunctionDecl *DiagD;
1417
if (!FD->hasBody(DiagD))
1418
DiagD = FD;
1419
if (DiagD->isDeleted())
1420
continue; // Deleted functions are supposed to be unused.
1421
SourceRange DiagRange = DiagD->getLocation();
1422
if (const ASTTemplateArgumentListInfo *ASTTAL =
1423
DiagD->getTemplateSpecializationArgsAsWritten())
1424
DiagRange.setEnd(ASTTAL->RAngleLoc);
1425
if (DiagD->isReferenced()) {
1426
if (isa<CXXMethodDecl>(DiagD))
1427
Diag(DiagD->getLocation(), diag::warn_unneeded_member_function)
1428
<< DiagD << DiagRange;
1429
else {
1430
if (FD->getStorageClass() == SC_Static &&
1431
!FD->isInlineSpecified() &&
1432
!SourceMgr.isInMainFile(
1433
SourceMgr.getExpansionLoc(FD->getLocation())))
1434
Diag(DiagD->getLocation(),
1435
diag::warn_unneeded_static_internal_decl)
1436
<< DiagD << DiagRange;
1437
else
1438
Diag(DiagD->getLocation(), diag::warn_unneeded_internal_decl)
1439
<< /*function=*/0 << DiagD << DiagRange;
1440
}
1441
} else if (!FD->isTargetMultiVersion() ||
1442
FD->isTargetMultiVersionDefault()) {
1443
if (FD->getDescribedFunctionTemplate())
1444
Diag(DiagD->getLocation(), diag::warn_unused_template)
1445
<< /*function=*/0 << DiagD << DiagRange;
1446
else
1447
Diag(DiagD->getLocation(), isa<CXXMethodDecl>(DiagD)
1448
? diag::warn_unused_member_function
1449
: diag::warn_unused_function)
1450
<< DiagD << DiagRange;
1451
}
1452
} else {
1453
const VarDecl *DiagD = cast<VarDecl>(*I)->getDefinition();
1454
if (!DiagD)
1455
DiagD = cast<VarDecl>(*I);
1456
SourceRange DiagRange = DiagD->getLocation();
1457
if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(DiagD)) {
1458
if (const ASTTemplateArgumentListInfo *ASTTAL =
1459
VTSD->getTemplateArgsAsWritten())
1460
DiagRange.setEnd(ASTTAL->RAngleLoc);
1461
}
1462
if (DiagD->isReferenced()) {
1463
Diag(DiagD->getLocation(), diag::warn_unneeded_internal_decl)
1464
<< /*variable=*/1 << DiagD << DiagRange;
1465
} else if (DiagD->getDescribedVarTemplate()) {
1466
Diag(DiagD->getLocation(), diag::warn_unused_template)
1467
<< /*variable=*/1 << DiagD << DiagRange;
1468
} else if (DiagD->getType().isConstQualified()) {
1469
const SourceManager &SM = SourceMgr;
1470
if (SM.getMainFileID() != SM.getFileID(DiagD->getLocation()) ||
1471
!PP.getLangOpts().IsHeaderFile)
1472
Diag(DiagD->getLocation(), diag::warn_unused_const_variable)
1473
<< DiagD << DiagRange;
1474
} else {
1475
Diag(DiagD->getLocation(), diag::warn_unused_variable)
1476
<< DiagD << DiagRange;
1477
}
1478
}
1479
}
1480
1481
emitAndClearUnusedLocalTypedefWarnings();
1482
}
1483
1484
if (!Diags.isIgnored(diag::warn_unused_private_field, SourceLocation())) {
1485
// FIXME: Load additional unused private field candidates from the external
1486
// source.
1487
RecordCompleteMap RecordsComplete;
1488
RecordCompleteMap MNCComplete;
1489
for (const NamedDecl *D : UnusedPrivateFields) {
1490
const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D->getDeclContext());
1491
if (RD && !RD->isUnion() &&
1492
IsRecordFullyDefined(RD, RecordsComplete, MNCComplete)) {
1493
Diag(D->getLocation(), diag::warn_unused_private_field)
1494
<< D->getDeclName();
1495
}
1496
}
1497
}
1498
1499
if (!Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation())) {
1500
if (ExternalSource)
1501
ExternalSource->ReadMismatchingDeleteExpressions(DeleteExprs);
1502
for (const auto &DeletedFieldInfo : DeleteExprs) {
1503
for (const auto &DeleteExprLoc : DeletedFieldInfo.second) {
1504
AnalyzeDeleteExprMismatch(DeletedFieldInfo.first, DeleteExprLoc.first,
1505
DeleteExprLoc.second);
1506
}
1507
}
1508
}
1509
1510
AnalysisWarnings.IssueWarnings(Context.getTranslationUnitDecl());
1511
1512
// Check we've noticed that we're no longer parsing the initializer for every
1513
// variable. If we miss cases, then at best we have a performance issue and
1514
// at worst a rejects-valid bug.
1515
assert(ParsingInitForAutoVars.empty() &&
1516
"Didn't unmark var as having its initializer parsed");
1517
1518
if (!PP.isIncrementalProcessingEnabled())
1519
TUScope = nullptr;
1520
}
1521
1522
1523
//===----------------------------------------------------------------------===//
1524
// Helper functions.
1525
//===----------------------------------------------------------------------===//
1526
1527
DeclContext *Sema::getFunctionLevelDeclContext(bool AllowLambda) const {
1528
DeclContext *DC = CurContext;
1529
1530
while (true) {
1531
if (isa<BlockDecl>(DC) || isa<EnumDecl>(DC) || isa<CapturedDecl>(DC) ||
1532
isa<RequiresExprBodyDecl>(DC)) {
1533
DC = DC->getParent();
1534
} else if (!AllowLambda && isa<CXXMethodDecl>(DC) &&
1535
cast<CXXMethodDecl>(DC)->getOverloadedOperator() == OO_Call &&
1536
cast<CXXRecordDecl>(DC->getParent())->isLambda()) {
1537
DC = DC->getParent()->getParent();
1538
} else break;
1539
}
1540
1541
return DC;
1542
}
1543
1544
/// getCurFunctionDecl - If inside of a function body, this returns a pointer
1545
/// to the function decl for the function being parsed. If we're currently
1546
/// in a 'block', this returns the containing context.
1547
FunctionDecl *Sema::getCurFunctionDecl(bool AllowLambda) const {
1548
DeclContext *DC = getFunctionLevelDeclContext(AllowLambda);
1549
return dyn_cast<FunctionDecl>(DC);
1550
}
1551
1552
ObjCMethodDecl *Sema::getCurMethodDecl() {
1553
DeclContext *DC = getFunctionLevelDeclContext();
1554
while (isa<RecordDecl>(DC))
1555
DC = DC->getParent();
1556
return dyn_cast<ObjCMethodDecl>(DC);
1557
}
1558
1559
NamedDecl *Sema::getCurFunctionOrMethodDecl() const {
1560
DeclContext *DC = getFunctionLevelDeclContext();
1561
if (isa<ObjCMethodDecl>(DC) || isa<FunctionDecl>(DC))
1562
return cast<NamedDecl>(DC);
1563
return nullptr;
1564
}
1565
1566
LangAS Sema::getDefaultCXXMethodAddrSpace() const {
1567
if (getLangOpts().OpenCL)
1568
return getASTContext().getDefaultOpenCLPointeeAddrSpace();
1569
return LangAS::Default;
1570
}
1571
1572
void Sema::EmitCurrentDiagnostic(unsigned DiagID) {
1573
// FIXME: It doesn't make sense to me that DiagID is an incoming argument here
1574
// and yet we also use the current diag ID on the DiagnosticsEngine. This has
1575
// been made more painfully obvious by the refactor that introduced this
1576
// function, but it is possible that the incoming argument can be
1577
// eliminated. If it truly cannot be (for example, there is some reentrancy
1578
// issue I am not seeing yet), then there should at least be a clarifying
1579
// comment somewhere.
1580
if (std::optional<TemplateDeductionInfo *> Info = isSFINAEContext()) {
1581
switch (DiagnosticIDs::getDiagnosticSFINAEResponse(
1582
Diags.getCurrentDiagID())) {
1583
case DiagnosticIDs::SFINAE_Report:
1584
// We'll report the diagnostic below.
1585
break;
1586
1587
case DiagnosticIDs::SFINAE_SubstitutionFailure:
1588
// Count this failure so that we know that template argument deduction
1589
// has failed.
1590
++NumSFINAEErrors;
1591
1592
// Make a copy of this suppressed diagnostic and store it with the
1593
// template-deduction information.
1594
if (*Info && !(*Info)->hasSFINAEDiagnostic()) {
1595
Diagnostic DiagInfo(&Diags);
1596
(*Info)->addSFINAEDiagnostic(DiagInfo.getLocation(),
1597
PartialDiagnostic(DiagInfo, Context.getDiagAllocator()));
1598
}
1599
1600
Diags.setLastDiagnosticIgnored(true);
1601
Diags.Clear();
1602
return;
1603
1604
case DiagnosticIDs::SFINAE_AccessControl: {
1605
// Per C++ Core Issue 1170, access control is part of SFINAE.
1606
// Additionally, the AccessCheckingSFINAE flag can be used to temporarily
1607
// make access control a part of SFINAE for the purposes of checking
1608
// type traits.
1609
if (!AccessCheckingSFINAE && !getLangOpts().CPlusPlus11)
1610
break;
1611
1612
SourceLocation Loc = Diags.getCurrentDiagLoc();
1613
1614
// Suppress this diagnostic.
1615
++NumSFINAEErrors;
1616
1617
// Make a copy of this suppressed diagnostic and store it with the
1618
// template-deduction information.
1619
if (*Info && !(*Info)->hasSFINAEDiagnostic()) {
1620
Diagnostic DiagInfo(&Diags);
1621
(*Info)->addSFINAEDiagnostic(DiagInfo.getLocation(),
1622
PartialDiagnostic(DiagInfo, Context.getDiagAllocator()));
1623
}
1624
1625
Diags.setLastDiagnosticIgnored(true);
1626
Diags.Clear();
1627
1628
// Now the diagnostic state is clear, produce a C++98 compatibility
1629
// warning.
1630
Diag(Loc, diag::warn_cxx98_compat_sfinae_access_control);
1631
1632
// The last diagnostic which Sema produced was ignored. Suppress any
1633
// notes attached to it.
1634
Diags.setLastDiagnosticIgnored(true);
1635
return;
1636
}
1637
1638
case DiagnosticIDs::SFINAE_Suppress:
1639
// Make a copy of this suppressed diagnostic and store it with the
1640
// template-deduction information;
1641
if (*Info) {
1642
Diagnostic DiagInfo(&Diags);
1643
(*Info)->addSuppressedDiagnostic(DiagInfo.getLocation(),
1644
PartialDiagnostic(DiagInfo, Context.getDiagAllocator()));
1645
}
1646
1647
// Suppress this diagnostic.
1648
Diags.setLastDiagnosticIgnored(true);
1649
Diags.Clear();
1650
return;
1651
}
1652
}
1653
1654
// Copy the diagnostic printing policy over the ASTContext printing policy.
1655
// TODO: Stop doing that. See: https://reviews.llvm.org/D45093#1090292
1656
Context.setPrintingPolicy(getPrintingPolicy());
1657
1658
// Emit the diagnostic.
1659
if (!Diags.EmitCurrentDiagnostic())
1660
return;
1661
1662
// If this is not a note, and we're in a template instantiation
1663
// that is different from the last template instantiation where
1664
// we emitted an error, print a template instantiation
1665
// backtrace.
1666
if (!DiagnosticIDs::isBuiltinNote(DiagID))
1667
PrintContextStack();
1668
}
1669
1670
bool Sema::hasUncompilableErrorOccurred() const {
1671
if (getDiagnostics().hasUncompilableErrorOccurred())
1672
return true;
1673
auto *FD = dyn_cast<FunctionDecl>(CurContext);
1674
if (!FD)
1675
return false;
1676
auto Loc = DeviceDeferredDiags.find(FD);
1677
if (Loc == DeviceDeferredDiags.end())
1678
return false;
1679
for (auto PDAt : Loc->second) {
1680
if (DiagnosticIDs::isDefaultMappingAsError(PDAt.second.getDiagID()))
1681
return true;
1682
}
1683
return false;
1684
}
1685
1686
// Print notes showing how we can reach FD starting from an a priori
1687
// known-callable function.
1688
static void emitCallStackNotes(Sema &S, const FunctionDecl *FD) {
1689
auto FnIt = S.CUDA().DeviceKnownEmittedFns.find(FD);
1690
while (FnIt != S.CUDA().DeviceKnownEmittedFns.end()) {
1691
// Respect error limit.
1692
if (S.Diags.hasFatalErrorOccurred())
1693
return;
1694
DiagnosticBuilder Builder(
1695
S.Diags.Report(FnIt->second.Loc, diag::note_called_by));
1696
Builder << FnIt->second.FD;
1697
FnIt = S.CUDA().DeviceKnownEmittedFns.find(FnIt->second.FD);
1698
}
1699
}
1700
1701
namespace {
1702
1703
/// Helper class that emits deferred diagnostic messages if an entity directly
1704
/// or indirectly using the function that causes the deferred diagnostic
1705
/// messages is known to be emitted.
1706
///
1707
/// During parsing of AST, certain diagnostic messages are recorded as deferred
1708
/// diagnostics since it is unknown whether the functions containing such
1709
/// diagnostics will be emitted. A list of potentially emitted functions and
1710
/// variables that may potentially trigger emission of functions are also
1711
/// recorded. DeferredDiagnosticsEmitter recursively visits used functions
1712
/// by each function to emit deferred diagnostics.
1713
///
1714
/// During the visit, certain OpenMP directives or initializer of variables
1715
/// with certain OpenMP attributes will cause subsequent visiting of any
1716
/// functions enter a state which is called OpenMP device context in this
1717
/// implementation. The state is exited when the directive or initializer is
1718
/// exited. This state can change the emission states of subsequent uses
1719
/// of functions.
1720
///
1721
/// Conceptually the functions or variables to be visited form a use graph
1722
/// where the parent node uses the child node. At any point of the visit,
1723
/// the tree nodes traversed from the tree root to the current node form a use
1724
/// stack. The emission state of the current node depends on two factors:
1725
/// 1. the emission state of the root node
1726
/// 2. whether the current node is in OpenMP device context
1727
/// If the function is decided to be emitted, its contained deferred diagnostics
1728
/// are emitted, together with the information about the use stack.
1729
///
1730
class DeferredDiagnosticsEmitter
1731
: public UsedDeclVisitor<DeferredDiagnosticsEmitter> {
1732
public:
1733
typedef UsedDeclVisitor<DeferredDiagnosticsEmitter> Inherited;
1734
1735
// Whether the function is already in the current use-path.
1736
llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 4> InUsePath;
1737
1738
// The current use-path.
1739
llvm::SmallVector<CanonicalDeclPtr<FunctionDecl>, 4> UsePath;
1740
1741
// Whether the visiting of the function has been done. Done[0] is for the
1742
// case not in OpenMP device context. Done[1] is for the case in OpenMP
1743
// device context. We need two sets because diagnostics emission may be
1744
// different depending on whether it is in OpenMP device context.
1745
llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 4> DoneMap[2];
1746
1747
// Emission state of the root node of the current use graph.
1748
bool ShouldEmitRootNode;
1749
1750
// Current OpenMP device context level. It is initialized to 0 and each
1751
// entering of device context increases it by 1 and each exit decreases
1752
// it by 1. Non-zero value indicates it is currently in device context.
1753
unsigned InOMPDeviceContext;
1754
1755
DeferredDiagnosticsEmitter(Sema &S)
1756
: Inherited(S), ShouldEmitRootNode(false), InOMPDeviceContext(0) {}
1757
1758
bool shouldVisitDiscardedStmt() const { return false; }
1759
1760
void VisitOMPTargetDirective(OMPTargetDirective *Node) {
1761
++InOMPDeviceContext;
1762
Inherited::VisitOMPTargetDirective(Node);
1763
--InOMPDeviceContext;
1764
}
1765
1766
void visitUsedDecl(SourceLocation Loc, Decl *D) {
1767
if (isa<VarDecl>(D))
1768
return;
1769
if (auto *FD = dyn_cast<FunctionDecl>(D))
1770
checkFunc(Loc, FD);
1771
else
1772
Inherited::visitUsedDecl(Loc, D);
1773
}
1774
1775
void checkVar(VarDecl *VD) {
1776
assert(VD->isFileVarDecl() &&
1777
"Should only check file-scope variables");
1778
if (auto *Init = VD->getInit()) {
1779
auto DevTy = OMPDeclareTargetDeclAttr::getDeviceType(VD);
1780
bool IsDev = DevTy && (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost ||
1781
*DevTy == OMPDeclareTargetDeclAttr::DT_Any);
1782
if (IsDev)
1783
++InOMPDeviceContext;
1784
this->Visit(Init);
1785
if (IsDev)
1786
--InOMPDeviceContext;
1787
}
1788
}
1789
1790
void checkFunc(SourceLocation Loc, FunctionDecl *FD) {
1791
auto &Done = DoneMap[InOMPDeviceContext > 0 ? 1 : 0];
1792
FunctionDecl *Caller = UsePath.empty() ? nullptr : UsePath.back();
1793
if ((!ShouldEmitRootNode && !S.getLangOpts().OpenMP && !Caller) ||
1794
S.shouldIgnoreInHostDeviceCheck(FD) || InUsePath.count(FD))
1795
return;
1796
// Finalize analysis of OpenMP-specific constructs.
1797
if (Caller && S.LangOpts.OpenMP && UsePath.size() == 1 &&
1798
(ShouldEmitRootNode || InOMPDeviceContext))
1799
S.OpenMP().finalizeOpenMPDelayedAnalysis(Caller, FD, Loc);
1800
if (Caller)
1801
S.CUDA().DeviceKnownEmittedFns[FD] = {Caller, Loc};
1802
// Always emit deferred diagnostics for the direct users. This does not
1803
// lead to explosion of diagnostics since each user is visited at most
1804
// twice.
1805
if (ShouldEmitRootNode || InOMPDeviceContext)
1806
emitDeferredDiags(FD, Caller);
1807
// Do not revisit a function if the function body has been completely
1808
// visited before.
1809
if (!Done.insert(FD).second)
1810
return;
1811
InUsePath.insert(FD);
1812
UsePath.push_back(FD);
1813
if (auto *S = FD->getBody()) {
1814
this->Visit(S);
1815
}
1816
UsePath.pop_back();
1817
InUsePath.erase(FD);
1818
}
1819
1820
void checkRecordedDecl(Decl *D) {
1821
if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1822
ShouldEmitRootNode = S.getEmissionStatus(FD, /*Final=*/true) ==
1823
Sema::FunctionEmissionStatus::Emitted;
1824
checkFunc(SourceLocation(), FD);
1825
} else
1826
checkVar(cast<VarDecl>(D));
1827
}
1828
1829
// Emit any deferred diagnostics for FD
1830
void emitDeferredDiags(FunctionDecl *FD, bool ShowCallStack) {
1831
auto It = S.DeviceDeferredDiags.find(FD);
1832
if (It == S.DeviceDeferredDiags.end())
1833
return;
1834
bool HasWarningOrError = false;
1835
bool FirstDiag = true;
1836
for (PartialDiagnosticAt &PDAt : It->second) {
1837
// Respect error limit.
1838
if (S.Diags.hasFatalErrorOccurred())
1839
return;
1840
const SourceLocation &Loc = PDAt.first;
1841
const PartialDiagnostic &PD = PDAt.second;
1842
HasWarningOrError |=
1843
S.getDiagnostics().getDiagnosticLevel(PD.getDiagID(), Loc) >=
1844
DiagnosticsEngine::Warning;
1845
{
1846
DiagnosticBuilder Builder(S.Diags.Report(Loc, PD.getDiagID()));
1847
PD.Emit(Builder);
1848
}
1849
// Emit the note on the first diagnostic in case too many diagnostics
1850
// cause the note not emitted.
1851
if (FirstDiag && HasWarningOrError && ShowCallStack) {
1852
emitCallStackNotes(S, FD);
1853
FirstDiag = false;
1854
}
1855
}
1856
}
1857
};
1858
} // namespace
1859
1860
void Sema::emitDeferredDiags() {
1861
if (ExternalSource)
1862
ExternalSource->ReadDeclsToCheckForDeferredDiags(
1863
DeclsToCheckForDeferredDiags);
1864
1865
if ((DeviceDeferredDiags.empty() && !LangOpts.OpenMP) ||
1866
DeclsToCheckForDeferredDiags.empty())
1867
return;
1868
1869
DeferredDiagnosticsEmitter DDE(*this);
1870
for (auto *D : DeclsToCheckForDeferredDiags)
1871
DDE.checkRecordedDecl(D);
1872
}
1873
1874
// In CUDA, there are some constructs which may appear in semantically-valid
1875
// code, but trigger errors if we ever generate code for the function in which
1876
// they appear. Essentially every construct you're not allowed to use on the
1877
// device falls into this category, because you are allowed to use these
1878
// constructs in a __host__ __device__ function, but only if that function is
1879
// never codegen'ed on the device.
1880
//
1881
// To handle semantic checking for these constructs, we keep track of the set of
1882
// functions we know will be emitted, either because we could tell a priori that
1883
// they would be emitted, or because they were transitively called by a
1884
// known-emitted function.
1885
//
1886
// We also keep a partial call graph of which not-known-emitted functions call
1887
// which other not-known-emitted functions.
1888
//
1889
// When we see something which is illegal if the current function is emitted
1890
// (usually by way of DiagIfDeviceCode, DiagIfHostCode, or
1891
// CheckCall), we first check if the current function is known-emitted. If
1892
// so, we immediately output the diagnostic.
1893
//
1894
// Otherwise, we "defer" the diagnostic. It sits in Sema::DeviceDeferredDiags
1895
// until we discover that the function is known-emitted, at which point we take
1896
// it out of this map and emit the diagnostic.
1897
1898
Sema::SemaDiagnosticBuilder::SemaDiagnosticBuilder(Kind K, SourceLocation Loc,
1899
unsigned DiagID,
1900
const FunctionDecl *Fn,
1901
Sema &S)
1902
: S(S), Loc(Loc), DiagID(DiagID), Fn(Fn),
1903
ShowCallStack(K == K_ImmediateWithCallStack || K == K_Deferred) {
1904
switch (K) {
1905
case K_Nop:
1906
break;
1907
case K_Immediate:
1908
case K_ImmediateWithCallStack:
1909
ImmediateDiag.emplace(
1910
ImmediateDiagBuilder(S.Diags.Report(Loc, DiagID), S, DiagID));
1911
break;
1912
case K_Deferred:
1913
assert(Fn && "Must have a function to attach the deferred diag to.");
1914
auto &Diags = S.DeviceDeferredDiags[Fn];
1915
PartialDiagId.emplace(Diags.size());
1916
Diags.emplace_back(Loc, S.PDiag(DiagID));
1917
break;
1918
}
1919
}
1920
1921
Sema::SemaDiagnosticBuilder::SemaDiagnosticBuilder(SemaDiagnosticBuilder &&D)
1922
: S(D.S), Loc(D.Loc), DiagID(D.DiagID), Fn(D.Fn),
1923
ShowCallStack(D.ShowCallStack), ImmediateDiag(D.ImmediateDiag),
1924
PartialDiagId(D.PartialDiagId) {
1925
// Clean the previous diagnostics.
1926
D.ShowCallStack = false;
1927
D.ImmediateDiag.reset();
1928
D.PartialDiagId.reset();
1929
}
1930
1931
Sema::SemaDiagnosticBuilder::~SemaDiagnosticBuilder() {
1932
if (ImmediateDiag) {
1933
// Emit our diagnostic and, if it was a warning or error, output a callstack
1934
// if Fn isn't a priori known-emitted.
1935
bool IsWarningOrError = S.getDiagnostics().getDiagnosticLevel(
1936
DiagID, Loc) >= DiagnosticsEngine::Warning;
1937
ImmediateDiag.reset(); // Emit the immediate diag.
1938
if (IsWarningOrError && ShowCallStack)
1939
emitCallStackNotes(S, Fn);
1940
} else {
1941
assert((!PartialDiagId || ShowCallStack) &&
1942
"Must always show call stack for deferred diags.");
1943
}
1944
}
1945
1946
Sema::SemaDiagnosticBuilder
1947
Sema::targetDiag(SourceLocation Loc, unsigned DiagID, const FunctionDecl *FD) {
1948
FD = FD ? FD : getCurFunctionDecl();
1949
if (LangOpts.OpenMP)
1950
return LangOpts.OpenMPIsTargetDevice
1951
? OpenMP().diagIfOpenMPDeviceCode(Loc, DiagID, FD)
1952
: OpenMP().diagIfOpenMPHostCode(Loc, DiagID, FD);
1953
if (getLangOpts().CUDA)
1954
return getLangOpts().CUDAIsDevice ? CUDA().DiagIfDeviceCode(Loc, DiagID)
1955
: CUDA().DiagIfHostCode(Loc, DiagID);
1956
1957
if (getLangOpts().SYCLIsDevice)
1958
return SYCL().DiagIfDeviceCode(Loc, DiagID);
1959
1960
return SemaDiagnosticBuilder(SemaDiagnosticBuilder::K_Immediate, Loc, DiagID,
1961
FD, *this);
1962
}
1963
1964
void Sema::checkTypeSupport(QualType Ty, SourceLocation Loc, ValueDecl *D) {
1965
if (isUnevaluatedContext() || Ty.isNull())
1966
return;
1967
1968
// The original idea behind checkTypeSupport function is that unused
1969
// declarations can be replaced with an array of bytes of the same size during
1970
// codegen, such replacement doesn't seem to be possible for types without
1971
// constant byte size like zero length arrays. So, do a deep check for SYCL.
1972
if (D && LangOpts.SYCLIsDevice) {
1973
llvm::DenseSet<QualType> Visited;
1974
SYCL().deepTypeCheckForDevice(Loc, Visited, D);
1975
}
1976
1977
Decl *C = cast<Decl>(getCurLexicalContext());
1978
1979
// Memcpy operations for structs containing a member with unsupported type
1980
// are ok, though.
1981
if (const auto *MD = dyn_cast<CXXMethodDecl>(C)) {
1982
if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
1983
MD->isTrivial())
1984
return;
1985
1986
if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(MD))
1987
if (Ctor->isCopyOrMoveConstructor() && Ctor->isTrivial())
1988
return;
1989
}
1990
1991
// Try to associate errors with the lexical context, if that is a function, or
1992
// the value declaration otherwise.
1993
const FunctionDecl *FD = isa<FunctionDecl>(C)
1994
? cast<FunctionDecl>(C)
1995
: dyn_cast_or_null<FunctionDecl>(D);
1996
1997
auto CheckDeviceType = [&](QualType Ty) {
1998
if (Ty->isDependentType())
1999
return;
2000
2001
if (Ty->isBitIntType()) {
2002
if (!Context.getTargetInfo().hasBitIntType()) {
2003
PartialDiagnostic PD = PDiag(diag::err_target_unsupported_type);
2004
if (D)
2005
PD << D;
2006
else
2007
PD << "expression";
2008
targetDiag(Loc, PD, FD)
2009
<< false /*show bit size*/ << 0 /*bitsize*/ << false /*return*/
2010
<< Ty << Context.getTargetInfo().getTriple().str();
2011
}
2012
return;
2013
}
2014
2015
// Check if we are dealing with two 'long double' but with different
2016
// semantics.
2017
bool LongDoubleMismatched = false;
2018
if (Ty->isRealFloatingType() && Context.getTypeSize(Ty) == 128) {
2019
const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(Ty);
2020
if ((&Sem != &llvm::APFloat::PPCDoubleDouble() &&
2021
!Context.getTargetInfo().hasFloat128Type()) ||
2022
(&Sem == &llvm::APFloat::PPCDoubleDouble() &&
2023
!Context.getTargetInfo().hasIbm128Type()))
2024
LongDoubleMismatched = true;
2025
}
2026
2027
if ((Ty->isFloat16Type() && !Context.getTargetInfo().hasFloat16Type()) ||
2028
(Ty->isFloat128Type() && !Context.getTargetInfo().hasFloat128Type()) ||
2029
(Ty->isIbm128Type() && !Context.getTargetInfo().hasIbm128Type()) ||
2030
(Ty->isIntegerType() && Context.getTypeSize(Ty) == 128 &&
2031
!Context.getTargetInfo().hasInt128Type()) ||
2032
(Ty->isBFloat16Type() && !Context.getTargetInfo().hasBFloat16Type() &&
2033
!LangOpts.CUDAIsDevice) ||
2034
LongDoubleMismatched) {
2035
PartialDiagnostic PD = PDiag(diag::err_target_unsupported_type);
2036
if (D)
2037
PD << D;
2038
else
2039
PD << "expression";
2040
2041
if (targetDiag(Loc, PD, FD)
2042
<< true /*show bit size*/
2043
<< static_cast<unsigned>(Context.getTypeSize(Ty)) << Ty
2044
<< false /*return*/ << Context.getTargetInfo().getTriple().str()) {
2045
if (D)
2046
D->setInvalidDecl();
2047
}
2048
if (D)
2049
targetDiag(D->getLocation(), diag::note_defined_here, FD) << D;
2050
}
2051
};
2052
2053
auto CheckType = [&](QualType Ty, bool IsRetTy = false) {
2054
if (LangOpts.SYCLIsDevice ||
2055
(LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice) ||
2056
LangOpts.CUDAIsDevice)
2057
CheckDeviceType(Ty);
2058
2059
QualType UnqualTy = Ty.getCanonicalType().getUnqualifiedType();
2060
const TargetInfo &TI = Context.getTargetInfo();
2061
if (!TI.hasLongDoubleType() && UnqualTy == Context.LongDoubleTy) {
2062
PartialDiagnostic PD = PDiag(diag::err_target_unsupported_type);
2063
if (D)
2064
PD << D;
2065
else
2066
PD << "expression";
2067
2068
if (Diag(Loc, PD, FD)
2069
<< false /*show bit size*/ << 0 << Ty << false /*return*/
2070
<< TI.getTriple().str()) {
2071
if (D)
2072
D->setInvalidDecl();
2073
}
2074
if (D)
2075
targetDiag(D->getLocation(), diag::note_defined_here, FD) << D;
2076
}
2077
2078
bool IsDouble = UnqualTy == Context.DoubleTy;
2079
bool IsFloat = UnqualTy == Context.FloatTy;
2080
if (IsRetTy && !TI.hasFPReturn() && (IsDouble || IsFloat)) {
2081
PartialDiagnostic PD = PDiag(diag::err_target_unsupported_type);
2082
if (D)
2083
PD << D;
2084
else
2085
PD << "expression";
2086
2087
if (Diag(Loc, PD, FD)
2088
<< false /*show bit size*/ << 0 << Ty << true /*return*/
2089
<< TI.getTriple().str()) {
2090
if (D)
2091
D->setInvalidDecl();
2092
}
2093
if (D)
2094
targetDiag(D->getLocation(), diag::note_defined_here, FD) << D;
2095
}
2096
2097
if (TI.hasRISCVVTypes() && Ty->isRVVSizelessBuiltinType() && FD) {
2098
llvm::StringMap<bool> CallerFeatureMap;
2099
Context.getFunctionFeatureMap(CallerFeatureMap, FD);
2100
RISCV().checkRVVTypeSupport(Ty, Loc, D, CallerFeatureMap);
2101
}
2102
2103
// Don't allow SVE types in functions without a SVE target.
2104
if (Ty->isSVESizelessBuiltinType() && FD) {
2105
llvm::StringMap<bool> CallerFeatureMap;
2106
Context.getFunctionFeatureMap(CallerFeatureMap, FD);
2107
if (!Builtin::evaluateRequiredTargetFeatures("sve", CallerFeatureMap)) {
2108
if (!Builtin::evaluateRequiredTargetFeatures("sme", CallerFeatureMap))
2109
Diag(Loc, diag::err_sve_vector_in_non_sve_target) << Ty;
2110
else if (!IsArmStreamingFunction(FD,
2111
/*IncludeLocallyStreaming=*/true)) {
2112
Diag(Loc, diag::err_sve_vector_in_non_streaming_function) << Ty;
2113
}
2114
}
2115
}
2116
};
2117
2118
CheckType(Ty);
2119
if (const auto *FPTy = dyn_cast<FunctionProtoType>(Ty)) {
2120
for (const auto &ParamTy : FPTy->param_types())
2121
CheckType(ParamTy);
2122
CheckType(FPTy->getReturnType(), /*IsRetTy=*/true);
2123
}
2124
if (const auto *FNPTy = dyn_cast<FunctionNoProtoType>(Ty))
2125
CheckType(FNPTy->getReturnType(), /*IsRetTy=*/true);
2126
}
2127
2128
bool Sema::findMacroSpelling(SourceLocation &locref, StringRef name) {
2129
SourceLocation loc = locref;
2130
if (!loc.isMacroID()) return false;
2131
2132
// There's no good way right now to look at the intermediate
2133
// expansions, so just jump to the expansion location.
2134
loc = getSourceManager().getExpansionLoc(loc);
2135
2136
// If that's written with the name, stop here.
2137
SmallString<16> buffer;
2138
if (getPreprocessor().getSpelling(loc, buffer) == name) {
2139
locref = loc;
2140
return true;
2141
}
2142
return false;
2143
}
2144
2145
Scope *Sema::getScopeForContext(DeclContext *Ctx) {
2146
2147
if (!Ctx)
2148
return nullptr;
2149
2150
Ctx = Ctx->getPrimaryContext();
2151
for (Scope *S = getCurScope(); S; S = S->getParent()) {
2152
// Ignore scopes that cannot have declarations. This is important for
2153
// out-of-line definitions of static class members.
2154
if (S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope))
2155
if (DeclContext *Entity = S->getEntity())
2156
if (Ctx == Entity->getPrimaryContext())
2157
return S;
2158
}
2159
2160
return nullptr;
2161
}
2162
2163
/// Enter a new function scope
2164
void Sema::PushFunctionScope() {
2165
if (FunctionScopes.empty() && CachedFunctionScope) {
2166
// Use CachedFunctionScope to avoid allocating memory when possible.
2167
CachedFunctionScope->Clear();
2168
FunctionScopes.push_back(CachedFunctionScope.release());
2169
} else {
2170
FunctionScopes.push_back(new FunctionScopeInfo(getDiagnostics()));
2171
}
2172
if (LangOpts.OpenMP)
2173
OpenMP().pushOpenMPFunctionRegion();
2174
}
2175
2176
void Sema::PushBlockScope(Scope *BlockScope, BlockDecl *Block) {
2177
FunctionScopes.push_back(new BlockScopeInfo(getDiagnostics(),
2178
BlockScope, Block));
2179
CapturingFunctionScopes++;
2180
}
2181
2182
LambdaScopeInfo *Sema::PushLambdaScope() {
2183
LambdaScopeInfo *const LSI = new LambdaScopeInfo(getDiagnostics());
2184
FunctionScopes.push_back(LSI);
2185
CapturingFunctionScopes++;
2186
return LSI;
2187
}
2188
2189
void Sema::RecordParsingTemplateParameterDepth(unsigned Depth) {
2190
if (LambdaScopeInfo *const LSI = getCurLambda()) {
2191
LSI->AutoTemplateParameterDepth = Depth;
2192
return;
2193
}
2194
llvm_unreachable(
2195
"Remove assertion if intentionally called in a non-lambda context.");
2196
}
2197
2198
// Check that the type of the VarDecl has an accessible copy constructor and
2199
// resolve its destructor's exception specification.
2200
// This also performs initialization of block variables when they are moved
2201
// to the heap. It uses the same rules as applicable for implicit moves
2202
// according to the C++ standard in effect ([class.copy.elision]p3).
2203
static void checkEscapingByref(VarDecl *VD, Sema &S) {
2204
QualType T = VD->getType();
2205
EnterExpressionEvaluationContext scope(
2206
S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
2207
SourceLocation Loc = VD->getLocation();
2208
Expr *VarRef =
2209
new (S.Context) DeclRefExpr(S.Context, VD, false, T, VK_LValue, Loc);
2210
ExprResult Result;
2211
auto IE = InitializedEntity::InitializeBlock(Loc, T);
2212
if (S.getLangOpts().CPlusPlus23) {
2213
auto *E = ImplicitCastExpr::Create(S.Context, T, CK_NoOp, VarRef, nullptr,
2214
VK_XValue, FPOptionsOverride());
2215
Result = S.PerformCopyInitialization(IE, SourceLocation(), E);
2216
} else {
2217
Result = S.PerformMoveOrCopyInitialization(
2218
IE, Sema::NamedReturnInfo{VD, Sema::NamedReturnInfo::MoveEligible},
2219
VarRef);
2220
}
2221
2222
if (!Result.isInvalid()) {
2223
Result = S.MaybeCreateExprWithCleanups(Result);
2224
Expr *Init = Result.getAs<Expr>();
2225
S.Context.setBlockVarCopyInit(VD, Init, S.canThrow(Init));
2226
}
2227
2228
// The destructor's exception specification is needed when IRGen generates
2229
// block copy/destroy functions. Resolve it here.
2230
if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2231
if (CXXDestructorDecl *DD = RD->getDestructor()) {
2232
auto *FPT = DD->getType()->castAs<FunctionProtoType>();
2233
S.ResolveExceptionSpec(Loc, FPT);
2234
}
2235
}
2236
2237
static void markEscapingByrefs(const FunctionScopeInfo &FSI, Sema &S) {
2238
// Set the EscapingByref flag of __block variables captured by
2239
// escaping blocks.
2240
for (const BlockDecl *BD : FSI.Blocks) {
2241
for (const BlockDecl::Capture &BC : BD->captures()) {
2242
VarDecl *VD = BC.getVariable();
2243
if (VD->hasAttr<BlocksAttr>()) {
2244
// Nothing to do if this is a __block variable captured by a
2245
// non-escaping block.
2246
if (BD->doesNotEscape())
2247
continue;
2248
VD->setEscapingByref();
2249
}
2250
// Check whether the captured variable is or contains an object of
2251
// non-trivial C union type.
2252
QualType CapType = BC.getVariable()->getType();
2253
if (CapType.hasNonTrivialToPrimitiveDestructCUnion() ||
2254
CapType.hasNonTrivialToPrimitiveCopyCUnion())
2255
S.checkNonTrivialCUnion(BC.getVariable()->getType(),
2256
BD->getCaretLocation(),
2257
Sema::NTCUC_BlockCapture,
2258
Sema::NTCUK_Destruct|Sema::NTCUK_Copy);
2259
}
2260
}
2261
2262
for (VarDecl *VD : FSI.ByrefBlockVars) {
2263
// __block variables might require us to capture a copy-initializer.
2264
if (!VD->isEscapingByref())
2265
continue;
2266
// It's currently invalid to ever have a __block variable with an
2267
// array type; should we diagnose that here?
2268
// Regardless, we don't want to ignore array nesting when
2269
// constructing this copy.
2270
if (VD->getType()->isStructureOrClassType())
2271
checkEscapingByref(VD, S);
2272
}
2273
}
2274
2275
Sema::PoppedFunctionScopePtr
2276
Sema::PopFunctionScopeInfo(const AnalysisBasedWarnings::Policy *WP,
2277
const Decl *D, QualType BlockType) {
2278
assert(!FunctionScopes.empty() && "mismatched push/pop!");
2279
2280
markEscapingByrefs(*FunctionScopes.back(), *this);
2281
2282
PoppedFunctionScopePtr Scope(FunctionScopes.pop_back_val(),
2283
PoppedFunctionScopeDeleter(this));
2284
2285
if (LangOpts.OpenMP)
2286
OpenMP().popOpenMPFunctionRegion(Scope.get());
2287
2288
// Issue any analysis-based warnings.
2289
if (WP && D)
2290
AnalysisWarnings.IssueWarnings(*WP, Scope.get(), D, BlockType);
2291
else
2292
for (const auto &PUD : Scope->PossiblyUnreachableDiags)
2293
Diag(PUD.Loc, PUD.PD);
2294
2295
return Scope;
2296
}
2297
2298
void Sema::PoppedFunctionScopeDeleter::
2299
operator()(sema::FunctionScopeInfo *Scope) const {
2300
if (!Scope->isPlainFunction())
2301
Self->CapturingFunctionScopes--;
2302
// Stash the function scope for later reuse if it's for a normal function.
2303
if (Scope->isPlainFunction() && !Self->CachedFunctionScope)
2304
Self->CachedFunctionScope.reset(Scope);
2305
else
2306
delete Scope;
2307
}
2308
2309
void Sema::PushCompoundScope(bool IsStmtExpr) {
2310
getCurFunction()->CompoundScopes.push_back(
2311
CompoundScopeInfo(IsStmtExpr, getCurFPFeatures()));
2312
}
2313
2314
void Sema::PopCompoundScope() {
2315
FunctionScopeInfo *CurFunction = getCurFunction();
2316
assert(!CurFunction->CompoundScopes.empty() && "mismatched push/pop");
2317
2318
CurFunction->CompoundScopes.pop_back();
2319
}
2320
2321
bool Sema::hasAnyUnrecoverableErrorsInThisFunction() const {
2322
return getCurFunction()->hasUnrecoverableErrorOccurred();
2323
}
2324
2325
void Sema::setFunctionHasBranchIntoScope() {
2326
if (!FunctionScopes.empty())
2327
FunctionScopes.back()->setHasBranchIntoScope();
2328
}
2329
2330
void Sema::setFunctionHasBranchProtectedScope() {
2331
if (!FunctionScopes.empty())
2332
FunctionScopes.back()->setHasBranchProtectedScope();
2333
}
2334
2335
void Sema::setFunctionHasIndirectGoto() {
2336
if (!FunctionScopes.empty())
2337
FunctionScopes.back()->setHasIndirectGoto();
2338
}
2339
2340
void Sema::setFunctionHasMustTail() {
2341
if (!FunctionScopes.empty())
2342
FunctionScopes.back()->setHasMustTail();
2343
}
2344
2345
BlockScopeInfo *Sema::getCurBlock() {
2346
if (FunctionScopes.empty())
2347
return nullptr;
2348
2349
auto CurBSI = dyn_cast<BlockScopeInfo>(FunctionScopes.back());
2350
if (CurBSI && CurBSI->TheDecl &&
2351
!CurBSI->TheDecl->Encloses(CurContext)) {
2352
// We have switched contexts due to template instantiation.
2353
assert(!CodeSynthesisContexts.empty());
2354
return nullptr;
2355
}
2356
2357
return CurBSI;
2358
}
2359
2360
FunctionScopeInfo *Sema::getEnclosingFunction() const {
2361
if (FunctionScopes.empty())
2362
return nullptr;
2363
2364
for (int e = FunctionScopes.size() - 1; e >= 0; --e) {
2365
if (isa<sema::BlockScopeInfo>(FunctionScopes[e]))
2366
continue;
2367
return FunctionScopes[e];
2368
}
2369
return nullptr;
2370
}
2371
2372
LambdaScopeInfo *Sema::getEnclosingLambda() const {
2373
for (auto *Scope : llvm::reverse(FunctionScopes)) {
2374
if (auto *LSI = dyn_cast<sema::LambdaScopeInfo>(Scope)) {
2375
if (LSI->Lambda && !LSI->Lambda->Encloses(CurContext) &&
2376
LSI->AfterParameterList) {
2377
// We have switched contexts due to template instantiation.
2378
// FIXME: We should swap out the FunctionScopes during code synthesis
2379
// so that we don't need to check for this.
2380
assert(!CodeSynthesisContexts.empty());
2381
return nullptr;
2382
}
2383
return LSI;
2384
}
2385
}
2386
return nullptr;
2387
}
2388
2389
LambdaScopeInfo *Sema::getCurLambda(bool IgnoreNonLambdaCapturingScope) {
2390
if (FunctionScopes.empty())
2391
return nullptr;
2392
2393
auto I = FunctionScopes.rbegin();
2394
if (IgnoreNonLambdaCapturingScope) {
2395
auto E = FunctionScopes.rend();
2396
while (I != E && isa<CapturingScopeInfo>(*I) && !isa<LambdaScopeInfo>(*I))
2397
++I;
2398
if (I == E)
2399
return nullptr;
2400
}
2401
auto *CurLSI = dyn_cast<LambdaScopeInfo>(*I);
2402
if (CurLSI && CurLSI->Lambda && CurLSI->CallOperator &&
2403
!CurLSI->Lambda->Encloses(CurContext) && CurLSI->AfterParameterList) {
2404
// We have switched contexts due to template instantiation.
2405
assert(!CodeSynthesisContexts.empty());
2406
return nullptr;
2407
}
2408
2409
return CurLSI;
2410
}
2411
2412
// We have a generic lambda if we parsed auto parameters, or we have
2413
// an associated template parameter list.
2414
LambdaScopeInfo *Sema::getCurGenericLambda() {
2415
if (LambdaScopeInfo *LSI = getCurLambda()) {
2416
return (LSI->TemplateParams.size() ||
2417
LSI->GLTemplateParameterList) ? LSI : nullptr;
2418
}
2419
return nullptr;
2420
}
2421
2422
2423
void Sema::ActOnComment(SourceRange Comment) {
2424
if (!LangOpts.RetainCommentsFromSystemHeaders &&
2425
SourceMgr.isInSystemHeader(Comment.getBegin()))
2426
return;
2427
RawComment RC(SourceMgr, Comment, LangOpts.CommentOpts, false);
2428
if (RC.isAlmostTrailingComment() || RC.hasUnsupportedSplice(SourceMgr)) {
2429
SourceRange MagicMarkerRange(Comment.getBegin(),
2430
Comment.getBegin().getLocWithOffset(3));
2431
StringRef MagicMarkerText;
2432
switch (RC.getKind()) {
2433
case RawComment::RCK_OrdinaryBCPL:
2434
MagicMarkerText = "///<";
2435
break;
2436
case RawComment::RCK_OrdinaryC:
2437
MagicMarkerText = "/**<";
2438
break;
2439
case RawComment::RCK_Invalid:
2440
// FIXME: are there other scenarios that could produce an invalid
2441
// raw comment here?
2442
Diag(Comment.getBegin(), diag::warn_splice_in_doxygen_comment);
2443
return;
2444
default:
2445
llvm_unreachable("if this is an almost Doxygen comment, "
2446
"it should be ordinary");
2447
}
2448
Diag(Comment.getBegin(), diag::warn_not_a_doxygen_trailing_member_comment) <<
2449
FixItHint::CreateReplacement(MagicMarkerRange, MagicMarkerText);
2450
}
2451
Context.addComment(RC);
2452
}
2453
2454
// Pin this vtable to this file.
2455
ExternalSemaSource::~ExternalSemaSource() {}
2456
char ExternalSemaSource::ID;
2457
2458
void ExternalSemaSource::ReadMethodPool(Selector Sel) { }
2459
void ExternalSemaSource::updateOutOfDateSelector(Selector Sel) { }
2460
2461
void ExternalSemaSource::ReadKnownNamespaces(
2462
SmallVectorImpl<NamespaceDecl *> &Namespaces) {
2463
}
2464
2465
void ExternalSemaSource::ReadUndefinedButUsed(
2466
llvm::MapVector<NamedDecl *, SourceLocation> &Undefined) {}
2467
2468
void ExternalSemaSource::ReadMismatchingDeleteExpressions(llvm::MapVector<
2469
FieldDecl *, llvm::SmallVector<std::pair<SourceLocation, bool>, 4>> &) {}
2470
2471
bool Sema::tryExprAsCall(Expr &E, QualType &ZeroArgCallReturnTy,
2472
UnresolvedSetImpl &OverloadSet) {
2473
ZeroArgCallReturnTy = QualType();
2474
OverloadSet.clear();
2475
2476
const OverloadExpr *Overloads = nullptr;
2477
bool IsMemExpr = false;
2478
if (E.getType() == Context.OverloadTy) {
2479
OverloadExpr::FindResult FR = OverloadExpr::find(&E);
2480
2481
// Ignore overloads that are pointer-to-member constants.
2482
if (FR.HasFormOfMemberPointer)
2483
return false;
2484
2485
Overloads = FR.Expression;
2486
} else if (E.getType() == Context.BoundMemberTy) {
2487
Overloads = dyn_cast<UnresolvedMemberExpr>(E.IgnoreParens());
2488
IsMemExpr = true;
2489
}
2490
2491
bool Ambiguous = false;
2492
bool IsMV = false;
2493
2494
if (Overloads) {
2495
for (OverloadExpr::decls_iterator it = Overloads->decls_begin(),
2496
DeclsEnd = Overloads->decls_end(); it != DeclsEnd; ++it) {
2497
OverloadSet.addDecl(*it);
2498
2499
// Check whether the function is a non-template, non-member which takes no
2500
// arguments.
2501
if (IsMemExpr)
2502
continue;
2503
if (const FunctionDecl *OverloadDecl
2504
= dyn_cast<FunctionDecl>((*it)->getUnderlyingDecl())) {
2505
if (OverloadDecl->getMinRequiredArguments() == 0) {
2506
if (!ZeroArgCallReturnTy.isNull() && !Ambiguous &&
2507
(!IsMV || !(OverloadDecl->isCPUDispatchMultiVersion() ||
2508
OverloadDecl->isCPUSpecificMultiVersion()))) {
2509
ZeroArgCallReturnTy = QualType();
2510
Ambiguous = true;
2511
} else {
2512
ZeroArgCallReturnTy = OverloadDecl->getReturnType();
2513
IsMV = OverloadDecl->isCPUDispatchMultiVersion() ||
2514
OverloadDecl->isCPUSpecificMultiVersion();
2515
}
2516
}
2517
}
2518
}
2519
2520
// If it's not a member, use better machinery to try to resolve the call
2521
if (!IsMemExpr)
2522
return !ZeroArgCallReturnTy.isNull();
2523
}
2524
2525
// Attempt to call the member with no arguments - this will correctly handle
2526
// member templates with defaults/deduction of template arguments, overloads
2527
// with default arguments, etc.
2528
if (IsMemExpr && !E.isTypeDependent()) {
2529
Sema::TentativeAnalysisScope Trap(*this);
2530
ExprResult R = BuildCallToMemberFunction(nullptr, &E, SourceLocation(),
2531
std::nullopt, SourceLocation());
2532
if (R.isUsable()) {
2533
ZeroArgCallReturnTy = R.get()->getType();
2534
return true;
2535
}
2536
return false;
2537
}
2538
2539
if (const auto *DeclRef = dyn_cast<DeclRefExpr>(E.IgnoreParens())) {
2540
if (const auto *Fun = dyn_cast<FunctionDecl>(DeclRef->getDecl())) {
2541
if (Fun->getMinRequiredArguments() == 0)
2542
ZeroArgCallReturnTy = Fun->getReturnType();
2543
return true;
2544
}
2545
}
2546
2547
// We don't have an expression that's convenient to get a FunctionDecl from,
2548
// but we can at least check if the type is "function of 0 arguments".
2549
QualType ExprTy = E.getType();
2550
const FunctionType *FunTy = nullptr;
2551
QualType PointeeTy = ExprTy->getPointeeType();
2552
if (!PointeeTy.isNull())
2553
FunTy = PointeeTy->getAs<FunctionType>();
2554
if (!FunTy)
2555
FunTy = ExprTy->getAs<FunctionType>();
2556
2557
if (const auto *FPT = dyn_cast_if_present<FunctionProtoType>(FunTy)) {
2558
if (FPT->getNumParams() == 0)
2559
ZeroArgCallReturnTy = FunTy->getReturnType();
2560
return true;
2561
}
2562
return false;
2563
}
2564
2565
/// Give notes for a set of overloads.
2566
///
2567
/// A companion to tryExprAsCall. In cases when the name that the programmer
2568
/// wrote was an overloaded function, we may be able to make some guesses about
2569
/// plausible overloads based on their return types; such guesses can be handed
2570
/// off to this method to be emitted as notes.
2571
///
2572
/// \param Overloads - The overloads to note.
2573
/// \param FinalNoteLoc - If we've suppressed printing some overloads due to
2574
/// -fshow-overloads=best, this is the location to attach to the note about too
2575
/// many candidates. Typically this will be the location of the original
2576
/// ill-formed expression.
2577
static void noteOverloads(Sema &S, const UnresolvedSetImpl &Overloads,
2578
const SourceLocation FinalNoteLoc) {
2579
unsigned ShownOverloads = 0;
2580
unsigned SuppressedOverloads = 0;
2581
for (UnresolvedSetImpl::iterator It = Overloads.begin(),
2582
DeclsEnd = Overloads.end(); It != DeclsEnd; ++It) {
2583
if (ShownOverloads >= S.Diags.getNumOverloadCandidatesToShow()) {
2584
++SuppressedOverloads;
2585
continue;
2586
}
2587
2588
const NamedDecl *Fn = (*It)->getUnderlyingDecl();
2589
// Don't print overloads for non-default multiversioned functions.
2590
if (const auto *FD = Fn->getAsFunction()) {
2591
if (FD->isMultiVersion() && FD->hasAttr<TargetAttr>() &&
2592
!FD->getAttr<TargetAttr>()->isDefaultVersion())
2593
continue;
2594
if (FD->isMultiVersion() && FD->hasAttr<TargetVersionAttr>() &&
2595
!FD->getAttr<TargetVersionAttr>()->isDefaultVersion())
2596
continue;
2597
}
2598
S.Diag(Fn->getLocation(), diag::note_possible_target_of_call);
2599
++ShownOverloads;
2600
}
2601
2602
S.Diags.overloadCandidatesShown(ShownOverloads);
2603
2604
if (SuppressedOverloads)
2605
S.Diag(FinalNoteLoc, diag::note_ovl_too_many_candidates)
2606
<< SuppressedOverloads;
2607
}
2608
2609
static void notePlausibleOverloads(Sema &S, SourceLocation Loc,
2610
const UnresolvedSetImpl &Overloads,
2611
bool (*IsPlausibleResult)(QualType)) {
2612
if (!IsPlausibleResult)
2613
return noteOverloads(S, Overloads, Loc);
2614
2615
UnresolvedSet<2> PlausibleOverloads;
2616
for (OverloadExpr::decls_iterator It = Overloads.begin(),
2617
DeclsEnd = Overloads.end(); It != DeclsEnd; ++It) {
2618
const auto *OverloadDecl = cast<FunctionDecl>(*It);
2619
QualType OverloadResultTy = OverloadDecl->getReturnType();
2620
if (IsPlausibleResult(OverloadResultTy))
2621
PlausibleOverloads.addDecl(It.getDecl());
2622
}
2623
noteOverloads(S, PlausibleOverloads, Loc);
2624
}
2625
2626
/// Determine whether the given expression can be called by just
2627
/// putting parentheses after it. Notably, expressions with unary
2628
/// operators can't be because the unary operator will start parsing
2629
/// outside the call.
2630
static bool IsCallableWithAppend(const Expr *E) {
2631
E = E->IgnoreImplicit();
2632
return (!isa<CStyleCastExpr>(E) &&
2633
!isa<UnaryOperator>(E) &&
2634
!isa<BinaryOperator>(E) &&
2635
!isa<CXXOperatorCallExpr>(E));
2636
}
2637
2638
static bool IsCPUDispatchCPUSpecificMultiVersion(const Expr *E) {
2639
if (const auto *UO = dyn_cast<UnaryOperator>(E))
2640
E = UO->getSubExpr();
2641
2642
if (const auto *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
2643
if (ULE->getNumDecls() == 0)
2644
return false;
2645
2646
const NamedDecl *ND = *ULE->decls_begin();
2647
if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2648
return FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion();
2649
}
2650
return false;
2651
}
2652
2653
bool Sema::tryToRecoverWithCall(ExprResult &E, const PartialDiagnostic &PD,
2654
bool ForceComplain,
2655
bool (*IsPlausibleResult)(QualType)) {
2656
SourceLocation Loc = E.get()->getExprLoc();
2657
SourceRange Range = E.get()->getSourceRange();
2658
UnresolvedSet<4> Overloads;
2659
2660
// If this is a SFINAE context, don't try anything that might trigger ADL
2661
// prematurely.
2662
if (!isSFINAEContext()) {
2663
QualType ZeroArgCallTy;
2664
if (tryExprAsCall(*E.get(), ZeroArgCallTy, Overloads) &&
2665
!ZeroArgCallTy.isNull() &&
2666
(!IsPlausibleResult || IsPlausibleResult(ZeroArgCallTy))) {
2667
// At this point, we know E is potentially callable with 0
2668
// arguments and that it returns something of a reasonable type,
2669
// so we can emit a fixit and carry on pretending that E was
2670
// actually a CallExpr.
2671
SourceLocation ParenInsertionLoc = getLocForEndOfToken(Range.getEnd());
2672
bool IsMV = IsCPUDispatchCPUSpecificMultiVersion(E.get());
2673
Diag(Loc, PD) << /*zero-arg*/ 1 << IsMV << Range
2674
<< (IsCallableWithAppend(E.get())
2675
? FixItHint::CreateInsertion(ParenInsertionLoc,
2676
"()")
2677
: FixItHint());
2678
if (!IsMV)
2679
notePlausibleOverloads(*this, Loc, Overloads, IsPlausibleResult);
2680
2681
// FIXME: Try this before emitting the fixit, and suppress diagnostics
2682
// while doing so.
2683
E = BuildCallExpr(nullptr, E.get(), Range.getEnd(), std::nullopt,
2684
Range.getEnd().getLocWithOffset(1));
2685
return true;
2686
}
2687
}
2688
if (!ForceComplain) return false;
2689
2690
bool IsMV = IsCPUDispatchCPUSpecificMultiVersion(E.get());
2691
Diag(Loc, PD) << /*not zero-arg*/ 0 << IsMV << Range;
2692
if (!IsMV)
2693
notePlausibleOverloads(*this, Loc, Overloads, IsPlausibleResult);
2694
E = ExprError();
2695
return true;
2696
}
2697
2698
IdentifierInfo *Sema::getSuperIdentifier() const {
2699
if (!Ident_super)
2700
Ident_super = &Context.Idents.get("super");
2701
return Ident_super;
2702
}
2703
2704
void Sema::PushCapturedRegionScope(Scope *S, CapturedDecl *CD, RecordDecl *RD,
2705
CapturedRegionKind K,
2706
unsigned OpenMPCaptureLevel) {
2707
auto *CSI = new CapturedRegionScopeInfo(
2708
getDiagnostics(), S, CD, RD, CD->getContextParam(), K,
2709
(getLangOpts().OpenMP && K == CR_OpenMP)
2710
? OpenMP().getOpenMPNestingLevel()
2711
: 0,
2712
OpenMPCaptureLevel);
2713
CSI->ReturnType = Context.VoidTy;
2714
FunctionScopes.push_back(CSI);
2715
CapturingFunctionScopes++;
2716
}
2717
2718
CapturedRegionScopeInfo *Sema::getCurCapturedRegion() {
2719
if (FunctionScopes.empty())
2720
return nullptr;
2721
2722
return dyn_cast<CapturedRegionScopeInfo>(FunctionScopes.back());
2723
}
2724
2725
const llvm::MapVector<FieldDecl *, Sema::DeleteLocs> &
2726
Sema::getMismatchingDeleteExpressions() const {
2727
return DeleteExprs;
2728
}
2729
2730
Sema::FPFeaturesStateRAII::FPFeaturesStateRAII(Sema &S)
2731
: S(S), OldFPFeaturesState(S.CurFPFeatures),
2732
OldOverrides(S.FpPragmaStack.CurrentValue),
2733
OldEvalMethod(S.PP.getCurrentFPEvalMethod()),
2734
OldFPPragmaLocation(S.PP.getLastFPEvalPragmaLocation()) {}
2735
2736
Sema::FPFeaturesStateRAII::~FPFeaturesStateRAII() {
2737
S.CurFPFeatures = OldFPFeaturesState;
2738
S.FpPragmaStack.CurrentValue = OldOverrides;
2739
S.PP.setCurrentFPEvalMethod(OldFPPragmaLocation, OldEvalMethod);
2740
}
2741
2742
bool Sema::isDeclaratorFunctionLike(Declarator &D) {
2743
assert(D.getCXXScopeSpec().isSet() &&
2744
"can only be called for qualified names");
2745
2746
auto LR = LookupResult(*this, D.getIdentifier(), D.getBeginLoc(),
2747
LookupOrdinaryName, forRedeclarationInCurContext());
2748
DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(),
2749
!D.getDeclSpec().isFriendSpecified());
2750
if (!DC)
2751
return false;
2752
2753
LookupQualifiedName(LR, DC);
2754
bool Result = llvm::all_of(LR, [](Decl *Dcl) {
2755
if (NamedDecl *ND = dyn_cast<NamedDecl>(Dcl)) {
2756
ND = ND->getUnderlyingDecl();
2757
return isa<FunctionDecl>(ND) || isa<FunctionTemplateDecl>(ND) ||
2758
isa<UsingDecl>(ND);
2759
}
2760
return false;
2761
});
2762
return Result;
2763
}
2764
2765
FunctionEffectDifferences::FunctionEffectDifferences(
2766
const FunctionEffectsRef &Old, const FunctionEffectsRef &New) {
2767
2768
FunctionEffectsRef::iterator POld = Old.begin();
2769
FunctionEffectsRef::iterator OldEnd = Old.end();
2770
FunctionEffectsRef::iterator PNew = New.begin();
2771
FunctionEffectsRef::iterator NewEnd = New.end();
2772
2773
while (true) {
2774
int cmp = 0;
2775
if (POld == OldEnd) {
2776
if (PNew == NewEnd)
2777
break;
2778
cmp = 1;
2779
} else if (PNew == NewEnd)
2780
cmp = -1;
2781
else {
2782
FunctionEffectWithCondition Old = *POld;
2783
FunctionEffectWithCondition New = *PNew;
2784
if (Old.Effect.kind() < New.Effect.kind())
2785
cmp = -1;
2786
else if (New.Effect.kind() < Old.Effect.kind())
2787
cmp = 1;
2788
else {
2789
cmp = 0;
2790
if (Old.Cond.getCondition() != New.Cond.getCondition()) {
2791
// FIXME: Cases where the expressions are equivalent but
2792
// don't have the same identity.
2793
push_back(FunctionEffectDiff{
2794
Old.Effect.kind(), FunctionEffectDiff::Kind::ConditionMismatch,
2795
Old, New});
2796
}
2797
}
2798
}
2799
2800
if (cmp < 0) {
2801
// removal
2802
FunctionEffectWithCondition Old = *POld;
2803
push_back(FunctionEffectDiff{
2804
Old.Effect.kind(), FunctionEffectDiff::Kind::Removed, Old, {}});
2805
++POld;
2806
} else if (cmp > 0) {
2807
// addition
2808
FunctionEffectWithCondition New = *PNew;
2809
push_back(FunctionEffectDiff{
2810
New.Effect.kind(), FunctionEffectDiff::Kind::Added, {}, New});
2811
++PNew;
2812
} else {
2813
++POld;
2814
++PNew;
2815
}
2816
}
2817
}
2818
2819
bool FunctionEffectDiff::shouldDiagnoseConversion(
2820
QualType SrcType, const FunctionEffectsRef &SrcFX, QualType DstType,
2821
const FunctionEffectsRef &DstFX) const {
2822
2823
switch (EffectKind) {
2824
case FunctionEffect::Kind::NonAllocating:
2825
// nonallocating can't be added (spoofed) during a conversion, unless we
2826
// have nonblocking.
2827
if (DiffKind == Kind::Added) {
2828
for (const auto &CFE : SrcFX) {
2829
if (CFE.Effect.kind() == FunctionEffect::Kind::NonBlocking)
2830
return false;
2831
}
2832
}
2833
[[fallthrough]];
2834
case FunctionEffect::Kind::NonBlocking:
2835
// nonblocking can't be added (spoofed) during a conversion.
2836
switch (DiffKind) {
2837
case Kind::Added:
2838
return true;
2839
case Kind::Removed:
2840
return false;
2841
case Kind::ConditionMismatch:
2842
// FIXME: Condition mismatches are too coarse right now -- expressions
2843
// which are equivalent but don't have the same identity are detected as
2844
// mismatches. We're going to diagnose those anyhow until expression
2845
// matching is better.
2846
return true;
2847
}
2848
case FunctionEffect::Kind::Blocking:
2849
case FunctionEffect::Kind::Allocating:
2850
return false;
2851
case FunctionEffect::Kind::None:
2852
break;
2853
}
2854
llvm_unreachable("unknown effect kind");
2855
}
2856
2857
bool FunctionEffectDiff::shouldDiagnoseRedeclaration(
2858
const FunctionDecl &OldFunction, const FunctionEffectsRef &OldFX,
2859
const FunctionDecl &NewFunction, const FunctionEffectsRef &NewFX) const {
2860
switch (EffectKind) {
2861
case FunctionEffect::Kind::NonAllocating:
2862
case FunctionEffect::Kind::NonBlocking:
2863
// nonblocking/nonallocating can't be removed in a redeclaration.
2864
switch (DiffKind) {
2865
case Kind::Added:
2866
return false; // No diagnostic.
2867
case Kind::Removed:
2868
return true; // Issue diagnostic.
2869
case Kind::ConditionMismatch:
2870
// All these forms of mismatches are diagnosed.
2871
return true;
2872
}
2873
case FunctionEffect::Kind::Blocking:
2874
case FunctionEffect::Kind::Allocating:
2875
return false;
2876
case FunctionEffect::Kind::None:
2877
break;
2878
}
2879
llvm_unreachable("unknown effect kind");
2880
}
2881
2882
FunctionEffectDiff::OverrideResult
2883
FunctionEffectDiff::shouldDiagnoseMethodOverride(
2884
const CXXMethodDecl &OldMethod, const FunctionEffectsRef &OldFX,
2885
const CXXMethodDecl &NewMethod, const FunctionEffectsRef &NewFX) const {
2886
switch (EffectKind) {
2887
case FunctionEffect::Kind::NonAllocating:
2888
case FunctionEffect::Kind::NonBlocking:
2889
switch (DiffKind) {
2890
2891
// If added on an override, that's fine and not diagnosed.
2892
case Kind::Added:
2893
return OverrideResult::NoAction;
2894
2895
// If missing from an override (removed), propagate from base to derived.
2896
case Kind::Removed:
2897
return OverrideResult::Merge;
2898
2899
// If there's a mismatch involving the effect's polarity or condition,
2900
// issue a warning.
2901
case Kind::ConditionMismatch:
2902
return OverrideResult::Warn;
2903
}
2904
2905
case FunctionEffect::Kind::Blocking:
2906
case FunctionEffect::Kind::Allocating:
2907
return OverrideResult::NoAction;
2908
2909
case FunctionEffect::Kind::None:
2910
break;
2911
}
2912
llvm_unreachable("unknown effect kind");
2913
}
2914
2915