Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/clang/lib/Sema/SemaCUDA.cpp
35234 views
1
//===--- SemaCUDA.cpp - Semantic Analysis for CUDA constructs -------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
/// \file
9
/// This file implements semantic analysis for CUDA constructs.
10
///
11
//===----------------------------------------------------------------------===//
12
13
#include "clang/Sema/SemaCUDA.h"
14
#include "clang/AST/ASTContext.h"
15
#include "clang/AST/Decl.h"
16
#include "clang/AST/ExprCXX.h"
17
#include "clang/Basic/Cuda.h"
18
#include "clang/Basic/TargetInfo.h"
19
#include "clang/Lex/Preprocessor.h"
20
#include "clang/Sema/Lookup.h"
21
#include "clang/Sema/ScopeInfo.h"
22
#include "clang/Sema/Sema.h"
23
#include "clang/Sema/SemaDiagnostic.h"
24
#include "clang/Sema/SemaInternal.h"
25
#include "clang/Sema/Template.h"
26
#include "llvm/ADT/STLForwardCompat.h"
27
#include "llvm/ADT/SmallVector.h"
28
#include <optional>
29
using namespace clang;
30
31
SemaCUDA::SemaCUDA(Sema &S) : SemaBase(S) {}
32
33
template <typename AttrT> static bool hasExplicitAttr(const VarDecl *D) {
34
if (!D)
35
return false;
36
if (auto *A = D->getAttr<AttrT>())
37
return !A->isImplicit();
38
return false;
39
}
40
41
void SemaCUDA::PushForceHostDevice() {
42
assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
43
ForceHostDeviceDepth++;
44
}
45
46
bool SemaCUDA::PopForceHostDevice() {
47
assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
48
if (ForceHostDeviceDepth == 0)
49
return false;
50
ForceHostDeviceDepth--;
51
return true;
52
}
53
54
ExprResult SemaCUDA::ActOnExecConfigExpr(Scope *S, SourceLocation LLLLoc,
55
MultiExprArg ExecConfig,
56
SourceLocation GGGLoc) {
57
FunctionDecl *ConfigDecl = getASTContext().getcudaConfigureCallDecl();
58
if (!ConfigDecl)
59
return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
60
<< getConfigureFuncName());
61
QualType ConfigQTy = ConfigDecl->getType();
62
63
DeclRefExpr *ConfigDR = new (getASTContext()) DeclRefExpr(
64
getASTContext(), ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
65
SemaRef.MarkFunctionReferenced(LLLLoc, ConfigDecl);
66
67
return SemaRef.BuildCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, nullptr,
68
/*IsExecConfig=*/true);
69
}
70
71
CUDAFunctionTarget SemaCUDA::IdentifyTarget(const ParsedAttributesView &Attrs) {
72
bool HasHostAttr = false;
73
bool HasDeviceAttr = false;
74
bool HasGlobalAttr = false;
75
bool HasInvalidTargetAttr = false;
76
for (const ParsedAttr &AL : Attrs) {
77
switch (AL.getKind()) {
78
case ParsedAttr::AT_CUDAGlobal:
79
HasGlobalAttr = true;
80
break;
81
case ParsedAttr::AT_CUDAHost:
82
HasHostAttr = true;
83
break;
84
case ParsedAttr::AT_CUDADevice:
85
HasDeviceAttr = true;
86
break;
87
case ParsedAttr::AT_CUDAInvalidTarget:
88
HasInvalidTargetAttr = true;
89
break;
90
default:
91
break;
92
}
93
}
94
95
if (HasInvalidTargetAttr)
96
return CUDAFunctionTarget::InvalidTarget;
97
98
if (HasGlobalAttr)
99
return CUDAFunctionTarget::Global;
100
101
if (HasHostAttr && HasDeviceAttr)
102
return CUDAFunctionTarget::HostDevice;
103
104
if (HasDeviceAttr)
105
return CUDAFunctionTarget::Device;
106
107
return CUDAFunctionTarget::Host;
108
}
109
110
template <typename A>
111
static bool hasAttr(const Decl *D, bool IgnoreImplicitAttr) {
112
return D->hasAttrs() && llvm::any_of(D->getAttrs(), [&](Attr *Attribute) {
113
return isa<A>(Attribute) &&
114
!(IgnoreImplicitAttr && Attribute->isImplicit());
115
});
116
}
117
118
SemaCUDA::CUDATargetContextRAII::CUDATargetContextRAII(
119
SemaCUDA &S_, SemaCUDA::CUDATargetContextKind K, Decl *D)
120
: S(S_) {
121
SavedCtx = S.CurCUDATargetCtx;
122
assert(K == SemaCUDA::CTCK_InitGlobalVar);
123
auto *VD = dyn_cast_or_null<VarDecl>(D);
124
if (VD && VD->hasGlobalStorage() && !VD->isStaticLocal()) {
125
auto Target = CUDAFunctionTarget::Host;
126
if ((hasAttr<CUDADeviceAttr>(VD, /*IgnoreImplicit=*/true) &&
127
!hasAttr<CUDAHostAttr>(VD, /*IgnoreImplicit=*/true)) ||
128
hasAttr<CUDASharedAttr>(VD, /*IgnoreImplicit=*/true) ||
129
hasAttr<CUDAConstantAttr>(VD, /*IgnoreImplicit=*/true))
130
Target = CUDAFunctionTarget::Device;
131
S.CurCUDATargetCtx = {Target, K, VD};
132
}
133
}
134
135
/// IdentifyTarget - Determine the CUDA compilation target for this function
136
CUDAFunctionTarget SemaCUDA::IdentifyTarget(const FunctionDecl *D,
137
bool IgnoreImplicitHDAttr) {
138
// Code that lives outside a function gets the target from CurCUDATargetCtx.
139
if (D == nullptr)
140
return CurCUDATargetCtx.Target;
141
142
if (D->hasAttr<CUDAInvalidTargetAttr>())
143
return CUDAFunctionTarget::InvalidTarget;
144
145
if (D->hasAttr<CUDAGlobalAttr>())
146
return CUDAFunctionTarget::Global;
147
148
if (hasAttr<CUDADeviceAttr>(D, IgnoreImplicitHDAttr)) {
149
if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr))
150
return CUDAFunctionTarget::HostDevice;
151
return CUDAFunctionTarget::Device;
152
} else if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr)) {
153
return CUDAFunctionTarget::Host;
154
} else if ((D->isImplicit() || !D->isUserProvided()) &&
155
!IgnoreImplicitHDAttr) {
156
// Some implicit declarations (like intrinsic functions) are not marked.
157
// Set the most lenient target on them for maximal flexibility.
158
return CUDAFunctionTarget::HostDevice;
159
}
160
161
return CUDAFunctionTarget::Host;
162
}
163
164
/// IdentifyTarget - Determine the CUDA compilation target for this variable.
165
SemaCUDA::CUDAVariableTarget SemaCUDA::IdentifyTarget(const VarDecl *Var) {
166
if (Var->hasAttr<HIPManagedAttr>())
167
return CVT_Unified;
168
// Only constexpr and const variabless with implicit constant attribute
169
// are emitted on both sides. Such variables are promoted to device side
170
// only if they have static constant intializers on device side.
171
if ((Var->isConstexpr() || Var->getType().isConstQualified()) &&
172
Var->hasAttr<CUDAConstantAttr>() &&
173
!hasExplicitAttr<CUDAConstantAttr>(Var))
174
return CVT_Both;
175
if (Var->hasAttr<CUDADeviceAttr>() || Var->hasAttr<CUDAConstantAttr>() ||
176
Var->hasAttr<CUDASharedAttr>() ||
177
Var->getType()->isCUDADeviceBuiltinSurfaceType() ||
178
Var->getType()->isCUDADeviceBuiltinTextureType())
179
return CVT_Device;
180
// Function-scope static variable without explicit device or constant
181
// attribute are emitted
182
// - on both sides in host device functions
183
// - on device side in device or global functions
184
if (auto *FD = dyn_cast<FunctionDecl>(Var->getDeclContext())) {
185
switch (IdentifyTarget(FD)) {
186
case CUDAFunctionTarget::HostDevice:
187
return CVT_Both;
188
case CUDAFunctionTarget::Device:
189
case CUDAFunctionTarget::Global:
190
return CVT_Device;
191
default:
192
return CVT_Host;
193
}
194
}
195
return CVT_Host;
196
}
197
198
// * CUDA Call preference table
199
//
200
// F - from,
201
// T - to
202
// Ph - preference in host mode
203
// Pd - preference in device mode
204
// H - handled in (x)
205
// Preferences: N:native, SS:same side, HD:host-device, WS:wrong side, --:never.
206
//
207
// | F | T | Ph | Pd | H |
208
// |----+----+-----+-----+-----+
209
// | d | d | N | N | (c) |
210
// | d | g | -- | -- | (a) |
211
// | d | h | -- | -- | (e) |
212
// | d | hd | HD | HD | (b) |
213
// | g | d | N | N | (c) |
214
// | g | g | -- | -- | (a) |
215
// | g | h | -- | -- | (e) |
216
// | g | hd | HD | HD | (b) |
217
// | h | d | -- | -- | (e) |
218
// | h | g | N | N | (c) |
219
// | h | h | N | N | (c) |
220
// | h | hd | HD | HD | (b) |
221
// | hd | d | WS | SS | (d) |
222
// | hd | g | SS | -- |(d/a)|
223
// | hd | h | SS | WS | (d) |
224
// | hd | hd | HD | HD | (b) |
225
226
SemaCUDA::CUDAFunctionPreference
227
SemaCUDA::IdentifyPreference(const FunctionDecl *Caller,
228
const FunctionDecl *Callee) {
229
assert(Callee && "Callee must be valid.");
230
231
// Treat ctor/dtor as host device function in device var initializer to allow
232
// trivial ctor/dtor without device attr to be used. Non-trivial ctor/dtor
233
// will be diagnosed by checkAllowedInitializer.
234
if (Caller == nullptr && CurCUDATargetCtx.Kind == CTCK_InitGlobalVar &&
235
CurCUDATargetCtx.Target == CUDAFunctionTarget::Device &&
236
(isa<CXXConstructorDecl>(Callee) || isa<CXXDestructorDecl>(Callee)))
237
return CFP_HostDevice;
238
239
CUDAFunctionTarget CallerTarget = IdentifyTarget(Caller);
240
CUDAFunctionTarget CalleeTarget = IdentifyTarget(Callee);
241
242
// If one of the targets is invalid, the check always fails, no matter what
243
// the other target is.
244
if (CallerTarget == CUDAFunctionTarget::InvalidTarget ||
245
CalleeTarget == CUDAFunctionTarget::InvalidTarget)
246
return CFP_Never;
247
248
// (a) Can't call global from some contexts until we support CUDA's
249
// dynamic parallelism.
250
if (CalleeTarget == CUDAFunctionTarget::Global &&
251
(CallerTarget == CUDAFunctionTarget::Global ||
252
CallerTarget == CUDAFunctionTarget::Device))
253
return CFP_Never;
254
255
// (b) Calling HostDevice is OK for everyone.
256
if (CalleeTarget == CUDAFunctionTarget::HostDevice)
257
return CFP_HostDevice;
258
259
// (c) Best case scenarios
260
if (CalleeTarget == CallerTarget ||
261
(CallerTarget == CUDAFunctionTarget::Host &&
262
CalleeTarget == CUDAFunctionTarget::Global) ||
263
(CallerTarget == CUDAFunctionTarget::Global &&
264
CalleeTarget == CUDAFunctionTarget::Device))
265
return CFP_Native;
266
267
// HipStdPar mode is special, in that assessing whether a device side call to
268
// a host target is deferred to a subsequent pass, and cannot unambiguously be
269
// adjudicated in the AST, hence we optimistically allow them to pass here.
270
if (getLangOpts().HIPStdPar &&
271
(CallerTarget == CUDAFunctionTarget::Global ||
272
CallerTarget == CUDAFunctionTarget::Device ||
273
CallerTarget == CUDAFunctionTarget::HostDevice) &&
274
CalleeTarget == CUDAFunctionTarget::Host)
275
return CFP_HostDevice;
276
277
// (d) HostDevice behavior depends on compilation mode.
278
if (CallerTarget == CUDAFunctionTarget::HostDevice) {
279
// It's OK to call a compilation-mode matching function from an HD one.
280
if ((getLangOpts().CUDAIsDevice &&
281
CalleeTarget == CUDAFunctionTarget::Device) ||
282
(!getLangOpts().CUDAIsDevice &&
283
(CalleeTarget == CUDAFunctionTarget::Host ||
284
CalleeTarget == CUDAFunctionTarget::Global)))
285
return CFP_SameSide;
286
287
// Calls from HD to non-mode-matching functions (i.e., to host functions
288
// when compiling in device mode or to device functions when compiling in
289
// host mode) are allowed at the sema level, but eventually rejected if
290
// they're ever codegened. TODO: Reject said calls earlier.
291
return CFP_WrongSide;
292
}
293
294
// (e) Calling across device/host boundary is not something you should do.
295
if ((CallerTarget == CUDAFunctionTarget::Host &&
296
CalleeTarget == CUDAFunctionTarget::Device) ||
297
(CallerTarget == CUDAFunctionTarget::Device &&
298
CalleeTarget == CUDAFunctionTarget::Host) ||
299
(CallerTarget == CUDAFunctionTarget::Global &&
300
CalleeTarget == CUDAFunctionTarget::Host))
301
return CFP_Never;
302
303
llvm_unreachable("All cases should've been handled by now.");
304
}
305
306
template <typename AttrT> static bool hasImplicitAttr(const FunctionDecl *D) {
307
if (!D)
308
return false;
309
if (auto *A = D->getAttr<AttrT>())
310
return A->isImplicit();
311
return D->isImplicit();
312
}
313
314
bool SemaCUDA::isImplicitHostDeviceFunction(const FunctionDecl *D) {
315
bool IsImplicitDevAttr = hasImplicitAttr<CUDADeviceAttr>(D);
316
bool IsImplicitHostAttr = hasImplicitAttr<CUDAHostAttr>(D);
317
return IsImplicitDevAttr && IsImplicitHostAttr;
318
}
319
320
void SemaCUDA::EraseUnwantedMatches(
321
const FunctionDecl *Caller,
322
SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches) {
323
if (Matches.size() <= 1)
324
return;
325
326
using Pair = std::pair<DeclAccessPair, FunctionDecl*>;
327
328
// Gets the CUDA function preference for a call from Caller to Match.
329
auto GetCFP = [&](const Pair &Match) {
330
return IdentifyPreference(Caller, Match.second);
331
};
332
333
// Find the best call preference among the functions in Matches.
334
CUDAFunctionPreference BestCFP = GetCFP(*std::max_element(
335
Matches.begin(), Matches.end(),
336
[&](const Pair &M1, const Pair &M2) { return GetCFP(M1) < GetCFP(M2); }));
337
338
// Erase all functions with lower priority.
339
llvm::erase_if(Matches,
340
[&](const Pair &Match) { return GetCFP(Match) < BestCFP; });
341
}
342
343
/// When an implicitly-declared special member has to invoke more than one
344
/// base/field special member, conflicts may occur in the targets of these
345
/// members. For example, if one base's member __host__ and another's is
346
/// __device__, it's a conflict.
347
/// This function figures out if the given targets \param Target1 and
348
/// \param Target2 conflict, and if they do not it fills in
349
/// \param ResolvedTarget with a target that resolves for both calls.
350
/// \return true if there's a conflict, false otherwise.
351
static bool
352
resolveCalleeCUDATargetConflict(CUDAFunctionTarget Target1,
353
CUDAFunctionTarget Target2,
354
CUDAFunctionTarget *ResolvedTarget) {
355
// Only free functions and static member functions may be global.
356
assert(Target1 != CUDAFunctionTarget::Global);
357
assert(Target2 != CUDAFunctionTarget::Global);
358
359
if (Target1 == CUDAFunctionTarget::HostDevice) {
360
*ResolvedTarget = Target2;
361
} else if (Target2 == CUDAFunctionTarget::HostDevice) {
362
*ResolvedTarget = Target1;
363
} else if (Target1 != Target2) {
364
return true;
365
} else {
366
*ResolvedTarget = Target1;
367
}
368
369
return false;
370
}
371
372
bool SemaCUDA::inferTargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl,
373
CXXSpecialMemberKind CSM,
374
CXXMethodDecl *MemberDecl,
375
bool ConstRHS,
376
bool Diagnose) {
377
// If the defaulted special member is defined lexically outside of its
378
// owning class, or the special member already has explicit device or host
379
// attributes, do not infer.
380
bool InClass = MemberDecl->getLexicalParent() == MemberDecl->getParent();
381
bool HasH = MemberDecl->hasAttr<CUDAHostAttr>();
382
bool HasD = MemberDecl->hasAttr<CUDADeviceAttr>();
383
bool HasExplicitAttr =
384
(HasD && !MemberDecl->getAttr<CUDADeviceAttr>()->isImplicit()) ||
385
(HasH && !MemberDecl->getAttr<CUDAHostAttr>()->isImplicit());
386
if (!InClass || HasExplicitAttr)
387
return false;
388
389
std::optional<CUDAFunctionTarget> InferredTarget;
390
391
// We're going to invoke special member lookup; mark that these special
392
// members are called from this one, and not from its caller.
393
Sema::ContextRAII MethodContext(SemaRef, MemberDecl);
394
395
// Look for special members in base classes that should be invoked from here.
396
// Infer the target of this member base on the ones it should call.
397
// Skip direct and indirect virtual bases for abstract classes.
398
llvm::SmallVector<const CXXBaseSpecifier *, 16> Bases;
399
for (const auto &B : ClassDecl->bases()) {
400
if (!B.isVirtual()) {
401
Bases.push_back(&B);
402
}
403
}
404
405
if (!ClassDecl->isAbstract()) {
406
llvm::append_range(Bases, llvm::make_pointer_range(ClassDecl->vbases()));
407
}
408
409
for (const auto *B : Bases) {
410
const RecordType *BaseType = B->getType()->getAs<RecordType>();
411
if (!BaseType) {
412
continue;
413
}
414
415
CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
416
Sema::SpecialMemberOverloadResult SMOR =
417
SemaRef.LookupSpecialMember(BaseClassDecl, CSM,
418
/* ConstArg */ ConstRHS,
419
/* VolatileArg */ false,
420
/* RValueThis */ false,
421
/* ConstThis */ false,
422
/* VolatileThis */ false);
423
424
if (!SMOR.getMethod())
425
continue;
426
427
CUDAFunctionTarget BaseMethodTarget = IdentifyTarget(SMOR.getMethod());
428
if (!InferredTarget) {
429
InferredTarget = BaseMethodTarget;
430
} else {
431
bool ResolutionError = resolveCalleeCUDATargetConflict(
432
*InferredTarget, BaseMethodTarget, &*InferredTarget);
433
if (ResolutionError) {
434
if (Diagnose) {
435
Diag(ClassDecl->getLocation(),
436
diag::note_implicit_member_target_infer_collision)
437
<< (unsigned)CSM << llvm::to_underlying(*InferredTarget)
438
<< llvm::to_underlying(BaseMethodTarget);
439
}
440
MemberDecl->addAttr(
441
CUDAInvalidTargetAttr::CreateImplicit(getASTContext()));
442
return true;
443
}
444
}
445
}
446
447
// Same as for bases, but now for special members of fields.
448
for (const auto *F : ClassDecl->fields()) {
449
if (F->isInvalidDecl()) {
450
continue;
451
}
452
453
const RecordType *FieldType =
454
getASTContext().getBaseElementType(F->getType())->getAs<RecordType>();
455
if (!FieldType) {
456
continue;
457
}
458
459
CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(FieldType->getDecl());
460
Sema::SpecialMemberOverloadResult SMOR =
461
SemaRef.LookupSpecialMember(FieldRecDecl, CSM,
462
/* ConstArg */ ConstRHS && !F->isMutable(),
463
/* VolatileArg */ false,
464
/* RValueThis */ false,
465
/* ConstThis */ false,
466
/* VolatileThis */ false);
467
468
if (!SMOR.getMethod())
469
continue;
470
471
CUDAFunctionTarget FieldMethodTarget = IdentifyTarget(SMOR.getMethod());
472
if (!InferredTarget) {
473
InferredTarget = FieldMethodTarget;
474
} else {
475
bool ResolutionError = resolveCalleeCUDATargetConflict(
476
*InferredTarget, FieldMethodTarget, &*InferredTarget);
477
if (ResolutionError) {
478
if (Diagnose) {
479
Diag(ClassDecl->getLocation(),
480
diag::note_implicit_member_target_infer_collision)
481
<< (unsigned)CSM << llvm::to_underlying(*InferredTarget)
482
<< llvm::to_underlying(FieldMethodTarget);
483
}
484
MemberDecl->addAttr(
485
CUDAInvalidTargetAttr::CreateImplicit(getASTContext()));
486
return true;
487
}
488
}
489
}
490
491
492
// If no target was inferred, mark this member as __host__ __device__;
493
// it's the least restrictive option that can be invoked from any target.
494
bool NeedsH = true, NeedsD = true;
495
if (InferredTarget) {
496
if (*InferredTarget == CUDAFunctionTarget::Device)
497
NeedsH = false;
498
else if (*InferredTarget == CUDAFunctionTarget::Host)
499
NeedsD = false;
500
}
501
502
// We either setting attributes first time, or the inferred ones must match
503
// previously set ones.
504
if (NeedsD && !HasD)
505
MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(getASTContext()));
506
if (NeedsH && !HasH)
507
MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(getASTContext()));
508
509
return false;
510
}
511
512
bool SemaCUDA::isEmptyConstructor(SourceLocation Loc, CXXConstructorDecl *CD) {
513
if (!CD->isDefined() && CD->isTemplateInstantiation())
514
SemaRef.InstantiateFunctionDefinition(Loc, CD->getFirstDecl());
515
516
// (E.2.3.1, CUDA 7.5) A constructor for a class type is considered
517
// empty at a point in the translation unit, if it is either a
518
// trivial constructor
519
if (CD->isTrivial())
520
return true;
521
522
// ... or it satisfies all of the following conditions:
523
// The constructor function has been defined.
524
// The constructor function has no parameters,
525
// and the function body is an empty compound statement.
526
if (!(CD->hasTrivialBody() && CD->getNumParams() == 0))
527
return false;
528
529
// Its class has no virtual functions and no virtual base classes.
530
if (CD->getParent()->isDynamicClass())
531
return false;
532
533
// Union ctor does not call ctors of its data members.
534
if (CD->getParent()->isUnion())
535
return true;
536
537
// The only form of initializer allowed is an empty constructor.
538
// This will recursively check all base classes and member initializers
539
if (!llvm::all_of(CD->inits(), [&](const CXXCtorInitializer *CI) {
540
if (const CXXConstructExpr *CE =
541
dyn_cast<CXXConstructExpr>(CI->getInit()))
542
return isEmptyConstructor(Loc, CE->getConstructor());
543
return false;
544
}))
545
return false;
546
547
return true;
548
}
549
550
bool SemaCUDA::isEmptyDestructor(SourceLocation Loc, CXXDestructorDecl *DD) {
551
// No destructor -> no problem.
552
if (!DD)
553
return true;
554
555
if (!DD->isDefined() && DD->isTemplateInstantiation())
556
SemaRef.InstantiateFunctionDefinition(Loc, DD->getFirstDecl());
557
558
// (E.2.3.1, CUDA 7.5) A destructor for a class type is considered
559
// empty at a point in the translation unit, if it is either a
560
// trivial constructor
561
if (DD->isTrivial())
562
return true;
563
564
// ... or it satisfies all of the following conditions:
565
// The destructor function has been defined.
566
// and the function body is an empty compound statement.
567
if (!DD->hasTrivialBody())
568
return false;
569
570
const CXXRecordDecl *ClassDecl = DD->getParent();
571
572
// Its class has no virtual functions and no virtual base classes.
573
if (ClassDecl->isDynamicClass())
574
return false;
575
576
// Union does not have base class and union dtor does not call dtors of its
577
// data members.
578
if (DD->getParent()->isUnion())
579
return true;
580
581
// Only empty destructors are allowed. This will recursively check
582
// destructors for all base classes...
583
if (!llvm::all_of(ClassDecl->bases(), [&](const CXXBaseSpecifier &BS) {
584
if (CXXRecordDecl *RD = BS.getType()->getAsCXXRecordDecl())
585
return isEmptyDestructor(Loc, RD->getDestructor());
586
return true;
587
}))
588
return false;
589
590
// ... and member fields.
591
if (!llvm::all_of(ClassDecl->fields(), [&](const FieldDecl *Field) {
592
if (CXXRecordDecl *RD = Field->getType()
593
->getBaseElementTypeUnsafe()
594
->getAsCXXRecordDecl())
595
return isEmptyDestructor(Loc, RD->getDestructor());
596
return true;
597
}))
598
return false;
599
600
return true;
601
}
602
603
namespace {
604
enum CUDAInitializerCheckKind {
605
CICK_DeviceOrConstant, // Check initializer for device/constant variable
606
CICK_Shared, // Check initializer for shared variable
607
};
608
609
bool IsDependentVar(VarDecl *VD) {
610
if (VD->getType()->isDependentType())
611
return true;
612
if (const auto *Init = VD->getInit())
613
return Init->isValueDependent();
614
return false;
615
}
616
617
// Check whether a variable has an allowed initializer for a CUDA device side
618
// variable with global storage. \p VD may be a host variable to be checked for
619
// potential promotion to device side variable.
620
//
621
// CUDA/HIP allows only empty constructors as initializers for global
622
// variables (see E.2.3.1, CUDA 7.5). The same restriction also applies to all
623
// __shared__ variables whether they are local or not (they all are implicitly
624
// static in CUDA). One exception is that CUDA allows constant initializers
625
// for __constant__ and __device__ variables.
626
bool HasAllowedCUDADeviceStaticInitializer(SemaCUDA &S, VarDecl *VD,
627
CUDAInitializerCheckKind CheckKind) {
628
assert(!VD->isInvalidDecl() && VD->hasGlobalStorage());
629
assert(!IsDependentVar(VD) && "do not check dependent var");
630
const Expr *Init = VD->getInit();
631
auto IsEmptyInit = [&](const Expr *Init) {
632
if (!Init)
633
return true;
634
if (const auto *CE = dyn_cast<CXXConstructExpr>(Init)) {
635
return S.isEmptyConstructor(VD->getLocation(), CE->getConstructor());
636
}
637
return false;
638
};
639
auto IsConstantInit = [&](const Expr *Init) {
640
assert(Init);
641
ASTContext::CUDAConstantEvalContextRAII EvalCtx(S.getASTContext(),
642
/*NoWronSidedVars=*/true);
643
return Init->isConstantInitializer(S.getASTContext(),
644
VD->getType()->isReferenceType());
645
};
646
auto HasEmptyDtor = [&](VarDecl *VD) {
647
if (const auto *RD = VD->getType()->getAsCXXRecordDecl())
648
return S.isEmptyDestructor(VD->getLocation(), RD->getDestructor());
649
return true;
650
};
651
if (CheckKind == CICK_Shared)
652
return IsEmptyInit(Init) && HasEmptyDtor(VD);
653
return S.getLangOpts().GPUAllowDeviceInit ||
654
((IsEmptyInit(Init) || IsConstantInit(Init)) && HasEmptyDtor(VD));
655
}
656
} // namespace
657
658
void SemaCUDA::checkAllowedInitializer(VarDecl *VD) {
659
// Return early if VD is inside a non-instantiated template function since
660
// the implicit constructor is not defined yet.
661
if (const FunctionDecl *FD =
662
dyn_cast_or_null<FunctionDecl>(VD->getDeclContext()))
663
if (FD->isDependentContext())
664
return;
665
666
// Do not check dependent variables since the ctor/dtor/initializer are not
667
// determined. Do it after instantiation.
668
if (VD->isInvalidDecl() || !VD->hasInit() || !VD->hasGlobalStorage() ||
669
IsDependentVar(VD))
670
return;
671
const Expr *Init = VD->getInit();
672
bool IsSharedVar = VD->hasAttr<CUDASharedAttr>();
673
bool IsDeviceOrConstantVar =
674
!IsSharedVar &&
675
(VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>());
676
if (IsDeviceOrConstantVar || IsSharedVar) {
677
if (HasAllowedCUDADeviceStaticInitializer(
678
*this, VD, IsSharedVar ? CICK_Shared : CICK_DeviceOrConstant))
679
return;
680
Diag(VD->getLocation(),
681
IsSharedVar ? diag::err_shared_var_init : diag::err_dynamic_var_init)
682
<< Init->getSourceRange();
683
VD->setInvalidDecl();
684
} else {
685
// This is a host-side global variable. Check that the initializer is
686
// callable from the host side.
687
const FunctionDecl *InitFn = nullptr;
688
if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init)) {
689
InitFn = CE->getConstructor();
690
} else if (const CallExpr *CE = dyn_cast<CallExpr>(Init)) {
691
InitFn = CE->getDirectCallee();
692
}
693
if (InitFn) {
694
CUDAFunctionTarget InitFnTarget = IdentifyTarget(InitFn);
695
if (InitFnTarget != CUDAFunctionTarget::Host &&
696
InitFnTarget != CUDAFunctionTarget::HostDevice) {
697
Diag(VD->getLocation(), diag::err_ref_bad_target_global_initializer)
698
<< llvm::to_underlying(InitFnTarget) << InitFn;
699
Diag(InitFn->getLocation(), diag::note_previous_decl) << InitFn;
700
VD->setInvalidDecl();
701
}
702
}
703
}
704
}
705
706
void SemaCUDA::RecordImplicitHostDeviceFuncUsedByDevice(
707
const FunctionDecl *Callee) {
708
FunctionDecl *Caller = SemaRef.getCurFunctionDecl(/*AllowLambda=*/true);
709
if (!Caller)
710
return;
711
712
if (!isImplicitHostDeviceFunction(Callee))
713
return;
714
715
CUDAFunctionTarget CallerTarget = IdentifyTarget(Caller);
716
717
// Record whether an implicit host device function is used on device side.
718
if (CallerTarget != CUDAFunctionTarget::Device &&
719
CallerTarget != CUDAFunctionTarget::Global &&
720
(CallerTarget != CUDAFunctionTarget::HostDevice ||
721
(isImplicitHostDeviceFunction(Caller) &&
722
!getASTContext().CUDAImplicitHostDeviceFunUsedByDevice.count(Caller))))
723
return;
724
725
getASTContext().CUDAImplicitHostDeviceFunUsedByDevice.insert(Callee);
726
}
727
728
// With -fcuda-host-device-constexpr, an unattributed constexpr function is
729
// treated as implicitly __host__ __device__, unless:
730
// * it is a variadic function (device-side variadic functions are not
731
// allowed), or
732
// * a __device__ function with this signature was already declared, in which
733
// case in which case we output an error, unless the __device__ decl is in a
734
// system header, in which case we leave the constexpr function unattributed.
735
//
736
// In addition, all function decls are treated as __host__ __device__ when
737
// ForceHostDeviceDepth > 0 (corresponding to code within a
738
// #pragma clang force_cuda_host_device_begin/end
739
// pair).
740
void SemaCUDA::maybeAddHostDeviceAttrs(FunctionDecl *NewD,
741
const LookupResult &Previous) {
742
assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
743
744
if (ForceHostDeviceDepth > 0) {
745
if (!NewD->hasAttr<CUDAHostAttr>())
746
NewD->addAttr(CUDAHostAttr::CreateImplicit(getASTContext()));
747
if (!NewD->hasAttr<CUDADeviceAttr>())
748
NewD->addAttr(CUDADeviceAttr::CreateImplicit(getASTContext()));
749
return;
750
}
751
752
// If a template function has no host/device/global attributes,
753
// make it implicitly host device function.
754
if (getLangOpts().OffloadImplicitHostDeviceTemplates &&
755
!NewD->hasAttr<CUDAHostAttr>() && !NewD->hasAttr<CUDADeviceAttr>() &&
756
!NewD->hasAttr<CUDAGlobalAttr>() &&
757
(NewD->getDescribedFunctionTemplate() ||
758
NewD->isFunctionTemplateSpecialization())) {
759
NewD->addAttr(CUDAHostAttr::CreateImplicit(getASTContext()));
760
NewD->addAttr(CUDADeviceAttr::CreateImplicit(getASTContext()));
761
return;
762
}
763
764
if (!getLangOpts().CUDAHostDeviceConstexpr || !NewD->isConstexpr() ||
765
NewD->isVariadic() || NewD->hasAttr<CUDAHostAttr>() ||
766
NewD->hasAttr<CUDADeviceAttr>() || NewD->hasAttr<CUDAGlobalAttr>())
767
return;
768
769
// Is D a __device__ function with the same signature as NewD, ignoring CUDA
770
// attributes?
771
auto IsMatchingDeviceFn = [&](NamedDecl *D) {
772
if (UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(D))
773
D = Using->getTargetDecl();
774
FunctionDecl *OldD = D->getAsFunction();
775
return OldD && OldD->hasAttr<CUDADeviceAttr>() &&
776
!OldD->hasAttr<CUDAHostAttr>() &&
777
!SemaRef.IsOverload(NewD, OldD,
778
/* UseMemberUsingDeclRules = */ false,
779
/* ConsiderCudaAttrs = */ false);
780
};
781
auto It = llvm::find_if(Previous, IsMatchingDeviceFn);
782
if (It != Previous.end()) {
783
// We found a __device__ function with the same name and signature as NewD
784
// (ignoring CUDA attrs). This is an error unless that function is defined
785
// in a system header, in which case we simply return without making NewD
786
// host+device.
787
NamedDecl *Match = *It;
788
if (!SemaRef.getSourceManager().isInSystemHeader(Match->getLocation())) {
789
Diag(NewD->getLocation(),
790
diag::err_cuda_unattributed_constexpr_cannot_overload_device)
791
<< NewD;
792
Diag(Match->getLocation(),
793
diag::note_cuda_conflicting_device_function_declared_here);
794
}
795
return;
796
}
797
798
NewD->addAttr(CUDAHostAttr::CreateImplicit(getASTContext()));
799
NewD->addAttr(CUDADeviceAttr::CreateImplicit(getASTContext()));
800
}
801
802
// TODO: `__constant__` memory may be a limited resource for certain targets.
803
// A safeguard may be needed at the end of compilation pipeline if
804
// `__constant__` memory usage goes beyond limit.
805
void SemaCUDA::MaybeAddConstantAttr(VarDecl *VD) {
806
// Do not promote dependent variables since the cotr/dtor/initializer are
807
// not determined. Do it after instantiation.
808
if (getLangOpts().CUDAIsDevice && !VD->hasAttr<CUDAConstantAttr>() &&
809
!VD->hasAttr<CUDASharedAttr>() &&
810
(VD->isFileVarDecl() || VD->isStaticDataMember()) &&
811
!IsDependentVar(VD) &&
812
((VD->isConstexpr() || VD->getType().isConstQualified()) &&
813
HasAllowedCUDADeviceStaticInitializer(*this, VD,
814
CICK_DeviceOrConstant))) {
815
VD->addAttr(CUDAConstantAttr::CreateImplicit(getASTContext()));
816
}
817
}
818
819
SemaBase::SemaDiagnosticBuilder SemaCUDA::DiagIfDeviceCode(SourceLocation Loc,
820
unsigned DiagID) {
821
assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
822
FunctionDecl *CurFunContext =
823
SemaRef.getCurFunctionDecl(/*AllowLambda=*/true);
824
SemaDiagnosticBuilder::Kind DiagKind = [&] {
825
if (!CurFunContext)
826
return SemaDiagnosticBuilder::K_Nop;
827
switch (CurrentTarget()) {
828
case CUDAFunctionTarget::Global:
829
case CUDAFunctionTarget::Device:
830
return SemaDiagnosticBuilder::K_Immediate;
831
case CUDAFunctionTarget::HostDevice:
832
// An HD function counts as host code if we're compiling for host, and
833
// device code if we're compiling for device. Defer any errors in device
834
// mode until the function is known-emitted.
835
if (!getLangOpts().CUDAIsDevice)
836
return SemaDiagnosticBuilder::K_Nop;
837
if (SemaRef.IsLastErrorImmediate &&
838
getDiagnostics().getDiagnosticIDs()->isBuiltinNote(DiagID))
839
return SemaDiagnosticBuilder::K_Immediate;
840
return (SemaRef.getEmissionStatus(CurFunContext) ==
841
Sema::FunctionEmissionStatus::Emitted)
842
? SemaDiagnosticBuilder::K_ImmediateWithCallStack
843
: SemaDiagnosticBuilder::K_Deferred;
844
default:
845
return SemaDiagnosticBuilder::K_Nop;
846
}
847
}();
848
return SemaDiagnosticBuilder(DiagKind, Loc, DiagID, CurFunContext, SemaRef);
849
}
850
851
Sema::SemaDiagnosticBuilder SemaCUDA::DiagIfHostCode(SourceLocation Loc,
852
unsigned DiagID) {
853
assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
854
FunctionDecl *CurFunContext =
855
SemaRef.getCurFunctionDecl(/*AllowLambda=*/true);
856
SemaDiagnosticBuilder::Kind DiagKind = [&] {
857
if (!CurFunContext)
858
return SemaDiagnosticBuilder::K_Nop;
859
switch (CurrentTarget()) {
860
case CUDAFunctionTarget::Host:
861
return SemaDiagnosticBuilder::K_Immediate;
862
case CUDAFunctionTarget::HostDevice:
863
// An HD function counts as host code if we're compiling for host, and
864
// device code if we're compiling for device. Defer any errors in device
865
// mode until the function is known-emitted.
866
if (getLangOpts().CUDAIsDevice)
867
return SemaDiagnosticBuilder::K_Nop;
868
if (SemaRef.IsLastErrorImmediate &&
869
getDiagnostics().getDiagnosticIDs()->isBuiltinNote(DiagID))
870
return SemaDiagnosticBuilder::K_Immediate;
871
return (SemaRef.getEmissionStatus(CurFunContext) ==
872
Sema::FunctionEmissionStatus::Emitted)
873
? SemaDiagnosticBuilder::K_ImmediateWithCallStack
874
: SemaDiagnosticBuilder::K_Deferred;
875
default:
876
return SemaDiagnosticBuilder::K_Nop;
877
}
878
}();
879
return SemaDiagnosticBuilder(DiagKind, Loc, DiagID, CurFunContext, SemaRef);
880
}
881
882
bool SemaCUDA::CheckCall(SourceLocation Loc, FunctionDecl *Callee) {
883
assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
884
assert(Callee && "Callee may not be null.");
885
886
const auto &ExprEvalCtx = SemaRef.currentEvaluationContext();
887
if (ExprEvalCtx.isUnevaluated() || ExprEvalCtx.isConstantEvaluated())
888
return true;
889
890
// FIXME: Is bailing out early correct here? Should we instead assume that
891
// the caller is a global initializer?
892
FunctionDecl *Caller = SemaRef.getCurFunctionDecl(/*AllowLambda=*/true);
893
if (!Caller)
894
return true;
895
896
// If the caller is known-emitted, mark the callee as known-emitted.
897
// Otherwise, mark the call in our call graph so we can traverse it later.
898
bool CallerKnownEmitted = SemaRef.getEmissionStatus(Caller) ==
899
Sema::FunctionEmissionStatus::Emitted;
900
SemaDiagnosticBuilder::Kind DiagKind = [this, Caller, Callee,
901
CallerKnownEmitted] {
902
switch (IdentifyPreference(Caller, Callee)) {
903
case CFP_Never:
904
case CFP_WrongSide:
905
assert(Caller && "Never/wrongSide calls require a non-null caller");
906
// If we know the caller will be emitted, we know this wrong-side call
907
// will be emitted, so it's an immediate error. Otherwise, defer the
908
// error until we know the caller is emitted.
909
return CallerKnownEmitted
910
? SemaDiagnosticBuilder::K_ImmediateWithCallStack
911
: SemaDiagnosticBuilder::K_Deferred;
912
default:
913
return SemaDiagnosticBuilder::K_Nop;
914
}
915
}();
916
917
if (DiagKind == SemaDiagnosticBuilder::K_Nop) {
918
// For -fgpu-rdc, keep track of external kernels used by host functions.
919
if (getLangOpts().CUDAIsDevice && getLangOpts().GPURelocatableDeviceCode &&
920
Callee->hasAttr<CUDAGlobalAttr>() && !Callee->isDefined() &&
921
(!Caller || (!Caller->getDescribedFunctionTemplate() &&
922
getASTContext().GetGVALinkageForFunction(Caller) ==
923
GVA_StrongExternal)))
924
getASTContext().CUDAExternalDeviceDeclODRUsedByHost.insert(Callee);
925
return true;
926
}
927
928
// Avoid emitting this error twice for the same location. Using a hashtable
929
// like this is unfortunate, but because we must continue parsing as normal
930
// after encountering a deferred error, it's otherwise very tricky for us to
931
// ensure that we only emit this deferred error once.
932
if (!LocsWithCUDACallDiags.insert({Caller, Loc}).second)
933
return true;
934
935
SemaDiagnosticBuilder(DiagKind, Loc, diag::err_ref_bad_target, Caller,
936
SemaRef)
937
<< llvm::to_underlying(IdentifyTarget(Callee)) << /*function*/ 0 << Callee
938
<< llvm::to_underlying(IdentifyTarget(Caller));
939
if (!Callee->getBuiltinID())
940
SemaDiagnosticBuilder(DiagKind, Callee->getLocation(),
941
diag::note_previous_decl, Caller, SemaRef)
942
<< Callee;
943
return DiagKind != SemaDiagnosticBuilder::K_Immediate &&
944
DiagKind != SemaDiagnosticBuilder::K_ImmediateWithCallStack;
945
}
946
947
// Check the wrong-sided reference capture of lambda for CUDA/HIP.
948
// A lambda function may capture a stack variable by reference when it is
949
// defined and uses the capture by reference when the lambda is called. When
950
// the capture and use happen on different sides, the capture is invalid and
951
// should be diagnosed.
952
void SemaCUDA::CheckLambdaCapture(CXXMethodDecl *Callee,
953
const sema::Capture &Capture) {
954
// In host compilation we only need to check lambda functions emitted on host
955
// side. In such lambda functions, a reference capture is invalid only
956
// if the lambda structure is populated by a device function or kernel then
957
// is passed to and called by a host function. However that is impossible,
958
// since a device function or kernel can only call a device function, also a
959
// kernel cannot pass a lambda back to a host function since we cannot
960
// define a kernel argument type which can hold the lambda before the lambda
961
// itself is defined.
962
if (!getLangOpts().CUDAIsDevice)
963
return;
964
965
// File-scope lambda can only do init captures for global variables, which
966
// results in passing by value for these global variables.
967
FunctionDecl *Caller = SemaRef.getCurFunctionDecl(/*AllowLambda=*/true);
968
if (!Caller)
969
return;
970
971
// In device compilation, we only need to check lambda functions which are
972
// emitted on device side. For such lambdas, a reference capture is invalid
973
// only if the lambda structure is populated by a host function then passed
974
// to and called in a device function or kernel.
975
bool CalleeIsDevice = Callee->hasAttr<CUDADeviceAttr>();
976
bool CallerIsHost =
977
!Caller->hasAttr<CUDAGlobalAttr>() && !Caller->hasAttr<CUDADeviceAttr>();
978
bool ShouldCheck = CalleeIsDevice && CallerIsHost;
979
if (!ShouldCheck || !Capture.isReferenceCapture())
980
return;
981
auto DiagKind = SemaDiagnosticBuilder::K_Deferred;
982
if (Capture.isVariableCapture() && !getLangOpts().HIPStdPar) {
983
SemaDiagnosticBuilder(DiagKind, Capture.getLocation(),
984
diag::err_capture_bad_target, Callee, SemaRef)
985
<< Capture.getVariable();
986
} else if (Capture.isThisCapture()) {
987
// Capture of this pointer is allowed since this pointer may be pointing to
988
// managed memory which is accessible on both device and host sides. It only
989
// results in invalid memory access if this pointer points to memory not
990
// accessible on device side.
991
SemaDiagnosticBuilder(DiagKind, Capture.getLocation(),
992
diag::warn_maybe_capture_bad_target_this_ptr, Callee,
993
SemaRef);
994
}
995
}
996
997
void SemaCUDA::SetLambdaAttrs(CXXMethodDecl *Method) {
998
assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
999
if (Method->hasAttr<CUDAHostAttr>() || Method->hasAttr<CUDADeviceAttr>())
1000
return;
1001
Method->addAttr(CUDADeviceAttr::CreateImplicit(getASTContext()));
1002
Method->addAttr(CUDAHostAttr::CreateImplicit(getASTContext()));
1003
}
1004
1005
void SemaCUDA::checkTargetOverload(FunctionDecl *NewFD,
1006
const LookupResult &Previous) {
1007
assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
1008
CUDAFunctionTarget NewTarget = IdentifyTarget(NewFD);
1009
for (NamedDecl *OldND : Previous) {
1010
FunctionDecl *OldFD = OldND->getAsFunction();
1011
if (!OldFD)
1012
continue;
1013
1014
CUDAFunctionTarget OldTarget = IdentifyTarget(OldFD);
1015
// Don't allow HD and global functions to overload other functions with the
1016
// same signature. We allow overloading based on CUDA attributes so that
1017
// functions can have different implementations on the host and device, but
1018
// HD/global functions "exist" in some sense on both the host and device, so
1019
// should have the same implementation on both sides.
1020
if (NewTarget != OldTarget &&
1021
!SemaRef.IsOverload(NewFD, OldFD, /* UseMemberUsingDeclRules = */ false,
1022
/* ConsiderCudaAttrs = */ false)) {
1023
if ((NewTarget == CUDAFunctionTarget::HostDevice &&
1024
!(getLangOpts().OffloadImplicitHostDeviceTemplates &&
1025
isImplicitHostDeviceFunction(NewFD) &&
1026
OldTarget == CUDAFunctionTarget::Device)) ||
1027
(OldTarget == CUDAFunctionTarget::HostDevice &&
1028
!(getLangOpts().OffloadImplicitHostDeviceTemplates &&
1029
isImplicitHostDeviceFunction(OldFD) &&
1030
NewTarget == CUDAFunctionTarget::Device)) ||
1031
(NewTarget == CUDAFunctionTarget::Global) ||
1032
(OldTarget == CUDAFunctionTarget::Global)) {
1033
Diag(NewFD->getLocation(), diag::err_cuda_ovl_target)
1034
<< llvm::to_underlying(NewTarget) << NewFD->getDeclName()
1035
<< llvm::to_underlying(OldTarget) << OldFD;
1036
Diag(OldFD->getLocation(), diag::note_previous_declaration);
1037
NewFD->setInvalidDecl();
1038
break;
1039
}
1040
if ((NewTarget == CUDAFunctionTarget::Host &&
1041
OldTarget == CUDAFunctionTarget::Device) ||
1042
(NewTarget == CUDAFunctionTarget::Device &&
1043
OldTarget == CUDAFunctionTarget::Host)) {
1044
Diag(NewFD->getLocation(), diag::warn_offload_incompatible_redeclare)
1045
<< llvm::to_underlying(NewTarget) << llvm::to_underlying(OldTarget);
1046
Diag(OldFD->getLocation(), diag::note_previous_declaration);
1047
}
1048
}
1049
}
1050
}
1051
1052
template <typename AttrTy>
1053
static void copyAttrIfPresent(Sema &S, FunctionDecl *FD,
1054
const FunctionDecl &TemplateFD) {
1055
if (AttrTy *Attribute = TemplateFD.getAttr<AttrTy>()) {
1056
AttrTy *Clone = Attribute->clone(S.Context);
1057
Clone->setInherited(true);
1058
FD->addAttr(Clone);
1059
}
1060
}
1061
1062
void SemaCUDA::inheritTargetAttrs(FunctionDecl *FD,
1063
const FunctionTemplateDecl &TD) {
1064
const FunctionDecl &TemplateFD = *TD.getTemplatedDecl();
1065
copyAttrIfPresent<CUDAGlobalAttr>(SemaRef, FD, TemplateFD);
1066
copyAttrIfPresent<CUDAHostAttr>(SemaRef, FD, TemplateFD);
1067
copyAttrIfPresent<CUDADeviceAttr>(SemaRef, FD, TemplateFD);
1068
}
1069
1070
std::string SemaCUDA::getConfigureFuncName() const {
1071
if (getLangOpts().HIP)
1072
return getLangOpts().HIPUseNewLaunchAPI ? "__hipPushCallConfiguration"
1073
: "hipConfigureCall";
1074
1075
// New CUDA kernel launch sequence.
1076
if (CudaFeatureEnabled(getASTContext().getTargetInfo().getSDKVersion(),
1077
CudaFeature::CUDA_USES_NEW_LAUNCH))
1078
return "__cudaPushCallConfiguration";
1079
1080
// Legacy CUDA kernel configuration call
1081
return "cudaConfigureCall";
1082
}
1083
1084