Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/clang/lib/Sema/SemaCXXScopeSpec.cpp
35233 views
1
//===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements C++ semantic analysis for scope specifiers.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "TypeLocBuilder.h"
14
#include "clang/AST/ASTContext.h"
15
#include "clang/AST/DeclTemplate.h"
16
#include "clang/AST/ExprCXX.h"
17
#include "clang/AST/NestedNameSpecifier.h"
18
#include "clang/Basic/PartialDiagnostic.h"
19
#include "clang/Sema/DeclSpec.h"
20
#include "clang/Sema/Lookup.h"
21
#include "clang/Sema/SemaInternal.h"
22
#include "clang/Sema/Template.h"
23
#include "llvm/ADT/STLExtras.h"
24
using namespace clang;
25
26
/// Find the current instantiation that associated with the given type.
27
static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
28
DeclContext *CurContext) {
29
if (T.isNull())
30
return nullptr;
31
32
const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
33
if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
34
CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
35
if (!Record->isDependentContext() ||
36
Record->isCurrentInstantiation(CurContext))
37
return Record;
38
39
return nullptr;
40
} else if (isa<InjectedClassNameType>(Ty))
41
return cast<InjectedClassNameType>(Ty)->getDecl();
42
else
43
return nullptr;
44
}
45
46
DeclContext *Sema::computeDeclContext(QualType T) {
47
if (!T->isDependentType())
48
if (const TagType *Tag = T->getAs<TagType>())
49
return Tag->getDecl();
50
51
return ::getCurrentInstantiationOf(T, CurContext);
52
}
53
54
DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
55
bool EnteringContext) {
56
if (!SS.isSet() || SS.isInvalid())
57
return nullptr;
58
59
NestedNameSpecifier *NNS = SS.getScopeRep();
60
if (NNS->isDependent()) {
61
// If this nested-name-specifier refers to the current
62
// instantiation, return its DeclContext.
63
if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
64
return Record;
65
66
if (EnteringContext) {
67
const Type *NNSType = NNS->getAsType();
68
if (!NNSType) {
69
return nullptr;
70
}
71
72
// Look through type alias templates, per C++0x [temp.dep.type]p1.
73
NNSType = Context.getCanonicalType(NNSType);
74
if (const TemplateSpecializationType *SpecType
75
= NNSType->getAs<TemplateSpecializationType>()) {
76
// We are entering the context of the nested name specifier, so try to
77
// match the nested name specifier to either a primary class template
78
// or a class template partial specialization.
79
if (ClassTemplateDecl *ClassTemplate
80
= dyn_cast_or_null<ClassTemplateDecl>(
81
SpecType->getTemplateName().getAsTemplateDecl())) {
82
QualType ContextType =
83
Context.getCanonicalType(QualType(SpecType, 0));
84
85
// FIXME: The fallback on the search of partial
86
// specialization using ContextType should be eventually removed since
87
// it doesn't handle the case of constrained template parameters
88
// correctly. Currently removing this fallback would change the
89
// diagnostic output for invalid code in a number of tests.
90
ClassTemplatePartialSpecializationDecl *PartialSpec = nullptr;
91
ArrayRef<TemplateParameterList *> TemplateParamLists =
92
SS.getTemplateParamLists();
93
if (!TemplateParamLists.empty()) {
94
unsigned Depth = ClassTemplate->getTemplateParameters()->getDepth();
95
auto L = find_if(TemplateParamLists,
96
[Depth](TemplateParameterList *TPL) {
97
return TPL->getDepth() == Depth;
98
});
99
if (L != TemplateParamLists.end()) {
100
void *Pos = nullptr;
101
PartialSpec = ClassTemplate->findPartialSpecialization(
102
SpecType->template_arguments(), *L, Pos);
103
}
104
} else {
105
PartialSpec = ClassTemplate->findPartialSpecialization(ContextType);
106
}
107
108
if (PartialSpec) {
109
// A declaration of the partial specialization must be visible.
110
// We can always recover here, because this only happens when we're
111
// entering the context, and that can't happen in a SFINAE context.
112
assert(!isSFINAEContext() && "partial specialization scope "
113
"specifier in SFINAE context?");
114
if (PartialSpec->hasDefinition() &&
115
!hasReachableDefinition(PartialSpec))
116
diagnoseMissingImport(SS.getLastQualifierNameLoc(), PartialSpec,
117
MissingImportKind::PartialSpecialization,
118
true);
119
return PartialSpec;
120
}
121
122
// If the type of the nested name specifier is the same as the
123
// injected class name of the named class template, we're entering
124
// into that class template definition.
125
QualType Injected =
126
ClassTemplate->getInjectedClassNameSpecialization();
127
if (Context.hasSameType(Injected, ContextType))
128
return ClassTemplate->getTemplatedDecl();
129
}
130
} else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
131
// The nested name specifier refers to a member of a class template.
132
return RecordT->getDecl();
133
}
134
}
135
136
return nullptr;
137
}
138
139
switch (NNS->getKind()) {
140
case NestedNameSpecifier::Identifier:
141
llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
142
143
case NestedNameSpecifier::Namespace:
144
return NNS->getAsNamespace();
145
146
case NestedNameSpecifier::NamespaceAlias:
147
return NNS->getAsNamespaceAlias()->getNamespace();
148
149
case NestedNameSpecifier::TypeSpec:
150
case NestedNameSpecifier::TypeSpecWithTemplate: {
151
const TagType *Tag = NNS->getAsType()->getAs<TagType>();
152
assert(Tag && "Non-tag type in nested-name-specifier");
153
return Tag->getDecl();
154
}
155
156
case NestedNameSpecifier::Global:
157
return Context.getTranslationUnitDecl();
158
159
case NestedNameSpecifier::Super:
160
return NNS->getAsRecordDecl();
161
}
162
163
llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
164
}
165
166
bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
167
if (!SS.isSet() || SS.isInvalid())
168
return false;
169
170
return SS.getScopeRep()->isDependent();
171
}
172
173
CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
174
assert(getLangOpts().CPlusPlus && "Only callable in C++");
175
assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
176
177
if (!NNS->getAsType())
178
return nullptr;
179
180
QualType T = QualType(NNS->getAsType(), 0);
181
return ::getCurrentInstantiationOf(T, CurContext);
182
}
183
184
/// Require that the context specified by SS be complete.
185
///
186
/// If SS refers to a type, this routine checks whether the type is
187
/// complete enough (or can be made complete enough) for name lookup
188
/// into the DeclContext. A type that is not yet completed can be
189
/// considered "complete enough" if it is a class/struct/union/enum
190
/// that is currently being defined. Or, if we have a type that names
191
/// a class template specialization that is not a complete type, we
192
/// will attempt to instantiate that class template.
193
bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
194
DeclContext *DC) {
195
assert(DC && "given null context");
196
197
TagDecl *tag = dyn_cast<TagDecl>(DC);
198
199
// If this is a dependent type, then we consider it complete.
200
// FIXME: This is wrong; we should require a (visible) definition to
201
// exist in this case too.
202
if (!tag || tag->isDependentContext())
203
return false;
204
205
// Grab the tag definition, if there is one.
206
QualType type = Context.getTypeDeclType(tag);
207
tag = type->getAsTagDecl();
208
209
// If we're currently defining this type, then lookup into the
210
// type is okay: don't complain that it isn't complete yet.
211
if (tag->isBeingDefined())
212
return false;
213
214
SourceLocation loc = SS.getLastQualifierNameLoc();
215
if (loc.isInvalid()) loc = SS.getRange().getBegin();
216
217
// The type must be complete.
218
if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec,
219
SS.getRange())) {
220
SS.SetInvalid(SS.getRange());
221
return true;
222
}
223
224
if (auto *EnumD = dyn_cast<EnumDecl>(tag))
225
// Fixed enum types and scoped enum instantiations are complete, but they
226
// aren't valid as scopes until we see or instantiate their definition.
227
return RequireCompleteEnumDecl(EnumD, loc, &SS);
228
229
return false;
230
}
231
232
/// Require that the EnumDecl is completed with its enumerators defined or
233
/// instantiated. SS, if provided, is the ScopeRef parsed.
234
///
235
bool Sema::RequireCompleteEnumDecl(EnumDecl *EnumD, SourceLocation L,
236
CXXScopeSpec *SS) {
237
if (EnumD->isCompleteDefinition()) {
238
// If we know about the definition but it is not visible, complain.
239
NamedDecl *SuggestedDef = nullptr;
240
if (!hasReachableDefinition(EnumD, &SuggestedDef,
241
/*OnlyNeedComplete*/ false)) {
242
// If the user is going to see an error here, recover by making the
243
// definition visible.
244
bool TreatAsComplete = !isSFINAEContext();
245
diagnoseMissingImport(L, SuggestedDef, MissingImportKind::Definition,
246
/*Recover*/ TreatAsComplete);
247
return !TreatAsComplete;
248
}
249
return false;
250
}
251
252
// Try to instantiate the definition, if this is a specialization of an
253
// enumeration temploid.
254
if (EnumDecl *Pattern = EnumD->getInstantiatedFromMemberEnum()) {
255
MemberSpecializationInfo *MSI = EnumD->getMemberSpecializationInfo();
256
if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
257
if (InstantiateEnum(L, EnumD, Pattern,
258
getTemplateInstantiationArgs(EnumD),
259
TSK_ImplicitInstantiation)) {
260
if (SS)
261
SS->SetInvalid(SS->getRange());
262
return true;
263
}
264
return false;
265
}
266
}
267
268
if (SS) {
269
Diag(L, diag::err_incomplete_nested_name_spec)
270
<< QualType(EnumD->getTypeForDecl(), 0) << SS->getRange();
271
SS->SetInvalid(SS->getRange());
272
} else {
273
Diag(L, diag::err_incomplete_enum) << QualType(EnumD->getTypeForDecl(), 0);
274
Diag(EnumD->getLocation(), diag::note_declared_at);
275
}
276
277
return true;
278
}
279
280
bool Sema::ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc,
281
CXXScopeSpec &SS) {
282
SS.MakeGlobal(Context, CCLoc);
283
return false;
284
}
285
286
bool Sema::ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
287
SourceLocation ColonColonLoc,
288
CXXScopeSpec &SS) {
289
if (getCurLambda()) {
290
Diag(SuperLoc, diag::err_super_in_lambda_unsupported);
291
return true;
292
}
293
294
CXXRecordDecl *RD = nullptr;
295
for (Scope *S = getCurScope(); S; S = S->getParent()) {
296
if (S->isFunctionScope()) {
297
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(S->getEntity()))
298
RD = MD->getParent();
299
break;
300
}
301
if (S->isClassScope()) {
302
RD = cast<CXXRecordDecl>(S->getEntity());
303
break;
304
}
305
}
306
307
if (!RD) {
308
Diag(SuperLoc, diag::err_invalid_super_scope);
309
return true;
310
} else if (RD->getNumBases() == 0) {
311
Diag(SuperLoc, diag::err_no_base_classes) << RD->getName();
312
return true;
313
}
314
315
SS.MakeSuper(Context, RD, SuperLoc, ColonColonLoc);
316
return false;
317
}
318
319
bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD,
320
bool *IsExtension) {
321
if (!SD)
322
return false;
323
324
SD = SD->getUnderlyingDecl();
325
326
// Namespace and namespace aliases are fine.
327
if (isa<NamespaceDecl>(SD))
328
return true;
329
330
if (!isa<TypeDecl>(SD))
331
return false;
332
333
// Determine whether we have a class (or, in C++11, an enum) or
334
// a typedef thereof. If so, build the nested-name-specifier.
335
QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
336
if (T->isDependentType())
337
return true;
338
if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
339
if (TD->getUnderlyingType()->isRecordType())
340
return true;
341
if (TD->getUnderlyingType()->isEnumeralType()) {
342
if (Context.getLangOpts().CPlusPlus11)
343
return true;
344
if (IsExtension)
345
*IsExtension = true;
346
}
347
} else if (isa<RecordDecl>(SD)) {
348
return true;
349
} else if (isa<EnumDecl>(SD)) {
350
if (Context.getLangOpts().CPlusPlus11)
351
return true;
352
if (IsExtension)
353
*IsExtension = true;
354
}
355
356
return false;
357
}
358
359
NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
360
if (!S || !NNS)
361
return nullptr;
362
363
while (NNS->getPrefix())
364
NNS = NNS->getPrefix();
365
366
if (NNS->getKind() != NestedNameSpecifier::Identifier)
367
return nullptr;
368
369
LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
370
LookupNestedNameSpecifierName);
371
LookupName(Found, S);
372
assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
373
374
if (!Found.isSingleResult())
375
return nullptr;
376
377
NamedDecl *Result = Found.getFoundDecl();
378
if (isAcceptableNestedNameSpecifier(Result))
379
return Result;
380
381
return nullptr;
382
}
383
384
namespace {
385
386
// Callback to only accept typo corrections that can be a valid C++ member
387
// initializer: either a non-static field member or a base class.
388
class NestedNameSpecifierValidatorCCC final
389
: public CorrectionCandidateCallback {
390
public:
391
explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
392
: SRef(SRef) {}
393
394
bool ValidateCandidate(const TypoCorrection &candidate) override {
395
return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
396
}
397
398
std::unique_ptr<CorrectionCandidateCallback> clone() override {
399
return std::make_unique<NestedNameSpecifierValidatorCCC>(*this);
400
}
401
402
private:
403
Sema &SRef;
404
};
405
406
}
407
408
bool Sema::BuildCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo,
409
bool EnteringContext, CXXScopeSpec &SS,
410
NamedDecl *ScopeLookupResult,
411
bool ErrorRecoveryLookup,
412
bool *IsCorrectedToColon,
413
bool OnlyNamespace) {
414
if (IdInfo.Identifier->isEditorPlaceholder())
415
return true;
416
LookupResult Found(*this, IdInfo.Identifier, IdInfo.IdentifierLoc,
417
OnlyNamespace ? LookupNamespaceName
418
: LookupNestedNameSpecifierName);
419
QualType ObjectType = GetTypeFromParser(IdInfo.ObjectType);
420
421
// Determine where to perform name lookup
422
DeclContext *LookupCtx = nullptr;
423
bool isDependent = false;
424
if (IsCorrectedToColon)
425
*IsCorrectedToColon = false;
426
if (!ObjectType.isNull()) {
427
// This nested-name-specifier occurs in a member access expression, e.g.,
428
// x->B::f, and we are looking into the type of the object.
429
assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
430
LookupCtx = computeDeclContext(ObjectType);
431
isDependent = ObjectType->isDependentType();
432
} else if (SS.isSet()) {
433
// This nested-name-specifier occurs after another nested-name-specifier,
434
// so look into the context associated with the prior nested-name-specifier.
435
LookupCtx = computeDeclContext(SS, EnteringContext);
436
isDependent = isDependentScopeSpecifier(SS);
437
Found.setContextRange(SS.getRange());
438
}
439
440
bool ObjectTypeSearchedInScope = false;
441
if (LookupCtx) {
442
// Perform "qualified" name lookup into the declaration context we
443
// computed, which is either the type of the base of a member access
444
// expression or the declaration context associated with a prior
445
// nested-name-specifier.
446
447
// The declaration context must be complete.
448
if (!LookupCtx->isDependentContext() &&
449
RequireCompleteDeclContext(SS, LookupCtx))
450
return true;
451
452
LookupQualifiedName(Found, LookupCtx);
453
454
if (!ObjectType.isNull() && Found.empty()) {
455
// C++ [basic.lookup.classref]p4:
456
// If the id-expression in a class member access is a qualified-id of
457
// the form
458
//
459
// class-name-or-namespace-name::...
460
//
461
// the class-name-or-namespace-name following the . or -> operator is
462
// looked up both in the context of the entire postfix-expression and in
463
// the scope of the class of the object expression. If the name is found
464
// only in the scope of the class of the object expression, the name
465
// shall refer to a class-name. If the name is found only in the
466
// context of the entire postfix-expression, the name shall refer to a
467
// class-name or namespace-name. [...]
468
//
469
// Qualified name lookup into a class will not find a namespace-name,
470
// so we do not need to diagnose that case specifically. However,
471
// this qualified name lookup may find nothing. In that case, perform
472
// unqualified name lookup in the given scope (if available) or
473
// reconstruct the result from when name lookup was performed at template
474
// definition time.
475
if (S)
476
LookupName(Found, S);
477
else if (ScopeLookupResult)
478
Found.addDecl(ScopeLookupResult);
479
480
ObjectTypeSearchedInScope = true;
481
}
482
} else if (!isDependent) {
483
// Perform unqualified name lookup in the current scope.
484
LookupName(Found, S);
485
}
486
487
if (Found.isAmbiguous())
488
return true;
489
490
// If we performed lookup into a dependent context and did not find anything,
491
// that's fine: just build a dependent nested-name-specifier.
492
if (Found.empty() && isDependent &&
493
!(LookupCtx && LookupCtx->isRecord() &&
494
(!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
495
!cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
496
// Don't speculate if we're just trying to improve error recovery.
497
if (ErrorRecoveryLookup)
498
return true;
499
500
// We were not able to compute the declaration context for a dependent
501
// base object type or prior nested-name-specifier, so this
502
// nested-name-specifier refers to an unknown specialization. Just build
503
// a dependent nested-name-specifier.
504
SS.Extend(Context, IdInfo.Identifier, IdInfo.IdentifierLoc, IdInfo.CCLoc);
505
return false;
506
}
507
508
if (Found.empty() && !ErrorRecoveryLookup) {
509
// If identifier is not found as class-name-or-namespace-name, but is found
510
// as other entity, don't look for typos.
511
LookupResult R(*this, Found.getLookupNameInfo(), LookupOrdinaryName);
512
if (LookupCtx)
513
LookupQualifiedName(R, LookupCtx);
514
else if (S && !isDependent)
515
LookupName(R, S);
516
if (!R.empty()) {
517
// Don't diagnose problems with this speculative lookup.
518
R.suppressDiagnostics();
519
// The identifier is found in ordinary lookup. If correction to colon is
520
// allowed, suggest replacement to ':'.
521
if (IsCorrectedToColon) {
522
*IsCorrectedToColon = true;
523
Diag(IdInfo.CCLoc, diag::err_nested_name_spec_is_not_class)
524
<< IdInfo.Identifier << getLangOpts().CPlusPlus
525
<< FixItHint::CreateReplacement(IdInfo.CCLoc, ":");
526
if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
527
Diag(ND->getLocation(), diag::note_declared_at);
528
return true;
529
}
530
// Replacement '::' -> ':' is not allowed, just issue respective error.
531
Diag(R.getNameLoc(), OnlyNamespace
532
? unsigned(diag::err_expected_namespace_name)
533
: unsigned(diag::err_expected_class_or_namespace))
534
<< IdInfo.Identifier << getLangOpts().CPlusPlus;
535
if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
536
Diag(ND->getLocation(), diag::note_entity_declared_at)
537
<< IdInfo.Identifier;
538
return true;
539
}
540
}
541
542
if (Found.empty() && !ErrorRecoveryLookup && !getLangOpts().MSVCCompat) {
543
// We haven't found anything, and we're not recovering from a
544
// different kind of error, so look for typos.
545
DeclarationName Name = Found.getLookupName();
546
Found.clear();
547
NestedNameSpecifierValidatorCCC CCC(*this);
548
if (TypoCorrection Corrected = CorrectTypo(
549
Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS, CCC,
550
CTK_ErrorRecovery, LookupCtx, EnteringContext)) {
551
if (LookupCtx) {
552
bool DroppedSpecifier =
553
Corrected.WillReplaceSpecifier() &&
554
Name.getAsString() == Corrected.getAsString(getLangOpts());
555
if (DroppedSpecifier)
556
SS.clear();
557
diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
558
<< Name << LookupCtx << DroppedSpecifier
559
<< SS.getRange());
560
} else
561
diagnoseTypo(Corrected, PDiag(diag::err_undeclared_var_use_suggest)
562
<< Name);
563
564
if (Corrected.getCorrectionSpecifier())
565
SS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
566
SourceRange(Found.getNameLoc()));
567
568
if (NamedDecl *ND = Corrected.getFoundDecl())
569
Found.addDecl(ND);
570
Found.setLookupName(Corrected.getCorrection());
571
} else {
572
Found.setLookupName(IdInfo.Identifier);
573
}
574
}
575
576
NamedDecl *SD =
577
Found.isSingleResult() ? Found.getRepresentativeDecl() : nullptr;
578
bool IsExtension = false;
579
bool AcceptSpec = isAcceptableNestedNameSpecifier(SD, &IsExtension);
580
if (!AcceptSpec && IsExtension) {
581
AcceptSpec = true;
582
Diag(IdInfo.IdentifierLoc, diag::ext_nested_name_spec_is_enum);
583
}
584
if (AcceptSpec) {
585
if (!ObjectType.isNull() && !ObjectTypeSearchedInScope &&
586
!getLangOpts().CPlusPlus11) {
587
// C++03 [basic.lookup.classref]p4:
588
// [...] If the name is found in both contexts, the
589
// class-name-or-namespace-name shall refer to the same entity.
590
//
591
// We already found the name in the scope of the object. Now, look
592
// into the current scope (the scope of the postfix-expression) to
593
// see if we can find the same name there. As above, if there is no
594
// scope, reconstruct the result from the template instantiation itself.
595
//
596
// Note that C++11 does *not* perform this redundant lookup.
597
NamedDecl *OuterDecl;
598
if (S) {
599
LookupResult FoundOuter(*this, IdInfo.Identifier, IdInfo.IdentifierLoc,
600
LookupNestedNameSpecifierName);
601
LookupName(FoundOuter, S);
602
OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
603
} else
604
OuterDecl = ScopeLookupResult;
605
606
if (isAcceptableNestedNameSpecifier(OuterDecl) &&
607
OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
608
(!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
609
!Context.hasSameType(
610
Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
611
Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
612
if (ErrorRecoveryLookup)
613
return true;
614
615
Diag(IdInfo.IdentifierLoc,
616
diag::err_nested_name_member_ref_lookup_ambiguous)
617
<< IdInfo.Identifier;
618
Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
619
<< ObjectType;
620
Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
621
622
// Fall through so that we'll pick the name we found in the object
623
// type, since that's probably what the user wanted anyway.
624
}
625
}
626
627
if (auto *TD = dyn_cast_or_null<TypedefNameDecl>(SD))
628
MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
629
630
// If we're just performing this lookup for error-recovery purposes,
631
// don't extend the nested-name-specifier. Just return now.
632
if (ErrorRecoveryLookup)
633
return false;
634
635
// The use of a nested name specifier may trigger deprecation warnings.
636
DiagnoseUseOfDecl(SD, IdInfo.CCLoc);
637
638
if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
639
SS.Extend(Context, Namespace, IdInfo.IdentifierLoc, IdInfo.CCLoc);
640
return false;
641
}
642
643
if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
644
SS.Extend(Context, Alias, IdInfo.IdentifierLoc, IdInfo.CCLoc);
645
return false;
646
}
647
648
QualType T =
649
Context.getTypeDeclType(cast<TypeDecl>(SD->getUnderlyingDecl()));
650
651
if (T->isEnumeralType())
652
Diag(IdInfo.IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
653
654
TypeLocBuilder TLB;
655
if (const auto *USD = dyn_cast<UsingShadowDecl>(SD)) {
656
T = Context.getUsingType(USD, T);
657
TLB.pushTypeSpec(T).setNameLoc(IdInfo.IdentifierLoc);
658
} else if (isa<InjectedClassNameType>(T)) {
659
InjectedClassNameTypeLoc InjectedTL
660
= TLB.push<InjectedClassNameTypeLoc>(T);
661
InjectedTL.setNameLoc(IdInfo.IdentifierLoc);
662
} else if (isa<RecordType>(T)) {
663
RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
664
RecordTL.setNameLoc(IdInfo.IdentifierLoc);
665
} else if (isa<TypedefType>(T)) {
666
TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
667
TypedefTL.setNameLoc(IdInfo.IdentifierLoc);
668
} else if (isa<EnumType>(T)) {
669
EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
670
EnumTL.setNameLoc(IdInfo.IdentifierLoc);
671
} else if (isa<TemplateTypeParmType>(T)) {
672
TemplateTypeParmTypeLoc TemplateTypeTL
673
= TLB.push<TemplateTypeParmTypeLoc>(T);
674
TemplateTypeTL.setNameLoc(IdInfo.IdentifierLoc);
675
} else if (isa<UnresolvedUsingType>(T)) {
676
UnresolvedUsingTypeLoc UnresolvedTL
677
= TLB.push<UnresolvedUsingTypeLoc>(T);
678
UnresolvedTL.setNameLoc(IdInfo.IdentifierLoc);
679
} else if (isa<SubstTemplateTypeParmType>(T)) {
680
SubstTemplateTypeParmTypeLoc TL
681
= TLB.push<SubstTemplateTypeParmTypeLoc>(T);
682
TL.setNameLoc(IdInfo.IdentifierLoc);
683
} else if (isa<SubstTemplateTypeParmPackType>(T)) {
684
SubstTemplateTypeParmPackTypeLoc TL
685
= TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
686
TL.setNameLoc(IdInfo.IdentifierLoc);
687
} else {
688
llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
689
}
690
691
SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
692
IdInfo.CCLoc);
693
return false;
694
}
695
696
// Otherwise, we have an error case. If we don't want diagnostics, just
697
// return an error now.
698
if (ErrorRecoveryLookup)
699
return true;
700
701
// If we didn't find anything during our lookup, try again with
702
// ordinary name lookup, which can help us produce better error
703
// messages.
704
if (Found.empty()) {
705
Found.clear(LookupOrdinaryName);
706
LookupName(Found, S);
707
}
708
709
// In Microsoft mode, if we are within a templated function and we can't
710
// resolve Identifier, then extend the SS with Identifier. This will have
711
// the effect of resolving Identifier during template instantiation.
712
// The goal is to be able to resolve a function call whose
713
// nested-name-specifier is located inside a dependent base class.
714
// Example:
715
//
716
// class C {
717
// public:
718
// static void foo2() { }
719
// };
720
// template <class T> class A { public: typedef C D; };
721
//
722
// template <class T> class B : public A<T> {
723
// public:
724
// void foo() { D::foo2(); }
725
// };
726
if (getLangOpts().MSVCCompat) {
727
DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
728
if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
729
CXXRecordDecl *ContainingClass = dyn_cast<CXXRecordDecl>(DC->getParent());
730
if (ContainingClass && ContainingClass->hasAnyDependentBases()) {
731
Diag(IdInfo.IdentifierLoc,
732
diag::ext_undeclared_unqual_id_with_dependent_base)
733
<< IdInfo.Identifier << ContainingClass;
734
// Fake up a nested-name-specifier that starts with the
735
// injected-class-name of the enclosing class.
736
QualType T = Context.getTypeDeclType(ContainingClass);
737
TypeLocBuilder TLB;
738
TLB.pushTrivial(Context, T, IdInfo.IdentifierLoc);
739
SS.Extend(Context, /*TemplateKWLoc=*/SourceLocation(),
740
TLB.getTypeLocInContext(Context, T), IdInfo.IdentifierLoc);
741
// Add the identifier to form a dependent name.
742
SS.Extend(Context, IdInfo.Identifier, IdInfo.IdentifierLoc,
743
IdInfo.CCLoc);
744
return false;
745
}
746
}
747
}
748
749
if (!Found.empty()) {
750
if (TypeDecl *TD = Found.getAsSingle<TypeDecl>()) {
751
Diag(IdInfo.IdentifierLoc, diag::err_expected_class_or_namespace)
752
<< Context.getTypeDeclType(TD) << getLangOpts().CPlusPlus;
753
} else if (Found.getAsSingle<TemplateDecl>()) {
754
ParsedType SuggestedType;
755
DiagnoseUnknownTypeName(IdInfo.Identifier, IdInfo.IdentifierLoc, S, &SS,
756
SuggestedType);
757
} else {
758
Diag(IdInfo.IdentifierLoc, diag::err_expected_class_or_namespace)
759
<< IdInfo.Identifier << getLangOpts().CPlusPlus;
760
if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
761
Diag(ND->getLocation(), diag::note_entity_declared_at)
762
<< IdInfo.Identifier;
763
}
764
} else if (SS.isSet())
765
Diag(IdInfo.IdentifierLoc, diag::err_no_member) << IdInfo.Identifier
766
<< LookupCtx << SS.getRange();
767
else
768
Diag(IdInfo.IdentifierLoc, diag::err_undeclared_var_use)
769
<< IdInfo.Identifier;
770
771
return true;
772
}
773
774
bool Sema::ActOnCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo,
775
bool EnteringContext, CXXScopeSpec &SS,
776
bool *IsCorrectedToColon,
777
bool OnlyNamespace) {
778
if (SS.isInvalid())
779
return true;
780
781
return BuildCXXNestedNameSpecifier(S, IdInfo, EnteringContext, SS,
782
/*ScopeLookupResult=*/nullptr, false,
783
IsCorrectedToColon, OnlyNamespace);
784
}
785
786
bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
787
const DeclSpec &DS,
788
SourceLocation ColonColonLoc) {
789
if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
790
return true;
791
792
assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
793
794
QualType T = BuildDecltypeType(DS.getRepAsExpr());
795
if (T.isNull())
796
return true;
797
798
if (!T->isDependentType() && !T->getAs<TagType>()) {
799
Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class_or_namespace)
800
<< T << getLangOpts().CPlusPlus;
801
return true;
802
}
803
804
TypeLocBuilder TLB;
805
DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
806
DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
807
DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd());
808
SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
809
ColonColonLoc);
810
return false;
811
}
812
813
bool Sema::ActOnCXXNestedNameSpecifierIndexedPack(CXXScopeSpec &SS,
814
const DeclSpec &DS,
815
SourceLocation ColonColonLoc,
816
QualType Type) {
817
if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
818
return true;
819
820
assert(DS.getTypeSpecType() == DeclSpec::TST_typename_pack_indexing);
821
822
if (Type.isNull())
823
return true;
824
825
TypeLocBuilder TLB;
826
TLB.pushTrivial(getASTContext(),
827
cast<PackIndexingType>(Type.getTypePtr())->getPattern(),
828
DS.getBeginLoc());
829
PackIndexingTypeLoc PIT = TLB.push<PackIndexingTypeLoc>(Type);
830
PIT.setEllipsisLoc(DS.getEllipsisLoc());
831
SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, Type),
832
ColonColonLoc);
833
return false;
834
}
835
836
bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
837
NestedNameSpecInfo &IdInfo,
838
bool EnteringContext) {
839
if (SS.isInvalid())
840
return false;
841
842
return !BuildCXXNestedNameSpecifier(S, IdInfo, EnteringContext, SS,
843
/*ScopeLookupResult=*/nullptr, true);
844
}
845
846
bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
847
CXXScopeSpec &SS,
848
SourceLocation TemplateKWLoc,
849
TemplateTy OpaqueTemplate,
850
SourceLocation TemplateNameLoc,
851
SourceLocation LAngleLoc,
852
ASTTemplateArgsPtr TemplateArgsIn,
853
SourceLocation RAngleLoc,
854
SourceLocation CCLoc,
855
bool EnteringContext) {
856
if (SS.isInvalid())
857
return true;
858
859
TemplateName Template = OpaqueTemplate.get();
860
861
// Translate the parser's template argument list in our AST format.
862
TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
863
translateTemplateArguments(TemplateArgsIn, TemplateArgs);
864
865
DependentTemplateName *DTN = Template.getAsDependentTemplateName();
866
if (DTN && DTN->isIdentifier()) {
867
// Handle a dependent template specialization for which we cannot resolve
868
// the template name.
869
assert(DTN->getQualifier() == SS.getScopeRep());
870
QualType T = Context.getDependentTemplateSpecializationType(
871
ElaboratedTypeKeyword::None, DTN->getQualifier(), DTN->getIdentifier(),
872
TemplateArgs.arguments());
873
874
// Create source-location information for this type.
875
TypeLocBuilder Builder;
876
DependentTemplateSpecializationTypeLoc SpecTL
877
= Builder.push<DependentTemplateSpecializationTypeLoc>(T);
878
SpecTL.setElaboratedKeywordLoc(SourceLocation());
879
SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
880
SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
881
SpecTL.setTemplateNameLoc(TemplateNameLoc);
882
SpecTL.setLAngleLoc(LAngleLoc);
883
SpecTL.setRAngleLoc(RAngleLoc);
884
for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
885
SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
886
887
SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
888
CCLoc);
889
return false;
890
}
891
892
// If we assumed an undeclared identifier was a template name, try to
893
// typo-correct it now.
894
if (Template.getAsAssumedTemplateName() &&
895
resolveAssumedTemplateNameAsType(S, Template, TemplateNameLoc))
896
return true;
897
898
TemplateDecl *TD = Template.getAsTemplateDecl();
899
if (Template.getAsOverloadedTemplate() || DTN ||
900
isa<FunctionTemplateDecl>(TD) || isa<VarTemplateDecl>(TD)) {
901
SourceRange R(TemplateNameLoc, RAngleLoc);
902
if (SS.getRange().isValid())
903
R.setBegin(SS.getRange().getBegin());
904
905
Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
906
<< isa_and_nonnull<VarTemplateDecl>(TD) << Template << R;
907
NoteAllFoundTemplates(Template);
908
return true;
909
}
910
911
// We were able to resolve the template name to an actual template.
912
// Build an appropriate nested-name-specifier.
913
QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
914
if (T.isNull())
915
return true;
916
917
// Alias template specializations can produce types which are not valid
918
// nested name specifiers.
919
if (!T->isDependentType() && !T->getAs<TagType>()) {
920
Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
921
NoteAllFoundTemplates(Template);
922
return true;
923
}
924
925
// Provide source-location information for the template specialization type.
926
TypeLocBuilder Builder;
927
TemplateSpecializationTypeLoc SpecTL
928
= Builder.push<TemplateSpecializationTypeLoc>(T);
929
SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
930
SpecTL.setTemplateNameLoc(TemplateNameLoc);
931
SpecTL.setLAngleLoc(LAngleLoc);
932
SpecTL.setRAngleLoc(RAngleLoc);
933
for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
934
SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
935
936
937
SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
938
CCLoc);
939
return false;
940
}
941
942
namespace {
943
/// A structure that stores a nested-name-specifier annotation,
944
/// including both the nested-name-specifier
945
struct NestedNameSpecifierAnnotation {
946
NestedNameSpecifier *NNS;
947
};
948
}
949
950
void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
951
if (SS.isEmpty() || SS.isInvalid())
952
return nullptr;
953
954
void *Mem = Context.Allocate(
955
(sizeof(NestedNameSpecifierAnnotation) + SS.location_size()),
956
alignof(NestedNameSpecifierAnnotation));
957
NestedNameSpecifierAnnotation *Annotation
958
= new (Mem) NestedNameSpecifierAnnotation;
959
Annotation->NNS = SS.getScopeRep();
960
memcpy(Annotation + 1, SS.location_data(), SS.location_size());
961
return Annotation;
962
}
963
964
void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
965
SourceRange AnnotationRange,
966
CXXScopeSpec &SS) {
967
if (!AnnotationPtr) {
968
SS.SetInvalid(AnnotationRange);
969
return;
970
}
971
972
NestedNameSpecifierAnnotation *Annotation
973
= static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
974
SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
975
}
976
977
bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
978
assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
979
980
// Don't enter a declarator context when the current context is an Objective-C
981
// declaration.
982
if (isa<ObjCContainerDecl>(CurContext) || isa<ObjCMethodDecl>(CurContext))
983
return false;
984
985
NestedNameSpecifier *Qualifier = SS.getScopeRep();
986
987
// There are only two places a well-formed program may qualify a
988
// declarator: first, when defining a namespace or class member
989
// out-of-line, and second, when naming an explicitly-qualified
990
// friend function. The latter case is governed by
991
// C++03 [basic.lookup.unqual]p10:
992
// In a friend declaration naming a member function, a name used
993
// in the function declarator and not part of a template-argument
994
// in a template-id is first looked up in the scope of the member
995
// function's class. If it is not found, or if the name is part of
996
// a template-argument in a template-id, the look up is as
997
// described for unqualified names in the definition of the class
998
// granting friendship.
999
// i.e. we don't push a scope unless it's a class member.
1000
1001
switch (Qualifier->getKind()) {
1002
case NestedNameSpecifier::Global:
1003
case NestedNameSpecifier::Namespace:
1004
case NestedNameSpecifier::NamespaceAlias:
1005
// These are always namespace scopes. We never want to enter a
1006
// namespace scope from anything but a file context.
1007
return CurContext->getRedeclContext()->isFileContext();
1008
1009
case NestedNameSpecifier::Identifier:
1010
case NestedNameSpecifier::TypeSpec:
1011
case NestedNameSpecifier::TypeSpecWithTemplate:
1012
case NestedNameSpecifier::Super:
1013
// These are never namespace scopes.
1014
return true;
1015
}
1016
1017
llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
1018
}
1019
1020
bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
1021
assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1022
1023
if (SS.isInvalid()) return true;
1024
1025
DeclContext *DC = computeDeclContext(SS, true);
1026
if (!DC) return true;
1027
1028
// Before we enter a declarator's context, we need to make sure that
1029
// it is a complete declaration context.
1030
if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
1031
return true;
1032
1033
EnterDeclaratorContext(S, DC);
1034
1035
// Rebuild the nested name specifier for the new scope.
1036
if (DC->isDependentContext())
1037
RebuildNestedNameSpecifierInCurrentInstantiation(SS);
1038
1039
return false;
1040
}
1041
1042
void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
1043
assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1044
if (SS.isInvalid())
1045
return;
1046
assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
1047
"exiting declarator scope we never really entered");
1048
ExitDeclaratorContext(S);
1049
}
1050
1051