Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/clang/lib/Sema/SemaDeclObjC.cpp
35233 views
1
//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements semantic analysis for Objective C declarations.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "TypeLocBuilder.h"
14
#include "clang/AST/ASTConsumer.h"
15
#include "clang/AST/ASTContext.h"
16
#include "clang/AST/ASTMutationListener.h"
17
#include "clang/AST/DeclObjC.h"
18
#include "clang/AST/Expr.h"
19
#include "clang/AST/ExprObjC.h"
20
#include "clang/AST/RecursiveASTVisitor.h"
21
#include "clang/Basic/SourceManager.h"
22
#include "clang/Basic/TargetInfo.h"
23
#include "clang/Sema/DeclSpec.h"
24
#include "clang/Sema/DelayedDiagnostic.h"
25
#include "clang/Sema/Initialization.h"
26
#include "clang/Sema/Lookup.h"
27
#include "clang/Sema/Scope.h"
28
#include "clang/Sema/ScopeInfo.h"
29
#include "clang/Sema/SemaInternal.h"
30
#include "clang/Sema/SemaObjC.h"
31
#include "llvm/ADT/DenseMap.h"
32
#include "llvm/ADT/DenseSet.h"
33
34
using namespace clang;
35
36
/// Check whether the given method, which must be in the 'init'
37
/// family, is a valid member of that family.
38
///
39
/// \param receiverTypeIfCall - if null, check this as if declaring it;
40
/// if non-null, check this as if making a call to it with the given
41
/// receiver type
42
///
43
/// \return true to indicate that there was an error and appropriate
44
/// actions were taken
45
bool SemaObjC::checkInitMethod(ObjCMethodDecl *method,
46
QualType receiverTypeIfCall) {
47
ASTContext &Context = getASTContext();
48
if (method->isInvalidDecl()) return true;
49
50
// This castAs is safe: methods that don't return an object
51
// pointer won't be inferred as inits and will reject an explicit
52
// objc_method_family(init).
53
54
// We ignore protocols here. Should we? What about Class?
55
56
const ObjCObjectType *result =
57
method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
58
59
if (result->isObjCId()) {
60
return false;
61
} else if (result->isObjCClass()) {
62
// fall through: always an error
63
} else {
64
ObjCInterfaceDecl *resultClass = result->getInterface();
65
assert(resultClass && "unexpected object type!");
66
67
// It's okay for the result type to still be a forward declaration
68
// if we're checking an interface declaration.
69
if (!resultClass->hasDefinition()) {
70
if (receiverTypeIfCall.isNull() &&
71
!isa<ObjCImplementationDecl>(method->getDeclContext()))
72
return false;
73
74
// Otherwise, we try to compare class types.
75
} else {
76
// If this method was declared in a protocol, we can't check
77
// anything unless we have a receiver type that's an interface.
78
const ObjCInterfaceDecl *receiverClass = nullptr;
79
if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
80
if (receiverTypeIfCall.isNull())
81
return false;
82
83
receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
84
->getInterfaceDecl();
85
86
// This can be null for calls to e.g. id<Foo>.
87
if (!receiverClass) return false;
88
} else {
89
receiverClass = method->getClassInterface();
90
assert(receiverClass && "method not associated with a class!");
91
}
92
93
// If either class is a subclass of the other, it's fine.
94
if (receiverClass->isSuperClassOf(resultClass) ||
95
resultClass->isSuperClassOf(receiverClass))
96
return false;
97
}
98
}
99
100
SourceLocation loc = method->getLocation();
101
102
// If we're in a system header, and this is not a call, just make
103
// the method unusable.
104
if (receiverTypeIfCall.isNull() &&
105
SemaRef.getSourceManager().isInSystemHeader(loc)) {
106
method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
107
UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
108
return true;
109
}
110
111
// Otherwise, it's an error.
112
Diag(loc, diag::err_arc_init_method_unrelated_result_type);
113
method->setInvalidDecl();
114
return true;
115
}
116
117
/// Issue a warning if the parameter of the overridden method is non-escaping
118
/// but the parameter of the overriding method is not.
119
static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
120
Sema &S) {
121
if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) {
122
S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape);
123
S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape);
124
return false;
125
}
126
127
return true;
128
}
129
130
/// Produce additional diagnostics if a category conforms to a protocol that
131
/// defines a method taking a non-escaping parameter.
132
static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
133
const ObjCCategoryDecl *CD,
134
const ObjCProtocolDecl *PD, Sema &S) {
135
if (!diagnoseNoescape(NewD, OldD, S))
136
S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot)
137
<< CD->IsClassExtension() << PD
138
<< cast<ObjCMethodDecl>(NewD->getDeclContext());
139
}
140
141
void SemaObjC::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
142
const ObjCMethodDecl *Overridden) {
143
ASTContext &Context = getASTContext();
144
if (Overridden->hasRelatedResultType() &&
145
!NewMethod->hasRelatedResultType()) {
146
// This can only happen when the method follows a naming convention that
147
// implies a related result type, and the original (overridden) method has
148
// a suitable return type, but the new (overriding) method does not have
149
// a suitable return type.
150
QualType ResultType = NewMethod->getReturnType();
151
SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
152
153
// Figure out which class this method is part of, if any.
154
ObjCInterfaceDecl *CurrentClass
155
= dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
156
if (!CurrentClass) {
157
DeclContext *DC = NewMethod->getDeclContext();
158
if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
159
CurrentClass = Cat->getClassInterface();
160
else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
161
CurrentClass = Impl->getClassInterface();
162
else if (ObjCCategoryImplDecl *CatImpl
163
= dyn_cast<ObjCCategoryImplDecl>(DC))
164
CurrentClass = CatImpl->getClassInterface();
165
}
166
167
if (CurrentClass) {
168
Diag(NewMethod->getLocation(),
169
diag::warn_related_result_type_compatibility_class)
170
<< Context.getObjCInterfaceType(CurrentClass)
171
<< ResultType
172
<< ResultTypeRange;
173
} else {
174
Diag(NewMethod->getLocation(),
175
diag::warn_related_result_type_compatibility_protocol)
176
<< ResultType
177
<< ResultTypeRange;
178
}
179
180
if (ObjCMethodFamily Family = Overridden->getMethodFamily())
181
Diag(Overridden->getLocation(),
182
diag::note_related_result_type_family)
183
<< /*overridden method*/ 0
184
<< Family;
185
else
186
Diag(Overridden->getLocation(),
187
diag::note_related_result_type_overridden);
188
}
189
190
if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
191
Overridden->hasAttr<NSReturnsRetainedAttr>())) {
192
Diag(NewMethod->getLocation(),
193
getLangOpts().ObjCAutoRefCount
194
? diag::err_nsreturns_retained_attribute_mismatch
195
: diag::warn_nsreturns_retained_attribute_mismatch)
196
<< 1;
197
Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
198
}
199
if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
200
Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
201
Diag(NewMethod->getLocation(),
202
getLangOpts().ObjCAutoRefCount
203
? diag::err_nsreturns_retained_attribute_mismatch
204
: diag::warn_nsreturns_retained_attribute_mismatch)
205
<< 0;
206
Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
207
}
208
209
ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
210
oe = Overridden->param_end();
211
for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(),
212
ne = NewMethod->param_end();
213
ni != ne && oi != oe; ++ni, ++oi) {
214
const ParmVarDecl *oldDecl = (*oi);
215
ParmVarDecl *newDecl = (*ni);
216
if (newDecl->hasAttr<NSConsumedAttr>() !=
217
oldDecl->hasAttr<NSConsumedAttr>()) {
218
Diag(newDecl->getLocation(),
219
getLangOpts().ObjCAutoRefCount
220
? diag::err_nsconsumed_attribute_mismatch
221
: diag::warn_nsconsumed_attribute_mismatch);
222
Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter";
223
}
224
225
diagnoseNoescape(newDecl, oldDecl, SemaRef);
226
}
227
}
228
229
/// Check a method declaration for compatibility with the Objective-C
230
/// ARC conventions.
231
bool SemaObjC::CheckARCMethodDecl(ObjCMethodDecl *method) {
232
ASTContext &Context = getASTContext();
233
ObjCMethodFamily family = method->getMethodFamily();
234
switch (family) {
235
case OMF_None:
236
case OMF_finalize:
237
case OMF_retain:
238
case OMF_release:
239
case OMF_autorelease:
240
case OMF_retainCount:
241
case OMF_self:
242
case OMF_initialize:
243
case OMF_performSelector:
244
return false;
245
246
case OMF_dealloc:
247
if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
248
SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
249
if (ResultTypeRange.isInvalid())
250
Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
251
<< method->getReturnType()
252
<< FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
253
else
254
Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
255
<< method->getReturnType()
256
<< FixItHint::CreateReplacement(ResultTypeRange, "void");
257
return true;
258
}
259
return false;
260
261
case OMF_init:
262
// If the method doesn't obey the init rules, don't bother annotating it.
263
if (checkInitMethod(method, QualType()))
264
return true;
265
266
method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
267
268
// Don't add a second copy of this attribute, but otherwise don't
269
// let it be suppressed.
270
if (method->hasAttr<NSReturnsRetainedAttr>())
271
return false;
272
break;
273
274
case OMF_alloc:
275
case OMF_copy:
276
case OMF_mutableCopy:
277
case OMF_new:
278
if (method->hasAttr<NSReturnsRetainedAttr>() ||
279
method->hasAttr<NSReturnsNotRetainedAttr>() ||
280
method->hasAttr<NSReturnsAutoreleasedAttr>())
281
return false;
282
break;
283
}
284
285
method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
286
return false;
287
}
288
289
static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND,
290
SourceLocation ImplLoc) {
291
if (!ND)
292
return;
293
bool IsCategory = false;
294
StringRef RealizedPlatform;
295
AvailabilityResult Availability = ND->getAvailability(
296
/*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(),
297
&RealizedPlatform);
298
if (Availability != AR_Deprecated) {
299
if (isa<ObjCMethodDecl>(ND)) {
300
if (Availability != AR_Unavailable)
301
return;
302
if (RealizedPlatform.empty())
303
RealizedPlatform = S.Context.getTargetInfo().getPlatformName();
304
// Warn about implementing unavailable methods, unless the unavailable
305
// is for an app extension.
306
if (RealizedPlatform.ends_with("_app_extension"))
307
return;
308
S.Diag(ImplLoc, diag::warn_unavailable_def);
309
S.Diag(ND->getLocation(), diag::note_method_declared_at)
310
<< ND->getDeclName();
311
return;
312
}
313
if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) {
314
if (!CD->getClassInterface()->isDeprecated())
315
return;
316
ND = CD->getClassInterface();
317
IsCategory = true;
318
} else
319
return;
320
}
321
S.Diag(ImplLoc, diag::warn_deprecated_def)
322
<< (isa<ObjCMethodDecl>(ND)
323
? /*Method*/ 0
324
: isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2
325
: /*Class*/ 1);
326
if (isa<ObjCMethodDecl>(ND))
327
S.Diag(ND->getLocation(), diag::note_method_declared_at)
328
<< ND->getDeclName();
329
else
330
S.Diag(ND->getLocation(), diag::note_previous_decl)
331
<< (isa<ObjCCategoryDecl>(ND) ? "category" : "class");
332
}
333
334
/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
335
/// pool.
336
void SemaObjC::AddAnyMethodToGlobalPool(Decl *D) {
337
ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
338
339
// If we don't have a valid method decl, simply return.
340
if (!MDecl)
341
return;
342
if (MDecl->isInstanceMethod())
343
AddInstanceMethodToGlobalPool(MDecl, true);
344
else
345
AddFactoryMethodToGlobalPool(MDecl, true);
346
}
347
348
/// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
349
/// has explicit ownership attribute; false otherwise.
350
static bool
351
HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
352
QualType T = Param->getType();
353
354
if (const PointerType *PT = T->getAs<PointerType>()) {
355
T = PT->getPointeeType();
356
} else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
357
T = RT->getPointeeType();
358
} else {
359
return true;
360
}
361
362
// If we have a lifetime qualifier, but it's local, we must have
363
// inferred it. So, it is implicit.
364
return !T.getLocalQualifiers().hasObjCLifetime();
365
}
366
367
/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
368
/// and user declared, in the method definition's AST.
369
void SemaObjC::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
370
ASTContext &Context = getASTContext();
371
SemaRef.ImplicitlyRetainedSelfLocs.clear();
372
assert((SemaRef.getCurMethodDecl() == nullptr) && "Methodparsing confused");
373
ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
374
375
SemaRef.PushExpressionEvaluationContext(
376
SemaRef.ExprEvalContexts.back().Context);
377
378
// If we don't have a valid method decl, simply return.
379
if (!MDecl)
380
return;
381
382
QualType ResultType = MDecl->getReturnType();
383
if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
384
!MDecl->isInvalidDecl() &&
385
SemaRef.RequireCompleteType(MDecl->getLocation(), ResultType,
386
diag::err_func_def_incomplete_result))
387
MDecl->setInvalidDecl();
388
389
// Allow all of Sema to see that we are entering a method definition.
390
SemaRef.PushDeclContext(FnBodyScope, MDecl);
391
SemaRef.PushFunctionScope();
392
393
// Create Decl objects for each parameter, entrring them in the scope for
394
// binding to their use.
395
396
// Insert the invisible arguments, self and _cmd!
397
MDecl->createImplicitParams(Context, MDecl->getClassInterface());
398
399
SemaRef.PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
400
SemaRef.PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
401
402
// The ObjC parser requires parameter names so there's no need to check.
403
SemaRef.CheckParmsForFunctionDef(MDecl->parameters(),
404
/*CheckParameterNames=*/false);
405
406
// Introduce all of the other parameters into this scope.
407
for (auto *Param : MDecl->parameters()) {
408
if (!Param->isInvalidDecl() && getLangOpts().ObjCAutoRefCount &&
409
!HasExplicitOwnershipAttr(SemaRef, Param))
410
Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
411
Param->getType();
412
413
if (Param->getIdentifier())
414
SemaRef.PushOnScopeChains(Param, FnBodyScope);
415
}
416
417
// In ARC, disallow definition of retain/release/autorelease/retainCount
418
if (getLangOpts().ObjCAutoRefCount) {
419
switch (MDecl->getMethodFamily()) {
420
case OMF_retain:
421
case OMF_retainCount:
422
case OMF_release:
423
case OMF_autorelease:
424
Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
425
<< 0 << MDecl->getSelector();
426
break;
427
428
case OMF_None:
429
case OMF_dealloc:
430
case OMF_finalize:
431
case OMF_alloc:
432
case OMF_init:
433
case OMF_mutableCopy:
434
case OMF_copy:
435
case OMF_new:
436
case OMF_self:
437
case OMF_initialize:
438
case OMF_performSelector:
439
break;
440
}
441
}
442
443
// Warn on deprecated methods under -Wdeprecated-implementations,
444
// and prepare for warning on missing super calls.
445
if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
446
ObjCMethodDecl *IMD =
447
IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
448
449
if (IMD) {
450
ObjCImplDecl *ImplDeclOfMethodDef =
451
dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
452
ObjCContainerDecl *ContDeclOfMethodDecl =
453
dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
454
ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
455
if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
456
ImplDeclOfMethodDecl = OID->getImplementation();
457
else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
458
if (CD->IsClassExtension()) {
459
if (ObjCInterfaceDecl *OID = CD->getClassInterface())
460
ImplDeclOfMethodDecl = OID->getImplementation();
461
} else
462
ImplDeclOfMethodDecl = CD->getImplementation();
463
}
464
// No need to issue deprecated warning if deprecated mehod in class/category
465
// is being implemented in its own implementation (no overriding is involved).
466
if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
467
DiagnoseObjCImplementedDeprecations(SemaRef, IMD, MDecl->getLocation());
468
}
469
470
if (MDecl->getMethodFamily() == OMF_init) {
471
if (MDecl->isDesignatedInitializerForTheInterface()) {
472
SemaRef.getCurFunction()->ObjCIsDesignatedInit = true;
473
SemaRef.getCurFunction()->ObjCWarnForNoDesignatedInitChain =
474
IC->getSuperClass() != nullptr;
475
} else if (IC->hasDesignatedInitializers()) {
476
SemaRef.getCurFunction()->ObjCIsSecondaryInit = true;
477
SemaRef.getCurFunction()->ObjCWarnForNoInitDelegation = true;
478
}
479
}
480
481
// If this is "dealloc" or "finalize", set some bit here.
482
// Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
483
// Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
484
// Only do this if the current class actually has a superclass.
485
if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
486
ObjCMethodFamily Family = MDecl->getMethodFamily();
487
if (Family == OMF_dealloc) {
488
if (!(getLangOpts().ObjCAutoRefCount ||
489
getLangOpts().getGC() == LangOptions::GCOnly))
490
SemaRef.getCurFunction()->ObjCShouldCallSuper = true;
491
492
} else if (Family == OMF_finalize) {
493
if (Context.getLangOpts().getGC() != LangOptions::NonGC)
494
SemaRef.getCurFunction()->ObjCShouldCallSuper = true;
495
496
} else {
497
const ObjCMethodDecl *SuperMethod =
498
SuperClass->lookupMethod(MDecl->getSelector(),
499
MDecl->isInstanceMethod());
500
SemaRef.getCurFunction()->ObjCShouldCallSuper =
501
(SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
502
}
503
}
504
}
505
506
// Some function attributes (like OptimizeNoneAttr) need actions before
507
// parsing body started.
508
SemaRef.applyFunctionAttributesBeforeParsingBody(D);
509
}
510
511
namespace {
512
513
// Callback to only accept typo corrections that are Objective-C classes.
514
// If an ObjCInterfaceDecl* is given to the constructor, then the validation
515
// function will reject corrections to that class.
516
class ObjCInterfaceValidatorCCC final : public CorrectionCandidateCallback {
517
public:
518
ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
519
explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
520
: CurrentIDecl(IDecl) {}
521
522
bool ValidateCandidate(const TypoCorrection &candidate) override {
523
ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
524
return ID && !declaresSameEntity(ID, CurrentIDecl);
525
}
526
527
std::unique_ptr<CorrectionCandidateCallback> clone() override {
528
return std::make_unique<ObjCInterfaceValidatorCCC>(*this);
529
}
530
531
private:
532
ObjCInterfaceDecl *CurrentIDecl;
533
};
534
535
} // end anonymous namespace
536
537
static void diagnoseUseOfProtocols(Sema &TheSema,
538
ObjCContainerDecl *CD,
539
ObjCProtocolDecl *const *ProtoRefs,
540
unsigned NumProtoRefs,
541
const SourceLocation *ProtoLocs) {
542
assert(ProtoRefs);
543
// Diagnose availability in the context of the ObjC container.
544
Sema::ContextRAII SavedContext(TheSema, CD);
545
for (unsigned i = 0; i < NumProtoRefs; ++i) {
546
(void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i],
547
/*UnknownObjCClass=*/nullptr,
548
/*ObjCPropertyAccess=*/false,
549
/*AvoidPartialAvailabilityChecks=*/true);
550
}
551
}
552
553
void SemaObjC::ActOnSuperClassOfClassInterface(
554
Scope *S, SourceLocation AtInterfaceLoc, ObjCInterfaceDecl *IDecl,
555
IdentifierInfo *ClassName, SourceLocation ClassLoc,
556
IdentifierInfo *SuperName, SourceLocation SuperLoc,
557
ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange) {
558
ASTContext &Context = getASTContext();
559
// Check if a different kind of symbol declared in this scope.
560
NamedDecl *PrevDecl = SemaRef.LookupSingleName(
561
SemaRef.TUScope, SuperName, SuperLoc, Sema::LookupOrdinaryName);
562
563
if (!PrevDecl) {
564
// Try to correct for a typo in the superclass name without correcting
565
// to the class we're defining.
566
ObjCInterfaceValidatorCCC CCC(IDecl);
567
if (TypoCorrection Corrected = SemaRef.CorrectTypo(
568
DeclarationNameInfo(SuperName, SuperLoc), Sema::LookupOrdinaryName,
569
SemaRef.TUScope, nullptr, CCC, Sema::CTK_ErrorRecovery)) {
570
SemaRef.diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
571
<< SuperName << ClassName);
572
PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
573
}
574
}
575
576
if (declaresSameEntity(PrevDecl, IDecl)) {
577
Diag(SuperLoc, diag::err_recursive_superclass)
578
<< SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
579
IDecl->setEndOfDefinitionLoc(ClassLoc);
580
} else {
581
ObjCInterfaceDecl *SuperClassDecl =
582
dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
583
QualType SuperClassType;
584
585
// Diagnose classes that inherit from deprecated classes.
586
if (SuperClassDecl) {
587
(void)SemaRef.DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
588
SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
589
}
590
591
if (PrevDecl && !SuperClassDecl) {
592
// The previous declaration was not a class decl. Check if we have a
593
// typedef. If we do, get the underlying class type.
594
if (const TypedefNameDecl *TDecl =
595
dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
596
QualType T = TDecl->getUnderlyingType();
597
if (T->isObjCObjectType()) {
598
if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
599
SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
600
SuperClassType = Context.getTypeDeclType(TDecl);
601
602
// This handles the following case:
603
// @interface NewI @end
604
// typedef NewI DeprI __attribute__((deprecated("blah")))
605
// @interface SI : DeprI /* warn here */ @end
606
(void)SemaRef.DiagnoseUseOfDecl(
607
const_cast<TypedefNameDecl *>(TDecl), SuperLoc);
608
}
609
}
610
}
611
612
// This handles the following case:
613
//
614
// typedef int SuperClass;
615
// @interface MyClass : SuperClass {} @end
616
//
617
if (!SuperClassDecl) {
618
Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
619
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
620
}
621
}
622
623
if (!isa_and_nonnull<TypedefNameDecl>(PrevDecl)) {
624
if (!SuperClassDecl)
625
Diag(SuperLoc, diag::err_undef_superclass)
626
<< SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
627
else if (SemaRef.RequireCompleteType(
628
SuperLoc, SuperClassType, diag::err_forward_superclass,
629
SuperClassDecl->getDeclName(), ClassName,
630
SourceRange(AtInterfaceLoc, ClassLoc))) {
631
SuperClassDecl = nullptr;
632
SuperClassType = QualType();
633
}
634
}
635
636
if (SuperClassType.isNull()) {
637
assert(!SuperClassDecl && "Failed to set SuperClassType?");
638
return;
639
}
640
641
// Handle type arguments on the superclass.
642
TypeSourceInfo *SuperClassTInfo = nullptr;
643
if (!SuperTypeArgs.empty()) {
644
TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers(
645
S, SuperLoc, SemaRef.CreateParsedType(SuperClassType, nullptr),
646
SuperTypeArgsRange.getBegin(), SuperTypeArgs,
647
SuperTypeArgsRange.getEnd(), SourceLocation(), {}, {},
648
SourceLocation());
649
if (!fullSuperClassType.isUsable())
650
return;
651
652
SuperClassType =
653
SemaRef.GetTypeFromParser(fullSuperClassType.get(), &SuperClassTInfo);
654
}
655
656
if (!SuperClassTInfo) {
657
SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
658
SuperLoc);
659
}
660
661
IDecl->setSuperClass(SuperClassTInfo);
662
IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc());
663
}
664
}
665
666
DeclResult SemaObjC::actOnObjCTypeParam(
667
Scope *S, ObjCTypeParamVariance variance, SourceLocation varianceLoc,
668
unsigned index, IdentifierInfo *paramName, SourceLocation paramLoc,
669
SourceLocation colonLoc, ParsedType parsedTypeBound) {
670
ASTContext &Context = getASTContext();
671
// If there was an explicitly-provided type bound, check it.
672
TypeSourceInfo *typeBoundInfo = nullptr;
673
if (parsedTypeBound) {
674
// The type bound can be any Objective-C pointer type.
675
QualType typeBound =
676
SemaRef.GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
677
if (typeBound->isObjCObjectPointerType()) {
678
// okay
679
} else if (typeBound->isObjCObjectType()) {
680
// The user forgot the * on an Objective-C pointer type, e.g.,
681
// "T : NSView".
682
SourceLocation starLoc =
683
SemaRef.getLocForEndOfToken(typeBoundInfo->getTypeLoc().getEndLoc());
684
Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
685
diag::err_objc_type_param_bound_missing_pointer)
686
<< typeBound << paramName
687
<< FixItHint::CreateInsertion(starLoc, " *");
688
689
// Create a new type location builder so we can update the type
690
// location information we have.
691
TypeLocBuilder builder;
692
builder.pushFullCopy(typeBoundInfo->getTypeLoc());
693
694
// Create the Objective-C pointer type.
695
typeBound = Context.getObjCObjectPointerType(typeBound);
696
ObjCObjectPointerTypeLoc newT
697
= builder.push<ObjCObjectPointerTypeLoc>(typeBound);
698
newT.setStarLoc(starLoc);
699
700
// Form the new type source information.
701
typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
702
} else {
703
// Not a valid type bound.
704
Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
705
diag::err_objc_type_param_bound_nonobject)
706
<< typeBound << paramName;
707
708
// Forget the bound; we'll default to id later.
709
typeBoundInfo = nullptr;
710
}
711
712
// Type bounds cannot have qualifiers (even indirectly) or explicit
713
// nullability.
714
if (typeBoundInfo) {
715
QualType typeBound = typeBoundInfo->getType();
716
TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
717
if (qual || typeBound.hasQualifiers()) {
718
bool diagnosed = false;
719
SourceRange rangeToRemove;
720
if (qual) {
721
if (auto attr = qual.getAs<AttributedTypeLoc>()) {
722
rangeToRemove = attr.getLocalSourceRange();
723
if (attr.getTypePtr()->getImmediateNullability()) {
724
Diag(attr.getBeginLoc(),
725
diag::err_objc_type_param_bound_explicit_nullability)
726
<< paramName << typeBound
727
<< FixItHint::CreateRemoval(rangeToRemove);
728
diagnosed = true;
729
}
730
}
731
}
732
733
if (!diagnosed) {
734
Diag(qual ? qual.getBeginLoc()
735
: typeBoundInfo->getTypeLoc().getBeginLoc(),
736
diag::err_objc_type_param_bound_qualified)
737
<< paramName << typeBound
738
<< typeBound.getQualifiers().getAsString()
739
<< FixItHint::CreateRemoval(rangeToRemove);
740
}
741
742
// If the type bound has qualifiers other than CVR, we need to strip
743
// them or we'll probably assert later when trying to apply new
744
// qualifiers.
745
Qualifiers quals = typeBound.getQualifiers();
746
quals.removeCVRQualifiers();
747
if (!quals.empty()) {
748
typeBoundInfo =
749
Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType());
750
}
751
}
752
}
753
}
754
755
// If there was no explicit type bound (or we removed it due to an error),
756
// use 'id' instead.
757
if (!typeBoundInfo) {
758
colonLoc = SourceLocation();
759
typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType());
760
}
761
762
// Create the type parameter.
763
return ObjCTypeParamDecl::Create(Context, SemaRef.CurContext, variance,
764
varianceLoc, index, paramLoc, paramName,
765
colonLoc, typeBoundInfo);
766
}
767
768
ObjCTypeParamList *
769
SemaObjC::actOnObjCTypeParamList(Scope *S, SourceLocation lAngleLoc,
770
ArrayRef<Decl *> typeParamsIn,
771
SourceLocation rAngleLoc) {
772
ASTContext &Context = getASTContext();
773
// We know that the array only contains Objective-C type parameters.
774
ArrayRef<ObjCTypeParamDecl *>
775
typeParams(
776
reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
777
typeParamsIn.size());
778
779
// Diagnose redeclarations of type parameters.
780
// We do this now because Objective-C type parameters aren't pushed into
781
// scope until later (after the instance variable block), but we want the
782
// diagnostics to occur right after we parse the type parameter list.
783
llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
784
for (auto *typeParam : typeParams) {
785
auto known = knownParams.find(typeParam->getIdentifier());
786
if (known != knownParams.end()) {
787
Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
788
<< typeParam->getIdentifier()
789
<< SourceRange(known->second->getLocation());
790
791
typeParam->setInvalidDecl();
792
} else {
793
knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
794
795
// Push the type parameter into scope.
796
SemaRef.PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
797
}
798
}
799
800
// Create the parameter list.
801
return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
802
}
803
804
void SemaObjC::popObjCTypeParamList(Scope *S,
805
ObjCTypeParamList *typeParamList) {
806
for (auto *typeParam : *typeParamList) {
807
if (!typeParam->isInvalidDecl()) {
808
S->RemoveDecl(typeParam);
809
SemaRef.IdResolver.RemoveDecl(typeParam);
810
}
811
}
812
}
813
814
namespace {
815
/// The context in which an Objective-C type parameter list occurs, for use
816
/// in diagnostics.
817
enum class TypeParamListContext {
818
ForwardDeclaration,
819
Definition,
820
Category,
821
Extension
822
};
823
} // end anonymous namespace
824
825
/// Check consistency between two Objective-C type parameter lists, e.g.,
826
/// between a category/extension and an \@interface or between an \@class and an
827
/// \@interface.
828
static bool checkTypeParamListConsistency(Sema &S,
829
ObjCTypeParamList *prevTypeParams,
830
ObjCTypeParamList *newTypeParams,
831
TypeParamListContext newContext) {
832
// If the sizes don't match, complain about that.
833
if (prevTypeParams->size() != newTypeParams->size()) {
834
SourceLocation diagLoc;
835
if (newTypeParams->size() > prevTypeParams->size()) {
836
diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
837
} else {
838
diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getEndLoc());
839
}
840
841
S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
842
<< static_cast<unsigned>(newContext)
843
<< (newTypeParams->size() > prevTypeParams->size())
844
<< prevTypeParams->size()
845
<< newTypeParams->size();
846
847
return true;
848
}
849
850
// Match up the type parameters.
851
for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
852
ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
853
ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
854
855
// Check for consistency of the variance.
856
if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
857
if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
858
newContext != TypeParamListContext::Definition) {
859
// When the new type parameter is invariant and is not part
860
// of the definition, just propagate the variance.
861
newTypeParam->setVariance(prevTypeParam->getVariance());
862
} else if (prevTypeParam->getVariance()
863
== ObjCTypeParamVariance::Invariant &&
864
!(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
865
cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
866
->getDefinition() == prevTypeParam->getDeclContext())) {
867
// When the old parameter is invariant and was not part of the
868
// definition, just ignore the difference because it doesn't
869
// matter.
870
} else {
871
{
872
// Diagnose the conflict and update the second declaration.
873
SourceLocation diagLoc = newTypeParam->getVarianceLoc();
874
if (diagLoc.isInvalid())
875
diagLoc = newTypeParam->getBeginLoc();
876
877
auto diag = S.Diag(diagLoc,
878
diag::err_objc_type_param_variance_conflict)
879
<< static_cast<unsigned>(newTypeParam->getVariance())
880
<< newTypeParam->getDeclName()
881
<< static_cast<unsigned>(prevTypeParam->getVariance())
882
<< prevTypeParam->getDeclName();
883
switch (prevTypeParam->getVariance()) {
884
case ObjCTypeParamVariance::Invariant:
885
diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
886
break;
887
888
case ObjCTypeParamVariance::Covariant:
889
case ObjCTypeParamVariance::Contravariant: {
890
StringRef newVarianceStr
891
= prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
892
? "__covariant"
893
: "__contravariant";
894
if (newTypeParam->getVariance()
895
== ObjCTypeParamVariance::Invariant) {
896
diag << FixItHint::CreateInsertion(newTypeParam->getBeginLoc(),
897
(newVarianceStr + " ").str());
898
} else {
899
diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
900
newVarianceStr);
901
}
902
}
903
}
904
}
905
906
S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
907
<< prevTypeParam->getDeclName();
908
909
// Override the variance.
910
newTypeParam->setVariance(prevTypeParam->getVariance());
911
}
912
}
913
914
// If the bound types match, there's nothing to do.
915
if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
916
newTypeParam->getUnderlyingType()))
917
continue;
918
919
// If the new type parameter's bound was explicit, complain about it being
920
// different from the original.
921
if (newTypeParam->hasExplicitBound()) {
922
SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
923
->getTypeLoc().getSourceRange();
924
S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
925
<< newTypeParam->getUnderlyingType()
926
<< newTypeParam->getDeclName()
927
<< prevTypeParam->hasExplicitBound()
928
<< prevTypeParam->getUnderlyingType()
929
<< (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
930
<< prevTypeParam->getDeclName()
931
<< FixItHint::CreateReplacement(
932
newBoundRange,
933
prevTypeParam->getUnderlyingType().getAsString(
934
S.Context.getPrintingPolicy()));
935
936
S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
937
<< prevTypeParam->getDeclName();
938
939
// Override the new type parameter's bound type with the previous type,
940
// so that it's consistent.
941
S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam);
942
continue;
943
}
944
945
// The new type parameter got the implicit bound of 'id'. That's okay for
946
// categories and extensions (overwrite it later), but not for forward
947
// declarations and @interfaces, because those must be standalone.
948
if (newContext == TypeParamListContext::ForwardDeclaration ||
949
newContext == TypeParamListContext::Definition) {
950
// Diagnose this problem for forward declarations and definitions.
951
SourceLocation insertionLoc
952
= S.getLocForEndOfToken(newTypeParam->getLocation());
953
std::string newCode
954
= " : " + prevTypeParam->getUnderlyingType().getAsString(
955
S.Context.getPrintingPolicy());
956
S.Diag(newTypeParam->getLocation(),
957
diag::err_objc_type_param_bound_missing)
958
<< prevTypeParam->getUnderlyingType()
959
<< newTypeParam->getDeclName()
960
<< (newContext == TypeParamListContext::ForwardDeclaration)
961
<< FixItHint::CreateInsertion(insertionLoc, newCode);
962
963
S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
964
<< prevTypeParam->getDeclName();
965
}
966
967
// Update the new type parameter's bound to match the previous one.
968
S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam);
969
}
970
971
return false;
972
}
973
974
ObjCInterfaceDecl *SemaObjC::ActOnStartClassInterface(
975
Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
976
SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
977
IdentifierInfo *SuperName, SourceLocation SuperLoc,
978
ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
979
Decl *const *ProtoRefs, unsigned NumProtoRefs,
980
const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
981
const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody) {
982
assert(ClassName && "Missing class identifier");
983
984
ASTContext &Context = getASTContext();
985
// Check for another declaration kind with the same name.
986
NamedDecl *PrevDecl = SemaRef.LookupSingleName(
987
SemaRef.TUScope, ClassName, ClassLoc, Sema::LookupOrdinaryName,
988
SemaRef.forRedeclarationInCurContext());
989
990
if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
991
Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
992
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
993
}
994
995
// Create a declaration to describe this @interface.
996
ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
997
998
if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
999
// A previous decl with a different name is because of
1000
// @compatibility_alias, for example:
1001
// \code
1002
// @class NewImage;
1003
// @compatibility_alias OldImage NewImage;
1004
// \endcode
1005
// A lookup for 'OldImage' will return the 'NewImage' decl.
1006
//
1007
// In such a case use the real declaration name, instead of the alias one,
1008
// otherwise we will break IdentifierResolver and redecls-chain invariants.
1009
// FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
1010
// has been aliased.
1011
ClassName = PrevIDecl->getIdentifier();
1012
}
1013
1014
// If there was a forward declaration with type parameters, check
1015
// for consistency.
1016
if (PrevIDecl) {
1017
if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
1018
if (typeParamList) {
1019
// Both have type parameter lists; check for consistency.
1020
if (checkTypeParamListConsistency(SemaRef, prevTypeParamList,
1021
typeParamList,
1022
TypeParamListContext::Definition)) {
1023
typeParamList = nullptr;
1024
}
1025
} else {
1026
Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
1027
<< ClassName;
1028
Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
1029
<< ClassName;
1030
1031
// Clone the type parameter list.
1032
SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
1033
for (auto *typeParam : *prevTypeParamList) {
1034
clonedTypeParams.push_back(ObjCTypeParamDecl::Create(
1035
Context, SemaRef.CurContext, typeParam->getVariance(),
1036
SourceLocation(), typeParam->getIndex(), SourceLocation(),
1037
typeParam->getIdentifier(), SourceLocation(),
1038
Context.getTrivialTypeSourceInfo(
1039
typeParam->getUnderlyingType())));
1040
}
1041
1042
typeParamList = ObjCTypeParamList::create(Context,
1043
SourceLocation(),
1044
clonedTypeParams,
1045
SourceLocation());
1046
}
1047
}
1048
}
1049
1050
ObjCInterfaceDecl *IDecl =
1051
ObjCInterfaceDecl::Create(Context, SemaRef.CurContext, AtInterfaceLoc,
1052
ClassName, typeParamList, PrevIDecl, ClassLoc);
1053
if (PrevIDecl) {
1054
// Class already seen. Was it a definition?
1055
if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
1056
if (SkipBody && !SemaRef.hasVisibleDefinition(Def)) {
1057
SkipBody->CheckSameAsPrevious = true;
1058
SkipBody->New = IDecl;
1059
SkipBody->Previous = Def;
1060
} else {
1061
Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
1062
<< PrevIDecl->getDeclName();
1063
Diag(Def->getLocation(), diag::note_previous_definition);
1064
IDecl->setInvalidDecl();
1065
}
1066
}
1067
}
1068
1069
SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, IDecl, AttrList);
1070
SemaRef.AddPragmaAttributes(SemaRef.TUScope, IDecl);
1071
SemaRef.ProcessAPINotes(IDecl);
1072
1073
// Merge attributes from previous declarations.
1074
if (PrevIDecl)
1075
SemaRef.mergeDeclAttributes(IDecl, PrevIDecl);
1076
1077
SemaRef.PushOnScopeChains(IDecl, SemaRef.TUScope);
1078
1079
// Start the definition of this class. If we're in a redefinition case, there
1080
// may already be a definition, so we'll end up adding to it.
1081
if (SkipBody && SkipBody->CheckSameAsPrevious)
1082
IDecl->startDuplicateDefinitionForComparison();
1083
else if (!IDecl->hasDefinition())
1084
IDecl->startDefinition();
1085
1086
if (SuperName) {
1087
// Diagnose availability in the context of the @interface.
1088
Sema::ContextRAII SavedContext(SemaRef, IDecl);
1089
1090
ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1091
ClassName, ClassLoc,
1092
SuperName, SuperLoc, SuperTypeArgs,
1093
SuperTypeArgsRange);
1094
} else { // we have a root class.
1095
IDecl->setEndOfDefinitionLoc(ClassLoc);
1096
}
1097
1098
// Check then save referenced protocols.
1099
if (NumProtoRefs) {
1100
diagnoseUseOfProtocols(SemaRef, IDecl, (ObjCProtocolDecl *const *)ProtoRefs,
1101
NumProtoRefs, ProtoLocs);
1102
IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1103
ProtoLocs, Context);
1104
IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1105
}
1106
1107
CheckObjCDeclScope(IDecl);
1108
ActOnObjCContainerStartDefinition(IDecl);
1109
return IDecl;
1110
}
1111
1112
/// ActOnTypedefedProtocols - this action finds protocol list as part of the
1113
/// typedef'ed use for a qualified super class and adds them to the list
1114
/// of the protocols.
1115
void SemaObjC::ActOnTypedefedProtocols(
1116
SmallVectorImpl<Decl *> &ProtocolRefs,
1117
SmallVectorImpl<SourceLocation> &ProtocolLocs, IdentifierInfo *SuperName,
1118
SourceLocation SuperLoc) {
1119
if (!SuperName)
1120
return;
1121
NamedDecl *IDecl = SemaRef.LookupSingleName(
1122
SemaRef.TUScope, SuperName, SuperLoc, Sema::LookupOrdinaryName);
1123
if (!IDecl)
1124
return;
1125
1126
if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
1127
QualType T = TDecl->getUnderlyingType();
1128
if (T->isObjCObjectType())
1129
if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) {
1130
ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1131
// FIXME: Consider whether this should be an invalid loc since the loc
1132
// is not actually pointing to a protocol name reference but to the
1133
// typedef reference. Note that the base class name loc is also pointing
1134
// at the typedef.
1135
ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc);
1136
}
1137
}
1138
}
1139
1140
/// ActOnCompatibilityAlias - this action is called after complete parsing of
1141
/// a \@compatibility_alias declaration. It sets up the alias relationships.
1142
Decl *SemaObjC::ActOnCompatibilityAlias(SourceLocation AtLoc,
1143
IdentifierInfo *AliasName,
1144
SourceLocation AliasLocation,
1145
IdentifierInfo *ClassName,
1146
SourceLocation ClassLocation) {
1147
ASTContext &Context = getASTContext();
1148
// Look for previous declaration of alias name
1149
NamedDecl *ADecl = SemaRef.LookupSingleName(
1150
SemaRef.TUScope, AliasName, AliasLocation, Sema::LookupOrdinaryName,
1151
SemaRef.forRedeclarationInCurContext());
1152
if (ADecl) {
1153
Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1154
Diag(ADecl->getLocation(), diag::note_previous_declaration);
1155
return nullptr;
1156
}
1157
// Check for class declaration
1158
NamedDecl *CDeclU = SemaRef.LookupSingleName(
1159
SemaRef.TUScope, ClassName, ClassLocation, Sema::LookupOrdinaryName,
1160
SemaRef.forRedeclarationInCurContext());
1161
if (const TypedefNameDecl *TDecl =
1162
dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
1163
QualType T = TDecl->getUnderlyingType();
1164
if (T->isObjCObjectType()) {
1165
if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
1166
ClassName = IDecl->getIdentifier();
1167
CDeclU = SemaRef.LookupSingleName(
1168
SemaRef.TUScope, ClassName, ClassLocation, Sema::LookupOrdinaryName,
1169
SemaRef.forRedeclarationInCurContext());
1170
}
1171
}
1172
}
1173
ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
1174
if (!CDecl) {
1175
Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1176
if (CDeclU)
1177
Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1178
return nullptr;
1179
}
1180
1181
// Everything checked out, instantiate a new alias declaration AST.
1182
ObjCCompatibleAliasDecl *AliasDecl = ObjCCompatibleAliasDecl::Create(
1183
Context, SemaRef.CurContext, AtLoc, AliasName, CDecl);
1184
1185
if (!CheckObjCDeclScope(AliasDecl))
1186
SemaRef.PushOnScopeChains(AliasDecl, SemaRef.TUScope);
1187
1188
return AliasDecl;
1189
}
1190
1191
bool SemaObjC::CheckForwardProtocolDeclarationForCircularDependency(
1192
IdentifierInfo *PName, SourceLocation &Ploc, SourceLocation PrevLoc,
1193
const ObjCList<ObjCProtocolDecl> &PList) {
1194
1195
bool res = false;
1196
for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
1197
E = PList.end(); I != E; ++I) {
1198
if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(), Ploc)) {
1199
if (PDecl->getIdentifier() == PName) {
1200
Diag(Ploc, diag::err_protocol_has_circular_dependency);
1201
Diag(PrevLoc, diag::note_previous_definition);
1202
res = true;
1203
}
1204
1205
if (!PDecl->hasDefinition())
1206
continue;
1207
1208
if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
1209
PDecl->getLocation(), PDecl->getReferencedProtocols()))
1210
res = true;
1211
}
1212
}
1213
return res;
1214
}
1215
1216
ObjCProtocolDecl *SemaObjC::ActOnStartProtocolInterface(
1217
SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
1218
SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs,
1219
const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1220
const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody) {
1221
ASTContext &Context = getASTContext();
1222
bool err = false;
1223
// FIXME: Deal with AttrList.
1224
assert(ProtocolName && "Missing protocol identifier");
1225
ObjCProtocolDecl *PrevDecl = LookupProtocol(
1226
ProtocolName, ProtocolLoc, SemaRef.forRedeclarationInCurContext());
1227
ObjCProtocolDecl *PDecl = nullptr;
1228
if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1229
// Create a new protocol that is completely distinct from previous
1230
// declarations, and do not make this protocol available for name lookup.
1231
// That way, we'll end up completely ignoring the duplicate.
1232
// FIXME: Can we turn this into an error?
1233
PDecl = ObjCProtocolDecl::Create(Context, SemaRef.CurContext, ProtocolName,
1234
ProtocolLoc, AtProtoInterfaceLoc,
1235
/*PrevDecl=*/Def);
1236
1237
if (SkipBody && !SemaRef.hasVisibleDefinition(Def)) {
1238
SkipBody->CheckSameAsPrevious = true;
1239
SkipBody->New = PDecl;
1240
SkipBody->Previous = Def;
1241
} else {
1242
// If we already have a definition, complain.
1243
Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1244
Diag(Def->getLocation(), diag::note_previous_definition);
1245
}
1246
1247
// If we are using modules, add the decl to the context in order to
1248
// serialize something meaningful.
1249
if (getLangOpts().Modules)
1250
SemaRef.PushOnScopeChains(PDecl, SemaRef.TUScope);
1251
PDecl->startDuplicateDefinitionForComparison();
1252
} else {
1253
if (PrevDecl) {
1254
// Check for circular dependencies among protocol declarations. This can
1255
// only happen if this protocol was forward-declared.
1256
ObjCList<ObjCProtocolDecl> PList;
1257
PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
1258
err = CheckForwardProtocolDeclarationForCircularDependency(
1259
ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
1260
}
1261
1262
// Create the new declaration.
1263
PDecl = ObjCProtocolDecl::Create(Context, SemaRef.CurContext, ProtocolName,
1264
ProtocolLoc, AtProtoInterfaceLoc,
1265
/*PrevDecl=*/PrevDecl);
1266
1267
SemaRef.PushOnScopeChains(PDecl, SemaRef.TUScope);
1268
PDecl->startDefinition();
1269
}
1270
1271
SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, PDecl, AttrList);
1272
SemaRef.AddPragmaAttributes(SemaRef.TUScope, PDecl);
1273
SemaRef.ProcessAPINotes(PDecl);
1274
1275
// Merge attributes from previous declarations.
1276
if (PrevDecl)
1277
SemaRef.mergeDeclAttributes(PDecl, PrevDecl);
1278
1279
if (!err && NumProtoRefs ) {
1280
/// Check then save referenced protocols.
1281
diagnoseUseOfProtocols(SemaRef, PDecl, (ObjCProtocolDecl *const *)ProtoRefs,
1282
NumProtoRefs, ProtoLocs);
1283
PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1284
ProtoLocs, Context);
1285
}
1286
1287
CheckObjCDeclScope(PDecl);
1288
ActOnObjCContainerStartDefinition(PDecl);
1289
return PDecl;
1290
}
1291
1292
static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
1293
ObjCProtocolDecl *&UndefinedProtocol) {
1294
if (!PDecl->hasDefinition() ||
1295
!PDecl->getDefinition()->isUnconditionallyVisible()) {
1296
UndefinedProtocol = PDecl;
1297
return true;
1298
}
1299
1300
for (auto *PI : PDecl->protocols())
1301
if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
1302
UndefinedProtocol = PI;
1303
return true;
1304
}
1305
return false;
1306
}
1307
1308
/// FindProtocolDeclaration - This routine looks up protocols and
1309
/// issues an error if they are not declared. It returns list of
1310
/// protocol declarations in its 'Protocols' argument.
1311
void SemaObjC::FindProtocolDeclaration(bool WarnOnDeclarations,
1312
bool ForObjCContainer,
1313
ArrayRef<IdentifierLocPair> ProtocolId,
1314
SmallVectorImpl<Decl *> &Protocols) {
1315
for (const IdentifierLocPair &Pair : ProtocolId) {
1316
ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
1317
if (!PDecl) {
1318
DeclFilterCCC<ObjCProtocolDecl> CCC{};
1319
TypoCorrection Corrected =
1320
SemaRef.CorrectTypo(DeclarationNameInfo(Pair.first, Pair.second),
1321
Sema::LookupObjCProtocolName, SemaRef.TUScope,
1322
nullptr, CCC, Sema::CTK_ErrorRecovery);
1323
if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1324
SemaRef.diagnoseTypo(Corrected,
1325
PDiag(diag::err_undeclared_protocol_suggest)
1326
<< Pair.first);
1327
}
1328
1329
if (!PDecl) {
1330
Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
1331
continue;
1332
}
1333
// If this is a forward protocol declaration, get its definition.
1334
if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1335
PDecl = PDecl->getDefinition();
1336
1337
// For an objc container, delay protocol reference checking until after we
1338
// can set the objc decl as the availability context, otherwise check now.
1339
if (!ForObjCContainer) {
1340
(void)SemaRef.DiagnoseUseOfDecl(PDecl, Pair.second);
1341
}
1342
1343
// If this is a forward declaration and we are supposed to warn in this
1344
// case, do it.
1345
// FIXME: Recover nicely in the hidden case.
1346
ObjCProtocolDecl *UndefinedProtocol;
1347
1348
if (WarnOnDeclarations &&
1349
NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1350
Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
1351
Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1352
<< UndefinedProtocol;
1353
}
1354
Protocols.push_back(PDecl);
1355
}
1356
}
1357
1358
namespace {
1359
// Callback to only accept typo corrections that are either
1360
// Objective-C protocols or valid Objective-C type arguments.
1361
class ObjCTypeArgOrProtocolValidatorCCC final
1362
: public CorrectionCandidateCallback {
1363
ASTContext &Context;
1364
Sema::LookupNameKind LookupKind;
1365
public:
1366
ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1367
Sema::LookupNameKind lookupKind)
1368
: Context(context), LookupKind(lookupKind) { }
1369
1370
bool ValidateCandidate(const TypoCorrection &candidate) override {
1371
// If we're allowed to find protocols and we have a protocol, accept it.
1372
if (LookupKind != Sema::LookupOrdinaryName) {
1373
if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1374
return true;
1375
}
1376
1377
// If we're allowed to find type names and we have one, accept it.
1378
if (LookupKind != Sema::LookupObjCProtocolName) {
1379
// If we have a type declaration, we might accept this result.
1380
if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1381
// If we found a tag declaration outside of C++, skip it. This
1382
// can happy because we look for any name when there is no
1383
// bias to protocol or type names.
1384
if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
1385
return false;
1386
1387
// Make sure the type is something we would accept as a type
1388
// argument.
1389
auto type = Context.getTypeDeclType(typeDecl);
1390
if (type->isObjCObjectPointerType() ||
1391
type->isBlockPointerType() ||
1392
type->isDependentType() ||
1393
type->isObjCObjectType())
1394
return true;
1395
1396
return false;
1397
}
1398
1399
// If we have an Objective-C class type, accept it; there will
1400
// be another fix to add the '*'.
1401
if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1402
return true;
1403
1404
return false;
1405
}
1406
1407
return false;
1408
}
1409
1410
std::unique_ptr<CorrectionCandidateCallback> clone() override {
1411
return std::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(*this);
1412
}
1413
};
1414
} // end anonymous namespace
1415
1416
void SemaObjC::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
1417
SourceLocation ProtocolLoc,
1418
IdentifierInfo *TypeArgId,
1419
SourceLocation TypeArgLoc,
1420
bool SelectProtocolFirst) {
1421
Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
1422
<< SelectProtocolFirst << TypeArgId << ProtocolId
1423
<< SourceRange(ProtocolLoc);
1424
}
1425
1426
void SemaObjC::actOnObjCTypeArgsOrProtocolQualifiers(
1427
Scope *S, ParsedType baseType, SourceLocation lAngleLoc,
1428
ArrayRef<IdentifierInfo *> identifiers,
1429
ArrayRef<SourceLocation> identifierLocs, SourceLocation rAngleLoc,
1430
SourceLocation &typeArgsLAngleLoc, SmallVectorImpl<ParsedType> &typeArgs,
1431
SourceLocation &typeArgsRAngleLoc, SourceLocation &protocolLAngleLoc,
1432
SmallVectorImpl<Decl *> &protocols, SourceLocation &protocolRAngleLoc,
1433
bool warnOnIncompleteProtocols) {
1434
ASTContext &Context = getASTContext();
1435
// Local function that updates the declaration specifiers with
1436
// protocol information.
1437
unsigned numProtocolsResolved = 0;
1438
auto resolvedAsProtocols = [&] {
1439
assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols");
1440
1441
// Determine whether the base type is a parameterized class, in
1442
// which case we want to warn about typos such as
1443
// "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1444
ObjCInterfaceDecl *baseClass = nullptr;
1445
QualType base = SemaRef.GetTypeFromParser(baseType, nullptr);
1446
bool allAreTypeNames = false;
1447
SourceLocation firstClassNameLoc;
1448
if (!base.isNull()) {
1449
if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1450
baseClass = objcObjectType->getInterface();
1451
if (baseClass) {
1452
if (auto typeParams = baseClass->getTypeParamList()) {
1453
if (typeParams->size() == numProtocolsResolved) {
1454
// Note that we should be looking for type names, too.
1455
allAreTypeNames = true;
1456
}
1457
}
1458
}
1459
}
1460
}
1461
1462
for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1463
ObjCProtocolDecl *&proto
1464
= reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1465
// For an objc container, delay protocol reference checking until after we
1466
// can set the objc decl as the availability context, otherwise check now.
1467
if (!warnOnIncompleteProtocols) {
1468
(void)SemaRef.DiagnoseUseOfDecl(proto, identifierLocs[i]);
1469
}
1470
1471
// If this is a forward protocol declaration, get its definition.
1472
if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1473
proto = proto->getDefinition();
1474
1475
// If this is a forward declaration and we are supposed to warn in this
1476
// case, do it.
1477
// FIXME: Recover nicely in the hidden case.
1478
ObjCProtocolDecl *forwardDecl = nullptr;
1479
if (warnOnIncompleteProtocols &&
1480
NestedProtocolHasNoDefinition(proto, forwardDecl)) {
1481
Diag(identifierLocs[i], diag::warn_undef_protocolref)
1482
<< proto->getDeclName();
1483
Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1484
<< forwardDecl;
1485
}
1486
1487
// If everything this far has been a type name (and we care
1488
// about such things), check whether this name refers to a type
1489
// as well.
1490
if (allAreTypeNames) {
1491
if (auto *decl =
1492
SemaRef.LookupSingleName(S, identifiers[i], identifierLocs[i],
1493
Sema::LookupOrdinaryName)) {
1494
if (isa<ObjCInterfaceDecl>(decl)) {
1495
if (firstClassNameLoc.isInvalid())
1496
firstClassNameLoc = identifierLocs[i];
1497
} else if (!isa<TypeDecl>(decl)) {
1498
// Not a type.
1499
allAreTypeNames = false;
1500
}
1501
} else {
1502
allAreTypeNames = false;
1503
}
1504
}
1505
}
1506
1507
// All of the protocols listed also have type names, and at least
1508
// one is an Objective-C class name. Check whether all of the
1509
// protocol conformances are declared by the base class itself, in
1510
// which case we warn.
1511
if (allAreTypeNames && firstClassNameLoc.isValid()) {
1512
llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
1513
Context.CollectInheritedProtocols(baseClass, knownProtocols);
1514
bool allProtocolsDeclared = true;
1515
for (auto *proto : protocols) {
1516
if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1517
allProtocolsDeclared = false;
1518
break;
1519
}
1520
}
1521
1522
if (allProtocolsDeclared) {
1523
Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1524
<< baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1525
<< FixItHint::CreateInsertion(
1526
SemaRef.getLocForEndOfToken(firstClassNameLoc), " *");
1527
}
1528
}
1529
1530
protocolLAngleLoc = lAngleLoc;
1531
protocolRAngleLoc = rAngleLoc;
1532
assert(protocols.size() == identifierLocs.size());
1533
};
1534
1535
// Attempt to resolve all of the identifiers as protocols.
1536
for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1537
ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
1538
protocols.push_back(proto);
1539
if (proto)
1540
++numProtocolsResolved;
1541
}
1542
1543
// If all of the names were protocols, these were protocol qualifiers.
1544
if (numProtocolsResolved == identifiers.size())
1545
return resolvedAsProtocols();
1546
1547
// Attempt to resolve all of the identifiers as type names or
1548
// Objective-C class names. The latter is technically ill-formed,
1549
// but is probably something like \c NSArray<NSView *> missing the
1550
// \c*.
1551
typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1552
SmallVector<TypeOrClassDecl, 4> typeDecls;
1553
unsigned numTypeDeclsResolved = 0;
1554
for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1555
NamedDecl *decl = SemaRef.LookupSingleName(
1556
S, identifiers[i], identifierLocs[i], Sema::LookupOrdinaryName);
1557
if (!decl) {
1558
typeDecls.push_back(TypeOrClassDecl());
1559
continue;
1560
}
1561
1562
if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
1563
typeDecls.push_back(typeDecl);
1564
++numTypeDeclsResolved;
1565
continue;
1566
}
1567
1568
if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
1569
typeDecls.push_back(objcClass);
1570
++numTypeDeclsResolved;
1571
continue;
1572
}
1573
1574
typeDecls.push_back(TypeOrClassDecl());
1575
}
1576
1577
AttributeFactory attrFactory;
1578
1579
// Local function that forms a reference to the given type or
1580
// Objective-C class declaration.
1581
auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1582
-> TypeResult {
1583
// Form declaration specifiers. They simply refer to the type.
1584
DeclSpec DS(attrFactory);
1585
const char* prevSpec; // unused
1586
unsigned diagID; // unused
1587
QualType type;
1588
if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
1589
type = Context.getTypeDeclType(actualTypeDecl);
1590
else
1591
type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
1592
TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
1593
ParsedType parsedType = SemaRef.CreateParsedType(type, parsedTSInfo);
1594
DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
1595
parsedType, Context.getPrintingPolicy());
1596
// Use the identifier location for the type source range.
1597
DS.SetRangeStart(loc);
1598
DS.SetRangeEnd(loc);
1599
1600
// Form the declarator.
1601
Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::TypeName);
1602
1603
// If we have a typedef of an Objective-C class type that is missing a '*',
1604
// add the '*'.
1605
if (type->getAs<ObjCInterfaceType>()) {
1606
SourceLocation starLoc = SemaRef.getLocForEndOfToken(loc);
1607
D.AddTypeInfo(DeclaratorChunk::getPointer(/*TypeQuals=*/0, starLoc,
1608
SourceLocation(),
1609
SourceLocation(),
1610
SourceLocation(),
1611
SourceLocation(),
1612
SourceLocation()),
1613
starLoc);
1614
1615
// Diagnose the missing '*'.
1616
Diag(loc, diag::err_objc_type_arg_missing_star)
1617
<< type
1618
<< FixItHint::CreateInsertion(starLoc, " *");
1619
}
1620
1621
// Convert this to a type.
1622
return SemaRef.ActOnTypeName(D);
1623
};
1624
1625
// Local function that updates the declaration specifiers with
1626
// type argument information.
1627
auto resolvedAsTypeDecls = [&] {
1628
// We did not resolve these as protocols.
1629
protocols.clear();
1630
1631
assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl");
1632
// Map type declarations to type arguments.
1633
for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1634
// Map type reference to a type.
1635
TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1636
if (!type.isUsable()) {
1637
typeArgs.clear();
1638
return;
1639
}
1640
1641
typeArgs.push_back(type.get());
1642
}
1643
1644
typeArgsLAngleLoc = lAngleLoc;
1645
typeArgsRAngleLoc = rAngleLoc;
1646
};
1647
1648
// If all of the identifiers can be resolved as type names or
1649
// Objective-C class names, we have type arguments.
1650
if (numTypeDeclsResolved == identifiers.size())
1651
return resolvedAsTypeDecls();
1652
1653
// Error recovery: some names weren't found, or we have a mix of
1654
// type and protocol names. Go resolve all of the unresolved names
1655
// and complain if we can't find a consistent answer.
1656
Sema::LookupNameKind lookupKind = Sema::LookupAnyName;
1657
for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1658
// If we already have a protocol or type. Check whether it is the
1659
// right thing.
1660
if (protocols[i] || typeDecls[i]) {
1661
// If we haven't figured out whether we want types or protocols
1662
// yet, try to figure it out from this name.
1663
if (lookupKind == Sema::LookupAnyName) {
1664
// If this name refers to both a protocol and a type (e.g., \c
1665
// NSObject), don't conclude anything yet.
1666
if (protocols[i] && typeDecls[i])
1667
continue;
1668
1669
// Otherwise, let this name decide whether we'll be correcting
1670
// toward types or protocols.
1671
lookupKind = protocols[i] ? Sema::LookupObjCProtocolName
1672
: Sema::LookupOrdinaryName;
1673
continue;
1674
}
1675
1676
// If we want protocols and we have a protocol, there's nothing
1677
// more to do.
1678
if (lookupKind == Sema::LookupObjCProtocolName && protocols[i])
1679
continue;
1680
1681
// If we want types and we have a type declaration, there's
1682
// nothing more to do.
1683
if (lookupKind == Sema::LookupOrdinaryName && typeDecls[i])
1684
continue;
1685
1686
// We have a conflict: some names refer to protocols and others
1687
// refer to types.
1688
DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0],
1689
identifiers[i], identifierLocs[i],
1690
protocols[i] != nullptr);
1691
1692
protocols.clear();
1693
typeArgs.clear();
1694
return;
1695
}
1696
1697
// Perform typo correction on the name.
1698
ObjCTypeArgOrProtocolValidatorCCC CCC(Context, lookupKind);
1699
TypoCorrection corrected = SemaRef.CorrectTypo(
1700
DeclarationNameInfo(identifiers[i], identifierLocs[i]), lookupKind, S,
1701
nullptr, CCC, Sema::CTK_ErrorRecovery);
1702
if (corrected) {
1703
// Did we find a protocol?
1704
if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1705
SemaRef.diagnoseTypo(corrected,
1706
PDiag(diag::err_undeclared_protocol_suggest)
1707
<< identifiers[i]);
1708
lookupKind = Sema::LookupObjCProtocolName;
1709
protocols[i] = proto;
1710
++numProtocolsResolved;
1711
continue;
1712
}
1713
1714
// Did we find a type?
1715
if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1716
SemaRef.diagnoseTypo(corrected,
1717
PDiag(diag::err_unknown_typename_suggest)
1718
<< identifiers[i]);
1719
lookupKind = Sema::LookupOrdinaryName;
1720
typeDecls[i] = typeDecl;
1721
++numTypeDeclsResolved;
1722
continue;
1723
}
1724
1725
// Did we find an Objective-C class?
1726
if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1727
SemaRef.diagnoseTypo(corrected,
1728
PDiag(diag::err_unknown_type_or_class_name_suggest)
1729
<< identifiers[i] << true);
1730
lookupKind = Sema::LookupOrdinaryName;
1731
typeDecls[i] = objcClass;
1732
++numTypeDeclsResolved;
1733
continue;
1734
}
1735
}
1736
1737
// We couldn't find anything.
1738
Diag(identifierLocs[i],
1739
(lookupKind == Sema::LookupAnyName ? diag::err_objc_type_arg_missing
1740
: lookupKind == Sema::LookupObjCProtocolName
1741
? diag::err_undeclared_protocol
1742
: diag::err_unknown_typename))
1743
<< identifiers[i];
1744
protocols.clear();
1745
typeArgs.clear();
1746
return;
1747
}
1748
1749
// If all of the names were (corrected to) protocols, these were
1750
// protocol qualifiers.
1751
if (numProtocolsResolved == identifiers.size())
1752
return resolvedAsProtocols();
1753
1754
// Otherwise, all of the names were (corrected to) types.
1755
assert(numTypeDeclsResolved == identifiers.size() && "Not all types?");
1756
return resolvedAsTypeDecls();
1757
}
1758
1759
/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1760
/// a class method in its extension.
1761
///
1762
void SemaObjC::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
1763
ObjCInterfaceDecl *ID) {
1764
if (!ID)
1765
return; // Possibly due to previous error
1766
1767
llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1768
for (auto *MD : ID->methods())
1769
MethodMap[MD->getSelector()] = MD;
1770
1771
if (MethodMap.empty())
1772
return;
1773
for (const auto *Method : CAT->methods()) {
1774
const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1775
if (PrevMethod &&
1776
(PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1777
!MatchTwoMethodDeclarations(Method, PrevMethod)) {
1778
Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1779
<< Method->getDeclName();
1780
Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1781
}
1782
}
1783
}
1784
1785
/// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1786
SemaObjC::DeclGroupPtrTy SemaObjC::ActOnForwardProtocolDeclaration(
1787
SourceLocation AtProtocolLoc, ArrayRef<IdentifierLocPair> IdentList,
1788
const ParsedAttributesView &attrList) {
1789
ASTContext &Context = getASTContext();
1790
SmallVector<Decl *, 8> DeclsInGroup;
1791
for (const IdentifierLocPair &IdentPair : IdentList) {
1792
IdentifierInfo *Ident = IdentPair.first;
1793
ObjCProtocolDecl *PrevDecl = LookupProtocol(
1794
Ident, IdentPair.second, SemaRef.forRedeclarationInCurContext());
1795
ObjCProtocolDecl *PDecl =
1796
ObjCProtocolDecl::Create(Context, SemaRef.CurContext, Ident,
1797
IdentPair.second, AtProtocolLoc, PrevDecl);
1798
1799
SemaRef.PushOnScopeChains(PDecl, SemaRef.TUScope);
1800
CheckObjCDeclScope(PDecl);
1801
1802
SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, PDecl, attrList);
1803
SemaRef.AddPragmaAttributes(SemaRef.TUScope, PDecl);
1804
1805
if (PrevDecl)
1806
SemaRef.mergeDeclAttributes(PDecl, PrevDecl);
1807
1808
DeclsInGroup.push_back(PDecl);
1809
}
1810
1811
return SemaRef.BuildDeclaratorGroup(DeclsInGroup);
1812
}
1813
1814
ObjCCategoryDecl *SemaObjC::ActOnStartCategoryInterface(
1815
SourceLocation AtInterfaceLoc, const IdentifierInfo *ClassName,
1816
SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
1817
const IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
1818
Decl *const *ProtoRefs, unsigned NumProtoRefs,
1819
const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1820
const ParsedAttributesView &AttrList) {
1821
ASTContext &Context = getASTContext();
1822
ObjCCategoryDecl *CDecl;
1823
ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1824
1825
/// Check that class of this category is already completely declared.
1826
1827
if (!IDecl ||
1828
SemaRef.RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1829
diag::err_category_forward_interface,
1830
CategoryName == nullptr)) {
1831
// Create an invalid ObjCCategoryDecl to serve as context for
1832
// the enclosing method declarations. We mark the decl invalid
1833
// to make it clear that this isn't a valid AST.
1834
CDecl = ObjCCategoryDecl::Create(Context, SemaRef.CurContext,
1835
AtInterfaceLoc, ClassLoc, CategoryLoc,
1836
CategoryName, IDecl, typeParamList);
1837
CDecl->setInvalidDecl();
1838
SemaRef.CurContext->addDecl(CDecl);
1839
1840
if (!IDecl)
1841
Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1842
ActOnObjCContainerStartDefinition(CDecl);
1843
return CDecl;
1844
}
1845
1846
if (!CategoryName && IDecl->getImplementation()) {
1847
Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1848
Diag(IDecl->getImplementation()->getLocation(),
1849
diag::note_implementation_declared);
1850
}
1851
1852
if (CategoryName) {
1853
/// Check for duplicate interface declaration for this category
1854
if (ObjCCategoryDecl *Previous
1855
= IDecl->FindCategoryDeclaration(CategoryName)) {
1856
// Class extensions can be declared multiple times, categories cannot.
1857
Diag(CategoryLoc, diag::warn_dup_category_def)
1858
<< ClassName << CategoryName;
1859
Diag(Previous->getLocation(), diag::note_previous_definition);
1860
}
1861
}
1862
1863
// If we have a type parameter list, check it.
1864
if (typeParamList) {
1865
if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1866
if (checkTypeParamListConsistency(
1867
SemaRef, prevTypeParamList, typeParamList,
1868
CategoryName ? TypeParamListContext::Category
1869
: TypeParamListContext::Extension))
1870
typeParamList = nullptr;
1871
} else {
1872
Diag(typeParamList->getLAngleLoc(),
1873
diag::err_objc_parameterized_category_nonclass)
1874
<< (CategoryName != nullptr)
1875
<< ClassName
1876
<< typeParamList->getSourceRange();
1877
1878
typeParamList = nullptr;
1879
}
1880
}
1881
1882
CDecl = ObjCCategoryDecl::Create(Context, SemaRef.CurContext, AtInterfaceLoc,
1883
ClassLoc, CategoryLoc, CategoryName, IDecl,
1884
typeParamList);
1885
// FIXME: PushOnScopeChains?
1886
SemaRef.CurContext->addDecl(CDecl);
1887
1888
// Process the attributes before looking at protocols to ensure that the
1889
// availability attribute is attached to the category to provide availability
1890
// checking for protocol uses.
1891
SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, CDecl, AttrList);
1892
SemaRef.AddPragmaAttributes(SemaRef.TUScope, CDecl);
1893
1894
if (NumProtoRefs) {
1895
diagnoseUseOfProtocols(SemaRef, CDecl, (ObjCProtocolDecl *const *)ProtoRefs,
1896
NumProtoRefs, ProtoLocs);
1897
CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1898
ProtoLocs, Context);
1899
// Protocols in the class extension belong to the class.
1900
if (CDecl->IsClassExtension())
1901
IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
1902
NumProtoRefs, Context);
1903
}
1904
1905
CheckObjCDeclScope(CDecl);
1906
ActOnObjCContainerStartDefinition(CDecl);
1907
return CDecl;
1908
}
1909
1910
/// ActOnStartCategoryImplementation - Perform semantic checks on the
1911
/// category implementation declaration and build an ObjCCategoryImplDecl
1912
/// object.
1913
ObjCCategoryImplDecl *SemaObjC::ActOnStartCategoryImplementation(
1914
SourceLocation AtCatImplLoc, const IdentifierInfo *ClassName,
1915
SourceLocation ClassLoc, const IdentifierInfo *CatName,
1916
SourceLocation CatLoc, const ParsedAttributesView &Attrs) {
1917
ASTContext &Context = getASTContext();
1918
ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1919
ObjCCategoryDecl *CatIDecl = nullptr;
1920
if (IDecl && IDecl->hasDefinition()) {
1921
CatIDecl = IDecl->FindCategoryDeclaration(CatName);
1922
if (!CatIDecl) {
1923
// Category @implementation with no corresponding @interface.
1924
// Create and install one.
1925
CatIDecl =
1926
ObjCCategoryDecl::Create(Context, SemaRef.CurContext, AtCatImplLoc,
1927
ClassLoc, CatLoc, CatName, IDecl,
1928
/*typeParamList=*/nullptr);
1929
CatIDecl->setImplicit();
1930
}
1931
}
1932
1933
ObjCCategoryImplDecl *CDecl =
1934
ObjCCategoryImplDecl::Create(Context, SemaRef.CurContext, CatName, IDecl,
1935
ClassLoc, AtCatImplLoc, CatLoc);
1936
/// Check that class of this category is already completely declared.
1937
if (!IDecl) {
1938
Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1939
CDecl->setInvalidDecl();
1940
} else if (SemaRef.RequireCompleteType(ClassLoc,
1941
Context.getObjCInterfaceType(IDecl),
1942
diag::err_undef_interface)) {
1943
CDecl->setInvalidDecl();
1944
}
1945
1946
SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, CDecl, Attrs);
1947
SemaRef.AddPragmaAttributes(SemaRef.TUScope, CDecl);
1948
1949
// FIXME: PushOnScopeChains?
1950
SemaRef.CurContext->addDecl(CDecl);
1951
1952
// If the interface has the objc_runtime_visible attribute, we
1953
// cannot implement a category for it.
1954
if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
1955
Diag(ClassLoc, diag::err_objc_runtime_visible_category)
1956
<< IDecl->getDeclName();
1957
}
1958
1959
/// Check that CatName, category name, is not used in another implementation.
1960
if (CatIDecl) {
1961
if (CatIDecl->getImplementation()) {
1962
Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1963
<< CatName;
1964
Diag(CatIDecl->getImplementation()->getLocation(),
1965
diag::note_previous_definition);
1966
CDecl->setInvalidDecl();
1967
} else {
1968
CatIDecl->setImplementation(CDecl);
1969
// Warn on implementating category of deprecated class under
1970
// -Wdeprecated-implementations flag.
1971
DiagnoseObjCImplementedDeprecations(SemaRef, CatIDecl,
1972
CDecl->getLocation());
1973
}
1974
}
1975
1976
CheckObjCDeclScope(CDecl);
1977
ActOnObjCContainerStartDefinition(CDecl);
1978
return CDecl;
1979
}
1980
1981
ObjCImplementationDecl *SemaObjC::ActOnStartClassImplementation(
1982
SourceLocation AtClassImplLoc, const IdentifierInfo *ClassName,
1983
SourceLocation ClassLoc, const IdentifierInfo *SuperClassname,
1984
SourceLocation SuperClassLoc, const ParsedAttributesView &Attrs) {
1985
ASTContext &Context = getASTContext();
1986
ObjCInterfaceDecl *IDecl = nullptr;
1987
// Check for another declaration kind with the same name.
1988
NamedDecl *PrevDecl = SemaRef.LookupSingleName(
1989
SemaRef.TUScope, ClassName, ClassLoc, Sema::LookupOrdinaryName,
1990
SemaRef.forRedeclarationInCurContext());
1991
if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1992
Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1993
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1994
} else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1995
// FIXME: This will produce an error if the definition of the interface has
1996
// been imported from a module but is not visible.
1997
SemaRef.RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1998
diag::warn_undef_interface);
1999
} else {
2000
// We did not find anything with the name ClassName; try to correct for
2001
// typos in the class name.
2002
ObjCInterfaceValidatorCCC CCC{};
2003
TypoCorrection Corrected = SemaRef.CorrectTypo(
2004
DeclarationNameInfo(ClassName, ClassLoc), Sema::LookupOrdinaryName,
2005
SemaRef.TUScope, nullptr, CCC, Sema::CTK_NonError);
2006
if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
2007
// Suggest the (potentially) correct interface name. Don't provide a
2008
// code-modification hint or use the typo name for recovery, because
2009
// this is just a warning. The program may actually be correct.
2010
SemaRef.diagnoseTypo(
2011
Corrected, PDiag(diag::warn_undef_interface_suggest) << ClassName,
2012
/*ErrorRecovery*/ false);
2013
} else {
2014
Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
2015
}
2016
}
2017
2018
// Check that super class name is valid class name
2019
ObjCInterfaceDecl *SDecl = nullptr;
2020
if (SuperClassname) {
2021
// Check if a different kind of symbol declared in this scope.
2022
PrevDecl =
2023
SemaRef.LookupSingleName(SemaRef.TUScope, SuperClassname, SuperClassLoc,
2024
Sema::LookupOrdinaryName);
2025
if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
2026
Diag(SuperClassLoc, diag::err_redefinition_different_kind)
2027
<< SuperClassname;
2028
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2029
} else {
2030
SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
2031
if (SDecl && !SDecl->hasDefinition())
2032
SDecl = nullptr;
2033
if (!SDecl)
2034
Diag(SuperClassLoc, diag::err_undef_superclass)
2035
<< SuperClassname << ClassName;
2036
else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
2037
// This implementation and its interface do not have the same
2038
// super class.
2039
Diag(SuperClassLoc, diag::err_conflicting_super_class)
2040
<< SDecl->getDeclName();
2041
Diag(SDecl->getLocation(), diag::note_previous_definition);
2042
}
2043
}
2044
}
2045
2046
if (!IDecl) {
2047
// Legacy case of @implementation with no corresponding @interface.
2048
// Build, chain & install the interface decl into the identifier.
2049
2050
// FIXME: Do we support attributes on the @implementation? If so we should
2051
// copy them over.
2052
IDecl =
2053
ObjCInterfaceDecl::Create(Context, SemaRef.CurContext, AtClassImplLoc,
2054
ClassName, /*typeParamList=*/nullptr,
2055
/*PrevDecl=*/nullptr, ClassLoc, true);
2056
SemaRef.AddPragmaAttributes(SemaRef.TUScope, IDecl);
2057
IDecl->startDefinition();
2058
if (SDecl) {
2059
IDecl->setSuperClass(Context.getTrivialTypeSourceInfo(
2060
Context.getObjCInterfaceType(SDecl),
2061
SuperClassLoc));
2062
IDecl->setEndOfDefinitionLoc(SuperClassLoc);
2063
} else {
2064
IDecl->setEndOfDefinitionLoc(ClassLoc);
2065
}
2066
2067
SemaRef.PushOnScopeChains(IDecl, SemaRef.TUScope);
2068
} else {
2069
// Mark the interface as being completed, even if it was just as
2070
// @class ....;
2071
// declaration; the user cannot reopen it.
2072
if (!IDecl->hasDefinition())
2073
IDecl->startDefinition();
2074
}
2075
2076
ObjCImplementationDecl *IMPDecl =
2077
ObjCImplementationDecl::Create(Context, SemaRef.CurContext, IDecl, SDecl,
2078
ClassLoc, AtClassImplLoc, SuperClassLoc);
2079
2080
SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, IMPDecl, Attrs);
2081
SemaRef.AddPragmaAttributes(SemaRef.TUScope, IMPDecl);
2082
2083
if (CheckObjCDeclScope(IMPDecl)) {
2084
ActOnObjCContainerStartDefinition(IMPDecl);
2085
return IMPDecl;
2086
}
2087
2088
// Check that there is no duplicate implementation of this class.
2089
if (IDecl->getImplementation()) {
2090
// FIXME: Don't leak everything!
2091
Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
2092
Diag(IDecl->getImplementation()->getLocation(),
2093
diag::note_previous_definition);
2094
IMPDecl->setInvalidDecl();
2095
} else { // add it to the list.
2096
IDecl->setImplementation(IMPDecl);
2097
SemaRef.PushOnScopeChains(IMPDecl, SemaRef.TUScope);
2098
// Warn on implementating deprecated class under
2099
// -Wdeprecated-implementations flag.
2100
DiagnoseObjCImplementedDeprecations(SemaRef, IDecl, IMPDecl->getLocation());
2101
}
2102
2103
// If the superclass has the objc_runtime_visible attribute, we
2104
// cannot implement a subclass of it.
2105
if (IDecl->getSuperClass() &&
2106
IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
2107
Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
2108
<< IDecl->getDeclName()
2109
<< IDecl->getSuperClass()->getDeclName();
2110
}
2111
2112
ActOnObjCContainerStartDefinition(IMPDecl);
2113
return IMPDecl;
2114
}
2115
2116
SemaObjC::DeclGroupPtrTy
2117
SemaObjC::ActOnFinishObjCImplementation(Decl *ObjCImpDecl,
2118
ArrayRef<Decl *> Decls) {
2119
SmallVector<Decl *, 64> DeclsInGroup;
2120
DeclsInGroup.reserve(Decls.size() + 1);
2121
2122
for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2123
Decl *Dcl = Decls[i];
2124
if (!Dcl)
2125
continue;
2126
if (Dcl->getDeclContext()->isFileContext())
2127
Dcl->setTopLevelDeclInObjCContainer();
2128
DeclsInGroup.push_back(Dcl);
2129
}
2130
2131
DeclsInGroup.push_back(ObjCImpDecl);
2132
2133
return SemaRef.BuildDeclaratorGroup(DeclsInGroup);
2134
}
2135
2136
void SemaObjC::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
2137
ObjCIvarDecl **ivars, unsigned numIvars,
2138
SourceLocation RBrace) {
2139
assert(ImpDecl && "missing implementation decl");
2140
ASTContext &Context = getASTContext();
2141
ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
2142
if (!IDecl)
2143
return;
2144
/// Check case of non-existing \@interface decl.
2145
/// (legacy objective-c \@implementation decl without an \@interface decl).
2146
/// Add implementations's ivar to the synthesize class's ivar list.
2147
if (IDecl->isImplicitInterfaceDecl()) {
2148
IDecl->setEndOfDefinitionLoc(RBrace);
2149
// Add ivar's to class's DeclContext.
2150
for (unsigned i = 0, e = numIvars; i != e; ++i) {
2151
ivars[i]->setLexicalDeclContext(ImpDecl);
2152
// In a 'fragile' runtime the ivar was added to the implicit
2153
// ObjCInterfaceDecl while in a 'non-fragile' runtime the ivar is
2154
// only in the ObjCImplementationDecl. In the non-fragile case the ivar
2155
// therefore also needs to be propagated to the ObjCInterfaceDecl.
2156
if (!getLangOpts().ObjCRuntime.isFragile())
2157
IDecl->makeDeclVisibleInContext(ivars[i]);
2158
ImpDecl->addDecl(ivars[i]);
2159
}
2160
2161
return;
2162
}
2163
// If implementation has empty ivar list, just return.
2164
if (numIvars == 0)
2165
return;
2166
2167
assert(ivars && "missing @implementation ivars");
2168
if (getLangOpts().ObjCRuntime.isNonFragile()) {
2169
if (ImpDecl->getSuperClass())
2170
Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2171
for (unsigned i = 0; i < numIvars; i++) {
2172
ObjCIvarDecl* ImplIvar = ivars[i];
2173
if (const ObjCIvarDecl *ClsIvar =
2174
IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2175
Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2176
Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2177
continue;
2178
}
2179
// Check class extensions (unnamed categories) for duplicate ivars.
2180
for (const auto *CDecl : IDecl->visible_extensions()) {
2181
if (const ObjCIvarDecl *ClsExtIvar =
2182
CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2183
Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2184
Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2185
continue;
2186
}
2187
}
2188
// Instance ivar to Implementation's DeclContext.
2189
ImplIvar->setLexicalDeclContext(ImpDecl);
2190
IDecl->makeDeclVisibleInContext(ImplIvar);
2191
ImpDecl->addDecl(ImplIvar);
2192
}
2193
return;
2194
}
2195
// Check interface's Ivar list against those in the implementation.
2196
// names and types must match.
2197
//
2198
unsigned j = 0;
2199
ObjCInterfaceDecl::ivar_iterator
2200
IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2201
for (; numIvars > 0 && IVI != IVE; ++IVI) {
2202
ObjCIvarDecl* ImplIvar = ivars[j++];
2203
ObjCIvarDecl* ClsIvar = *IVI;
2204
assert (ImplIvar && "missing implementation ivar");
2205
assert (ClsIvar && "missing class ivar");
2206
2207
// First, make sure the types match.
2208
if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2209
Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2210
<< ImplIvar->getIdentifier()
2211
<< ImplIvar->getType() << ClsIvar->getType();
2212
Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2213
} else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2214
ImplIvar->getBitWidthValue(Context) !=
2215
ClsIvar->getBitWidthValue(Context)) {
2216
Diag(ImplIvar->getBitWidth()->getBeginLoc(),
2217
diag::err_conflicting_ivar_bitwidth)
2218
<< ImplIvar->getIdentifier();
2219
Diag(ClsIvar->getBitWidth()->getBeginLoc(),
2220
diag::note_previous_definition);
2221
}
2222
// Make sure the names are identical.
2223
if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2224
Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2225
<< ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2226
Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2227
}
2228
--numIvars;
2229
}
2230
2231
if (numIvars > 0)
2232
Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2233
else if (IVI != IVE)
2234
Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2235
}
2236
2237
static bool shouldWarnUndefinedMethod(const ObjCMethodDecl *M) {
2238
// No point warning no definition of method which is 'unavailable'.
2239
return M->getAvailability() != AR_Unavailable;
2240
}
2241
2242
static void WarnUndefinedMethod(Sema &S, ObjCImplDecl *Impl,
2243
ObjCMethodDecl *method, bool &IncompleteImpl,
2244
unsigned DiagID,
2245
NamedDecl *NeededFor = nullptr) {
2246
if (!shouldWarnUndefinedMethod(method))
2247
return;
2248
2249
// FIXME: For now ignore 'IncompleteImpl'.
2250
// Previously we grouped all unimplemented methods under a single
2251
// warning, but some users strongly voiced that they would prefer
2252
// separate warnings. We will give that approach a try, as that
2253
// matches what we do with protocols.
2254
{
2255
const SemaBase::SemaDiagnosticBuilder &B =
2256
S.Diag(Impl->getLocation(), DiagID);
2257
B << method;
2258
if (NeededFor)
2259
B << NeededFor;
2260
2261
// Add an empty definition at the end of the @implementation.
2262
std::string FixItStr;
2263
llvm::raw_string_ostream Out(FixItStr);
2264
method->print(Out, Impl->getASTContext().getPrintingPolicy());
2265
Out << " {\n}\n\n";
2266
2267
SourceLocation Loc = Impl->getAtEndRange().getBegin();
2268
B << FixItHint::CreateInsertion(Loc, FixItStr);
2269
}
2270
2271
// Issue a note to the original declaration.
2272
SourceLocation MethodLoc = method->getBeginLoc();
2273
if (MethodLoc.isValid())
2274
S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2275
}
2276
2277
/// Determines if type B can be substituted for type A. Returns true if we can
2278
/// guarantee that anything that the user will do to an object of type A can
2279
/// also be done to an object of type B. This is trivially true if the two
2280
/// types are the same, or if B is a subclass of A. It becomes more complex
2281
/// in cases where protocols are involved.
2282
///
2283
/// Object types in Objective-C describe the minimum requirements for an
2284
/// object, rather than providing a complete description of a type. For
2285
/// example, if A is a subclass of B, then B* may refer to an instance of A.
2286
/// The principle of substitutability means that we may use an instance of A
2287
/// anywhere that we may use an instance of B - it will implement all of the
2288
/// ivars of B and all of the methods of B.
2289
///
2290
/// This substitutability is important when type checking methods, because
2291
/// the implementation may have stricter type definitions than the interface.
2292
/// The interface specifies minimum requirements, but the implementation may
2293
/// have more accurate ones. For example, a method may privately accept
2294
/// instances of B, but only publish that it accepts instances of A. Any
2295
/// object passed to it will be type checked against B, and so will implicitly
2296
/// by a valid A*. Similarly, a method may return a subclass of the class that
2297
/// it is declared as returning.
2298
///
2299
/// This is most important when considering subclassing. A method in a
2300
/// subclass must accept any object as an argument that its superclass's
2301
/// implementation accepts. It may, however, accept a more general type
2302
/// without breaking substitutability (i.e. you can still use the subclass
2303
/// anywhere that you can use the superclass, but not vice versa). The
2304
/// converse requirement applies to return types: the return type for a
2305
/// subclass method must be a valid object of the kind that the superclass
2306
/// advertises, but it may be specified more accurately. This avoids the need
2307
/// for explicit down-casting by callers.
2308
///
2309
/// Note: This is a stricter requirement than for assignment.
2310
static bool isObjCTypeSubstitutable(ASTContext &Context,
2311
const ObjCObjectPointerType *A,
2312
const ObjCObjectPointerType *B,
2313
bool rejectId) {
2314
// Reject a protocol-unqualified id.
2315
if (rejectId && B->isObjCIdType()) return false;
2316
2317
// If B is a qualified id, then A must also be a qualified id and it must
2318
// implement all of the protocols in B. It may not be a qualified class.
2319
// For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2320
// stricter definition so it is not substitutable for id<A>.
2321
if (B->isObjCQualifiedIdType()) {
2322
return A->isObjCQualifiedIdType() &&
2323
Context.ObjCQualifiedIdTypesAreCompatible(A, B, false);
2324
}
2325
2326
/*
2327
// id is a special type that bypasses type checking completely. We want a
2328
// warning when it is used in one place but not another.
2329
if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2330
2331
2332
// If B is a qualified id, then A must also be a qualified id (which it isn't
2333
// if we've got this far)
2334
if (B->isObjCQualifiedIdType()) return false;
2335
*/
2336
2337
// Now we know that A and B are (potentially-qualified) class types. The
2338
// normal rules for assignment apply.
2339
return Context.canAssignObjCInterfaces(A, B);
2340
}
2341
2342
static SourceRange getTypeRange(TypeSourceInfo *TSI) {
2343
return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2344
}
2345
2346
/// Determine whether two set of Objective-C declaration qualifiers conflict.
2347
static bool objcModifiersConflict(Decl::ObjCDeclQualifier x,
2348
Decl::ObjCDeclQualifier y) {
2349
return (x & ~Decl::OBJC_TQ_CSNullability) !=
2350
(y & ~Decl::OBJC_TQ_CSNullability);
2351
}
2352
2353
static bool CheckMethodOverrideReturn(Sema &S,
2354
ObjCMethodDecl *MethodImpl,
2355
ObjCMethodDecl *MethodDecl,
2356
bool IsProtocolMethodDecl,
2357
bool IsOverridingMode,
2358
bool Warn) {
2359
if (IsProtocolMethodDecl &&
2360
objcModifiersConflict(MethodDecl->getObjCDeclQualifier(),
2361
MethodImpl->getObjCDeclQualifier())) {
2362
if (Warn) {
2363
S.Diag(MethodImpl->getLocation(),
2364
(IsOverridingMode
2365
? diag::warn_conflicting_overriding_ret_type_modifiers
2366
: diag::warn_conflicting_ret_type_modifiers))
2367
<< MethodImpl->getDeclName()
2368
<< MethodImpl->getReturnTypeSourceRange();
2369
S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2370
<< MethodDecl->getReturnTypeSourceRange();
2371
}
2372
else
2373
return false;
2374
}
2375
if (Warn && IsOverridingMode &&
2376
!isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2377
!S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(),
2378
MethodDecl->getReturnType(),
2379
false)) {
2380
auto nullabilityMethodImpl = *MethodImpl->getReturnType()->getNullability();
2381
auto nullabilityMethodDecl = *MethodDecl->getReturnType()->getNullability();
2382
S.Diag(MethodImpl->getLocation(),
2383
diag::warn_conflicting_nullability_attr_overriding_ret_types)
2384
<< DiagNullabilityKind(nullabilityMethodImpl,
2385
((MethodImpl->getObjCDeclQualifier() &
2386
Decl::OBJC_TQ_CSNullability) != 0))
2387
<< DiagNullabilityKind(nullabilityMethodDecl,
2388
((MethodDecl->getObjCDeclQualifier() &
2389
Decl::OBJC_TQ_CSNullability) != 0));
2390
S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2391
}
2392
2393
if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
2394
MethodDecl->getReturnType()))
2395
return true;
2396
if (!Warn)
2397
return false;
2398
2399
unsigned DiagID =
2400
IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2401
: diag::warn_conflicting_ret_types;
2402
2403
// Mismatches between ObjC pointers go into a different warning
2404
// category, and sometimes they're even completely explicitly allowed.
2405
if (const ObjCObjectPointerType *ImplPtrTy =
2406
MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2407
if (const ObjCObjectPointerType *IfacePtrTy =
2408
MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2409
// Allow non-matching return types as long as they don't violate
2410
// the principle of substitutability. Specifically, we permit
2411
// return types that are subclasses of the declared return type,
2412
// or that are more-qualified versions of the declared type.
2413
if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
2414
return false;
2415
2416
DiagID =
2417
IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2418
: diag::warn_non_covariant_ret_types;
2419
}
2420
}
2421
2422
S.Diag(MethodImpl->getLocation(), DiagID)
2423
<< MethodImpl->getDeclName() << MethodDecl->getReturnType()
2424
<< MethodImpl->getReturnType()
2425
<< MethodImpl->getReturnTypeSourceRange();
2426
S.Diag(MethodDecl->getLocation(), IsOverridingMode
2427
? diag::note_previous_declaration
2428
: diag::note_previous_definition)
2429
<< MethodDecl->getReturnTypeSourceRange();
2430
return false;
2431
}
2432
2433
static bool CheckMethodOverrideParam(Sema &S,
2434
ObjCMethodDecl *MethodImpl,
2435
ObjCMethodDecl *MethodDecl,
2436
ParmVarDecl *ImplVar,
2437
ParmVarDecl *IfaceVar,
2438
bool IsProtocolMethodDecl,
2439
bool IsOverridingMode,
2440
bool Warn) {
2441
if (IsProtocolMethodDecl &&
2442
objcModifiersConflict(ImplVar->getObjCDeclQualifier(),
2443
IfaceVar->getObjCDeclQualifier())) {
2444
if (Warn) {
2445
if (IsOverridingMode)
2446
S.Diag(ImplVar->getLocation(),
2447
diag::warn_conflicting_overriding_param_modifiers)
2448
<< getTypeRange(ImplVar->getTypeSourceInfo())
2449
<< MethodImpl->getDeclName();
2450
else S.Diag(ImplVar->getLocation(),
2451
diag::warn_conflicting_param_modifiers)
2452
<< getTypeRange(ImplVar->getTypeSourceInfo())
2453
<< MethodImpl->getDeclName();
2454
S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2455
<< getTypeRange(IfaceVar->getTypeSourceInfo());
2456
}
2457
else
2458
return false;
2459
}
2460
2461
QualType ImplTy = ImplVar->getType();
2462
QualType IfaceTy = IfaceVar->getType();
2463
if (Warn && IsOverridingMode &&
2464
!isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2465
!S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
2466
S.Diag(ImplVar->getLocation(),
2467
diag::warn_conflicting_nullability_attr_overriding_param_types)
2468
<< DiagNullabilityKind(*ImplTy->getNullability(),
2469
((ImplVar->getObjCDeclQualifier() &
2470
Decl::OBJC_TQ_CSNullability) != 0))
2471
<< DiagNullabilityKind(*IfaceTy->getNullability(),
2472
((IfaceVar->getObjCDeclQualifier() &
2473
Decl::OBJC_TQ_CSNullability) != 0));
2474
S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2475
}
2476
if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
2477
return true;
2478
2479
if (!Warn)
2480
return false;
2481
unsigned DiagID =
2482
IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2483
: diag::warn_conflicting_param_types;
2484
2485
// Mismatches between ObjC pointers go into a different warning
2486
// category, and sometimes they're even completely explicitly allowed..
2487
if (const ObjCObjectPointerType *ImplPtrTy =
2488
ImplTy->getAs<ObjCObjectPointerType>()) {
2489
if (const ObjCObjectPointerType *IfacePtrTy =
2490
IfaceTy->getAs<ObjCObjectPointerType>()) {
2491
// Allow non-matching argument types as long as they don't
2492
// violate the principle of substitutability. Specifically, the
2493
// implementation must accept any objects that the superclass
2494
// accepts, however it may also accept others.
2495
if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
2496
return false;
2497
2498
DiagID =
2499
IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2500
: diag::warn_non_contravariant_param_types;
2501
}
2502
}
2503
2504
S.Diag(ImplVar->getLocation(), DiagID)
2505
<< getTypeRange(ImplVar->getTypeSourceInfo())
2506
<< MethodImpl->getDeclName() << IfaceTy << ImplTy;
2507
S.Diag(IfaceVar->getLocation(),
2508
(IsOverridingMode ? diag::note_previous_declaration
2509
: diag::note_previous_definition))
2510
<< getTypeRange(IfaceVar->getTypeSourceInfo());
2511
return false;
2512
}
2513
2514
/// In ARC, check whether the conventional meanings of the two methods
2515
/// match. If they don't, it's a hard error.
2516
static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
2517
ObjCMethodDecl *decl) {
2518
ObjCMethodFamily implFamily = impl->getMethodFamily();
2519
ObjCMethodFamily declFamily = decl->getMethodFamily();
2520
if (implFamily == declFamily) return false;
2521
2522
// Since conventions are sorted by selector, the only possibility is
2523
// that the types differ enough to cause one selector or the other
2524
// to fall out of the family.
2525
assert(implFamily == OMF_None || declFamily == OMF_None);
2526
2527
// No further diagnostics required on invalid declarations.
2528
if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2529
2530
const ObjCMethodDecl *unmatched = impl;
2531
ObjCMethodFamily family = declFamily;
2532
unsigned errorID = diag::err_arc_lost_method_convention;
2533
unsigned noteID = diag::note_arc_lost_method_convention;
2534
if (declFamily == OMF_None) {
2535
unmatched = decl;
2536
family = implFamily;
2537
errorID = diag::err_arc_gained_method_convention;
2538
noteID = diag::note_arc_gained_method_convention;
2539
}
2540
2541
// Indexes into a %select clause in the diagnostic.
2542
enum FamilySelector {
2543
F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2544
};
2545
FamilySelector familySelector = FamilySelector();
2546
2547
switch (family) {
2548
case OMF_None: llvm_unreachable("logic error, no method convention");
2549
case OMF_retain:
2550
case OMF_release:
2551
case OMF_autorelease:
2552
case OMF_dealloc:
2553
case OMF_finalize:
2554
case OMF_retainCount:
2555
case OMF_self:
2556
case OMF_initialize:
2557
case OMF_performSelector:
2558
// Mismatches for these methods don't change ownership
2559
// conventions, so we don't care.
2560
return false;
2561
2562
case OMF_init: familySelector = F_init; break;
2563
case OMF_alloc: familySelector = F_alloc; break;
2564
case OMF_copy: familySelector = F_copy; break;
2565
case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2566
case OMF_new: familySelector = F_new; break;
2567
}
2568
2569
enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2570
ReasonSelector reasonSelector;
2571
2572
// The only reason these methods don't fall within their families is
2573
// due to unusual result types.
2574
if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2575
reasonSelector = R_UnrelatedReturn;
2576
} else {
2577
reasonSelector = R_NonObjectReturn;
2578
}
2579
2580
S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2581
S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2582
2583
return true;
2584
}
2585
2586
void SemaObjC::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2587
ObjCMethodDecl *MethodDecl,
2588
bool IsProtocolMethodDecl) {
2589
if (getLangOpts().ObjCAutoRefCount &&
2590
checkMethodFamilyMismatch(SemaRef, ImpMethodDecl, MethodDecl))
2591
return;
2592
2593
CheckMethodOverrideReturn(SemaRef, ImpMethodDecl, MethodDecl,
2594
IsProtocolMethodDecl, false, true);
2595
2596
for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2597
IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2598
EF = MethodDecl->param_end();
2599
IM != EM && IF != EF; ++IM, ++IF) {
2600
CheckMethodOverrideParam(SemaRef, ImpMethodDecl, MethodDecl, *IM, *IF,
2601
IsProtocolMethodDecl, false, true);
2602
}
2603
2604
if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2605
Diag(ImpMethodDecl->getLocation(),
2606
diag::warn_conflicting_variadic);
2607
Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2608
}
2609
}
2610
2611
void SemaObjC::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
2612
ObjCMethodDecl *Overridden,
2613
bool IsProtocolMethodDecl) {
2614
2615
CheckMethodOverrideReturn(SemaRef, Method, Overridden, IsProtocolMethodDecl,
2616
true, true);
2617
2618
for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2619
IF = Overridden->param_begin(), EM = Method->param_end(),
2620
EF = Overridden->param_end();
2621
IM != EM && IF != EF; ++IM, ++IF) {
2622
CheckMethodOverrideParam(SemaRef, Method, Overridden, *IM, *IF,
2623
IsProtocolMethodDecl, true, true);
2624
}
2625
2626
if (Method->isVariadic() != Overridden->isVariadic()) {
2627
Diag(Method->getLocation(),
2628
diag::warn_conflicting_overriding_variadic);
2629
Diag(Overridden->getLocation(), diag::note_previous_declaration);
2630
}
2631
}
2632
2633
/// WarnExactTypedMethods - This routine issues a warning if method
2634
/// implementation declaration matches exactly that of its declaration.
2635
void SemaObjC::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2636
ObjCMethodDecl *MethodDecl,
2637
bool IsProtocolMethodDecl) {
2638
ASTContext &Context = getASTContext();
2639
// don't issue warning when protocol method is optional because primary
2640
// class is not required to implement it and it is safe for protocol
2641
// to implement it.
2642
if (MethodDecl->getImplementationControl() ==
2643
ObjCImplementationControl::Optional)
2644
return;
2645
// don't issue warning when primary class's method is
2646
// deprecated/unavailable.
2647
if (MethodDecl->hasAttr<UnavailableAttr>() ||
2648
MethodDecl->hasAttr<DeprecatedAttr>())
2649
return;
2650
2651
bool match = CheckMethodOverrideReturn(SemaRef, ImpMethodDecl, MethodDecl,
2652
IsProtocolMethodDecl, false, false);
2653
if (match)
2654
for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2655
IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2656
EF = MethodDecl->param_end();
2657
IM != EM && IF != EF; ++IM, ++IF) {
2658
match = CheckMethodOverrideParam(SemaRef, ImpMethodDecl, MethodDecl, *IM,
2659
*IF, IsProtocolMethodDecl, false, false);
2660
if (!match)
2661
break;
2662
}
2663
if (match)
2664
match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2665
if (match)
2666
match = !(MethodDecl->isClassMethod() &&
2667
MethodDecl->getSelector() == GetNullarySelector("load", Context));
2668
2669
if (match) {
2670
Diag(ImpMethodDecl->getLocation(),
2671
diag::warn_category_method_impl_match);
2672
Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2673
<< MethodDecl->getDeclName();
2674
}
2675
}
2676
2677
/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2678
/// improve the efficiency of selector lookups and type checking by associating
2679
/// with each protocol / interface / category the flattened instance tables. If
2680
/// we used an immutable set to keep the table then it wouldn't add significant
2681
/// memory cost and it would be handy for lookups.
2682
2683
typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
2684
typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2685
2686
static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
2687
ProtocolNameSet &PNS) {
2688
if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2689
PNS.insert(PDecl->getIdentifier());
2690
for (const auto *PI : PDecl->protocols())
2691
findProtocolsWithExplicitImpls(PI, PNS);
2692
}
2693
2694
/// Recursively populates a set with all conformed protocols in a class
2695
/// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2696
/// attribute.
2697
static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
2698
ProtocolNameSet &PNS) {
2699
if (!Super)
2700
return;
2701
2702
for (const auto *I : Super->all_referenced_protocols())
2703
findProtocolsWithExplicitImpls(I, PNS);
2704
2705
findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
2706
}
2707
2708
/// CheckProtocolMethodDefs - This routine checks unimplemented methods
2709
/// Declared in protocol, and those referenced by it.
2710
static void CheckProtocolMethodDefs(
2711
Sema &S, ObjCImplDecl *Impl, ObjCProtocolDecl *PDecl, bool &IncompleteImpl,
2712
const SemaObjC::SelectorSet &InsMap, const SemaObjC::SelectorSet &ClsMap,
2713
ObjCContainerDecl *CDecl, LazyProtocolNameSet &ProtocolsExplictImpl) {
2714
ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
2715
ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2716
: dyn_cast<ObjCInterfaceDecl>(CDecl);
2717
assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
2718
2719
ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2720
ObjCInterfaceDecl *NSIDecl = nullptr;
2721
2722
// If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2723
// then we should check if any class in the super class hierarchy also
2724
// conforms to this protocol, either directly or via protocol inheritance.
2725
// If so, we can skip checking this protocol completely because we
2726
// know that a parent class already satisfies this protocol.
2727
//
2728
// Note: we could generalize this logic for all protocols, and merely
2729
// add the limit on looking at the super class chain for just
2730
// specially marked protocols. This may be a good optimization. This
2731
// change is restricted to 'objc_protocol_requires_explicit_implementation'
2732
// protocols for now for controlled evaluation.
2733
if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2734
if (!ProtocolsExplictImpl) {
2735
ProtocolsExplictImpl.reset(new ProtocolNameSet);
2736
findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
2737
}
2738
if (ProtocolsExplictImpl->contains(PDecl->getIdentifier()))
2739
return;
2740
2741
// If no super class conforms to the protocol, we should not search
2742
// for methods in the super class to implicitly satisfy the protocol.
2743
Super = nullptr;
2744
}
2745
2746
if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
2747
// check to see if class implements forwardInvocation method and objects
2748
// of this class are derived from 'NSProxy' so that to forward requests
2749
// from one object to another.
2750
// Under such conditions, which means that every method possible is
2751
// implemented in the class, we should not issue "Method definition not
2752
// found" warnings.
2753
// FIXME: Use a general GetUnarySelector method for this.
2754
const IdentifierInfo *II = &S.Context.Idents.get("forwardInvocation");
2755
Selector fISelector = S.Context.Selectors.getSelector(1, &II);
2756
if (InsMap.count(fISelector))
2757
// Is IDecl derived from 'NSProxy'? If so, no instance methods
2758
// need be implemented in the implementation.
2759
NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
2760
}
2761
2762
// If this is a forward protocol declaration, get its definition.
2763
if (!PDecl->isThisDeclarationADefinition() &&
2764
PDecl->getDefinition())
2765
PDecl = PDecl->getDefinition();
2766
2767
// If a method lookup fails locally we still need to look and see if
2768
// the method was implemented by a base class or an inherited
2769
// protocol. This lookup is slow, but occurs rarely in correct code
2770
// and otherwise would terminate in a warning.
2771
2772
// check unimplemented instance methods.
2773
if (!NSIDecl)
2774
for (auto *method : PDecl->instance_methods()) {
2775
if (method->getImplementationControl() !=
2776
ObjCImplementationControl::Optional &&
2777
!method->isPropertyAccessor() &&
2778
!InsMap.count(method->getSelector()) &&
2779
(!Super || !Super->lookupMethod(
2780
method->getSelector(), true /* instance */,
2781
false /* shallowCategory */, true /* followsSuper */,
2782
nullptr /* category */))) {
2783
// If a method is not implemented in the category implementation but
2784
// has been declared in its primary class, superclass,
2785
// or in one of their protocols, no need to issue the warning.
2786
// This is because method will be implemented in the primary class
2787
// or one of its super class implementation.
2788
2789
// Ugly, but necessary. Method declared in protocol might have
2790
// have been synthesized due to a property declared in the class which
2791
// uses the protocol.
2792
if (ObjCMethodDecl *MethodInClass = IDecl->lookupMethod(
2793
method->getSelector(), true /* instance */,
2794
true /* shallowCategoryLookup */, false /* followSuper */))
2795
if (C || MethodInClass->isPropertyAccessor())
2796
continue;
2797
unsigned DIAG = diag::warn_unimplemented_protocol_method;
2798
if (!S.Diags.isIgnored(DIAG, Impl->getLocation())) {
2799
WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DIAG, PDecl);
2800
}
2801
}
2802
}
2803
// check unimplemented class methods
2804
for (auto *method : PDecl->class_methods()) {
2805
if (method->getImplementationControl() !=
2806
ObjCImplementationControl::Optional &&
2807
!ClsMap.count(method->getSelector()) &&
2808
(!Super || !Super->lookupMethod(
2809
method->getSelector(), false /* class method */,
2810
false /* shallowCategoryLookup */,
2811
true /* followSuper */, nullptr /* category */))) {
2812
// See above comment for instance method lookups.
2813
if (C && IDecl->lookupMethod(method->getSelector(),
2814
false /* class */,
2815
true /* shallowCategoryLookup */,
2816
false /* followSuper */))
2817
continue;
2818
2819
unsigned DIAG = diag::warn_unimplemented_protocol_method;
2820
if (!S.Diags.isIgnored(DIAG, Impl->getLocation())) {
2821
WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DIAG, PDecl);
2822
}
2823
}
2824
}
2825
// Check on this protocols's referenced protocols, recursively.
2826
for (auto *PI : PDecl->protocols())
2827
CheckProtocolMethodDefs(S, Impl, PI, IncompleteImpl, InsMap, ClsMap, CDecl,
2828
ProtocolsExplictImpl);
2829
}
2830
2831
/// MatchAllMethodDeclarations - Check methods declared in interface
2832
/// or protocol against those declared in their implementations.
2833
///
2834
void SemaObjC::MatchAllMethodDeclarations(
2835
const SelectorSet &InsMap, const SelectorSet &ClsMap,
2836
SelectorSet &InsMapSeen, SelectorSet &ClsMapSeen, ObjCImplDecl *IMPDecl,
2837
ObjCContainerDecl *CDecl, bool &IncompleteImpl, bool ImmediateClass,
2838
bool WarnCategoryMethodImpl) {
2839
// Check and see if instance methods in class interface have been
2840
// implemented in the implementation class. If so, their types match.
2841
for (auto *I : CDecl->instance_methods()) {
2842
if (!InsMapSeen.insert(I->getSelector()).second)
2843
continue;
2844
if (!I->isPropertyAccessor() &&
2845
!InsMap.count(I->getSelector())) {
2846
if (ImmediateClass)
2847
WarnUndefinedMethod(SemaRef, IMPDecl, I, IncompleteImpl,
2848
diag::warn_undef_method_impl);
2849
continue;
2850
} else {
2851
ObjCMethodDecl *ImpMethodDecl =
2852
IMPDecl->getInstanceMethod(I->getSelector());
2853
assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) &&
2854
"Expected to find the method through lookup as well");
2855
// ImpMethodDecl may be null as in a @dynamic property.
2856
if (ImpMethodDecl) {
2857
// Skip property accessor function stubs.
2858
if (ImpMethodDecl->isSynthesizedAccessorStub())
2859
continue;
2860
if (!WarnCategoryMethodImpl)
2861
WarnConflictingTypedMethods(ImpMethodDecl, I,
2862
isa<ObjCProtocolDecl>(CDecl));
2863
else if (!I->isPropertyAccessor())
2864
WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2865
}
2866
}
2867
}
2868
2869
// Check and see if class methods in class interface have been
2870
// implemented in the implementation class. If so, their types match.
2871
for (auto *I : CDecl->class_methods()) {
2872
if (!ClsMapSeen.insert(I->getSelector()).second)
2873
continue;
2874
if (!I->isPropertyAccessor() &&
2875
!ClsMap.count(I->getSelector())) {
2876
if (ImmediateClass)
2877
WarnUndefinedMethod(SemaRef, IMPDecl, I, IncompleteImpl,
2878
diag::warn_undef_method_impl);
2879
} else {
2880
ObjCMethodDecl *ImpMethodDecl =
2881
IMPDecl->getClassMethod(I->getSelector());
2882
assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) &&
2883
"Expected to find the method through lookup as well");
2884
// ImpMethodDecl may be null as in a @dynamic property.
2885
if (ImpMethodDecl) {
2886
// Skip property accessor function stubs.
2887
if (ImpMethodDecl->isSynthesizedAccessorStub())
2888
continue;
2889
if (!WarnCategoryMethodImpl)
2890
WarnConflictingTypedMethods(ImpMethodDecl, I,
2891
isa<ObjCProtocolDecl>(CDecl));
2892
else if (!I->isPropertyAccessor())
2893
WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2894
}
2895
}
2896
}
2897
2898
if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
2899
// Also, check for methods declared in protocols inherited by
2900
// this protocol.
2901
for (auto *PI : PD->protocols())
2902
MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2903
IMPDecl, PI, IncompleteImpl, false,
2904
WarnCategoryMethodImpl);
2905
}
2906
2907
if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2908
// when checking that methods in implementation match their declaration,
2909
// i.e. when WarnCategoryMethodImpl is false, check declarations in class
2910
// extension; as well as those in categories.
2911
if (!WarnCategoryMethodImpl) {
2912
for (auto *Cat : I->visible_categories())
2913
MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2914
IMPDecl, Cat, IncompleteImpl,
2915
ImmediateClass && Cat->IsClassExtension(),
2916
WarnCategoryMethodImpl);
2917
} else {
2918
// Also methods in class extensions need be looked at next.
2919
for (auto *Ext : I->visible_extensions())
2920
MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2921
IMPDecl, Ext, IncompleteImpl, false,
2922
WarnCategoryMethodImpl);
2923
}
2924
2925
// Check for any implementation of a methods declared in protocol.
2926
for (auto *PI : I->all_referenced_protocols())
2927
MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2928
IMPDecl, PI, IncompleteImpl, false,
2929
WarnCategoryMethodImpl);
2930
2931
// FIXME. For now, we are not checking for exact match of methods
2932
// in category implementation and its primary class's super class.
2933
if (!WarnCategoryMethodImpl && I->getSuperClass())
2934
MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2935
IMPDecl,
2936
I->getSuperClass(), IncompleteImpl, false);
2937
}
2938
}
2939
2940
/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2941
/// category matches with those implemented in its primary class and
2942
/// warns each time an exact match is found.
2943
void SemaObjC::CheckCategoryVsClassMethodMatches(
2944
ObjCCategoryImplDecl *CatIMPDecl) {
2945
// Get category's primary class.
2946
ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2947
if (!CatDecl)
2948
return;
2949
ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2950
if (!IDecl)
2951
return;
2952
ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2953
SelectorSet InsMap, ClsMap;
2954
2955
for (const auto *I : CatIMPDecl->instance_methods()) {
2956
Selector Sel = I->getSelector();
2957
// When checking for methods implemented in the category, skip over
2958
// those declared in category class's super class. This is because
2959
// the super class must implement the method.
2960
if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2961
continue;
2962
InsMap.insert(Sel);
2963
}
2964
2965
for (const auto *I : CatIMPDecl->class_methods()) {
2966
Selector Sel = I->getSelector();
2967
if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2968
continue;
2969
ClsMap.insert(Sel);
2970
}
2971
if (InsMap.empty() && ClsMap.empty())
2972
return;
2973
2974
SelectorSet InsMapSeen, ClsMapSeen;
2975
bool IncompleteImpl = false;
2976
MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2977
CatIMPDecl, IDecl,
2978
IncompleteImpl, false,
2979
true /*WarnCategoryMethodImpl*/);
2980
}
2981
2982
void SemaObjC::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl *IMPDecl,
2983
ObjCContainerDecl *CDecl,
2984
bool IncompleteImpl) {
2985
SelectorSet InsMap;
2986
// Check and see if instance methods in class interface have been
2987
// implemented in the implementation class.
2988
for (const auto *I : IMPDecl->instance_methods())
2989
InsMap.insert(I->getSelector());
2990
2991
// Add the selectors for getters/setters of @dynamic properties.
2992
for (const auto *PImpl : IMPDecl->property_impls()) {
2993
// We only care about @dynamic implementations.
2994
if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
2995
continue;
2996
2997
const auto *P = PImpl->getPropertyDecl();
2998
if (!P) continue;
2999
3000
InsMap.insert(P->getGetterName());
3001
if (!P->getSetterName().isNull())
3002
InsMap.insert(P->getSetterName());
3003
}
3004
3005
// Check and see if properties declared in the interface have either 1)
3006
// an implementation or 2) there is a @synthesize/@dynamic implementation
3007
// of the property in the @implementation.
3008
if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
3009
bool SynthesizeProperties = getLangOpts().ObjCDefaultSynthProperties &&
3010
getLangOpts().ObjCRuntime.isNonFragile() &&
3011
!IDecl->isObjCRequiresPropertyDefs();
3012
DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
3013
}
3014
3015
// Diagnose null-resettable synthesized setters.
3016
diagnoseNullResettableSynthesizedSetters(IMPDecl);
3017
3018
SelectorSet ClsMap;
3019
for (const auto *I : IMPDecl->class_methods())
3020
ClsMap.insert(I->getSelector());
3021
3022
// Check for type conflict of methods declared in a class/protocol and
3023
// its implementation; if any.
3024
SelectorSet InsMapSeen, ClsMapSeen;
3025
MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
3026
IMPDecl, CDecl,
3027
IncompleteImpl, true);
3028
3029
// check all methods implemented in category against those declared
3030
// in its primary class.
3031
if (ObjCCategoryImplDecl *CatDecl =
3032
dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
3033
CheckCategoryVsClassMethodMatches(CatDecl);
3034
3035
// Check the protocol list for unimplemented methods in the @implementation
3036
// class.
3037
// Check and see if class methods in class interface have been
3038
// implemented in the implementation class.
3039
3040
LazyProtocolNameSet ExplicitImplProtocols;
3041
3042
if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
3043
for (auto *PI : I->all_referenced_protocols())
3044
CheckProtocolMethodDefs(SemaRef, IMPDecl, PI, IncompleteImpl, InsMap,
3045
ClsMap, I, ExplicitImplProtocols);
3046
} else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
3047
// For extended class, unimplemented methods in its protocols will
3048
// be reported in the primary class.
3049
if (!C->IsClassExtension()) {
3050
for (auto *P : C->protocols())
3051
CheckProtocolMethodDefs(SemaRef, IMPDecl, P, IncompleteImpl, InsMap,
3052
ClsMap, CDecl, ExplicitImplProtocols);
3053
DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
3054
/*SynthesizeProperties=*/false);
3055
}
3056
} else
3057
llvm_unreachable("invalid ObjCContainerDecl type.");
3058
}
3059
3060
SemaObjC::DeclGroupPtrTy SemaObjC::ActOnForwardClassDeclaration(
3061
SourceLocation AtClassLoc, IdentifierInfo **IdentList,
3062
SourceLocation *IdentLocs, ArrayRef<ObjCTypeParamList *> TypeParamLists,
3063
unsigned NumElts) {
3064
ASTContext &Context = getASTContext();
3065
SmallVector<Decl *, 8> DeclsInGroup;
3066
for (unsigned i = 0; i != NumElts; ++i) {
3067
// Check for another declaration kind with the same name.
3068
NamedDecl *PrevDecl = SemaRef.LookupSingleName(
3069
SemaRef.TUScope, IdentList[i], IdentLocs[i], Sema::LookupOrdinaryName,
3070
SemaRef.forRedeclarationInCurContext());
3071
if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
3072
// GCC apparently allows the following idiom:
3073
//
3074
// typedef NSObject < XCElementTogglerP > XCElementToggler;
3075
// @class XCElementToggler;
3076
//
3077
// Here we have chosen to ignore the forward class declaration
3078
// with a warning. Since this is the implied behavior.
3079
TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
3080
if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
3081
Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
3082
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3083
} else {
3084
// a forward class declaration matching a typedef name of a class refers
3085
// to the underlying class. Just ignore the forward class with a warning
3086
// as this will force the intended behavior which is to lookup the
3087
// typedef name.
3088
if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
3089
Diag(AtClassLoc, diag::warn_forward_class_redefinition)
3090
<< IdentList[i];
3091
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3092
continue;
3093
}
3094
}
3095
}
3096
3097
// Create a declaration to describe this forward declaration.
3098
ObjCInterfaceDecl *PrevIDecl
3099
= dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
3100
3101
IdentifierInfo *ClassName = IdentList[i];
3102
if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
3103
// A previous decl with a different name is because of
3104
// @compatibility_alias, for example:
3105
// \code
3106
// @class NewImage;
3107
// @compatibility_alias OldImage NewImage;
3108
// \endcode
3109
// A lookup for 'OldImage' will return the 'NewImage' decl.
3110
//
3111
// In such a case use the real declaration name, instead of the alias one,
3112
// otherwise we will break IdentifierResolver and redecls-chain invariants.
3113
// FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
3114
// has been aliased.
3115
ClassName = PrevIDecl->getIdentifier();
3116
}
3117
3118
// If this forward declaration has type parameters, compare them with the
3119
// type parameters of the previous declaration.
3120
ObjCTypeParamList *TypeParams = TypeParamLists[i];
3121
if (PrevIDecl && TypeParams) {
3122
if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
3123
// Check for consistency with the previous declaration.
3124
if (checkTypeParamListConsistency(
3125
SemaRef, PrevTypeParams, TypeParams,
3126
TypeParamListContext::ForwardDeclaration)) {
3127
TypeParams = nullptr;
3128
}
3129
} else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
3130
// The @interface does not have type parameters. Complain.
3131
Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
3132
<< ClassName
3133
<< TypeParams->getSourceRange();
3134
Diag(Def->getLocation(), diag::note_defined_here)
3135
<< ClassName;
3136
3137
TypeParams = nullptr;
3138
}
3139
}
3140
3141
ObjCInterfaceDecl *IDecl = ObjCInterfaceDecl::Create(
3142
Context, SemaRef.CurContext, AtClassLoc, ClassName, TypeParams,
3143
PrevIDecl, IdentLocs[i]);
3144
IDecl->setAtEndRange(IdentLocs[i]);
3145
3146
if (PrevIDecl)
3147
SemaRef.mergeDeclAttributes(IDecl, PrevIDecl);
3148
3149
SemaRef.PushOnScopeChains(IDecl, SemaRef.TUScope);
3150
CheckObjCDeclScope(IDecl);
3151
DeclsInGroup.push_back(IDecl);
3152
}
3153
3154
return SemaRef.BuildDeclaratorGroup(DeclsInGroup);
3155
}
3156
3157
static bool tryMatchRecordTypes(ASTContext &Context,
3158
SemaObjC::MethodMatchStrategy strategy,
3159
const Type *left, const Type *right);
3160
3161
static bool matchTypes(ASTContext &Context,
3162
SemaObjC::MethodMatchStrategy strategy, QualType leftQT,
3163
QualType rightQT) {
3164
const Type *left =
3165
Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
3166
const Type *right =
3167
Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
3168
3169
if (left == right) return true;
3170
3171
// If we're doing a strict match, the types have to match exactly.
3172
if (strategy == SemaObjC::MMS_strict)
3173
return false;
3174
3175
if (left->isIncompleteType() || right->isIncompleteType()) return false;
3176
3177
// Otherwise, use this absurdly complicated algorithm to try to
3178
// validate the basic, low-level compatibility of the two types.
3179
3180
// As a minimum, require the sizes and alignments to match.
3181
TypeInfo LeftTI = Context.getTypeInfo(left);
3182
TypeInfo RightTI = Context.getTypeInfo(right);
3183
if (LeftTI.Width != RightTI.Width)
3184
return false;
3185
3186
if (LeftTI.Align != RightTI.Align)
3187
return false;
3188
3189
// Consider all the kinds of non-dependent canonical types:
3190
// - functions and arrays aren't possible as return and parameter types
3191
3192
// - vector types of equal size can be arbitrarily mixed
3193
if (isa<VectorType>(left)) return isa<VectorType>(right);
3194
if (isa<VectorType>(right)) return false;
3195
3196
// - references should only match references of identical type
3197
// - structs, unions, and Objective-C objects must match more-or-less
3198
// exactly
3199
// - everything else should be a scalar
3200
if (!left->isScalarType() || !right->isScalarType())
3201
return tryMatchRecordTypes(Context, strategy, left, right);
3202
3203
// Make scalars agree in kind, except count bools as chars, and group
3204
// all non-member pointers together.
3205
Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3206
Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3207
if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3208
if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3209
if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3210
leftSK = Type::STK_ObjCObjectPointer;
3211
if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3212
rightSK = Type::STK_ObjCObjectPointer;
3213
3214
// Note that data member pointers and function member pointers don't
3215
// intermix because of the size differences.
3216
3217
return (leftSK == rightSK);
3218
}
3219
3220
static bool tryMatchRecordTypes(ASTContext &Context,
3221
SemaObjC::MethodMatchStrategy strategy,
3222
const Type *lt, const Type *rt) {
3223
assert(lt && rt && lt != rt);
3224
3225
if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
3226
RecordDecl *left = cast<RecordType>(lt)->getDecl();
3227
RecordDecl *right = cast<RecordType>(rt)->getDecl();
3228
3229
// Require union-hood to match.
3230
if (left->isUnion() != right->isUnion()) return false;
3231
3232
// Require an exact match if either is non-POD.
3233
if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
3234
(isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
3235
return false;
3236
3237
// Require size and alignment to match.
3238
TypeInfo LeftTI = Context.getTypeInfo(lt);
3239
TypeInfo RightTI = Context.getTypeInfo(rt);
3240
if (LeftTI.Width != RightTI.Width)
3241
return false;
3242
3243
if (LeftTI.Align != RightTI.Align)
3244
return false;
3245
3246
// Require fields to match.
3247
RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3248
RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3249
for (; li != le && ri != re; ++li, ++ri) {
3250
if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3251
return false;
3252
}
3253
return (li == le && ri == re);
3254
}
3255
3256
/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3257
/// returns true, or false, accordingly.
3258
/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
3259
bool SemaObjC::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
3260
const ObjCMethodDecl *right,
3261
MethodMatchStrategy strategy) {
3262
ASTContext &Context = getASTContext();
3263
if (!matchTypes(Context, strategy, left->getReturnType(),
3264
right->getReturnType()))
3265
return false;
3266
3267
// If either is hidden, it is not considered to match.
3268
if (!left->isUnconditionallyVisible() || !right->isUnconditionallyVisible())
3269
return false;
3270
3271
if (left->isDirectMethod() != right->isDirectMethod())
3272
return false;
3273
3274
if (getLangOpts().ObjCAutoRefCount &&
3275
(left->hasAttr<NSReturnsRetainedAttr>()
3276
!= right->hasAttr<NSReturnsRetainedAttr>() ||
3277
left->hasAttr<NSConsumesSelfAttr>()
3278
!= right->hasAttr<NSConsumesSelfAttr>()))
3279
return false;
3280
3281
ObjCMethodDecl::param_const_iterator
3282
li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3283
re = right->param_end();
3284
3285
for (; li != le && ri != re; ++li, ++ri) {
3286
assert(ri != right->param_end() && "Param mismatch");
3287
const ParmVarDecl *lparm = *li, *rparm = *ri;
3288
3289
if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3290
return false;
3291
3292
if (getLangOpts().ObjCAutoRefCount &&
3293
lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3294
return false;
3295
}
3296
return true;
3297
}
3298
3299
static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method,
3300
ObjCMethodDecl *MethodInList) {
3301
auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3302
auto *MethodInListProtocol =
3303
dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
3304
// If this method belongs to a protocol but the method in list does not, or
3305
// vice versa, we say the context is not the same.
3306
if ((MethodProtocol && !MethodInListProtocol) ||
3307
(!MethodProtocol && MethodInListProtocol))
3308
return false;
3309
3310
if (MethodProtocol && MethodInListProtocol)
3311
return true;
3312
3313
ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
3314
ObjCInterfaceDecl *MethodInListInterface =
3315
MethodInList->getClassInterface();
3316
return MethodInterface == MethodInListInterface;
3317
}
3318
3319
void SemaObjC::addMethodToGlobalList(ObjCMethodList *List,
3320
ObjCMethodDecl *Method) {
3321
// Record at the head of the list whether there were 0, 1, or >= 2 methods
3322
// inside categories.
3323
if (ObjCCategoryDecl *CD =
3324
dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3325
if (!CD->IsClassExtension() && List->getBits() < 2)
3326
List->setBits(List->getBits() + 1);
3327
3328
// If the list is empty, make it a singleton list.
3329
if (List->getMethod() == nullptr) {
3330
List->setMethod(Method);
3331
List->setNext(nullptr);
3332
return;
3333
}
3334
3335
// We've seen a method with this name, see if we have already seen this type
3336
// signature.
3337
ObjCMethodList *Previous = List;
3338
ObjCMethodList *ListWithSameDeclaration = nullptr;
3339
for (; List; Previous = List, List = List->getNext()) {
3340
// If we are building a module, keep all of the methods.
3341
if (getLangOpts().isCompilingModule())
3342
continue;
3343
3344
bool SameDeclaration = MatchTwoMethodDeclarations(Method,
3345
List->getMethod());
3346
// Looking for method with a type bound requires the correct context exists.
3347
// We need to insert a method into the list if the context is different.
3348
// If the method's declaration matches the list
3349
// a> the method belongs to a different context: we need to insert it, in
3350
// order to emit the availability message, we need to prioritize over
3351
// availability among the methods with the same declaration.
3352
// b> the method belongs to the same context: there is no need to insert a
3353
// new entry.
3354
// If the method's declaration does not match the list, we insert it to the
3355
// end.
3356
if (!SameDeclaration ||
3357
!isMethodContextSameForKindofLookup(Method, List->getMethod())) {
3358
// Even if two method types do not match, we would like to say
3359
// there is more than one declaration so unavailability/deprecated
3360
// warning is not too noisy.
3361
if (!Method->isDefined())
3362
List->setHasMoreThanOneDecl(true);
3363
3364
// For methods with the same declaration, the one that is deprecated
3365
// should be put in the front for better diagnostics.
3366
if (Method->isDeprecated() && SameDeclaration &&
3367
!ListWithSameDeclaration && !List->getMethod()->isDeprecated())
3368
ListWithSameDeclaration = List;
3369
3370
if (Method->isUnavailable() && SameDeclaration &&
3371
!ListWithSameDeclaration &&
3372
List->getMethod()->getAvailability() < AR_Deprecated)
3373
ListWithSameDeclaration = List;
3374
continue;
3375
}
3376
3377
ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3378
3379
// Propagate the 'defined' bit.
3380
if (Method->isDefined())
3381
PrevObjCMethod->setDefined(true);
3382
else {
3383
// Objective-C doesn't allow an @interface for a class after its
3384
// @implementation. So if Method is not defined and there already is
3385
// an entry for this type signature, Method has to be for a different
3386
// class than PrevObjCMethod.
3387
List->setHasMoreThanOneDecl(true);
3388
}
3389
3390
// If a method is deprecated, push it in the global pool.
3391
// This is used for better diagnostics.
3392
if (Method->isDeprecated()) {
3393
if (!PrevObjCMethod->isDeprecated())
3394
List->setMethod(Method);
3395
}
3396
// If the new method is unavailable, push it into global pool
3397
// unless previous one is deprecated.
3398
if (Method->isUnavailable()) {
3399
if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3400
List->setMethod(Method);
3401
}
3402
3403
return;
3404
}
3405
3406
// We have a new signature for an existing method - add it.
3407
// This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3408
ObjCMethodList *Mem = SemaRef.BumpAlloc.Allocate<ObjCMethodList>();
3409
3410
// We insert it right before ListWithSameDeclaration.
3411
if (ListWithSameDeclaration) {
3412
auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
3413
// FIXME: should we clear the other bits in ListWithSameDeclaration?
3414
ListWithSameDeclaration->setMethod(Method);
3415
ListWithSameDeclaration->setNext(List);
3416
return;
3417
}
3418
3419
Previous->setNext(new (Mem) ObjCMethodList(Method));
3420
}
3421
3422
/// Read the contents of the method pool for a given selector from
3423
/// external storage.
3424
void SemaObjC::ReadMethodPool(Selector Sel) {
3425
assert(SemaRef.ExternalSource && "We need an external AST source");
3426
SemaRef.ExternalSource->ReadMethodPool(Sel);
3427
}
3428
3429
void SemaObjC::updateOutOfDateSelector(Selector Sel) {
3430
if (!SemaRef.ExternalSource)
3431
return;
3432
SemaRef.ExternalSource->updateOutOfDateSelector(Sel);
3433
}
3434
3435
void SemaObjC::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3436
bool instance) {
3437
// Ignore methods of invalid containers.
3438
if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3439
return;
3440
3441
if (SemaRef.ExternalSource)
3442
ReadMethodPool(Method->getSelector());
3443
3444
GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
3445
if (Pos == MethodPool.end())
3446
Pos = MethodPool
3447
.insert(std::make_pair(Method->getSelector(),
3448
GlobalMethodPool::Lists()))
3449
.first;
3450
3451
Method->setDefined(impl);
3452
3453
ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
3454
addMethodToGlobalList(&Entry, Method);
3455
}
3456
3457
/// Determines if this is an "acceptable" loose mismatch in the global
3458
/// method pool. This exists mostly as a hack to get around certain
3459
/// global mismatches which we can't afford to make warnings / errors.
3460
/// Really, what we want is a way to take a method out of the global
3461
/// method pool.
3462
static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
3463
ObjCMethodDecl *other) {
3464
if (!chosen->isInstanceMethod())
3465
return false;
3466
3467
if (chosen->isDirectMethod() != other->isDirectMethod())
3468
return false;
3469
3470
Selector sel = chosen->getSelector();
3471
if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
3472
return false;
3473
3474
// Don't complain about mismatches for -length if the method we
3475
// chose has an integral result type.
3476
return (chosen->getReturnType()->isIntegerType());
3477
}
3478
3479
/// Return true if the given method is wthin the type bound.
3480
static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method,
3481
const ObjCObjectType *TypeBound) {
3482
if (!TypeBound)
3483
return true;
3484
3485
if (TypeBound->isObjCId())
3486
// FIXME: should we handle the case of bounding to id<A, B> differently?
3487
return true;
3488
3489
auto *BoundInterface = TypeBound->getInterface();
3490
assert(BoundInterface && "unexpected object type!");
3491
3492
// Check if the Method belongs to a protocol. We should allow any method
3493
// defined in any protocol, because any subclass could adopt the protocol.
3494
auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3495
if (MethodProtocol) {
3496
return true;
3497
}
3498
3499
// If the Method belongs to a class, check if it belongs to the class
3500
// hierarchy of the class bound.
3501
if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
3502
// We allow methods declared within classes that are part of the hierarchy
3503
// of the class bound (superclass of, subclass of, or the same as the class
3504
// bound).
3505
return MethodInterface == BoundInterface ||
3506
MethodInterface->isSuperClassOf(BoundInterface) ||
3507
BoundInterface->isSuperClassOf(MethodInterface);
3508
}
3509
llvm_unreachable("unknown method context");
3510
}
3511
3512
/// We first select the type of the method: Instance or Factory, then collect
3513
/// all methods with that type.
3514
bool SemaObjC::CollectMultipleMethodsInGlobalPool(
3515
Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods,
3516
bool InstanceFirst, bool CheckTheOther, const ObjCObjectType *TypeBound) {
3517
if (SemaRef.ExternalSource)
3518
ReadMethodPool(Sel);
3519
3520
GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3521
if (Pos == MethodPool.end())
3522
return false;
3523
3524
// Gather the non-hidden methods.
3525
ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
3526
Pos->second.second;
3527
for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3528
if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) {
3529
if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3530
Methods.push_back(M->getMethod());
3531
}
3532
3533
// Return if we find any method with the desired kind.
3534
if (!Methods.empty())
3535
return Methods.size() > 1;
3536
3537
if (!CheckTheOther)
3538
return false;
3539
3540
// Gather the other kind.
3541
ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
3542
Pos->second.first;
3543
for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
3544
if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) {
3545
if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3546
Methods.push_back(M->getMethod());
3547
}
3548
3549
return Methods.size() > 1;
3550
}
3551
3552
bool SemaObjC::AreMultipleMethodsInGlobalPool(
3553
Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
3554
bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
3555
// Diagnose finding more than one method in global pool.
3556
SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
3557
FilteredMethods.push_back(BestMethod);
3558
3559
for (auto *M : Methods)
3560
if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
3561
FilteredMethods.push_back(M);
3562
3563
if (FilteredMethods.size() > 1)
3564
DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R,
3565
receiverIdOrClass);
3566
3567
GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3568
// Test for no method in the pool which should not trigger any warning by
3569
// caller.
3570
if (Pos == MethodPool.end())
3571
return true;
3572
ObjCMethodList &MethList =
3573
BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3574
return MethList.hasMoreThanOneDecl();
3575
}
3576
3577
ObjCMethodDecl *SemaObjC::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3578
bool receiverIdOrClass,
3579
bool instance) {
3580
if (SemaRef.ExternalSource)
3581
ReadMethodPool(Sel);
3582
3583
GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3584
if (Pos == MethodPool.end())
3585
return nullptr;
3586
3587
// Gather the non-hidden methods.
3588
ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3589
SmallVector<ObjCMethodDecl *, 4> Methods;
3590
for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3591
if (M->getMethod() && M->getMethod()->isUnconditionallyVisible())
3592
return M->getMethod();
3593
}
3594
return nullptr;
3595
}
3596
3597
void SemaObjC::DiagnoseMultipleMethodInGlobalPool(
3598
SmallVectorImpl<ObjCMethodDecl *> &Methods, Selector Sel, SourceRange R,
3599
bool receiverIdOrClass) {
3600
// We found multiple methods, so we may have to complain.
3601
bool issueDiagnostic = false, issueError = false;
3602
3603
// We support a warning which complains about *any* difference in
3604
// method signature.
3605
bool strictSelectorMatch =
3606
receiverIdOrClass &&
3607
!getDiagnostics().isIgnored(diag::warn_strict_multiple_method_decl,
3608
R.getBegin());
3609
if (strictSelectorMatch) {
3610
for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3611
if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
3612
issueDiagnostic = true;
3613
break;
3614
}
3615
}
3616
}
3617
3618
// If we didn't see any strict differences, we won't see any loose
3619
// differences. In ARC, however, we also need to check for loose
3620
// mismatches, because most of them are errors.
3621
if (!strictSelectorMatch ||
3622
(issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3623
for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3624
// This checks if the methods differ in type mismatch.
3625
if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
3626
!isAcceptableMethodMismatch(Methods[0], Methods[I])) {
3627
issueDiagnostic = true;
3628
if (getLangOpts().ObjCAutoRefCount)
3629
issueError = true;
3630
break;
3631
}
3632
}
3633
3634
if (issueDiagnostic) {
3635
if (issueError)
3636
Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3637
else if (strictSelectorMatch)
3638
Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3639
else
3640
Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3641
3642
Diag(Methods[0]->getBeginLoc(),
3643
issueError ? diag::note_possibility : diag::note_using)
3644
<< Methods[0]->getSourceRange();
3645
for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3646
Diag(Methods[I]->getBeginLoc(), diag::note_also_found)
3647
<< Methods[I]->getSourceRange();
3648
}
3649
}
3650
}
3651
3652
ObjCMethodDecl *SemaObjC::LookupImplementedMethodInGlobalPool(Selector Sel) {
3653
GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3654
if (Pos == MethodPool.end())
3655
return nullptr;
3656
3657
GlobalMethodPool::Lists &Methods = Pos->second;
3658
for (const ObjCMethodList *Method = &Methods.first; Method;
3659
Method = Method->getNext())
3660
if (Method->getMethod() &&
3661
(Method->getMethod()->isDefined() ||
3662
Method->getMethod()->isPropertyAccessor()))
3663
return Method->getMethod();
3664
3665
for (const ObjCMethodList *Method = &Methods.second; Method;
3666
Method = Method->getNext())
3667
if (Method->getMethod() &&
3668
(Method->getMethod()->isDefined() ||
3669
Method->getMethod()->isPropertyAccessor()))
3670
return Method->getMethod();
3671
return nullptr;
3672
}
3673
3674
static void
3675
HelperSelectorsForTypoCorrection(
3676
SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
3677
StringRef Typo, const ObjCMethodDecl * Method) {
3678
const unsigned MaxEditDistance = 1;
3679
unsigned BestEditDistance = MaxEditDistance + 1;
3680
std::string MethodName = Method->getSelector().getAsString();
3681
3682
unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
3683
if (MinPossibleEditDistance > 0 &&
3684
Typo.size() / MinPossibleEditDistance < 1)
3685
return;
3686
unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
3687
if (EditDistance > MaxEditDistance)
3688
return;
3689
if (EditDistance == BestEditDistance)
3690
BestMethod.push_back(Method);
3691
else if (EditDistance < BestEditDistance) {
3692
BestMethod.clear();
3693
BestMethod.push_back(Method);
3694
}
3695
}
3696
3697
static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
3698
QualType ObjectType) {
3699
if (ObjectType.isNull())
3700
return true;
3701
if (S.ObjC().LookupMethodInObjectType(Sel, ObjectType,
3702
true /*Instance method*/))
3703
return true;
3704
return S.ObjC().LookupMethodInObjectType(Sel, ObjectType,
3705
false /*Class method*/) != nullptr;
3706
}
3707
3708
const ObjCMethodDecl *
3709
SemaObjC::SelectorsForTypoCorrection(Selector Sel, QualType ObjectType) {
3710
unsigned NumArgs = Sel.getNumArgs();
3711
SmallVector<const ObjCMethodDecl *, 8> Methods;
3712
bool ObjectIsId = true, ObjectIsClass = true;
3713
if (ObjectType.isNull())
3714
ObjectIsId = ObjectIsClass = false;
3715
else if (!ObjectType->isObjCObjectPointerType())
3716
return nullptr;
3717
else if (const ObjCObjectPointerType *ObjCPtr =
3718
ObjectType->getAsObjCInterfacePointerType()) {
3719
ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3720
ObjectIsId = ObjectIsClass = false;
3721
}
3722
else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3723
ObjectIsClass = false;
3724
else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3725
ObjectIsId = false;
3726
else
3727
return nullptr;
3728
3729
for (GlobalMethodPool::iterator b = MethodPool.begin(),
3730
e = MethodPool.end(); b != e; b++) {
3731
// instance methods
3732
for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3733
if (M->getMethod() &&
3734
(M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3735
(M->getMethod()->getSelector() != Sel)) {
3736
if (ObjectIsId)
3737
Methods.push_back(M->getMethod());
3738
else if (!ObjectIsClass &&
3739
HelperIsMethodInObjCType(
3740
SemaRef, M->getMethod()->getSelector(), ObjectType))
3741
Methods.push_back(M->getMethod());
3742
}
3743
// class methods
3744
for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3745
if (M->getMethod() &&
3746
(M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3747
(M->getMethod()->getSelector() != Sel)) {
3748
if (ObjectIsClass)
3749
Methods.push_back(M->getMethod());
3750
else if (!ObjectIsId &&
3751
HelperIsMethodInObjCType(
3752
SemaRef, M->getMethod()->getSelector(), ObjectType))
3753
Methods.push_back(M->getMethod());
3754
}
3755
}
3756
3757
SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
3758
for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3759
HelperSelectorsForTypoCorrection(SelectedMethods,
3760
Sel.getAsString(), Methods[i]);
3761
}
3762
return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3763
}
3764
3765
/// DiagnoseDuplicateIvars -
3766
/// Check for duplicate ivars in the entire class at the start of
3767
/// \@implementation. This becomes necessary because class extension can
3768
/// add ivars to a class in random order which will not be known until
3769
/// class's \@implementation is seen.
3770
void SemaObjC::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
3771
ObjCInterfaceDecl *SID) {
3772
for (auto *Ivar : ID->ivars()) {
3773
if (Ivar->isInvalidDecl())
3774
continue;
3775
if (IdentifierInfo *II = Ivar->getIdentifier()) {
3776
ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
3777
if (prevIvar) {
3778
Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3779
Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3780
Ivar->setInvalidDecl();
3781
}
3782
}
3783
}
3784
}
3785
3786
/// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
3787
static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) {
3788
if (S.getLangOpts().ObjCWeak) return;
3789
3790
for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3791
ivar; ivar = ivar->getNextIvar()) {
3792
if (ivar->isInvalidDecl()) continue;
3793
if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3794
if (S.getLangOpts().ObjCWeakRuntime) {
3795
S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3796
} else {
3797
S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3798
}
3799
}
3800
}
3801
}
3802
3803
/// Diagnose attempts to use flexible array member with retainable object type.
3804
static void DiagnoseRetainableFlexibleArrayMember(Sema &S,
3805
ObjCInterfaceDecl *ID) {
3806
if (!S.getLangOpts().ObjCAutoRefCount)
3807
return;
3808
3809
for (auto ivar = ID->all_declared_ivar_begin(); ivar;
3810
ivar = ivar->getNextIvar()) {
3811
if (ivar->isInvalidDecl())
3812
continue;
3813
QualType IvarTy = ivar->getType();
3814
if (IvarTy->isIncompleteArrayType() &&
3815
(IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) &&
3816
IvarTy->isObjCLifetimeType()) {
3817
S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable);
3818
ivar->setInvalidDecl();
3819
}
3820
}
3821
}
3822
3823
SemaObjC::ObjCContainerKind SemaObjC::getObjCContainerKind() const {
3824
switch (SemaRef.CurContext->getDeclKind()) {
3825
case Decl::ObjCInterface:
3826
return SemaObjC::OCK_Interface;
3827
case Decl::ObjCProtocol:
3828
return SemaObjC::OCK_Protocol;
3829
case Decl::ObjCCategory:
3830
if (cast<ObjCCategoryDecl>(SemaRef.CurContext)->IsClassExtension())
3831
return SemaObjC::OCK_ClassExtension;
3832
return SemaObjC::OCK_Category;
3833
case Decl::ObjCImplementation:
3834
return SemaObjC::OCK_Implementation;
3835
case Decl::ObjCCategoryImpl:
3836
return SemaObjC::OCK_CategoryImplementation;
3837
3838
default:
3839
return SemaObjC::OCK_None;
3840
}
3841
}
3842
3843
static bool IsVariableSizedType(QualType T) {
3844
if (T->isIncompleteArrayType())
3845
return true;
3846
const auto *RecordTy = T->getAs<RecordType>();
3847
return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember());
3848
}
3849
3850
static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) {
3851
ObjCInterfaceDecl *IntfDecl = nullptr;
3852
ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range(
3853
ObjCInterfaceDecl::ivar_iterator(), ObjCInterfaceDecl::ivar_iterator());
3854
if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) {
3855
Ivars = IntfDecl->ivars();
3856
} else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) {
3857
IntfDecl = ImplDecl->getClassInterface();
3858
Ivars = ImplDecl->ivars();
3859
} else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) {
3860
if (CategoryDecl->IsClassExtension()) {
3861
IntfDecl = CategoryDecl->getClassInterface();
3862
Ivars = CategoryDecl->ivars();
3863
}
3864
}
3865
3866
// Check if variable sized ivar is in interface and visible to subclasses.
3867
if (!isa<ObjCInterfaceDecl>(OCD)) {
3868
for (auto *ivar : Ivars) {
3869
if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) {
3870
S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility)
3871
<< ivar->getDeclName() << ivar->getType();
3872
}
3873
}
3874
}
3875
3876
// Subsequent checks require interface decl.
3877
if (!IntfDecl)
3878
return;
3879
3880
// Check if variable sized ivar is followed by another ivar.
3881
for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar;
3882
ivar = ivar->getNextIvar()) {
3883
if (ivar->isInvalidDecl() || !ivar->getNextIvar())
3884
continue;
3885
QualType IvarTy = ivar->getType();
3886
bool IsInvalidIvar = false;
3887
if (IvarTy->isIncompleteArrayType()) {
3888
S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end)
3889
<< ivar->getDeclName() << IvarTy
3890
<< llvm::to_underlying(TagTypeKind::Class); // Use "class" for Obj-C.
3891
IsInvalidIvar = true;
3892
} else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) {
3893
if (RecordTy->getDecl()->hasFlexibleArrayMember()) {
3894
S.Diag(ivar->getLocation(),
3895
diag::err_objc_variable_sized_type_not_at_end)
3896
<< ivar->getDeclName() << IvarTy;
3897
IsInvalidIvar = true;
3898
}
3899
}
3900
if (IsInvalidIvar) {
3901
S.Diag(ivar->getNextIvar()->getLocation(),
3902
diag::note_next_ivar_declaration)
3903
<< ivar->getNextIvar()->getSynthesize();
3904
ivar->setInvalidDecl();
3905
}
3906
}
3907
3908
// Check if ObjC container adds ivars after variable sized ivar in superclass.
3909
// Perform the check only if OCD is the first container to declare ivars to
3910
// avoid multiple warnings for the same ivar.
3911
ObjCIvarDecl *FirstIvar =
3912
(Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin();
3913
if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) {
3914
const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass();
3915
while (SuperClass && SuperClass->ivar_empty())
3916
SuperClass = SuperClass->getSuperClass();
3917
if (SuperClass) {
3918
auto IvarIter = SuperClass->ivar_begin();
3919
std::advance(IvarIter, SuperClass->ivar_size() - 1);
3920
const ObjCIvarDecl *LastIvar = *IvarIter;
3921
if (IsVariableSizedType(LastIvar->getType())) {
3922
S.Diag(FirstIvar->getLocation(),
3923
diag::warn_superclass_variable_sized_type_not_at_end)
3924
<< FirstIvar->getDeclName() << LastIvar->getDeclName()
3925
<< LastIvar->getType() << SuperClass->getDeclName();
3926
S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at)
3927
<< LastIvar->getDeclName();
3928
}
3929
}
3930
}
3931
}
3932
3933
static void DiagnoseCategoryDirectMembersProtocolConformance(
3934
Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl);
3935
3936
static void DiagnoseCategoryDirectMembersProtocolConformance(
3937
Sema &S, ObjCCategoryDecl *CDecl,
3938
const llvm::iterator_range<ObjCProtocolList::iterator> &Protocols) {
3939
for (auto *PI : Protocols)
3940
DiagnoseCategoryDirectMembersProtocolConformance(S, PI, CDecl);
3941
}
3942
3943
static void DiagnoseCategoryDirectMembersProtocolConformance(
3944
Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl) {
3945
if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
3946
PDecl = PDecl->getDefinition();
3947
3948
llvm::SmallVector<const Decl *, 4> DirectMembers;
3949
const auto *IDecl = CDecl->getClassInterface();
3950
for (auto *MD : PDecl->methods()) {
3951
if (!MD->isPropertyAccessor()) {
3952
if (const auto *CMD =
3953
IDecl->getMethod(MD->getSelector(), MD->isInstanceMethod())) {
3954
if (CMD->isDirectMethod())
3955
DirectMembers.push_back(CMD);
3956
}
3957
}
3958
}
3959
for (auto *PD : PDecl->properties()) {
3960
if (const auto *CPD = IDecl->FindPropertyVisibleInPrimaryClass(
3961
PD->getIdentifier(),
3962
PD->isClassProperty()
3963
? ObjCPropertyQueryKind::OBJC_PR_query_class
3964
: ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
3965
if (CPD->isDirectProperty())
3966
DirectMembers.push_back(CPD);
3967
}
3968
}
3969
if (!DirectMembers.empty()) {
3970
S.Diag(CDecl->getLocation(), diag::err_objc_direct_protocol_conformance)
3971
<< CDecl->IsClassExtension() << CDecl << PDecl << IDecl;
3972
for (const auto *MD : DirectMembers)
3973
S.Diag(MD->getLocation(), diag::note_direct_member_here);
3974
return;
3975
}
3976
3977
// Check on this protocols's referenced protocols, recursively.
3978
DiagnoseCategoryDirectMembersProtocolConformance(S, CDecl,
3979
PDecl->protocols());
3980
}
3981
3982
// Note: For class/category implementations, allMethods is always null.
3983
Decl *SemaObjC::ActOnAtEnd(Scope *S, SourceRange AtEnd,
3984
ArrayRef<Decl *> allMethods,
3985
ArrayRef<DeclGroupPtrTy> allTUVars) {
3986
ASTContext &Context = getASTContext();
3987
if (getObjCContainerKind() == SemaObjC::OCK_None)
3988
return nullptr;
3989
3990
assert(AtEnd.isValid() && "Invalid location for '@end'");
3991
3992
auto *OCD = cast<ObjCContainerDecl>(SemaRef.CurContext);
3993
Decl *ClassDecl = OCD;
3994
3995
bool isInterfaceDeclKind =
3996
isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
3997
|| isa<ObjCProtocolDecl>(ClassDecl);
3998
bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
3999
4000
// Make synthesized accessor stub functions visible.
4001
// ActOnPropertyImplDecl() creates them as not visible in case
4002
// they are overridden by an explicit method that is encountered
4003
// later.
4004
if (auto *OID = dyn_cast<ObjCImplementationDecl>(SemaRef.CurContext)) {
4005
for (auto *PropImpl : OID->property_impls()) {
4006
if (auto *Getter = PropImpl->getGetterMethodDecl())
4007
if (Getter->isSynthesizedAccessorStub())
4008
OID->addDecl(Getter);
4009
if (auto *Setter = PropImpl->getSetterMethodDecl())
4010
if (Setter->isSynthesizedAccessorStub())
4011
OID->addDecl(Setter);
4012
}
4013
}
4014
4015
// FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
4016
llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
4017
llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
4018
4019
for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
4020
ObjCMethodDecl *Method =
4021
cast_or_null<ObjCMethodDecl>(allMethods[i]);
4022
4023
if (!Method) continue; // Already issued a diagnostic.
4024
if (Method->isInstanceMethod()) {
4025
/// Check for instance method of the same name with incompatible types
4026
const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
4027
bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
4028
: false;
4029
if ((isInterfaceDeclKind && PrevMethod && !match)
4030
|| (checkIdenticalMethods && match)) {
4031
Diag(Method->getLocation(), diag::err_duplicate_method_decl)
4032
<< Method->getDeclName();
4033
Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4034
Method->setInvalidDecl();
4035
} else {
4036
if (PrevMethod) {
4037
Method->setAsRedeclaration(PrevMethod);
4038
if (!Context.getSourceManager().isInSystemHeader(
4039
Method->getLocation()))
4040
Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
4041
<< Method->getDeclName();
4042
Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4043
}
4044
InsMap[Method->getSelector()] = Method;
4045
/// The following allows us to typecheck messages to "id".
4046
AddInstanceMethodToGlobalPool(Method);
4047
}
4048
} else {
4049
/// Check for class method of the same name with incompatible types
4050
const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
4051
bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
4052
: false;
4053
if ((isInterfaceDeclKind && PrevMethod && !match)
4054
|| (checkIdenticalMethods && match)) {
4055
Diag(Method->getLocation(), diag::err_duplicate_method_decl)
4056
<< Method->getDeclName();
4057
Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4058
Method->setInvalidDecl();
4059
} else {
4060
if (PrevMethod) {
4061
Method->setAsRedeclaration(PrevMethod);
4062
if (!Context.getSourceManager().isInSystemHeader(
4063
Method->getLocation()))
4064
Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
4065
<< Method->getDeclName();
4066
Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4067
}
4068
ClsMap[Method->getSelector()] = Method;
4069
AddFactoryMethodToGlobalPool(Method);
4070
}
4071
}
4072
}
4073
if (isa<ObjCInterfaceDecl>(ClassDecl)) {
4074
// Nothing to do here.
4075
} else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
4076
// Categories are used to extend the class by declaring new methods.
4077
// By the same token, they are also used to add new properties. No
4078
// need to compare the added property to those in the class.
4079
4080
if (C->IsClassExtension()) {
4081
ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
4082
DiagnoseClassExtensionDupMethods(C, CCPrimary);
4083
}
4084
4085
DiagnoseCategoryDirectMembersProtocolConformance(SemaRef, C,
4086
C->protocols());
4087
}
4088
if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
4089
if (CDecl->getIdentifier())
4090
// ProcessPropertyDecl is responsible for diagnosing conflicts with any
4091
// user-defined setter/getter. It also synthesizes setter/getter methods
4092
// and adds them to the DeclContext and global method pools.
4093
for (auto *I : CDecl->properties())
4094
ProcessPropertyDecl(I);
4095
CDecl->setAtEndRange(AtEnd);
4096
}
4097
if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
4098
IC->setAtEndRange(AtEnd);
4099
if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
4100
// Any property declared in a class extension might have user
4101
// declared setter or getter in current class extension or one
4102
// of the other class extensions. Mark them as synthesized as
4103
// property will be synthesized when property with same name is
4104
// seen in the @implementation.
4105
for (const auto *Ext : IDecl->visible_extensions()) {
4106
for (const auto *Property : Ext->instance_properties()) {
4107
// Skip over properties declared @dynamic
4108
if (const ObjCPropertyImplDecl *PIDecl
4109
= IC->FindPropertyImplDecl(Property->getIdentifier(),
4110
Property->getQueryKind()))
4111
if (PIDecl->getPropertyImplementation()
4112
== ObjCPropertyImplDecl::Dynamic)
4113
continue;
4114
4115
for (const auto *Ext : IDecl->visible_extensions()) {
4116
if (ObjCMethodDecl *GetterMethod =
4117
Ext->getInstanceMethod(Property->getGetterName()))
4118
GetterMethod->setPropertyAccessor(true);
4119
if (!Property->isReadOnly())
4120
if (ObjCMethodDecl *SetterMethod
4121
= Ext->getInstanceMethod(Property->getSetterName()))
4122
SetterMethod->setPropertyAccessor(true);
4123
}
4124
}
4125
}
4126
ImplMethodsVsClassMethods(S, IC, IDecl);
4127
AtomicPropertySetterGetterRules(IC, IDecl);
4128
DiagnoseOwningPropertyGetterSynthesis(IC);
4129
DiagnoseUnusedBackingIvarInAccessor(S, IC);
4130
if (IDecl->hasDesignatedInitializers())
4131
DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
4132
DiagnoseWeakIvars(SemaRef, IC);
4133
DiagnoseRetainableFlexibleArrayMember(SemaRef, IDecl);
4134
4135
bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
4136
if (IDecl->getSuperClass() == nullptr) {
4137
// This class has no superclass, so check that it has been marked with
4138
// __attribute((objc_root_class)).
4139
if (!HasRootClassAttr) {
4140
SourceLocation DeclLoc(IDecl->getLocation());
4141
SourceLocation SuperClassLoc(SemaRef.getLocForEndOfToken(DeclLoc));
4142
Diag(DeclLoc, diag::warn_objc_root_class_missing)
4143
<< IDecl->getIdentifier();
4144
// See if NSObject is in the current scope, and if it is, suggest
4145
// adding " : NSObject " to the class declaration.
4146
NamedDecl *IF = SemaRef.LookupSingleName(
4147
SemaRef.TUScope, NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
4148
DeclLoc, Sema::LookupOrdinaryName);
4149
ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
4150
if (NSObjectDecl && NSObjectDecl->getDefinition()) {
4151
Diag(SuperClassLoc, diag::note_objc_needs_superclass)
4152
<< FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
4153
} else {
4154
Diag(SuperClassLoc, diag::note_objc_needs_superclass);
4155
}
4156
}
4157
} else if (HasRootClassAttr) {
4158
// Complain that only root classes may have this attribute.
4159
Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
4160
}
4161
4162
if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) {
4163
// An interface can subclass another interface with a
4164
// objc_subclassing_restricted attribute when it has that attribute as
4165
// well (because of interfaces imported from Swift). Therefore we have
4166
// to check if we can subclass in the implementation as well.
4167
if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4168
Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4169
Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch);
4170
Diag(Super->getLocation(), diag::note_class_declared);
4171
}
4172
}
4173
4174
if (IDecl->hasAttr<ObjCClassStubAttr>())
4175
Diag(IC->getLocation(), diag::err_implementation_of_class_stub);
4176
4177
if (getLangOpts().ObjCRuntime.isNonFragile()) {
4178
while (IDecl->getSuperClass()) {
4179
DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
4180
IDecl = IDecl->getSuperClass();
4181
}
4182
}
4183
}
4184
SetIvarInitializers(IC);
4185
} else if (ObjCCategoryImplDecl* CatImplClass =
4186
dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
4187
CatImplClass->setAtEndRange(AtEnd);
4188
4189
// Find category interface decl and then check that all methods declared
4190
// in this interface are implemented in the category @implementation.
4191
if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
4192
if (ObjCCategoryDecl *Cat
4193
= IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
4194
ImplMethodsVsClassMethods(S, CatImplClass, Cat);
4195
}
4196
}
4197
} else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
4198
if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) {
4199
if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4200
Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4201
Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch);
4202
Diag(Super->getLocation(), diag::note_class_declared);
4203
}
4204
}
4205
4206
if (IntfDecl->hasAttr<ObjCClassStubAttr>() &&
4207
!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>())
4208
Diag(IntfDecl->getLocation(), diag::err_class_stub_subclassing_mismatch);
4209
}
4210
DiagnoseVariableSizedIvars(SemaRef, OCD);
4211
if (isInterfaceDeclKind) {
4212
// Reject invalid vardecls.
4213
for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4214
DeclGroupRef DG = allTUVars[i].get();
4215
for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4216
if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
4217
if (!VDecl->hasExternalStorage())
4218
Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
4219
}
4220
}
4221
}
4222
ActOnObjCContainerFinishDefinition();
4223
4224
for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4225
DeclGroupRef DG = allTUVars[i].get();
4226
for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4227
(*I)->setTopLevelDeclInObjCContainer();
4228
SemaRef.Consumer.HandleTopLevelDeclInObjCContainer(DG);
4229
}
4230
4231
SemaRef.ActOnDocumentableDecl(ClassDecl);
4232
return ClassDecl;
4233
}
4234
4235
/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
4236
/// objective-c's type qualifier from the parser version of the same info.
4237
static Decl::ObjCDeclQualifier
4238
CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
4239
return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
4240
}
4241
4242
/// Check whether the declared result type of the given Objective-C
4243
/// method declaration is compatible with the method's class.
4244
///
4245
static SemaObjC::ResultTypeCompatibilityKind
4246
CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
4247
ObjCInterfaceDecl *CurrentClass) {
4248
QualType ResultType = Method->getReturnType();
4249
4250
// If an Objective-C method inherits its related result type, then its
4251
// declared result type must be compatible with its own class type. The
4252
// declared result type is compatible if:
4253
if (const ObjCObjectPointerType *ResultObjectType
4254
= ResultType->getAs<ObjCObjectPointerType>()) {
4255
// - it is id or qualified id, or
4256
if (ResultObjectType->isObjCIdType() ||
4257
ResultObjectType->isObjCQualifiedIdType())
4258
return SemaObjC::RTC_Compatible;
4259
4260
if (CurrentClass) {
4261
if (ObjCInterfaceDecl *ResultClass
4262
= ResultObjectType->getInterfaceDecl()) {
4263
// - it is the same as the method's class type, or
4264
if (declaresSameEntity(CurrentClass, ResultClass))
4265
return SemaObjC::RTC_Compatible;
4266
4267
// - it is a superclass of the method's class type
4268
if (ResultClass->isSuperClassOf(CurrentClass))
4269
return SemaObjC::RTC_Compatible;
4270
}
4271
} else {
4272
// Any Objective-C pointer type might be acceptable for a protocol
4273
// method; we just don't know.
4274
return SemaObjC::RTC_Unknown;
4275
}
4276
}
4277
4278
return SemaObjC::RTC_Incompatible;
4279
}
4280
4281
namespace {
4282
/// A helper class for searching for methods which a particular method
4283
/// overrides.
4284
class OverrideSearch {
4285
public:
4286
const ObjCMethodDecl *Method;
4287
llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden;
4288
bool Recursive;
4289
4290
public:
4291
OverrideSearch(Sema &S, const ObjCMethodDecl *method) : Method(method) {
4292
Selector selector = method->getSelector();
4293
4294
// Bypass this search if we've never seen an instance/class method
4295
// with this selector before.
4296
SemaObjC::GlobalMethodPool::iterator it =
4297
S.ObjC().MethodPool.find(selector);
4298
if (it == S.ObjC().MethodPool.end()) {
4299
if (!S.getExternalSource()) return;
4300
S.ObjC().ReadMethodPool(selector);
4301
4302
it = S.ObjC().MethodPool.find(selector);
4303
if (it == S.ObjC().MethodPool.end())
4304
return;
4305
}
4306
const ObjCMethodList &list =
4307
method->isInstanceMethod() ? it->second.first : it->second.second;
4308
if (!list.getMethod()) return;
4309
4310
const ObjCContainerDecl *container
4311
= cast<ObjCContainerDecl>(method->getDeclContext());
4312
4313
// Prevent the search from reaching this container again. This is
4314
// important with categories, which override methods from the
4315
// interface and each other.
4316
if (const ObjCCategoryDecl *Category =
4317
dyn_cast<ObjCCategoryDecl>(container)) {
4318
searchFromContainer(container);
4319
if (const ObjCInterfaceDecl *Interface = Category->getClassInterface())
4320
searchFromContainer(Interface);
4321
} else {
4322
searchFromContainer(container);
4323
}
4324
}
4325
4326
typedef decltype(Overridden)::iterator iterator;
4327
iterator begin() const { return Overridden.begin(); }
4328
iterator end() const { return Overridden.end(); }
4329
4330
private:
4331
void searchFromContainer(const ObjCContainerDecl *container) {
4332
if (container->isInvalidDecl()) return;
4333
4334
switch (container->getDeclKind()) {
4335
#define OBJCCONTAINER(type, base) \
4336
case Decl::type: \
4337
searchFrom(cast<type##Decl>(container)); \
4338
break;
4339
#define ABSTRACT_DECL(expansion)
4340
#define DECL(type, base) \
4341
case Decl::type:
4342
#include "clang/AST/DeclNodes.inc"
4343
llvm_unreachable("not an ObjC container!");
4344
}
4345
}
4346
4347
void searchFrom(const ObjCProtocolDecl *protocol) {
4348
if (!protocol->hasDefinition())
4349
return;
4350
4351
// A method in a protocol declaration overrides declarations from
4352
// referenced ("parent") protocols.
4353
search(protocol->getReferencedProtocols());
4354
}
4355
4356
void searchFrom(const ObjCCategoryDecl *category) {
4357
// A method in a category declaration overrides declarations from
4358
// the main class and from protocols the category references.
4359
// The main class is handled in the constructor.
4360
search(category->getReferencedProtocols());
4361
}
4362
4363
void searchFrom(const ObjCCategoryImplDecl *impl) {
4364
// A method in a category definition that has a category
4365
// declaration overrides declarations from the category
4366
// declaration.
4367
if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
4368
search(category);
4369
if (ObjCInterfaceDecl *Interface = category->getClassInterface())
4370
search(Interface);
4371
4372
// Otherwise it overrides declarations from the class.
4373
} else if (const auto *Interface = impl->getClassInterface()) {
4374
search(Interface);
4375
}
4376
}
4377
4378
void searchFrom(const ObjCInterfaceDecl *iface) {
4379
// A method in a class declaration overrides declarations from
4380
if (!iface->hasDefinition())
4381
return;
4382
4383
// - categories,
4384
for (auto *Cat : iface->known_categories())
4385
search(Cat);
4386
4387
// - the super class, and
4388
if (ObjCInterfaceDecl *super = iface->getSuperClass())
4389
search(super);
4390
4391
// - any referenced protocols.
4392
search(iface->getReferencedProtocols());
4393
}
4394
4395
void searchFrom(const ObjCImplementationDecl *impl) {
4396
// A method in a class implementation overrides declarations from
4397
// the class interface.
4398
if (const auto *Interface = impl->getClassInterface())
4399
search(Interface);
4400
}
4401
4402
void search(const ObjCProtocolList &protocols) {
4403
for (const auto *Proto : protocols)
4404
search(Proto);
4405
}
4406
4407
void search(const ObjCContainerDecl *container) {
4408
// Check for a method in this container which matches this selector.
4409
ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
4410
Method->isInstanceMethod(),
4411
/*AllowHidden=*/true);
4412
4413
// If we find one, record it and bail out.
4414
if (meth) {
4415
Overridden.insert(meth);
4416
return;
4417
}
4418
4419
// Otherwise, search for methods that a hypothetical method here
4420
// would have overridden.
4421
4422
// Note that we're now in a recursive case.
4423
Recursive = true;
4424
4425
searchFromContainer(container);
4426
}
4427
};
4428
} // end anonymous namespace
4429
4430
void SemaObjC::CheckObjCMethodDirectOverrides(ObjCMethodDecl *method,
4431
ObjCMethodDecl *overridden) {
4432
if (overridden->isDirectMethod()) {
4433
const auto *attr = overridden->getAttr<ObjCDirectAttr>();
4434
Diag(method->getLocation(), diag::err_objc_override_direct_method);
4435
Diag(attr->getLocation(), diag::note_previous_declaration);
4436
} else if (method->isDirectMethod()) {
4437
const auto *attr = method->getAttr<ObjCDirectAttr>();
4438
Diag(attr->getLocation(), diag::err_objc_direct_on_override)
4439
<< isa<ObjCProtocolDecl>(overridden->getDeclContext());
4440
Diag(overridden->getLocation(), diag::note_previous_declaration);
4441
}
4442
}
4443
4444
void SemaObjC::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
4445
ObjCInterfaceDecl *CurrentClass,
4446
ResultTypeCompatibilityKind RTC) {
4447
ASTContext &Context = getASTContext();
4448
if (!ObjCMethod)
4449
return;
4450
auto IsMethodInCurrentClass = [CurrentClass](const ObjCMethodDecl *M) {
4451
// Checking canonical decl works across modules.
4452
return M->getClassInterface()->getCanonicalDecl() ==
4453
CurrentClass->getCanonicalDecl();
4454
};
4455
// Search for overridden methods and merge information down from them.
4456
OverrideSearch overrides(SemaRef, ObjCMethod);
4457
// Keep track if the method overrides any method in the class's base classes,
4458
// its protocols, or its categories' protocols; we will keep that info
4459
// in the ObjCMethodDecl.
4460
// For this info, a method in an implementation is not considered as
4461
// overriding the same method in the interface or its categories.
4462
bool hasOverriddenMethodsInBaseOrProtocol = false;
4463
for (ObjCMethodDecl *overridden : overrides) {
4464
if (!hasOverriddenMethodsInBaseOrProtocol) {
4465
if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
4466
!IsMethodInCurrentClass(overridden) || overridden->isOverriding()) {
4467
CheckObjCMethodDirectOverrides(ObjCMethod, overridden);
4468
hasOverriddenMethodsInBaseOrProtocol = true;
4469
} else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
4470
// OverrideSearch will return as "overridden" the same method in the
4471
// interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
4472
// check whether a category of a base class introduced a method with the
4473
// same selector, after the interface method declaration.
4474
// To avoid unnecessary lookups in the majority of cases, we use the
4475
// extra info bits in GlobalMethodPool to check whether there were any
4476
// category methods with this selector.
4477
GlobalMethodPool::iterator It =
4478
MethodPool.find(ObjCMethod->getSelector());
4479
if (It != MethodPool.end()) {
4480
ObjCMethodList &List =
4481
ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
4482
unsigned CategCount = List.getBits();
4483
if (CategCount > 0) {
4484
// If the method is in a category we'll do lookup if there were at
4485
// least 2 category methods recorded, otherwise only one will do.
4486
if (CategCount > 1 ||
4487
!isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
4488
OverrideSearch overrides(SemaRef, overridden);
4489
for (ObjCMethodDecl *SuperOverridden : overrides) {
4490
if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
4491
!IsMethodInCurrentClass(SuperOverridden)) {
4492
CheckObjCMethodDirectOverrides(ObjCMethod, SuperOverridden);
4493
hasOverriddenMethodsInBaseOrProtocol = true;
4494
overridden->setOverriding(true);
4495
break;
4496
}
4497
}
4498
}
4499
}
4500
}
4501
}
4502
}
4503
4504
// Propagate down the 'related result type' bit from overridden methods.
4505
if (RTC != SemaObjC::RTC_Incompatible && overridden->hasRelatedResultType())
4506
ObjCMethod->setRelatedResultType();
4507
4508
// Then merge the declarations.
4509
SemaRef.mergeObjCMethodDecls(ObjCMethod, overridden);
4510
4511
if (ObjCMethod->isImplicit() && overridden->isImplicit())
4512
continue; // Conflicting properties are detected elsewhere.
4513
4514
// Check for overriding methods
4515
if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4516
isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4517
CheckConflictingOverridingMethod(ObjCMethod, overridden,
4518
isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4519
4520
if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4521
isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4522
!overridden->isImplicit() /* not meant for properties */) {
4523
ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4524
E = ObjCMethod->param_end();
4525
ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4526
PrevE = overridden->param_end();
4527
for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4528
assert(PrevI != overridden->param_end() && "Param mismatch");
4529
QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4530
QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4531
// If type of argument of method in this class does not match its
4532
// respective argument type in the super class method, issue warning;
4533
if (!Context.typesAreCompatible(T1, T2)) {
4534
Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4535
<< T1 << T2;
4536
Diag(overridden->getLocation(), diag::note_previous_declaration);
4537
break;
4538
}
4539
}
4540
}
4541
}
4542
4543
ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4544
}
4545
4546
/// Merge type nullability from for a redeclaration of the same entity,
4547
/// producing the updated type of the redeclared entity.
4548
static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc,
4549
QualType type,
4550
bool usesCSKeyword,
4551
SourceLocation prevLoc,
4552
QualType prevType,
4553
bool prevUsesCSKeyword) {
4554
// Determine the nullability of both types.
4555
auto nullability = type->getNullability();
4556
auto prevNullability = prevType->getNullability();
4557
4558
// Easy case: both have nullability.
4559
if (nullability.has_value() == prevNullability.has_value()) {
4560
// Neither has nullability; continue.
4561
if (!nullability)
4562
return type;
4563
4564
// The nullabilities are equivalent; do nothing.
4565
if (*nullability == *prevNullability)
4566
return type;
4567
4568
// Complain about mismatched nullability.
4569
S.Diag(loc, diag::err_nullability_conflicting)
4570
<< DiagNullabilityKind(*nullability, usesCSKeyword)
4571
<< DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4572
return type;
4573
}
4574
4575
// If it's the redeclaration that has nullability, don't change anything.
4576
if (nullability)
4577
return type;
4578
4579
// Otherwise, provide the result with the same nullability.
4580
return S.Context.getAttributedType(
4581
AttributedType::getNullabilityAttrKind(*prevNullability),
4582
type, type);
4583
}
4584
4585
/// Merge information from the declaration of a method in the \@interface
4586
/// (or a category/extension) into the corresponding method in the
4587
/// @implementation (for a class or category).
4588
static void mergeInterfaceMethodToImpl(Sema &S,
4589
ObjCMethodDecl *method,
4590
ObjCMethodDecl *prevMethod) {
4591
// Merge the objc_requires_super attribute.
4592
if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
4593
!method->hasAttr<ObjCRequiresSuperAttr>()) {
4594
// merge the attribute into implementation.
4595
method->addAttr(
4596
ObjCRequiresSuperAttr::CreateImplicit(S.Context,
4597
method->getLocation()));
4598
}
4599
4600
// Merge nullability of the result type.
4601
QualType newReturnType
4602
= mergeTypeNullabilityForRedecl(
4603
S, method->getReturnTypeSourceRange().getBegin(),
4604
method->getReturnType(),
4605
method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4606
prevMethod->getReturnTypeSourceRange().getBegin(),
4607
prevMethod->getReturnType(),
4608
prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4609
method->setReturnType(newReturnType);
4610
4611
// Handle each of the parameters.
4612
unsigned numParams = method->param_size();
4613
unsigned numPrevParams = prevMethod->param_size();
4614
for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
4615
ParmVarDecl *param = method->param_begin()[i];
4616
ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4617
4618
// Merge nullability.
4619
QualType newParamType
4620
= mergeTypeNullabilityForRedecl(
4621
S, param->getLocation(), param->getType(),
4622
param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4623
prevParam->getLocation(), prevParam->getType(),
4624
prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4625
param->setType(newParamType);
4626
}
4627
}
4628
4629
/// Verify that the method parameters/return value have types that are supported
4630
/// by the x86 target.
4631
static void checkObjCMethodX86VectorTypes(Sema &SemaRef,
4632
const ObjCMethodDecl *Method) {
4633
assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() ==
4634
llvm::Triple::x86 &&
4635
"x86-specific check invoked for a different target");
4636
SourceLocation Loc;
4637
QualType T;
4638
for (const ParmVarDecl *P : Method->parameters()) {
4639
if (P->getType()->isVectorType()) {
4640
Loc = P->getBeginLoc();
4641
T = P->getType();
4642
break;
4643
}
4644
}
4645
if (Loc.isInvalid()) {
4646
if (Method->getReturnType()->isVectorType()) {
4647
Loc = Method->getReturnTypeSourceRange().getBegin();
4648
T = Method->getReturnType();
4649
} else
4650
return;
4651
}
4652
4653
// Vector parameters/return values are not supported by objc_msgSend on x86 in
4654
// iOS < 9 and macOS < 10.11.
4655
const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple();
4656
VersionTuple AcceptedInVersion;
4657
if (Triple.getOS() == llvm::Triple::IOS)
4658
AcceptedInVersion = VersionTuple(/*Major=*/9);
4659
else if (Triple.isMacOSX())
4660
AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11);
4661
else
4662
return;
4663
if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >=
4664
AcceptedInVersion)
4665
return;
4666
SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type)
4667
<< T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1
4668
: /*parameter*/ 0)
4669
<< (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9");
4670
}
4671
4672
static void mergeObjCDirectMembers(Sema &S, Decl *CD, ObjCMethodDecl *Method) {
4673
if (!Method->isDirectMethod() && !Method->hasAttr<UnavailableAttr>() &&
4674
CD->hasAttr<ObjCDirectMembersAttr>()) {
4675
Method->addAttr(
4676
ObjCDirectAttr::CreateImplicit(S.Context, Method->getLocation()));
4677
}
4678
}
4679
4680
static void checkObjCDirectMethodClashes(Sema &S, ObjCInterfaceDecl *IDecl,
4681
ObjCMethodDecl *Method,
4682
ObjCImplDecl *ImpDecl = nullptr) {
4683
auto Sel = Method->getSelector();
4684
bool isInstance = Method->isInstanceMethod();
4685
bool diagnosed = false;
4686
4687
auto diagClash = [&](const ObjCMethodDecl *IMD) {
4688
if (diagnosed || IMD->isImplicit())
4689
return;
4690
if (Method->isDirectMethod() || IMD->isDirectMethod()) {
4691
S.Diag(Method->getLocation(), diag::err_objc_direct_duplicate_decl)
4692
<< Method->isDirectMethod() << /* method */ 0 << IMD->isDirectMethod()
4693
<< Method->getDeclName();
4694
S.Diag(IMD->getLocation(), diag::note_previous_declaration);
4695
diagnosed = true;
4696
}
4697
};
4698
4699
// Look for any other declaration of this method anywhere we can see in this
4700
// compilation unit.
4701
//
4702
// We do not use IDecl->lookupMethod() because we have specific needs:
4703
//
4704
// - we absolutely do not need to walk protocols, because
4705
// diag::err_objc_direct_on_protocol has already been emitted
4706
// during parsing if there's a conflict,
4707
//
4708
// - when we do not find a match in a given @interface container,
4709
// we need to attempt looking it up in the @implementation block if the
4710
// translation unit sees it to find more clashes.
4711
4712
if (auto *IMD = IDecl->getMethod(Sel, isInstance))
4713
diagClash(IMD);
4714
else if (auto *Impl = IDecl->getImplementation())
4715
if (Impl != ImpDecl)
4716
if (auto *IMD = IDecl->getImplementation()->getMethod(Sel, isInstance))
4717
diagClash(IMD);
4718
4719
for (const auto *Cat : IDecl->visible_categories())
4720
if (auto *IMD = Cat->getMethod(Sel, isInstance))
4721
diagClash(IMD);
4722
else if (auto CatImpl = Cat->getImplementation())
4723
if (CatImpl != ImpDecl)
4724
if (auto *IMD = Cat->getMethod(Sel, isInstance))
4725
diagClash(IMD);
4726
}
4727
4728
Decl *SemaObjC::ActOnMethodDeclaration(
4729
Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc,
4730
tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4731
ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
4732
// optional arguments. The number of types/arguments is obtained
4733
// from the Sel.getNumArgs().
4734
ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
4735
unsigned CNumArgs, // c-style args
4736
const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind,
4737
bool isVariadic, bool MethodDefinition) {
4738
ASTContext &Context = getASTContext();
4739
// Make sure we can establish a context for the method.
4740
if (!SemaRef.CurContext->isObjCContainer()) {
4741
Diag(MethodLoc, diag::err_missing_method_context);
4742
return nullptr;
4743
}
4744
4745
Decl *ClassDecl = cast<ObjCContainerDecl>(SemaRef.CurContext);
4746
QualType resultDeclType;
4747
4748
bool HasRelatedResultType = false;
4749
TypeSourceInfo *ReturnTInfo = nullptr;
4750
if (ReturnType) {
4751
resultDeclType = SemaRef.GetTypeFromParser(ReturnType, &ReturnTInfo);
4752
4753
if (SemaRef.CheckFunctionReturnType(resultDeclType, MethodLoc))
4754
return nullptr;
4755
4756
QualType bareResultType = resultDeclType;
4757
(void)AttributedType::stripOuterNullability(bareResultType);
4758
HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4759
} else { // get the type for "id".
4760
resultDeclType = Context.getObjCIdType();
4761
Diag(MethodLoc, diag::warn_missing_method_return_type)
4762
<< FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4763
}
4764
4765
ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
4766
Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo,
4767
SemaRef.CurContext, MethodType == tok::minus, isVariadic,
4768
/*isPropertyAccessor=*/false, /*isSynthesizedAccessorStub=*/false,
4769
/*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4770
MethodDeclKind == tok::objc_optional
4771
? ObjCImplementationControl::Optional
4772
: ObjCImplementationControl::Required,
4773
HasRelatedResultType);
4774
4775
SmallVector<ParmVarDecl*, 16> Params;
4776
4777
for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
4778
QualType ArgType;
4779
TypeSourceInfo *DI;
4780
4781
if (!ArgInfo[i].Type) {
4782
ArgType = Context.getObjCIdType();
4783
DI = nullptr;
4784
} else {
4785
ArgType = SemaRef.GetTypeFromParser(ArgInfo[i].Type, &DI);
4786
}
4787
4788
LookupResult R(SemaRef, ArgInfo[i].Name, ArgInfo[i].NameLoc,
4789
Sema::LookupOrdinaryName,
4790
SemaRef.forRedeclarationInCurContext());
4791
SemaRef.LookupName(R, S);
4792
if (R.isSingleResult()) {
4793
NamedDecl *PrevDecl = R.getFoundDecl();
4794
if (S->isDeclScope(PrevDecl)) {
4795
Diag(ArgInfo[i].NameLoc,
4796
(MethodDefinition ? diag::warn_method_param_redefinition
4797
: diag::warn_method_param_declaration))
4798
<< ArgInfo[i].Name;
4799
Diag(PrevDecl->getLocation(),
4800
diag::note_previous_declaration);
4801
}
4802
}
4803
4804
SourceLocation StartLoc = DI
4805
? DI->getTypeLoc().getBeginLoc()
4806
: ArgInfo[i].NameLoc;
4807
4808
ParmVarDecl *Param =
4809
SemaRef.CheckParameter(ObjCMethod, StartLoc, ArgInfo[i].NameLoc,
4810
ArgInfo[i].Name, ArgType, DI, SC_None);
4811
4812
Param->setObjCMethodScopeInfo(i);
4813
4814
Param->setObjCDeclQualifier(
4815
CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
4816
4817
// Apply the attributes to the parameter.
4818
SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, Param,
4819
ArgInfo[i].ArgAttrs);
4820
SemaRef.AddPragmaAttributes(SemaRef.TUScope, Param);
4821
SemaRef.ProcessAPINotes(Param);
4822
4823
if (Param->hasAttr<BlocksAttr>()) {
4824
Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4825
Param->setInvalidDecl();
4826
}
4827
S->AddDecl(Param);
4828
SemaRef.IdResolver.AddDecl(Param);
4829
4830
Params.push_back(Param);
4831
}
4832
4833
for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
4834
ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
4835
QualType ArgType = Param->getType();
4836
if (ArgType.isNull())
4837
ArgType = Context.getObjCIdType();
4838
else
4839
// Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4840
ArgType = Context.getAdjustedParameterType(ArgType);
4841
4842
Param->setDeclContext(ObjCMethod);
4843
Params.push_back(Param);
4844
}
4845
4846
ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
4847
ObjCMethod->setObjCDeclQualifier(
4848
CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
4849
4850
SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, ObjCMethod, AttrList);
4851
SemaRef.AddPragmaAttributes(SemaRef.TUScope, ObjCMethod);
4852
SemaRef.ProcessAPINotes(ObjCMethod);
4853
4854
// Add the method now.
4855
const ObjCMethodDecl *PrevMethod = nullptr;
4856
if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
4857
if (MethodType == tok::minus) {
4858
PrevMethod = ImpDecl->getInstanceMethod(Sel);
4859
ImpDecl->addInstanceMethod(ObjCMethod);
4860
} else {
4861
PrevMethod = ImpDecl->getClassMethod(Sel);
4862
ImpDecl->addClassMethod(ObjCMethod);
4863
}
4864
4865
// If this method overrides a previous @synthesize declaration,
4866
// register it with the property. Linear search through all
4867
// properties here, because the autosynthesized stub hasn't been
4868
// made visible yet, so it can be overridden by a later
4869
// user-specified implementation.
4870
for (ObjCPropertyImplDecl *PropertyImpl : ImpDecl->property_impls()) {
4871
if (auto *Setter = PropertyImpl->getSetterMethodDecl())
4872
if (Setter->getSelector() == Sel &&
4873
Setter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) {
4874
assert(Setter->isSynthesizedAccessorStub() && "autosynth stub expected");
4875
PropertyImpl->setSetterMethodDecl(ObjCMethod);
4876
}
4877
if (auto *Getter = PropertyImpl->getGetterMethodDecl())
4878
if (Getter->getSelector() == Sel &&
4879
Getter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) {
4880
assert(Getter->isSynthesizedAccessorStub() && "autosynth stub expected");
4881
PropertyImpl->setGetterMethodDecl(ObjCMethod);
4882
break;
4883
}
4884
}
4885
4886
// A method is either tagged direct explicitly, or inherits it from its
4887
// canonical declaration.
4888
//
4889
// We have to do the merge upfront and not in mergeInterfaceMethodToImpl()
4890
// because IDecl->lookupMethod() returns more possible matches than just
4891
// the canonical declaration.
4892
if (!ObjCMethod->isDirectMethod()) {
4893
const ObjCMethodDecl *CanonicalMD = ObjCMethod->getCanonicalDecl();
4894
if (CanonicalMD->isDirectMethod()) {
4895
const auto *attr = CanonicalMD->getAttr<ObjCDirectAttr>();
4896
ObjCMethod->addAttr(
4897
ObjCDirectAttr::CreateImplicit(Context, attr->getLocation()));
4898
}
4899
}
4900
4901
// Merge information from the @interface declaration into the
4902
// @implementation.
4903
if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
4904
if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
4905
ObjCMethod->isInstanceMethod())) {
4906
mergeInterfaceMethodToImpl(SemaRef, ObjCMethod, IMD);
4907
4908
// The Idecl->lookupMethod() above will find declarations for ObjCMethod
4909
// in one of these places:
4910
//
4911
// (1) the canonical declaration in an @interface container paired
4912
// with the ImplDecl,
4913
// (2) non canonical declarations in @interface not paired with the
4914
// ImplDecl for the same Class,
4915
// (3) any superclass container.
4916
//
4917
// Direct methods only allow for canonical declarations in the matching
4918
// container (case 1).
4919
//
4920
// Direct methods overriding a superclass declaration (case 3) is
4921
// handled during overrides checks in CheckObjCMethodOverrides().
4922
//
4923
// We deal with same-class container mismatches (Case 2) here.
4924
if (IDecl == IMD->getClassInterface()) {
4925
auto diagContainerMismatch = [&] {
4926
int decl = 0, impl = 0;
4927
4928
if (auto *Cat = dyn_cast<ObjCCategoryDecl>(IMD->getDeclContext()))
4929
decl = Cat->IsClassExtension() ? 1 : 2;
4930
4931
if (isa<ObjCCategoryImplDecl>(ImpDecl))
4932
impl = 1 + (decl != 0);
4933
4934
Diag(ObjCMethod->getLocation(),
4935
diag::err_objc_direct_impl_decl_mismatch)
4936
<< decl << impl;
4937
Diag(IMD->getLocation(), diag::note_previous_declaration);
4938
};
4939
4940
if (ObjCMethod->isDirectMethod()) {
4941
const auto *attr = ObjCMethod->getAttr<ObjCDirectAttr>();
4942
if (ObjCMethod->getCanonicalDecl() != IMD) {
4943
diagContainerMismatch();
4944
} else if (!IMD->isDirectMethod()) {
4945
Diag(attr->getLocation(), diag::err_objc_direct_missing_on_decl);
4946
Diag(IMD->getLocation(), diag::note_previous_declaration);
4947
}
4948
} else if (IMD->isDirectMethod()) {
4949
const auto *attr = IMD->getAttr<ObjCDirectAttr>();
4950
if (ObjCMethod->getCanonicalDecl() != IMD) {
4951
diagContainerMismatch();
4952
} else {
4953
ObjCMethod->addAttr(
4954
ObjCDirectAttr::CreateImplicit(Context, attr->getLocation()));
4955
}
4956
}
4957
}
4958
4959
// Warn about defining -dealloc in a category.
4960
if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
4961
ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4962
Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
4963
<< ObjCMethod->getDeclName();
4964
}
4965
} else {
4966
mergeObjCDirectMembers(SemaRef, ClassDecl, ObjCMethod);
4967
checkObjCDirectMethodClashes(SemaRef, IDecl, ObjCMethod, ImpDecl);
4968
}
4969
4970
// Warn if a method declared in a protocol to which a category or
4971
// extension conforms is non-escaping and the implementation's method is
4972
// escaping.
4973
for (auto *C : IDecl->visible_categories())
4974
for (auto &P : C->protocols())
4975
if (auto *IMD = P->lookupMethod(ObjCMethod->getSelector(),
4976
ObjCMethod->isInstanceMethod())) {
4977
assert(ObjCMethod->parameters().size() ==
4978
IMD->parameters().size() &&
4979
"Methods have different number of parameters");
4980
auto OI = IMD->param_begin(), OE = IMD->param_end();
4981
auto NI = ObjCMethod->param_begin();
4982
for (; OI != OE; ++OI, ++NI)
4983
diagnoseNoescape(*NI, *OI, C, P, SemaRef);
4984
}
4985
}
4986
} else {
4987
if (!isa<ObjCProtocolDecl>(ClassDecl)) {
4988
mergeObjCDirectMembers(SemaRef, ClassDecl, ObjCMethod);
4989
4990
ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4991
if (!IDecl)
4992
IDecl = cast<ObjCCategoryDecl>(ClassDecl)->getClassInterface();
4993
// For valid code, we should always know the primary interface
4994
// declaration by now, however for invalid code we'll keep parsing
4995
// but we won't find the primary interface and IDecl will be nil.
4996
if (IDecl)
4997
checkObjCDirectMethodClashes(SemaRef, IDecl, ObjCMethod);
4998
}
4999
5000
cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
5001
}
5002
5003
if (PrevMethod) {
5004
// You can never have two method definitions with the same name.
5005
Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
5006
<< ObjCMethod->getDeclName();
5007
Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
5008
ObjCMethod->setInvalidDecl();
5009
return ObjCMethod;
5010
}
5011
5012
// If this Objective-C method does not have a related result type, but we
5013
// are allowed to infer related result types, try to do so based on the
5014
// method family.
5015
ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
5016
if (!CurrentClass) {
5017
if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
5018
CurrentClass = Cat->getClassInterface();
5019
else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
5020
CurrentClass = Impl->getClassInterface();
5021
else if (ObjCCategoryImplDecl *CatImpl
5022
= dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
5023
CurrentClass = CatImpl->getClassInterface();
5024
}
5025
5026
ResultTypeCompatibilityKind RTC =
5027
CheckRelatedResultTypeCompatibility(SemaRef, ObjCMethod, CurrentClass);
5028
5029
CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
5030
5031
bool ARCError = false;
5032
if (getLangOpts().ObjCAutoRefCount)
5033
ARCError = CheckARCMethodDecl(ObjCMethod);
5034
5035
// Infer the related result type when possible.
5036
if (!ARCError && RTC == SemaObjC::RTC_Compatible &&
5037
!ObjCMethod->hasRelatedResultType() &&
5038
getLangOpts().ObjCInferRelatedResultType) {
5039
bool InferRelatedResultType = false;
5040
switch (ObjCMethod->getMethodFamily()) {
5041
case OMF_None:
5042
case OMF_copy:
5043
case OMF_dealloc:
5044
case OMF_finalize:
5045
case OMF_mutableCopy:
5046
case OMF_release:
5047
case OMF_retainCount:
5048
case OMF_initialize:
5049
case OMF_performSelector:
5050
break;
5051
5052
case OMF_alloc:
5053
case OMF_new:
5054
InferRelatedResultType = ObjCMethod->isClassMethod();
5055
break;
5056
5057
case OMF_init:
5058
case OMF_autorelease:
5059
case OMF_retain:
5060
case OMF_self:
5061
InferRelatedResultType = ObjCMethod->isInstanceMethod();
5062
break;
5063
}
5064
5065
if (InferRelatedResultType &&
5066
!ObjCMethod->getReturnType()->isObjCIndependentClassType())
5067
ObjCMethod->setRelatedResultType();
5068
}
5069
5070
if (MethodDefinition &&
5071
Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
5072
checkObjCMethodX86VectorTypes(SemaRef, ObjCMethod);
5073
5074
// + load method cannot have availability attributes. It get called on
5075
// startup, so it has to have the availability of the deployment target.
5076
if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) {
5077
if (ObjCMethod->isClassMethod() &&
5078
ObjCMethod->getSelector().getAsString() == "load") {
5079
Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
5080
<< 0;
5081
ObjCMethod->dropAttr<AvailabilityAttr>();
5082
}
5083
}
5084
5085
// Insert the invisible arguments, self and _cmd!
5086
ObjCMethod->createImplicitParams(Context, ObjCMethod->getClassInterface());
5087
5088
SemaRef.ActOnDocumentableDecl(ObjCMethod);
5089
5090
return ObjCMethod;
5091
}
5092
5093
bool SemaObjC::CheckObjCDeclScope(Decl *D) {
5094
// Following is also an error. But it is caused by a missing @end
5095
// and diagnostic is issued elsewhere.
5096
if (isa<ObjCContainerDecl>(SemaRef.CurContext->getRedeclContext()))
5097
return false;
5098
5099
// If we switched context to translation unit while we are still lexically in
5100
// an objc container, it means the parser missed emitting an error.
5101
if (isa<TranslationUnitDecl>(
5102
SemaRef.getCurLexicalContext()->getRedeclContext()))
5103
return false;
5104
5105
Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
5106
D->setInvalidDecl();
5107
5108
return true;
5109
}
5110
5111
/// Called whenever \@defs(ClassName) is encountered in the source. Inserts the
5112
/// instance variables of ClassName into Decls.
5113
void SemaObjC::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
5114
const IdentifierInfo *ClassName,
5115
SmallVectorImpl<Decl *> &Decls) {
5116
ASTContext &Context = getASTContext();
5117
// Check that ClassName is a valid class
5118
ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
5119
if (!Class) {
5120
Diag(DeclStart, diag::err_undef_interface) << ClassName;
5121
return;
5122
}
5123
if (getLangOpts().ObjCRuntime.isNonFragile()) {
5124
Diag(DeclStart, diag::err_atdef_nonfragile_interface);
5125
return;
5126
}
5127
5128
// Collect the instance variables
5129
SmallVector<const ObjCIvarDecl*, 32> Ivars;
5130
Context.DeepCollectObjCIvars(Class, true, Ivars);
5131
// For each ivar, create a fresh ObjCAtDefsFieldDecl.
5132
for (unsigned i = 0; i < Ivars.size(); i++) {
5133
const FieldDecl* ID = Ivars[i];
5134
RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
5135
Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
5136
/*FIXME: StartL=*/ID->getLocation(),
5137
ID->getLocation(),
5138
ID->getIdentifier(), ID->getType(),
5139
ID->getBitWidth());
5140
Decls.push_back(FD);
5141
}
5142
5143
// Introduce all of these fields into the appropriate scope.
5144
for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
5145
D != Decls.end(); ++D) {
5146
FieldDecl *FD = cast<FieldDecl>(*D);
5147
if (getLangOpts().CPlusPlus)
5148
SemaRef.PushOnScopeChains(FD, S);
5149
else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
5150
Record->addDecl(FD);
5151
}
5152
}
5153
5154
/// Build a type-check a new Objective-C exception variable declaration.
5155
VarDecl *SemaObjC::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
5156
SourceLocation StartLoc,
5157
SourceLocation IdLoc,
5158
const IdentifierInfo *Id,
5159
bool Invalid) {
5160
ASTContext &Context = getASTContext();
5161
// ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5162
// duration shall not be qualified by an address-space qualifier."
5163
// Since all parameters have automatic store duration, they can not have
5164
// an address space.
5165
if (T.getAddressSpace() != LangAS::Default) {
5166
Diag(IdLoc, diag::err_arg_with_address_space);
5167
Invalid = true;
5168
}
5169
5170
// An @catch parameter must be an unqualified object pointer type;
5171
// FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
5172
if (Invalid) {
5173
// Don't do any further checking.
5174
} else if (T->isDependentType()) {
5175
// Okay: we don't know what this type will instantiate to.
5176
} else if (T->isObjCQualifiedIdType()) {
5177
Invalid = true;
5178
Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
5179
} else if (T->isObjCIdType()) {
5180
// Okay: we don't know what this type will instantiate to.
5181
} else if (!T->isObjCObjectPointerType()) {
5182
Invalid = true;
5183
Diag(IdLoc, diag::err_catch_param_not_objc_type);
5184
} else if (!T->castAs<ObjCObjectPointerType>()->getInterfaceType()) {
5185
Invalid = true;
5186
Diag(IdLoc, diag::err_catch_param_not_objc_type);
5187
}
5188
5189
VarDecl *New = VarDecl::Create(Context, SemaRef.CurContext, StartLoc, IdLoc,
5190
Id, T, TInfo, SC_None);
5191
New->setExceptionVariable(true);
5192
5193
// In ARC, infer 'retaining' for variables of retainable type.
5194
if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
5195
Invalid = true;
5196
5197
if (Invalid)
5198
New->setInvalidDecl();
5199
return New;
5200
}
5201
5202
Decl *SemaObjC::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
5203
const DeclSpec &DS = D.getDeclSpec();
5204
5205
// We allow the "register" storage class on exception variables because
5206
// GCC did, but we drop it completely. Any other storage class is an error.
5207
if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5208
Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
5209
<< FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
5210
} else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
5211
Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
5212
<< DeclSpec::getSpecifierName(SCS);
5213
}
5214
if (DS.isInlineSpecified())
5215
Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
5216
<< getLangOpts().CPlusPlus17;
5217
if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
5218
Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5219
diag::err_invalid_thread)
5220
<< DeclSpec::getSpecifierName(TSCS);
5221
D.getMutableDeclSpec().ClearStorageClassSpecs();
5222
5223
SemaRef.DiagnoseFunctionSpecifiers(D.getDeclSpec());
5224
5225
// Check that there are no default arguments inside the type of this
5226
// exception object (C++ only).
5227
if (getLangOpts().CPlusPlus)
5228
SemaRef.CheckExtraCXXDefaultArguments(D);
5229
5230
TypeSourceInfo *TInfo = SemaRef.GetTypeForDeclarator(D);
5231
QualType ExceptionType = TInfo->getType();
5232
5233
VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
5234
D.getSourceRange().getBegin(),
5235
D.getIdentifierLoc(),
5236
D.getIdentifier(),
5237
D.isInvalidType());
5238
5239
// Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5240
if (D.getCXXScopeSpec().isSet()) {
5241
Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
5242
<< D.getCXXScopeSpec().getRange();
5243
New->setInvalidDecl();
5244
}
5245
5246
// Add the parameter declaration into this scope.
5247
S->AddDecl(New);
5248
if (D.getIdentifier())
5249
SemaRef.IdResolver.AddDecl(New);
5250
5251
SemaRef.ProcessDeclAttributes(S, New, D);
5252
5253
if (New->hasAttr<BlocksAttr>())
5254
Diag(New->getLocation(), diag::err_block_on_nonlocal);
5255
return New;
5256
}
5257
5258
/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
5259
/// initialization.
5260
void SemaObjC::CollectIvarsToConstructOrDestruct(
5261
ObjCInterfaceDecl *OI, SmallVectorImpl<ObjCIvarDecl *> &Ivars) {
5262
ASTContext &Context = getASTContext();
5263
for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
5264
Iv= Iv->getNextIvar()) {
5265
QualType QT = Context.getBaseElementType(Iv->getType());
5266
if (QT->isRecordType())
5267
Ivars.push_back(Iv);
5268
}
5269
}
5270
5271
void SemaObjC::DiagnoseUseOfUnimplementedSelectors() {
5272
ASTContext &Context = getASTContext();
5273
// Load referenced selectors from the external source.
5274
if (SemaRef.ExternalSource) {
5275
SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
5276
SemaRef.ExternalSource->ReadReferencedSelectors(Sels);
5277
for (unsigned I = 0, N = Sels.size(); I != N; ++I)
5278
ReferencedSelectors[Sels[I].first] = Sels[I].second;
5279
}
5280
5281
// Warning will be issued only when selector table is
5282
// generated (which means there is at lease one implementation
5283
// in the TU). This is to match gcc's behavior.
5284
if (ReferencedSelectors.empty() ||
5285
!Context.AnyObjCImplementation())
5286
return;
5287
for (auto &SelectorAndLocation : ReferencedSelectors) {
5288
Selector Sel = SelectorAndLocation.first;
5289
SourceLocation Loc = SelectorAndLocation.second;
5290
if (!LookupImplementedMethodInGlobalPool(Sel))
5291
Diag(Loc, diag::warn_unimplemented_selector) << Sel;
5292
}
5293
}
5294
5295
ObjCIvarDecl *
5296
SemaObjC::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
5297
const ObjCPropertyDecl *&PDecl) const {
5298
if (Method->isClassMethod())
5299
return nullptr;
5300
const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
5301
if (!IDecl)
5302
return nullptr;
5303
Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
5304
/*shallowCategoryLookup=*/false,
5305
/*followSuper=*/false);
5306
if (!Method || !Method->isPropertyAccessor())
5307
return nullptr;
5308
if ((PDecl = Method->findPropertyDecl()))
5309
if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
5310
// property backing ivar must belong to property's class
5311
// or be a private ivar in class's implementation.
5312
// FIXME. fix the const-ness issue.
5313
IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
5314
IV->getIdentifier());
5315
return IV;
5316
}
5317
return nullptr;
5318
}
5319
5320
namespace {
5321
/// Used by SemaObjC::DiagnoseUnusedBackingIvarInAccessor to check if a property
5322
/// accessor references the backing ivar.
5323
class UnusedBackingIvarChecker
5324
: public RecursiveASTVisitor<UnusedBackingIvarChecker> {
5325
public:
5326
Sema &S;
5327
const ObjCMethodDecl *Method;
5328
const ObjCIvarDecl *IvarD;
5329
bool AccessedIvar;
5330
bool InvokedSelfMethod;
5331
5332
UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
5333
const ObjCIvarDecl *IvarD)
5334
: S(S), Method(Method), IvarD(IvarD), AccessedIvar(false),
5335
InvokedSelfMethod(false) {
5336
assert(IvarD);
5337
}
5338
5339
bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
5340
if (E->getDecl() == IvarD) {
5341
AccessedIvar = true;
5342
return false;
5343
}
5344
return true;
5345
}
5346
5347
bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
5348
if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
5349
S.ObjC().isSelfExpr(E->getInstanceReceiver(), Method)) {
5350
InvokedSelfMethod = true;
5351
}
5352
return true;
5353
}
5354
};
5355
} // end anonymous namespace
5356
5357
void SemaObjC::DiagnoseUnusedBackingIvarInAccessor(
5358
Scope *S, const ObjCImplementationDecl *ImplD) {
5359
if (S->hasUnrecoverableErrorOccurred())
5360
return;
5361
5362
for (const auto *CurMethod : ImplD->instance_methods()) {
5363
unsigned DIAG = diag::warn_unused_property_backing_ivar;
5364
SourceLocation Loc = CurMethod->getLocation();
5365
if (getDiagnostics().isIgnored(DIAG, Loc))
5366
continue;
5367
5368
const ObjCPropertyDecl *PDecl;
5369
const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
5370
if (!IV)
5371
continue;
5372
5373
if (CurMethod->isSynthesizedAccessorStub())
5374
continue;
5375
5376
UnusedBackingIvarChecker Checker(SemaRef, CurMethod, IV);
5377
Checker.TraverseStmt(CurMethod->getBody());
5378
if (Checker.AccessedIvar)
5379
continue;
5380
5381
// Do not issue this warning if backing ivar is used somewhere and accessor
5382
// implementation makes a self call. This is to prevent false positive in
5383
// cases where the ivar is accessed by another method that the accessor
5384
// delegates to.
5385
if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
5386
Diag(Loc, DIAG) << IV;
5387
Diag(PDecl->getLocation(), diag::note_property_declare);
5388
}
5389
}
5390
}
5391
5392
QualType SemaObjC::AdjustParameterTypeForObjCAutoRefCount(
5393
QualType T, SourceLocation NameLoc, TypeSourceInfo *TSInfo) {
5394
ASTContext &Context = getASTContext();
5395
// In ARC, infer a lifetime qualifier for appropriate parameter types.
5396
if (!getLangOpts().ObjCAutoRefCount ||
5397
T.getObjCLifetime() != Qualifiers::OCL_None || !T->isObjCLifetimeType())
5398
return T;
5399
5400
Qualifiers::ObjCLifetime Lifetime;
5401
5402
// Special cases for arrays:
5403
// - if it's const, use __unsafe_unretained
5404
// - otherwise, it's an error
5405
if (T->isArrayType()) {
5406
if (!T.isConstQualified()) {
5407
if (SemaRef.DelayedDiagnostics.shouldDelayDiagnostics())
5408
SemaRef.DelayedDiagnostics.add(
5409
sema::DelayedDiagnostic::makeForbiddenType(
5410
NameLoc, diag::err_arc_array_param_no_ownership, T, false));
5411
else
5412
Diag(NameLoc, diag::err_arc_array_param_no_ownership)
5413
<< TSInfo->getTypeLoc().getSourceRange();
5414
}
5415
Lifetime = Qualifiers::OCL_ExplicitNone;
5416
} else {
5417
Lifetime = T->getObjCARCImplicitLifetime();
5418
}
5419
T = Context.getLifetimeQualifiedType(T, Lifetime);
5420
5421
return T;
5422
}
5423
5424
ObjCInterfaceDecl *SemaObjC::getObjCInterfaceDecl(const IdentifierInfo *&Id,
5425
SourceLocation IdLoc,
5426
bool DoTypoCorrection) {
5427
// The third "scope" argument is 0 since we aren't enabling lazy built-in
5428
// creation from this context.
5429
NamedDecl *IDecl = SemaRef.LookupSingleName(SemaRef.TUScope, Id, IdLoc,
5430
Sema::LookupOrdinaryName);
5431
5432
if (!IDecl && DoTypoCorrection) {
5433
// Perform typo correction at the given location, but only if we
5434
// find an Objective-C class name.
5435
DeclFilterCCC<ObjCInterfaceDecl> CCC{};
5436
if (TypoCorrection C = SemaRef.CorrectTypo(
5437
DeclarationNameInfo(Id, IdLoc), Sema::LookupOrdinaryName,
5438
SemaRef.TUScope, nullptr, CCC, Sema::CTK_ErrorRecovery)) {
5439
SemaRef.diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
5440
IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
5441
Id = IDecl->getIdentifier();
5442
}
5443
}
5444
ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
5445
// This routine must always return a class definition, if any.
5446
if (Def && Def->getDefinition())
5447
Def = Def->getDefinition();
5448
return Def;
5449
}
5450
5451
bool SemaObjC::inferObjCARCLifetime(ValueDecl *decl) {
5452
ASTContext &Context = getASTContext();
5453
QualType type = decl->getType();
5454
Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
5455
if (lifetime == Qualifiers::OCL_Autoreleasing) {
5456
// Various kinds of declaration aren't allowed to be __autoreleasing.
5457
unsigned kind = -1U;
5458
if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5459
if (var->hasAttr<BlocksAttr>())
5460
kind = 0; // __block
5461
else if (!var->hasLocalStorage())
5462
kind = 1; // global
5463
} else if (isa<ObjCIvarDecl>(decl)) {
5464
kind = 3; // ivar
5465
} else if (isa<FieldDecl>(decl)) {
5466
kind = 2; // field
5467
}
5468
5469
if (kind != -1U) {
5470
Diag(decl->getLocation(), diag::err_arc_autoreleasing_var) << kind;
5471
}
5472
} else if (lifetime == Qualifiers::OCL_None) {
5473
// Try to infer lifetime.
5474
if (!type->isObjCLifetimeType())
5475
return false;
5476
5477
lifetime = type->getObjCARCImplicitLifetime();
5478
type = Context.getLifetimeQualifiedType(type, lifetime);
5479
decl->setType(type);
5480
}
5481
5482
if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5483
// Thread-local variables cannot have lifetime.
5484
if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
5485
var->getTLSKind()) {
5486
Diag(var->getLocation(), diag::err_arc_thread_ownership)
5487
<< var->getType();
5488
return true;
5489
}
5490
}
5491
5492
return false;
5493
}
5494
5495
ObjCContainerDecl *SemaObjC::getObjCDeclContext() const {
5496
return (dyn_cast_or_null<ObjCContainerDecl>(SemaRef.CurContext));
5497
}
5498
5499
void SemaObjC::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
5500
if (!getLangOpts().CPlusPlus)
5501
return;
5502
if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
5503
ASTContext &Context = getASTContext();
5504
SmallVector<ObjCIvarDecl *, 8> ivars;
5505
CollectIvarsToConstructOrDestruct(OID, ivars);
5506
if (ivars.empty())
5507
return;
5508
SmallVector<CXXCtorInitializer *, 32> AllToInit;
5509
for (unsigned i = 0; i < ivars.size(); i++) {
5510
FieldDecl *Field = ivars[i];
5511
if (Field->isInvalidDecl())
5512
continue;
5513
5514
CXXCtorInitializer *Member;
5515
InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
5516
InitializationKind InitKind =
5517
InitializationKind::CreateDefault(ObjCImplementation->getLocation());
5518
5519
InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
5520
std::nullopt);
5521
ExprResult MemberInit =
5522
InitSeq.Perform(SemaRef, InitEntity, InitKind, std::nullopt);
5523
MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
5524
// Note, MemberInit could actually come back empty if no initialization
5525
// is required (e.g., because it would call a trivial default constructor)
5526
if (!MemberInit.get() || MemberInit.isInvalid())
5527
continue;
5528
5529
Member = new (Context)
5530
CXXCtorInitializer(Context, Field, SourceLocation(), SourceLocation(),
5531
MemberInit.getAs<Expr>(), SourceLocation());
5532
AllToInit.push_back(Member);
5533
5534
// Be sure that the destructor is accessible and is marked as referenced.
5535
if (const RecordType *RecordTy =
5536
Context.getBaseElementType(Field->getType())
5537
->getAs<RecordType>()) {
5538
CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
5539
if (CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(RD)) {
5540
SemaRef.MarkFunctionReferenced(Field->getLocation(), Destructor);
5541
SemaRef.CheckDestructorAccess(
5542
Field->getLocation(), Destructor,
5543
PDiag(diag::err_access_dtor_ivar)
5544
<< Context.getBaseElementType(Field->getType()));
5545
}
5546
}
5547
}
5548
ObjCImplementation->setIvarInitializers(Context, AllToInit.data(),
5549
AllToInit.size());
5550
}
5551
}
5552
5553
/// TranslateIvarVisibility - Translate visibility from a token ID to an
5554
/// AST enum value.
5555
static ObjCIvarDecl::AccessControl
5556
TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5557
switch (ivarVisibility) {
5558
default:
5559
llvm_unreachable("Unknown visitibility kind");
5560
case tok::objc_private:
5561
return ObjCIvarDecl::Private;
5562
case tok::objc_public:
5563
return ObjCIvarDecl::Public;
5564
case tok::objc_protected:
5565
return ObjCIvarDecl::Protected;
5566
case tok::objc_package:
5567
return ObjCIvarDecl::Package;
5568
}
5569
}
5570
5571
/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5572
/// in order to create an IvarDecl object for it.
5573
Decl *SemaObjC::ActOnIvar(Scope *S, SourceLocation DeclStart, Declarator &D,
5574
Expr *BitWidth, tok::ObjCKeywordKind Visibility) {
5575
5576
const IdentifierInfo *II = D.getIdentifier();
5577
SourceLocation Loc = DeclStart;
5578
if (II)
5579
Loc = D.getIdentifierLoc();
5580
5581
// FIXME: Unnamed fields can be handled in various different ways, for
5582
// example, unnamed unions inject all members into the struct namespace!
5583
5584
TypeSourceInfo *TInfo = SemaRef.GetTypeForDeclarator(D);
5585
QualType T = TInfo->getType();
5586
5587
if (BitWidth) {
5588
// 6.7.2.1p3, 6.7.2.1p4
5589
BitWidth =
5590
SemaRef.VerifyBitField(Loc, II, T, /*IsMsStruct*/ false, BitWidth)
5591
.get();
5592
if (!BitWidth)
5593
D.setInvalidType();
5594
} else {
5595
// Not a bitfield.
5596
5597
// validate II.
5598
}
5599
if (T->isReferenceType()) {
5600
Diag(Loc, diag::err_ivar_reference_type);
5601
D.setInvalidType();
5602
}
5603
// C99 6.7.2.1p8: A member of a structure or union may have any type other
5604
// than a variably modified type.
5605
else if (T->isVariablyModifiedType()) {
5606
if (!SemaRef.tryToFixVariablyModifiedVarType(
5607
TInfo, T, Loc, diag::err_typecheck_ivar_variable_size))
5608
D.setInvalidType();
5609
}
5610
5611
// Get the visibility (access control) for this ivar.
5612
ObjCIvarDecl::AccessControl ac = Visibility != tok::objc_not_keyword
5613
? TranslateIvarVisibility(Visibility)
5614
: ObjCIvarDecl::None;
5615
// Must set ivar's DeclContext to its enclosing interface.
5616
ObjCContainerDecl *EnclosingDecl =
5617
cast<ObjCContainerDecl>(SemaRef.CurContext);
5618
if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
5619
return nullptr;
5620
ObjCContainerDecl *EnclosingContext;
5621
if (ObjCImplementationDecl *IMPDecl =
5622
dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5623
if (getLangOpts().ObjCRuntime.isFragile()) {
5624
// Case of ivar declared in an implementation. Context is that of its
5625
// class.
5626
EnclosingContext = IMPDecl->getClassInterface();
5627
assert(EnclosingContext && "Implementation has no class interface!");
5628
} else
5629
EnclosingContext = EnclosingDecl;
5630
} else {
5631
if (ObjCCategoryDecl *CDecl = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
5632
if (getLangOpts().ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
5633
Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
5634
return nullptr;
5635
}
5636
}
5637
EnclosingContext = EnclosingDecl;
5638
}
5639
5640
// Construct the decl.
5641
ObjCIvarDecl *NewID =
5642
ObjCIvarDecl::Create(getASTContext(), EnclosingContext, DeclStart, Loc,
5643
II, T, TInfo, ac, BitWidth);
5644
5645
if (T->containsErrors())
5646
NewID->setInvalidDecl();
5647
5648
if (II) {
5649
NamedDecl *PrevDecl =
5650
SemaRef.LookupSingleName(S, II, Loc, Sema::LookupMemberName,
5651
RedeclarationKind::ForVisibleRedeclaration);
5652
if (PrevDecl && SemaRef.isDeclInScope(PrevDecl, EnclosingContext, S) &&
5653
!isa<TagDecl>(PrevDecl)) {
5654
Diag(Loc, diag::err_duplicate_member) << II;
5655
Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5656
NewID->setInvalidDecl();
5657
}
5658
}
5659
5660
// Process attributes attached to the ivar.
5661
SemaRef.ProcessDeclAttributes(S, NewID, D);
5662
5663
if (D.isInvalidType())
5664
NewID->setInvalidDecl();
5665
5666
// In ARC, infer 'retaining' for ivars of retainable type.
5667
if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
5668
NewID->setInvalidDecl();
5669
5670
if (D.getDeclSpec().isModulePrivateSpecified())
5671
NewID->setModulePrivate();
5672
5673
if (II) {
5674
// FIXME: When interfaces are DeclContexts, we'll need to add
5675
// these to the interface.
5676
S->AddDecl(NewID);
5677
SemaRef.IdResolver.AddDecl(NewID);
5678
}
5679
5680
if (getLangOpts().ObjCRuntime.isNonFragile() && !NewID->isInvalidDecl() &&
5681
isa<ObjCInterfaceDecl>(EnclosingDecl))
5682
Diag(Loc, diag::warn_ivars_in_interface);
5683
5684
return NewID;
5685
}
5686
5687