Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/clang/lib/Sema/SemaExceptionSpec.cpp
35233 views
1
//===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file provides Sema routines for C++ exception specification testing.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "clang/Sema/SemaInternal.h"
14
#include "clang/AST/ASTMutationListener.h"
15
#include "clang/AST/CXXInheritance.h"
16
#include "clang/AST/Expr.h"
17
#include "clang/AST/ExprCXX.h"
18
#include "clang/AST/StmtObjC.h"
19
#include "clang/AST/TypeLoc.h"
20
#include "clang/Basic/Diagnostic.h"
21
#include "clang/Basic/SourceManager.h"
22
#include "llvm/ADT/SmallPtrSet.h"
23
#include "llvm/ADT/SmallString.h"
24
#include <optional>
25
26
namespace clang {
27
28
static const FunctionProtoType *GetUnderlyingFunction(QualType T)
29
{
30
if (const PointerType *PtrTy = T->getAs<PointerType>())
31
T = PtrTy->getPointeeType();
32
else if (const ReferenceType *RefTy = T->getAs<ReferenceType>())
33
T = RefTy->getPointeeType();
34
else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
35
T = MPTy->getPointeeType();
36
return T->getAs<FunctionProtoType>();
37
}
38
39
/// HACK: 2014-11-14 libstdc++ had a bug where it shadows std::swap with a
40
/// member swap function then tries to call std::swap unqualified from the
41
/// exception specification of that function. This function detects whether
42
/// we're in such a case and turns off delay-parsing of exception
43
/// specifications. Libstdc++ 6.1 (released 2016-04-27) appears to have
44
/// resolved it as side-effect of commit ddb63209a8d (2015-06-05).
45
bool Sema::isLibstdcxxEagerExceptionSpecHack(const Declarator &D) {
46
auto *RD = dyn_cast<CXXRecordDecl>(CurContext);
47
48
// All the problem cases are member functions named "swap" within class
49
// templates declared directly within namespace std or std::__debug or
50
// std::__profile.
51
if (!RD || !RD->getIdentifier() || !RD->getDescribedClassTemplate() ||
52
!D.getIdentifier() || !D.getIdentifier()->isStr("swap"))
53
return false;
54
55
auto *ND = dyn_cast<NamespaceDecl>(RD->getDeclContext());
56
if (!ND)
57
return false;
58
59
bool IsInStd = ND->isStdNamespace();
60
if (!IsInStd) {
61
// This isn't a direct member of namespace std, but it might still be
62
// libstdc++'s std::__debug::array or std::__profile::array.
63
IdentifierInfo *II = ND->getIdentifier();
64
if (!II || !(II->isStr("__debug") || II->isStr("__profile")) ||
65
!ND->isInStdNamespace())
66
return false;
67
}
68
69
// Only apply this hack within a system header.
70
if (!Context.getSourceManager().isInSystemHeader(D.getBeginLoc()))
71
return false;
72
73
return llvm::StringSwitch<bool>(RD->getIdentifier()->getName())
74
.Case("array", true)
75
.Case("pair", IsInStd)
76
.Case("priority_queue", IsInStd)
77
.Case("stack", IsInStd)
78
.Case("queue", IsInStd)
79
.Default(false);
80
}
81
82
ExprResult Sema::ActOnNoexceptSpec(Expr *NoexceptExpr,
83
ExceptionSpecificationType &EST) {
84
85
if (NoexceptExpr->isTypeDependent() ||
86
NoexceptExpr->containsUnexpandedParameterPack()) {
87
EST = EST_DependentNoexcept;
88
return NoexceptExpr;
89
}
90
91
llvm::APSInt Result;
92
ExprResult Converted = CheckConvertedConstantExpression(
93
NoexceptExpr, Context.BoolTy, Result, CCEK_Noexcept);
94
95
if (Converted.isInvalid()) {
96
EST = EST_NoexceptFalse;
97
// Fill in an expression of 'false' as a fixup.
98
auto *BoolExpr = new (Context)
99
CXXBoolLiteralExpr(false, Context.BoolTy, NoexceptExpr->getBeginLoc());
100
llvm::APSInt Value{1};
101
Value = 0;
102
return ConstantExpr::Create(Context, BoolExpr, APValue{Value});
103
}
104
105
if (Converted.get()->isValueDependent()) {
106
EST = EST_DependentNoexcept;
107
return Converted;
108
}
109
110
if (!Converted.isInvalid())
111
EST = !Result ? EST_NoexceptFalse : EST_NoexceptTrue;
112
return Converted;
113
}
114
115
bool Sema::CheckSpecifiedExceptionType(QualType &T, SourceRange Range) {
116
// C++11 [except.spec]p2:
117
// A type cv T, "array of T", or "function returning T" denoted
118
// in an exception-specification is adjusted to type T, "pointer to T", or
119
// "pointer to function returning T", respectively.
120
//
121
// We also apply this rule in C++98.
122
if (T->isArrayType())
123
T = Context.getArrayDecayedType(T);
124
else if (T->isFunctionType())
125
T = Context.getPointerType(T);
126
127
int Kind = 0;
128
QualType PointeeT = T;
129
if (const PointerType *PT = T->getAs<PointerType>()) {
130
PointeeT = PT->getPointeeType();
131
Kind = 1;
132
133
// cv void* is explicitly permitted, despite being a pointer to an
134
// incomplete type.
135
if (PointeeT->isVoidType())
136
return false;
137
} else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
138
PointeeT = RT->getPointeeType();
139
Kind = 2;
140
141
if (RT->isRValueReferenceType()) {
142
// C++11 [except.spec]p2:
143
// A type denoted in an exception-specification shall not denote [...]
144
// an rvalue reference type.
145
Diag(Range.getBegin(), diag::err_rref_in_exception_spec)
146
<< T << Range;
147
return true;
148
}
149
}
150
151
// C++11 [except.spec]p2:
152
// A type denoted in an exception-specification shall not denote an
153
// incomplete type other than a class currently being defined [...].
154
// A type denoted in an exception-specification shall not denote a
155
// pointer or reference to an incomplete type, other than (cv) void* or a
156
// pointer or reference to a class currently being defined.
157
// In Microsoft mode, downgrade this to a warning.
158
unsigned DiagID = diag::err_incomplete_in_exception_spec;
159
bool ReturnValueOnError = true;
160
if (getLangOpts().MSVCCompat) {
161
DiagID = diag::ext_incomplete_in_exception_spec;
162
ReturnValueOnError = false;
163
}
164
if (!(PointeeT->isRecordType() &&
165
PointeeT->castAs<RecordType>()->isBeingDefined()) &&
166
RequireCompleteType(Range.getBegin(), PointeeT, DiagID, Kind, Range))
167
return ReturnValueOnError;
168
169
// WebAssembly reference types can't be used in exception specifications.
170
if (PointeeT.isWebAssemblyReferenceType()) {
171
Diag(Range.getBegin(), diag::err_wasm_reftype_exception_spec);
172
return true;
173
}
174
175
// The MSVC compatibility mode doesn't extend to sizeless types,
176
// so diagnose them separately.
177
if (PointeeT->isSizelessType() && Kind != 1) {
178
Diag(Range.getBegin(), diag::err_sizeless_in_exception_spec)
179
<< (Kind == 2 ? 1 : 0) << PointeeT << Range;
180
return true;
181
}
182
183
return false;
184
}
185
186
bool Sema::CheckDistantExceptionSpec(QualType T) {
187
// C++17 removes this rule in favor of putting exception specifications into
188
// the type system.
189
if (getLangOpts().CPlusPlus17)
190
return false;
191
192
if (const PointerType *PT = T->getAs<PointerType>())
193
T = PT->getPointeeType();
194
else if (const MemberPointerType *PT = T->getAs<MemberPointerType>())
195
T = PT->getPointeeType();
196
else
197
return false;
198
199
const FunctionProtoType *FnT = T->getAs<FunctionProtoType>();
200
if (!FnT)
201
return false;
202
203
return FnT->hasExceptionSpec();
204
}
205
206
const FunctionProtoType *
207
Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) {
208
if (FPT->getExceptionSpecType() == EST_Unparsed) {
209
Diag(Loc, diag::err_exception_spec_not_parsed);
210
return nullptr;
211
}
212
213
if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
214
return FPT;
215
216
FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl();
217
const FunctionProtoType *SourceFPT =
218
SourceDecl->getType()->castAs<FunctionProtoType>();
219
220
// If the exception specification has already been resolved, just return it.
221
if (!isUnresolvedExceptionSpec(SourceFPT->getExceptionSpecType()))
222
return SourceFPT;
223
224
// Compute or instantiate the exception specification now.
225
if (SourceFPT->getExceptionSpecType() == EST_Unevaluated)
226
EvaluateImplicitExceptionSpec(Loc, SourceDecl);
227
else
228
InstantiateExceptionSpec(Loc, SourceDecl);
229
230
const FunctionProtoType *Proto =
231
SourceDecl->getType()->castAs<FunctionProtoType>();
232
if (Proto->getExceptionSpecType() == clang::EST_Unparsed) {
233
Diag(Loc, diag::err_exception_spec_not_parsed);
234
Proto = nullptr;
235
}
236
return Proto;
237
}
238
239
void
240
Sema::UpdateExceptionSpec(FunctionDecl *FD,
241
const FunctionProtoType::ExceptionSpecInfo &ESI) {
242
// If we've fully resolved the exception specification, notify listeners.
243
if (!isUnresolvedExceptionSpec(ESI.Type))
244
if (auto *Listener = getASTMutationListener())
245
Listener->ResolvedExceptionSpec(FD);
246
247
for (FunctionDecl *Redecl : FD->redecls())
248
Context.adjustExceptionSpec(Redecl, ESI);
249
}
250
251
static bool exceptionSpecNotKnownYet(const FunctionDecl *FD) {
252
ExceptionSpecificationType EST =
253
FD->getType()->castAs<FunctionProtoType>()->getExceptionSpecType();
254
if (EST == EST_Unparsed)
255
return true;
256
else if (EST != EST_Unevaluated)
257
return false;
258
const DeclContext *DC = FD->getLexicalDeclContext();
259
return DC->isRecord() && cast<RecordDecl>(DC)->isBeingDefined();
260
}
261
262
static bool CheckEquivalentExceptionSpecImpl(
263
Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID,
264
const FunctionProtoType *Old, SourceLocation OldLoc,
265
const FunctionProtoType *New, SourceLocation NewLoc,
266
bool *MissingExceptionSpecification = nullptr,
267
bool *MissingEmptyExceptionSpecification = nullptr,
268
bool AllowNoexceptAllMatchWithNoSpec = false, bool IsOperatorNew = false);
269
270
/// Determine whether a function has an implicitly-generated exception
271
/// specification.
272
static bool hasImplicitExceptionSpec(FunctionDecl *Decl) {
273
if (!isa<CXXDestructorDecl>(Decl) &&
274
Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete &&
275
Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
276
return false;
277
278
// For a function that the user didn't declare:
279
// - if this is a destructor, its exception specification is implicit.
280
// - if this is 'operator delete' or 'operator delete[]', the exception
281
// specification is as-if an explicit exception specification was given
282
// (per [basic.stc.dynamic]p2).
283
if (!Decl->getTypeSourceInfo())
284
return isa<CXXDestructorDecl>(Decl);
285
286
auto *Ty = Decl->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
287
return !Ty->hasExceptionSpec();
288
}
289
290
bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) {
291
// Just completely ignore this under -fno-exceptions prior to C++17.
292
// In C++17 onwards, the exception specification is part of the type and
293
// we will diagnose mismatches anyway, so it's better to check for them here.
294
if (!getLangOpts().CXXExceptions && !getLangOpts().CPlusPlus17)
295
return false;
296
297
OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator();
298
bool IsOperatorNew = OO == OO_New || OO == OO_Array_New;
299
bool MissingExceptionSpecification = false;
300
bool MissingEmptyExceptionSpecification = false;
301
302
unsigned DiagID = diag::err_mismatched_exception_spec;
303
bool ReturnValueOnError = true;
304
if (getLangOpts().MSVCCompat) {
305
DiagID = diag::ext_mismatched_exception_spec;
306
ReturnValueOnError = false;
307
}
308
309
// If we're befriending a member function of a class that's currently being
310
// defined, we might not be able to work out its exception specification yet.
311
// If not, defer the check until later.
312
if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) {
313
DelayedEquivalentExceptionSpecChecks.push_back({New, Old});
314
return false;
315
}
316
317
// Check the types as written: they must match before any exception
318
// specification adjustment is applied.
319
if (!CheckEquivalentExceptionSpecImpl(
320
*this, PDiag(DiagID), PDiag(diag::note_previous_declaration),
321
Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
322
New->getType()->getAs<FunctionProtoType>(), New->getLocation(),
323
&MissingExceptionSpecification, &MissingEmptyExceptionSpecification,
324
/*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) {
325
// C++11 [except.spec]p4 [DR1492]:
326
// If a declaration of a function has an implicit
327
// exception-specification, other declarations of the function shall
328
// not specify an exception-specification.
329
if (getLangOpts().CPlusPlus11 && getLangOpts().CXXExceptions &&
330
hasImplicitExceptionSpec(Old) != hasImplicitExceptionSpec(New)) {
331
Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch)
332
<< hasImplicitExceptionSpec(Old);
333
if (Old->getLocation().isValid())
334
Diag(Old->getLocation(), diag::note_previous_declaration);
335
}
336
return false;
337
}
338
339
// The failure was something other than an missing exception
340
// specification; return an error, except in MS mode where this is a warning.
341
if (!MissingExceptionSpecification)
342
return ReturnValueOnError;
343
344
const auto *NewProto = New->getType()->castAs<FunctionProtoType>();
345
346
// The new function declaration is only missing an empty exception
347
// specification "throw()". If the throw() specification came from a
348
// function in a system header that has C linkage, just add an empty
349
// exception specification to the "new" declaration. Note that C library
350
// implementations are permitted to add these nothrow exception
351
// specifications.
352
//
353
// Likewise if the old function is a builtin.
354
if (MissingEmptyExceptionSpecification &&
355
(Old->getLocation().isInvalid() ||
356
Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
357
Old->getBuiltinID()) &&
358
Old->isExternC()) {
359
New->setType(Context.getFunctionType(
360
NewProto->getReturnType(), NewProto->getParamTypes(),
361
NewProto->getExtProtoInfo().withExceptionSpec(EST_DynamicNone)));
362
return false;
363
}
364
365
const auto *OldProto = Old->getType()->castAs<FunctionProtoType>();
366
367
FunctionProtoType::ExceptionSpecInfo ESI = OldProto->getExceptionSpecType();
368
if (ESI.Type == EST_Dynamic) {
369
// FIXME: What if the exceptions are described in terms of the old
370
// prototype's parameters?
371
ESI.Exceptions = OldProto->exceptions();
372
}
373
374
if (ESI.Type == EST_NoexceptFalse)
375
ESI.Type = EST_None;
376
if (ESI.Type == EST_NoexceptTrue)
377
ESI.Type = EST_BasicNoexcept;
378
379
// For dependent noexcept, we can't just take the expression from the old
380
// prototype. It likely contains references to the old prototype's parameters.
381
if (ESI.Type == EST_DependentNoexcept) {
382
New->setInvalidDecl();
383
} else {
384
// Update the type of the function with the appropriate exception
385
// specification.
386
New->setType(Context.getFunctionType(
387
NewProto->getReturnType(), NewProto->getParamTypes(),
388
NewProto->getExtProtoInfo().withExceptionSpec(ESI)));
389
}
390
391
if (getLangOpts().MSVCCompat && isDynamicExceptionSpec(ESI.Type)) {
392
DiagID = diag::ext_missing_exception_specification;
393
ReturnValueOnError = false;
394
} else if (New->isReplaceableGlobalAllocationFunction() &&
395
ESI.Type != EST_DependentNoexcept) {
396
// Allow missing exception specifications in redeclarations as an extension,
397
// when declaring a replaceable global allocation function.
398
DiagID = diag::ext_missing_exception_specification;
399
ReturnValueOnError = false;
400
} else if (ESI.Type == EST_NoThrow) {
401
// Don't emit any warning for missing 'nothrow' in MSVC.
402
if (getLangOpts().MSVCCompat) {
403
return false;
404
}
405
// Allow missing attribute 'nothrow' in redeclarations, since this is a very
406
// common omission.
407
DiagID = diag::ext_missing_exception_specification;
408
ReturnValueOnError = false;
409
} else {
410
DiagID = diag::err_missing_exception_specification;
411
ReturnValueOnError = true;
412
}
413
414
// Warn about the lack of exception specification.
415
SmallString<128> ExceptionSpecString;
416
llvm::raw_svector_ostream OS(ExceptionSpecString);
417
switch (OldProto->getExceptionSpecType()) {
418
case EST_DynamicNone:
419
OS << "throw()";
420
break;
421
422
case EST_Dynamic: {
423
OS << "throw(";
424
bool OnFirstException = true;
425
for (const auto &E : OldProto->exceptions()) {
426
if (OnFirstException)
427
OnFirstException = false;
428
else
429
OS << ", ";
430
431
OS << E.getAsString(getPrintingPolicy());
432
}
433
OS << ")";
434
break;
435
}
436
437
case EST_BasicNoexcept:
438
OS << "noexcept";
439
break;
440
441
case EST_DependentNoexcept:
442
case EST_NoexceptFalse:
443
case EST_NoexceptTrue:
444
OS << "noexcept(";
445
assert(OldProto->getNoexceptExpr() != nullptr && "Expected non-null Expr");
446
OldProto->getNoexceptExpr()->printPretty(OS, nullptr, getPrintingPolicy());
447
OS << ")";
448
break;
449
case EST_NoThrow:
450
OS <<"__attribute__((nothrow))";
451
break;
452
case EST_None:
453
case EST_MSAny:
454
case EST_Unevaluated:
455
case EST_Uninstantiated:
456
case EST_Unparsed:
457
llvm_unreachable("This spec type is compatible with none.");
458
}
459
460
SourceLocation FixItLoc;
461
if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) {
462
TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens();
463
// FIXME: Preserve enough information so that we can produce a correct fixit
464
// location when there is a trailing return type.
465
if (auto FTLoc = TL.getAs<FunctionProtoTypeLoc>())
466
if (!FTLoc.getTypePtr()->hasTrailingReturn())
467
FixItLoc = getLocForEndOfToken(FTLoc.getLocalRangeEnd());
468
}
469
470
if (FixItLoc.isInvalid())
471
Diag(New->getLocation(), DiagID)
472
<< New << OS.str();
473
else {
474
Diag(New->getLocation(), DiagID)
475
<< New << OS.str()
476
<< FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str());
477
}
478
479
if (Old->getLocation().isValid())
480
Diag(Old->getLocation(), diag::note_previous_declaration);
481
482
return ReturnValueOnError;
483
}
484
485
bool Sema::CheckEquivalentExceptionSpec(
486
const FunctionProtoType *Old, SourceLocation OldLoc,
487
const FunctionProtoType *New, SourceLocation NewLoc) {
488
if (!getLangOpts().CXXExceptions)
489
return false;
490
491
unsigned DiagID = diag::err_mismatched_exception_spec;
492
if (getLangOpts().MSVCCompat)
493
DiagID = diag::ext_mismatched_exception_spec;
494
bool Result = CheckEquivalentExceptionSpecImpl(
495
*this, PDiag(DiagID), PDiag(diag::note_previous_declaration),
496
Old, OldLoc, New, NewLoc);
497
498
// In Microsoft mode, mismatching exception specifications just cause a warning.
499
if (getLangOpts().MSVCCompat)
500
return false;
501
return Result;
502
}
503
504
/// CheckEquivalentExceptionSpec - Check if the two types have compatible
505
/// exception specifications. See C++ [except.spec]p3.
506
///
507
/// \return \c false if the exception specifications match, \c true if there is
508
/// a problem. If \c true is returned, either a diagnostic has already been
509
/// produced or \c *MissingExceptionSpecification is set to \c true.
510
static bool CheckEquivalentExceptionSpecImpl(
511
Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID,
512
const FunctionProtoType *Old, SourceLocation OldLoc,
513
const FunctionProtoType *New, SourceLocation NewLoc,
514
bool *MissingExceptionSpecification,
515
bool *MissingEmptyExceptionSpecification,
516
bool AllowNoexceptAllMatchWithNoSpec, bool IsOperatorNew) {
517
if (MissingExceptionSpecification)
518
*MissingExceptionSpecification = false;
519
520
if (MissingEmptyExceptionSpecification)
521
*MissingEmptyExceptionSpecification = false;
522
523
Old = S.ResolveExceptionSpec(NewLoc, Old);
524
if (!Old)
525
return false;
526
New = S.ResolveExceptionSpec(NewLoc, New);
527
if (!New)
528
return false;
529
530
// C++0x [except.spec]p3: Two exception-specifications are compatible if:
531
// - both are non-throwing, regardless of their form,
532
// - both have the form noexcept(constant-expression) and the constant-
533
// expressions are equivalent,
534
// - both are dynamic-exception-specifications that have the same set of
535
// adjusted types.
536
//
537
// C++0x [except.spec]p12: An exception-specification is non-throwing if it is
538
// of the form throw(), noexcept, or noexcept(constant-expression) where the
539
// constant-expression yields true.
540
//
541
// C++0x [except.spec]p4: If any declaration of a function has an exception-
542
// specifier that is not a noexcept-specification allowing all exceptions,
543
// all declarations [...] of that function shall have a compatible
544
// exception-specification.
545
//
546
// That last point basically means that noexcept(false) matches no spec.
547
// It's considered when AllowNoexceptAllMatchWithNoSpec is true.
548
549
ExceptionSpecificationType OldEST = Old->getExceptionSpecType();
550
ExceptionSpecificationType NewEST = New->getExceptionSpecType();
551
552
assert(!isUnresolvedExceptionSpec(OldEST) &&
553
!isUnresolvedExceptionSpec(NewEST) &&
554
"Shouldn't see unknown exception specifications here");
555
556
CanThrowResult OldCanThrow = Old->canThrow();
557
CanThrowResult NewCanThrow = New->canThrow();
558
559
// Any non-throwing specifications are compatible.
560
if (OldCanThrow == CT_Cannot && NewCanThrow == CT_Cannot)
561
return false;
562
563
// Any throws-anything specifications are usually compatible.
564
if (OldCanThrow == CT_Can && OldEST != EST_Dynamic &&
565
NewCanThrow == CT_Can && NewEST != EST_Dynamic) {
566
// The exception is that the absence of an exception specification only
567
// matches noexcept(false) for functions, as described above.
568
if (!AllowNoexceptAllMatchWithNoSpec &&
569
((OldEST == EST_None && NewEST == EST_NoexceptFalse) ||
570
(OldEST == EST_NoexceptFalse && NewEST == EST_None))) {
571
// This is the disallowed case.
572
} else {
573
return false;
574
}
575
}
576
577
// C++14 [except.spec]p3:
578
// Two exception-specifications are compatible if [...] both have the form
579
// noexcept(constant-expression) and the constant-expressions are equivalent
580
if (OldEST == EST_DependentNoexcept && NewEST == EST_DependentNoexcept) {
581
llvm::FoldingSetNodeID OldFSN, NewFSN;
582
Old->getNoexceptExpr()->Profile(OldFSN, S.Context, true);
583
New->getNoexceptExpr()->Profile(NewFSN, S.Context, true);
584
if (OldFSN == NewFSN)
585
return false;
586
}
587
588
// Dynamic exception specifications with the same set of adjusted types
589
// are compatible.
590
if (OldEST == EST_Dynamic && NewEST == EST_Dynamic) {
591
bool Success = true;
592
// Both have a dynamic exception spec. Collect the first set, then compare
593
// to the second.
594
llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes;
595
for (const auto &I : Old->exceptions())
596
OldTypes.insert(S.Context.getCanonicalType(I).getUnqualifiedType());
597
598
for (const auto &I : New->exceptions()) {
599
CanQualType TypePtr = S.Context.getCanonicalType(I).getUnqualifiedType();
600
if (OldTypes.count(TypePtr))
601
NewTypes.insert(TypePtr);
602
else {
603
Success = false;
604
break;
605
}
606
}
607
608
if (Success && OldTypes.size() == NewTypes.size())
609
return false;
610
}
611
612
// As a special compatibility feature, under C++0x we accept no spec and
613
// throw(std::bad_alloc) as equivalent for operator new and operator new[].
614
// This is because the implicit declaration changed, but old code would break.
615
if (S.getLangOpts().CPlusPlus11 && IsOperatorNew) {
616
const FunctionProtoType *WithExceptions = nullptr;
617
if (OldEST == EST_None && NewEST == EST_Dynamic)
618
WithExceptions = New;
619
else if (OldEST == EST_Dynamic && NewEST == EST_None)
620
WithExceptions = Old;
621
if (WithExceptions && WithExceptions->getNumExceptions() == 1) {
622
// One has no spec, the other throw(something). If that something is
623
// std::bad_alloc, all conditions are met.
624
QualType Exception = *WithExceptions->exception_begin();
625
if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) {
626
IdentifierInfo* Name = ExRecord->getIdentifier();
627
if (Name && Name->getName() == "bad_alloc") {
628
// It's called bad_alloc, but is it in std?
629
if (ExRecord->isInStdNamespace()) {
630
return false;
631
}
632
}
633
}
634
}
635
}
636
637
// If the caller wants to handle the case that the new function is
638
// incompatible due to a missing exception specification, let it.
639
if (MissingExceptionSpecification && OldEST != EST_None &&
640
NewEST == EST_None) {
641
// The old type has an exception specification of some sort, but
642
// the new type does not.
643
*MissingExceptionSpecification = true;
644
645
if (MissingEmptyExceptionSpecification && OldCanThrow == CT_Cannot) {
646
// The old type has a throw() or noexcept(true) exception specification
647
// and the new type has no exception specification, and the caller asked
648
// to handle this itself.
649
*MissingEmptyExceptionSpecification = true;
650
}
651
652
return true;
653
}
654
655
S.Diag(NewLoc, DiagID);
656
if (NoteID.getDiagID() != 0 && OldLoc.isValid())
657
S.Diag(OldLoc, NoteID);
658
return true;
659
}
660
661
bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID,
662
const PartialDiagnostic &NoteID,
663
const FunctionProtoType *Old,
664
SourceLocation OldLoc,
665
const FunctionProtoType *New,
666
SourceLocation NewLoc) {
667
if (!getLangOpts().CXXExceptions)
668
return false;
669
return CheckEquivalentExceptionSpecImpl(*this, DiagID, NoteID, Old, OldLoc,
670
New, NewLoc);
671
}
672
673
bool Sema::handlerCanCatch(QualType HandlerType, QualType ExceptionType) {
674
// [except.handle]p3:
675
// A handler is a match for an exception object of type E if:
676
677
// HandlerType must be ExceptionType or derived from it, or pointer or
678
// reference to such types.
679
const ReferenceType *RefTy = HandlerType->getAs<ReferenceType>();
680
if (RefTy)
681
HandlerType = RefTy->getPointeeType();
682
683
// -- the handler is of type cv T or cv T& and E and T are the same type
684
if (Context.hasSameUnqualifiedType(ExceptionType, HandlerType))
685
return true;
686
687
// FIXME: ObjC pointer types?
688
if (HandlerType->isPointerType() || HandlerType->isMemberPointerType()) {
689
if (RefTy && (!HandlerType.isConstQualified() ||
690
HandlerType.isVolatileQualified()))
691
return false;
692
693
// -- the handler is of type cv T or const T& where T is a pointer or
694
// pointer to member type and E is std::nullptr_t
695
if (ExceptionType->isNullPtrType())
696
return true;
697
698
// -- the handler is of type cv T or const T& where T is a pointer or
699
// pointer to member type and E is a pointer or pointer to member type
700
// that can be converted to T by one or more of
701
// -- a qualification conversion
702
// -- a function pointer conversion
703
bool LifetimeConv;
704
QualType Result;
705
// FIXME: Should we treat the exception as catchable if a lifetime
706
// conversion is required?
707
if (IsQualificationConversion(ExceptionType, HandlerType, false,
708
LifetimeConv) ||
709
IsFunctionConversion(ExceptionType, HandlerType, Result))
710
return true;
711
712
// -- a standard pointer conversion [...]
713
if (!ExceptionType->isPointerType() || !HandlerType->isPointerType())
714
return false;
715
716
// Handle the "qualification conversion" portion.
717
Qualifiers EQuals, HQuals;
718
ExceptionType = Context.getUnqualifiedArrayType(
719
ExceptionType->getPointeeType(), EQuals);
720
HandlerType = Context.getUnqualifiedArrayType(
721
HandlerType->getPointeeType(), HQuals);
722
if (!HQuals.compatiblyIncludes(EQuals))
723
return false;
724
725
if (HandlerType->isVoidType() && ExceptionType->isObjectType())
726
return true;
727
728
// The only remaining case is a derived-to-base conversion.
729
}
730
731
// -- the handler is of type cg T or cv T& and T is an unambiguous public
732
// base class of E
733
if (!ExceptionType->isRecordType() || !HandlerType->isRecordType())
734
return false;
735
CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
736
/*DetectVirtual=*/false);
737
if (!IsDerivedFrom(SourceLocation(), ExceptionType, HandlerType, Paths) ||
738
Paths.isAmbiguous(Context.getCanonicalType(HandlerType)))
739
return false;
740
741
// Do this check from a context without privileges.
742
switch (CheckBaseClassAccess(SourceLocation(), HandlerType, ExceptionType,
743
Paths.front(),
744
/*Diagnostic*/ 0,
745
/*ForceCheck*/ true,
746
/*ForceUnprivileged*/ true)) {
747
case AR_accessible: return true;
748
case AR_inaccessible: return false;
749
case AR_dependent:
750
llvm_unreachable("access check dependent for unprivileged context");
751
case AR_delayed:
752
llvm_unreachable("access check delayed in non-declaration");
753
}
754
llvm_unreachable("unexpected access check result");
755
}
756
757
bool Sema::CheckExceptionSpecSubset(
758
const PartialDiagnostic &DiagID, const PartialDiagnostic &NestedDiagID,
759
const PartialDiagnostic &NoteID, const PartialDiagnostic &NoThrowDiagID,
760
const FunctionProtoType *Superset, bool SkipSupersetFirstParameter,
761
SourceLocation SuperLoc, const FunctionProtoType *Subset,
762
bool SkipSubsetFirstParameter, SourceLocation SubLoc) {
763
764
// Just auto-succeed under -fno-exceptions.
765
if (!getLangOpts().CXXExceptions)
766
return false;
767
768
// FIXME: As usual, we could be more specific in our error messages, but
769
// that better waits until we've got types with source locations.
770
771
if (!SubLoc.isValid())
772
SubLoc = SuperLoc;
773
774
// Resolve the exception specifications, if needed.
775
Superset = ResolveExceptionSpec(SuperLoc, Superset);
776
if (!Superset)
777
return false;
778
Subset = ResolveExceptionSpec(SubLoc, Subset);
779
if (!Subset)
780
return false;
781
782
ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType();
783
ExceptionSpecificationType SubEST = Subset->getExceptionSpecType();
784
assert(!isUnresolvedExceptionSpec(SuperEST) &&
785
!isUnresolvedExceptionSpec(SubEST) &&
786
"Shouldn't see unknown exception specifications here");
787
788
// If there are dependent noexcept specs, assume everything is fine. Unlike
789
// with the equivalency check, this is safe in this case, because we don't
790
// want to merge declarations. Checks after instantiation will catch any
791
// omissions we make here.
792
if (SuperEST == EST_DependentNoexcept || SubEST == EST_DependentNoexcept)
793
return false;
794
795
CanThrowResult SuperCanThrow = Superset->canThrow();
796
CanThrowResult SubCanThrow = Subset->canThrow();
797
798
// If the superset contains everything or the subset contains nothing, we're
799
// done.
800
if ((SuperCanThrow == CT_Can && SuperEST != EST_Dynamic) ||
801
SubCanThrow == CT_Cannot)
802
return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset,
803
SkipSupersetFirstParameter, SuperLoc, Subset,
804
SkipSubsetFirstParameter, SubLoc);
805
806
// Allow __declspec(nothrow) to be missing on redeclaration as an extension in
807
// some cases.
808
if (NoThrowDiagID.getDiagID() != 0 && SubCanThrow == CT_Can &&
809
SuperCanThrow == CT_Cannot && SuperEST == EST_NoThrow) {
810
Diag(SubLoc, NoThrowDiagID);
811
if (NoteID.getDiagID() != 0)
812
Diag(SuperLoc, NoteID);
813
return true;
814
}
815
816
// If the subset contains everything or the superset contains nothing, we've
817
// failed.
818
if ((SubCanThrow == CT_Can && SubEST != EST_Dynamic) ||
819
SuperCanThrow == CT_Cannot) {
820
Diag(SubLoc, DiagID);
821
if (NoteID.getDiagID() != 0)
822
Diag(SuperLoc, NoteID);
823
return true;
824
}
825
826
assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic &&
827
"Exception spec subset: non-dynamic case slipped through.");
828
829
// Neither contains everything or nothing. Do a proper comparison.
830
for (QualType SubI : Subset->exceptions()) {
831
if (const ReferenceType *RefTy = SubI->getAs<ReferenceType>())
832
SubI = RefTy->getPointeeType();
833
834
// Make sure it's in the superset.
835
bool Contained = false;
836
for (QualType SuperI : Superset->exceptions()) {
837
// [except.spec]p5:
838
// the target entity shall allow at least the exceptions allowed by the
839
// source
840
//
841
// We interpret this as meaning that a handler for some target type would
842
// catch an exception of each source type.
843
if (handlerCanCatch(SuperI, SubI)) {
844
Contained = true;
845
break;
846
}
847
}
848
if (!Contained) {
849
Diag(SubLoc, DiagID);
850
if (NoteID.getDiagID() != 0)
851
Diag(SuperLoc, NoteID);
852
return true;
853
}
854
}
855
// We've run half the gauntlet.
856
return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset,
857
SkipSupersetFirstParameter, SuperLoc, Subset,
858
SkipSupersetFirstParameter, SubLoc);
859
}
860
861
static bool
862
CheckSpecForTypesEquivalent(Sema &S, const PartialDiagnostic &DiagID,
863
const PartialDiagnostic &NoteID, QualType Target,
864
SourceLocation TargetLoc, QualType Source,
865
SourceLocation SourceLoc) {
866
const FunctionProtoType *TFunc = GetUnderlyingFunction(Target);
867
if (!TFunc)
868
return false;
869
const FunctionProtoType *SFunc = GetUnderlyingFunction(Source);
870
if (!SFunc)
871
return false;
872
873
return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc,
874
SFunc, SourceLoc);
875
}
876
877
bool Sema::CheckParamExceptionSpec(
878
const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID,
879
const FunctionProtoType *Target, bool SkipTargetFirstParameter,
880
SourceLocation TargetLoc, const FunctionProtoType *Source,
881
bool SkipSourceFirstParameter, SourceLocation SourceLoc) {
882
auto RetDiag = DiagID;
883
RetDiag << 0;
884
if (CheckSpecForTypesEquivalent(
885
*this, RetDiag, PDiag(),
886
Target->getReturnType(), TargetLoc, Source->getReturnType(),
887
SourceLoc))
888
return true;
889
890
// We shouldn't even be testing this unless the arguments are otherwise
891
// compatible.
892
assert((Target->getNumParams() - (unsigned)SkipTargetFirstParameter) ==
893
(Source->getNumParams() - (unsigned)SkipSourceFirstParameter) &&
894
"Functions have different argument counts.");
895
for (unsigned i = 0, E = Target->getNumParams(); i != E; ++i) {
896
auto ParamDiag = DiagID;
897
ParamDiag << 1;
898
if (CheckSpecForTypesEquivalent(
899
*this, ParamDiag, PDiag(),
900
Target->getParamType(i + (SkipTargetFirstParameter ? 1 : 0)),
901
TargetLoc, Source->getParamType(SkipSourceFirstParameter ? 1 : 0),
902
SourceLoc))
903
return true;
904
}
905
return false;
906
}
907
908
bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType) {
909
// First we check for applicability.
910
// Target type must be a function, function pointer or function reference.
911
const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType);
912
if (!ToFunc || ToFunc->hasDependentExceptionSpec())
913
return false;
914
915
// SourceType must be a function or function pointer.
916
const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType());
917
if (!FromFunc || FromFunc->hasDependentExceptionSpec())
918
return false;
919
920
unsigned DiagID = diag::err_incompatible_exception_specs;
921
unsigned NestedDiagID = diag::err_deep_exception_specs_differ;
922
// This is not an error in C++17 onwards, unless the noexceptness doesn't
923
// match, but in that case we have a full-on type mismatch, not just a
924
// type sugar mismatch.
925
if (getLangOpts().CPlusPlus17) {
926
DiagID = diag::warn_incompatible_exception_specs;
927
NestedDiagID = diag::warn_deep_exception_specs_differ;
928
}
929
930
// Now we've got the correct types on both sides, check their compatibility.
931
// This means that the source of the conversion can only throw a subset of
932
// the exceptions of the target, and any exception specs on arguments or
933
// return types must be equivalent.
934
//
935
// FIXME: If there is a nested dependent exception specification, we should
936
// not be checking it here. This is fine:
937
// template<typename T> void f() {
938
// void (*p)(void (*) throw(T));
939
// void (*q)(void (*) throw(int)) = p;
940
// }
941
// ... because it might be instantiated with T=int.
942
return CheckExceptionSpecSubset(PDiag(DiagID), PDiag(NestedDiagID), PDiag(),
943
PDiag(), ToFunc, 0,
944
From->getSourceRange().getBegin(), FromFunc,
945
0, SourceLocation()) &&
946
!getLangOpts().CPlusPlus17;
947
}
948
949
bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
950
const CXXMethodDecl *Old) {
951
// If the new exception specification hasn't been parsed yet, skip the check.
952
// We'll get called again once it's been parsed.
953
if (New->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() ==
954
EST_Unparsed)
955
return false;
956
957
// Don't check uninstantiated template destructors at all. We can only
958
// synthesize correct specs after the template is instantiated.
959
if (isa<CXXDestructorDecl>(New) && New->getParent()->isDependentType())
960
return false;
961
962
// If the old exception specification hasn't been parsed yet, or the new
963
// exception specification can't be computed yet, remember that we need to
964
// perform this check when we get to the end of the outermost
965
// lexically-surrounding class.
966
if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) {
967
DelayedOverridingExceptionSpecChecks.push_back({New, Old});
968
return false;
969
}
970
971
unsigned DiagID = diag::err_override_exception_spec;
972
if (getLangOpts().MSVCCompat)
973
DiagID = diag::ext_override_exception_spec;
974
return CheckExceptionSpecSubset(
975
PDiag(DiagID), PDiag(diag::err_deep_exception_specs_differ),
976
PDiag(diag::note_overridden_virtual_function),
977
PDiag(diag::ext_override_exception_spec),
978
Old->getType()->castAs<FunctionProtoType>(),
979
Old->hasCXXExplicitFunctionObjectParameter(), Old->getLocation(),
980
New->getType()->castAs<FunctionProtoType>(),
981
New->hasCXXExplicitFunctionObjectParameter(), New->getLocation());
982
}
983
984
static CanThrowResult canSubStmtsThrow(Sema &Self, const Stmt *S) {
985
CanThrowResult R = CT_Cannot;
986
for (const Stmt *SubStmt : S->children()) {
987
if (!SubStmt)
988
continue;
989
R = mergeCanThrow(R, Self.canThrow(SubStmt));
990
if (R == CT_Can)
991
break;
992
}
993
return R;
994
}
995
996
CanThrowResult Sema::canCalleeThrow(Sema &S, const Expr *E, const Decl *D,
997
SourceLocation Loc) {
998
// As an extension, we assume that __attribute__((nothrow)) functions don't
999
// throw.
1000
if (isa_and_nonnull<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
1001
return CT_Cannot;
1002
1003
QualType T;
1004
1005
// In C++1z, just look at the function type of the callee.
1006
if (S.getLangOpts().CPlusPlus17 && isa_and_nonnull<CallExpr>(E)) {
1007
E = cast<CallExpr>(E)->getCallee();
1008
T = E->getType();
1009
if (T->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1010
// Sadly we don't preserve the actual type as part of the "bound member"
1011
// placeholder, so we need to reconstruct it.
1012
E = E->IgnoreParenImpCasts();
1013
1014
// Could be a call to a pointer-to-member or a plain member access.
1015
if (auto *Op = dyn_cast<BinaryOperator>(E)) {
1016
assert(Op->getOpcode() == BO_PtrMemD || Op->getOpcode() == BO_PtrMemI);
1017
T = Op->getRHS()->getType()
1018
->castAs<MemberPointerType>()->getPointeeType();
1019
} else {
1020
T = cast<MemberExpr>(E)->getMemberDecl()->getType();
1021
}
1022
}
1023
} else if (const ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D))
1024
T = VD->getType();
1025
else
1026
// If we have no clue what we're calling, assume the worst.
1027
return CT_Can;
1028
1029
const FunctionProtoType *FT;
1030
if ((FT = T->getAs<FunctionProtoType>())) {
1031
} else if (const PointerType *PT = T->getAs<PointerType>())
1032
FT = PT->getPointeeType()->getAs<FunctionProtoType>();
1033
else if (const ReferenceType *RT = T->getAs<ReferenceType>())
1034
FT = RT->getPointeeType()->getAs<FunctionProtoType>();
1035
else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
1036
FT = MT->getPointeeType()->getAs<FunctionProtoType>();
1037
else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
1038
FT = BT->getPointeeType()->getAs<FunctionProtoType>();
1039
1040
if (!FT)
1041
return CT_Can;
1042
1043
if (Loc.isValid() || (Loc.isInvalid() && E))
1044
FT = S.ResolveExceptionSpec(Loc.isInvalid() ? E->getBeginLoc() : Loc, FT);
1045
if (!FT)
1046
return CT_Can;
1047
1048
return FT->canThrow();
1049
}
1050
1051
static CanThrowResult canVarDeclThrow(Sema &Self, const VarDecl *VD) {
1052
CanThrowResult CT = CT_Cannot;
1053
1054
// Initialization might throw.
1055
if (!VD->isUsableInConstantExpressions(Self.Context))
1056
if (const Expr *Init = VD->getInit())
1057
CT = mergeCanThrow(CT, Self.canThrow(Init));
1058
1059
// Destructor might throw.
1060
if (VD->needsDestruction(Self.Context) == QualType::DK_cxx_destructor) {
1061
if (auto *RD =
1062
VD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) {
1063
if (auto *Dtor = RD->getDestructor()) {
1064
CT = mergeCanThrow(
1065
CT, Sema::canCalleeThrow(Self, nullptr, Dtor, VD->getLocation()));
1066
}
1067
}
1068
}
1069
1070
// If this is a decomposition declaration, bindings might throw.
1071
if (auto *DD = dyn_cast<DecompositionDecl>(VD))
1072
for (auto *B : DD->bindings())
1073
if (auto *HD = B->getHoldingVar())
1074
CT = mergeCanThrow(CT, canVarDeclThrow(Self, HD));
1075
1076
return CT;
1077
}
1078
1079
static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) {
1080
if (DC->isTypeDependent())
1081
return CT_Dependent;
1082
1083
if (!DC->getTypeAsWritten()->isReferenceType())
1084
return CT_Cannot;
1085
1086
if (DC->getSubExpr()->isTypeDependent())
1087
return CT_Dependent;
1088
1089
return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot;
1090
}
1091
1092
static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) {
1093
// A typeid of a type is a constant and does not throw.
1094
if (DC->isTypeOperand())
1095
return CT_Cannot;
1096
1097
if (DC->isValueDependent())
1098
return CT_Dependent;
1099
1100
// If this operand is not evaluated it cannot possibly throw.
1101
if (!DC->isPotentiallyEvaluated())
1102
return CT_Cannot;
1103
1104
// Can throw std::bad_typeid if a nullptr is dereferenced.
1105
if (DC->hasNullCheck())
1106
return CT_Can;
1107
1108
return S.canThrow(DC->getExprOperand());
1109
}
1110
1111
CanThrowResult Sema::canThrow(const Stmt *S) {
1112
// C++ [expr.unary.noexcept]p3:
1113
// [Can throw] if in a potentially-evaluated context the expression would
1114
// contain:
1115
switch (S->getStmtClass()) {
1116
case Expr::ConstantExprClass:
1117
return canThrow(cast<ConstantExpr>(S)->getSubExpr());
1118
1119
case Expr::CXXThrowExprClass:
1120
// - a potentially evaluated throw-expression
1121
return CT_Can;
1122
1123
case Expr::CXXDynamicCastExprClass: {
1124
// - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
1125
// where T is a reference type, that requires a run-time check
1126
auto *CE = cast<CXXDynamicCastExpr>(S);
1127
// FIXME: Properly determine whether a variably-modified type can throw.
1128
if (CE->getType()->isVariablyModifiedType())
1129
return CT_Can;
1130
CanThrowResult CT = canDynamicCastThrow(CE);
1131
if (CT == CT_Can)
1132
return CT;
1133
return mergeCanThrow(CT, canSubStmtsThrow(*this, CE));
1134
}
1135
1136
case Expr::CXXTypeidExprClass:
1137
// - a potentially evaluated typeid expression applied to a (possibly
1138
// parenthesized) built-in unary * operator applied to a pointer to a
1139
// polymorphic class type
1140
return canTypeidThrow(*this, cast<CXXTypeidExpr>(S));
1141
1142
// - a potentially evaluated call to a function, member function, function
1143
// pointer, or member function pointer that does not have a non-throwing
1144
// exception-specification
1145
case Expr::CallExprClass:
1146
case Expr::CXXMemberCallExprClass:
1147
case Expr::CXXOperatorCallExprClass:
1148
case Expr::UserDefinedLiteralClass: {
1149
const CallExpr *CE = cast<CallExpr>(S);
1150
CanThrowResult CT;
1151
if (CE->isTypeDependent())
1152
CT = CT_Dependent;
1153
else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens()))
1154
CT = CT_Cannot;
1155
else
1156
CT = canCalleeThrow(*this, CE, CE->getCalleeDecl());
1157
if (CT == CT_Can)
1158
return CT;
1159
return mergeCanThrow(CT, canSubStmtsThrow(*this, CE));
1160
}
1161
1162
case Expr::CXXConstructExprClass:
1163
case Expr::CXXTemporaryObjectExprClass: {
1164
auto *CE = cast<CXXConstructExpr>(S);
1165
// FIXME: Properly determine whether a variably-modified type can throw.
1166
if (CE->getType()->isVariablyModifiedType())
1167
return CT_Can;
1168
CanThrowResult CT = canCalleeThrow(*this, CE, CE->getConstructor());
1169
if (CT == CT_Can)
1170
return CT;
1171
return mergeCanThrow(CT, canSubStmtsThrow(*this, CE));
1172
}
1173
1174
case Expr::CXXInheritedCtorInitExprClass: {
1175
auto *ICIE = cast<CXXInheritedCtorInitExpr>(S);
1176
return canCalleeThrow(*this, ICIE, ICIE->getConstructor());
1177
}
1178
1179
case Expr::LambdaExprClass: {
1180
const LambdaExpr *Lambda = cast<LambdaExpr>(S);
1181
CanThrowResult CT = CT_Cannot;
1182
for (LambdaExpr::const_capture_init_iterator
1183
Cap = Lambda->capture_init_begin(),
1184
CapEnd = Lambda->capture_init_end();
1185
Cap != CapEnd; ++Cap)
1186
CT = mergeCanThrow(CT, canThrow(*Cap));
1187
return CT;
1188
}
1189
1190
case Expr::CXXNewExprClass: {
1191
auto *NE = cast<CXXNewExpr>(S);
1192
CanThrowResult CT;
1193
if (NE->isTypeDependent())
1194
CT = CT_Dependent;
1195
else
1196
CT = canCalleeThrow(*this, NE, NE->getOperatorNew());
1197
if (CT == CT_Can)
1198
return CT;
1199
return mergeCanThrow(CT, canSubStmtsThrow(*this, NE));
1200
}
1201
1202
case Expr::CXXDeleteExprClass: {
1203
auto *DE = cast<CXXDeleteExpr>(S);
1204
CanThrowResult CT;
1205
QualType DTy = DE->getDestroyedType();
1206
if (DTy.isNull() || DTy->isDependentType()) {
1207
CT = CT_Dependent;
1208
} else {
1209
CT = canCalleeThrow(*this, DE, DE->getOperatorDelete());
1210
if (const RecordType *RT = DTy->getAs<RecordType>()) {
1211
const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1212
const CXXDestructorDecl *DD = RD->getDestructor();
1213
if (DD)
1214
CT = mergeCanThrow(CT, canCalleeThrow(*this, DE, DD));
1215
}
1216
if (CT == CT_Can)
1217
return CT;
1218
}
1219
return mergeCanThrow(CT, canSubStmtsThrow(*this, DE));
1220
}
1221
1222
case Expr::CXXBindTemporaryExprClass: {
1223
auto *BTE = cast<CXXBindTemporaryExpr>(S);
1224
// The bound temporary has to be destroyed again, which might throw.
1225
CanThrowResult CT =
1226
canCalleeThrow(*this, BTE, BTE->getTemporary()->getDestructor());
1227
if (CT == CT_Can)
1228
return CT;
1229
return mergeCanThrow(CT, canSubStmtsThrow(*this, BTE));
1230
}
1231
1232
case Expr::PseudoObjectExprClass: {
1233
auto *POE = cast<PseudoObjectExpr>(S);
1234
CanThrowResult CT = CT_Cannot;
1235
for (const Expr *E : POE->semantics()) {
1236
CT = mergeCanThrow(CT, canThrow(E));
1237
if (CT == CT_Can)
1238
break;
1239
}
1240
return CT;
1241
}
1242
1243
// ObjC message sends are like function calls, but never have exception
1244
// specs.
1245
case Expr::ObjCMessageExprClass:
1246
case Expr::ObjCPropertyRefExprClass:
1247
case Expr::ObjCSubscriptRefExprClass:
1248
return CT_Can;
1249
1250
// All the ObjC literals that are implemented as calls are
1251
// potentially throwing unless we decide to close off that
1252
// possibility.
1253
case Expr::ObjCArrayLiteralClass:
1254
case Expr::ObjCDictionaryLiteralClass:
1255
case Expr::ObjCBoxedExprClass:
1256
return CT_Can;
1257
1258
// Many other things have subexpressions, so we have to test those.
1259
// Some are simple:
1260
case Expr::CoawaitExprClass:
1261
case Expr::ConditionalOperatorClass:
1262
case Expr::CoyieldExprClass:
1263
case Expr::CXXRewrittenBinaryOperatorClass:
1264
case Expr::CXXStdInitializerListExprClass:
1265
case Expr::DesignatedInitExprClass:
1266
case Expr::DesignatedInitUpdateExprClass:
1267
case Expr::ExprWithCleanupsClass:
1268
case Expr::ExtVectorElementExprClass:
1269
case Expr::InitListExprClass:
1270
case Expr::ArrayInitLoopExprClass:
1271
case Expr::MemberExprClass:
1272
case Expr::ObjCIsaExprClass:
1273
case Expr::ObjCIvarRefExprClass:
1274
case Expr::ParenExprClass:
1275
case Expr::ParenListExprClass:
1276
case Expr::ShuffleVectorExprClass:
1277
case Expr::StmtExprClass:
1278
case Expr::ConvertVectorExprClass:
1279
case Expr::VAArgExprClass:
1280
case Expr::CXXParenListInitExprClass:
1281
return canSubStmtsThrow(*this, S);
1282
1283
case Expr::CompoundLiteralExprClass:
1284
case Expr::CXXConstCastExprClass:
1285
case Expr::CXXAddrspaceCastExprClass:
1286
case Expr::CXXReinterpretCastExprClass:
1287
case Expr::BuiltinBitCastExprClass:
1288
// FIXME: Properly determine whether a variably-modified type can throw.
1289
if (cast<Expr>(S)->getType()->isVariablyModifiedType())
1290
return CT_Can;
1291
return canSubStmtsThrow(*this, S);
1292
1293
// Some might be dependent for other reasons.
1294
case Expr::ArraySubscriptExprClass:
1295
case Expr::MatrixSubscriptExprClass:
1296
case Expr::ArraySectionExprClass:
1297
case Expr::OMPArrayShapingExprClass:
1298
case Expr::OMPIteratorExprClass:
1299
case Expr::BinaryOperatorClass:
1300
case Expr::DependentCoawaitExprClass:
1301
case Expr::CompoundAssignOperatorClass:
1302
case Expr::CStyleCastExprClass:
1303
case Expr::CXXStaticCastExprClass:
1304
case Expr::CXXFunctionalCastExprClass:
1305
case Expr::ImplicitCastExprClass:
1306
case Expr::MaterializeTemporaryExprClass:
1307
case Expr::UnaryOperatorClass: {
1308
// FIXME: Properly determine whether a variably-modified type can throw.
1309
if (auto *CE = dyn_cast<CastExpr>(S))
1310
if (CE->getType()->isVariablyModifiedType())
1311
return CT_Can;
1312
CanThrowResult CT =
1313
cast<Expr>(S)->isTypeDependent() ? CT_Dependent : CT_Cannot;
1314
return mergeCanThrow(CT, canSubStmtsThrow(*this, S));
1315
}
1316
1317
case Expr::CXXDefaultArgExprClass:
1318
return canThrow(cast<CXXDefaultArgExpr>(S)->getExpr());
1319
1320
case Expr::CXXDefaultInitExprClass:
1321
return canThrow(cast<CXXDefaultInitExpr>(S)->getExpr());
1322
1323
case Expr::ChooseExprClass: {
1324
auto *CE = cast<ChooseExpr>(S);
1325
if (CE->isTypeDependent() || CE->isValueDependent())
1326
return CT_Dependent;
1327
return canThrow(CE->getChosenSubExpr());
1328
}
1329
1330
case Expr::GenericSelectionExprClass:
1331
if (cast<GenericSelectionExpr>(S)->isResultDependent())
1332
return CT_Dependent;
1333
return canThrow(cast<GenericSelectionExpr>(S)->getResultExpr());
1334
1335
// Some expressions are always dependent.
1336
case Expr::CXXDependentScopeMemberExprClass:
1337
case Expr::CXXUnresolvedConstructExprClass:
1338
case Expr::DependentScopeDeclRefExprClass:
1339
case Expr::CXXFoldExprClass:
1340
case Expr::RecoveryExprClass:
1341
return CT_Dependent;
1342
1343
case Expr::AsTypeExprClass:
1344
case Expr::BinaryConditionalOperatorClass:
1345
case Expr::BlockExprClass:
1346
case Expr::CUDAKernelCallExprClass:
1347
case Expr::DeclRefExprClass:
1348
case Expr::ObjCBridgedCastExprClass:
1349
case Expr::ObjCIndirectCopyRestoreExprClass:
1350
case Expr::ObjCProtocolExprClass:
1351
case Expr::ObjCSelectorExprClass:
1352
case Expr::ObjCAvailabilityCheckExprClass:
1353
case Expr::OffsetOfExprClass:
1354
case Expr::PackExpansionExprClass:
1355
case Expr::SubstNonTypeTemplateParmExprClass:
1356
case Expr::SubstNonTypeTemplateParmPackExprClass:
1357
case Expr::FunctionParmPackExprClass:
1358
case Expr::UnaryExprOrTypeTraitExprClass:
1359
case Expr::UnresolvedLookupExprClass:
1360
case Expr::UnresolvedMemberExprClass:
1361
case Expr::TypoExprClass:
1362
// FIXME: Many of the above can throw.
1363
return CT_Cannot;
1364
1365
case Expr::AddrLabelExprClass:
1366
case Expr::ArrayTypeTraitExprClass:
1367
case Expr::AtomicExprClass:
1368
case Expr::TypeTraitExprClass:
1369
case Expr::CXXBoolLiteralExprClass:
1370
case Expr::CXXNoexceptExprClass:
1371
case Expr::CXXNullPtrLiteralExprClass:
1372
case Expr::CXXPseudoDestructorExprClass:
1373
case Expr::CXXScalarValueInitExprClass:
1374
case Expr::CXXThisExprClass:
1375
case Expr::CXXUuidofExprClass:
1376
case Expr::CharacterLiteralClass:
1377
case Expr::ExpressionTraitExprClass:
1378
case Expr::FloatingLiteralClass:
1379
case Expr::GNUNullExprClass:
1380
case Expr::ImaginaryLiteralClass:
1381
case Expr::ImplicitValueInitExprClass:
1382
case Expr::IntegerLiteralClass:
1383
case Expr::FixedPointLiteralClass:
1384
case Expr::ArrayInitIndexExprClass:
1385
case Expr::NoInitExprClass:
1386
case Expr::ObjCEncodeExprClass:
1387
case Expr::ObjCStringLiteralClass:
1388
case Expr::ObjCBoolLiteralExprClass:
1389
case Expr::OpaqueValueExprClass:
1390
case Expr::PredefinedExprClass:
1391
case Expr::SizeOfPackExprClass:
1392
case Expr::PackIndexingExprClass:
1393
case Expr::StringLiteralClass:
1394
case Expr::SourceLocExprClass:
1395
case Expr::EmbedExprClass:
1396
case Expr::ConceptSpecializationExprClass:
1397
case Expr::RequiresExprClass:
1398
// These expressions can never throw.
1399
return CT_Cannot;
1400
1401
case Expr::MSPropertyRefExprClass:
1402
case Expr::MSPropertySubscriptExprClass:
1403
llvm_unreachable("Invalid class for expression");
1404
1405
// Most statements can throw if any substatement can throw.
1406
case Stmt::OpenACCComputeConstructClass:
1407
case Stmt::OpenACCLoopConstructClass:
1408
case Stmt::AttributedStmtClass:
1409
case Stmt::BreakStmtClass:
1410
case Stmt::CapturedStmtClass:
1411
case Stmt::CaseStmtClass:
1412
case Stmt::CompoundStmtClass:
1413
case Stmt::ContinueStmtClass:
1414
case Stmt::CoreturnStmtClass:
1415
case Stmt::CoroutineBodyStmtClass:
1416
case Stmt::CXXCatchStmtClass:
1417
case Stmt::CXXForRangeStmtClass:
1418
case Stmt::DefaultStmtClass:
1419
case Stmt::DoStmtClass:
1420
case Stmt::ForStmtClass:
1421
case Stmt::GCCAsmStmtClass:
1422
case Stmt::GotoStmtClass:
1423
case Stmt::IndirectGotoStmtClass:
1424
case Stmt::LabelStmtClass:
1425
case Stmt::MSAsmStmtClass:
1426
case Stmt::MSDependentExistsStmtClass:
1427
case Stmt::NullStmtClass:
1428
case Stmt::ObjCAtCatchStmtClass:
1429
case Stmt::ObjCAtFinallyStmtClass:
1430
case Stmt::ObjCAtSynchronizedStmtClass:
1431
case Stmt::ObjCAutoreleasePoolStmtClass:
1432
case Stmt::ObjCForCollectionStmtClass:
1433
case Stmt::OMPAtomicDirectiveClass:
1434
case Stmt::OMPBarrierDirectiveClass:
1435
case Stmt::OMPCancelDirectiveClass:
1436
case Stmt::OMPCancellationPointDirectiveClass:
1437
case Stmt::OMPCriticalDirectiveClass:
1438
case Stmt::OMPDistributeDirectiveClass:
1439
case Stmt::OMPDistributeParallelForDirectiveClass:
1440
case Stmt::OMPDistributeParallelForSimdDirectiveClass:
1441
case Stmt::OMPDistributeSimdDirectiveClass:
1442
case Stmt::OMPFlushDirectiveClass:
1443
case Stmt::OMPDepobjDirectiveClass:
1444
case Stmt::OMPScanDirectiveClass:
1445
case Stmt::OMPForDirectiveClass:
1446
case Stmt::OMPForSimdDirectiveClass:
1447
case Stmt::OMPMasterDirectiveClass:
1448
case Stmt::OMPMasterTaskLoopDirectiveClass:
1449
case Stmt::OMPMaskedTaskLoopDirectiveClass:
1450
case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
1451
case Stmt::OMPMaskedTaskLoopSimdDirectiveClass:
1452
case Stmt::OMPOrderedDirectiveClass:
1453
case Stmt::OMPCanonicalLoopClass:
1454
case Stmt::OMPParallelDirectiveClass:
1455
case Stmt::OMPParallelForDirectiveClass:
1456
case Stmt::OMPParallelForSimdDirectiveClass:
1457
case Stmt::OMPParallelMasterDirectiveClass:
1458
case Stmt::OMPParallelMaskedDirectiveClass:
1459
case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
1460
case Stmt::OMPParallelMaskedTaskLoopDirectiveClass:
1461
case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
1462
case Stmt::OMPParallelMaskedTaskLoopSimdDirectiveClass:
1463
case Stmt::OMPParallelSectionsDirectiveClass:
1464
case Stmt::OMPSectionDirectiveClass:
1465
case Stmt::OMPSectionsDirectiveClass:
1466
case Stmt::OMPSimdDirectiveClass:
1467
case Stmt::OMPTileDirectiveClass:
1468
case Stmt::OMPUnrollDirectiveClass:
1469
case Stmt::OMPReverseDirectiveClass:
1470
case Stmt::OMPInterchangeDirectiveClass:
1471
case Stmt::OMPSingleDirectiveClass:
1472
case Stmt::OMPTargetDataDirectiveClass:
1473
case Stmt::OMPTargetDirectiveClass:
1474
case Stmt::OMPTargetEnterDataDirectiveClass:
1475
case Stmt::OMPTargetExitDataDirectiveClass:
1476
case Stmt::OMPTargetParallelDirectiveClass:
1477
case Stmt::OMPTargetParallelForDirectiveClass:
1478
case Stmt::OMPTargetParallelForSimdDirectiveClass:
1479
case Stmt::OMPTargetSimdDirectiveClass:
1480
case Stmt::OMPTargetTeamsDirectiveClass:
1481
case Stmt::OMPTargetTeamsDistributeDirectiveClass:
1482
case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
1483
case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
1484
case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
1485
case Stmt::OMPTargetUpdateDirectiveClass:
1486
case Stmt::OMPScopeDirectiveClass:
1487
case Stmt::OMPTaskDirectiveClass:
1488
case Stmt::OMPTaskgroupDirectiveClass:
1489
case Stmt::OMPTaskLoopDirectiveClass:
1490
case Stmt::OMPTaskLoopSimdDirectiveClass:
1491
case Stmt::OMPTaskwaitDirectiveClass:
1492
case Stmt::OMPTaskyieldDirectiveClass:
1493
case Stmt::OMPErrorDirectiveClass:
1494
case Stmt::OMPTeamsDirectiveClass:
1495
case Stmt::OMPTeamsDistributeDirectiveClass:
1496
case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
1497
case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
1498
case Stmt::OMPTeamsDistributeSimdDirectiveClass:
1499
case Stmt::OMPInteropDirectiveClass:
1500
case Stmt::OMPDispatchDirectiveClass:
1501
case Stmt::OMPMaskedDirectiveClass:
1502
case Stmt::OMPMetaDirectiveClass:
1503
case Stmt::OMPGenericLoopDirectiveClass:
1504
case Stmt::OMPTeamsGenericLoopDirectiveClass:
1505
case Stmt::OMPTargetTeamsGenericLoopDirectiveClass:
1506
case Stmt::OMPParallelGenericLoopDirectiveClass:
1507
case Stmt::OMPTargetParallelGenericLoopDirectiveClass:
1508
case Stmt::ReturnStmtClass:
1509
case Stmt::SEHExceptStmtClass:
1510
case Stmt::SEHFinallyStmtClass:
1511
case Stmt::SEHLeaveStmtClass:
1512
case Stmt::SEHTryStmtClass:
1513
case Stmt::SwitchStmtClass:
1514
case Stmt::WhileStmtClass:
1515
return canSubStmtsThrow(*this, S);
1516
1517
case Stmt::DeclStmtClass: {
1518
CanThrowResult CT = CT_Cannot;
1519
for (const Decl *D : cast<DeclStmt>(S)->decls()) {
1520
if (auto *VD = dyn_cast<VarDecl>(D))
1521
CT = mergeCanThrow(CT, canVarDeclThrow(*this, VD));
1522
1523
// FIXME: Properly determine whether a variably-modified type can throw.
1524
if (auto *TND = dyn_cast<TypedefNameDecl>(D))
1525
if (TND->getUnderlyingType()->isVariablyModifiedType())
1526
return CT_Can;
1527
if (auto *VD = dyn_cast<ValueDecl>(D))
1528
if (VD->getType()->isVariablyModifiedType())
1529
return CT_Can;
1530
}
1531
return CT;
1532
}
1533
1534
case Stmt::IfStmtClass: {
1535
auto *IS = cast<IfStmt>(S);
1536
CanThrowResult CT = CT_Cannot;
1537
if (const Stmt *Init = IS->getInit())
1538
CT = mergeCanThrow(CT, canThrow(Init));
1539
if (const Stmt *CondDS = IS->getConditionVariableDeclStmt())
1540
CT = mergeCanThrow(CT, canThrow(CondDS));
1541
CT = mergeCanThrow(CT, canThrow(IS->getCond()));
1542
1543
// For 'if constexpr', consider only the non-discarded case.
1544
// FIXME: We should add a DiscardedStmt marker to the AST.
1545
if (std::optional<const Stmt *> Case = IS->getNondiscardedCase(Context))
1546
return *Case ? mergeCanThrow(CT, canThrow(*Case)) : CT;
1547
1548
CanThrowResult Then = canThrow(IS->getThen());
1549
CanThrowResult Else = IS->getElse() ? canThrow(IS->getElse()) : CT_Cannot;
1550
if (Then == Else)
1551
return mergeCanThrow(CT, Then);
1552
1553
// For a dependent 'if constexpr', the result is dependent if it depends on
1554
// the value of the condition.
1555
return mergeCanThrow(CT, IS->isConstexpr() ? CT_Dependent
1556
: mergeCanThrow(Then, Else));
1557
}
1558
1559
case Stmt::CXXTryStmtClass: {
1560
auto *TS = cast<CXXTryStmt>(S);
1561
// try /*...*/ catch (...) { H } can throw only if H can throw.
1562
// Any other try-catch can throw if any substatement can throw.
1563
const CXXCatchStmt *FinalHandler = TS->getHandler(TS->getNumHandlers() - 1);
1564
if (!FinalHandler->getExceptionDecl())
1565
return canThrow(FinalHandler->getHandlerBlock());
1566
return canSubStmtsThrow(*this, S);
1567
}
1568
1569
case Stmt::ObjCAtThrowStmtClass:
1570
return CT_Can;
1571
1572
case Stmt::ObjCAtTryStmtClass: {
1573
auto *TS = cast<ObjCAtTryStmt>(S);
1574
1575
// @catch(...) need not be last in Objective-C. Walk backwards until we
1576
// see one or hit the @try.
1577
CanThrowResult CT = CT_Cannot;
1578
if (const Stmt *Finally = TS->getFinallyStmt())
1579
CT = mergeCanThrow(CT, canThrow(Finally));
1580
for (unsigned I = TS->getNumCatchStmts(); I != 0; --I) {
1581
const ObjCAtCatchStmt *Catch = TS->getCatchStmt(I - 1);
1582
CT = mergeCanThrow(CT, canThrow(Catch));
1583
// If we reach a @catch(...), no earlier exceptions can escape.
1584
if (Catch->hasEllipsis())
1585
return CT;
1586
}
1587
1588
// Didn't find an @catch(...). Exceptions from the @try body can escape.
1589
return mergeCanThrow(CT, canThrow(TS->getTryBody()));
1590
}
1591
1592
case Stmt::SYCLUniqueStableNameExprClass:
1593
return CT_Cannot;
1594
case Stmt::NoStmtClass:
1595
llvm_unreachable("Invalid class for statement");
1596
}
1597
llvm_unreachable("Bogus StmtClass");
1598
}
1599
1600
} // end namespace clang
1601
1602