Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/clang/lib/Tooling/ASTDiff/ASTDiff.cpp
35266 views
1
//===- ASTDiff.cpp - AST differencing implementation-----------*- C++ -*- -===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file contains definitons for the AST differencing interface.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "clang/Tooling/ASTDiff/ASTDiff.h"
14
#include "clang/AST/ParentMapContext.h"
15
#include "clang/AST/RecursiveASTVisitor.h"
16
#include "clang/Basic/SourceManager.h"
17
#include "clang/Lex/Lexer.h"
18
#include "llvm/ADT/PriorityQueue.h"
19
20
#include <limits>
21
#include <memory>
22
#include <optional>
23
#include <unordered_set>
24
25
using namespace llvm;
26
using namespace clang;
27
28
namespace clang {
29
namespace diff {
30
31
namespace {
32
/// Maps nodes of the left tree to ones on the right, and vice versa.
33
class Mapping {
34
public:
35
Mapping() = default;
36
Mapping(Mapping &&Other) = default;
37
Mapping &operator=(Mapping &&Other) = default;
38
39
Mapping(size_t Size) {
40
SrcToDst = std::make_unique<NodeId[]>(Size);
41
DstToSrc = std::make_unique<NodeId[]>(Size);
42
}
43
44
void link(NodeId Src, NodeId Dst) {
45
SrcToDst[Src] = Dst, DstToSrc[Dst] = Src;
46
}
47
48
NodeId getDst(NodeId Src) const { return SrcToDst[Src]; }
49
NodeId getSrc(NodeId Dst) const { return DstToSrc[Dst]; }
50
bool hasSrc(NodeId Src) const { return getDst(Src).isValid(); }
51
bool hasDst(NodeId Dst) const { return getSrc(Dst).isValid(); }
52
53
private:
54
std::unique_ptr<NodeId[]> SrcToDst, DstToSrc;
55
};
56
} // end anonymous namespace
57
58
class ASTDiff::Impl {
59
public:
60
SyntaxTree::Impl &T1, &T2;
61
Mapping TheMapping;
62
63
Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2,
64
const ComparisonOptions &Options);
65
66
/// Matches nodes one-by-one based on their similarity.
67
void computeMapping();
68
69
// Compute Change for each node based on similarity.
70
void computeChangeKinds(Mapping &M);
71
72
NodeId getMapped(const std::unique_ptr<SyntaxTree::Impl> &Tree,
73
NodeId Id) const {
74
if (&*Tree == &T1)
75
return TheMapping.getDst(Id);
76
assert(&*Tree == &T2 && "Invalid tree.");
77
return TheMapping.getSrc(Id);
78
}
79
80
private:
81
// Returns true if the two subtrees are identical.
82
bool identical(NodeId Id1, NodeId Id2) const;
83
84
// Returns false if the nodes must not be mached.
85
bool isMatchingPossible(NodeId Id1, NodeId Id2) const;
86
87
// Returns true if the nodes' parents are matched.
88
bool haveSameParents(const Mapping &M, NodeId Id1, NodeId Id2) const;
89
90
// Uses an optimal albeit slow algorithm to compute a mapping between two
91
// subtrees, but only if both have fewer nodes than MaxSize.
92
void addOptimalMapping(Mapping &M, NodeId Id1, NodeId Id2) const;
93
94
// Computes the ratio of common descendants between the two nodes.
95
// Descendants are only considered to be equal when they are mapped in M.
96
double getJaccardSimilarity(const Mapping &M, NodeId Id1, NodeId Id2) const;
97
98
// Returns the node that has the highest degree of similarity.
99
NodeId findCandidate(const Mapping &M, NodeId Id1) const;
100
101
// Returns a mapping of identical subtrees.
102
Mapping matchTopDown() const;
103
104
// Tries to match any yet unmapped nodes, in a bottom-up fashion.
105
void matchBottomUp(Mapping &M) const;
106
107
const ComparisonOptions &Options;
108
109
friend class ZhangShashaMatcher;
110
};
111
112
/// Represents the AST of a TranslationUnit.
113
class SyntaxTree::Impl {
114
public:
115
Impl(SyntaxTree *Parent, ASTContext &AST);
116
/// Constructs a tree from an AST node.
117
Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST);
118
Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST);
119
template <class T>
120
Impl(SyntaxTree *Parent,
121
std::enable_if_t<std::is_base_of_v<Stmt, T>, T> *Node, ASTContext &AST)
122
: Impl(Parent, dyn_cast<Stmt>(Node), AST) {}
123
template <class T>
124
Impl(SyntaxTree *Parent,
125
std::enable_if_t<std::is_base_of_v<Decl, T>, T> *Node, ASTContext &AST)
126
: Impl(Parent, dyn_cast<Decl>(Node), AST) {}
127
128
SyntaxTree *Parent;
129
ASTContext &AST;
130
PrintingPolicy TypePP;
131
/// Nodes in preorder.
132
std::vector<Node> Nodes;
133
std::vector<NodeId> Leaves;
134
// Maps preorder indices to postorder ones.
135
std::vector<int> PostorderIds;
136
std::vector<NodeId> NodesBfs;
137
138
int getSize() const { return Nodes.size(); }
139
NodeId getRootId() const { return 0; }
140
PreorderIterator begin() const { return getRootId(); }
141
PreorderIterator end() const { return getSize(); }
142
143
const Node &getNode(NodeId Id) const { return Nodes[Id]; }
144
Node &getMutableNode(NodeId Id) { return Nodes[Id]; }
145
bool isValidNodeId(NodeId Id) const { return Id >= 0 && Id < getSize(); }
146
void addNode(Node &N) { Nodes.push_back(N); }
147
int getNumberOfDescendants(NodeId Id) const;
148
bool isInSubtree(NodeId Id, NodeId SubtreeRoot) const;
149
int findPositionInParent(NodeId Id, bool Shifted = false) const;
150
151
std::string getRelativeName(const NamedDecl *ND,
152
const DeclContext *Context) const;
153
std::string getRelativeName(const NamedDecl *ND) const;
154
155
std::string getNodeValue(NodeId Id) const;
156
std::string getNodeValue(const Node &Node) const;
157
std::string getDeclValue(const Decl *D) const;
158
std::string getStmtValue(const Stmt *S) const;
159
160
private:
161
void initTree();
162
void setLeftMostDescendants();
163
};
164
165
static bool isSpecializedNodeExcluded(const Decl *D) { return D->isImplicit(); }
166
static bool isSpecializedNodeExcluded(const Stmt *S) { return false; }
167
static bool isSpecializedNodeExcluded(CXXCtorInitializer *I) {
168
return !I->isWritten();
169
}
170
171
template <class T>
172
static bool isNodeExcluded(const SourceManager &SrcMgr, T *N) {
173
if (!N)
174
return true;
175
SourceLocation SLoc = N->getSourceRange().getBegin();
176
if (SLoc.isValid()) {
177
// Ignore everything from other files.
178
if (!SrcMgr.isInMainFile(SLoc))
179
return true;
180
// Ignore macros.
181
if (SLoc != SrcMgr.getSpellingLoc(SLoc))
182
return true;
183
}
184
return isSpecializedNodeExcluded(N);
185
}
186
187
namespace {
188
// Sets Height, Parent and Children for each node.
189
struct PreorderVisitor : public RecursiveASTVisitor<PreorderVisitor> {
190
int Id = 0, Depth = 0;
191
NodeId Parent;
192
SyntaxTree::Impl &Tree;
193
194
PreorderVisitor(SyntaxTree::Impl &Tree) : Tree(Tree) {}
195
196
template <class T> std::tuple<NodeId, NodeId> PreTraverse(T *ASTNode) {
197
NodeId MyId = Id;
198
Tree.Nodes.emplace_back();
199
Node &N = Tree.getMutableNode(MyId);
200
N.Parent = Parent;
201
N.Depth = Depth;
202
N.ASTNode = DynTypedNode::create(*ASTNode);
203
assert(!N.ASTNode.getNodeKind().isNone() &&
204
"Expected nodes to have a valid kind.");
205
if (Parent.isValid()) {
206
Node &P = Tree.getMutableNode(Parent);
207
P.Children.push_back(MyId);
208
}
209
Parent = MyId;
210
++Id;
211
++Depth;
212
return std::make_tuple(MyId, Tree.getNode(MyId).Parent);
213
}
214
void PostTraverse(std::tuple<NodeId, NodeId> State) {
215
NodeId MyId, PreviousParent;
216
std::tie(MyId, PreviousParent) = State;
217
assert(MyId.isValid() && "Expecting to only traverse valid nodes.");
218
Parent = PreviousParent;
219
--Depth;
220
Node &N = Tree.getMutableNode(MyId);
221
N.RightMostDescendant = Id - 1;
222
assert(N.RightMostDescendant >= 0 &&
223
N.RightMostDescendant < Tree.getSize() &&
224
"Rightmost descendant must be a valid tree node.");
225
if (N.isLeaf())
226
Tree.Leaves.push_back(MyId);
227
N.Height = 1;
228
for (NodeId Child : N.Children)
229
N.Height = std::max(N.Height, 1 + Tree.getNode(Child).Height);
230
}
231
bool TraverseDecl(Decl *D) {
232
if (isNodeExcluded(Tree.AST.getSourceManager(), D))
233
return true;
234
auto SavedState = PreTraverse(D);
235
RecursiveASTVisitor<PreorderVisitor>::TraverseDecl(D);
236
PostTraverse(SavedState);
237
return true;
238
}
239
bool TraverseStmt(Stmt *S) {
240
if (auto *E = dyn_cast_or_null<Expr>(S))
241
S = E->IgnoreImplicit();
242
if (isNodeExcluded(Tree.AST.getSourceManager(), S))
243
return true;
244
auto SavedState = PreTraverse(S);
245
RecursiveASTVisitor<PreorderVisitor>::TraverseStmt(S);
246
PostTraverse(SavedState);
247
return true;
248
}
249
bool TraverseType(QualType T) { return true; }
250
bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
251
if (isNodeExcluded(Tree.AST.getSourceManager(), Init))
252
return true;
253
auto SavedState = PreTraverse(Init);
254
RecursiveASTVisitor<PreorderVisitor>::TraverseConstructorInitializer(Init);
255
PostTraverse(SavedState);
256
return true;
257
}
258
};
259
} // end anonymous namespace
260
261
SyntaxTree::Impl::Impl(SyntaxTree *Parent, ASTContext &AST)
262
: Parent(Parent), AST(AST), TypePP(AST.getLangOpts()) {
263
TypePP.AnonymousTagLocations = false;
264
}
265
266
SyntaxTree::Impl::Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST)
267
: Impl(Parent, AST) {
268
PreorderVisitor PreorderWalker(*this);
269
PreorderWalker.TraverseDecl(N);
270
initTree();
271
}
272
273
SyntaxTree::Impl::Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST)
274
: Impl(Parent, AST) {
275
PreorderVisitor PreorderWalker(*this);
276
PreorderWalker.TraverseStmt(N);
277
initTree();
278
}
279
280
static std::vector<NodeId> getSubtreePostorder(const SyntaxTree::Impl &Tree,
281
NodeId Root) {
282
std::vector<NodeId> Postorder;
283
std::function<void(NodeId)> Traverse = [&](NodeId Id) {
284
const Node &N = Tree.getNode(Id);
285
for (NodeId Child : N.Children)
286
Traverse(Child);
287
Postorder.push_back(Id);
288
};
289
Traverse(Root);
290
return Postorder;
291
}
292
293
static std::vector<NodeId> getSubtreeBfs(const SyntaxTree::Impl &Tree,
294
NodeId Root) {
295
std::vector<NodeId> Ids;
296
size_t Expanded = 0;
297
Ids.push_back(Root);
298
while (Expanded < Ids.size())
299
for (NodeId Child : Tree.getNode(Ids[Expanded++]).Children)
300
Ids.push_back(Child);
301
return Ids;
302
}
303
304
void SyntaxTree::Impl::initTree() {
305
setLeftMostDescendants();
306
int PostorderId = 0;
307
PostorderIds.resize(getSize());
308
std::function<void(NodeId)> PostorderTraverse = [&](NodeId Id) {
309
for (NodeId Child : getNode(Id).Children)
310
PostorderTraverse(Child);
311
PostorderIds[Id] = PostorderId;
312
++PostorderId;
313
};
314
PostorderTraverse(getRootId());
315
NodesBfs = getSubtreeBfs(*this, getRootId());
316
}
317
318
void SyntaxTree::Impl::setLeftMostDescendants() {
319
for (NodeId Leaf : Leaves) {
320
getMutableNode(Leaf).LeftMostDescendant = Leaf;
321
NodeId Parent, Cur = Leaf;
322
while ((Parent = getNode(Cur).Parent).isValid() &&
323
getNode(Parent).Children[0] == Cur) {
324
Cur = Parent;
325
getMutableNode(Cur).LeftMostDescendant = Leaf;
326
}
327
}
328
}
329
330
int SyntaxTree::Impl::getNumberOfDescendants(NodeId Id) const {
331
return getNode(Id).RightMostDescendant - Id + 1;
332
}
333
334
bool SyntaxTree::Impl::isInSubtree(NodeId Id, NodeId SubtreeRoot) const {
335
return Id >= SubtreeRoot && Id <= getNode(SubtreeRoot).RightMostDescendant;
336
}
337
338
int SyntaxTree::Impl::findPositionInParent(NodeId Id, bool Shifted) const {
339
NodeId Parent = getNode(Id).Parent;
340
if (Parent.isInvalid())
341
return 0;
342
const auto &Siblings = getNode(Parent).Children;
343
int Position = 0;
344
for (size_t I = 0, E = Siblings.size(); I < E; ++I) {
345
if (Shifted)
346
Position += getNode(Siblings[I]).Shift;
347
if (Siblings[I] == Id) {
348
Position += I;
349
return Position;
350
}
351
}
352
llvm_unreachable("Node not found in parent's children.");
353
}
354
355
// Returns the qualified name of ND. If it is subordinate to Context,
356
// then the prefix of the latter is removed from the returned value.
357
std::string
358
SyntaxTree::Impl::getRelativeName(const NamedDecl *ND,
359
const DeclContext *Context) const {
360
std::string Val = ND->getQualifiedNameAsString();
361
std::string ContextPrefix;
362
if (!Context)
363
return Val;
364
if (auto *Namespace = dyn_cast<NamespaceDecl>(Context))
365
ContextPrefix = Namespace->getQualifiedNameAsString();
366
else if (auto *Record = dyn_cast<RecordDecl>(Context))
367
ContextPrefix = Record->getQualifiedNameAsString();
368
else if (AST.getLangOpts().CPlusPlus11)
369
if (auto *Tag = dyn_cast<TagDecl>(Context))
370
ContextPrefix = Tag->getQualifiedNameAsString();
371
// Strip the qualifier, if Val refers to something in the current scope.
372
// But leave one leading ':' in place, so that we know that this is a
373
// relative path.
374
if (!ContextPrefix.empty() && StringRef(Val).starts_with(ContextPrefix))
375
Val = Val.substr(ContextPrefix.size() + 1);
376
return Val;
377
}
378
379
std::string SyntaxTree::Impl::getRelativeName(const NamedDecl *ND) const {
380
return getRelativeName(ND, ND->getDeclContext());
381
}
382
383
static const DeclContext *getEnclosingDeclContext(ASTContext &AST,
384
const Stmt *S) {
385
while (S) {
386
const auto &Parents = AST.getParents(*S);
387
if (Parents.empty())
388
return nullptr;
389
const auto &P = Parents[0];
390
if (const auto *D = P.get<Decl>())
391
return D->getDeclContext();
392
S = P.get<Stmt>();
393
}
394
return nullptr;
395
}
396
397
static std::string getInitializerValue(const CXXCtorInitializer *Init,
398
const PrintingPolicy &TypePP) {
399
if (Init->isAnyMemberInitializer())
400
return std::string(Init->getAnyMember()->getName());
401
if (Init->isBaseInitializer())
402
return QualType(Init->getBaseClass(), 0).getAsString(TypePP);
403
if (Init->isDelegatingInitializer())
404
return Init->getTypeSourceInfo()->getType().getAsString(TypePP);
405
llvm_unreachable("Unknown initializer type");
406
}
407
408
std::string SyntaxTree::Impl::getNodeValue(NodeId Id) const {
409
return getNodeValue(getNode(Id));
410
}
411
412
std::string SyntaxTree::Impl::getNodeValue(const Node &N) const {
413
const DynTypedNode &DTN = N.ASTNode;
414
if (auto *S = DTN.get<Stmt>())
415
return getStmtValue(S);
416
if (auto *D = DTN.get<Decl>())
417
return getDeclValue(D);
418
if (auto *Init = DTN.get<CXXCtorInitializer>())
419
return getInitializerValue(Init, TypePP);
420
llvm_unreachable("Fatal: unhandled AST node.\n");
421
}
422
423
std::string SyntaxTree::Impl::getDeclValue(const Decl *D) const {
424
std::string Value;
425
if (auto *V = dyn_cast<ValueDecl>(D))
426
return getRelativeName(V) + "(" + V->getType().getAsString(TypePP) + ")";
427
if (auto *N = dyn_cast<NamedDecl>(D))
428
Value += getRelativeName(N) + ";";
429
if (auto *T = dyn_cast<TypedefNameDecl>(D))
430
return Value + T->getUnderlyingType().getAsString(TypePP) + ";";
431
if (auto *T = dyn_cast<TypeDecl>(D))
432
if (T->getTypeForDecl())
433
Value +=
434
T->getTypeForDecl()->getCanonicalTypeInternal().getAsString(TypePP) +
435
";";
436
if (auto *U = dyn_cast<UsingDirectiveDecl>(D))
437
return std::string(U->getNominatedNamespace()->getName());
438
if (auto *A = dyn_cast<AccessSpecDecl>(D)) {
439
CharSourceRange Range(A->getSourceRange(), false);
440
return std::string(
441
Lexer::getSourceText(Range, AST.getSourceManager(), AST.getLangOpts()));
442
}
443
return Value;
444
}
445
446
std::string SyntaxTree::Impl::getStmtValue(const Stmt *S) const {
447
if (auto *U = dyn_cast<UnaryOperator>(S))
448
return std::string(UnaryOperator::getOpcodeStr(U->getOpcode()));
449
if (auto *B = dyn_cast<BinaryOperator>(S))
450
return std::string(B->getOpcodeStr());
451
if (auto *M = dyn_cast<MemberExpr>(S))
452
return getRelativeName(M->getMemberDecl());
453
if (auto *I = dyn_cast<IntegerLiteral>(S)) {
454
SmallString<256> Str;
455
I->getValue().toString(Str, /*Radix=*/10, /*Signed=*/false);
456
return std::string(Str);
457
}
458
if (auto *F = dyn_cast<FloatingLiteral>(S)) {
459
SmallString<256> Str;
460
F->getValue().toString(Str);
461
return std::string(Str);
462
}
463
if (auto *D = dyn_cast<DeclRefExpr>(S))
464
return getRelativeName(D->getDecl(), getEnclosingDeclContext(AST, S));
465
if (auto *String = dyn_cast<StringLiteral>(S))
466
return std::string(String->getString());
467
if (auto *B = dyn_cast<CXXBoolLiteralExpr>(S))
468
return B->getValue() ? "true" : "false";
469
return "";
470
}
471
472
/// Identifies a node in a subtree by its postorder offset, starting at 1.
473
struct SNodeId {
474
int Id = 0;
475
476
explicit SNodeId(int Id) : Id(Id) {}
477
explicit SNodeId() = default;
478
479
operator int() const { return Id; }
480
SNodeId &operator++() { return ++Id, *this; }
481
SNodeId &operator--() { return --Id, *this; }
482
SNodeId operator+(int Other) const { return SNodeId(Id + Other); }
483
};
484
485
class Subtree {
486
private:
487
/// The parent tree.
488
const SyntaxTree::Impl &Tree;
489
/// Maps SNodeIds to original ids.
490
std::vector<NodeId> RootIds;
491
/// Maps subtree nodes to their leftmost descendants wtihin the subtree.
492
std::vector<SNodeId> LeftMostDescendants;
493
494
public:
495
std::vector<SNodeId> KeyRoots;
496
497
Subtree(const SyntaxTree::Impl &Tree, NodeId SubtreeRoot) : Tree(Tree) {
498
RootIds = getSubtreePostorder(Tree, SubtreeRoot);
499
int NumLeaves = setLeftMostDescendants();
500
computeKeyRoots(NumLeaves);
501
}
502
int getSize() const { return RootIds.size(); }
503
NodeId getIdInRoot(SNodeId Id) const {
504
assert(Id > 0 && Id <= getSize() && "Invalid subtree node index.");
505
return RootIds[Id - 1];
506
}
507
const Node &getNode(SNodeId Id) const {
508
return Tree.getNode(getIdInRoot(Id));
509
}
510
SNodeId getLeftMostDescendant(SNodeId Id) const {
511
assert(Id > 0 && Id <= getSize() && "Invalid subtree node index.");
512
return LeftMostDescendants[Id - 1];
513
}
514
/// Returns the postorder index of the leftmost descendant in the subtree.
515
NodeId getPostorderOffset() const {
516
return Tree.PostorderIds[getIdInRoot(SNodeId(1))];
517
}
518
std::string getNodeValue(SNodeId Id) const {
519
return Tree.getNodeValue(getIdInRoot(Id));
520
}
521
522
private:
523
/// Returns the number of leafs in the subtree.
524
int setLeftMostDescendants() {
525
int NumLeaves = 0;
526
LeftMostDescendants.resize(getSize());
527
for (int I = 0; I < getSize(); ++I) {
528
SNodeId SI(I + 1);
529
const Node &N = getNode(SI);
530
NumLeaves += N.isLeaf();
531
assert(I == Tree.PostorderIds[getIdInRoot(SI)] - getPostorderOffset() &&
532
"Postorder traversal in subtree should correspond to traversal in "
533
"the root tree by a constant offset.");
534
LeftMostDescendants[I] = SNodeId(Tree.PostorderIds[N.LeftMostDescendant] -
535
getPostorderOffset());
536
}
537
return NumLeaves;
538
}
539
void computeKeyRoots(int Leaves) {
540
KeyRoots.resize(Leaves);
541
std::unordered_set<int> Visited;
542
int K = Leaves - 1;
543
for (SNodeId I(getSize()); I > 0; --I) {
544
SNodeId LeftDesc = getLeftMostDescendant(I);
545
if (Visited.count(LeftDesc))
546
continue;
547
assert(K >= 0 && "K should be non-negative");
548
KeyRoots[K] = I;
549
Visited.insert(LeftDesc);
550
--K;
551
}
552
}
553
};
554
555
/// Implementation of Zhang and Shasha's Algorithm for tree edit distance.
556
/// Computes an optimal mapping between two trees using only insertion,
557
/// deletion and update as edit actions (similar to the Levenshtein distance).
558
class ZhangShashaMatcher {
559
const ASTDiff::Impl &DiffImpl;
560
Subtree S1;
561
Subtree S2;
562
std::unique_ptr<std::unique_ptr<double[]>[]> TreeDist, ForestDist;
563
564
public:
565
ZhangShashaMatcher(const ASTDiff::Impl &DiffImpl, const SyntaxTree::Impl &T1,
566
const SyntaxTree::Impl &T2, NodeId Id1, NodeId Id2)
567
: DiffImpl(DiffImpl), S1(T1, Id1), S2(T2, Id2) {
568
TreeDist = std::make_unique<std::unique_ptr<double[]>[]>(
569
size_t(S1.getSize()) + 1);
570
ForestDist = std::make_unique<std::unique_ptr<double[]>[]>(
571
size_t(S1.getSize()) + 1);
572
for (int I = 0, E = S1.getSize() + 1; I < E; ++I) {
573
TreeDist[I] = std::make_unique<double[]>(size_t(S2.getSize()) + 1);
574
ForestDist[I] = std::make_unique<double[]>(size_t(S2.getSize()) + 1);
575
}
576
}
577
578
std::vector<std::pair<NodeId, NodeId>> getMatchingNodes() {
579
std::vector<std::pair<NodeId, NodeId>> Matches;
580
std::vector<std::pair<SNodeId, SNodeId>> TreePairs;
581
582
computeTreeDist();
583
584
bool RootNodePair = true;
585
586
TreePairs.emplace_back(SNodeId(S1.getSize()), SNodeId(S2.getSize()));
587
588
while (!TreePairs.empty()) {
589
SNodeId LastRow, LastCol, FirstRow, FirstCol, Row, Col;
590
std::tie(LastRow, LastCol) = TreePairs.back();
591
TreePairs.pop_back();
592
593
if (!RootNodePair) {
594
computeForestDist(LastRow, LastCol);
595
}
596
597
RootNodePair = false;
598
599
FirstRow = S1.getLeftMostDescendant(LastRow);
600
FirstCol = S2.getLeftMostDescendant(LastCol);
601
602
Row = LastRow;
603
Col = LastCol;
604
605
while (Row > FirstRow || Col > FirstCol) {
606
if (Row > FirstRow &&
607
ForestDist[Row - 1][Col] + 1 == ForestDist[Row][Col]) {
608
--Row;
609
} else if (Col > FirstCol &&
610
ForestDist[Row][Col - 1] + 1 == ForestDist[Row][Col]) {
611
--Col;
612
} else {
613
SNodeId LMD1 = S1.getLeftMostDescendant(Row);
614
SNodeId LMD2 = S2.getLeftMostDescendant(Col);
615
if (LMD1 == S1.getLeftMostDescendant(LastRow) &&
616
LMD2 == S2.getLeftMostDescendant(LastCol)) {
617
NodeId Id1 = S1.getIdInRoot(Row);
618
NodeId Id2 = S2.getIdInRoot(Col);
619
assert(DiffImpl.isMatchingPossible(Id1, Id2) &&
620
"These nodes must not be matched.");
621
Matches.emplace_back(Id1, Id2);
622
--Row;
623
--Col;
624
} else {
625
TreePairs.emplace_back(Row, Col);
626
Row = LMD1;
627
Col = LMD2;
628
}
629
}
630
}
631
}
632
return Matches;
633
}
634
635
private:
636
/// We use a simple cost model for edit actions, which seems good enough.
637
/// Simple cost model for edit actions. This seems to make the matching
638
/// algorithm perform reasonably well.
639
/// The values range between 0 and 1, or infinity if this edit action should
640
/// always be avoided.
641
static constexpr double DeletionCost = 1;
642
static constexpr double InsertionCost = 1;
643
644
double getUpdateCost(SNodeId Id1, SNodeId Id2) {
645
if (!DiffImpl.isMatchingPossible(S1.getIdInRoot(Id1), S2.getIdInRoot(Id2)))
646
return std::numeric_limits<double>::max();
647
return S1.getNodeValue(Id1) != S2.getNodeValue(Id2);
648
}
649
650
void computeTreeDist() {
651
for (SNodeId Id1 : S1.KeyRoots)
652
for (SNodeId Id2 : S2.KeyRoots)
653
computeForestDist(Id1, Id2);
654
}
655
656
void computeForestDist(SNodeId Id1, SNodeId Id2) {
657
assert(Id1 > 0 && Id2 > 0 && "Expecting offsets greater than 0.");
658
SNodeId LMD1 = S1.getLeftMostDescendant(Id1);
659
SNodeId LMD2 = S2.getLeftMostDescendant(Id2);
660
661
ForestDist[LMD1][LMD2] = 0;
662
for (SNodeId D1 = LMD1 + 1; D1 <= Id1; ++D1) {
663
ForestDist[D1][LMD2] = ForestDist[D1 - 1][LMD2] + DeletionCost;
664
for (SNodeId D2 = LMD2 + 1; D2 <= Id2; ++D2) {
665
ForestDist[LMD1][D2] = ForestDist[LMD1][D2 - 1] + InsertionCost;
666
SNodeId DLMD1 = S1.getLeftMostDescendant(D1);
667
SNodeId DLMD2 = S2.getLeftMostDescendant(D2);
668
if (DLMD1 == LMD1 && DLMD2 == LMD2) {
669
double UpdateCost = getUpdateCost(D1, D2);
670
ForestDist[D1][D2] =
671
std::min({ForestDist[D1 - 1][D2] + DeletionCost,
672
ForestDist[D1][D2 - 1] + InsertionCost,
673
ForestDist[D1 - 1][D2 - 1] + UpdateCost});
674
TreeDist[D1][D2] = ForestDist[D1][D2];
675
} else {
676
ForestDist[D1][D2] =
677
std::min({ForestDist[D1 - 1][D2] + DeletionCost,
678
ForestDist[D1][D2 - 1] + InsertionCost,
679
ForestDist[DLMD1][DLMD2] + TreeDist[D1][D2]});
680
}
681
}
682
}
683
}
684
};
685
686
ASTNodeKind Node::getType() const { return ASTNode.getNodeKind(); }
687
688
StringRef Node::getTypeLabel() const { return getType().asStringRef(); }
689
690
std::optional<std::string> Node::getQualifiedIdentifier() const {
691
if (auto *ND = ASTNode.get<NamedDecl>()) {
692
if (ND->getDeclName().isIdentifier())
693
return ND->getQualifiedNameAsString();
694
}
695
return std::nullopt;
696
}
697
698
std::optional<StringRef> Node::getIdentifier() const {
699
if (auto *ND = ASTNode.get<NamedDecl>()) {
700
if (ND->getDeclName().isIdentifier())
701
return ND->getName();
702
}
703
return std::nullopt;
704
}
705
706
namespace {
707
// Compares nodes by their depth.
708
struct HeightLess {
709
const SyntaxTree::Impl &Tree;
710
HeightLess(const SyntaxTree::Impl &Tree) : Tree(Tree) {}
711
bool operator()(NodeId Id1, NodeId Id2) const {
712
return Tree.getNode(Id1).Height < Tree.getNode(Id2).Height;
713
}
714
};
715
} // end anonymous namespace
716
717
namespace {
718
// Priority queue for nodes, sorted descendingly by their height.
719
class PriorityList {
720
const SyntaxTree::Impl &Tree;
721
HeightLess Cmp;
722
std::vector<NodeId> Container;
723
PriorityQueue<NodeId, std::vector<NodeId>, HeightLess> List;
724
725
public:
726
PriorityList(const SyntaxTree::Impl &Tree)
727
: Tree(Tree), Cmp(Tree), List(Cmp, Container) {}
728
729
void push(NodeId id) { List.push(id); }
730
731
std::vector<NodeId> pop() {
732
int Max = peekMax();
733
std::vector<NodeId> Result;
734
if (Max == 0)
735
return Result;
736
while (peekMax() == Max) {
737
Result.push_back(List.top());
738
List.pop();
739
}
740
// TODO this is here to get a stable output, not a good heuristic
741
llvm::sort(Result);
742
return Result;
743
}
744
int peekMax() const {
745
if (List.empty())
746
return 0;
747
return Tree.getNode(List.top()).Height;
748
}
749
void open(NodeId Id) {
750
for (NodeId Child : Tree.getNode(Id).Children)
751
push(Child);
752
}
753
};
754
} // end anonymous namespace
755
756
bool ASTDiff::Impl::identical(NodeId Id1, NodeId Id2) const {
757
const Node &N1 = T1.getNode(Id1);
758
const Node &N2 = T2.getNode(Id2);
759
if (N1.Children.size() != N2.Children.size() ||
760
!isMatchingPossible(Id1, Id2) ||
761
T1.getNodeValue(Id1) != T2.getNodeValue(Id2))
762
return false;
763
for (size_t Id = 0, E = N1.Children.size(); Id < E; ++Id)
764
if (!identical(N1.Children[Id], N2.Children[Id]))
765
return false;
766
return true;
767
}
768
769
bool ASTDiff::Impl::isMatchingPossible(NodeId Id1, NodeId Id2) const {
770
return Options.isMatchingAllowed(T1.getNode(Id1), T2.getNode(Id2));
771
}
772
773
bool ASTDiff::Impl::haveSameParents(const Mapping &M, NodeId Id1,
774
NodeId Id2) const {
775
NodeId P1 = T1.getNode(Id1).Parent;
776
NodeId P2 = T2.getNode(Id2).Parent;
777
return (P1.isInvalid() && P2.isInvalid()) ||
778
(P1.isValid() && P2.isValid() && M.getDst(P1) == P2);
779
}
780
781
void ASTDiff::Impl::addOptimalMapping(Mapping &M, NodeId Id1,
782
NodeId Id2) const {
783
if (std::max(T1.getNumberOfDescendants(Id1), T2.getNumberOfDescendants(Id2)) >
784
Options.MaxSize)
785
return;
786
ZhangShashaMatcher Matcher(*this, T1, T2, Id1, Id2);
787
std::vector<std::pair<NodeId, NodeId>> R = Matcher.getMatchingNodes();
788
for (const auto &Tuple : R) {
789
NodeId Src = Tuple.first;
790
NodeId Dst = Tuple.second;
791
if (!M.hasSrc(Src) && !M.hasDst(Dst))
792
M.link(Src, Dst);
793
}
794
}
795
796
double ASTDiff::Impl::getJaccardSimilarity(const Mapping &M, NodeId Id1,
797
NodeId Id2) const {
798
int CommonDescendants = 0;
799
const Node &N1 = T1.getNode(Id1);
800
// Count the common descendants, excluding the subtree root.
801
for (NodeId Src = Id1 + 1; Src <= N1.RightMostDescendant; ++Src) {
802
NodeId Dst = M.getDst(Src);
803
CommonDescendants += int(Dst.isValid() && T2.isInSubtree(Dst, Id2));
804
}
805
// We need to subtract 1 to get the number of descendants excluding the root.
806
double Denominator = T1.getNumberOfDescendants(Id1) - 1 +
807
T2.getNumberOfDescendants(Id2) - 1 - CommonDescendants;
808
// CommonDescendants is less than the size of one subtree.
809
assert(Denominator >= 0 && "Expected non-negative denominator.");
810
if (Denominator == 0)
811
return 0;
812
return CommonDescendants / Denominator;
813
}
814
815
NodeId ASTDiff::Impl::findCandidate(const Mapping &M, NodeId Id1) const {
816
NodeId Candidate;
817
double HighestSimilarity = 0.0;
818
for (NodeId Id2 : T2) {
819
if (!isMatchingPossible(Id1, Id2))
820
continue;
821
if (M.hasDst(Id2))
822
continue;
823
double Similarity = getJaccardSimilarity(M, Id1, Id2);
824
if (Similarity >= Options.MinSimilarity && Similarity > HighestSimilarity) {
825
HighestSimilarity = Similarity;
826
Candidate = Id2;
827
}
828
}
829
return Candidate;
830
}
831
832
void ASTDiff::Impl::matchBottomUp(Mapping &M) const {
833
std::vector<NodeId> Postorder = getSubtreePostorder(T1, T1.getRootId());
834
for (NodeId Id1 : Postorder) {
835
if (Id1 == T1.getRootId() && !M.hasSrc(T1.getRootId()) &&
836
!M.hasDst(T2.getRootId())) {
837
if (isMatchingPossible(T1.getRootId(), T2.getRootId())) {
838
M.link(T1.getRootId(), T2.getRootId());
839
addOptimalMapping(M, T1.getRootId(), T2.getRootId());
840
}
841
break;
842
}
843
bool Matched = M.hasSrc(Id1);
844
const Node &N1 = T1.getNode(Id1);
845
bool MatchedChildren = llvm::any_of(
846
N1.Children, [&](NodeId Child) { return M.hasSrc(Child); });
847
if (Matched || !MatchedChildren)
848
continue;
849
NodeId Id2 = findCandidate(M, Id1);
850
if (Id2.isValid()) {
851
M.link(Id1, Id2);
852
addOptimalMapping(M, Id1, Id2);
853
}
854
}
855
}
856
857
Mapping ASTDiff::Impl::matchTopDown() const {
858
PriorityList L1(T1);
859
PriorityList L2(T2);
860
861
Mapping M(T1.getSize() + T2.getSize());
862
863
L1.push(T1.getRootId());
864
L2.push(T2.getRootId());
865
866
int Max1, Max2;
867
while (std::min(Max1 = L1.peekMax(), Max2 = L2.peekMax()) >
868
Options.MinHeight) {
869
if (Max1 > Max2) {
870
for (NodeId Id : L1.pop())
871
L1.open(Id);
872
continue;
873
}
874
if (Max2 > Max1) {
875
for (NodeId Id : L2.pop())
876
L2.open(Id);
877
continue;
878
}
879
std::vector<NodeId> H1, H2;
880
H1 = L1.pop();
881
H2 = L2.pop();
882
for (NodeId Id1 : H1) {
883
for (NodeId Id2 : H2) {
884
if (identical(Id1, Id2) && !M.hasSrc(Id1) && !M.hasDst(Id2)) {
885
for (int I = 0, E = T1.getNumberOfDescendants(Id1); I < E; ++I)
886
M.link(Id1 + I, Id2 + I);
887
}
888
}
889
}
890
for (NodeId Id1 : H1) {
891
if (!M.hasSrc(Id1))
892
L1.open(Id1);
893
}
894
for (NodeId Id2 : H2) {
895
if (!M.hasDst(Id2))
896
L2.open(Id2);
897
}
898
}
899
return M;
900
}
901
902
ASTDiff::Impl::Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2,
903
const ComparisonOptions &Options)
904
: T1(T1), T2(T2), Options(Options) {
905
computeMapping();
906
computeChangeKinds(TheMapping);
907
}
908
909
void ASTDiff::Impl::computeMapping() {
910
TheMapping = matchTopDown();
911
if (Options.StopAfterTopDown)
912
return;
913
matchBottomUp(TheMapping);
914
}
915
916
void ASTDiff::Impl::computeChangeKinds(Mapping &M) {
917
for (NodeId Id1 : T1) {
918
if (!M.hasSrc(Id1)) {
919
T1.getMutableNode(Id1).Change = Delete;
920
T1.getMutableNode(Id1).Shift -= 1;
921
}
922
}
923
for (NodeId Id2 : T2) {
924
if (!M.hasDst(Id2)) {
925
T2.getMutableNode(Id2).Change = Insert;
926
T2.getMutableNode(Id2).Shift -= 1;
927
}
928
}
929
for (NodeId Id1 : T1.NodesBfs) {
930
NodeId Id2 = M.getDst(Id1);
931
if (Id2.isInvalid())
932
continue;
933
if (!haveSameParents(M, Id1, Id2) ||
934
T1.findPositionInParent(Id1, true) !=
935
T2.findPositionInParent(Id2, true)) {
936
T1.getMutableNode(Id1).Shift -= 1;
937
T2.getMutableNode(Id2).Shift -= 1;
938
}
939
}
940
for (NodeId Id2 : T2.NodesBfs) {
941
NodeId Id1 = M.getSrc(Id2);
942
if (Id1.isInvalid())
943
continue;
944
Node &N1 = T1.getMutableNode(Id1);
945
Node &N2 = T2.getMutableNode(Id2);
946
if (Id1.isInvalid())
947
continue;
948
if (!haveSameParents(M, Id1, Id2) ||
949
T1.findPositionInParent(Id1, true) !=
950
T2.findPositionInParent(Id2, true)) {
951
N1.Change = N2.Change = Move;
952
}
953
if (T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) {
954
N1.Change = N2.Change = (N1.Change == Move ? UpdateMove : Update);
955
}
956
}
957
}
958
959
ASTDiff::ASTDiff(SyntaxTree &T1, SyntaxTree &T2,
960
const ComparisonOptions &Options)
961
: DiffImpl(std::make_unique<Impl>(*T1.TreeImpl, *T2.TreeImpl, Options)) {}
962
963
ASTDiff::~ASTDiff() = default;
964
965
NodeId ASTDiff::getMapped(const SyntaxTree &SourceTree, NodeId Id) const {
966
return DiffImpl->getMapped(SourceTree.TreeImpl, Id);
967
}
968
969
SyntaxTree::SyntaxTree(ASTContext &AST)
970
: TreeImpl(std::make_unique<SyntaxTree::Impl>(
971
this, AST.getTranslationUnitDecl(), AST)) {}
972
973
SyntaxTree::~SyntaxTree() = default;
974
975
const ASTContext &SyntaxTree::getASTContext() const { return TreeImpl->AST; }
976
977
const Node &SyntaxTree::getNode(NodeId Id) const {
978
return TreeImpl->getNode(Id);
979
}
980
981
int SyntaxTree::getSize() const { return TreeImpl->getSize(); }
982
NodeId SyntaxTree::getRootId() const { return TreeImpl->getRootId(); }
983
SyntaxTree::PreorderIterator SyntaxTree::begin() const {
984
return TreeImpl->begin();
985
}
986
SyntaxTree::PreorderIterator SyntaxTree::end() const { return TreeImpl->end(); }
987
988
int SyntaxTree::findPositionInParent(NodeId Id) const {
989
return TreeImpl->findPositionInParent(Id);
990
}
991
992
std::pair<unsigned, unsigned>
993
SyntaxTree::getSourceRangeOffsets(const Node &N) const {
994
const SourceManager &SrcMgr = TreeImpl->AST.getSourceManager();
995
SourceRange Range = N.ASTNode.getSourceRange();
996
SourceLocation BeginLoc = Range.getBegin();
997
SourceLocation EndLoc = Lexer::getLocForEndOfToken(
998
Range.getEnd(), /*Offset=*/0, SrcMgr, TreeImpl->AST.getLangOpts());
999
if (auto *ThisExpr = N.ASTNode.get<CXXThisExpr>()) {
1000
if (ThisExpr->isImplicit())
1001
EndLoc = BeginLoc;
1002
}
1003
unsigned Begin = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(BeginLoc));
1004
unsigned End = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(EndLoc));
1005
return {Begin, End};
1006
}
1007
1008
std::string SyntaxTree::getNodeValue(NodeId Id) const {
1009
return TreeImpl->getNodeValue(Id);
1010
}
1011
1012
std::string SyntaxTree::getNodeValue(const Node &N) const {
1013
return TreeImpl->getNodeValue(N);
1014
}
1015
1016
} // end namespace diff
1017
} // end namespace clang
1018
1019