Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/clang/utils/TableGen/MveEmitter.cpp
35230 views
1
//===- MveEmitter.cpp - Generate arm_mve.h for use with clang -*- C++ -*-=====//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This set of linked tablegen backends is responsible for emitting the bits
10
// and pieces that implement <arm_mve.h>, which is defined by the ACLE standard
11
// and provides a set of types and functions for (more or less) direct access
12
// to the MVE instruction set, including the scalar shifts as well as the
13
// vector instructions.
14
//
15
// MVE's standard intrinsic functions are unusual in that they have a system of
16
// polymorphism. For example, the function vaddq() can behave like vaddq_u16(),
17
// vaddq_f32(), vaddq_s8(), etc., depending on the types of the vector
18
// arguments you give it.
19
//
20
// This constrains the implementation strategies. The usual approach to making
21
// the user-facing functions polymorphic would be to either use
22
// __attribute__((overloadable)) to make a set of vaddq() functions that are
23
// all inline wrappers on the underlying clang builtins, or to define a single
24
// vaddq() macro which expands to an instance of _Generic.
25
//
26
// The inline-wrappers approach would work fine for most intrinsics, except for
27
// the ones that take an argument required to be a compile-time constant,
28
// because if you wrap an inline function around a call to a builtin, the
29
// constant nature of the argument is not passed through.
30
//
31
// The _Generic approach can be made to work with enough effort, but it takes a
32
// lot of machinery, because of the design feature of _Generic that even the
33
// untaken branches are required to pass all front-end validity checks such as
34
// type-correctness. You can work around that by nesting further _Generics all
35
// over the place to coerce things to the right type in untaken branches, but
36
// what you get out is complicated, hard to guarantee its correctness, and
37
// worst of all, gives _completely unreadable_ error messages if the user gets
38
// the types wrong for an intrinsic call.
39
//
40
// Therefore, my strategy is to introduce a new __attribute__ that allows a
41
// function to be mapped to a clang builtin even though it doesn't have the
42
// same name, and then declare all the user-facing MVE function names with that
43
// attribute, mapping each one directly to the clang builtin. And the
44
// polymorphic ones have __attribute__((overloadable)) as well. So once the
45
// compiler has resolved the overload, it knows the internal builtin ID of the
46
// selected function, and can check the immediate arguments against that; and
47
// if the user gets the types wrong in a call to a polymorphic intrinsic, they
48
// get a completely clear error message showing all the declarations of that
49
// function in the header file and explaining why each one doesn't fit their
50
// call.
51
//
52
// The downside of this is that if every clang builtin has to correspond
53
// exactly to a user-facing ACLE intrinsic, then you can't save work in the
54
// frontend by doing it in the header file: CGBuiltin.cpp has to do the entire
55
// job of converting an ACLE intrinsic call into LLVM IR. So the Tablegen
56
// description for an MVE intrinsic has to contain a full description of the
57
// sequence of IRBuilder calls that clang will need to make.
58
//
59
//===----------------------------------------------------------------------===//
60
61
#include "llvm/ADT/APInt.h"
62
#include "llvm/ADT/StringRef.h"
63
#include "llvm/ADT/StringSwitch.h"
64
#include "llvm/Support/Casting.h"
65
#include "llvm/Support/raw_ostream.h"
66
#include "llvm/TableGen/Error.h"
67
#include "llvm/TableGen/Record.h"
68
#include "llvm/TableGen/StringToOffsetTable.h"
69
#include <cassert>
70
#include <cstddef>
71
#include <cstdint>
72
#include <list>
73
#include <map>
74
#include <memory>
75
#include <set>
76
#include <string>
77
#include <vector>
78
79
using namespace llvm;
80
81
namespace {
82
83
class EmitterBase;
84
class Result;
85
86
// -----------------------------------------------------------------------------
87
// A system of classes to represent all the types we'll need to deal with in
88
// the prototypes of intrinsics.
89
//
90
// Query methods include finding out the C name of a type; the "LLVM name" in
91
// the sense of a C++ code snippet that can be used in the codegen function;
92
// the suffix that represents the type in the ACLE intrinsic naming scheme
93
// (e.g. 's32' represents int32_t in intrinsics such as vaddq_s32); whether the
94
// type is floating-point related (hence should be under #ifdef in the MVE
95
// header so that it isn't included in integer-only MVE mode); and the type's
96
// size in bits. Not all subtypes support all these queries.
97
98
class Type {
99
public:
100
enum class TypeKind {
101
// Void appears as a return type (for store intrinsics, which are pure
102
// side-effect). It's also used as the parameter type in the Tablegen
103
// when an intrinsic doesn't need to come in various suffixed forms like
104
// vfooq_s8,vfooq_u16,vfooq_f32.
105
Void,
106
107
// Scalar is used for ordinary int and float types of all sizes.
108
Scalar,
109
110
// Vector is used for anything that occupies exactly one MVE vector
111
// register, i.e. {uint,int,float}NxM_t.
112
Vector,
113
114
// MultiVector is used for the {uint,int,float}NxMxK_t types used by the
115
// interleaving load/store intrinsics v{ld,st}{2,4}q.
116
MultiVector,
117
118
// Predicate is used by all the predicated intrinsics. Its C
119
// representation is mve_pred16_t (which is just an alias for uint16_t).
120
// But we give more detail here, by indicating that a given predicate
121
// instruction is logically regarded as a vector of i1 containing the
122
// same number of lanes as the input vector type. So our Predicate type
123
// comes with a lane count, which we use to decide which kind of <n x i1>
124
// we'll invoke the pred_i2v IR intrinsic to translate it into.
125
Predicate,
126
127
// Pointer is used for pointer types (obviously), and comes with a flag
128
// indicating whether it's a pointer to a const or mutable instance of
129
// the pointee type.
130
Pointer,
131
};
132
133
private:
134
const TypeKind TKind;
135
136
protected:
137
Type(TypeKind K) : TKind(K) {}
138
139
public:
140
TypeKind typeKind() const { return TKind; }
141
virtual ~Type() = default;
142
virtual bool requiresFloat() const = 0;
143
virtual bool requiresMVE() const = 0;
144
virtual unsigned sizeInBits() const = 0;
145
virtual std::string cName() const = 0;
146
virtual std::string llvmName() const {
147
PrintFatalError("no LLVM type name available for type " + cName());
148
}
149
virtual std::string acleSuffix(std::string) const {
150
PrintFatalError("no ACLE suffix available for this type");
151
}
152
};
153
154
enum class ScalarTypeKind { SignedInt, UnsignedInt, Float };
155
inline std::string toLetter(ScalarTypeKind kind) {
156
switch (kind) {
157
case ScalarTypeKind::SignedInt:
158
return "s";
159
case ScalarTypeKind::UnsignedInt:
160
return "u";
161
case ScalarTypeKind::Float:
162
return "f";
163
}
164
llvm_unreachable("Unhandled ScalarTypeKind enum");
165
}
166
inline std::string toCPrefix(ScalarTypeKind kind) {
167
switch (kind) {
168
case ScalarTypeKind::SignedInt:
169
return "int";
170
case ScalarTypeKind::UnsignedInt:
171
return "uint";
172
case ScalarTypeKind::Float:
173
return "float";
174
}
175
llvm_unreachable("Unhandled ScalarTypeKind enum");
176
}
177
178
class VoidType : public Type {
179
public:
180
VoidType() : Type(TypeKind::Void) {}
181
unsigned sizeInBits() const override { return 0; }
182
bool requiresFloat() const override { return false; }
183
bool requiresMVE() const override { return false; }
184
std::string cName() const override { return "void"; }
185
186
static bool classof(const Type *T) { return T->typeKind() == TypeKind::Void; }
187
std::string acleSuffix(std::string) const override { return ""; }
188
};
189
190
class PointerType : public Type {
191
const Type *Pointee;
192
bool Const;
193
194
public:
195
PointerType(const Type *Pointee, bool Const)
196
: Type(TypeKind::Pointer), Pointee(Pointee), Const(Const) {}
197
unsigned sizeInBits() const override { return 32; }
198
bool requiresFloat() const override { return Pointee->requiresFloat(); }
199
bool requiresMVE() const override { return Pointee->requiresMVE(); }
200
std::string cName() const override {
201
std::string Name = Pointee->cName();
202
203
// The syntax for a pointer in C is different when the pointee is
204
// itself a pointer. The MVE intrinsics don't contain any double
205
// pointers, so we don't need to worry about that wrinkle.
206
assert(!isa<PointerType>(Pointee) && "Pointer to pointer not supported");
207
208
if (Const)
209
Name = "const " + Name;
210
return Name + " *";
211
}
212
std::string llvmName() const override {
213
return "llvm::PointerType::getUnqual(" + Pointee->llvmName() + ")";
214
}
215
const Type *getPointeeType() const { return Pointee; }
216
217
static bool classof(const Type *T) {
218
return T->typeKind() == TypeKind::Pointer;
219
}
220
};
221
222
// Base class for all the types that have a name of the form
223
// [prefix][numbers]_t, like int32_t, uint16x8_t, float32x4x2_t.
224
//
225
// For this sub-hierarchy we invent a cNameBase() method which returns the
226
// whole name except for the trailing "_t", so that Vector and MultiVector can
227
// append an extra "x2" or whatever to their element type's cNameBase(). Then
228
// the main cName() query method puts "_t" on the end for the final type name.
229
230
class CRegularNamedType : public Type {
231
using Type::Type;
232
virtual std::string cNameBase() const = 0;
233
234
public:
235
std::string cName() const override { return cNameBase() + "_t"; }
236
};
237
238
class ScalarType : public CRegularNamedType {
239
ScalarTypeKind Kind;
240
unsigned Bits;
241
std::string NameOverride;
242
243
public:
244
ScalarType(const Record *Record) : CRegularNamedType(TypeKind::Scalar) {
245
Kind = StringSwitch<ScalarTypeKind>(Record->getValueAsString("kind"))
246
.Case("s", ScalarTypeKind::SignedInt)
247
.Case("u", ScalarTypeKind::UnsignedInt)
248
.Case("f", ScalarTypeKind::Float);
249
Bits = Record->getValueAsInt("size");
250
NameOverride = std::string(Record->getValueAsString("nameOverride"));
251
}
252
unsigned sizeInBits() const override { return Bits; }
253
ScalarTypeKind kind() const { return Kind; }
254
std::string suffix() const { return toLetter(Kind) + utostr(Bits); }
255
std::string cNameBase() const override {
256
return toCPrefix(Kind) + utostr(Bits);
257
}
258
std::string cName() const override {
259
if (NameOverride.empty())
260
return CRegularNamedType::cName();
261
return NameOverride;
262
}
263
std::string llvmName() const override {
264
if (Kind == ScalarTypeKind::Float) {
265
if (Bits == 16)
266
return "HalfTy";
267
if (Bits == 32)
268
return "FloatTy";
269
if (Bits == 64)
270
return "DoubleTy";
271
PrintFatalError("bad size for floating type");
272
}
273
return "Int" + utostr(Bits) + "Ty";
274
}
275
std::string acleSuffix(std::string overrideLetter) const override {
276
return "_" + (overrideLetter.size() ? overrideLetter : toLetter(Kind))
277
+ utostr(Bits);
278
}
279
bool isInteger() const { return Kind != ScalarTypeKind::Float; }
280
bool requiresFloat() const override { return !isInteger(); }
281
bool requiresMVE() const override { return false; }
282
bool hasNonstandardName() const { return !NameOverride.empty(); }
283
284
static bool classof(const Type *T) {
285
return T->typeKind() == TypeKind::Scalar;
286
}
287
};
288
289
class VectorType : public CRegularNamedType {
290
const ScalarType *Element;
291
unsigned Lanes;
292
293
public:
294
VectorType(const ScalarType *Element, unsigned Lanes)
295
: CRegularNamedType(TypeKind::Vector), Element(Element), Lanes(Lanes) {}
296
unsigned sizeInBits() const override { return Lanes * Element->sizeInBits(); }
297
unsigned lanes() const { return Lanes; }
298
bool requiresFloat() const override { return Element->requiresFloat(); }
299
bool requiresMVE() const override { return true; }
300
std::string cNameBase() const override {
301
return Element->cNameBase() + "x" + utostr(Lanes);
302
}
303
std::string llvmName() const override {
304
return "llvm::FixedVectorType::get(" + Element->llvmName() + ", " +
305
utostr(Lanes) + ")";
306
}
307
308
static bool classof(const Type *T) {
309
return T->typeKind() == TypeKind::Vector;
310
}
311
};
312
313
class MultiVectorType : public CRegularNamedType {
314
const VectorType *Element;
315
unsigned Registers;
316
317
public:
318
MultiVectorType(unsigned Registers, const VectorType *Element)
319
: CRegularNamedType(TypeKind::MultiVector), Element(Element),
320
Registers(Registers) {}
321
unsigned sizeInBits() const override {
322
return Registers * Element->sizeInBits();
323
}
324
unsigned registers() const { return Registers; }
325
bool requiresFloat() const override { return Element->requiresFloat(); }
326
bool requiresMVE() const override { return true; }
327
std::string cNameBase() const override {
328
return Element->cNameBase() + "x" + utostr(Registers);
329
}
330
331
// MultiVectorType doesn't override llvmName, because we don't expect to do
332
// automatic code generation for the MVE intrinsics that use it: the {vld2,
333
// vld4, vst2, vst4} family are the only ones that use these types, so it was
334
// easier to hand-write the codegen for dealing with these structs than to
335
// build in lots of extra automatic machinery that would only be used once.
336
337
static bool classof(const Type *T) {
338
return T->typeKind() == TypeKind::MultiVector;
339
}
340
};
341
342
class PredicateType : public CRegularNamedType {
343
unsigned Lanes;
344
345
public:
346
PredicateType(unsigned Lanes)
347
: CRegularNamedType(TypeKind::Predicate), Lanes(Lanes) {}
348
unsigned sizeInBits() const override { return 16; }
349
std::string cNameBase() const override { return "mve_pred16"; }
350
bool requiresFloat() const override { return false; };
351
bool requiresMVE() const override { return true; }
352
std::string llvmName() const override {
353
return "llvm::FixedVectorType::get(Builder.getInt1Ty(), " + utostr(Lanes) +
354
")";
355
}
356
357
static bool classof(const Type *T) {
358
return T->typeKind() == TypeKind::Predicate;
359
}
360
};
361
362
// -----------------------------------------------------------------------------
363
// Class to facilitate merging together the code generation for many intrinsics
364
// by means of varying a few constant or type parameters.
365
//
366
// Most obviously, the intrinsics in a single parametrised family will have
367
// code generation sequences that only differ in a type or two, e.g. vaddq_s8
368
// and vaddq_u16 will look the same apart from putting a different vector type
369
// in the call to CGM.getIntrinsic(). But also, completely different intrinsics
370
// will often code-generate in the same way, with only a different choice of
371
// _which_ IR intrinsic they lower to (e.g. vaddq_m_s8 and vmulq_m_s8), but
372
// marshalling the arguments and return values of the IR intrinsic in exactly
373
// the same way. And others might differ only in some other kind of constant,
374
// such as a lane index.
375
//
376
// So, when we generate the IR-building code for all these intrinsics, we keep
377
// track of every value that could possibly be pulled out of the code and
378
// stored ahead of time in a local variable. Then we group together intrinsics
379
// by textual equivalence of the code that would result if _all_ those
380
// parameters were stored in local variables. That gives us maximal sets that
381
// can be implemented by a single piece of IR-building code by changing
382
// parameter values ahead of time.
383
//
384
// After we've done that, we do a second pass in which we only allocate _some_
385
// of the parameters into local variables, by tracking which ones have the same
386
// values as each other (so that a single variable can be reused) and which
387
// ones are the same across the whole set (so that no variable is needed at
388
// all).
389
//
390
// Hence the class below. Its allocParam method is invoked during code
391
// generation by every method of a Result subclass (see below) that wants to
392
// give it the opportunity to pull something out into a switchable parameter.
393
// It returns a variable name for the parameter, or (if it's being used in the
394
// second pass once we've decided that some parameters don't need to be stored
395
// in variables after all) it might just return the input expression unchanged.
396
397
struct CodeGenParamAllocator {
398
// Accumulated during code generation
399
std::vector<std::string> *ParamTypes = nullptr;
400
std::vector<std::string> *ParamValues = nullptr;
401
402
// Provided ahead of time in pass 2, to indicate which parameters are being
403
// assigned to what. This vector contains an entry for each call to
404
// allocParam expected during code gen (which we counted up in pass 1), and
405
// indicates the number of the parameter variable that should be returned, or
406
// -1 if this call shouldn't allocate a parameter variable at all.
407
//
408
// We rely on the recursive code generation working identically in passes 1
409
// and 2, so that the same list of calls to allocParam happen in the same
410
// order. That guarantees that the parameter numbers recorded in pass 1 will
411
// match the entries in this vector that store what EmitterBase::EmitBuiltinCG
412
// decided to do about each one in pass 2.
413
std::vector<int> *ParamNumberMap = nullptr;
414
415
// Internally track how many things we've allocated
416
unsigned nparams = 0;
417
418
std::string allocParam(StringRef Type, StringRef Value) {
419
unsigned ParamNumber;
420
421
if (!ParamNumberMap) {
422
// In pass 1, unconditionally assign a new parameter variable to every
423
// value we're asked to process.
424
ParamNumber = nparams++;
425
} else {
426
// In pass 2, consult the map provided by the caller to find out which
427
// variable we should be keeping things in.
428
int MapValue = (*ParamNumberMap)[nparams++];
429
if (MapValue < 0)
430
return std::string(Value);
431
ParamNumber = MapValue;
432
}
433
434
// If we've allocated a new parameter variable for the first time, store
435
// its type and value to be retrieved after codegen.
436
if (ParamTypes && ParamTypes->size() == ParamNumber)
437
ParamTypes->push_back(std::string(Type));
438
if (ParamValues && ParamValues->size() == ParamNumber)
439
ParamValues->push_back(std::string(Value));
440
441
// Unimaginative naming scheme for parameter variables.
442
return "Param" + utostr(ParamNumber);
443
}
444
};
445
446
// -----------------------------------------------------------------------------
447
// System of classes that represent all the intermediate values used during
448
// code-generation for an intrinsic.
449
//
450
// The base class 'Result' can represent a value of the LLVM type 'Value', or
451
// sometimes 'Address' (for loads/stores, including an alignment requirement).
452
//
453
// In the case where the Tablegen provides a value in the codegen dag as a
454
// plain integer literal, the Result object we construct here will be one that
455
// returns true from hasIntegerConstantValue(). This allows the generated C++
456
// code to use the constant directly in contexts which can take a literal
457
// integer, such as Builder.CreateExtractValue(thing, 1), without going to the
458
// effort of calling llvm::ConstantInt::get() and then pulling the constant
459
// back out of the resulting llvm:Value later.
460
461
class Result {
462
public:
463
// Convenient shorthand for the pointer type we'll be using everywhere.
464
using Ptr = std::shared_ptr<Result>;
465
466
private:
467
Ptr Predecessor;
468
std::string VarName;
469
bool VarNameUsed = false;
470
unsigned Visited = 0;
471
472
public:
473
virtual ~Result() = default;
474
using Scope = std::map<std::string, Ptr>;
475
virtual void genCode(raw_ostream &OS, CodeGenParamAllocator &) const = 0;
476
virtual bool hasIntegerConstantValue() const { return false; }
477
virtual uint32_t integerConstantValue() const { return 0; }
478
virtual bool hasIntegerValue() const { return false; }
479
virtual std::string getIntegerValue(const std::string &) {
480
llvm_unreachable("non-working Result::getIntegerValue called");
481
}
482
virtual std::string typeName() const { return "Value *"; }
483
484
// Mostly, when a code-generation operation has a dependency on prior
485
// operations, it's because it uses the output values of those operations as
486
// inputs. But there's one exception, which is the use of 'seq' in Tablegen
487
// to indicate that operations have to be performed in sequence regardless of
488
// whether they use each others' output values.
489
//
490
// So, the actual generation of code is done by depth-first search, using the
491
// prerequisites() method to get a list of all the other Results that have to
492
// be computed before this one. That method divides into the 'predecessor',
493
// set by setPredecessor() while processing a 'seq' dag node, and the list
494
// returned by 'morePrerequisites', which each subclass implements to return
495
// a list of the Results it uses as input to whatever its own computation is
496
// doing.
497
498
virtual void morePrerequisites(std::vector<Ptr> &output) const {}
499
std::vector<Ptr> prerequisites() const {
500
std::vector<Ptr> ToRet;
501
if (Predecessor)
502
ToRet.push_back(Predecessor);
503
morePrerequisites(ToRet);
504
return ToRet;
505
}
506
507
void setPredecessor(Ptr p) {
508
// If the user has nested one 'seq' node inside another, and this
509
// method is called on the return value of the inner 'seq' (i.e.
510
// the final item inside it), then we can't link _this_ node to p,
511
// because it already has a predecessor. Instead, walk the chain
512
// until we find the first item in the inner seq, and link that to
513
// p, so that nesting seqs has the obvious effect of linking
514
// everything together into one long sequential chain.
515
Result *r = this;
516
while (r->Predecessor)
517
r = r->Predecessor.get();
518
r->Predecessor = p;
519
}
520
521
// Each Result will be assigned a variable name in the output code, but not
522
// all those variable names will actually be used (e.g. the return value of
523
// Builder.CreateStore has void type, so nobody will want to refer to it). To
524
// prevent annoying compiler warnings, we track whether each Result's
525
// variable name was ever actually mentioned in subsequent statements, so
526
// that it can be left out of the final generated code.
527
std::string varname() {
528
VarNameUsed = true;
529
return VarName;
530
}
531
void setVarname(const StringRef s) { VarName = std::string(s); }
532
bool varnameUsed() const { return VarNameUsed; }
533
534
// Emit code to generate this result as a Value *.
535
virtual std::string asValue() {
536
return varname();
537
}
538
539
// Code generation happens in multiple passes. This method tracks whether a
540
// Result has yet been visited in a given pass, without the need for a
541
// tedious loop in between passes that goes through and resets a 'visited'
542
// flag back to false: you just set Pass=1 the first time round, and Pass=2
543
// the second time.
544
bool needsVisiting(unsigned Pass) {
545
bool ToRet = Visited < Pass;
546
Visited = Pass;
547
return ToRet;
548
}
549
};
550
551
// Result subclass that retrieves one of the arguments to the clang builtin
552
// function. In cases where the argument has pointer type, we call
553
// EmitPointerWithAlignment and store the result in a variable of type Address,
554
// so that load and store IR nodes can know the right alignment. Otherwise, we
555
// call EmitScalarExpr.
556
//
557
// There are aggregate parameters in the MVE intrinsics API, but we don't deal
558
// with them in this Tablegen back end: they only arise in the vld2q/vld4q and
559
// vst2q/vst4q family, which is few enough that we just write the code by hand
560
// for those in CGBuiltin.cpp.
561
class BuiltinArgResult : public Result {
562
public:
563
unsigned ArgNum;
564
bool AddressType;
565
bool Immediate;
566
BuiltinArgResult(unsigned ArgNum, bool AddressType, bool Immediate)
567
: ArgNum(ArgNum), AddressType(AddressType), Immediate(Immediate) {}
568
void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override {
569
OS << (AddressType ? "EmitPointerWithAlignment" : "EmitScalarExpr")
570
<< "(E->getArg(" << ArgNum << "))";
571
}
572
std::string typeName() const override {
573
return AddressType ? "Address" : Result::typeName();
574
}
575
// Emit code to generate this result as a Value *.
576
std::string asValue() override {
577
if (AddressType)
578
return "(" + varname() + ".emitRawPointer(*this))";
579
return Result::asValue();
580
}
581
bool hasIntegerValue() const override { return Immediate; }
582
std::string getIntegerValue(const std::string &IntType) override {
583
return "GetIntegerConstantValue<" + IntType + ">(E->getArg(" +
584
utostr(ArgNum) + "), getContext())";
585
}
586
};
587
588
// Result subclass for an integer literal appearing in Tablegen. This may need
589
// to be turned into an llvm::Result by means of llvm::ConstantInt::get(), or
590
// it may be used directly as an integer, depending on which IRBuilder method
591
// it's being passed to.
592
class IntLiteralResult : public Result {
593
public:
594
const ScalarType *IntegerType;
595
uint32_t IntegerValue;
596
IntLiteralResult(const ScalarType *IntegerType, uint32_t IntegerValue)
597
: IntegerType(IntegerType), IntegerValue(IntegerValue) {}
598
void genCode(raw_ostream &OS,
599
CodeGenParamAllocator &ParamAlloc) const override {
600
OS << "llvm::ConstantInt::get("
601
<< ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName())
602
<< ", ";
603
OS << ParamAlloc.allocParam(IntegerType->cName(), utostr(IntegerValue))
604
<< ")";
605
}
606
bool hasIntegerConstantValue() const override { return true; }
607
uint32_t integerConstantValue() const override { return IntegerValue; }
608
};
609
610
// Result subclass representing a cast between different integer types. We use
611
// our own ScalarType abstraction as the representation of the target type,
612
// which gives both size and signedness.
613
class IntCastResult : public Result {
614
public:
615
const ScalarType *IntegerType;
616
Ptr V;
617
IntCastResult(const ScalarType *IntegerType, Ptr V)
618
: IntegerType(IntegerType), V(V) {}
619
void genCode(raw_ostream &OS,
620
CodeGenParamAllocator &ParamAlloc) const override {
621
OS << "Builder.CreateIntCast(" << V->varname() << ", "
622
<< ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName()) << ", "
623
<< ParamAlloc.allocParam("bool",
624
IntegerType->kind() == ScalarTypeKind::SignedInt
625
? "true"
626
: "false")
627
<< ")";
628
}
629
void morePrerequisites(std::vector<Ptr> &output) const override {
630
output.push_back(V);
631
}
632
};
633
634
// Result subclass representing a cast between different pointer types.
635
class PointerCastResult : public Result {
636
public:
637
const PointerType *PtrType;
638
Ptr V;
639
PointerCastResult(const PointerType *PtrType, Ptr V)
640
: PtrType(PtrType), V(V) {}
641
void genCode(raw_ostream &OS,
642
CodeGenParamAllocator &ParamAlloc) const override {
643
OS << "Builder.CreatePointerCast(" << V->asValue() << ", "
644
<< ParamAlloc.allocParam("llvm::Type *", PtrType->llvmName()) << ")";
645
}
646
void morePrerequisites(std::vector<Ptr> &output) const override {
647
output.push_back(V);
648
}
649
};
650
651
// Result subclass representing a call to an IRBuilder method. Each IRBuilder
652
// method we want to use will have a Tablegen record giving the method name and
653
// describing any important details of how to call it, such as whether a
654
// particular argument should be an integer constant instead of an llvm::Value.
655
class IRBuilderResult : public Result {
656
public:
657
StringRef CallPrefix;
658
std::vector<Ptr> Args;
659
std::set<unsigned> AddressArgs;
660
std::map<unsigned, std::string> IntegerArgs;
661
IRBuilderResult(StringRef CallPrefix, const std::vector<Ptr> &Args,
662
const std::set<unsigned> &AddressArgs,
663
const std::map<unsigned, std::string> &IntegerArgs)
664
: CallPrefix(CallPrefix), Args(Args), AddressArgs(AddressArgs),
665
IntegerArgs(IntegerArgs) {}
666
void genCode(raw_ostream &OS,
667
CodeGenParamAllocator &ParamAlloc) const override {
668
OS << CallPrefix;
669
const char *Sep = "";
670
for (unsigned i = 0, e = Args.size(); i < e; ++i) {
671
Ptr Arg = Args[i];
672
auto it = IntegerArgs.find(i);
673
674
OS << Sep;
675
Sep = ", ";
676
677
if (it != IntegerArgs.end()) {
678
if (Arg->hasIntegerConstantValue())
679
OS << "static_cast<" << it->second << ">("
680
<< ParamAlloc.allocParam(it->second,
681
utostr(Arg->integerConstantValue()))
682
<< ")";
683
else if (Arg->hasIntegerValue())
684
OS << ParamAlloc.allocParam(it->second,
685
Arg->getIntegerValue(it->second));
686
} else {
687
OS << Arg->varname();
688
}
689
}
690
OS << ")";
691
}
692
void morePrerequisites(std::vector<Ptr> &output) const override {
693
for (unsigned i = 0, e = Args.size(); i < e; ++i) {
694
Ptr Arg = Args[i];
695
if (IntegerArgs.find(i) != IntegerArgs.end())
696
continue;
697
output.push_back(Arg);
698
}
699
}
700
};
701
702
// Result subclass representing making an Address out of a Value.
703
class AddressResult : public Result {
704
public:
705
Ptr Arg;
706
const Type *Ty;
707
unsigned Align;
708
AddressResult(Ptr Arg, const Type *Ty, unsigned Align)
709
: Arg(Arg), Ty(Ty), Align(Align) {}
710
void genCode(raw_ostream &OS,
711
CodeGenParamAllocator &ParamAlloc) const override {
712
OS << "Address(" << Arg->varname() << ", " << Ty->llvmName()
713
<< ", CharUnits::fromQuantity(" << Align << "))";
714
}
715
std::string typeName() const override {
716
return "Address";
717
}
718
void morePrerequisites(std::vector<Ptr> &output) const override {
719
output.push_back(Arg);
720
}
721
};
722
723
// Result subclass representing a call to an IR intrinsic, which we first have
724
// to look up using an Intrinsic::ID constant and an array of types.
725
class IRIntrinsicResult : public Result {
726
public:
727
std::string IntrinsicID;
728
std::vector<const Type *> ParamTypes;
729
std::vector<Ptr> Args;
730
IRIntrinsicResult(StringRef IntrinsicID,
731
const std::vector<const Type *> &ParamTypes,
732
const std::vector<Ptr> &Args)
733
: IntrinsicID(std::string(IntrinsicID)), ParamTypes(ParamTypes),
734
Args(Args) {}
735
void genCode(raw_ostream &OS,
736
CodeGenParamAllocator &ParamAlloc) const override {
737
std::string IntNo = ParamAlloc.allocParam(
738
"Intrinsic::ID", "Intrinsic::" + IntrinsicID);
739
OS << "Builder.CreateCall(CGM.getIntrinsic(" << IntNo;
740
if (!ParamTypes.empty()) {
741
OS << ", {";
742
const char *Sep = "";
743
for (auto T : ParamTypes) {
744
OS << Sep << ParamAlloc.allocParam("llvm::Type *", T->llvmName());
745
Sep = ", ";
746
}
747
OS << "}";
748
}
749
OS << "), {";
750
const char *Sep = "";
751
for (auto Arg : Args) {
752
OS << Sep << Arg->asValue();
753
Sep = ", ";
754
}
755
OS << "})";
756
}
757
void morePrerequisites(std::vector<Ptr> &output) const override {
758
output.insert(output.end(), Args.begin(), Args.end());
759
}
760
};
761
762
// Result subclass that specifies a type, for use in IRBuilder operations such
763
// as CreateBitCast that take a type argument.
764
class TypeResult : public Result {
765
public:
766
const Type *T;
767
TypeResult(const Type *T) : T(T) {}
768
void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override {
769
OS << T->llvmName();
770
}
771
std::string typeName() const override {
772
return "llvm::Type *";
773
}
774
};
775
776
// -----------------------------------------------------------------------------
777
// Class that describes a single ACLE intrinsic.
778
//
779
// A Tablegen record will typically describe more than one ACLE intrinsic, by
780
// means of setting the 'list<Type> Params' field to a list of multiple
781
// parameter types, so as to define vaddq_{s8,u8,...,f16,f32} all in one go.
782
// We'll end up with one instance of ACLEIntrinsic for *each* parameter type,
783
// rather than a single one for all of them. Hence, the constructor takes both
784
// a Tablegen record and the current value of the parameter type.
785
786
class ACLEIntrinsic {
787
// Structure documenting that one of the intrinsic's arguments is required to
788
// be a compile-time constant integer, and what constraints there are on its
789
// value. Used when generating Sema checking code.
790
struct ImmediateArg {
791
enum class BoundsType { ExplicitRange, UInt };
792
BoundsType boundsType;
793
int64_t i1, i2;
794
StringRef ExtraCheckType, ExtraCheckArgs;
795
const Type *ArgType;
796
};
797
798
// For polymorphic intrinsics, FullName is the explicit name that uniquely
799
// identifies this variant of the intrinsic, and ShortName is the name it
800
// shares with at least one other intrinsic.
801
std::string ShortName, FullName;
802
803
// Name of the architecture extension, used in the Clang builtin name
804
StringRef BuiltinExtension;
805
806
// A very small number of intrinsics _only_ have a polymorphic
807
// variant (vuninitializedq taking an unevaluated argument).
808
bool PolymorphicOnly;
809
810
// Another rarely-used flag indicating that the builtin doesn't
811
// evaluate its argument(s) at all.
812
bool NonEvaluating;
813
814
// True if the intrinsic needs only the C header part (no codegen, semantic
815
// checks, etc). Used for redeclaring MVE intrinsics in the arm_cde.h header.
816
bool HeaderOnly;
817
818
const Type *ReturnType;
819
std::vector<const Type *> ArgTypes;
820
std::map<unsigned, ImmediateArg> ImmediateArgs;
821
Result::Ptr Code;
822
823
std::map<std::string, std::string> CustomCodeGenArgs;
824
825
// Recursive function that does the internals of code generation.
826
void genCodeDfs(Result::Ptr V, std::list<Result::Ptr> &Used,
827
unsigned Pass) const {
828
if (!V->needsVisiting(Pass))
829
return;
830
831
for (Result::Ptr W : V->prerequisites())
832
genCodeDfs(W, Used, Pass);
833
834
Used.push_back(V);
835
}
836
837
public:
838
const std::string &shortName() const { return ShortName; }
839
const std::string &fullName() const { return FullName; }
840
StringRef builtinExtension() const { return BuiltinExtension; }
841
const Type *returnType() const { return ReturnType; }
842
const std::vector<const Type *> &argTypes() const { return ArgTypes; }
843
bool requiresFloat() const {
844
if (ReturnType->requiresFloat())
845
return true;
846
for (const Type *T : ArgTypes)
847
if (T->requiresFloat())
848
return true;
849
return false;
850
}
851
bool requiresMVE() const {
852
return ReturnType->requiresMVE() ||
853
any_of(ArgTypes, [](const Type *T) { return T->requiresMVE(); });
854
}
855
bool polymorphic() const { return ShortName != FullName; }
856
bool polymorphicOnly() const { return PolymorphicOnly; }
857
bool nonEvaluating() const { return NonEvaluating; }
858
bool headerOnly() const { return HeaderOnly; }
859
860
// External entry point for code generation, called from EmitterBase.
861
void genCode(raw_ostream &OS, CodeGenParamAllocator &ParamAlloc,
862
unsigned Pass) const {
863
assert(!headerOnly() && "Called genCode for header-only intrinsic");
864
if (!hasCode()) {
865
for (auto kv : CustomCodeGenArgs)
866
OS << " " << kv.first << " = " << kv.second << ";\n";
867
OS << " break; // custom code gen\n";
868
return;
869
}
870
std::list<Result::Ptr> Used;
871
genCodeDfs(Code, Used, Pass);
872
873
unsigned varindex = 0;
874
for (Result::Ptr V : Used)
875
if (V->varnameUsed())
876
V->setVarname("Val" + utostr(varindex++));
877
878
for (Result::Ptr V : Used) {
879
OS << " ";
880
if (V == Used.back()) {
881
assert(!V->varnameUsed());
882
OS << "return "; // FIXME: what if the top-level thing is void?
883
} else if (V->varnameUsed()) {
884
std::string Type = V->typeName();
885
OS << V->typeName();
886
if (!StringRef(Type).ends_with("*"))
887
OS << " ";
888
OS << V->varname() << " = ";
889
}
890
V->genCode(OS, ParamAlloc);
891
OS << ";\n";
892
}
893
}
894
bool hasCode() const { return Code != nullptr; }
895
896
static std::string signedHexLiteral(const llvm::APInt &iOrig) {
897
llvm::APInt i = iOrig.trunc(64);
898
SmallString<40> s;
899
i.toString(s, 16, true, true);
900
return std::string(s);
901
}
902
903
std::string genSema() const {
904
assert(!headerOnly() && "Called genSema for header-only intrinsic");
905
std::vector<std::string> SemaChecks;
906
907
for (const auto &kv : ImmediateArgs) {
908
const ImmediateArg &IA = kv.second;
909
910
llvm::APInt lo(128, 0), hi(128, 0);
911
switch (IA.boundsType) {
912
case ImmediateArg::BoundsType::ExplicitRange:
913
lo = IA.i1;
914
hi = IA.i2;
915
break;
916
case ImmediateArg::BoundsType::UInt:
917
lo = 0;
918
hi = llvm::APInt::getMaxValue(IA.i1).zext(128);
919
break;
920
}
921
922
std::string Index = utostr(kv.first);
923
924
// Emit a range check if the legal range of values for the
925
// immediate is smaller than the _possible_ range of values for
926
// its type.
927
unsigned ArgTypeBits = IA.ArgType->sizeInBits();
928
llvm::APInt ArgTypeRange = llvm::APInt::getMaxValue(ArgTypeBits).zext(128);
929
llvm::APInt ActualRange = (hi-lo).trunc(64).sext(128);
930
if (ActualRange.ult(ArgTypeRange))
931
SemaChecks.push_back("SemaRef.BuiltinConstantArgRange(TheCall, " +
932
Index + ", " + signedHexLiteral(lo) + ", " +
933
signedHexLiteral(hi) + ")");
934
935
if (!IA.ExtraCheckType.empty()) {
936
std::string Suffix;
937
if (!IA.ExtraCheckArgs.empty()) {
938
std::string tmp;
939
StringRef Arg = IA.ExtraCheckArgs;
940
if (Arg == "!lanesize") {
941
tmp = utostr(IA.ArgType->sizeInBits());
942
Arg = tmp;
943
}
944
Suffix = (Twine(", ") + Arg).str();
945
}
946
SemaChecks.push_back((Twine("SemaRef.BuiltinConstantArg") +
947
IA.ExtraCheckType + "(TheCall, " + Index +
948
Suffix + ")")
949
.str());
950
}
951
952
assert(!SemaChecks.empty());
953
}
954
if (SemaChecks.empty())
955
return "";
956
return join(std::begin(SemaChecks), std::end(SemaChecks),
957
" ||\n ") +
958
";\n";
959
}
960
961
ACLEIntrinsic(EmitterBase &ME, Record *R, const Type *Param);
962
};
963
964
// -----------------------------------------------------------------------------
965
// The top-level class that holds all the state from analyzing the entire
966
// Tablegen input.
967
968
class EmitterBase {
969
protected:
970
// EmitterBase holds a collection of all the types we've instantiated.
971
VoidType Void;
972
std::map<std::string, std::unique_ptr<ScalarType>> ScalarTypes;
973
std::map<std::tuple<ScalarTypeKind, unsigned, unsigned>,
974
std::unique_ptr<VectorType>>
975
VectorTypes;
976
std::map<std::pair<std::string, unsigned>, std::unique_ptr<MultiVectorType>>
977
MultiVectorTypes;
978
std::map<unsigned, std::unique_ptr<PredicateType>> PredicateTypes;
979
std::map<std::string, std::unique_ptr<PointerType>> PointerTypes;
980
981
// And all the ACLEIntrinsic instances we've created.
982
std::map<std::string, std::unique_ptr<ACLEIntrinsic>> ACLEIntrinsics;
983
984
public:
985
// Methods to create a Type object, or return the right existing one from the
986
// maps stored in this object.
987
const VoidType *getVoidType() { return &Void; }
988
const ScalarType *getScalarType(StringRef Name) {
989
return ScalarTypes[std::string(Name)].get();
990
}
991
const ScalarType *getScalarType(Record *R) {
992
return getScalarType(R->getName());
993
}
994
const VectorType *getVectorType(const ScalarType *ST, unsigned Lanes) {
995
std::tuple<ScalarTypeKind, unsigned, unsigned> key(ST->kind(),
996
ST->sizeInBits(), Lanes);
997
if (VectorTypes.find(key) == VectorTypes.end())
998
VectorTypes[key] = std::make_unique<VectorType>(ST, Lanes);
999
return VectorTypes[key].get();
1000
}
1001
const VectorType *getVectorType(const ScalarType *ST) {
1002
return getVectorType(ST, 128 / ST->sizeInBits());
1003
}
1004
const MultiVectorType *getMultiVectorType(unsigned Registers,
1005
const VectorType *VT) {
1006
std::pair<std::string, unsigned> key(VT->cNameBase(), Registers);
1007
if (MultiVectorTypes.find(key) == MultiVectorTypes.end())
1008
MultiVectorTypes[key] = std::make_unique<MultiVectorType>(Registers, VT);
1009
return MultiVectorTypes[key].get();
1010
}
1011
const PredicateType *getPredicateType(unsigned Lanes) {
1012
unsigned key = Lanes;
1013
if (PredicateTypes.find(key) == PredicateTypes.end())
1014
PredicateTypes[key] = std::make_unique<PredicateType>(Lanes);
1015
return PredicateTypes[key].get();
1016
}
1017
const PointerType *getPointerType(const Type *T, bool Const) {
1018
PointerType PT(T, Const);
1019
std::string key = PT.cName();
1020
if (PointerTypes.find(key) == PointerTypes.end())
1021
PointerTypes[key] = std::make_unique<PointerType>(PT);
1022
return PointerTypes[key].get();
1023
}
1024
1025
// Methods to construct a type from various pieces of Tablegen. These are
1026
// always called in the context of setting up a particular ACLEIntrinsic, so
1027
// there's always an ambient parameter type (because we're iterating through
1028
// the Params list in the Tablegen record for the intrinsic), which is used
1029
// to expand Tablegen classes like 'Vector' which mean something different in
1030
// each member of a parametric family.
1031
const Type *getType(Record *R, const Type *Param);
1032
const Type *getType(DagInit *D, const Type *Param);
1033
const Type *getType(Init *I, const Type *Param);
1034
1035
// Functions that translate the Tablegen representation of an intrinsic's
1036
// code generation into a collection of Value objects (which will then be
1037
// reprocessed to read out the actual C++ code included by CGBuiltin.cpp).
1038
Result::Ptr getCodeForDag(DagInit *D, const Result::Scope &Scope,
1039
const Type *Param);
1040
Result::Ptr getCodeForDagArg(DagInit *D, unsigned ArgNum,
1041
const Result::Scope &Scope, const Type *Param);
1042
Result::Ptr getCodeForArg(unsigned ArgNum, const Type *ArgType, bool Promote,
1043
bool Immediate);
1044
1045
void GroupSemaChecks(std::map<std::string, std::set<std::string>> &Checks);
1046
1047
// Constructor and top-level functions.
1048
1049
EmitterBase(RecordKeeper &Records);
1050
virtual ~EmitterBase() = default;
1051
1052
virtual void EmitHeader(raw_ostream &OS) = 0;
1053
virtual void EmitBuiltinDef(raw_ostream &OS) = 0;
1054
virtual void EmitBuiltinSema(raw_ostream &OS) = 0;
1055
void EmitBuiltinCG(raw_ostream &OS);
1056
void EmitBuiltinAliases(raw_ostream &OS);
1057
};
1058
1059
const Type *EmitterBase::getType(Init *I, const Type *Param) {
1060
if (auto Dag = dyn_cast<DagInit>(I))
1061
return getType(Dag, Param);
1062
if (auto Def = dyn_cast<DefInit>(I))
1063
return getType(Def->getDef(), Param);
1064
1065
PrintFatalError("Could not convert this value into a type");
1066
}
1067
1068
const Type *EmitterBase::getType(Record *R, const Type *Param) {
1069
// Pass to a subfield of any wrapper records. We don't expect more than one
1070
// of these: immediate operands are used as plain numbers rather than as
1071
// llvm::Value, so it's meaningless to promote their type anyway.
1072
if (R->isSubClassOf("Immediate"))
1073
R = R->getValueAsDef("type");
1074
else if (R->isSubClassOf("unpromoted"))
1075
R = R->getValueAsDef("underlying_type");
1076
1077
if (R->getName() == "Void")
1078
return getVoidType();
1079
if (R->isSubClassOf("PrimitiveType"))
1080
return getScalarType(R);
1081
if (R->isSubClassOf("ComplexType"))
1082
return getType(R->getValueAsDag("spec"), Param);
1083
1084
PrintFatalError(R->getLoc(), "Could not convert this record into a type");
1085
}
1086
1087
const Type *EmitterBase::getType(DagInit *D, const Type *Param) {
1088
// The meat of the getType system: types in the Tablegen are represented by a
1089
// dag whose operators select sub-cases of this function.
1090
1091
Record *Op = cast<DefInit>(D->getOperator())->getDef();
1092
if (!Op->isSubClassOf("ComplexTypeOp"))
1093
PrintFatalError(
1094
"Expected ComplexTypeOp as dag operator in type expression");
1095
1096
if (Op->getName() == "CTO_Parameter") {
1097
if (isa<VoidType>(Param))
1098
PrintFatalError("Parametric type in unparametrised context");
1099
return Param;
1100
}
1101
1102
if (Op->getName() == "CTO_Vec") {
1103
const Type *Element = getType(D->getArg(0), Param);
1104
if (D->getNumArgs() == 1) {
1105
return getVectorType(cast<ScalarType>(Element));
1106
} else {
1107
const Type *ExistingVector = getType(D->getArg(1), Param);
1108
return getVectorType(cast<ScalarType>(Element),
1109
cast<VectorType>(ExistingVector)->lanes());
1110
}
1111
}
1112
1113
if (Op->getName() == "CTO_Pred") {
1114
const Type *Element = getType(D->getArg(0), Param);
1115
return getPredicateType(128 / Element->sizeInBits());
1116
}
1117
1118
if (Op->isSubClassOf("CTO_Tuple")) {
1119
unsigned Registers = Op->getValueAsInt("n");
1120
const Type *Element = getType(D->getArg(0), Param);
1121
return getMultiVectorType(Registers, cast<VectorType>(Element));
1122
}
1123
1124
if (Op->isSubClassOf("CTO_Pointer")) {
1125
const Type *Pointee = getType(D->getArg(0), Param);
1126
return getPointerType(Pointee, Op->getValueAsBit("const"));
1127
}
1128
1129
if (Op->getName() == "CTO_CopyKind") {
1130
const ScalarType *STSize = cast<ScalarType>(getType(D->getArg(0), Param));
1131
const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(1), Param));
1132
for (const auto &kv : ScalarTypes) {
1133
const ScalarType *RT = kv.second.get();
1134
if (RT->kind() == STKind->kind() && RT->sizeInBits() == STSize->sizeInBits())
1135
return RT;
1136
}
1137
PrintFatalError("Cannot find a type to satisfy CopyKind");
1138
}
1139
1140
if (Op->isSubClassOf("CTO_ScaleSize")) {
1141
const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(0), Param));
1142
int Num = Op->getValueAsInt("num"), Denom = Op->getValueAsInt("denom");
1143
unsigned DesiredSize = STKind->sizeInBits() * Num / Denom;
1144
for (const auto &kv : ScalarTypes) {
1145
const ScalarType *RT = kv.second.get();
1146
if (RT->kind() == STKind->kind() && RT->sizeInBits() == DesiredSize)
1147
return RT;
1148
}
1149
PrintFatalError("Cannot find a type to satisfy ScaleSize");
1150
}
1151
1152
PrintFatalError("Bad operator in type dag expression");
1153
}
1154
1155
Result::Ptr EmitterBase::getCodeForDag(DagInit *D, const Result::Scope &Scope,
1156
const Type *Param) {
1157
Record *Op = cast<DefInit>(D->getOperator())->getDef();
1158
1159
if (Op->getName() == "seq") {
1160
Result::Scope SubScope = Scope;
1161
Result::Ptr PrevV = nullptr;
1162
for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i) {
1163
// We don't use getCodeForDagArg here, because the argument name
1164
// has different semantics in a seq
1165
Result::Ptr V =
1166
getCodeForDag(cast<DagInit>(D->getArg(i)), SubScope, Param);
1167
StringRef ArgName = D->getArgNameStr(i);
1168
if (!ArgName.empty())
1169
SubScope[std::string(ArgName)] = V;
1170
if (PrevV)
1171
V->setPredecessor(PrevV);
1172
PrevV = V;
1173
}
1174
return PrevV;
1175
} else if (Op->isSubClassOf("Type")) {
1176
if (D->getNumArgs() != 1)
1177
PrintFatalError("Type casts should have exactly one argument");
1178
const Type *CastType = getType(Op, Param);
1179
Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param);
1180
if (const auto *ST = dyn_cast<ScalarType>(CastType)) {
1181
if (!ST->requiresFloat()) {
1182
if (Arg->hasIntegerConstantValue())
1183
return std::make_shared<IntLiteralResult>(
1184
ST, Arg->integerConstantValue());
1185
else
1186
return std::make_shared<IntCastResult>(ST, Arg);
1187
}
1188
} else if (const auto *PT = dyn_cast<PointerType>(CastType)) {
1189
return std::make_shared<PointerCastResult>(PT, Arg);
1190
}
1191
PrintFatalError("Unsupported type cast");
1192
} else if (Op->getName() == "address") {
1193
if (D->getNumArgs() != 2)
1194
PrintFatalError("'address' should have two arguments");
1195
Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param);
1196
1197
const Type *Ty = nullptr;
1198
if (auto *DI = dyn_cast<DagInit>(D->getArg(0)))
1199
if (auto *PTy = dyn_cast<PointerType>(getType(DI->getOperator(), Param)))
1200
Ty = PTy->getPointeeType();
1201
if (!Ty)
1202
PrintFatalError("'address' pointer argument should be a pointer");
1203
1204
unsigned Alignment;
1205
if (auto *II = dyn_cast<IntInit>(D->getArg(1))) {
1206
Alignment = II->getValue();
1207
} else {
1208
PrintFatalError("'address' alignment argument should be an integer");
1209
}
1210
return std::make_shared<AddressResult>(Arg, Ty, Alignment);
1211
} else if (Op->getName() == "unsignedflag") {
1212
if (D->getNumArgs() != 1)
1213
PrintFatalError("unsignedflag should have exactly one argument");
1214
Record *TypeRec = cast<DefInit>(D->getArg(0))->getDef();
1215
if (!TypeRec->isSubClassOf("Type"))
1216
PrintFatalError("unsignedflag's argument should be a type");
1217
if (const auto *ST = dyn_cast<ScalarType>(getType(TypeRec, Param))) {
1218
return std::make_shared<IntLiteralResult>(
1219
getScalarType("u32"), ST->kind() == ScalarTypeKind::UnsignedInt);
1220
} else {
1221
PrintFatalError("unsignedflag's argument should be a scalar type");
1222
}
1223
} else if (Op->getName() == "bitsize") {
1224
if (D->getNumArgs() != 1)
1225
PrintFatalError("bitsize should have exactly one argument");
1226
Record *TypeRec = cast<DefInit>(D->getArg(0))->getDef();
1227
if (!TypeRec->isSubClassOf("Type"))
1228
PrintFatalError("bitsize's argument should be a type");
1229
if (const auto *ST = dyn_cast<ScalarType>(getType(TypeRec, Param))) {
1230
return std::make_shared<IntLiteralResult>(getScalarType("u32"),
1231
ST->sizeInBits());
1232
} else {
1233
PrintFatalError("bitsize's argument should be a scalar type");
1234
}
1235
} else {
1236
std::vector<Result::Ptr> Args;
1237
for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i)
1238
Args.push_back(getCodeForDagArg(D, i, Scope, Param));
1239
if (Op->isSubClassOf("IRBuilderBase")) {
1240
std::set<unsigned> AddressArgs;
1241
std::map<unsigned, std::string> IntegerArgs;
1242
for (Record *sp : Op->getValueAsListOfDefs("special_params")) {
1243
unsigned Index = sp->getValueAsInt("index");
1244
if (sp->isSubClassOf("IRBuilderAddrParam")) {
1245
AddressArgs.insert(Index);
1246
} else if (sp->isSubClassOf("IRBuilderIntParam")) {
1247
IntegerArgs[Index] = std::string(sp->getValueAsString("type"));
1248
}
1249
}
1250
return std::make_shared<IRBuilderResult>(Op->getValueAsString("prefix"),
1251
Args, AddressArgs, IntegerArgs);
1252
} else if (Op->isSubClassOf("IRIntBase")) {
1253
std::vector<const Type *> ParamTypes;
1254
for (Record *RParam : Op->getValueAsListOfDefs("params"))
1255
ParamTypes.push_back(getType(RParam, Param));
1256
std::string IntName = std::string(Op->getValueAsString("intname"));
1257
if (Op->getValueAsBit("appendKind"))
1258
IntName += "_" + toLetter(cast<ScalarType>(Param)->kind());
1259
return std::make_shared<IRIntrinsicResult>(IntName, ParamTypes, Args);
1260
} else {
1261
PrintFatalError("Unsupported dag node " + Op->getName());
1262
}
1263
}
1264
}
1265
1266
Result::Ptr EmitterBase::getCodeForDagArg(DagInit *D, unsigned ArgNum,
1267
const Result::Scope &Scope,
1268
const Type *Param) {
1269
Init *Arg = D->getArg(ArgNum);
1270
StringRef Name = D->getArgNameStr(ArgNum);
1271
1272
if (!Name.empty()) {
1273
if (!isa<UnsetInit>(Arg))
1274
PrintFatalError(
1275
"dag operator argument should not have both a value and a name");
1276
auto it = Scope.find(std::string(Name));
1277
if (it == Scope.end())
1278
PrintFatalError("unrecognized variable name '" + Name + "'");
1279
return it->second;
1280
}
1281
1282
// Sometimes the Arg is a bit. Prior to multiclass template argument
1283
// checking, integers would sneak through the bit declaration,
1284
// but now they really are bits.
1285
if (auto *BI = dyn_cast<BitInit>(Arg))
1286
return std::make_shared<IntLiteralResult>(getScalarType("u32"),
1287
BI->getValue());
1288
1289
if (auto *II = dyn_cast<IntInit>(Arg))
1290
return std::make_shared<IntLiteralResult>(getScalarType("u32"),
1291
II->getValue());
1292
1293
if (auto *DI = dyn_cast<DagInit>(Arg))
1294
return getCodeForDag(DI, Scope, Param);
1295
1296
if (auto *DI = dyn_cast<DefInit>(Arg)) {
1297
Record *Rec = DI->getDef();
1298
if (Rec->isSubClassOf("Type")) {
1299
const Type *T = getType(Rec, Param);
1300
return std::make_shared<TypeResult>(T);
1301
}
1302
}
1303
1304
PrintError("bad DAG argument type for code generation");
1305
PrintNote("DAG: " + D->getAsString());
1306
if (TypedInit *Typed = dyn_cast<TypedInit>(Arg))
1307
PrintNote("argument type: " + Typed->getType()->getAsString());
1308
PrintFatalNote("argument number " + Twine(ArgNum) + ": " + Arg->getAsString());
1309
}
1310
1311
Result::Ptr EmitterBase::getCodeForArg(unsigned ArgNum, const Type *ArgType,
1312
bool Promote, bool Immediate) {
1313
Result::Ptr V = std::make_shared<BuiltinArgResult>(
1314
ArgNum, isa<PointerType>(ArgType), Immediate);
1315
1316
if (Promote) {
1317
if (const auto *ST = dyn_cast<ScalarType>(ArgType)) {
1318
if (ST->isInteger() && ST->sizeInBits() < 32)
1319
V = std::make_shared<IntCastResult>(getScalarType("u32"), V);
1320
} else if (const auto *PT = dyn_cast<PredicateType>(ArgType)) {
1321
V = std::make_shared<IntCastResult>(getScalarType("u32"), V);
1322
V = std::make_shared<IRIntrinsicResult>("arm_mve_pred_i2v",
1323
std::vector<const Type *>{PT},
1324
std::vector<Result::Ptr>{V});
1325
}
1326
}
1327
1328
return V;
1329
}
1330
1331
ACLEIntrinsic::ACLEIntrinsic(EmitterBase &ME, Record *R, const Type *Param)
1332
: ReturnType(ME.getType(R->getValueAsDef("ret"), Param)) {
1333
// Derive the intrinsic's full name, by taking the name of the
1334
// Tablegen record (or override) and appending the suffix from its
1335
// parameter type. (If the intrinsic is unparametrised, its
1336
// parameter type will be given as Void, which returns the empty
1337
// string for acleSuffix.)
1338
StringRef BaseName =
1339
(R->isSubClassOf("NameOverride") ? R->getValueAsString("basename")
1340
: R->getName());
1341
StringRef overrideLetter = R->getValueAsString("overrideKindLetter");
1342
FullName =
1343
(Twine(BaseName) + Param->acleSuffix(std::string(overrideLetter))).str();
1344
1345
// Derive the intrinsic's polymorphic name, by removing components from the
1346
// full name as specified by its 'pnt' member ('polymorphic name type'),
1347
// which indicates how many type suffixes to remove, and any other piece of
1348
// the name that should be removed.
1349
Record *PolymorphicNameType = R->getValueAsDef("pnt");
1350
SmallVector<StringRef, 8> NameParts;
1351
StringRef(FullName).split(NameParts, '_');
1352
for (unsigned i = 0, e = PolymorphicNameType->getValueAsInt(
1353
"NumTypeSuffixesToDiscard");
1354
i < e; ++i)
1355
NameParts.pop_back();
1356
if (!PolymorphicNameType->isValueUnset("ExtraSuffixToDiscard")) {
1357
StringRef ExtraSuffix =
1358
PolymorphicNameType->getValueAsString("ExtraSuffixToDiscard");
1359
auto it = NameParts.end();
1360
while (it != NameParts.begin()) {
1361
--it;
1362
if (*it == ExtraSuffix) {
1363
NameParts.erase(it);
1364
break;
1365
}
1366
}
1367
}
1368
ShortName = join(std::begin(NameParts), std::end(NameParts), "_");
1369
1370
BuiltinExtension = R->getValueAsString("builtinExtension");
1371
1372
PolymorphicOnly = R->getValueAsBit("polymorphicOnly");
1373
NonEvaluating = R->getValueAsBit("nonEvaluating");
1374
HeaderOnly = R->getValueAsBit("headerOnly");
1375
1376
// Process the intrinsic's argument list.
1377
DagInit *ArgsDag = R->getValueAsDag("args");
1378
Result::Scope Scope;
1379
for (unsigned i = 0, e = ArgsDag->getNumArgs(); i < e; ++i) {
1380
Init *TypeInit = ArgsDag->getArg(i);
1381
1382
bool Promote = true;
1383
if (auto TypeDI = dyn_cast<DefInit>(TypeInit))
1384
if (TypeDI->getDef()->isSubClassOf("unpromoted"))
1385
Promote = false;
1386
1387
// Work out the type of the argument, for use in the function prototype in
1388
// the header file.
1389
const Type *ArgType = ME.getType(TypeInit, Param);
1390
ArgTypes.push_back(ArgType);
1391
1392
// If the argument is a subclass of Immediate, record the details about
1393
// what values it can take, for Sema checking.
1394
bool Immediate = false;
1395
if (auto TypeDI = dyn_cast<DefInit>(TypeInit)) {
1396
Record *TypeRec = TypeDI->getDef();
1397
if (TypeRec->isSubClassOf("Immediate")) {
1398
Immediate = true;
1399
1400
Record *Bounds = TypeRec->getValueAsDef("bounds");
1401
ImmediateArg &IA = ImmediateArgs[i];
1402
if (Bounds->isSubClassOf("IB_ConstRange")) {
1403
IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
1404
IA.i1 = Bounds->getValueAsInt("lo");
1405
IA.i2 = Bounds->getValueAsInt("hi");
1406
} else if (Bounds->getName() == "IB_UEltValue") {
1407
IA.boundsType = ImmediateArg::BoundsType::UInt;
1408
IA.i1 = Param->sizeInBits();
1409
} else if (Bounds->getName() == "IB_LaneIndex") {
1410
IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
1411
IA.i1 = 0;
1412
IA.i2 = 128 / Param->sizeInBits() - 1;
1413
} else if (Bounds->isSubClassOf("IB_EltBit")) {
1414
IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
1415
IA.i1 = Bounds->getValueAsInt("base");
1416
const Type *T = ME.getType(Bounds->getValueAsDef("type"), Param);
1417
IA.i2 = IA.i1 + T->sizeInBits() - 1;
1418
} else {
1419
PrintFatalError("unrecognised ImmediateBounds subclass");
1420
}
1421
1422
IA.ArgType = ArgType;
1423
1424
if (!TypeRec->isValueUnset("extra")) {
1425
IA.ExtraCheckType = TypeRec->getValueAsString("extra");
1426
if (!TypeRec->isValueUnset("extraarg"))
1427
IA.ExtraCheckArgs = TypeRec->getValueAsString("extraarg");
1428
}
1429
}
1430
}
1431
1432
// The argument will usually have a name in the arguments dag, which goes
1433
// into the variable-name scope that the code gen will refer to.
1434
StringRef ArgName = ArgsDag->getArgNameStr(i);
1435
if (!ArgName.empty())
1436
Scope[std::string(ArgName)] =
1437
ME.getCodeForArg(i, ArgType, Promote, Immediate);
1438
}
1439
1440
// Finally, go through the codegen dag and translate it into a Result object
1441
// (with an arbitrary DAG of depended-on Results hanging off it).
1442
DagInit *CodeDag = R->getValueAsDag("codegen");
1443
Record *MainOp = cast<DefInit>(CodeDag->getOperator())->getDef();
1444
if (MainOp->isSubClassOf("CustomCodegen")) {
1445
// Or, if it's the special case of CustomCodegen, just accumulate
1446
// a list of parameters we're going to assign to variables before
1447
// breaking from the loop.
1448
CustomCodeGenArgs["CustomCodeGenType"] =
1449
(Twine("CustomCodeGen::") + MainOp->getValueAsString("type")).str();
1450
for (unsigned i = 0, e = CodeDag->getNumArgs(); i < e; ++i) {
1451
StringRef Name = CodeDag->getArgNameStr(i);
1452
if (Name.empty()) {
1453
PrintFatalError("Operands to CustomCodegen should have names");
1454
} else if (auto *II = dyn_cast<IntInit>(CodeDag->getArg(i))) {
1455
CustomCodeGenArgs[std::string(Name)] = itostr(II->getValue());
1456
} else if (auto *SI = dyn_cast<StringInit>(CodeDag->getArg(i))) {
1457
CustomCodeGenArgs[std::string(Name)] = std::string(SI->getValue());
1458
} else {
1459
PrintFatalError("Operands to CustomCodegen should be integers");
1460
}
1461
}
1462
} else {
1463
Code = ME.getCodeForDag(CodeDag, Scope, Param);
1464
}
1465
}
1466
1467
EmitterBase::EmitterBase(RecordKeeper &Records) {
1468
// Construct the whole EmitterBase.
1469
1470
// First, look up all the instances of PrimitiveType. This gives us the list
1471
// of vector typedefs we have to put in arm_mve.h, and also allows us to
1472
// collect all the useful ScalarType instances into a big list so that we can
1473
// use it for operations such as 'find the unsigned version of this signed
1474
// integer type'.
1475
for (Record *R : Records.getAllDerivedDefinitions("PrimitiveType"))
1476
ScalarTypes[std::string(R->getName())] = std::make_unique<ScalarType>(R);
1477
1478
// Now go through the instances of Intrinsic, and for each one, iterate
1479
// through its list of type parameters making an ACLEIntrinsic for each one.
1480
for (Record *R : Records.getAllDerivedDefinitions("Intrinsic")) {
1481
for (Record *RParam : R->getValueAsListOfDefs("params")) {
1482
const Type *Param = getType(RParam, getVoidType());
1483
auto Intrinsic = std::make_unique<ACLEIntrinsic>(*this, R, Param);
1484
ACLEIntrinsics[Intrinsic->fullName()] = std::move(Intrinsic);
1485
}
1486
}
1487
}
1488
1489
/// A wrapper on raw_string_ostream that contains its own buffer rather than
1490
/// having to point it at one elsewhere. (In other words, it works just like
1491
/// std::ostringstream; also, this makes it convenient to declare a whole array
1492
/// of them at once.)
1493
///
1494
/// We have to set this up using multiple inheritance, to ensure that the
1495
/// string member has been constructed before raw_string_ostream's constructor
1496
/// is given a pointer to it.
1497
class string_holder {
1498
protected:
1499
std::string S;
1500
};
1501
class raw_self_contained_string_ostream : private string_holder,
1502
public raw_string_ostream {
1503
public:
1504
raw_self_contained_string_ostream() : raw_string_ostream(S) {}
1505
};
1506
1507
const char LLVMLicenseHeader[] =
1508
" *\n"
1509
" *\n"
1510
" * Part of the LLVM Project, under the Apache License v2.0 with LLVM"
1511
" Exceptions.\n"
1512
" * See https://llvm.org/LICENSE.txt for license information.\n"
1513
" * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
1514
" *\n"
1515
" *===-----------------------------------------------------------------"
1516
"------===\n"
1517
" */\n"
1518
"\n";
1519
1520
// Machinery for the grouping of intrinsics by similar codegen.
1521
//
1522
// The general setup is that 'MergeableGroup' stores the things that a set of
1523
// similarly shaped intrinsics have in common: the text of their code
1524
// generation, and the number and type of their parameter variables.
1525
// MergeableGroup is the key in a std::map whose value is a set of
1526
// OutputIntrinsic, which stores the ways in which a particular intrinsic
1527
// specializes the MergeableGroup's generic description: the function name and
1528
// the _values_ of the parameter variables.
1529
1530
struct ComparableStringVector : std::vector<std::string> {
1531
// Infrastructure: a derived class of vector<string> which comes with an
1532
// ordering, so that it can be used as a key in maps and an element in sets.
1533
// There's no requirement on the ordering beyond being deterministic.
1534
bool operator<(const ComparableStringVector &rhs) const {
1535
if (size() != rhs.size())
1536
return size() < rhs.size();
1537
for (size_t i = 0, e = size(); i < e; ++i)
1538
if ((*this)[i] != rhs[i])
1539
return (*this)[i] < rhs[i];
1540
return false;
1541
}
1542
};
1543
1544
struct OutputIntrinsic {
1545
const ACLEIntrinsic *Int;
1546
std::string Name;
1547
ComparableStringVector ParamValues;
1548
bool operator<(const OutputIntrinsic &rhs) const {
1549
if (Name != rhs.Name)
1550
return Name < rhs.Name;
1551
return ParamValues < rhs.ParamValues;
1552
}
1553
};
1554
struct MergeableGroup {
1555
std::string Code;
1556
ComparableStringVector ParamTypes;
1557
bool operator<(const MergeableGroup &rhs) const {
1558
if (Code != rhs.Code)
1559
return Code < rhs.Code;
1560
return ParamTypes < rhs.ParamTypes;
1561
}
1562
};
1563
1564
void EmitterBase::EmitBuiltinCG(raw_ostream &OS) {
1565
// Pass 1: generate code for all the intrinsics as if every type or constant
1566
// that can possibly be abstracted out into a parameter variable will be.
1567
// This identifies the sets of intrinsics we'll group together into a single
1568
// piece of code generation.
1569
1570
std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroupsPrelim;
1571
1572
for (const auto &kv : ACLEIntrinsics) {
1573
const ACLEIntrinsic &Int = *kv.second;
1574
if (Int.headerOnly())
1575
continue;
1576
1577
MergeableGroup MG;
1578
OutputIntrinsic OI;
1579
1580
OI.Int = &Int;
1581
OI.Name = Int.fullName();
1582
CodeGenParamAllocator ParamAllocPrelim{&MG.ParamTypes, &OI.ParamValues};
1583
raw_string_ostream OS(MG.Code);
1584
Int.genCode(OS, ParamAllocPrelim, 1);
1585
OS.flush();
1586
1587
MergeableGroupsPrelim[MG].insert(OI);
1588
}
1589
1590
// Pass 2: for each of those groups, optimize the parameter variable set by
1591
// eliminating 'parameters' that are the same for all intrinsics in the
1592
// group, and merging together pairs of parameter variables that take the
1593
// same values as each other for all intrinsics in the group.
1594
1595
std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroups;
1596
1597
for (const auto &kv : MergeableGroupsPrelim) {
1598
const MergeableGroup &MG = kv.first;
1599
std::vector<int> ParamNumbers;
1600
std::map<ComparableStringVector, int> ParamNumberMap;
1601
1602
// Loop over the parameters for this group.
1603
for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) {
1604
// Is this parameter the same for all intrinsics in the group?
1605
const OutputIntrinsic &OI_first = *kv.second.begin();
1606
bool Constant = all_of(kv.second, [&](const OutputIntrinsic &OI) {
1607
return OI.ParamValues[i] == OI_first.ParamValues[i];
1608
});
1609
1610
// If so, record it as -1, meaning 'no parameter variable needed'. Then
1611
// the corresponding call to allocParam in pass 2 will not generate a
1612
// variable at all, and just use the value inline.
1613
if (Constant) {
1614
ParamNumbers.push_back(-1);
1615
continue;
1616
}
1617
1618
// Otherwise, make a list of the values this parameter takes for each
1619
// intrinsic, and see if that value vector matches anything we already
1620
// have. We also record the parameter type, so that we don't accidentally
1621
// match up two parameter variables with different types. (Not that
1622
// there's much chance of them having textually equivalent values, but in
1623
// _principle_ it could happen.)
1624
ComparableStringVector key;
1625
key.push_back(MG.ParamTypes[i]);
1626
for (const auto &OI : kv.second)
1627
key.push_back(OI.ParamValues[i]);
1628
1629
auto Found = ParamNumberMap.find(key);
1630
if (Found != ParamNumberMap.end()) {
1631
// Yes, an existing parameter variable can be reused for this.
1632
ParamNumbers.push_back(Found->second);
1633
continue;
1634
}
1635
1636
// No, we need a new parameter variable.
1637
int ExistingIndex = ParamNumberMap.size();
1638
ParamNumberMap[key] = ExistingIndex;
1639
ParamNumbers.push_back(ExistingIndex);
1640
}
1641
1642
// Now we're ready to do the pass 2 code generation, which will emit the
1643
// reduced set of parameter variables we've just worked out.
1644
1645
for (const auto &OI_prelim : kv.second) {
1646
const ACLEIntrinsic *Int = OI_prelim.Int;
1647
1648
MergeableGroup MG;
1649
OutputIntrinsic OI;
1650
1651
OI.Int = OI_prelim.Int;
1652
OI.Name = OI_prelim.Name;
1653
CodeGenParamAllocator ParamAlloc{&MG.ParamTypes, &OI.ParamValues,
1654
&ParamNumbers};
1655
raw_string_ostream OS(MG.Code);
1656
Int->genCode(OS, ParamAlloc, 2);
1657
OS.flush();
1658
1659
MergeableGroups[MG].insert(OI);
1660
}
1661
}
1662
1663
// Output the actual C++ code.
1664
1665
for (const auto &kv : MergeableGroups) {
1666
const MergeableGroup &MG = kv.first;
1667
1668
// List of case statements in the main switch on BuiltinID, and an open
1669
// brace.
1670
const char *prefix = "";
1671
for (const auto &OI : kv.second) {
1672
OS << prefix << "case ARM::BI__builtin_arm_" << OI.Int->builtinExtension()
1673
<< "_" << OI.Name << ":";
1674
1675
prefix = "\n";
1676
}
1677
OS << " {\n";
1678
1679
if (!MG.ParamTypes.empty()) {
1680
// If we've got some parameter variables, then emit their declarations...
1681
for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) {
1682
StringRef Type = MG.ParamTypes[i];
1683
OS << " " << Type;
1684
if (!Type.ends_with("*"))
1685
OS << " ";
1686
OS << " Param" << utostr(i) << ";\n";
1687
}
1688
1689
// ... and an inner switch on BuiltinID that will fill them in with each
1690
// individual intrinsic's values.
1691
OS << " switch (BuiltinID) {\n";
1692
for (const auto &OI : kv.second) {
1693
OS << " case ARM::BI__builtin_arm_" << OI.Int->builtinExtension()
1694
<< "_" << OI.Name << ":\n";
1695
for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i)
1696
OS << " Param" << utostr(i) << " = " << OI.ParamValues[i] << ";\n";
1697
OS << " break;\n";
1698
}
1699
OS << " }\n";
1700
}
1701
1702
// And finally, output the code, and close the outer pair of braces. (The
1703
// code will always end with a 'return' statement, so we need not insert a
1704
// 'break' here.)
1705
OS << MG.Code << "}\n";
1706
}
1707
}
1708
1709
void EmitterBase::EmitBuiltinAliases(raw_ostream &OS) {
1710
// Build a sorted table of:
1711
// - intrinsic id number
1712
// - full name
1713
// - polymorphic name or -1
1714
StringToOffsetTable StringTable;
1715
OS << "static const IntrinToName MapData[] = {\n";
1716
for (const auto &kv : ACLEIntrinsics) {
1717
const ACLEIntrinsic &Int = *kv.second;
1718
if (Int.headerOnly())
1719
continue;
1720
int32_t ShortNameOffset =
1721
Int.polymorphic() ? StringTable.GetOrAddStringOffset(Int.shortName())
1722
: -1;
1723
OS << " { ARM::BI__builtin_arm_" << Int.builtinExtension() << "_"
1724
<< Int.fullName() << ", "
1725
<< StringTable.GetOrAddStringOffset(Int.fullName()) << ", "
1726
<< ShortNameOffset << "},\n";
1727
}
1728
OS << "};\n\n";
1729
1730
OS << "ArrayRef<IntrinToName> Map(MapData);\n\n";
1731
1732
OS << "static const char IntrinNames[] = {\n";
1733
StringTable.EmitString(OS);
1734
OS << "};\n\n";
1735
}
1736
1737
void EmitterBase::GroupSemaChecks(
1738
std::map<std::string, std::set<std::string>> &Checks) {
1739
for (const auto &kv : ACLEIntrinsics) {
1740
const ACLEIntrinsic &Int = *kv.second;
1741
if (Int.headerOnly())
1742
continue;
1743
std::string Check = Int.genSema();
1744
if (!Check.empty())
1745
Checks[Check].insert(Int.fullName());
1746
}
1747
}
1748
1749
// -----------------------------------------------------------------------------
1750
// The class used for generating arm_mve.h and related Clang bits
1751
//
1752
1753
class MveEmitter : public EmitterBase {
1754
public:
1755
MveEmitter(RecordKeeper &Records) : EmitterBase(Records){};
1756
void EmitHeader(raw_ostream &OS) override;
1757
void EmitBuiltinDef(raw_ostream &OS) override;
1758
void EmitBuiltinSema(raw_ostream &OS) override;
1759
};
1760
1761
void MveEmitter::EmitHeader(raw_ostream &OS) {
1762
// Accumulate pieces of the header file that will be enabled under various
1763
// different combinations of #ifdef. The index into parts[] is made up of
1764
// the following bit flags.
1765
constexpr unsigned Float = 1;
1766
constexpr unsigned UseUserNamespace = 2;
1767
1768
constexpr unsigned NumParts = 4;
1769
raw_self_contained_string_ostream parts[NumParts];
1770
1771
// Write typedefs for all the required vector types, and a few scalar
1772
// types that don't already have the name we want them to have.
1773
1774
parts[0] << "typedef uint16_t mve_pred16_t;\n";
1775
parts[Float] << "typedef __fp16 float16_t;\n"
1776
"typedef float float32_t;\n";
1777
for (const auto &kv : ScalarTypes) {
1778
const ScalarType *ST = kv.second.get();
1779
if (ST->hasNonstandardName())
1780
continue;
1781
raw_ostream &OS = parts[ST->requiresFloat() ? Float : 0];
1782
const VectorType *VT = getVectorType(ST);
1783
1784
OS << "typedef __attribute__((__neon_vector_type__(" << VT->lanes()
1785
<< "), __clang_arm_mve_strict_polymorphism)) " << ST->cName() << " "
1786
<< VT->cName() << ";\n";
1787
1788
// Every vector type also comes with a pair of multi-vector types for
1789
// the VLD2 and VLD4 instructions.
1790
for (unsigned n = 2; n <= 4; n += 2) {
1791
const MultiVectorType *MT = getMultiVectorType(n, VT);
1792
OS << "typedef struct { " << VT->cName() << " val[" << n << "]; } "
1793
<< MT->cName() << ";\n";
1794
}
1795
}
1796
parts[0] << "\n";
1797
parts[Float] << "\n";
1798
1799
// Write declarations for all the intrinsics.
1800
1801
for (const auto &kv : ACLEIntrinsics) {
1802
const ACLEIntrinsic &Int = *kv.second;
1803
1804
// We generate each intrinsic twice, under its full unambiguous
1805
// name and its shorter polymorphic name (if the latter exists).
1806
for (bool Polymorphic : {false, true}) {
1807
if (Polymorphic && !Int.polymorphic())
1808
continue;
1809
if (!Polymorphic && Int.polymorphicOnly())
1810
continue;
1811
1812
// We also generate each intrinsic under a name like __arm_vfooq
1813
// (which is in C language implementation namespace, so it's
1814
// safe to define in any conforming user program) and a shorter
1815
// one like vfooq (which is in user namespace, so a user might
1816
// reasonably have used it for something already). If so, they
1817
// can #define __ARM_MVE_PRESERVE_USER_NAMESPACE before
1818
// including the header, which will suppress the shorter names
1819
// and leave only the implementation-namespace ones. Then they
1820
// have to write __arm_vfooq everywhere, of course.
1821
1822
for (bool UserNamespace : {false, true}) {
1823
raw_ostream &OS = parts[(Int.requiresFloat() ? Float : 0) |
1824
(UserNamespace ? UseUserNamespace : 0)];
1825
1826
// Make the name of the function in this declaration.
1827
1828
std::string FunctionName =
1829
Polymorphic ? Int.shortName() : Int.fullName();
1830
if (!UserNamespace)
1831
FunctionName = "__arm_" + FunctionName;
1832
1833
// Make strings for the types involved in the function's
1834
// prototype.
1835
1836
std::string RetTypeName = Int.returnType()->cName();
1837
if (!StringRef(RetTypeName).ends_with("*"))
1838
RetTypeName += " ";
1839
1840
std::vector<std::string> ArgTypeNames;
1841
for (const Type *ArgTypePtr : Int.argTypes())
1842
ArgTypeNames.push_back(ArgTypePtr->cName());
1843
std::string ArgTypesString =
1844
join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", ");
1845
1846
// Emit the actual declaration. All these functions are
1847
// declared 'static inline' without a body, which is fine
1848
// provided clang recognizes them as builtins, and has the
1849
// effect that this type signature is used in place of the one
1850
// that Builtins.td didn't provide. That's how we can get
1851
// structure types that weren't defined until this header was
1852
// included to be part of the type signature of a builtin that
1853
// was known to clang already.
1854
//
1855
// The declarations use __attribute__(__clang_arm_builtin_alias),
1856
// so that each function declared will be recognized as the
1857
// appropriate MVE builtin in spite of its user-facing name.
1858
//
1859
// (That's better than making them all wrapper functions,
1860
// partly because it avoids any compiler error message citing
1861
// the wrapper function definition instead of the user's code,
1862
// and mostly because some MVE intrinsics have arguments
1863
// required to be compile-time constants, and that property
1864
// can't be propagated through a wrapper function. It can be
1865
// propagated through a macro, but macros can't be overloaded
1866
// on argument types very easily - you have to use _Generic,
1867
// which makes error messages very confusing when the user
1868
// gets it wrong.)
1869
//
1870
// Finally, the polymorphic versions of the intrinsics are
1871
// also defined with __attribute__(overloadable), so that when
1872
// the same name is defined with several type signatures, the
1873
// right thing happens. Each one of the overloaded
1874
// declarations is given a different builtin id, which
1875
// has exactly the effect we want: first clang resolves the
1876
// overload to the right function, then it knows which builtin
1877
// it's referring to, and then the Sema checking for that
1878
// builtin can check further things like the constant
1879
// arguments.
1880
//
1881
// One more subtlety is the newline just before the return
1882
// type name. That's a cosmetic tweak to make the error
1883
// messages legible if the user gets the types wrong in a call
1884
// to a polymorphic function: this way, clang will print just
1885
// the _final_ line of each declaration in the header, to show
1886
// the type signatures that would have been legal. So all the
1887
// confusing machinery with __attribute__ is left out of the
1888
// error message, and the user sees something that's more or
1889
// less self-documenting: "here's a list of actually readable
1890
// type signatures for vfooq(), and here's why each one didn't
1891
// match your call".
1892
1893
OS << "static __inline__ __attribute__(("
1894
<< (Polymorphic ? "__overloadable__, " : "")
1895
<< "__clang_arm_builtin_alias(__builtin_arm_mve_" << Int.fullName()
1896
<< ")))\n"
1897
<< RetTypeName << FunctionName << "(" << ArgTypesString << ");\n";
1898
}
1899
}
1900
}
1901
for (auto &part : parts)
1902
part << "\n";
1903
1904
// Now we've finished accumulating bits and pieces into the parts[] array.
1905
// Put it all together to write the final output file.
1906
1907
OS << "/*===---- arm_mve.h - ARM MVE intrinsics "
1908
"-----------------------------------===\n"
1909
<< LLVMLicenseHeader
1910
<< "#ifndef __ARM_MVE_H\n"
1911
"#define __ARM_MVE_H\n"
1912
"\n"
1913
"#if !__ARM_FEATURE_MVE\n"
1914
"#error \"MVE support not enabled\"\n"
1915
"#endif\n"
1916
"\n"
1917
"#include <stdint.h>\n"
1918
"\n"
1919
"#ifdef __cplusplus\n"
1920
"extern \"C\" {\n"
1921
"#endif\n"
1922
"\n";
1923
1924
for (size_t i = 0; i < NumParts; ++i) {
1925
std::vector<std::string> conditions;
1926
if (i & Float)
1927
conditions.push_back("(__ARM_FEATURE_MVE & 2)");
1928
if (i & UseUserNamespace)
1929
conditions.push_back("(!defined __ARM_MVE_PRESERVE_USER_NAMESPACE)");
1930
1931
std::string condition =
1932
join(std::begin(conditions), std::end(conditions), " && ");
1933
if (!condition.empty())
1934
OS << "#if " << condition << "\n\n";
1935
OS << parts[i].str();
1936
if (!condition.empty())
1937
OS << "#endif /* " << condition << " */\n\n";
1938
}
1939
1940
OS << "#ifdef __cplusplus\n"
1941
"} /* extern \"C\" */\n"
1942
"#endif\n"
1943
"\n"
1944
"#endif /* __ARM_MVE_H */\n";
1945
}
1946
1947
void MveEmitter::EmitBuiltinDef(raw_ostream &OS) {
1948
for (const auto &kv : ACLEIntrinsics) {
1949
const ACLEIntrinsic &Int = *kv.second;
1950
OS << "BUILTIN(__builtin_arm_mve_" << Int.fullName()
1951
<< ", \"\", \"n\")\n";
1952
}
1953
1954
std::set<std::string> ShortNamesSeen;
1955
1956
for (const auto &kv : ACLEIntrinsics) {
1957
const ACLEIntrinsic &Int = *kv.second;
1958
if (Int.polymorphic()) {
1959
StringRef Name = Int.shortName();
1960
if (ShortNamesSeen.find(std::string(Name)) == ShortNamesSeen.end()) {
1961
OS << "BUILTIN(__builtin_arm_mve_" << Name << ", \"vi.\", \"nt";
1962
if (Int.nonEvaluating())
1963
OS << "u"; // indicate that this builtin doesn't evaluate its args
1964
OS << "\")\n";
1965
ShortNamesSeen.insert(std::string(Name));
1966
}
1967
}
1968
}
1969
}
1970
1971
void MveEmitter::EmitBuiltinSema(raw_ostream &OS) {
1972
std::map<std::string, std::set<std::string>> Checks;
1973
GroupSemaChecks(Checks);
1974
1975
for (const auto &kv : Checks) {
1976
for (StringRef Name : kv.second)
1977
OS << "case ARM::BI__builtin_arm_mve_" << Name << ":\n";
1978
OS << " return " << kv.first;
1979
}
1980
}
1981
1982
// -----------------------------------------------------------------------------
1983
// Class that describes an ACLE intrinsic implemented as a macro.
1984
//
1985
// This class is used when the intrinsic is polymorphic in 2 or 3 types, but we
1986
// want to avoid a combinatorial explosion by reinterpreting the arguments to
1987
// fixed types.
1988
1989
class FunctionMacro {
1990
std::vector<StringRef> Params;
1991
StringRef Definition;
1992
1993
public:
1994
FunctionMacro(const Record &R);
1995
1996
const std::vector<StringRef> &getParams() const { return Params; }
1997
StringRef getDefinition() const { return Definition; }
1998
};
1999
2000
FunctionMacro::FunctionMacro(const Record &R) {
2001
Params = R.getValueAsListOfStrings("params");
2002
Definition = R.getValueAsString("definition");
2003
}
2004
2005
// -----------------------------------------------------------------------------
2006
// The class used for generating arm_cde.h and related Clang bits
2007
//
2008
2009
class CdeEmitter : public EmitterBase {
2010
std::map<StringRef, FunctionMacro> FunctionMacros;
2011
2012
public:
2013
CdeEmitter(RecordKeeper &Records);
2014
void EmitHeader(raw_ostream &OS) override;
2015
void EmitBuiltinDef(raw_ostream &OS) override;
2016
void EmitBuiltinSema(raw_ostream &OS) override;
2017
};
2018
2019
CdeEmitter::CdeEmitter(RecordKeeper &Records) : EmitterBase(Records) {
2020
for (Record *R : Records.getAllDerivedDefinitions("FunctionMacro"))
2021
FunctionMacros.emplace(R->getName(), FunctionMacro(*R));
2022
}
2023
2024
void CdeEmitter::EmitHeader(raw_ostream &OS) {
2025
// Accumulate pieces of the header file that will be enabled under various
2026
// different combinations of #ifdef. The index into parts[] is one of the
2027
// following:
2028
constexpr unsigned None = 0;
2029
constexpr unsigned MVE = 1;
2030
constexpr unsigned MVEFloat = 2;
2031
2032
constexpr unsigned NumParts = 3;
2033
raw_self_contained_string_ostream parts[NumParts];
2034
2035
// Write typedefs for all the required vector types, and a few scalar
2036
// types that don't already have the name we want them to have.
2037
2038
parts[MVE] << "typedef uint16_t mve_pred16_t;\n";
2039
parts[MVEFloat] << "typedef __fp16 float16_t;\n"
2040
"typedef float float32_t;\n";
2041
for (const auto &kv : ScalarTypes) {
2042
const ScalarType *ST = kv.second.get();
2043
if (ST->hasNonstandardName())
2044
continue;
2045
// We don't have float64x2_t
2046
if (ST->kind() == ScalarTypeKind::Float && ST->sizeInBits() == 64)
2047
continue;
2048
raw_ostream &OS = parts[ST->requiresFloat() ? MVEFloat : MVE];
2049
const VectorType *VT = getVectorType(ST);
2050
2051
OS << "typedef __attribute__((__neon_vector_type__(" << VT->lanes()
2052
<< "), __clang_arm_mve_strict_polymorphism)) " << ST->cName() << " "
2053
<< VT->cName() << ";\n";
2054
}
2055
parts[MVE] << "\n";
2056
parts[MVEFloat] << "\n";
2057
2058
// Write declarations for all the intrinsics.
2059
2060
for (const auto &kv : ACLEIntrinsics) {
2061
const ACLEIntrinsic &Int = *kv.second;
2062
2063
// We generate each intrinsic twice, under its full unambiguous
2064
// name and its shorter polymorphic name (if the latter exists).
2065
for (bool Polymorphic : {false, true}) {
2066
if (Polymorphic && !Int.polymorphic())
2067
continue;
2068
if (!Polymorphic && Int.polymorphicOnly())
2069
continue;
2070
2071
raw_ostream &OS =
2072
parts[Int.requiresFloat() ? MVEFloat
2073
: Int.requiresMVE() ? MVE : None];
2074
2075
// Make the name of the function in this declaration.
2076
std::string FunctionName =
2077
"__arm_" + (Polymorphic ? Int.shortName() : Int.fullName());
2078
2079
// Make strings for the types involved in the function's
2080
// prototype.
2081
std::string RetTypeName = Int.returnType()->cName();
2082
if (!StringRef(RetTypeName).ends_with("*"))
2083
RetTypeName += " ";
2084
2085
std::vector<std::string> ArgTypeNames;
2086
for (const Type *ArgTypePtr : Int.argTypes())
2087
ArgTypeNames.push_back(ArgTypePtr->cName());
2088
std::string ArgTypesString =
2089
join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", ");
2090
2091
// Emit the actual declaration. See MveEmitter::EmitHeader for detailed
2092
// comments
2093
OS << "static __inline__ __attribute__(("
2094
<< (Polymorphic ? "__overloadable__, " : "")
2095
<< "__clang_arm_builtin_alias(__builtin_arm_" << Int.builtinExtension()
2096
<< "_" << Int.fullName() << ")))\n"
2097
<< RetTypeName << FunctionName << "(" << ArgTypesString << ");\n";
2098
}
2099
}
2100
2101
for (const auto &kv : FunctionMacros) {
2102
StringRef Name = kv.first;
2103
const FunctionMacro &FM = kv.second;
2104
2105
raw_ostream &OS = parts[MVE];
2106
OS << "#define "
2107
<< "__arm_" << Name << "(" << join(FM.getParams(), ", ") << ") "
2108
<< FM.getDefinition() << "\n";
2109
}
2110
2111
for (auto &part : parts)
2112
part << "\n";
2113
2114
// Now we've finished accumulating bits and pieces into the parts[] array.
2115
// Put it all together to write the final output file.
2116
2117
OS << "/*===---- arm_cde.h - ARM CDE intrinsics "
2118
"-----------------------------------===\n"
2119
<< LLVMLicenseHeader
2120
<< "#ifndef __ARM_CDE_H\n"
2121
"#define __ARM_CDE_H\n"
2122
"\n"
2123
"#if !__ARM_FEATURE_CDE\n"
2124
"#error \"CDE support not enabled\"\n"
2125
"#endif\n"
2126
"\n"
2127
"#include <stdint.h>\n"
2128
"\n"
2129
"#ifdef __cplusplus\n"
2130
"extern \"C\" {\n"
2131
"#endif\n"
2132
"\n";
2133
2134
for (size_t i = 0; i < NumParts; ++i) {
2135
std::string condition;
2136
if (i == MVEFloat)
2137
condition = "__ARM_FEATURE_MVE & 2";
2138
else if (i == MVE)
2139
condition = "__ARM_FEATURE_MVE";
2140
2141
if (!condition.empty())
2142
OS << "#if " << condition << "\n\n";
2143
OS << parts[i].str();
2144
if (!condition.empty())
2145
OS << "#endif /* " << condition << " */\n\n";
2146
}
2147
2148
OS << "#ifdef __cplusplus\n"
2149
"} /* extern \"C\" */\n"
2150
"#endif\n"
2151
"\n"
2152
"#endif /* __ARM_CDE_H */\n";
2153
}
2154
2155
void CdeEmitter::EmitBuiltinDef(raw_ostream &OS) {
2156
for (const auto &kv : ACLEIntrinsics) {
2157
if (kv.second->headerOnly())
2158
continue;
2159
const ACLEIntrinsic &Int = *kv.second;
2160
OS << "BUILTIN(__builtin_arm_cde_" << Int.fullName()
2161
<< ", \"\", \"ncU\")\n";
2162
}
2163
}
2164
2165
void CdeEmitter::EmitBuiltinSema(raw_ostream &OS) {
2166
std::map<std::string, std::set<std::string>> Checks;
2167
GroupSemaChecks(Checks);
2168
2169
for (const auto &kv : Checks) {
2170
for (StringRef Name : kv.second)
2171
OS << "case ARM::BI__builtin_arm_cde_" << Name << ":\n";
2172
OS << " Err = " << kv.first << " break;\n";
2173
}
2174
}
2175
2176
} // namespace
2177
2178
namespace clang {
2179
2180
// MVE
2181
2182
void EmitMveHeader(RecordKeeper &Records, raw_ostream &OS) {
2183
MveEmitter(Records).EmitHeader(OS);
2184
}
2185
2186
void EmitMveBuiltinDef(RecordKeeper &Records, raw_ostream &OS) {
2187
MveEmitter(Records).EmitBuiltinDef(OS);
2188
}
2189
2190
void EmitMveBuiltinSema(RecordKeeper &Records, raw_ostream &OS) {
2191
MveEmitter(Records).EmitBuiltinSema(OS);
2192
}
2193
2194
void EmitMveBuiltinCG(RecordKeeper &Records, raw_ostream &OS) {
2195
MveEmitter(Records).EmitBuiltinCG(OS);
2196
}
2197
2198
void EmitMveBuiltinAliases(RecordKeeper &Records, raw_ostream &OS) {
2199
MveEmitter(Records).EmitBuiltinAliases(OS);
2200
}
2201
2202
// CDE
2203
2204
void EmitCdeHeader(RecordKeeper &Records, raw_ostream &OS) {
2205
CdeEmitter(Records).EmitHeader(OS);
2206
}
2207
2208
void EmitCdeBuiltinDef(RecordKeeper &Records, raw_ostream &OS) {
2209
CdeEmitter(Records).EmitBuiltinDef(OS);
2210
}
2211
2212
void EmitCdeBuiltinSema(RecordKeeper &Records, raw_ostream &OS) {
2213
CdeEmitter(Records).EmitBuiltinSema(OS);
2214
}
2215
2216
void EmitCdeBuiltinCG(RecordKeeper &Records, raw_ostream &OS) {
2217
CdeEmitter(Records).EmitBuiltinCG(OS);
2218
}
2219
2220
void EmitCdeBuiltinAliases(RecordKeeper &Records, raw_ostream &OS) {
2221
CdeEmitter(Records).EmitBuiltinAliases(OS);
2222
}
2223
2224
} // end namespace clang
2225
2226