Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/compiler-rt/lib/fuzzer/FuzzerCorpus.h
35262 views
1
//===- FuzzerCorpus.h - Internal header for the Fuzzer ----------*- C++ -* ===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
// fuzzer::InputCorpus
9
//===----------------------------------------------------------------------===//
10
11
#ifndef LLVM_FUZZER_CORPUS
12
#define LLVM_FUZZER_CORPUS
13
14
#include "FuzzerDataFlowTrace.h"
15
#include "FuzzerDefs.h"
16
#include "FuzzerIO.h"
17
#include "FuzzerRandom.h"
18
#include "FuzzerSHA1.h"
19
#include "FuzzerTracePC.h"
20
#include <algorithm>
21
#include <bitset>
22
#include <chrono>
23
#include <numeric>
24
#include <random>
25
#include <unordered_set>
26
27
namespace fuzzer {
28
29
struct InputInfo {
30
Unit U; // The actual input data.
31
std::chrono::microseconds TimeOfUnit;
32
uint8_t Sha1[kSHA1NumBytes]; // Checksum.
33
// Number of features that this input has and no smaller input has.
34
size_t NumFeatures = 0;
35
size_t Tmp = 0; // Used by ValidateFeatureSet.
36
// Stats.
37
size_t NumExecutedMutations = 0;
38
size_t NumSuccessfullMutations = 0;
39
bool NeverReduce = false;
40
bool MayDeleteFile = false;
41
bool Reduced = false;
42
bool HasFocusFunction = false;
43
std::vector<uint32_t> UniqFeatureSet;
44
std::vector<uint8_t> DataFlowTraceForFocusFunction;
45
// Power schedule.
46
bool NeedsEnergyUpdate = false;
47
double Energy = 0.0;
48
double SumIncidence = 0.0;
49
std::vector<std::pair<uint32_t, uint16_t>> FeatureFreqs;
50
51
// Delete feature Idx and its frequency from FeatureFreqs.
52
bool DeleteFeatureFreq(uint32_t Idx) {
53
if (FeatureFreqs.empty())
54
return false;
55
56
// Binary search over local feature frequencies sorted by index.
57
auto Lower = std::lower_bound(FeatureFreqs.begin(), FeatureFreqs.end(),
58
std::pair<uint32_t, uint16_t>(Idx, 0));
59
60
if (Lower != FeatureFreqs.end() && Lower->first == Idx) {
61
FeatureFreqs.erase(Lower);
62
return true;
63
}
64
return false;
65
}
66
67
// Assign more energy to a high-entropy seed, i.e., that reveals more
68
// information about the globally rare features in the neighborhood of the
69
// seed. Since we do not know the entropy of a seed that has never been
70
// executed we assign fresh seeds maximum entropy and let II->Energy approach
71
// the true entropy from above. If ScalePerExecTime is true, the computed
72
// entropy is scaled based on how fast this input executes compared to the
73
// average execution time of inputs. The faster an input executes, the more
74
// energy gets assigned to the input.
75
void UpdateEnergy(size_t GlobalNumberOfFeatures, bool ScalePerExecTime,
76
std::chrono::microseconds AverageUnitExecutionTime) {
77
Energy = 0.0;
78
SumIncidence = 0.0;
79
80
// Apply add-one smoothing to locally discovered features.
81
for (const auto &F : FeatureFreqs) {
82
double LocalIncidence = F.second + 1;
83
Energy -= LocalIncidence * log(LocalIncidence);
84
SumIncidence += LocalIncidence;
85
}
86
87
// Apply add-one smoothing to locally undiscovered features.
88
// PreciseEnergy -= 0; // since log(1.0) == 0)
89
SumIncidence +=
90
static_cast<double>(GlobalNumberOfFeatures - FeatureFreqs.size());
91
92
// Add a single locally abundant feature apply add-one smoothing.
93
double AbdIncidence = static_cast<double>(NumExecutedMutations + 1);
94
Energy -= AbdIncidence * log(AbdIncidence);
95
SumIncidence += AbdIncidence;
96
97
// Normalize.
98
if (SumIncidence != 0)
99
Energy = Energy / SumIncidence + log(SumIncidence);
100
101
if (ScalePerExecTime) {
102
// Scaling to favor inputs with lower execution time.
103
uint32_t PerfScore = 100;
104
if (TimeOfUnit.count() > AverageUnitExecutionTime.count() * 10)
105
PerfScore = 10;
106
else if (TimeOfUnit.count() > AverageUnitExecutionTime.count() * 4)
107
PerfScore = 25;
108
else if (TimeOfUnit.count() > AverageUnitExecutionTime.count() * 2)
109
PerfScore = 50;
110
else if (TimeOfUnit.count() * 3 > AverageUnitExecutionTime.count() * 4)
111
PerfScore = 75;
112
else if (TimeOfUnit.count() * 4 < AverageUnitExecutionTime.count())
113
PerfScore = 300;
114
else if (TimeOfUnit.count() * 3 < AverageUnitExecutionTime.count())
115
PerfScore = 200;
116
else if (TimeOfUnit.count() * 2 < AverageUnitExecutionTime.count())
117
PerfScore = 150;
118
119
Energy *= PerfScore;
120
}
121
}
122
123
// Increment the frequency of the feature Idx.
124
void UpdateFeatureFrequency(uint32_t Idx) {
125
NeedsEnergyUpdate = true;
126
127
// The local feature frequencies is an ordered vector of pairs.
128
// If there are no local feature frequencies, push_back preserves order.
129
// Set the feature frequency for feature Idx32 to 1.
130
if (FeatureFreqs.empty()) {
131
FeatureFreqs.push_back(std::pair<uint32_t, uint16_t>(Idx, 1));
132
return;
133
}
134
135
// Binary search over local feature frequencies sorted by index.
136
auto Lower = std::lower_bound(FeatureFreqs.begin(), FeatureFreqs.end(),
137
std::pair<uint32_t, uint16_t>(Idx, 0));
138
139
// If feature Idx32 already exists, increment its frequency.
140
// Otherwise, insert a new pair right after the next lower index.
141
if (Lower != FeatureFreqs.end() && Lower->first == Idx) {
142
Lower->second++;
143
} else {
144
FeatureFreqs.insert(Lower, std::pair<uint32_t, uint16_t>(Idx, 1));
145
}
146
}
147
};
148
149
struct EntropicOptions {
150
bool Enabled;
151
size_t NumberOfRarestFeatures;
152
size_t FeatureFrequencyThreshold;
153
bool ScalePerExecTime;
154
};
155
156
class InputCorpus {
157
static const uint32_t kFeatureSetSize = 1 << 21;
158
static const uint8_t kMaxMutationFactor = 20;
159
static const size_t kSparseEnergyUpdates = 100;
160
161
size_t NumExecutedMutations = 0;
162
163
EntropicOptions Entropic;
164
165
public:
166
InputCorpus(const std::string &OutputCorpus, EntropicOptions Entropic)
167
: Entropic(Entropic), OutputCorpus(OutputCorpus) {
168
memset(InputSizesPerFeature, 0, sizeof(InputSizesPerFeature));
169
memset(SmallestElementPerFeature, 0, sizeof(SmallestElementPerFeature));
170
}
171
~InputCorpus() {
172
for (auto II : Inputs)
173
delete II;
174
}
175
size_t size() const { return Inputs.size(); }
176
size_t SizeInBytes() const {
177
size_t Res = 0;
178
for (auto II : Inputs)
179
Res += II->U.size();
180
return Res;
181
}
182
size_t NumActiveUnits() const {
183
size_t Res = 0;
184
for (auto II : Inputs)
185
Res += !II->U.empty();
186
return Res;
187
}
188
size_t MaxInputSize() const {
189
size_t Res = 0;
190
for (auto II : Inputs)
191
Res = std::max(Res, II->U.size());
192
return Res;
193
}
194
void IncrementNumExecutedMutations() { NumExecutedMutations++; }
195
196
size_t NumInputsThatTouchFocusFunction() {
197
return std::count_if(Inputs.begin(), Inputs.end(), [](const InputInfo *II) {
198
return II->HasFocusFunction;
199
});
200
}
201
202
size_t NumInputsWithDataFlowTrace() {
203
return std::count_if(Inputs.begin(), Inputs.end(), [](const InputInfo *II) {
204
return !II->DataFlowTraceForFocusFunction.empty();
205
});
206
}
207
208
bool empty() const { return Inputs.empty(); }
209
const Unit &operator[] (size_t Idx) const { return Inputs[Idx]->U; }
210
InputInfo *AddToCorpus(const Unit &U, size_t NumFeatures, bool MayDeleteFile,
211
bool HasFocusFunction, bool NeverReduce,
212
std::chrono::microseconds TimeOfUnit,
213
const std::vector<uint32_t> &FeatureSet,
214
const DataFlowTrace &DFT, const InputInfo *BaseII) {
215
assert(!U.empty());
216
if (FeatureDebug)
217
Printf("ADD_TO_CORPUS %zd NF %zd\n", Inputs.size(), NumFeatures);
218
// Inputs.size() is cast to uint32_t below.
219
assert(Inputs.size() < std::numeric_limits<uint32_t>::max());
220
Inputs.push_back(new InputInfo());
221
InputInfo &II = *Inputs.back();
222
II.U = U;
223
II.NumFeatures = NumFeatures;
224
II.NeverReduce = NeverReduce;
225
II.TimeOfUnit = TimeOfUnit;
226
II.MayDeleteFile = MayDeleteFile;
227
II.UniqFeatureSet = FeatureSet;
228
II.HasFocusFunction = HasFocusFunction;
229
// Assign maximal energy to the new seed.
230
II.Energy = RareFeatures.empty() ? 1.0 : log(RareFeatures.size());
231
II.SumIncidence = static_cast<double>(RareFeatures.size());
232
II.NeedsEnergyUpdate = false;
233
std::sort(II.UniqFeatureSet.begin(), II.UniqFeatureSet.end());
234
ComputeSHA1(U.data(), U.size(), II.Sha1);
235
auto Sha1Str = Sha1ToString(II.Sha1);
236
Hashes.insert(Sha1Str);
237
if (HasFocusFunction)
238
if (auto V = DFT.Get(Sha1Str))
239
II.DataFlowTraceForFocusFunction = *V;
240
// This is a gross heuristic.
241
// Ideally, when we add an element to a corpus we need to know its DFT.
242
// But if we don't, we'll use the DFT of its base input.
243
if (II.DataFlowTraceForFocusFunction.empty() && BaseII)
244
II.DataFlowTraceForFocusFunction = BaseII->DataFlowTraceForFocusFunction;
245
DistributionNeedsUpdate = true;
246
PrintCorpus();
247
// ValidateFeatureSet();
248
return &II;
249
}
250
251
// Debug-only
252
void PrintUnit(const Unit &U) {
253
if (!FeatureDebug) return;
254
for (uint8_t C : U) {
255
if (C != 'F' && C != 'U' && C != 'Z')
256
C = '.';
257
Printf("%c", C);
258
}
259
}
260
261
// Debug-only
262
void PrintFeatureSet(const std::vector<uint32_t> &FeatureSet) {
263
if (!FeatureDebug) return;
264
Printf("{");
265
for (uint32_t Feature: FeatureSet)
266
Printf("%u,", Feature);
267
Printf("}");
268
}
269
270
// Debug-only
271
void PrintCorpus() {
272
if (!FeatureDebug) return;
273
Printf("======= CORPUS:\n");
274
int i = 0;
275
for (auto II : Inputs) {
276
if (std::find(II->U.begin(), II->U.end(), 'F') != II->U.end()) {
277
Printf("[%2d] ", i);
278
Printf("%s sz=%zd ", Sha1ToString(II->Sha1).c_str(), II->U.size());
279
PrintUnit(II->U);
280
Printf(" ");
281
PrintFeatureSet(II->UniqFeatureSet);
282
Printf("\n");
283
}
284
i++;
285
}
286
}
287
288
void Replace(InputInfo *II, const Unit &U,
289
std::chrono::microseconds TimeOfUnit) {
290
assert(II->U.size() > U.size());
291
Hashes.erase(Sha1ToString(II->Sha1));
292
DeleteFile(*II);
293
ComputeSHA1(U.data(), U.size(), II->Sha1);
294
Hashes.insert(Sha1ToString(II->Sha1));
295
II->U = U;
296
II->Reduced = true;
297
II->TimeOfUnit = TimeOfUnit;
298
DistributionNeedsUpdate = true;
299
}
300
301
bool HasUnit(const Unit &U) { return Hashes.count(Hash(U)); }
302
bool HasUnit(const std::string &H) { return Hashes.count(H); }
303
InputInfo &ChooseUnitToMutate(Random &Rand) {
304
InputInfo &II = *Inputs[ChooseUnitIdxToMutate(Rand)];
305
assert(!II.U.empty());
306
return II;
307
}
308
309
InputInfo &ChooseUnitToCrossOverWith(Random &Rand, bool UniformDist) {
310
if (!UniformDist) {
311
return ChooseUnitToMutate(Rand);
312
}
313
InputInfo &II = *Inputs[Rand(Inputs.size())];
314
assert(!II.U.empty());
315
return II;
316
}
317
318
// Returns an index of random unit from the corpus to mutate.
319
size_t ChooseUnitIdxToMutate(Random &Rand) {
320
UpdateCorpusDistribution(Rand);
321
size_t Idx = static_cast<size_t>(CorpusDistribution(Rand));
322
assert(Idx < Inputs.size());
323
return Idx;
324
}
325
326
void PrintStats() {
327
for (size_t i = 0; i < Inputs.size(); i++) {
328
const auto &II = *Inputs[i];
329
Printf(" [% 3zd %s] sz: % 5zd runs: % 5zd succ: % 5zd focus: %d\n", i,
330
Sha1ToString(II.Sha1).c_str(), II.U.size(),
331
II.NumExecutedMutations, II.NumSuccessfullMutations,
332
II.HasFocusFunction);
333
}
334
}
335
336
void PrintFeatureSet() {
337
for (size_t i = 0; i < kFeatureSetSize; i++) {
338
if(size_t Sz = GetFeature(i))
339
Printf("[%zd: id %zd sz%zd] ", i, SmallestElementPerFeature[i], Sz);
340
}
341
Printf("\n\t");
342
for (size_t i = 0; i < Inputs.size(); i++)
343
if (size_t N = Inputs[i]->NumFeatures)
344
Printf(" %zd=>%zd ", i, N);
345
Printf("\n");
346
}
347
348
void DeleteFile(const InputInfo &II) {
349
if (!OutputCorpus.empty() && II.MayDeleteFile)
350
RemoveFile(DirPlusFile(OutputCorpus, Sha1ToString(II.Sha1)));
351
}
352
353
void DeleteInput(size_t Idx) {
354
InputInfo &II = *Inputs[Idx];
355
DeleteFile(II);
356
Unit().swap(II.U);
357
II.Energy = 0.0;
358
II.NeedsEnergyUpdate = false;
359
DistributionNeedsUpdate = true;
360
if (FeatureDebug)
361
Printf("EVICTED %zd\n", Idx);
362
}
363
364
void AddRareFeature(uint32_t Idx) {
365
// Maintain *at least* TopXRarestFeatures many rare features
366
// and all features with a frequency below ConsideredRare.
367
// Remove all other features.
368
while (RareFeatures.size() > Entropic.NumberOfRarestFeatures &&
369
FreqOfMostAbundantRareFeature > Entropic.FeatureFrequencyThreshold) {
370
371
// Find most and second most abbundant feature.
372
uint32_t MostAbundantRareFeatureIndices[2] = {RareFeatures[0],
373
RareFeatures[0]};
374
size_t Delete = 0;
375
for (size_t i = 0; i < RareFeatures.size(); i++) {
376
uint32_t Idx2 = RareFeatures[i];
377
if (GlobalFeatureFreqs[Idx2] >=
378
GlobalFeatureFreqs[MostAbundantRareFeatureIndices[0]]) {
379
MostAbundantRareFeatureIndices[1] = MostAbundantRareFeatureIndices[0];
380
MostAbundantRareFeatureIndices[0] = Idx2;
381
Delete = i;
382
}
383
}
384
385
// Remove most abundant rare feature.
386
IsRareFeature[Delete] = false;
387
RareFeatures[Delete] = RareFeatures.back();
388
RareFeatures.pop_back();
389
390
for (auto II : Inputs) {
391
if (II->DeleteFeatureFreq(MostAbundantRareFeatureIndices[0]))
392
II->NeedsEnergyUpdate = true;
393
}
394
395
// Set 2nd most abundant as the new most abundant feature count.
396
FreqOfMostAbundantRareFeature =
397
GlobalFeatureFreqs[MostAbundantRareFeatureIndices[1]];
398
}
399
400
// Add rare feature, handle collisions, and update energy.
401
RareFeatures.push_back(Idx);
402
IsRareFeature[Idx] = true;
403
GlobalFeatureFreqs[Idx] = 0;
404
for (auto II : Inputs) {
405
II->DeleteFeatureFreq(Idx);
406
407
// Apply add-one smoothing to this locally undiscovered feature.
408
// Zero energy seeds will never be fuzzed and remain zero energy.
409
if (II->Energy > 0.0) {
410
II->SumIncidence += 1;
411
II->Energy += log(II->SumIncidence) / II->SumIncidence;
412
}
413
}
414
415
DistributionNeedsUpdate = true;
416
}
417
418
bool AddFeature(size_t Idx, uint32_t NewSize, bool Shrink) {
419
assert(NewSize);
420
Idx = Idx % kFeatureSetSize;
421
uint32_t OldSize = GetFeature(Idx);
422
if (OldSize == 0 || (Shrink && OldSize > NewSize)) {
423
if (OldSize > 0) {
424
size_t OldIdx = SmallestElementPerFeature[Idx];
425
InputInfo &II = *Inputs[OldIdx];
426
assert(II.NumFeatures > 0);
427
II.NumFeatures--;
428
if (II.NumFeatures == 0)
429
DeleteInput(OldIdx);
430
} else {
431
NumAddedFeatures++;
432
if (Entropic.Enabled)
433
AddRareFeature((uint32_t)Idx);
434
}
435
NumUpdatedFeatures++;
436
if (FeatureDebug)
437
Printf("ADD FEATURE %zd sz %d\n", Idx, NewSize);
438
// Inputs.size() is guaranteed to be less than UINT32_MAX by AddToCorpus.
439
SmallestElementPerFeature[Idx] = static_cast<uint32_t>(Inputs.size());
440
InputSizesPerFeature[Idx] = NewSize;
441
return true;
442
}
443
return false;
444
}
445
446
// Increment frequency of feature Idx globally and locally.
447
void UpdateFeatureFrequency(InputInfo *II, size_t Idx) {
448
uint32_t Idx32 = Idx % kFeatureSetSize;
449
450
// Saturated increment.
451
if (GlobalFeatureFreqs[Idx32] == 0xFFFF)
452
return;
453
uint16_t Freq = GlobalFeatureFreqs[Idx32]++;
454
455
// Skip if abundant.
456
if (Freq > FreqOfMostAbundantRareFeature || !IsRareFeature[Idx32])
457
return;
458
459
// Update global frequencies.
460
if (Freq == FreqOfMostAbundantRareFeature)
461
FreqOfMostAbundantRareFeature++;
462
463
// Update local frequencies.
464
if (II)
465
II->UpdateFeatureFrequency(Idx32);
466
}
467
468
size_t NumFeatures() const { return NumAddedFeatures; }
469
size_t NumFeatureUpdates() const { return NumUpdatedFeatures; }
470
471
private:
472
473
static const bool FeatureDebug = false;
474
475
uint32_t GetFeature(size_t Idx) const { return InputSizesPerFeature[Idx]; }
476
477
void ValidateFeatureSet() {
478
if (FeatureDebug)
479
PrintFeatureSet();
480
for (size_t Idx = 0; Idx < kFeatureSetSize; Idx++)
481
if (GetFeature(Idx))
482
Inputs[SmallestElementPerFeature[Idx]]->Tmp++;
483
for (auto II: Inputs) {
484
if (II->Tmp != II->NumFeatures)
485
Printf("ZZZ %zd %zd\n", II->Tmp, II->NumFeatures);
486
assert(II->Tmp == II->NumFeatures);
487
II->Tmp = 0;
488
}
489
}
490
491
// Updates the probability distribution for the units in the corpus.
492
// Must be called whenever the corpus or unit weights are changed.
493
//
494
// Hypothesis: inputs that maximize information about globally rare features
495
// are interesting.
496
void UpdateCorpusDistribution(Random &Rand) {
497
// Skip update if no seeds or rare features were added/deleted.
498
// Sparse updates for local change of feature frequencies,
499
// i.e., randomly do not skip.
500
if (!DistributionNeedsUpdate &&
501
(!Entropic.Enabled || Rand(kSparseEnergyUpdates)))
502
return;
503
504
DistributionNeedsUpdate = false;
505
506
size_t N = Inputs.size();
507
assert(N);
508
Intervals.resize(N + 1);
509
Weights.resize(N);
510
std::iota(Intervals.begin(), Intervals.end(), 0);
511
512
std::chrono::microseconds AverageUnitExecutionTime(0);
513
for (auto II : Inputs) {
514
AverageUnitExecutionTime += II->TimeOfUnit;
515
}
516
AverageUnitExecutionTime /= N;
517
518
bool VanillaSchedule = true;
519
if (Entropic.Enabled) {
520
for (auto II : Inputs) {
521
if (II->NeedsEnergyUpdate && II->Energy != 0.0) {
522
II->NeedsEnergyUpdate = false;
523
II->UpdateEnergy(RareFeatures.size(), Entropic.ScalePerExecTime,
524
AverageUnitExecutionTime);
525
}
526
}
527
528
for (size_t i = 0; i < N; i++) {
529
530
if (Inputs[i]->NumFeatures == 0) {
531
// If the seed doesn't represent any features, assign zero energy.
532
Weights[i] = 0.;
533
} else if (Inputs[i]->NumExecutedMutations / kMaxMutationFactor >
534
NumExecutedMutations / Inputs.size()) {
535
// If the seed was fuzzed a lot more than average, assign zero energy.
536
Weights[i] = 0.;
537
} else {
538
// Otherwise, simply assign the computed energy.
539
Weights[i] = Inputs[i]->Energy;
540
}
541
542
// If energy for all seeds is zero, fall back to vanilla schedule.
543
if (Weights[i] > 0.0)
544
VanillaSchedule = false;
545
}
546
}
547
548
if (VanillaSchedule) {
549
for (size_t i = 0; i < N; i++)
550
Weights[i] =
551
Inputs[i]->NumFeatures
552
? static_cast<double>((i + 1) *
553
(Inputs[i]->HasFocusFunction ? 1000 : 1))
554
: 0.;
555
}
556
557
if (FeatureDebug) {
558
for (size_t i = 0; i < N; i++)
559
Printf("%zd ", Inputs[i]->NumFeatures);
560
Printf("SCORE\n");
561
for (size_t i = 0; i < N; i++)
562
Printf("%f ", Weights[i]);
563
Printf("Weights\n");
564
}
565
CorpusDistribution = std::piecewise_constant_distribution<double>(
566
Intervals.begin(), Intervals.end(), Weights.begin());
567
}
568
std::piecewise_constant_distribution<double> CorpusDistribution;
569
570
std::vector<double> Intervals;
571
std::vector<double> Weights;
572
573
std::unordered_set<std::string> Hashes;
574
std::vector<InputInfo *> Inputs;
575
576
size_t NumAddedFeatures = 0;
577
size_t NumUpdatedFeatures = 0;
578
uint32_t InputSizesPerFeature[kFeatureSetSize];
579
uint32_t SmallestElementPerFeature[kFeatureSetSize];
580
581
bool DistributionNeedsUpdate = true;
582
uint16_t FreqOfMostAbundantRareFeature = 0;
583
uint16_t GlobalFeatureFreqs[kFeatureSetSize] = {};
584
std::vector<uint32_t> RareFeatures;
585
std::bitset<kFeatureSetSize> IsRareFeature;
586
587
std::string OutputCorpus;
588
};
589
590
} // namespace fuzzer
591
592
#endif // LLVM_FUZZER_CORPUS
593
594