Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/compiler-rt/lib/hwasan/hwasan_linux.cpp
35236 views
1
//===-- hwasan_linux.cpp ----------------------------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
///
9
/// \file
10
/// This file is a part of HWAddressSanitizer and contains Linux-, NetBSD- and
11
/// FreeBSD-specific code.
12
///
13
//===----------------------------------------------------------------------===//
14
15
#include "sanitizer_common/sanitizer_platform.h"
16
#if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD
17
18
# include <dlfcn.h>
19
# include <elf.h>
20
# include <errno.h>
21
# include <link.h>
22
# include <pthread.h>
23
# include <signal.h>
24
# include <stdio.h>
25
# include <stdlib.h>
26
# include <sys/prctl.h>
27
# include <sys/resource.h>
28
# include <sys/time.h>
29
# include <unistd.h>
30
# include <unwind.h>
31
32
# include "hwasan.h"
33
# include "hwasan_dynamic_shadow.h"
34
# include "hwasan_interface_internal.h"
35
# include "hwasan_mapping.h"
36
# include "hwasan_report.h"
37
# include "hwasan_thread.h"
38
# include "hwasan_thread_list.h"
39
# include "sanitizer_common/sanitizer_common.h"
40
# include "sanitizer_common/sanitizer_procmaps.h"
41
# include "sanitizer_common/sanitizer_stackdepot.h"
42
43
// Configurations of HWASAN_WITH_INTERCEPTORS and SANITIZER_ANDROID.
44
//
45
// HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=OFF
46
// Not currently tested.
47
// HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=ON
48
// Integration tests downstream exist.
49
// HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=OFF
50
// Tested with check-hwasan on x86_64-linux.
51
// HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=ON
52
// Tested with check-hwasan on aarch64-linux-android.
53
# if !SANITIZER_ANDROID
54
SANITIZER_INTERFACE_ATTRIBUTE
55
THREADLOCAL uptr __hwasan_tls;
56
# endif
57
58
namespace __hwasan {
59
60
// With the zero shadow base we can not actually map pages starting from 0.
61
// This constant is somewhat arbitrary.
62
constexpr uptr kZeroBaseShadowStart = 0;
63
constexpr uptr kZeroBaseMaxShadowStart = 1 << 18;
64
65
static void ProtectGap(uptr addr, uptr size) {
66
__sanitizer::ProtectGap(addr, size, kZeroBaseShadowStart,
67
kZeroBaseMaxShadowStart);
68
}
69
70
uptr kLowMemStart;
71
uptr kLowMemEnd;
72
uptr kHighMemStart;
73
uptr kHighMemEnd;
74
75
static void PrintRange(uptr start, uptr end, const char *name) {
76
Printf("|| [%p, %p] || %.*s ||\n", (void *)start, (void *)end, 10, name);
77
}
78
79
static void PrintAddressSpaceLayout() {
80
PrintRange(kHighMemStart, kHighMemEnd, "HighMem");
81
if (kHighShadowEnd + 1 < kHighMemStart)
82
PrintRange(kHighShadowEnd + 1, kHighMemStart - 1, "ShadowGap");
83
else
84
CHECK_EQ(kHighShadowEnd + 1, kHighMemStart);
85
PrintRange(kHighShadowStart, kHighShadowEnd, "HighShadow");
86
if (kLowShadowEnd + 1 < kHighShadowStart)
87
PrintRange(kLowShadowEnd + 1, kHighShadowStart - 1, "ShadowGap");
88
else
89
CHECK_EQ(kLowMemEnd + 1, kHighShadowStart);
90
PrintRange(kLowShadowStart, kLowShadowEnd, "LowShadow");
91
if (kLowMemEnd + 1 < kLowShadowStart)
92
PrintRange(kLowMemEnd + 1, kLowShadowStart - 1, "ShadowGap");
93
else
94
CHECK_EQ(kLowMemEnd + 1, kLowShadowStart);
95
PrintRange(kLowMemStart, kLowMemEnd, "LowMem");
96
CHECK_EQ(0, kLowMemStart);
97
}
98
99
static uptr GetHighMemEnd() {
100
// HighMem covers the upper part of the address space.
101
uptr max_address = GetMaxUserVirtualAddress();
102
// Adjust max address to make sure that kHighMemEnd and kHighMemStart are
103
// properly aligned:
104
max_address |= (GetMmapGranularity() << kShadowScale) - 1;
105
return max_address;
106
}
107
108
static void InitializeShadowBaseAddress(uptr shadow_size_bytes) {
109
// FIXME: Android should init flags before shadow.
110
if (!SANITIZER_ANDROID && flags()->fixed_shadow_base != (uptr)-1) {
111
__hwasan_shadow_memory_dynamic_address = flags()->fixed_shadow_base;
112
uptr beg = __hwasan_shadow_memory_dynamic_address;
113
uptr end = beg + shadow_size_bytes;
114
if (!MemoryRangeIsAvailable(beg, end)) {
115
Report(
116
"FATAL: HWAddressSanitizer: Shadow range %p-%p is not available.\n",
117
(void *)beg, (void *)end);
118
DumpProcessMap();
119
CHECK(MemoryRangeIsAvailable(beg, end));
120
}
121
} else {
122
__hwasan_shadow_memory_dynamic_address =
123
FindDynamicShadowStart(shadow_size_bytes);
124
}
125
}
126
127
static void MaybeDieIfNoTaggingAbi(const char *message) {
128
if (!flags()->fail_without_syscall_abi)
129
return;
130
Printf("FATAL: %s\n", message);
131
Die();
132
}
133
134
# define PR_SET_TAGGED_ADDR_CTRL 55
135
# define PR_GET_TAGGED_ADDR_CTRL 56
136
# define PR_TAGGED_ADDR_ENABLE (1UL << 0)
137
# define ARCH_GET_UNTAG_MASK 0x4001
138
# define ARCH_ENABLE_TAGGED_ADDR 0x4002
139
# define ARCH_GET_MAX_TAG_BITS 0x4003
140
141
static bool CanUseTaggingAbi() {
142
# if defined(__x86_64__)
143
unsigned long num_bits = 0;
144
// Check for x86 LAM support. This API is based on a currently unsubmitted
145
// patch to the Linux kernel (as of August 2022) and is thus subject to
146
// change. The patch is here:
147
// https://lore.kernel.org/all/[email protected]/
148
//
149
// arch_prctl(ARCH_GET_MAX_TAG_BITS, &bits) returns the maximum number of tag
150
// bits the user can request, or zero if LAM is not supported by the hardware.
151
if (internal_iserror(internal_arch_prctl(ARCH_GET_MAX_TAG_BITS,
152
reinterpret_cast<uptr>(&num_bits))))
153
return false;
154
// The platform must provide enough bits for HWASan tags.
155
if (num_bits < kTagBits)
156
return false;
157
return true;
158
# else
159
// Check for ARM TBI support.
160
return !internal_iserror(internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0));
161
# endif // __x86_64__
162
}
163
164
static bool EnableTaggingAbi() {
165
# if defined(__x86_64__)
166
// Enable x86 LAM tagging for the process.
167
//
168
// arch_prctl(ARCH_ENABLE_TAGGED_ADDR, bits) enables tagging if the number of
169
// tag bits requested by the user does not exceed that provided by the system.
170
// arch_prctl(ARCH_GET_UNTAG_MASK, &mask) returns the mask of significant
171
// address bits. It is ~0ULL if either LAM is disabled for the process or LAM
172
// is not supported by the hardware.
173
if (internal_iserror(internal_arch_prctl(ARCH_ENABLE_TAGGED_ADDR, kTagBits)))
174
return false;
175
unsigned long mask = 0;
176
// Make sure the tag bits are where we expect them to be.
177
if (internal_iserror(internal_arch_prctl(ARCH_GET_UNTAG_MASK,
178
reinterpret_cast<uptr>(&mask))))
179
return false;
180
// @mask has ones for non-tag bits, whereas @kAddressTagMask has ones for tag
181
// bits. Therefore these masks must not overlap.
182
if (mask & kAddressTagMask)
183
return false;
184
return true;
185
# else
186
// Enable ARM TBI tagging for the process. If for some reason tagging is not
187
// supported, prctl(PR_SET_TAGGED_ADDR_CTRL, PR_TAGGED_ADDR_ENABLE) returns
188
// -EINVAL.
189
if (internal_iserror(internal_prctl(PR_SET_TAGGED_ADDR_CTRL,
190
PR_TAGGED_ADDR_ENABLE, 0, 0, 0)))
191
return false;
192
// Ensure that TBI is enabled.
193
if (internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0) !=
194
PR_TAGGED_ADDR_ENABLE)
195
return false;
196
return true;
197
# endif // __x86_64__
198
}
199
200
void InitializeOsSupport() {
201
// Check we're running on a kernel that can use the tagged address ABI.
202
bool has_abi = CanUseTaggingAbi();
203
204
if (!has_abi) {
205
# if SANITIZER_ANDROID || defined(HWASAN_ALIASING_MODE)
206
// Some older Android kernels have the tagged pointer ABI on
207
// unconditionally, and hence don't have the tagged-addr prctl while still
208
// allow the ABI.
209
// If targeting Android and the prctl is not around we assume this is the
210
// case.
211
return;
212
# else
213
MaybeDieIfNoTaggingAbi(
214
"HWAddressSanitizer requires a kernel with tagged address ABI.");
215
# endif
216
}
217
218
if (EnableTaggingAbi())
219
return;
220
221
# if SANITIZER_ANDROID
222
MaybeDieIfNoTaggingAbi(
223
"HWAddressSanitizer failed to enable tagged address syscall ABI.\n"
224
"Check the `sysctl abi.tagged_addr_disabled` configuration.");
225
# else
226
MaybeDieIfNoTaggingAbi(
227
"HWAddressSanitizer failed to enable tagged address syscall ABI.\n");
228
# endif
229
}
230
231
bool InitShadow() {
232
// Define the entire memory range.
233
kHighMemEnd = GetHighMemEnd();
234
235
// Determine shadow memory base offset.
236
InitializeShadowBaseAddress(MemToShadowSize(kHighMemEnd));
237
238
// Place the low memory first.
239
kLowMemEnd = __hwasan_shadow_memory_dynamic_address - 1;
240
kLowMemStart = 0;
241
242
// Define the low shadow based on the already placed low memory.
243
kLowShadowEnd = MemToShadow(kLowMemEnd);
244
kLowShadowStart = __hwasan_shadow_memory_dynamic_address;
245
246
// High shadow takes whatever memory is left up there (making sure it is not
247
// interfering with low memory in the fixed case).
248
kHighShadowEnd = MemToShadow(kHighMemEnd);
249
kHighShadowStart = Max(kLowMemEnd, MemToShadow(kHighShadowEnd)) + 1;
250
251
// High memory starts where allocated shadow allows.
252
kHighMemStart = ShadowToMem(kHighShadowStart);
253
254
// Check the sanity of the defined memory ranges (there might be gaps).
255
CHECK_EQ(kHighMemStart % GetMmapGranularity(), 0);
256
CHECK_GT(kHighMemStart, kHighShadowEnd);
257
CHECK_GT(kHighShadowEnd, kHighShadowStart);
258
CHECK_GT(kHighShadowStart, kLowMemEnd);
259
CHECK_GT(kLowMemEnd, kLowMemStart);
260
CHECK_GT(kLowShadowEnd, kLowShadowStart);
261
CHECK_GT(kLowShadowStart, kLowMemEnd);
262
263
// Reserve shadow memory.
264
ReserveShadowMemoryRange(kLowShadowStart, kLowShadowEnd, "low shadow");
265
ReserveShadowMemoryRange(kHighShadowStart, kHighShadowEnd, "high shadow");
266
267
// Protect all the gaps.
268
ProtectGap(0, Min(kLowMemStart, kLowShadowStart));
269
if (kLowMemEnd + 1 < kLowShadowStart)
270
ProtectGap(kLowMemEnd + 1, kLowShadowStart - kLowMemEnd - 1);
271
if (kLowShadowEnd + 1 < kHighShadowStart)
272
ProtectGap(kLowShadowEnd + 1, kHighShadowStart - kLowShadowEnd - 1);
273
if (kHighShadowEnd + 1 < kHighMemStart)
274
ProtectGap(kHighShadowEnd + 1, kHighMemStart - kHighShadowEnd - 1);
275
276
if (Verbosity())
277
PrintAddressSpaceLayout();
278
279
return true;
280
}
281
282
void InitThreads() {
283
CHECK(__hwasan_shadow_memory_dynamic_address);
284
uptr guard_page_size = GetMmapGranularity();
285
uptr thread_space_start =
286
__hwasan_shadow_memory_dynamic_address - (1ULL << kShadowBaseAlignment);
287
uptr thread_space_end =
288
__hwasan_shadow_memory_dynamic_address - guard_page_size;
289
ReserveShadowMemoryRange(thread_space_start, thread_space_end - 1,
290
"hwasan threads", /*madvise_shadow*/ false);
291
ProtectGap(thread_space_end,
292
__hwasan_shadow_memory_dynamic_address - thread_space_end);
293
InitThreadList(thread_space_start, thread_space_end - thread_space_start);
294
hwasanThreadList().CreateCurrentThread();
295
}
296
297
bool MemIsApp(uptr p) {
298
// Memory outside the alias range has non-zero tags.
299
# if !defined(HWASAN_ALIASING_MODE)
300
CHECK_EQ(GetTagFromPointer(p), 0);
301
# endif
302
303
return (p >= kHighMemStart && p <= kHighMemEnd) ||
304
(p >= kLowMemStart && p <= kLowMemEnd);
305
}
306
307
void InstallAtExitHandler() { atexit(HwasanAtExit); }
308
309
// ---------------------- TSD ---------------- {{{1
310
311
# if HWASAN_WITH_INTERCEPTORS
312
static pthread_key_t tsd_key;
313
static bool tsd_key_inited = false;
314
315
void HwasanTSDThreadInit() {
316
if (tsd_key_inited)
317
CHECK_EQ(0, pthread_setspecific(tsd_key,
318
(void *)GetPthreadDestructorIterations()));
319
}
320
321
void HwasanTSDDtor(void *tsd) {
322
uptr iterations = (uptr)tsd;
323
if (iterations > 1) {
324
CHECK_EQ(0, pthread_setspecific(tsd_key, (void *)(iterations - 1)));
325
return;
326
}
327
__hwasan_thread_exit();
328
}
329
330
void HwasanTSDInit() {
331
CHECK(!tsd_key_inited);
332
tsd_key_inited = true;
333
CHECK_EQ(0, pthread_key_create(&tsd_key, HwasanTSDDtor));
334
}
335
# else
336
void HwasanTSDInit() {}
337
void HwasanTSDThreadInit() {}
338
# endif
339
340
# if SANITIZER_ANDROID
341
uptr *GetCurrentThreadLongPtr() { return (uptr *)get_android_tls_ptr(); }
342
# else
343
uptr *GetCurrentThreadLongPtr() { return &__hwasan_tls; }
344
# endif
345
346
# if SANITIZER_ANDROID
347
void AndroidTestTlsSlot() {
348
uptr kMagicValue = 0x010203040A0B0C0D;
349
uptr *tls_ptr = GetCurrentThreadLongPtr();
350
uptr old_value = *tls_ptr;
351
*tls_ptr = kMagicValue;
352
dlerror();
353
if (*(uptr *)get_android_tls_ptr() != kMagicValue) {
354
Printf(
355
"ERROR: Incompatible version of Android: TLS_SLOT_SANITIZER(6) is used "
356
"for dlerror().\n");
357
Die();
358
}
359
*tls_ptr = old_value;
360
}
361
# else
362
void AndroidTestTlsSlot() {}
363
# endif
364
365
static AccessInfo GetAccessInfo(siginfo_t *info, ucontext_t *uc) {
366
// Access type is passed in a platform dependent way (see below) and encoded
367
// as 0xXY, where X&1 is 1 for store, 0 for load, and X&2 is 1 if the error is
368
// recoverable. Valid values of Y are 0 to 4, which are interpreted as
369
// log2(access_size), and 0xF, which means that access size is passed via
370
// platform dependent register (see below).
371
# if defined(__aarch64__)
372
// Access type is encoded in BRK immediate as 0x900 + 0xXY. For Y == 0xF,
373
// access size is stored in X1 register. Access address is always in X0
374
// register.
375
uptr pc = (uptr)info->si_addr;
376
const unsigned code = ((*(u32 *)pc) >> 5) & 0xffff;
377
if ((code & 0xff00) != 0x900)
378
return AccessInfo{}; // Not ours.
379
380
const bool is_store = code & 0x10;
381
const bool recover = code & 0x20;
382
const uptr addr = uc->uc_mcontext.regs[0];
383
const unsigned size_log = code & 0xf;
384
if (size_log > 4 && size_log != 0xf)
385
return AccessInfo{}; // Not ours.
386
const uptr size = size_log == 0xf ? uc->uc_mcontext.regs[1] : 1U << size_log;
387
388
# elif defined(__x86_64__)
389
// Access type is encoded in the instruction following INT3 as
390
// NOP DWORD ptr [EAX + 0x40 + 0xXY]. For Y == 0xF, access size is stored in
391
// RSI register. Access address is always in RDI register.
392
uptr pc = (uptr)uc->uc_mcontext.gregs[REG_RIP];
393
uint8_t *nop = (uint8_t *)pc;
394
if (*nop != 0x0f || *(nop + 1) != 0x1f || *(nop + 2) != 0x40 ||
395
*(nop + 3) < 0x40)
396
return AccessInfo{}; // Not ours.
397
const unsigned code = *(nop + 3);
398
399
const bool is_store = code & 0x10;
400
const bool recover = code & 0x20;
401
const uptr addr = uc->uc_mcontext.gregs[REG_RDI];
402
const unsigned size_log = code & 0xf;
403
if (size_log > 4 && size_log != 0xf)
404
return AccessInfo{}; // Not ours.
405
const uptr size =
406
size_log == 0xf ? uc->uc_mcontext.gregs[REG_RSI] : 1U << size_log;
407
408
# elif SANITIZER_RISCV64
409
// Access type is encoded in the instruction following EBREAK as
410
// ADDI x0, x0, [0x40 + 0xXY]. For Y == 0xF, access size is stored in
411
// X11 register. Access address is always in X10 register.
412
uptr pc = (uptr)uc->uc_mcontext.__gregs[REG_PC];
413
uint8_t byte1 = *((u8 *)(pc + 0));
414
uint8_t byte2 = *((u8 *)(pc + 1));
415
uint8_t byte3 = *((u8 *)(pc + 2));
416
uint8_t byte4 = *((u8 *)(pc + 3));
417
uint32_t ebreak = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
418
bool isFaultShort = false;
419
bool isEbreak = (ebreak == 0x100073);
420
bool isShortEbreak = false;
421
# if defined(__riscv_compressed)
422
isFaultShort = ((ebreak & 0x3) != 0x3);
423
isShortEbreak = ((ebreak & 0xffff) == 0x9002);
424
# endif
425
// faulted insn is not ebreak, not our case
426
if (!(isEbreak || isShortEbreak))
427
return AccessInfo{};
428
// advance pc to point after ebreak and reconstruct addi instruction
429
pc += isFaultShort ? 2 : 4;
430
byte1 = *((u8 *)(pc + 0));
431
byte2 = *((u8 *)(pc + 1));
432
byte3 = *((u8 *)(pc + 2));
433
byte4 = *((u8 *)(pc + 3));
434
// reconstruct instruction
435
uint32_t instr = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
436
// check if this is really 32 bit instruction
437
// code is encoded in top 12 bits, since instruction is supposed to be with
438
// imm
439
const unsigned code = (instr >> 20) & 0xffff;
440
const uptr addr = uc->uc_mcontext.__gregs[10];
441
const bool is_store = code & 0x10;
442
const bool recover = code & 0x20;
443
const unsigned size_log = code & 0xf;
444
if (size_log > 4 && size_log != 0xf)
445
return AccessInfo{}; // Not our case
446
const uptr size =
447
size_log == 0xf ? uc->uc_mcontext.__gregs[11] : 1U << size_log;
448
449
# else
450
# error Unsupported architecture
451
# endif
452
453
return AccessInfo{addr, size, is_store, !is_store, recover};
454
}
455
456
static bool HwasanOnSIGTRAP(int signo, siginfo_t *info, ucontext_t *uc) {
457
AccessInfo ai = GetAccessInfo(info, uc);
458
if (!ai.is_store && !ai.is_load)
459
return false;
460
461
SignalContext sig{info, uc};
462
HandleTagMismatch(ai, StackTrace::GetNextInstructionPc(sig.pc), sig.bp, uc);
463
464
# if defined(__aarch64__)
465
uc->uc_mcontext.pc += 4;
466
# elif defined(__x86_64__)
467
# elif SANITIZER_RISCV64
468
// pc points to EBREAK which is 2 bytes long
469
uint8_t *exception_source = (uint8_t *)(uc->uc_mcontext.__gregs[REG_PC]);
470
uint8_t byte1 = (uint8_t)(*(exception_source + 0));
471
uint8_t byte2 = (uint8_t)(*(exception_source + 1));
472
uint8_t byte3 = (uint8_t)(*(exception_source + 2));
473
uint8_t byte4 = (uint8_t)(*(exception_source + 3));
474
uint32_t faulted = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
475
bool isFaultShort = false;
476
# if defined(__riscv_compressed)
477
isFaultShort = ((faulted & 0x3) != 0x3);
478
# endif
479
uc->uc_mcontext.__gregs[REG_PC] += isFaultShort ? 2 : 4;
480
# else
481
# error Unsupported architecture
482
# endif
483
return true;
484
}
485
486
static void OnStackUnwind(const SignalContext &sig, const void *,
487
BufferedStackTrace *stack) {
488
stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context,
489
common_flags()->fast_unwind_on_fatal);
490
}
491
492
void HwasanOnDeadlySignal(int signo, void *info, void *context) {
493
// Probably a tag mismatch.
494
if (signo == SIGTRAP)
495
if (HwasanOnSIGTRAP(signo, (siginfo_t *)info, (ucontext_t *)context))
496
return;
497
498
HandleDeadlySignal(info, context, GetTid(), &OnStackUnwind, nullptr);
499
}
500
501
void Thread::InitStackAndTls(const InitState *) {
502
uptr tls_size;
503
uptr stack_size;
504
GetThreadStackAndTls(IsMainThread(), &stack_bottom_, &stack_size, &tls_begin_,
505
&tls_size);
506
stack_top_ = stack_bottom_ + stack_size;
507
tls_end_ = tls_begin_ + tls_size;
508
}
509
510
uptr TagMemoryAligned(uptr p, uptr size, tag_t tag) {
511
CHECK(IsAligned(p, kShadowAlignment));
512
CHECK(IsAligned(size, kShadowAlignment));
513
uptr shadow_start = MemToShadow(p);
514
uptr shadow_size = MemToShadowSize(size);
515
516
uptr page_size = GetPageSizeCached();
517
uptr page_start = RoundUpTo(shadow_start, page_size);
518
uptr page_end = RoundDownTo(shadow_start + shadow_size, page_size);
519
uptr threshold = common_flags()->clear_shadow_mmap_threshold;
520
if (SANITIZER_LINUX &&
521
UNLIKELY(page_end >= page_start + threshold && tag == 0)) {
522
internal_memset((void *)shadow_start, tag, page_start - shadow_start);
523
internal_memset((void *)page_end, tag,
524
shadow_start + shadow_size - page_end);
525
// For an anonymous private mapping MADV_DONTNEED will return a zero page on
526
// Linux.
527
ReleaseMemoryPagesToOSAndZeroFill(page_start, page_end);
528
} else {
529
internal_memset((void *)shadow_start, tag, shadow_size);
530
}
531
return AddTagToPointer(p, tag);
532
}
533
534
static void BeforeFork() {
535
if (CAN_SANITIZE_LEAKS) {
536
__lsan::LockGlobal();
537
}
538
// `_lsan` functions defined regardless of `CAN_SANITIZE_LEAKS` and lock the
539
// stuff we need.
540
__lsan::LockThreads();
541
__lsan::LockAllocator();
542
StackDepotLockBeforeFork();
543
}
544
545
static void AfterFork(bool fork_child) {
546
StackDepotUnlockAfterFork(fork_child);
547
// `_lsan` functions defined regardless of `CAN_SANITIZE_LEAKS` and unlock
548
// the stuff we need.
549
__lsan::UnlockAllocator();
550
__lsan::UnlockThreads();
551
if (CAN_SANITIZE_LEAKS) {
552
__lsan::UnlockGlobal();
553
}
554
}
555
556
void HwasanInstallAtForkHandler() {
557
pthread_atfork(
558
&BeforeFork, []() { AfterFork(/* fork_child= */ false); },
559
[]() { AfterFork(/* fork_child= */ true); });
560
}
561
562
void InstallAtExitCheckLeaks() {
563
if (CAN_SANITIZE_LEAKS) {
564
if (common_flags()->detect_leaks && common_flags()->leak_check_at_exit) {
565
if (flags()->halt_on_error)
566
Atexit(__lsan::DoLeakCheck);
567
else
568
Atexit(__lsan::DoRecoverableLeakCheckVoid);
569
}
570
}
571
}
572
573
} // namespace __hwasan
574
575
using namespace __hwasan;
576
577
extern "C" void __hwasan_thread_enter() {
578
hwasanThreadList().CreateCurrentThread()->EnsureRandomStateInited();
579
}
580
581
extern "C" void __hwasan_thread_exit() {
582
Thread *t = GetCurrentThread();
583
// Make sure that signal handler can not see a stale current thread pointer.
584
atomic_signal_fence(memory_order_seq_cst);
585
if (t) {
586
// Block async signals on the thread as the handler can be instrumented.
587
// After this point instrumented code can't access essential data from TLS
588
// and will crash.
589
// Bionic already calls __hwasan_thread_exit with blocked signals.
590
if (SANITIZER_GLIBC)
591
BlockSignals();
592
hwasanThreadList().ReleaseThread(t);
593
}
594
}
595
596
#endif // SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD
597
598