Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/compiler-rt/lib/interception/interception_win.cpp
35262 views
1
//===-- interception_win.cpp ------------------------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file is a part of AddressSanitizer, an address sanity checker.
10
//
11
// Windows-specific interception methods.
12
//
13
// This file is implementing several hooking techniques to intercept calls
14
// to functions. The hooks are dynamically installed by modifying the assembly
15
// code.
16
//
17
// The hooking techniques are making assumptions on the way the code is
18
// generated and are safe under these assumptions.
19
//
20
// On 64-bit architecture, there is no direct 64-bit jump instruction. To allow
21
// arbitrary branching on the whole memory space, the notion of trampoline
22
// region is used. A trampoline region is a memory space withing 2G boundary
23
// where it is safe to add custom assembly code to build 64-bit jumps.
24
//
25
// Hooking techniques
26
// ==================
27
//
28
// 1) Detour
29
//
30
// The Detour hooking technique is assuming the presence of an header with
31
// padding and an overridable 2-bytes nop instruction (mov edi, edi). The
32
// nop instruction can safely be replaced by a 2-bytes jump without any need
33
// to save the instruction. A jump to the target is encoded in the function
34
// header and the nop instruction is replaced by a short jump to the header.
35
//
36
// head: 5 x nop head: jmp <hook>
37
// func: mov edi, edi --> func: jmp short <head>
38
// [...] real: [...]
39
//
40
// This technique is only implemented on 32-bit architecture.
41
// Most of the time, Windows API are hookable with the detour technique.
42
//
43
// 2) Redirect Jump
44
//
45
// The redirect jump is applicable when the first instruction is a direct
46
// jump. The instruction is replaced by jump to the hook.
47
//
48
// func: jmp <label> --> func: jmp <hook>
49
//
50
// On an 64-bit architecture, a trampoline is inserted.
51
//
52
// func: jmp <label> --> func: jmp <tramp>
53
// [...]
54
//
55
// [trampoline]
56
// tramp: jmp QWORD [addr]
57
// addr: .bytes <hook>
58
//
59
// Note: <real> is equivalent to <label>.
60
//
61
// 3) HotPatch
62
//
63
// The HotPatch hooking is assuming the presence of an header with padding
64
// and a first instruction with at least 2-bytes.
65
//
66
// The reason to enforce the 2-bytes limitation is to provide the minimal
67
// space to encode a short jump. HotPatch technique is only rewriting one
68
// instruction to avoid breaking a sequence of instructions containing a
69
// branching target.
70
//
71
// Assumptions are enforced by MSVC compiler by using the /HOTPATCH flag.
72
// see: https://msdn.microsoft.com/en-us/library/ms173507.aspx
73
// Default padding length is 5 bytes in 32-bits and 6 bytes in 64-bits.
74
//
75
// head: 5 x nop head: jmp <hook>
76
// func: <instr> --> func: jmp short <head>
77
// [...] body: [...]
78
//
79
// [trampoline]
80
// real: <instr>
81
// jmp <body>
82
//
83
// On an 64-bit architecture:
84
//
85
// head: 6 x nop head: jmp QWORD [addr1]
86
// func: <instr> --> func: jmp short <head>
87
// [...] body: [...]
88
//
89
// [trampoline]
90
// addr1: .bytes <hook>
91
// real: <instr>
92
// jmp QWORD [addr2]
93
// addr2: .bytes <body>
94
//
95
// 4) Trampoline
96
//
97
// The Trampoline hooking technique is the most aggressive one. It is
98
// assuming that there is a sequence of instructions that can be safely
99
// replaced by a jump (enough room and no incoming branches).
100
//
101
// Unfortunately, these assumptions can't be safely presumed and code may
102
// be broken after hooking.
103
//
104
// func: <instr> --> func: jmp <hook>
105
// <instr>
106
// [...] body: [...]
107
//
108
// [trampoline]
109
// real: <instr>
110
// <instr>
111
// jmp <body>
112
//
113
// On an 64-bit architecture:
114
//
115
// func: <instr> --> func: jmp QWORD [addr1]
116
// <instr>
117
// [...] body: [...]
118
//
119
// [trampoline]
120
// addr1: .bytes <hook>
121
// real: <instr>
122
// <instr>
123
// jmp QWORD [addr2]
124
// addr2: .bytes <body>
125
//===----------------------------------------------------------------------===//
126
127
#include "interception.h"
128
129
#if SANITIZER_WINDOWS
130
#include "sanitizer_common/sanitizer_platform.h"
131
#define WIN32_LEAN_AND_MEAN
132
#include <windows.h>
133
134
namespace __interception {
135
136
static const int kAddressLength = FIRST_32_SECOND_64(4, 8);
137
static const int kJumpInstructionLength = 5;
138
static const int kShortJumpInstructionLength = 2;
139
UNUSED static const int kIndirectJumpInstructionLength = 6;
140
static const int kBranchLength =
141
FIRST_32_SECOND_64(kJumpInstructionLength, kIndirectJumpInstructionLength);
142
static const int kDirectBranchLength = kBranchLength + kAddressLength;
143
144
# if defined(_MSC_VER)
145
# define INTERCEPTION_FORMAT(f, a)
146
# else
147
# define INTERCEPTION_FORMAT(f, a) __attribute__((format(printf, f, a)))
148
# endif
149
150
static void (*ErrorReportCallback)(const char *format, ...)
151
INTERCEPTION_FORMAT(1, 2);
152
153
void SetErrorReportCallback(void (*callback)(const char *format, ...)) {
154
ErrorReportCallback = callback;
155
}
156
157
# define ReportError(...) \
158
do { \
159
if (ErrorReportCallback) \
160
ErrorReportCallback(__VA_ARGS__); \
161
} while (0)
162
163
static void InterceptionFailed() {
164
ReportError("interception_win: failed due to an unrecoverable error.\n");
165
// This acts like an abort when no debugger is attached. According to an old
166
// comment, calling abort() leads to an infinite recursion in CheckFailed.
167
__debugbreak();
168
}
169
170
static bool DistanceIsWithin2Gig(uptr from, uptr target) {
171
#if SANITIZER_WINDOWS64
172
if (from < target)
173
return target - from <= (uptr)0x7FFFFFFFU;
174
else
175
return from - target <= (uptr)0x80000000U;
176
#else
177
// In a 32-bit address space, the address calculation will wrap, so this check
178
// is unnecessary.
179
return true;
180
#endif
181
}
182
183
static uptr GetMmapGranularity() {
184
SYSTEM_INFO si;
185
GetSystemInfo(&si);
186
return si.dwAllocationGranularity;
187
}
188
189
UNUSED static uptr RoundUpTo(uptr size, uptr boundary) {
190
return (size + boundary - 1) & ~(boundary - 1);
191
}
192
193
// FIXME: internal_str* and internal_mem* functions should be moved from the
194
// ASan sources into interception/.
195
196
static size_t _strlen(const char *str) {
197
const char* p = str;
198
while (*p != '\0') ++p;
199
return p - str;
200
}
201
202
static char* _strchr(char* str, char c) {
203
while (*str) {
204
if (*str == c)
205
return str;
206
++str;
207
}
208
return nullptr;
209
}
210
211
static void _memset(void *p, int value, size_t sz) {
212
for (size_t i = 0; i < sz; ++i)
213
((char*)p)[i] = (char)value;
214
}
215
216
static void _memcpy(void *dst, void *src, size_t sz) {
217
char *dst_c = (char*)dst,
218
*src_c = (char*)src;
219
for (size_t i = 0; i < sz; ++i)
220
dst_c[i] = src_c[i];
221
}
222
223
static bool ChangeMemoryProtection(
224
uptr address, uptr size, DWORD *old_protection) {
225
return ::VirtualProtect((void*)address, size,
226
PAGE_EXECUTE_READWRITE,
227
old_protection) != FALSE;
228
}
229
230
static bool RestoreMemoryProtection(
231
uptr address, uptr size, DWORD old_protection) {
232
DWORD unused;
233
return ::VirtualProtect((void*)address, size,
234
old_protection,
235
&unused) != FALSE;
236
}
237
238
static bool IsMemoryPadding(uptr address, uptr size) {
239
u8* function = (u8*)address;
240
for (size_t i = 0; i < size; ++i)
241
if (function[i] != 0x90 && function[i] != 0xCC)
242
return false;
243
return true;
244
}
245
246
static const u8 kHintNop8Bytes[] = {
247
0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00
248
};
249
250
template<class T>
251
static bool FunctionHasPrefix(uptr address, const T &pattern) {
252
u8* function = (u8*)address - sizeof(pattern);
253
for (size_t i = 0; i < sizeof(pattern); ++i)
254
if (function[i] != pattern[i])
255
return false;
256
return true;
257
}
258
259
static bool FunctionHasPadding(uptr address, uptr size) {
260
if (IsMemoryPadding(address - size, size))
261
return true;
262
if (size <= sizeof(kHintNop8Bytes) &&
263
FunctionHasPrefix(address, kHintNop8Bytes))
264
return true;
265
return false;
266
}
267
268
static void WritePadding(uptr from, uptr size) {
269
_memset((void*)from, 0xCC, (size_t)size);
270
}
271
272
static void WriteJumpInstruction(uptr from, uptr target) {
273
if (!DistanceIsWithin2Gig(from + kJumpInstructionLength, target)) {
274
ReportError(
275
"interception_win: cannot write jmp further than 2GB away, from %p to "
276
"%p.\n",
277
(void *)from, (void *)target);
278
InterceptionFailed();
279
}
280
ptrdiff_t offset = target - from - kJumpInstructionLength;
281
*(u8*)from = 0xE9;
282
*(u32*)(from + 1) = offset;
283
}
284
285
static void WriteShortJumpInstruction(uptr from, uptr target) {
286
sptr offset = target - from - kShortJumpInstructionLength;
287
if (offset < -128 || offset > 127)
288
InterceptionFailed();
289
*(u8*)from = 0xEB;
290
*(u8*)(from + 1) = (u8)offset;
291
}
292
293
#if SANITIZER_WINDOWS64
294
static void WriteIndirectJumpInstruction(uptr from, uptr indirect_target) {
295
// jmp [rip + <offset>] = FF 25 <offset> where <offset> is a relative
296
// offset.
297
// The offset is the distance from then end of the jump instruction to the
298
// memory location containing the targeted address. The displacement is still
299
// 32-bit in x64, so indirect_target must be located within +/- 2GB range.
300
int offset = indirect_target - from - kIndirectJumpInstructionLength;
301
if (!DistanceIsWithin2Gig(from + kIndirectJumpInstructionLength,
302
indirect_target)) {
303
ReportError(
304
"interception_win: cannot write indirect jmp with target further than "
305
"2GB away, from %p to %p.\n",
306
(void *)from, (void *)indirect_target);
307
InterceptionFailed();
308
}
309
*(u16*)from = 0x25FF;
310
*(u32*)(from + 2) = offset;
311
}
312
#endif
313
314
static void WriteBranch(
315
uptr from, uptr indirect_target, uptr target) {
316
#if SANITIZER_WINDOWS64
317
WriteIndirectJumpInstruction(from, indirect_target);
318
*(u64*)indirect_target = target;
319
#else
320
(void)indirect_target;
321
WriteJumpInstruction(from, target);
322
#endif
323
}
324
325
static void WriteDirectBranch(uptr from, uptr target) {
326
#if SANITIZER_WINDOWS64
327
// Emit an indirect jump through immediately following bytes:
328
// jmp [rip + kBranchLength]
329
// .quad <target>
330
WriteBranch(from, from + kBranchLength, target);
331
#else
332
WriteJumpInstruction(from, target);
333
#endif
334
}
335
336
struct TrampolineMemoryRegion {
337
uptr content;
338
uptr allocated_size;
339
uptr max_size;
340
};
341
342
UNUSED static const uptr kTrampolineScanLimitRange = 1ull << 31; // 2 gig
343
static const int kMaxTrampolineRegion = 1024;
344
static TrampolineMemoryRegion TrampolineRegions[kMaxTrampolineRegion];
345
346
static void *AllocateTrampolineRegion(uptr image_address, size_t granularity) {
347
#if SANITIZER_WINDOWS64
348
uptr address = image_address;
349
uptr scanned = 0;
350
while (scanned < kTrampolineScanLimitRange) {
351
MEMORY_BASIC_INFORMATION info;
352
if (!::VirtualQuery((void*)address, &info, sizeof(info)))
353
return nullptr;
354
355
// Check whether a region can be allocated at |address|.
356
if (info.State == MEM_FREE && info.RegionSize >= granularity) {
357
void *page = ::VirtualAlloc((void*)RoundUpTo(address, granularity),
358
granularity,
359
MEM_RESERVE | MEM_COMMIT,
360
PAGE_EXECUTE_READWRITE);
361
return page;
362
}
363
364
// Move to the next region.
365
address = (uptr)info.BaseAddress + info.RegionSize;
366
scanned += info.RegionSize;
367
}
368
return nullptr;
369
#else
370
return ::VirtualAlloc(nullptr,
371
granularity,
372
MEM_RESERVE | MEM_COMMIT,
373
PAGE_EXECUTE_READWRITE);
374
#endif
375
}
376
377
// Used by unittests to release mapped memory space.
378
void TestOnlyReleaseTrampolineRegions() {
379
for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) {
380
TrampolineMemoryRegion *current = &TrampolineRegions[bucket];
381
if (current->content == 0)
382
return;
383
::VirtualFree((void*)current->content, 0, MEM_RELEASE);
384
current->content = 0;
385
}
386
}
387
388
static uptr AllocateMemoryForTrampoline(uptr image_address, size_t size) {
389
// Find a region within 2G with enough space to allocate |size| bytes.
390
TrampolineMemoryRegion *region = nullptr;
391
for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) {
392
TrampolineMemoryRegion* current = &TrampolineRegions[bucket];
393
if (current->content == 0) {
394
// No valid region found, allocate a new region.
395
size_t bucket_size = GetMmapGranularity();
396
void *content = AllocateTrampolineRegion(image_address, bucket_size);
397
if (content == nullptr)
398
return 0U;
399
400
current->content = (uptr)content;
401
current->allocated_size = 0;
402
current->max_size = bucket_size;
403
region = current;
404
break;
405
} else if (current->max_size - current->allocated_size > size) {
406
#if SANITIZER_WINDOWS64
407
// In 64-bits, the memory space must be allocated within 2G boundary.
408
uptr next_address = current->content + current->allocated_size;
409
if (next_address < image_address ||
410
next_address - image_address >= 0x7FFF0000)
411
continue;
412
#endif
413
// The space can be allocated in the current region.
414
region = current;
415
break;
416
}
417
}
418
419
// Failed to find a region.
420
if (region == nullptr)
421
return 0U;
422
423
// Allocate the space in the current region.
424
uptr allocated_space = region->content + region->allocated_size;
425
region->allocated_size += size;
426
WritePadding(allocated_space, size);
427
428
return allocated_space;
429
}
430
431
// The following prologues cannot be patched because of the short jump
432
// jumping to the patching region.
433
434
// Short jump patterns below are only for x86_64.
435
# if SANITIZER_WINDOWS_x64
436
// ntdll!wcslen in Win11
437
// 488bc1 mov rax,rcx
438
// 0fb710 movzx edx,word ptr [rax]
439
// 4883c002 add rax,2
440
// 6685d2 test dx,dx
441
// 75f4 jne -12
442
static const u8 kPrologueWithShortJump1[] = {
443
0x48, 0x8b, 0xc1, 0x0f, 0xb7, 0x10, 0x48, 0x83,
444
0xc0, 0x02, 0x66, 0x85, 0xd2, 0x75, 0xf4,
445
};
446
447
// ntdll!strrchr in Win11
448
// 4c8bc1 mov r8,rcx
449
// 8a01 mov al,byte ptr [rcx]
450
// 48ffc1 inc rcx
451
// 84c0 test al,al
452
// 75f7 jne -9
453
static const u8 kPrologueWithShortJump2[] = {
454
0x4c, 0x8b, 0xc1, 0x8a, 0x01, 0x48, 0xff, 0xc1,
455
0x84, 0xc0, 0x75, 0xf7,
456
};
457
#endif
458
459
// Returns 0 on error.
460
static size_t GetInstructionSize(uptr address, size_t* rel_offset = nullptr) {
461
#if SANITIZER_ARM64
462
// An ARM64 instruction is 4 bytes long.
463
return 4;
464
#endif
465
466
# if SANITIZER_WINDOWS_x64
467
if (memcmp((u8*)address, kPrologueWithShortJump1,
468
sizeof(kPrologueWithShortJump1)) == 0 ||
469
memcmp((u8*)address, kPrologueWithShortJump2,
470
sizeof(kPrologueWithShortJump2)) == 0) {
471
return 0;
472
}
473
#endif
474
475
switch (*(u64*)address) {
476
case 0x90909090909006EB: // stub: jmp over 6 x nop.
477
return 8;
478
}
479
480
switch (*(u8*)address) {
481
case 0x90: // 90 : nop
482
case 0xC3: // C3 : ret (for small/empty function interception
483
case 0xCC: // CC : int 3 i.e. registering weak functions)
484
return 1;
485
486
case 0x50: // push eax / rax
487
case 0x51: // push ecx / rcx
488
case 0x52: // push edx / rdx
489
case 0x53: // push ebx / rbx
490
case 0x54: // push esp / rsp
491
case 0x55: // push ebp / rbp
492
case 0x56: // push esi / rsi
493
case 0x57: // push edi / rdi
494
case 0x5D: // pop ebp / rbp
495
return 1;
496
497
case 0x6A: // 6A XX = push XX
498
return 2;
499
500
case 0xb8: // b8 XX XX XX XX : mov eax, XX XX XX XX
501
case 0xB9: // b9 XX XX XX XX : mov ecx, XX XX XX XX
502
return 5;
503
504
// Cannot overwrite control-instruction. Return 0 to indicate failure.
505
case 0xE9: // E9 XX XX XX XX : jmp <label>
506
case 0xE8: // E8 XX XX XX XX : call <func>
507
case 0xEB: // EB XX : jmp XX (short jump)
508
case 0x70: // 7Y YY : jy XX (short conditional jump)
509
case 0x71:
510
case 0x72:
511
case 0x73:
512
case 0x74:
513
case 0x75:
514
case 0x76:
515
case 0x77:
516
case 0x78:
517
case 0x79:
518
case 0x7A:
519
case 0x7B:
520
case 0x7C:
521
case 0x7D:
522
case 0x7E:
523
case 0x7F:
524
return 0;
525
}
526
527
switch (*(u16*)(address)) {
528
case 0x018A: // 8A 01 : mov al, byte ptr [ecx]
529
case 0xFF8B: // 8B FF : mov edi, edi
530
case 0xEC8B: // 8B EC : mov ebp, esp
531
case 0xc889: // 89 C8 : mov eax, ecx
532
case 0xE589: // 89 E5 : mov ebp, esp
533
case 0xC18B: // 8B C1 : mov eax, ecx
534
case 0xC033: // 33 C0 : xor eax, eax
535
case 0xC933: // 33 C9 : xor ecx, ecx
536
case 0xD233: // 33 D2 : xor edx, edx
537
return 2;
538
539
// Cannot overwrite control-instruction. Return 0 to indicate failure.
540
case 0x25FF: // FF 25 XX XX XX XX : jmp [XXXXXXXX]
541
return 0;
542
}
543
544
switch (0x00FFFFFF & *(u32*)address) {
545
case 0x24A48D: // 8D A4 24 XX XX XX XX : lea esp, [esp + XX XX XX XX]
546
return 7;
547
}
548
549
switch (0x000000FF & *(u32 *)address) {
550
case 0xc2: // C2 XX XX : ret XX (needed for registering weak functions)
551
return 3;
552
}
553
554
# if SANITIZER_WINDOWS_x64
555
switch (*(u8*)address) {
556
case 0xA1: // A1 XX XX XX XX XX XX XX XX :
557
// movabs eax, dword ptr ds:[XXXXXXXX]
558
return 9;
559
560
case 0x83:
561
const u8 next_byte = *(u8*)(address + 1);
562
const u8 mod = next_byte >> 6;
563
const u8 rm = next_byte & 7;
564
if (mod == 1 && rm == 4)
565
return 5; // 83 ModR/M SIB Disp8 Imm8
566
// add|or|adc|sbb|and|sub|xor|cmp [r+disp8], imm8
567
}
568
569
switch (*(u16*)address) {
570
case 0x5040: // push rax
571
case 0x5140: // push rcx
572
case 0x5240: // push rdx
573
case 0x5340: // push rbx
574
case 0x5440: // push rsp
575
case 0x5540: // push rbp
576
case 0x5640: // push rsi
577
case 0x5740: // push rdi
578
case 0x5441: // push r12
579
case 0x5541: // push r13
580
case 0x5641: // push r14
581
case 0x5741: // push r15
582
case 0x9066: // Two-byte NOP
583
case 0xc084: // test al, al
584
case 0x018a: // mov al, byte ptr [rcx]
585
return 2;
586
587
case 0x058A: // 8A 05 XX XX XX XX : mov al, byte ptr [XX XX XX XX]
588
case 0x058B: // 8B 05 XX XX XX XX : mov eax, dword ptr [XX XX XX XX]
589
if (rel_offset)
590
*rel_offset = 2;
591
return 6;
592
}
593
594
switch (0x00FFFFFF & *(u32*)address) {
595
case 0xe58948: // 48 8b c4 : mov rbp, rsp
596
case 0xc18b48: // 48 8b c1 : mov rax, rcx
597
case 0xc48b48: // 48 8b c4 : mov rax, rsp
598
case 0xd9f748: // 48 f7 d9 : neg rcx
599
case 0xd12b48: // 48 2b d1 : sub rdx, rcx
600
case 0x07c1f6: // f6 c1 07 : test cl, 0x7
601
case 0xc98548: // 48 85 C9 : test rcx, rcx
602
case 0xd28548: // 48 85 d2 : test rdx, rdx
603
case 0xc0854d: // 4d 85 c0 : test r8, r8
604
case 0xc2b60f: // 0f b6 c2 : movzx eax, dl
605
case 0xc03345: // 45 33 c0 : xor r8d, r8d
606
case 0xc93345: // 45 33 c9 : xor r9d, r9d
607
case 0xdb3345: // 45 33 DB : xor r11d, r11d
608
case 0xd98b4c: // 4c 8b d9 : mov r11, rcx
609
case 0xd28b4c: // 4c 8b d2 : mov r10, rdx
610
case 0xc98b4c: // 4C 8B C9 : mov r9, rcx
611
case 0xc18b4c: // 4C 8B C1 : mov r8, rcx
612
case 0xd2b60f: // 0f b6 d2 : movzx edx, dl
613
case 0xca2b48: // 48 2b ca : sub rcx, rdx
614
case 0xca3b48: // 48 3b ca : cmp rcx, rdx
615
case 0x10b70f: // 0f b7 10 : movzx edx, WORD PTR [rax]
616
case 0xc00b4d: // 3d 0b c0 : or r8, r8
617
case 0xc08b41: // 41 8b c0 : mov eax, r8d
618
case 0xd18b48: // 48 8b d1 : mov rdx, rcx
619
case 0xdc8b4c: // 4c 8b dc : mov r11, rsp
620
case 0xd18b4c: // 4c 8b d1 : mov r10, rcx
621
case 0xE0E483: // 83 E4 E0 : and esp, 0xFFFFFFE0
622
return 3;
623
624
case 0xec8348: // 48 83 ec XX : sub rsp, XX
625
case 0xf88349: // 49 83 f8 XX : cmp r8, XX
626
case 0x588948: // 48 89 58 XX : mov QWORD PTR[rax + XX], rbx
627
return 4;
628
629
case 0xec8148: // 48 81 EC XX XX XX XX : sub rsp, XXXXXXXX
630
return 7;
631
632
case 0x058b48: // 48 8b 05 XX XX XX XX :
633
// mov rax, QWORD PTR [rip + XXXXXXXX]
634
case 0x058d48: // 48 8d 05 XX XX XX XX :
635
// lea rax, QWORD PTR [rip + XXXXXXXX]
636
case 0x25ff48: // 48 ff 25 XX XX XX XX :
637
// rex.W jmp QWORD PTR [rip + XXXXXXXX]
638
case 0x158D4C: // 4c 8d 15 XX XX XX XX : lea r10, [rip + XX]
639
// Instructions having offset relative to 'rip' need offset adjustment.
640
if (rel_offset)
641
*rel_offset = 3;
642
return 7;
643
644
case 0x2444c7: // C7 44 24 XX YY YY YY YY
645
// mov dword ptr [rsp + XX], YYYYYYYY
646
return 8;
647
}
648
649
switch (*(u32*)(address)) {
650
case 0x24448b48: // 48 8b 44 24 XX : mov rax, QWORD ptr [rsp + XX]
651
case 0x246c8948: // 48 89 6C 24 XX : mov QWORD ptr [rsp + XX], rbp
652
case 0x245c8948: // 48 89 5c 24 XX : mov QWORD PTR [rsp + XX], rbx
653
case 0x24748948: // 48 89 74 24 XX : mov QWORD PTR [rsp + XX], rsi
654
case 0x247c8948: // 48 89 7c 24 XX : mov QWORD PTR [rsp + XX], rdi
655
case 0x244C8948: // 48 89 4C 24 XX : mov QWORD PTR [rsp + XX], rcx
656
case 0x24548948: // 48 89 54 24 XX : mov QWORD PTR [rsp + XX], rdx
657
case 0x244c894c: // 4c 89 4c 24 XX : mov QWORD PTR [rsp + XX], r9
658
case 0x2444894c: // 4c 89 44 24 XX : mov QWORD PTR [rsp + XX], r8
659
return 5;
660
case 0x24648348: // 48 83 64 24 XX : and QWORD PTR [rsp + XX], YY
661
return 6;
662
}
663
664
#else
665
666
switch (*(u8*)address) {
667
case 0xA1: // A1 XX XX XX XX : mov eax, dword ptr ds:[XXXXXXXX]
668
return 5;
669
}
670
switch (*(u16*)address) {
671
case 0x458B: // 8B 45 XX : mov eax, dword ptr [ebp + XX]
672
case 0x5D8B: // 8B 5D XX : mov ebx, dword ptr [ebp + XX]
673
case 0x7D8B: // 8B 7D XX : mov edi, dword ptr [ebp + XX]
674
case 0xEC83: // 83 EC XX : sub esp, XX
675
case 0x75FF: // FF 75 XX : push dword ptr [ebp + XX]
676
return 3;
677
case 0xC1F7: // F7 C1 XX YY ZZ WW : test ecx, WWZZYYXX
678
case 0x25FF: // FF 25 XX YY ZZ WW : jmp dword ptr ds:[WWZZYYXX]
679
return 6;
680
case 0x3D83: // 83 3D XX YY ZZ WW TT : cmp TT, WWZZYYXX
681
return 7;
682
case 0x7D83: // 83 7D XX YY : cmp dword ptr [ebp + XX], YY
683
return 4;
684
}
685
686
switch (0x00FFFFFF & *(u32*)address) {
687
case 0x24448A: // 8A 44 24 XX : mov eal, dword ptr [esp + XX]
688
case 0x24448B: // 8B 44 24 XX : mov eax, dword ptr [esp + XX]
689
case 0x244C8B: // 8B 4C 24 XX : mov ecx, dword ptr [esp + XX]
690
case 0x24548B: // 8B 54 24 XX : mov edx, dword ptr [esp + XX]
691
case 0x245C8B: // 8B 5C 24 XX : mov ebx, dword ptr [esp + XX]
692
case 0x246C8B: // 8B 6C 24 XX : mov ebp, dword ptr [esp + XX]
693
case 0x24748B: // 8B 74 24 XX : mov esi, dword ptr [esp + XX]
694
case 0x247C8B: // 8B 7C 24 XX : mov edi, dword ptr [esp + XX]
695
return 4;
696
}
697
698
switch (*(u32*)address) {
699
case 0x2444B60F: // 0F B6 44 24 XX : movzx eax, byte ptr [esp + XX]
700
return 5;
701
}
702
#endif
703
704
// Unknown instruction! This might happen when we add a new interceptor, use
705
// a new compiler version, or if Windows changed how some functions are
706
// compiled. In either case, we print the address and 8 bytes of instructions
707
// to notify the user about the error and to help identify the unknown
708
// instruction. Don't treat this as a fatal error, though we can break the
709
// debugger if one has been attached.
710
u8 *bytes = (u8 *)address;
711
ReportError(
712
"interception_win: unhandled instruction at %p: %02x %02x %02x %02x %02x "
713
"%02x %02x %02x\n",
714
(void *)address, bytes[0], bytes[1], bytes[2], bytes[3], bytes[4],
715
bytes[5], bytes[6], bytes[7]);
716
if (::IsDebuggerPresent())
717
__debugbreak();
718
return 0;
719
}
720
721
// Returns 0 on error.
722
static size_t RoundUpToInstrBoundary(size_t size, uptr address) {
723
size_t cursor = 0;
724
while (cursor < size) {
725
size_t instruction_size = GetInstructionSize(address + cursor);
726
if (!instruction_size)
727
return 0;
728
cursor += instruction_size;
729
}
730
return cursor;
731
}
732
733
static bool CopyInstructions(uptr to, uptr from, size_t size) {
734
size_t cursor = 0;
735
while (cursor != size) {
736
size_t rel_offset = 0;
737
size_t instruction_size = GetInstructionSize(from + cursor, &rel_offset);
738
if (!instruction_size)
739
return false;
740
_memcpy((void *)(to + cursor), (void *)(from + cursor),
741
(size_t)instruction_size);
742
if (rel_offset) {
743
# if SANITIZER_WINDOWS64
744
// we want to make sure that the new relative offset still fits in 32-bits
745
// this will be untrue if relocated_offset \notin [-2**31, 2**31)
746
s64 delta = to - from;
747
s64 relocated_offset = *(s32 *)(to + cursor + rel_offset) - delta;
748
if (-0x8000'0000ll > relocated_offset || relocated_offset > 0x7FFF'FFFFll)
749
return false;
750
# else
751
// on 32-bit, the relative offset will always be correct
752
s32 delta = to - from;
753
s32 relocated_offset = *(s32 *)(to + cursor + rel_offset) - delta;
754
# endif
755
*(s32 *)(to + cursor + rel_offset) = relocated_offset;
756
}
757
cursor += instruction_size;
758
}
759
return true;
760
}
761
762
763
#if !SANITIZER_WINDOWS64
764
bool OverrideFunctionWithDetour(
765
uptr old_func, uptr new_func, uptr *orig_old_func) {
766
const int kDetourHeaderLen = 5;
767
const u16 kDetourInstruction = 0xFF8B;
768
769
uptr header = (uptr)old_func - kDetourHeaderLen;
770
uptr patch_length = kDetourHeaderLen + kShortJumpInstructionLength;
771
772
// Validate that the function is hookable.
773
if (*(u16*)old_func != kDetourInstruction ||
774
!IsMemoryPadding(header, kDetourHeaderLen))
775
return false;
776
777
// Change memory protection to writable.
778
DWORD protection = 0;
779
if (!ChangeMemoryProtection(header, patch_length, &protection))
780
return false;
781
782
// Write a relative jump to the redirected function.
783
WriteJumpInstruction(header, new_func);
784
785
// Write the short jump to the function prefix.
786
WriteShortJumpInstruction(old_func, header);
787
788
// Restore previous memory protection.
789
if (!RestoreMemoryProtection(header, patch_length, protection))
790
return false;
791
792
if (orig_old_func)
793
*orig_old_func = old_func + kShortJumpInstructionLength;
794
795
return true;
796
}
797
#endif
798
799
bool OverrideFunctionWithRedirectJump(
800
uptr old_func, uptr new_func, uptr *orig_old_func) {
801
// Check whether the first instruction is a relative jump.
802
if (*(u8*)old_func != 0xE9)
803
return false;
804
805
if (orig_old_func) {
806
sptr relative_offset = *(s32 *)(old_func + 1);
807
uptr absolute_target = old_func + relative_offset + kJumpInstructionLength;
808
*orig_old_func = absolute_target;
809
}
810
811
#if SANITIZER_WINDOWS64
812
// If needed, get memory space for a trampoline jump.
813
uptr trampoline = AllocateMemoryForTrampoline(old_func, kDirectBranchLength);
814
if (!trampoline)
815
return false;
816
WriteDirectBranch(trampoline, new_func);
817
#endif
818
819
// Change memory protection to writable.
820
DWORD protection = 0;
821
if (!ChangeMemoryProtection(old_func, kJumpInstructionLength, &protection))
822
return false;
823
824
// Write a relative jump to the redirected function.
825
WriteJumpInstruction(old_func, FIRST_32_SECOND_64(new_func, trampoline));
826
827
// Restore previous memory protection.
828
if (!RestoreMemoryProtection(old_func, kJumpInstructionLength, protection))
829
return false;
830
831
return true;
832
}
833
834
bool OverrideFunctionWithHotPatch(
835
uptr old_func, uptr new_func, uptr *orig_old_func) {
836
const int kHotPatchHeaderLen = kBranchLength;
837
838
uptr header = (uptr)old_func - kHotPatchHeaderLen;
839
uptr patch_length = kHotPatchHeaderLen + kShortJumpInstructionLength;
840
841
// Validate that the function is hot patchable.
842
size_t instruction_size = GetInstructionSize(old_func);
843
if (instruction_size < kShortJumpInstructionLength ||
844
!FunctionHasPadding(old_func, kHotPatchHeaderLen))
845
return false;
846
847
if (orig_old_func) {
848
// Put the needed instructions into the trampoline bytes.
849
uptr trampoline_length = instruction_size + kDirectBranchLength;
850
uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length);
851
if (!trampoline)
852
return false;
853
if (!CopyInstructions(trampoline, old_func, instruction_size))
854
return false;
855
WriteDirectBranch(trampoline + instruction_size,
856
old_func + instruction_size);
857
*orig_old_func = trampoline;
858
}
859
860
// If needed, get memory space for indirect address.
861
uptr indirect_address = 0;
862
#if SANITIZER_WINDOWS64
863
indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength);
864
if (!indirect_address)
865
return false;
866
#endif
867
868
// Change memory protection to writable.
869
DWORD protection = 0;
870
if (!ChangeMemoryProtection(header, patch_length, &protection))
871
return false;
872
873
// Write jumps to the redirected function.
874
WriteBranch(header, indirect_address, new_func);
875
WriteShortJumpInstruction(old_func, header);
876
877
// Restore previous memory protection.
878
if (!RestoreMemoryProtection(header, patch_length, protection))
879
return false;
880
881
return true;
882
}
883
884
bool OverrideFunctionWithTrampoline(
885
uptr old_func, uptr new_func, uptr *orig_old_func) {
886
887
size_t instructions_length = kBranchLength;
888
size_t padding_length = 0;
889
uptr indirect_address = 0;
890
891
if (orig_old_func) {
892
// Find out the number of bytes of the instructions we need to copy
893
// to the trampoline.
894
instructions_length = RoundUpToInstrBoundary(kBranchLength, old_func);
895
if (!instructions_length)
896
return false;
897
898
// Put the needed instructions into the trampoline bytes.
899
uptr trampoline_length = instructions_length + kDirectBranchLength;
900
uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length);
901
if (!trampoline)
902
return false;
903
if (!CopyInstructions(trampoline, old_func, instructions_length))
904
return false;
905
WriteDirectBranch(trampoline + instructions_length,
906
old_func + instructions_length);
907
*orig_old_func = trampoline;
908
}
909
910
#if SANITIZER_WINDOWS64
911
// Check if the targeted address can be encoded in the function padding.
912
// Otherwise, allocate it in the trampoline region.
913
if (IsMemoryPadding(old_func - kAddressLength, kAddressLength)) {
914
indirect_address = old_func - kAddressLength;
915
padding_length = kAddressLength;
916
} else {
917
indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength);
918
if (!indirect_address)
919
return false;
920
}
921
#endif
922
923
// Change memory protection to writable.
924
uptr patch_address = old_func - padding_length;
925
uptr patch_length = instructions_length + padding_length;
926
DWORD protection = 0;
927
if (!ChangeMemoryProtection(patch_address, patch_length, &protection))
928
return false;
929
930
// Patch the original function.
931
WriteBranch(old_func, indirect_address, new_func);
932
933
// Restore previous memory protection.
934
if (!RestoreMemoryProtection(patch_address, patch_length, protection))
935
return false;
936
937
return true;
938
}
939
940
bool OverrideFunction(
941
uptr old_func, uptr new_func, uptr *orig_old_func) {
942
#if !SANITIZER_WINDOWS64
943
if (OverrideFunctionWithDetour(old_func, new_func, orig_old_func))
944
return true;
945
#endif
946
if (OverrideFunctionWithRedirectJump(old_func, new_func, orig_old_func))
947
return true;
948
if (OverrideFunctionWithHotPatch(old_func, new_func, orig_old_func))
949
return true;
950
if (OverrideFunctionWithTrampoline(old_func, new_func, orig_old_func))
951
return true;
952
return false;
953
}
954
955
static void **InterestingDLLsAvailable() {
956
static const char *InterestingDLLs[] = {
957
"kernel32.dll",
958
"msvcr100d.dll", // VS2010
959
"msvcr110d.dll", // VS2012
960
"msvcr120d.dll", // VS2013
961
"vcruntime140d.dll", // VS2015
962
"ucrtbased.dll", // Universal CRT
963
"msvcr100.dll", // VS2010
964
"msvcr110.dll", // VS2012
965
"msvcr120.dll", // VS2013
966
"vcruntime140.dll", // VS2015
967
"ucrtbase.dll", // Universal CRT
968
# if (defined(__MINGW32__) && defined(__i386__))
969
"libc++.dll", // libc++
970
"libunwind.dll", // libunwind
971
# endif
972
// NTDLL should go last as it exports some functions that we should
973
// override in the CRT [presumably only used internally].
974
"ntdll.dll",
975
NULL
976
};
977
static void *result[ARRAY_SIZE(InterestingDLLs)] = { 0 };
978
if (!result[0]) {
979
for (size_t i = 0, j = 0; InterestingDLLs[i]; ++i) {
980
if (HMODULE h = GetModuleHandleA(InterestingDLLs[i]))
981
result[j++] = (void *)h;
982
}
983
}
984
return &result[0];
985
}
986
987
namespace {
988
// Utility for reading loaded PE images.
989
template <typename T> class RVAPtr {
990
public:
991
RVAPtr(void *module, uptr rva)
992
: ptr_(reinterpret_cast<T *>(reinterpret_cast<char *>(module) + rva)) {}
993
operator T *() { return ptr_; }
994
T *operator->() { return ptr_; }
995
T *operator++() { return ++ptr_; }
996
997
private:
998
T *ptr_;
999
};
1000
} // namespace
1001
1002
// Internal implementation of GetProcAddress. At least since Windows 8,
1003
// GetProcAddress appears to initialize DLLs before returning function pointers
1004
// into them. This is problematic for the sanitizers, because they typically
1005
// want to intercept malloc *before* MSVCRT initializes. Our internal
1006
// implementation walks the export list manually without doing initialization.
1007
uptr InternalGetProcAddress(void *module, const char *func_name) {
1008
// Check that the module header is full and present.
1009
RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0);
1010
RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew);
1011
if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE || // "MZ"
1012
headers->Signature != IMAGE_NT_SIGNATURE || // "PE\0\0"
1013
headers->FileHeader.SizeOfOptionalHeader <
1014
sizeof(IMAGE_OPTIONAL_HEADER)) {
1015
return 0;
1016
}
1017
1018
IMAGE_DATA_DIRECTORY *export_directory =
1019
&headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT];
1020
if (export_directory->Size == 0)
1021
return 0;
1022
RVAPtr<IMAGE_EXPORT_DIRECTORY> exports(module,
1023
export_directory->VirtualAddress);
1024
RVAPtr<DWORD> functions(module, exports->AddressOfFunctions);
1025
RVAPtr<DWORD> names(module, exports->AddressOfNames);
1026
RVAPtr<WORD> ordinals(module, exports->AddressOfNameOrdinals);
1027
1028
for (DWORD i = 0; i < exports->NumberOfNames; i++) {
1029
RVAPtr<char> name(module, names[i]);
1030
if (!strcmp(func_name, name)) {
1031
DWORD index = ordinals[i];
1032
RVAPtr<char> func(module, functions[index]);
1033
1034
// Handle forwarded functions.
1035
DWORD offset = functions[index];
1036
if (offset >= export_directory->VirtualAddress &&
1037
offset < export_directory->VirtualAddress + export_directory->Size) {
1038
// An entry for a forwarded function is a string with the following
1039
// format: "<module> . <function_name>" that is stored into the
1040
// exported directory.
1041
char function_name[256];
1042
size_t funtion_name_length = _strlen(func);
1043
if (funtion_name_length >= sizeof(function_name) - 1)
1044
InterceptionFailed();
1045
1046
_memcpy(function_name, func, funtion_name_length);
1047
function_name[funtion_name_length] = '\0';
1048
char* separator = _strchr(function_name, '.');
1049
if (!separator)
1050
InterceptionFailed();
1051
*separator = '\0';
1052
1053
void* redirected_module = GetModuleHandleA(function_name);
1054
if (!redirected_module)
1055
InterceptionFailed();
1056
return InternalGetProcAddress(redirected_module, separator + 1);
1057
}
1058
1059
return (uptr)(char *)func;
1060
}
1061
}
1062
1063
return 0;
1064
}
1065
1066
bool OverrideFunction(
1067
const char *func_name, uptr new_func, uptr *orig_old_func) {
1068
bool hooked = false;
1069
void **DLLs = InterestingDLLsAvailable();
1070
for (size_t i = 0; DLLs[i]; ++i) {
1071
uptr func_addr = InternalGetProcAddress(DLLs[i], func_name);
1072
if (func_addr &&
1073
OverrideFunction(func_addr, new_func, orig_old_func)) {
1074
hooked = true;
1075
}
1076
}
1077
return hooked;
1078
}
1079
1080
bool OverrideImportedFunction(const char *module_to_patch,
1081
const char *imported_module,
1082
const char *function_name, uptr new_function,
1083
uptr *orig_old_func) {
1084
HMODULE module = GetModuleHandleA(module_to_patch);
1085
if (!module)
1086
return false;
1087
1088
// Check that the module header is full and present.
1089
RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0);
1090
RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew);
1091
if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE || // "MZ"
1092
headers->Signature != IMAGE_NT_SIGNATURE || // "PE\0\0"
1093
headers->FileHeader.SizeOfOptionalHeader <
1094
sizeof(IMAGE_OPTIONAL_HEADER)) {
1095
return false;
1096
}
1097
1098
IMAGE_DATA_DIRECTORY *import_directory =
1099
&headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT];
1100
1101
// Iterate the list of imported DLLs. FirstThunk will be null for the last
1102
// entry.
1103
RVAPtr<IMAGE_IMPORT_DESCRIPTOR> imports(module,
1104
import_directory->VirtualAddress);
1105
for (; imports->FirstThunk != 0; ++imports) {
1106
RVAPtr<const char> modname(module, imports->Name);
1107
if (_stricmp(&*modname, imported_module) == 0)
1108
break;
1109
}
1110
if (imports->FirstThunk == 0)
1111
return false;
1112
1113
// We have two parallel arrays: the import address table (IAT) and the table
1114
// of names. They start out containing the same data, but the loader rewrites
1115
// the IAT to hold imported addresses and leaves the name table in
1116
// OriginalFirstThunk alone.
1117
RVAPtr<IMAGE_THUNK_DATA> name_table(module, imports->OriginalFirstThunk);
1118
RVAPtr<IMAGE_THUNK_DATA> iat(module, imports->FirstThunk);
1119
for (; name_table->u1.Ordinal != 0; ++name_table, ++iat) {
1120
if (!IMAGE_SNAP_BY_ORDINAL(name_table->u1.Ordinal)) {
1121
RVAPtr<IMAGE_IMPORT_BY_NAME> import_by_name(
1122
module, name_table->u1.ForwarderString);
1123
const char *funcname = &import_by_name->Name[0];
1124
if (strcmp(funcname, function_name) == 0)
1125
break;
1126
}
1127
}
1128
if (name_table->u1.Ordinal == 0)
1129
return false;
1130
1131
// Now we have the correct IAT entry. Do the swap. We have to make the page
1132
// read/write first.
1133
if (orig_old_func)
1134
*orig_old_func = iat->u1.AddressOfData;
1135
DWORD old_prot, unused_prot;
1136
if (!VirtualProtect(&iat->u1.AddressOfData, 4, PAGE_EXECUTE_READWRITE,
1137
&old_prot))
1138
return false;
1139
iat->u1.AddressOfData = new_function;
1140
if (!VirtualProtect(&iat->u1.AddressOfData, 4, old_prot, &unused_prot))
1141
return false; // Not clear if this failure bothers us.
1142
return true;
1143
}
1144
1145
} // namespace __interception
1146
1147
#endif // SANITIZER_APPLE
1148
1149